
You Can Rand but You Can’t Hide:
A Holistic Security Analysis of Google Fuchsia’s

(and gVisor’s) Network Stack
Inon Kaplan

Independent researcher
Ron Even

Independent researcher
Amit Klein

Hebrew University of Jerusalem

Abstract—This research is the first holistic analysis of the
algorithmic security of the Google Fuchsia/gVisor network stack.
Google Fuchsia is a new operating system developed by Google
in a “clean slate” fashion. It is conjectured to eventually replace
Android as an operating system for smartphones, tablets, and
IoT devices. Fuchsia is already running in millions of Google
Nest Hub consumer products. Google gVisor is an application
kernel used by Google’s App Engine, Cloud Functions, Cloud
ML Engine, Cloud Run, and Google Kubernetes Engine (GKE).
Google Fuchsia uses the gVisor network stack code for its TCP/IP
implementation.

We report multiple vulnerabilities in the algorithms used
by Fuchsia/gVisor to populate network protocol header fields,
specifically the TCP initial sequence number, TCP timestamp,
TCP and UDP source ports, and IPv4/IPv6 fragment ID fields.
In our holistic analysis, we show how a combination of multiple
attacks results in the exposure of a PRNG seed and a hashing
key used to generate the above fields. This enables an attacker
to predict future values of the fields, which facilitates several
network attacks. Our work focuses on web-based device tracking
based on the stability and relative uniqueness of the PRNG
seed and the hashing key. We demonstrate our device tracking
techniques over the Internet with browsers running on multiple
Fuchsia devices, in multiple browser modes (regular/privacy),
and over multiple networks (including IPv4 vs. IPv6). Our tests
verify that device tracking for Fuchsia is practical and yields a
reliable device ID.

We conclude with recommendations on mitigating the attacks
and their root causes. We reported our findings to Google, which
issued CVEs and patches for the security vulnerabilities we
disclosed.

I. INTRODUCTION

In this paper, we review the security of the network protocol
stack used by Google Fuchsia operating system [1], based on
the network stack of Google gVisor kernel [2]. Our primary
use case is Fuchsia device tracking, but our findings apply to
other use cases and facilitate network attacks against Fuchsia
and gVisor-based applications.

The main scenario is a Fuchsia device running a browser,
which navigates to a website. This website serves a web page

containing an HTML+JavaScript tracking snippet. The snippet
works in coordination with the website’s server backend,
and the server computes a device ID based on information
extracted from the TCP/IP protocol headers of the device’s
traffic to the server. The same device ID is calculated for all
websites that employ this tracking technique, and thus, the
device can be tracked across its navigation through websites,
time, and networks (“cross-site tracking”). To elaborate, two
or more websites may collude in order to track a web user, by
individually calculating the device ID when the user’s device
visits each website, using it to identify the same user as it
traverses the colluding websites, even though the user may
log-in to the colluding websites under different accounts, from
different networks and from different browsers. It is important
to note that in general, without a common device ID (be it
based on protocol header fields, hardware fingerprints or other
identifiers), it would be impossible for colluding websites to
track visitors across sites, because each website may know
its users by different, site-specific names (e.g. their account
names/numbers).

We introduce several tracking techniques based on vul-
nerabilities in the Fuchsia/gVisor implementation of various
TCP/IP protocol header fields. Mainly, we exploit the small
seed space in the PRNG used by the network stack, the PRNG
predictability, the weakness in the hashing function used to
calculate some TCP protocol fields, the small hash key space
in the IPv4 ID generation algorithm, and hash collisions in
the IPv4 ID table. These result in weaknesses in how the
TCP Initial Sequence Numbers (ISN), TCP timestamps, and
TCP source ports are generated, which we exploit to recover
the network stack’s PRNG seed. This seed is generated at
the operating system startup and remains in effect until the
operating system shuts down and, therefore, can be used
as a stable device ID. An alternative, computation intensive
technique uses the UDP source ports to extract this seed. A
third technique exploits the IPv4 ID field generation algorithm
to extract the hashing key used by it, which, similarly to the
seed, can be used as another stable device ID.

We demonstrated our device tracking techniques on various
Fuchsia devices, including a Google Nest Hub Max device
(smart home speaker+display), a Google Pixelbook Go laptop,
an Intel NUC device (mini-PC), and two virtual devices
(running on QEMU). We tested them through 7 networks (2
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cellular, 2 VDSL, 2 Fiber, and one cable) via WiFi hotspots
and Ethernet connections. We tested IPv4 and IPv6 connec-
tivity and browser regular mode vs. privacy mode (Chrome’s
“Incognito” mode) against our proof-of-concept (PoC) servers
in two continents. We measured success rates, dwell time
required, and compute time and found that all were realistic
for tracking at scale – we had complete success in all 63 tests.
The dwell time needed for the PRNG seed extraction was an
average of seven milliseconds over IPv4 and 116 milliseconds
for the hash key extraction. Their compute time was three and
five seconds, respectively. Over IPv6, however, the dwell time
was only two milliseconds on average, and the compute time
was only one millisecond.

Our TCP-based techniques require the tracking website to
observe the TCP timestamp and TCP sequence number as
the Fuchsia device generates them. Likewise, the IPv4-based
techniques require direct observation of the IPv4 ID field. This
means that a device behind a forward proxy (and particularly
Tor) is not vulnerable to these techniques. However, at this
time, to the best of our knowledge, the Fuchsia browser does
not support Tor (or a forward proxy in general). Moreover, a
forward proxy does not affect the UDP-based technique since
our Javascript code observes the UDP source ports locally.

The same techniques and underlying weaknesses can be
used to mount other attacks. Since we expose the PRNG seed,
we can reproduce its outputs. Therefore, our techniques can
predict network protocol fields generated by the PRNG (at
least the part determined by the PRNG output). These fields
are the TCP source port, the TCP ISN, the TCP timestamp,
and the UDP source port. Attacks that involve IPv4 ID
predictability can also be mounted based on obtaining the IPv4
ID hashing key. In addition, our attacks expose the device’s
internal (private) IPv4 address, even when the device is behind
a NAT.

Our holistic approach was key in developing practical
tracking techniques (and other attacks). Each individual vul-
nerability we uncovered has a limited (albeit non-negligible)
impact. But the ability to take in the interplay between the
vulnerabilities and combine them made the more potent device
tracking attacks possible.

A. Fuchsia and gVisor

Fuchsia is an open-source operating system developed by
Google. They describe it as “a general purpose operating
system designed to power a diverse ecosystem of hardware
and software” [1]. It has a clean-slate design, including a new
microkernel called “Zircon”. Fuchsia components, subsystems,
drivers, etc., are written mostly in Rust, except Zircon which
is written mostly in C++ (with some C and Assembly) and
Fuchsia’s GUI which is written in Dart using the Flutter SDK.
Fuchsia employs modern software engineering concepts such
as a capability model, software packages, software isolation,
sandboxing, namespaces, modularity and updateability. Fuch-
sia first appeared in an open source repository in 2016 [3],
and it was first deployed (to 1st generation Google Nest Hub
devices) in 2021.

It is widely speculated that Fuchsia is slated to replace
Android on smartphones and tablets [4], [5], [6], with some
indications that Samsung and Huawei plan to release Fuchsia-
based smartphones in the foreseeable future [7], [8], though
some sources are more reserved about the timelines [9].
Google has already started to update shipped products (Google
Nest Hub 2nd Gen, Google Nest Hub Max) to Fuchsia [10],
[11]. Since in Q3 2021 alone “Google’s Nest Hub ... [had] 1.5
million units shipped” [12], we estimate that many millions
of Google Nest Hub devices run Fuchsia at present.

As such, Fuchsia’s security, particularly its network stack
and vulnerability to tracking, is of great importance, espe-
cially when looking several years ahead. Moreover, we (the
security research community) are uniquely positioned time-
wise to look at a future operating system and address its
security issues before it becomes ubiquitous, i.e., before such
time that patching it yields major production and deployment
challenges.

Fuchsia’s network stack runs in user-space (part of Fuchsia’s
“Connectivity” core service), and is built upon Google gVi-
sor’s network stack. According to the Google gVisor GitHub
page, “gVisor is an application kernel, written in Go [...]
gVisor is an application kernel for containers. It limits the
host kernel surface accessible to the application while still
giving the application access to all the features it expects”
[13]. According to [14], gVisor is used in Google’s App
Engine, Cloud Functions, Cloud ML Engine, Cloud Run,
and Google Kubernetes Engine (GKE). Since researching
Fuchsia’s network stack equates to researching gVisor, some of
our research may also apply to non-Fuchsia gVisor use cases.

It should be noted that the Fuchsia source code tree also
contains an alternative, purpose-built network stack (“Net-
Stack3”). Since it is not the default stack used by Fuchsia,
we did not invest efforts into analyzing it. However, per our
source code analysis, it appears that it is also vulnerable to a
device tracking attack, which we describe in App. A.

B. Network Protocol Attacks

1) Device Tracking: Device tracking is a fundamental threat
to Internet users’ privacy. Used for personalization of ad-
vertisement and surveillance, it, by design, undermines the
anonymity of users as they navigate across sites (“cross-site
tracking”), networks, ISPs, and browser modes (regular vs.
privacy mode).

Until recently, trackers used 3rd-party cookies as a tracking
mechanism due to their convenience and prevalence (cookies
are a web standard supported by all browsers). However,
nowadays, major browser vendors severely limit the scope and
usability of 3rd-party cookies [15], [16], rendering them almost
useless for practical cross-site tracking. Trackers are, therefore,
looking for alternative web-based tracking techniques, specif-
ically ones that can reliably track devices in today’s privacy-
aware browser environment. For example, browser vendors
nowadays use separate caching contexts for sites, frames, etc.,
thus rendering many shared-cache attacks useless. Likewise,
browser privacy modes pose a challenge for trackers since
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browser vendors attempt to separate them from the main
browsing mode completely.

Over the years, multiple tracking techniques were devel-
oped. Some were based on detecting immutable properties
of the device’s operating system, kernel, and/or hardware
to produce a fingerprint of the device, ideally (but hardly
always) unique among all potentially trackable devices. Other
techniques attempt to tag a device by placing a unique marker
in the device, e.g., forcing the device to cache one or multiple
resources [17, Section IV]. Both approaches are not without
problems. One fingerprinting challenge is to come up with
a sufficient number of information bits to tell devices apart.
Another fingerprinting challenge is the “golden image” sce-
nario, wherein an organization deploys thousands of identical
hardware and software devices, which makes it extremely
difficult to tell devices apart. A significant challenge for the
tagging approach is the continuous efforts of browser vendors
to prevent information sharing1 across browsing contexts and
especially across the privacy mode gap.

