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Abstract—In recent years a new class of side-channel at-
tacks has emerged. Instead of targeting device emissions dur-
ing dynamic computation, adversaries now frequently exploit
the leakage or response behaviour of integrated circuits in a
static state. Members of this class include Static Power Side-
Channel Analysis (SCA), Laser Logic State Imaging (LLSI) and
Impedance Analysis (IA). Despite relying on different physical
phenomena, they all enable the extraction of sensitive information
from circuits in a static state with high accuracy and low noise
– a trait that poses a significant threat to many established side-
channel countermeasures.

In this work, we point out the shortcomings of existing
solutions and derive a simple yet effective countermeasure. We
observe that in order to realise their full potential, static side-
channel attacks require the targeted data to remain unchanged
for a certain amount of time. For some cryptographic secrets
this happens naturally, for others it requires stopping the target
circuit’s clock. Our proposal, called Borrowed Time, hinders an
attacker’s ability to leverage such idle conditions, even if full
control over the global clock signal is obtained. For that, by
design, key