Thus, finding a web-based tracking technique to overcome
the golden image and isolated browsing context scenarios is
even more challenging. In this paper, we describe techniques
based on extracting immutable kernel data (PRNG seed,
hashing key) that can be used as a device ID that remains intact
from system startup to system shutdown (typically weeks or
months). Because our device ID is a value of a global kernel
object, it is agnostic to the website in which it is calculated,
the browsing context (1st-party or 3rd-party, privacy mode), the
network to which the device is connected to (including IPv4
vs. IPv6, NAT, and source IP address variability), the location
of the tracking server and its IP addresses, and the time of
ID measurement. Our techniques yield a stable device ID of
31 bits (PRNG seed) / 32 bits (hashing key) / 63 bits (their
combination).

2) Additional Attacks: While our main focus in the paper is
device tracking, our attacks retrieve the Fuchsia/gVisor PRNG
seed and IPv4 ID hashing key, which are used to calculate
numerous network protocol fields. As such, our results can
be used to predict TCP ISN, TCP and UDP source ports,
IP IDs and PRNG outputs and to disclose internal IPv4
addresses, which can facilitate diverse network attacks. We
did not attempt to mount any of the non-tracking attacks.

C. Our Contribution

Our contribution is four-fold:

• We provide the first holistic security analysis of the Fuch-
sia (and gVisor) TCP/IP network protocol stack, focusing
on how “high entropy” protocol header fields are gener-
ated. Specifically we review how Fuchsia (and gVisor)
generates the TCP initial sequence number, TCP times-
tamp and TCP source port, UDP source port, IPv4/IPv6

1In general, tagging also faces a severe challenge in multiple-browser
environments, but this is irrelevant to Fuchsia at the time of writing.

ID and IPv6 flow label fields. We report vulnerabilities
in all these fields except for the IPv6 flow label.2

• Since we holistically analyze all the protocol fields collec-
tively, we observe that the vulnerabilities we found can
be chained and exploited in concert to mount multiple
variations of device tracking attacks. Our attacks also
disclose the PRNG seed, the IPv4 ID hashing key and
the device’s internal (private) IP address.

• We conduct experiments and report their results, which
demonstrate these vulnerabilities over networks and con-
nections on various Fuchsia devices. We set up two
PoC servers on two continents to show that our tracking
techniques work across the Internet and are agnostic to
the PoC server location and IP addresses.

• We provide recommendations for addressing and mitigat-
ing our attacks.

II. RELATED WORK

A. Fuchsia/gVisor Network Stack

Operating systems and kernels often have proprietary imple-
mentations of their network protocol stacks. As such, each net-
work stack implementation needs to be assessed individually.
Network stacks of well-established kernels such as Microsoft
Windows, Linux (also the kernel of Android), and Apple XNU
(the kernel of macOS, iOS, and all other Apple products) are
well-studied. For example, the algorithms used to populate
protocol header fields are scrutinized in [18], [19], [20], [21].
Yet the gVisor network stack has not attracted attention in this
context, with the scarcely existing research focusing on finding
generic code vulnerabilities across the kernel [22]. We submit
that our work is the first systematic analysis of algorithmic
weaknesses in how gVisor populates network protocol header
fields.

The gVisor network stack uses Go’s built-in pseudo-random
number generator (PRNG). In [23], it is shown that when the
attacker obtains 607 consecutive full PRNG outputs (63 bits),
the attacker can reconstruct all previous PRNG outputs and
predict all the succeeding outputs. However, this condition
does not hold with any of the gVisor PRNG use cases we
reviewed. Particularly, UDP source ports are generated using
the most significant 31 bits of the PRNG output, taken modulo
49536. This is incompatible with the attack in [23].

B. Holistic Security Analysis of Network Stack Algorithms

Many research works focus on the algorithmic security of a
single protocol header e.g. IPv4 ID [18], IPv6 flow label [24]
and TCP ISN [25], [26]. A cross-layer attack is described
in [20] where a (flawed) PRNG is broken by sampling IPv6
flawlabel and used to predict the next UDP source port, but
this stems from a single vulnerability (predictable PRNG)
that happens to have multiple manifestations. Finally, [27],
[28], [29] review entire network stacks, but focus on non-
algorithmic vulnerabilities (e.g. buffer overflows).

2Fuchsia/gVisor always set the IPv6 flow label to 0, thus its effective
entropy is 0.
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Our work shows that by taking a holistic view, we can com-
bine seemingly unrelated “minor” vulnerabilities into powerful
attacks. For example, to find the IPv4 ID hashing key, we
combine four independent vulnerabilities in four protocol
fields: TCP ISN, TCP timestamp and TCP source port (to
find the internal IP address), and finally IPv4 ID itself.

C. Fuchsia/gVisor IPv4 ID Scheme

Unlike other network protocol fields, the gVisor algorithm
for generating IPv4 IDs (and IPv6 fragment IDs) is a degen-
erate version of the Linux 3.16-5.1 algorithm for generating
IPv4 IDs. The original Linux IPv4 ID algorithm was analyzed
and exploited in the context of Linux attacks, e.g., in [18].
The Linux algorithm involves increments of random quantities
depending on the duration between bucket accesses, whereas
the Fuchsia/gVisor algorithm degrades this to simple incre-
ments (++). This allows a somewhat different attack from [18]
against gVisor, which is faster than [18] and requires fewer
packets. For example, in [18], the attack required a dwell time
of several seconds due to the need to send two batches of 400
packets several seconds apart. In contrast, our attack requires
a single batch of 250 packets, necessitating an average dwell
time of only 116 milliseconds. This can be critical for tracking
scenarios that can guarantee only a sub-second dwell time, e.g.
an interstitial page or ad rotation.

In addition, back in 2019, extracting the source IPv4 address
using WebRTC was possible [30], but this leak has since been
fixed [31]. We overcame this challenge in two alternative ways,
as explained in § VI-A and § VI-B.

D. Device Tracking and Other Attacks

An extensive review of state of the art in web-based device
tracking is provided in [32], [18], [24], [20], [21]. Specifically,
[18], [24], [20], [21] describe network protocol header -based
device tracking attacks against Linux, Android and Windows.
None of the network protocol attacks reviewed applies as-is to
Fuchsia/gVisor since gVisor has its proprietary implementation
of the TCP/IP network stack (up to the special case of
IPv4 ID explained above). In addition, Fuchsia incorporates
a relatively recent Google Chrome browser (v111 at the time
of writing), which eliminates many browser-based weaknesses
that enabled older device tracking attacks.

There are still a few attacks that the above resources do
not cover. Several browser-based fingerprinting techniques are
described in [33]. These can detect the browser engine, the
OS, the browser mode (regular/privacy), browser extensions,
and the instruction set architecture (ISA). For Fuchsia, this
yields very few bits of information since there is only one
browser (Chrome), no extensions, and only two relevant ISAs
(x64 and ARM). A row hammer-based device fingerprinting
is described in [34]. They mention that it “takes almost 3
minutes to extract a fingerprint,” which renders this technique
impractical for many device tracking use cases. Recently, [35,
Table VI] described several cross-site tracking techniques.
Specifically for Chrome, the disclosed new techniques are
either in experimental features (Private State Token API,

FLEDGE API), subsequently fixed (favicon cache, Alt-Svc),
or of limited impact (CORS Preflight – only effective for two
hours). A device tracking technique based on the Widevine
EME DRM standard is described in [36]. While they did
not test browsers on Fuchsia, they do note that Chrome for
Android (probably the closest target to Fuchsia they tested) is
not vulnerable to their attack, which suggests that Chrome on
Fuchsia is not vulnerable as well.

III. NOTATIONS, DEFINITIONS, BASIC OBSERVATIONS,
ATTACKER MODEL

A. Notations and Conventions

• Throughout this paper, unless stated otherwise, we im-
plicitly assume that addition and subtraction are carried
modulo 232.

• We denote by MSB(x) the most significant byte of x
(typically x is a 32-bit quantity).

• We designate the time since boot (in time units of [u])
when a TCP field X is generated as tX[u].

B. Definitions

Fuchsia uses Jenkins’ “One-at-a-Time Hash” function [37]
to generate values of different protocol fields, such as the
TCP timestamp (TS), the TCP Initial Sequence Number (ISN),
and the TCP source port. This function can be expressed as
Sum32(HashBytes(B, V )) where B is an array of bytes
and V is a 32-bit hashing key, with the result hash value of
32 bits. Alg. 1 is a pseudo-code for HashBytes, and Alg. 2
is a pseudo-code for Sum32.

Algorithm 1: HashBytes
Input: An array of Bytes B and a value V
Output: A 32-bit integer (hash of B and V )
begin

foreach b in B do
V ← V + b;
V ← V + (V ≪ 10);
V ← V ⊕ (V ≫ 6);

end
return V

end

Algorithm 2: Sum32
Input: A value V
Output: A 32-bit integer
begin

V ← V + (V ≪ 3);
V ← V ⊕ (V ≫ 11);
V ← V + (V ≪ 15);
return V

end
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C. Observations

• The function x 7−→ x+(x≪ n) is easily invertible. It can
be written as x 7−→ (2n+1)x mod 232, thus inverting it
amounts to multiplying by (1−2n)(1+22n+24n+ · · · )
which takes very few register-only instructions.

• The function x 7−→ x⊕(x≫ n) is easily invertible using
very few register-only instructions [38].

• It follows from the above that Sum32(·) is easily invert-
ible, and so is HashBytes(B, ·) (when B is known).

• If HashBytes([b], v) is known (where [b] is a one-cell
array containing the byte b), then it is easy to calculate
b + v (follows from the above and the definition of
HashBytes).

D. Attacker Model

In our attack model, the attacker (website) embeds a
JavaScript snippet inside an HTML page served to the client
device. On the device, the page is consumed by a browser;
thus, the attacker’s Javascript code runs on the browser in the
context of the attacker’s website. This Javascript code instructs
the browser to communicate with the attacker’s web server,
e.g., using WebRTC, so that the server has some protocol data
from the device at the end of the interaction, allowing it to
calculate a device ID for it (the PRNG seed and/or the hashIV
hashing key). Ideally, the dwell time on the attacker’s page and
the amount of network traffic generated by the snippet should
be minimal.

On the server side, the attacker sets up an Internet-connected
machine with enough RAM (90GiB suffices to support all the
attacks described in § IV-B and § IV-C). Ideally, the machine
would also have sufficient computing power (dozens of cores)
to calculate a device ID in real time. For the TCP attacks
(§ IV-B and § IV-C), the machine needs to have two Internet
IP addresses: IP1 and IP2. For the IPv4 ID attacks (§ VI),
the PoC server has 250 IPv4 addresses.

A cross-site tracking attack involves two or more colluding
websites. Each colluding website calculates the device IDs
of their visitor devices, ideally in real-time. Our device ID
can be calculated using a website-specific infrastructure (IP
addresses and domains names), independent of other colluding
websites, and thus cannot be trivially flagged as a common
tracking infrastructure.

IV. OBTAINING THE PRNG SEED

A. The Network Stack PRNG

Fuchsia’s network stack uses an instance of the built-in Go
PRNG with a 31-bit seed3. The network stack PRNG instance
is seeded during the network stack initialization (at system
startup) using random bytes obtained from a cryptographically
strong source, and is never reseeded since. The PRNG then
advances deterministically. During the network stack initial-
ization, the PRNG is used to generate three 32-bit “secrets” in

3Nominally the seed initialization function rng.Seed() takes a 64-bit
integer argument, but this argument is used mod 231 − 1, and moreover
if the result is 0, it is changed to 89482311. Thus there are only 231 − 2
effective seeds: [1, . . . , 231 − 2]. See also [39].

deterministically prescribed PRNG invocation offsets: SISN –
the TCP ISN hashing key, SPS – the TCP source port hashing
key and STS – the TCP timestamp hashing key. While Fuchsia
is running, the PRNG instance is used to generate UDP source
ports.

B. Obtaining the PRNG Seed with Just Four TCP/IPv4 SYN
Packets

1) Overview: The attack consists of three “phases.” First,
the attacker extracts a value denoted as JTS . Formally defined
later, it is an intermediate calculation of a TCP packet’s
timestamp value. Next, using JTS , the attacker extracts a
value denoted as JISN , an intermediate value in calculating a
TCP circuit’s ISN value. The last phase consists of extracting
the seed itself using JTS and JISN . As a byproduct of the
attack, the attacker also obtains the device’s internal (private)
IP address. Note that this attack does not assume anything
about how the PRNG is advanced, except that it is a known,
deterministic algorithm.

2) Setup: The attacker server has two Internet addresses,
IP1 and IP2. In offline, the attacker computes two multi-maps
– Q and W (32GiB each), as described below. These multi-
maps are derived from the values of IP1 and IP2. The snippet
initiates two TCP connections (SYN packets) to IP1 and
IP2 (four TCP connection attempts altogether). To generate
the connection attempts rapidly, the snippet uses WebRTC
TURN. For ease of reference, we denote these connections
SYN IP1,1,SYN IP1,2,SYN IP2,1,SYN IP2,2.

3) Extracting JTS Candidates: Alg. 3 describes the TCP
timestamp (TS) calculation for a TCP connection and defines
JTS .

Algorithm 3: TS Timestamp Calculation
Input: The TCP connection addresses IPSRC , IPDST

in big-endian format, a 32-bit integer secret
STS

Output: A 32-bit integer (TCP timestamp)
begin

JTS ← HashBytes(IPSRC , STS );
offset ← HashBytes(IPDST , JTS );
return Sum32(offset) + tTS

[ms];
end

In this phase of the attack, the attacker produces a small set
of JTS candidates (20 in expectation).

Offline, the attacker computes a multi-map Q:

Sum32(HashBytes(IP2, JTS ))−
Sum32(HashBytes(IP1, JTS )) 7−→ JTS

by going over all 232 possible JTS values.
The online attack phase starts when the Fuchsia device

browses the tracking HTML page. The attacker collects the
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packets SYN IP1,2 and SYN IP2,1 and extracts their TS values.
The two packets are created δ milliseconds apart. Therefore:

TSSYN IP1,2
= Sum32(HashBytes(IP1, JTS )) + t

TSSYN IP2,1
= Sum32(HashBytes(IP2, JTS )) + t+ δ

Subtracting, we get:

TSSYN IP2,1 − TSSYN IP1,2 − δ =

Sum32(HashBytes(IP2, JTS ))−
Sum32(HashBytes(IP1, JTS ))

Since the packets SYN IP1,2 and SYN IP2,1 are generated
in rapid succession, δ is small. Our experiments log δ < 11
(milliseconds) at maximum, so we can safely assume δ < 20.
The attacker iterates over 0 ≤ δ < 20, and for each such
δ the attacker collects all precomputed JTS candidates (all
Q(TSSYN IP2,1

− TSSYN IP1,2
− δ) values).

This attack results in 20 JTS values in expectation, which
the attacker forwards to the next phase. At the end of the next
phase, the attack converges on the single correct JTS .

4) Extracting JISN : Alg. 4 describes the TCP Initial Se-
quence Number (ISN) calculation for a TCP connection and
defines JISN .

Algorithm 4: TCP ISN Generation
Input: The TCP 4-tuple

IPSRC : sport, IPDST : dport, and the ISN
secret SISN . Addresses are big-endian, ports
are little-endian.

Output: A 32-bit integer (ISN)
begin

JISN ← HashBytes(IPSRC , SISN );
v1 ← HashBytes(IPDST , JISN );
v2 ← HashBytes(sport, v1);
v3 ← HashBytes(dport, v2);
return Sum32(v3) + tISN[64ns];

end

Extracting JISN is not straightforward. Unlike JTS , JISN ’s
calculation involves the TCP source and destination ports,
and in a NAT use case (which is very common in IPv4
networks), the TCP source port used by the host is not exposed
to the attacker. Additionally, it uses a fine-grained clock (64
nanosecond resolution) to offset the hash value, which is more
challenging than JTS ’s millisecond clock.

From the previous step, the attacker has several JTS can-
didates. The attacker needs to iterate through all of them and
carry out the procedure described below, but for simplicity, we
assume a single JTS from now on. Denote by tTS

[ms] the time
(in milliseconds) since boot when the TS field of a TCP packet
was generated. Since the attacker already extracted JTS , the
attacker can calculate it easily:

tTS
[ms] = TS − Sum32(HashBytes(IPDST , JTS ))

Each pair of packets sent by the browser, SYN IPi,1,
SYN IPi,2 for i ∈ {1, 2}, yields a set of JISN candidates
(through the to-be-presented calculation). The attacker cal-
culates the intersection of the two sets, which, with a very
high probability, yields a single JISN value (the correct JISN ).
Since for incorrect JTS the intersection is very likely to be
empty, this also reveals the correct JTS .

Let tISN[64ns] be defined similarly to tTS
[ms] as the time (in 64

nanosecond resolution) since boot when the ISN field was
generated. We now describe how to generate a set of JISN
candidates for a single pair of TCP SYN packets (sent to the
same attacker IP address). The attacker starts by enumerating
over the possible tISN[64ns] values for the first SYN packet. The
attacker does this based on the tTS

[ms] the attacker has for this
packet. Since the ISN field for a TCP SYN packet is generated
a few microseconds before the TS field, and since the tTS

[ms]

value is rounded down to the nearest millisecond, we have:

15625 · tTS
[ms] − 1563 ≤ tISN[64ns] < 15625 · tTS

[ms] + 15625

(15625 = 1000000/64 is the conversion rate between clock
ticks, and 1563 = 100000/64 represents 100 microseconds in
64 nanosecond clock ticks, a very coarse upper limit for the
delay between ISN and TS generation time). Thus the attacker
has 15625 + 1563 = 17188 candidates for tISN[64ns] and hence
for Sum32(v3) = ISN − tISN[64ns].

Since Sum32(·) is invertible, and so is
HashBytes(bytes, ·) given known bytes (e.g., dport
in this case), the attacker can generate 17188 candidates for
v2. Going backward further in HashBytes is not trivial since
the attacker typically does not know sport (due to NAT).

As a background for the next step, we describe how Fuch-
sia generates ephemeral TCP source ports. Fuchsia employs
“Algorithm 3” of RFC 6056 [40] to select TCP source ports.
In detail, Fuchsia has a variable P (“port hint”) incremented
for every new outbound TCP connection. For a would-be TCP
connection to IPDST : dport, Fuchsia assigns the source port

(Sum32(HashBytes(IPSRC ||IPDST ||dport,SPS )) + P )

mod 49536 + 16000

Where SPS is the 32-bit TCP source port secret (this assumes
that the 4-tuple is presently unused at the device, which in
our case always holds). Fuchsia generates source ports in the
range of [16000, 56635].

We split the source port of the first packet sport to the
high and low bytes i.e. sport = 256 · sH + sL where
62 ≤ sH ≤ 255 and 0 ≤ sL ≤ 255, and we observe
that v2 = HashBytes(sH , HashBytes(sL, v1)). Now the
attacker obtains HashBytes(sL, v1) by enumerating over
sH (194 values). Employing the observation in § III-C, the
attacker obtains v1+ sL, which we denote as xt,sH = v1+ sL
(the attacker has 194× 17188 candidates for xt,sH ).

For simplicity, we now assume that no organic outbound
TCP connections are attempted by the system while our TCP
measurements are taken. This means that P is only incre-
mented due to our measurements. This is a valid assumptions
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since (as we show in Table II) the entire TCP measurement
takes a few milliseconds). Moreover, we can easily mitigate
organic connections by adding tolerance, but this complicates
the discussion.

We use another observation based on the above: consecutive
TCP source port allocations for the same destination IP address
and port (given a fixed source address) are incremental. Up
to a wrap-around (rare), we can assume that for the two
consecutive TCP SYN packets to the same attacker destination,
the source port of the second packet is the source port of the
first packet plus 1.

We now look at the second packet and denote its fields
and corresponding notations with a circumflex. Thus ŝport =
256·sH+(sL+1) (assuming sL < 255). From this, the attacker
has v̂2 = HashBytes(sH , HashBytes(0, xt,sH + 1)), and
the attacker can roll forward v̂3 = HashBytes(dport, v̂2).
Finally, the attacker calculates t̂ISN[64ns] = ÎSN − Sum32(v̂3),
and eliminates false positives by verifying that:

15625 · t̂TS
[ms] − 1563 ≤ t̂ISN[64ns] < 15625 · t̂TS

[ms] + 15625

Since the probability of a random candidate to fulfill the above
is 17188×2−32, there will be (17188×194)×17188×2−32 =
13.34 surviving candidates for xt,sH , in expectation.

The attacker extends each surviving xt,sH candidate into
a JISN candidate by enumerating over all 256 possible sL
values, calculating v1 = xt,sH − sL, and going backward in
HashBytes (with the known IPDST address) to get JISN .
Thus, each xt,sH results in 256 JISN candidates, and so for
a pair of SYN packets to the same destination, the attacker
gets 256 × 13.34 = 3416 JISN candidates, in expectation.
Note that with each JISN candidate, the attacker also has a
corresponding candidate for the source port of the first packet
(sport = 256 · sH + sL) and the source port of the second
packet (sport+ 1).

Covering the cases wherein sL or sH wrap around is not
difficult but left out due to space considerations.

The attacker applies the same procedure for the second
pair of TCP SYN packets (that arrive at the second attacker
IP address) to obtain another set of 3416 JISN candidates,
in expectation. The attacker calculates the intersection of the
two sets. When JTS is correct, this yields a single value (the
correct JISN ) with very high likelihood because the probability
for a match between random candidates is 2−32. When JTS

is incorrect, the intersection is very likely to be empty. Thus,
the attacker can determine the correct JISN . The attacker also
obtained the source ports of all four packets as a by-product.

5) Extracting the PRNG Seed: Recall that STS , SISN and
SPS are generated from the PRNG at fixed offsets, making
it easy to generate them given a seed. In offline, the attacker
calculates a multi-map W by going over all 231 − 2 possible
seeds, and for each seed S, add the mapping SISN −STS 7−→
[S, STS ] to W .4 Note that there are (expected) 231−2

232 ≈ 0.5
elements in a W cell.

4Theoretically we need to keep S only, because STS is derived from it,
but because deriving STS can take microseconds, and this needs to be done
224 times, we trade-off memory to save time and keep STS in memory.

Denote the true seed as S∗ and the corresponding se-
crets as S∗

TS and S∗
ISN . Given JISN and JTS , we

use the following method of obtaining S∗. Recall that
JISN = HashBytes(IPSRC ,S∗

ISN ). The attacker goes
3 bytes backward in HashBytes by enumerating all 224

options of the least significant 3 bytes of IPSRC . Partially
inverting HashBytes one more time, the attacker extracts
SISN+MSB(IPSRC ). The attacker similarly computes STS+
MSB(IPSRC ) from JTS . Denote the latter expression by x.

The attacker then calculates

∆ = (SISN +MSB(IPSRC ))− (STS +MSB(IPSRC ))

= SISN − STS

Finally, W (∆) is the list of candidate seeds (and their cor-
responding STS ), and note that (S∗, S∗

TS ) ∈ W (∆) for the
correct guess of the 3 least significant bytes of IPSRC . Now,
for a seed candidate S obtained from W (∆) the attacker uses
STS to calculate x − STS . For the correct seed, x − STS =
MSB(IPSRC ). Since MSB(IPSRC ) ≤ 255, the attacker can
remove false positives by checking that x− STS ≤ 255.

This ends up in very few seed candidates (one in expec-
tation). With each seed candidate, the attacker also has a
corresponding IPSRC candidate. To filter the list further and
find the correct seed, the attacker goes over the remaining seed
candidates and, for each such seed candidate S, calculates its
port secret SPS . With SPS and IPSRC obtained, and since the
source ports are computed as a by-product of the attack (part
of the JISN extraction), the attacker can extract the packets’
port hint (modulo 49536):

PSYN IPi,j
= sport− 16000−

Sum32(HashBytes(IPSRC ||IP i||dport,SPS ))

mod 49536

P is incremented by one after each source port assignment, re-
gardless of the connection specifics. Assuming that SYN IP1,2

and SYN IP2,1 are sent in rapid succession, the attacker can
postulate that in between these two packets, no other outbound
TCP connection is attempted or at least only a few are (say,
less than 10). The attacker can, therefore, filter seed false
positive by verifying that 1 ≤ PSYN IP2,1

− PSYN IP1,2
≤ 10

(in modular arithmetic). This concludes the extraction of S∗.

C. Obtaining the PRNG Seed with Just Two TCP/IPv6 SYN
Packets

Extracting the seed from IPv6 traffic is more straightfor-
ward, as NAT is rarely used for IPv6, and therefore the
attacker can observe the client’s source IPv6 address and
source TCP/UDP port. Similarly to the IPv4 attack, the IPv6
attack requires an attacker server with two (IPv6) addresses.
Unlike the IPv4 attack, the IPv6 attack only requires a single
SYN packet per IP address. Let TS 1 and TS 2 denote their
respective timestamps, and similarly for ISN 1 and ISN 2.

The attacker obtains JTS candidates using the method from
§ IV-B, step 2. This requires an additional 32GiB multi-
map Q′, calculated in offline. The attacker then calculates the
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respective STS candidate per each JTS candidate via inverting
the HashBytes using the (known, in the IPv6 case) source
address IPSRC .

In offline, the attacker computes a 24GiB multi-map W ′ by
going over all possible seeds, and for every seed S, computing
the timestamp secret STS and adding the mapping STS → S
to W ′. Given W ′, the attacker can generate a (small) set of
seed candidates for each STS candidate. The expected list size
(false positives) is ≈ 0.5 for every STS candidate.

To filter for S∗ the attacker goes over all seed candidates,
and for each candidate S, the attacker calculates the timestamp
offset for the first packet, using its source address IPSRC and
its destination address IP1. The difference between this offset
and TS 1 is the TCP TS generation time in milliseconds since
boot on the device. This is similarly calculated for the second
packet. Denote these times by tTS1

[ms] and tTS2

[ms] , respectively.
Then, the attacker calculates the ISN offset for the two packets
using the IPSRC , and their respective destination addresses
(IP1, IP2) and source and destination ports. By subtracting
the result from ISN 1 and ISN 2 the attacker obtains the least
significant 32 bits of the time since boot (in 64 nanosecond
clock ticks) in which the respective sequence number was
generated on the Fuchsia device. Converting tTS1

[ms] and tTS2

[ms]
to 64ns clock tick units (i.e., multiplying by 15625) yields
an approximation of the time (in 64 nanosecond ticks) the
TCP TS was generated on the device, which is (up to ) a
few microseconds later than the ISN generation time. Thus,
the attacker can compare this quantity per packet to the ISN
generation time and filter out seed candidates whose derived
ISN and TS generation times are too far from each other
(modulo 232).

D. Obtaining the PRNG Seed with 0 UDP Packets

When a Fuchsia application sends a UDP datagram from
an unspecified source port, Fuchsia assigns the datagram to
a UDP source port using the PRNG. Since the source port
pool is [16000, 65535], this yields log249536 = 15.59 bits of
information gleaned from every source port. An attacker can
obtain a series of consecutively assigned UDP source ports
by instantiating WebRTC STUN objects without sending a
single UDP datagram. This can be done, for example, by
setting the WebRTC destination to 0.0.0.0, an invalid IPv4
destination address; WebRTC will bind a local UDP port, but
the send operation will fail at the OS level, producing no
packet. The allocated UDP source port number can be obtained
by Javascript code; thus, an attacker Javascript code can obtain
a sequence of UDP source ports (derived from PRNG outputs)
without triggering additional traffic.

A long enough series can be used to extract the PRNG seed.
Naı̈vely, one can enumerate over all 231−2 possible seeds and
roll each of them forward up to K steps to find a match with
the UDP source ports obtained. K is the product of the average
PRNG consumption (per day) and the maximum duration
(since Fuchsia boot) the attacker wishes to “cover” with the
technique (for example, 100 days). In § VII, we measure the
average consumption of PRNG outputs to be 10,000-30,000

invocations/day. We can set K = 107 as a safe upper bound for
100 days. This results in N ≈ 231K ≈ 254.3 calculations. To
be able to find the seed, the attacker needs n = ⌈ log2 N

15.59 ⌉ = 4
consecutive UDP port samples. The CPU load in this approach
is prohibitive (proportional to N = 254.3).

An alternative approach is to use a time-memory trade-off
technique such as rainbow tables [41]. Formally, the attacker
defines a function f from the Cartesian product of the seed
space and the PRNG steps since boot space to the space of
all possible sequences of n consecutive ports f : [1, 231 −
2] × [0,K − 1] → [1, 231 − 2] × [0,K − 1], where f(s, r) is
the sequence of n UDP source ports generated from seed s
after rolling it forward r times, “cast” into the smaller space
of size |[1, 231 − 2] × [0,K − 1]| using any suitable and fast
hash function g : [16000, 65535]n → [1, 231− 2]× [0,K − 1].
The problem is thus to “invert” f for a particular value –
the hash g of the sequence of n UDP source ports obtained
in real-time. The inverse value corresponds (with sufficiently
high probability) to the seed and number of PRNG invocations
before the first port in the sequence.

In the rainbow table approach, we first choose a desired
point on the time-memory trade-off curve TM2 = N2 [42]
where T is the number of f evaluations and M is the number
of basic memory units needed. As explained in App. B, each
evaluation of f “costs” 607n basic operations, therefore we
choose T = 228.7 (total 239.9 basic operations), which yields
M = 239.9. There is a one-time heavy offline calculation
involving N evaluations of f and preparation of a RAM table
whose size is M “memory units”. This is quite demanding
from the computation time perspective, and as such, we could
not implement this approach in our PoC, but it is feasible for
a budgeted attacker. This PRNG seed extraction technique is
orthogonal to the previous attacks based on TCP and requires
0 network packets and minimal dwelling time. The downside
of this technique is the CPU compute time (and, to a lesser
degree, the RAM consumption) on the server side.

Note that we can get the success probability of the attack
as close to 1 as needed by using multiple rainbow tables
(increasing time and memory linearly).

V. PREDICTING UDP PORTS

In this attack, we demonstrate that the Go PRNG used in
Fuchsia and gVisor is weak, regardless of its effective seed
size. That is, we assume nothing about the seed size and
seeding procedure, and we only rely on the weakness of the
PRNG advancement procedure. We exploit this weakness to
show that UDP source ports are generated predictably.

When a UDP client starts a new UDP session without
explicitly requesting a specific source port (a standard usage
pattern), Fuchsia assigns it a source port using the PRNG:

port = (rng.Int63()≫ 32) mod 49536 + 16000

Go’s built-in PRNG uses ALFG (Additive Lagged Fi-
bonacci Generator [43]) and is implemented in the rng class
of the rand package. The PRNG uses an internal state,
R0, . . . , RrngLen−1, consisting of rngLen = 607 unsigned
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63-bit integer values5 and returns a pseudo-random 63-bit in-
teger value rng.Int63(), described in Alg. 5. Our analysis
is based on the particular way the PRNG is advanced, namely
that Rn = Rn−607+Rn−273 mod 263. Define P ′

n as the port
number generated at step n of the PRNG minus 16000. Then
P ′
n = (Rn ≫ 32) mod 49536.
We begin with a generic observation about expressions

involving shifts and sums. There are two possible independent
reasons that for a, b ∈ Z, ((a + b) mod 263) ≫ 32 ̸= (a ≫
32) + (b ≫ 32) (the right-hand side addition is carried out
over Z, i.e., non-modular arithmetic):

1) (a + b)’s calculation involves a carry from the 32 least
significant bits of the sum — this means that the carry is
“lost” by the right shift on a and b individually, therefore
(a+ b)≫ 32 = (a≫ 32) + (b≫ 32) + 1.

2) a+ b ≥ 263 – This means that (a+ b) mod 263 = a+
b−263. When shifted, it results in ((a+b) mod 263)≫
32 = (a+ b)≫ 32−231 = (a≫ 32)+(b≫ 32)−231.

Now, substituting a = Rn−607, b = Rn−273, and applying
mod 49536 on both sides, there are four possible cases:

• P ′
n = (P ′

n−607 + P ′
n−273) mod 49536

• P ′
n = (P ′

n−607 +P ′
n−273 +1) mod 49536 (by reason 1)

• P ′
n = (P ′

n−607 + P ′
n−273)− 231 mod 49536 (by reason

2)
• P ′

n = (P ′
n−607+P ′

n−273)+1−231 mod 49536 (by both
reasons).

Algorithm 5: Go’s PRNG functions

rngLen← 607;
rngTap← 273;
feed← rngLen− rngTap;
Function rng.Int63():

rngTap← (rngTap− 1) mod rngLen;
feed← (feed− 1) mod rngLen ;
Rfeed ← Rfeed +RrngTap mod 263;
return Rfeed;

return

Thus, by observing the previous 607 UDP source ports
(generated by consecutive invocations of the PRNG), it is
possible to predict (up to four values) the next UDP source
port that will be assigned by Fuchsia (P ′

n + 16000).
Similar to § IV-D, the attacker’s Javascript obtains a series

of 607 consecutive UDP source ports without triggering addi-
tional traffic. It is well known that Chrome has a 500 WebRTC
connection limit [44]. However, when a Fuchsia device has
an active dual-stack (i.e., both IPv4 and IPv6 addresses are
allocated to it – a very common scenario), it is sufficient to
instantiate only 304 WebRTC STUN objects since Chrome will
allocate two source ports per each WebRTC STUN object (one
for IPv4 and one for IPv6). Both ports are accessible to the

5In reality, the integers are 64 bits, but it can be easily seen that the most
significant bit can be ignored for rng.Int63().

Javascript code, and thus the Javascript code has access to 608
consecutive UDP source ports.

If no other UDP connection is established during the as-
signment of the WebRTC STUN ports, the above equations
hold and can be used to predict (up to four values) the next
UDP source port Fuchsia will assign.

VI. OBTAINING hashIV (IPV4)

The 16-bit IP ID field in the IPv4 packet header is generated
in the Fuchsia kernel using a hash function H with a 32-bit
secret hashing key denoted as hashIV generated randomly at
boot time. Fuchsia uses Jenkin’s lookup3 hash [45] truncated
to 11 bits as H , but our attacks are oblivious to the choice of
H , as long as the hashing key size is small (32 bits). The hash
calculation over the packet network addresses and the transport
protocol number H(IPSRC , IPDST , transport, hashIV ) is
used as an index to a table of 2048 buckets – initialized to
random values at boot time. The bucket value is used (modulo
216) as the IP ID, and then the bucket is incremented by one. It
is, therefore, likely that IP IDs obtained almost simultaneously,
which are observed to have a difference of 1, have been taken
from the same bucket.

A. A Straightforward Attack

Using the above observation and employing the hash col-
lision attack concept from Klein et al. [18], the attacker can
extract hashIV . The attacker sets up an Internet server with
L = 250 public IPv4 addresses attached to it. First, the attacker
mounts the TCP attack on IPv4 traffic IV-B, to obtain the
client’s source IP address. Next, the embedded Javascript code
instructs the client’s browser to send a UDP packet to each of
the L IPv4 addresses, e.g., using WebRTC TURN. Denote this
list of IPs as R. The attacker collects the IP IDs of each packet
arriving at its server, along with the packet destination address.
Once all L packets are collected, the attacker finds possible
hash collisions: pairs of packets identified by their destination
IP addresses (IPx, IPy) whose IP IDs have a difference of
1. This likely means they are taken from the same bucket,
though it is still possible that this happens randomly due
to two different buckets having values with a difference of
exactly one. With the set of possible collisions C, the attacker
enumerates the 232 possible hashIV candidates, and for each
candidate h, the attacker calculates the number of pairs in C
which collide under h, i.e. the size of the set:

{(IPx, IPy) ∈ C|
H(IPSRC , IPx, 17, h) = H(IPSRC , IPy, 17, h)}

(Recall that the UDP protocol transport number is 17).
Theoretically, the correct h would yield a complete match.
However, considering that C may contain noise (as explained
above), a more relaxed strategy can be used so the attacker
can select the h with the maximal match count.

In App. C, we show that the choice of L = 250 yields failure
probability < 10−6, which suffices to support reliable tracking
of 1 million devices. Of course, this does not guarantee that
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two devices will not be assigned the same device ID, i.e.,
that two devices will have the same seed; in fact, there are
(10000002 )/232 ≈ 116 pairs (in expectation) of such devices in an
ensemble of 1,000,000 devices. This is an inherent drawback
of the technique; however, the hashIV can be combined with
the PRNG seed to form a 63-bit device ID which is likely to
be unique for 1,000,000 devices.

In our PoC, we relaxed the matching criteria so that the
match only considers pairs in C, i.e., we do not discard keys
with pairs outside C. This yields a simpler and faster matching
algorithm at the price of increasing false positives to some
extent (insignificant for the PoC).

B. An Independent (Self-Contained) Attack

We outline (for brevity) here a self-contained attack against
the Fuchsia/gVisor IPv4 ID generation algorithm. The full
attack description and details can be found in App. D.

In this attack, we demonstrate that the underlying issue of
hash collisions in H and, particularly, its small key space can
be exploited independently, i.e., there is no need to rely on the
PRNG attack or any other technique to obtain the source IPv4
address. We do not fully analyze the success/failure thresholds
as in App. C for the straightforward attack (§ VI-A). Also,
we do not attempt to reduce the dwell time to a value that
allows large-scale deployment. Instead, we limit the discussion
to showing that an attack is possible, and we report our initial
measurements and provide a PoC which are not “production
ready” – the expected failure rate is much higher than 10−6

and its dwell time is around one minute. Nevertheless, this
shows that the problem is unrelated to the PRNG and requires
addressing at the IPv4 ID level.

Our attack employs the loopback hash collision attack
concept from Kol et al. [21]. The attack’s goal is to find hash
collisions of loopback IPv4 addresses, i.e., addresses in the
range 127.0.0.0/8.

The attack uses a set R of several hundred public external
IPv4 addresses on the attacker’s machine, and a set I of
several hundred loopback addresses. The attacker first finds a
subset R′ of external addresses which fall into unique buckets
by removing colliding addresses from this list (using the
technique in § VI-A).

Now, the attacker finds within R′ a subset R′
I of remote

addresses whose hashes are observed to collide with hashes of
at least two loopback addresses in I . To do this, the attacker’s
script in the browser “sandwiches” a burst of connection
attempts to the loopback addresses in I , between two bursts
to R′, and observing for which addresses in R′ the IPv4 ID
incremented by 5 (or more), since each loopback connection
attempt increments the bucket counter by 2 (due to the TCP
RST sent back). This is illustrated in Fig. 1.

For each address in R′
I , the attacker finds the colliding

loopback addresses using a binary search, starting with I and
halving it until only the colliding loopback addresses remain.

This provides the attacker with a list of loopback colli-
sions. The attacker can extract the hashIV from this list by
enumerating over all 232 key candidates and finding the best

match, similar to the approach outlined in § VI-A. As a last
step, using the found hashIV and the external collisions in
R, the attacker can enumerate over the 232 possible IPSRC

values and find the one that yields the best match for the
external collisions. This exposes the device’s internal (private)
IP address as well.

VII. EXPERIMENTS AND RESULTS

As part of our research, we set up two PoC servers to
demonstrate the attacks listed in this work. We allocated virtual
machines in Microsoft Azure East US and Germany West
Central regions. The virtual machine model used is Stan-
dard E20as v4 (20 vCPUs, 160 GiB memory). The camera-
ready paper will include a link to the PoC source code.

We used the following Fuchsia devices to test the attacks:
• Google Nest Hub Max (smart home speaker+display),

Amlogic T931 CPU (ARM 64bit architecture), running
Fuchsia v11.20230306.135.

• Google Pixelbook Go laptop, Intel Core i7-8500Y CPU
(x64 architecture), running Fuchsia v9.

• Intel NUC mini-PC model NUC8BEH, Intel Core i3-
8109U CPU (x64 architecture) running Fuchsia v9.

• Virtual device (over QEMU for x64) running Fuchsia
v9.

Table I Describes the networks used for the attacks. The
table describes the network name, technology, IPv6 support,
and whether the network modifies TCP source ports.

Table II describes the general results from our tests using
the PoC servers. The table lists the attack, the target of the
attack (kernel object), the number of bits in the target, the
number of network packets involved in the attack, the dwell
and compute times (average and maximum) in milliseconds,
and the data exposed as a by-product of the attack, e.g., the
device’s internal (private) IP through the TCP attack over IPv4
and independent IPv4 ID attack.

In our experiments, we tracked 100% success with the
PRNG seed extraction over IPv4 (51 experiments), the PRNG
seed extraction over IPv6 (12 experiments), the independent
hashIV extraction (4 experiments) and the UDP port predic-
tion (4 experiments). In the straightforward hashIV experi-
ment, we formally have one failure out of 12 experiments, but
this case can be disregarded as discussed in § VIII-A. The dif-
ference in number of experiments is due to some experiments
rely on IPv6, which is not available in all networks, and some
experiments rely on prior seed extraction which necessitated
running the PRNG seed extraction for them.

The hashIV independent attack requires the browser to
momentarily allocate a lot of memory to support a burst of
TCP connections. Some devices cannot support this load. We
experienced crashes on Google Nest and our virtual devices
(running on QEMU).

We also measured PRNG invocations per day. On Google
Nest we measured 14409/day and 29855/day averages over
two time intervals, 10625/day on the Google Pixelbook and
13076/day on the Intel NUC device.
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Figure 1. The first burst of SYN packets from source device D to attacker server A is sent to remote IP addresses A1, . . . , A4 in the set R′. The attempted
connection to A2 causes cell c = H(IPSRC = D, IPDST = A2) of the IPv4 ID table to advance once. Next, packets are sent to all loopback addresses
in I , including 127.1.2.3 and 127.4.5.6, whose hashes collide (at c). This collision causes the IPv4 ID table cell c to advance by four (two SYN packets and
two RST packets). By monitoring the IP IDs of the second burst, the attacker observes that the IP ID of A2 in the second burst has increased by five. Thus,
the attacker determines that the IP address A2 collides with two loopback addresses in I and needs to be included in R′

I .

Table I
NETWORKS

Network Name Technology IPv4/IPv6 Support TCP Source Port

Bezeq VDSL Both Override
Eduroam (HUJI) Fiber (DWDM) IPv4 Only Intact
Triple C VDSL IPv4 Only Override
Bezeq Fiber Fiber Both Intact
Hot Cable Cable IPv4 Only Override
Golan Telecom Cellular Both Override
Partner Cellular IPv4 Only Override

We took care of conducting a large portion of experiments
on Chrome Incognito mode and noted no different behavior
in comparison to regular browsing.

During the development of the PoC, Fuchsia was upgraded
from v9 through to v12. We successfully tested our TCP-based
PRNG seed extraction attack over IPv4 all four tested versions.

In all the above tests, the PRNG seed and the hashIV
hashing key were consistent per device across all tests for all
devices (per single boot session) and differed between devices.
A small portion of the PRNG seed and hashIV extraction
experiments was verified against the ground truth (via kernel
logging of the actual values).

VIII. DISCUSSION AND RECOMMENDATIONS

A. Practical Considerations

While our PoC compute time was several seconds in
the TCP and IPv4 ID experiments, we emphasize that the
attack computation logic is embarrassingly parallel, and thus,

by increasing the computing power by a certain factor, the
attacker can cut down the compute time by the same factor.

We can also reduce the memory consumption by moving
the Q, Q′ and W ′ tables from the RAM to a fast storage
(SSD), since these tables are only consulted a few times per
device. Thus we can make do with only 32GiB RAM (table
W ) for IPv4 and negligible RAM for IPv6.

Predicted-but-unobserved IPv4 ID collisions – as ex-
plained in App. C, the upper bound on failure probability
for the hashIV straightforward attack relies on rejecting
keys that produce unobserved collisions. Therefore, in this
attack experiments, we also recorded whether the chosen key
predicted unobserved collisions. In 11 out of 12 experiments,
no collisions were predicted by the chosen key beyond the
observed collisions. In one experiment over a cellular network,
ten observed collisions matched, and five were predicted but
unobserved. Packet loss over the cellular network can explain
this high number. We cannot verify or refute this hypothesis
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Table II
EXPERIMENT DESCRIPTIONS

Attack/
Vulnerability

Paper
Section Attack Object Bits Packets Dwell

Time [ms]
Compute
Time [ms]

Additional
Data Exposed

TCP fields
(IPv4) § IV-B PRNG Seed 31 4 7 (avg)

18 (max)
2937 (avg)
5776 (max)

Private IP address
TCP connection counter

TCP fields
(IPv6) § IV-C PRNG Seed 31 2 2 (avg)

3 (max)
0.5 (avg)
1 (max) TCP connection counter

UDP source
port § V Next source port 15.6 0 negligible 0.5 (avg)

1 (max)
IPv4 ID
(straightforward) § VI-A hashIV 32 250 116 (avg)

170 (max)
5397 (avg)
5464 (max)

IPv4 ID
(independent) § VI-B hashIV 32 Thousands 59109 (avg)

73075 (max)
20762 (avg)
20775 (max) Private IP address

due to insufficient server-side logging. Thus, we regard this
experiment as invalid yet warranting future inspection.

In theory, organic noise could interfere with our mea-
surements. For the simplicity of the paper and the PoC,
we assume that no additional TCP connection is established
during our TCP measurements (4 packets/connections), and
no additional PRNG invocations happen during the PRNG
sampling (4 UDP port bindings). But since the former take
up to 18ms and the latter takes a negligible amount of time
(less than 1ms), this concern is not overly realistic. Indeed,
our experiments, using Fuchsia devices in realistic scenarios
all completed successfully. Moreover, it is trivial to adjust
the tolerance of the TCP attack algorithms to cater for a few
organic TCP connections in between our measurements. This
can be done in step 4 of § IV-B by extending the equation
ŝport = 256·sH+(sL+1) into ŝport = 256·sH+(sL+1+γ)
where γ is the number of organic TCP connections attempts
between the 2nd and 3rd packets of the measurement. Now
we can relax the assumption γ = 0 into γ < G where G is
a reasonable upper bound on the number of TCP connection
attempts per e.g. 10ms, and enumerate over γ (G values).

In the IPv4 ID case, organic noise can indeed affect the
measurement, but our key finding technique can withstand
a reasonable amount of noise and indeed in our tests, we
managed to find the correct key (up to the exception explained
above which is probably not due to noise). Additionally, we
can allow more noise as part of the technique (i.e. accept IP
valued that differ by slightly more than 1 as a collision).

B. Additional Attacks

The IPv6 fragment ID generation algorithm is very
similar to the IPv4 ID generation algorithm. As such, our
straightforward attack against IPv4 ID can be adapted, under
certain conditions, to IPv6. However, it should be noted that
the IPv6 fragment ID is only generated when fragmentation
is needed, and this condition is not trivial to trigger from
Javascript code on the browser (because WebRTC packets are
short). On the other hand, it is trivial to trigger outside the
browser, e.g., using long ICMPv6 Echo requests remotely. We
have not experimented with IPv6 ID.

In the paper we focused on device tracking, but the vulnera-
bilities we uncovered can be exploited for additional attacks
and use cases (which we do not demonstrate):

• TCP initial sequence number prediction is a special
case of a TCP sequence number prediction attack [46],
which can be used to counterfeit TCP packets.

• In general, predictable UDP source ports can be ex-
ploited to mount an effective DNS cache poisoning attack
[47]. To be vulnerable to our attack, the DNS software
has to use the underlying operating system to select UDP
source ports (this is not the case with Fuchsia’s stub DNS
resolver; however, there may be other gVisor use cases
in which this applies).

• TCP source port predictability can expedite a TCP
blind reset attack [48].

• Our attacks on TCP/IPv4 and the IPv4 ID disclose the
device’s internal IP address, even if the device is behind
a NAT. This violates PCI DSS 4.0 Requirement 1.4.5
[49].

• Our attack on the IPv4 ID generation algorithm can be
used to find IP addresses that collide (served from the
same bucket) in the IPv4 ID table, which can be used to
predict IPv4 ID values across these addresses. This in
turn facilitates DNS cache poisoning attacks [50], traffic
analysis attacks [51], [52], [53] and TCP hijacking attacks
[54].

• In general, when a PRNG is used to generate sensitive
data, having a predictable PRNG may result in security
vulnerabilities.

For example, we describe herein a TCP hijacking attack
against an HTTP proxy server running on top of a gVisor
network stack. A remote attacker (as a client) first forces
the HTTP proxy to connect to the attacker IP addresses (by
sending it HTTP requests to be forwarded to these addresses),
obtaining the PRNG seed and also measuring the RTT between
the attacker client and the server. Then the attacker client
forces the proxy to load a page from www.example.com,
while DDoSing the genuine www.example.com server. The
attacker can predict the exact time the proxy sends the TCP
SYN packet to www.example.com (using the RTT mea-
surement, and assuming 1ms granularity). Thus the attacker
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can predict the TCP source port and ISN (the latter – up to
≈ 16, 000 candidates). With this, the attacker can spoof the
TCP+ACK response from www.example.com, “establish”
the TCP circuit and poison the proxy’s web cache. A similar
scenario can be described with the attacker triggering the
proxy from a malicious Javascript running inside a browser.
Testing these scenarios, however, was out of scope for this
research project.

C. Analysis of the Vulnerabilities: Individually and in Concert

The weakness of Jenkins’ One-at-a-Time Hash function
alone leads to predictable TCP ISN values because, as we
show in the TCP attacks, JISN can be extracted (together
with JTS ) without any assumptions on the PRNG or any
other components of the system. With JISN , it is possible
to predict TCP ISN (up to the clock value) if the 4-tuple
values are known. We recommend using cryptographically
strong hash functions for generating protocol header fields,
with sufficiently large hashing keys. For example, OpenBSD
uses SHA2 for TCP ISN and TCP timestamp generation.

The Go PRNG advancement algorithm weakness alone
suffices for the UDP port prediction attack, as this attack
does not assume anything about the PRNG seeding. According
to its documentation, the Go rand package “should not
be used for security-sensitive work” [55]. We recommend
using a cryptographically strong PRNG for populating network
protocol header fields. Seeding the PRNG should be done
with sufficient entropy. For example, Linux uses ChaCha20
for its kernel PRNG, indicating that this approach is sound
with regards to performance.

The Go PRNG small effective seed space size alone
suffices for the UDP seed extraction attack since it does not
make any assumption on the PRNG advancement mechanism.
This is CPU and RAM intensive, and as such may not be
economic in practice.

The use of a global counter as part of the TCP
source port generation contributes to our TCP attacks. We
recommend completely randomizing the source port as pre-
scribed in “Algorithm 1/2” [40]. This is the approach taken
by both FreeBSD and OpenBSD, thus it may be considered a
reasonable practice.

The combination of IPv4/IPv6 ID small hashing key
space together with the hash table size and deterministic
update scheme suffices to extract the key regardless of the
hash function, as demonstrated in § VI-B. This attack does not
rely on obtaining the internal (private) IP address. However,
it does require excessive dwell time and as such does not
fit many device tracking scenarios. In App. E, we outline an
extended attack that relies solely on collisions, without any
assumptions on the hash function algorithm and key size.
To thwart attacks based on hash collisions, we recommend
generating completely random values for IPv4 ID and IPv6
ID. This may yield a higher rate of ID collisions, especially
for IPv4, but since this approach has already been employed
by XNU (iOS, macOS, etc.) and NetBSD for IPv4 ID, and by

Linux and NetBSD for IPv6 ID, for quite a while, it may be
considered a reasonable practice.

As can be seen above, the root causes of the vulnerabilities
we found are weaknesses in the cryptographic algorithms
used in Fuchsia/gVisor, as well as fundamental security issues
that stem from hash collisions (in the Fuchsia NetStack3
TCP source port algorithm – App. A, and in the gVisor IP
ID generation algorithm – App. E). The latter may indicate
that the construction of an array of counters indexed by
a hash function is inherently insecure when the input to
the hash function can be attacker-controlled. Replacing these
constructs is not straight-forward, since other approaches entail
a different balance between security and functionality.

Each of the above five vulnerabilities stems from an individ-
ual, independent root cause. When considered separately, each
attack may appear to be minor or less feasible. However, in a
holistic analysis, when all the attacks are considered together,
we show the interplay of the vulnerabilities yields a powerful
PRNG seed extraction and IP ID hash key extraction attacks,
which are very feasible and economic.

D. Partial Mitigation

Extending the PRNG seed to 64 bits6 (or more) has a
limited effect on the attacks. The last step of the TCP/IPv4
attack (§ IV-B step 5) requires a table W which is generated
by enumerating over the seed space. Thus step 5 becomes
impractical and the seed cannot be extracted. However, steps
1-4 are not affected, and as such, the attacker can still calculate
JTS and JISN which can facilitate TCP hijacking attacks.
Moreover, in the TCP/IPv6 attack (§ IV-C), while calculating
the table W ′ is again impractical and thus the seed cannot be
obtained, it is still possible to extract STS which is a 32 bit
secret independent of the network and local IP address, and
as such can be used as a device ID (and similarly, SISN and
SPS ). Finally, the UDP source port prediction technique (§ V)
is oblivious to the PRNG seed size, and the attacks against IP
ID (§ VI) are unrelated to the PRNG and are thus unaffected by
the choice of seed size. The only attack completely thwarted
by this is the seed extraction via UDP source ports (§ IV-D)
which is already compute-heavy to begin with.

Switching the Go PRNG to a stronger one has a minor
effect on the overall security of Fuchsia/gVisor, since the only
attack that exploits the PRNG logic is the UDP source port
prediction (§ V).

Even if we additionally employ cryptographically strong
hash functions, some attacks will still be applicable: the IPv6
extraction of STS (and SISN , SPS ) is still feasible (with a
32-bit real-time enumeration) as well as the IP ID attack we
describe in App. E.

IX. CONCLUSION

In this paper, we holistically reviewed the security of algo-
rithms that populate various protocol header fields of Google
Fuchsia’s gVisor-based network stack. Fuchsia is considered to

6The original PRNG seeding code takes a 64-bit seed and “truncates” it to
a 31-bit effective seed. It is trivial to simply omit the truncation step.
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be the future operating system of smartphones, tablets, and IoT
devices, and it is already deployed to millions of shipped Nest
Hub and Nest Hub Max smart display+speaker devices. The
gVisor kernel is used in several key Google Cloud offerings.
Therefore, this research has a clear impact at present and when
looking forward.

Our findings span multiple protocol headers (TCP Initial
Sequence Number, TCP timestamp, TCP source port, UDP
source port, and IPv4/IPv6 ID), demonstrating that the gVisor
stack suffers from numerous security issues. We identify
the root causes as the use of a weak PRNG (Go’s built-in
PRNG) which has a too-small seed space and an insecure
advancement mechanism, the use of the weak Jenkins “one-
at-a-time” hash function, and the use of a hash-based IP ID
generation mechanism that is prone to easy hash collision
detection, and makes use of a too-small hashing key.

When combined, these vulnerabilities allow an attacker to
extract the PRNG seed and the IP ID hashing key, which can
facilitate various attacks. We describe multiple device tracking
techniques based on our findings. We demonstrate our tracking
attacks with two PoC servers in two continents. We conduct
experiments with these PoC servers in real-life settings, from
multiple Fuchsia devices, over multiple networks (including
IPv4 vs. IPv6), and browsing modes (regular/private). We
report an excellent success rate and dwell time, which proves
that our device-tracking attacks are practical and scalable.

Finally, we provide recommendations on how to generate
the affected protocol header fields securely. We disclosed our
report and our recommendations to the Fuchsia and gVisor
security teams.

This research demonstrates the importance of holistic secu-
rity analysis of network stacks, especially with respect to new
or under-scrutinized kernels. Many works only look at a single
protocol header field (or algorithm), and as such may miss the
interplay between “minor” vulnerabilities that may yield much
more powerful attacks. However, when the network stack is
reviewed as a whole, such attacks can be revealed.

X. VENDOR STATUS

We reported our findings to Google on October 4th,
2023. Google assigned CVE-2024-10026, CVE-2024-10603
and CVE-2024-10604 to track these vulnerabilities. Per our
recommendations, Google released the following patches for
gVisor and Fuchsia:

• gVisor commit 83f7508 – Replace the insecure Go default
PRNG with a reference to Go’s crypt/rand secure
PRNG for the network protocol fields, CVE-2024-10026.

• gVisor commits f956b5a, e54bfde – Switch the hash
functions used in TCP ISN and TCP TS generation to
(truncated) SHA2/256 with 16 bytes hashing key, CVE-
2024-10026.

• gVisor commit cbdb2c6 – Randomize the TCP source
port per RFC 6056 Alg. 1 (using a secure PRNG), CVE-
2024-10603.

• gVisor commits 6262b00, 505e1fd, 5d2bf25 – Randomize
the IPv4 and IPv6 ID (using a secure PRNG), CVE-2024-
10603.

• Fuchsia commits ac2fca3, c436a1d – Port the above
gVisor patches to the Fuchsia code branches.

• Fuchsia commits a3c17a4, 40e7fbc – Randomize the
NetStack3 TCP and UDP source port per RFC 6056 Alg.
1 (a remediation against the attack in App. A), CVE-
2024-10604.

The gVisor patches are included in gVisor build release-
20231204.0 and in Fuchsia version 16 (released February 14th

,2024). The Fuchsia-specific patch (NetStack3’s TCP and UDP
source port algorithms) is included in Fuchsia version 20
(released June 4th, 2024).
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APPENDIX A
DEVICE TRACKING BASED ON THE TCP AND UDP PORT

ASSIGNMENT IN FUCHSIA’S NETSTACK3

Fuchsia’s source code tree contains an alternative dedicated
network stack called “NetStack3”, written entirely in Rust.
It is not used by default – special compilation options and
procedures must be applied for the Fuchsia operating system to
use this alternative implementation. Nevertheless, we analyzed
NetStack3 as well and found its TCP and UDP source port
assignment algorithm vulnerable. Note that this analysis is
based on source code review; we did not investigate a live
system or set up a PoC to test a live system.

In essence, NetStack3 implements algorithm 4 of RFC 6056
[40] (“DHPS” in Kol et al.’s terminology [21]) as-is, with table
size T = 20, and using a truncated HMAC-SHA256 hashing
function [56]. As such, it is vulnerable to the attack approach
of [21]. Since the necessary condition T − (1 + 1

2 lnT )
√
T −

1
4 lnT ≥ 2 lnN−ln 2 [21, Appendix A.4] does not hold for the
desired tracked population size (N = 1, 000, 000), the exact
attack techniques described in [21] cannot be applied as they
are. However, it is easy to see that they can be adapted for the
case T = 20. For the second phase of the attack, the attacker
needs to iterate over L loopback addresses, where L ≥ T will
be calculated per the population size. Suppose t ≤ T buckets
are covered for a device D. The probability of a random device
D′ to yield the same signature is (by the same arguments
of [21]) T

T
T−1
T · · · T−(t−1)

T
1

TL−t = T (T−1)···(T−(t−1))
TL . It is

easy to see that the worst case (i.e. highest probability for
signature collision) is when t is maximal, i.e. t = T . In the
worst case, the probability is T !

TL . To obtain an average of up to
one signature collision, we require, for N devices, that T !

TL ≤
1

(N2 )
. This finally yields L ≥ logT

(
N
2

)
T !. For N = 1, 000, 000

we thus have L ≥ 23.12. Therefore, L = 24 is the number of
loopback addresses needed in the second phase, much smaller
than the number needed in the original attack against Linux.
Hence, the attack against Fuchsia’s NetStack3 may be much
faster than the Linux attack in [21].

APPENDIX B
FAST f CALCULATION

For the rainbow table time-memory trade-off of inverting
a function f , it is necessary to calculate f quickly and
efficiently. In our case, f(s, r) is a hash g of the sequence
of n = 4 consecutive UDP source ports generated from the
PRNG seeded with s after r PRNG steps. Naı̈vely seeding
the PRNG and rolling it forward r steps is problematic on
two accounts: the seeding process is very expensive in terms
of CPU operations, and rolling the PRNG forward r steps is
O(K) in CPU operations, while ideally, f calculation would
be in O(1).

We now present a technique for a fast calculation of f .
For this, we employ the concept of time-memory trade-off
twice. We reduce the seeding procedure computation time
by building, offline, a memory map from all 231 seeds to
their initial internal PRNG state (607 · 8 bytes). We reduce

the computation time of rolling the PRNG multiple steps by
building, offline, a map from all K PRNG offsets to the
representations of the next n = 4 raw PRNG outputs as linear
combinations of the initial words in the initial PRNG state
(each cell in the map is thus 607 · n 64-bit integers). In total,
we need (607 · 8)(231 +K · n)=9.7TiB of RAM.

The calculation of f(s, r) then becomes a table lookup for
the initial state after seeding with s, a table lookup for the
suitable linear combinations after r steps, and calculating n
linear combinations (607 additions and multiplications each –
a total of 607 · n basic operations). Thus the leading term in
the CPU time is 607 · n (technically n is O(logK) but this
can be practically ignored).

APPENDIX C
CALCULATION OF FAILURE PROBABILITY FOR hashIV

EXTRACTION

For § VI-A, we define the key extraction algorithm as
“finding the key which has the most matches to the pairs
found, and no collisions that were not found.”. A failure is
a situation wherein one of the “false” 232 − 1 keys obtains as
many matches or more than the correct key.

We define:
• L – the number of IP addresses on the attacker’s machine.
• the number of independent collisions (in a collision

set) is the size of a minimal subset of collisions from
which the entire set of collisions can be inferred. For
example, for a collision set (pairs of colliding addresses)
{(a, b), (b, c), (c, a)} of size 3, one minimal collision set
(not the only one) is {(a, b), (b, c)} because (c, a) can be
inferred from (a, b) and (b, c). Therefore, the number of
independent collisions for the above set is 2.

• PT (m) – the probability of the correct key to generate
exactly m independent collisions among the L IP ad-
dresses. Assuming all collisions are detected, this will
yield m pair matches on the observed data.

• PF (f) – the probability of exactly f false collisions,
i.e. collisions that are generated “randomly”, by having
the bucket counters randomly match (probability 2−16).
For simplicity, we allow a true collision also to be a
false collision (with probability 2−16). In reality, this is
considered only as a true collision (i.e., the real total
collision count is not necessarily m + f , but rather
≤ m+f ), thus decreasing the failure rate. In other words,
this simplification increases the failure rate, so the failure
rate we calculate here is an upper bound. However, it
should, in reality, be quite tight.

• QF (m, f) – the probability of any false key (one of the
232−1) to match at least m collisions (out of the m true
collisions and the f false collisions).

In general, we have:

PFAILURE =

L−1∑
f=0

PF (f)

L−1−f∑
m=0

PT (m)QF (m, f)

For PT , we need to calculate the probability of L addresses
to have precisely m independent collisions. This is equivalent
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to the occupancy problem (e.g., [57]). The occupancy problem
asks for the distribution of occupied (non-empty) buckets when
throwing ñ balls into m̃ bins. The answer is the classical
occupancy distribution (from [57]):

Occ(k̃|ñ, m̃) =
1

m̃ñ

(
m̃

k̃

) k̃∑
i=0

(
k̃

i

)
(−1)i(k̃ − i)ñ

In our case, we ask for the probability of having k̃ = L −
m occupied bins when throwing ñ = L balls to m̃ = 2048
buckets, therefore:

PT (m) = Occ(L−m|L, 2048)

This is strictly defined for max(0, L − 2048) ≤ m ≤ L − 1,
but we can extend it to 0 elsewhere.

For PF (f), the number of false collisions, we similarly use

PF (f) = Occ(L− f |L, 216)
Suppose we have L−m occupied (non-empty) buckets Bi,

and we have ni IP addresses in Bi, so that
∑

i ni = L. For
a random hashing key to generate hash values that exactly
matches this structure, we look at the first IP address in each
bucket. When building the buckets for the random key, we
start with all empty buckets. The first IP address can pick any
bucket; thus, the probability to succeed is 2048

2048 . The second
IP address (which is first in its bucket) has probability 2048−1

2048
since it must not hit the first bucket, and so forth. So the
success probability of all first IP addresses in their buckets
is

∏L−m−1
i=0 (1 − i

2048 ). The remaining IP addresses must go
each to its bucket, so each one has probability 1

2048 to hit the
correct bucket. Therefore:

PL
RANDOM (m) =

∏L−m−1
i=0 (1− i

2048 )

2048m

Interestingly, this probability does not depend on the
“structure” ({ni}) of the fingerprint, which means that
PL
RANDOM (m) is indeed well defined.
Given m true collisions and f false collisions, the to-

tal number of collisions is m + f . The probability of
an arbitrary key to match less than m collisions is 1 −∑

i≥m

(
m+f

i

)
PL
RANDOM (i).

Therefore, the probability of all 232 − 1 false keys to all
match less than m pairs is(

1−
m+f∑
i=m

(
m+ f

i

)
PL
RANDOM (i)

)232−1

Finally, Q(m, f) is the probability of the complementary
event, the probability of at least one false key to match at
least m collisions:

QF (m, f) = 1−
(
1−

m+f∑
i=m

(
m+ f

i

)
PL
RANDOM (i)

)232−1

In Fig. 2 we plot PFAILURE for 200 ≤ L ≤ 330 and
observe that PFAILURE drops below 10−6 at L = 250 which
guarantees that with L = 250 IP addresses there is less than a
one in a million chance for a failure in obtaining the correct
hashIV for a device.
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Figure 2. Failure probability per L

APPENDIX D
AN INDEPENDENT ATTACK AGAINST IPV4 ID

In this attack, we demonstrate that the underlying issue of
hash collisions in H and, particularly, its small key space can
be exploited independently, i.e., there is no need to rely on
the PRNG attack or any other technique to obtain the source
IP address.

Our attack employs the loopback hash collision attack
concept from Kol et al. [21]. We look at hash collisions
of loopback IPv4 addresses, i.e., addresses in the range
127.0.0.0/8. Interestingly, in Fuchsia/gVisor, when TCP/UDP
traffic is destined to an address of the form 127.x.y.z, the
source address is also set to 127.x.y.z (in contrast, in Linux,
the source address is set to 127.0.0.1). Thus, when sending
a TCP SYN packet to a closed TCP port on 127.x.y.z, the
source IP is set to 127.x.y.z, and the kernel responds with RST
from 127.x.y.z to 127.x.y.z. Therefore, the SYN and the RST
consume their IP IDs from the same bucket. Armed with this
knowledge, we show how an attacker can extract hashIV . The
attack is facilitated via a list I of randomly chosen loopback
addresses used by the Javascript code, as explained below.
Later we will see that the optimal |I| is slightly below 500.

The method of finding a list of loopback collisions is
as follows. The attacker uses a set R (in our case |R| =
250)7 of public external IPv4 addresses on the attacker’s
machine. The attacker first finds a subset of external ad-
dresses IPr which fall into unique buckets (i.e., have unique
H(IPSRC , IPr, transport, hashIV ) values where IPr ∈ R
and transport = 6 is the transport protocol number for
TCP) by removing colliding addresses from this list. This
is done by sending |R| = 250 TCP SYN packets to the
attacker’s remote addresses using webRTC TURN and filtering
out those that collide (i.e., addresses whose packets’ IP IDs

7We chose |R| = 250 to reuse the 250 IPv4 addresses allocated for the
basic attack in § VI-A. In practice, the attacker can use more IPv4 addresses.
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are one value apart). Denote the resulting subset of external
IP addresses whose hashes are unique by R′. The distribution
of |R′| is Prob(|R′| = r) = occ(r, |R|, 2048) where occ is
the occupation distribution [57].

Now, the attacker finds within R′ a subset of remote
addresses whose hashes are observed to collide with hashes
of at least two loopback addresses in I , i.e., remote addresses
whose hashes collide with loopback address hash collisions in
I . In expectancy, there are |R′|/2048 · (|I|2 )/2048 such pairs of
addresses in I . The attacker can observe such collisions using
the following method. First, the attacker’s Javascript instructs
the browser to attempt a TCP connection (send a TCP SYN
packet), e.g., using WebRTC TURN, with all addresses in R.
Next, the attacker does the same with the loopback list I (as
reported in [21], the Private Network Access [58] restriction
does not apply to WebRTC; hence, this traffic is allowed by the
browser). Observe that loopback address hash collisions mean
that respective buckets have been incremented by at least five.
This stems from the two RST packets sent by the kernel over
the loopback interface, in addition to the three other sent SYN
packets – one to the remote address and two to loopback ones.
We denote these remote addresses with IP IDs advanced by
five as R′

I . Fig. 1 illustrates this process.
With R′

I , the attacker starts an “extended” binary search for
loopback hash collisions in the space of loopback addresses
I . The search narrows down the candidate list by recursively
repeating the following. Let I ′ ⊆ I . The search starts with
I ′ = I . In each search step, The attacker’s Javascript attempts
to connect (TCP) to every address in I ′ and then to every
address in R′

I . The attacker then counts the total number of
loopback addresses that collide with R′

I : cI′ =
∑

R′
I

∆IPID−1
2 .

If cI′ = 0, the search is discontinued for the I ′ considered.
Otherwise, if |I ′| = 1, the search algorithm reports IP ∈
I ′ and its corresponding external IP address (whose IP ID
matches the loopback address found) as part of a hash collision
and concludes the search for the branch considered. For any
other result, the attacker splits I ′ into two halves, and the
search continues recursively on each half.

This provides the attacker with a list of loopback collisions.
The attacker can extract the hashIV from this list by enumer-
ating over all 232 key candidates and finding the best match,
similar to the approach outlined in § VI-A. For this technique
to work in practice (as explained above, we do not provide
failure thresholds in this case, so we use the expected number
to estimate the practicality), we need the (expected) number of
observable collisions in I , |R′|/2048 · (|I|2 )/2048, to “overcome”
the 232− 1 false positive keys. Since each pair contributes 11
bits of information, we need |R′|/2048 · (|I|2 )/2048 > 3. Consider
that |R′| is slightly smaller than |R|, we can approximate
this as |R|/2048 · (|I|2 )/2048 ≥ 4, which (for |R| = 250) yields
|I| ≥ 367. In our experiment, we used |I| = 490, which yields
7.14 observable loopback address collisions, in expectation.
|I| = 490 was chosen to maximize the number of loopback
collisions while keeping a safe distance from the maximum
concurrent WebRTC connections in Chrome (500). It should

be noted that using loopback IP addresses overcomes the
problem of not observing the device’s source (private) IP
address.

As a last step, using the found hashIV and the external
collisions in R, the attacker can enumerate over the 232

possible IPSRC values and find the one that yields the best
match for the external collisions. This exposes the device’s
internal (private) IP address as well.

APPENDIX E
H -AGNOSTIC INDEPENDENT ATTACK AGAINST IPV4 ID

We now outline an an extension of the attack in App. D,
which is H-agnostic, i.e. it assumes nothing on H . This
demonstrates that the gVisor IPv4 ID generation algorithm
is inherently vulnerable to device tracking, regardless of the
choice of hash function H .

Recall that during the attack in App. D, the attacker obtains
colliding loopback addresses. For |R| = 250, the attacker
obtained 7.14 pairs. The choice of |R| = 250 was due to the
availability of IPv4 addresses for our PoC, but in reality we can
choose a number close to 500, e.g. |R| = 490, which yields
|R′| = 373, in expectancy. Substituting this in the calculation
for expected number of loopback collision pairs (assuming
|I| = 490), we get N = 10.7 loopback collisions.

Note that when the device connects from different networks,
different sets of pairs will be calculated – this is due to
differing IPSRC which induce different “windows” into the
colliding set. So the set of pairs cannot be used as a device
ID as-is. However, at the same time, the set of colliding pairs
is always a subset of all colliding pairs in I . In expectancy,
there are (|I|2 )/2048 = 58.5 such pairs. Therefore, in expectancy,
there are N2

/58.5 ≈ 2 pairs in the intersection of two device
measurements (each one with say N loopback collision pairs),
whereas the probability of measurements from two different
devices to have two or more pairs in their intersection is
approximately:

1−(1−N/(20482 ))N−N ·N/(20482 )(1−N/(20482 ))N−1 = 1.4×10−9

We see, therefore, that requiring at least two intersecting
collision pairs suffices to practically eliminate all false pos-
itives, while retaining a good portion of the true positives
(same device). We can reduce false negatives by repeating
the measurements with multiple mutually disjoint I sets.

Device tracking is achieved by calculating a set of loopback
collisions from a measurement, and comparing (intersecting)
it with all previous measurements to find a previous measure-
ment with a sufficiently large intersection. If such a measure-
ment is found, the current device is deemed to be identical
to the device whose earlier measurement matched (and the
current collision set can in fact be adjoined to it to improve
the probability of future matches). If no matching earlier
measurement is found, then this measurement is deemed to
come from a new device, and a new entry is allocated to it
in the list of measurements, with the current set of loopback
intersections.
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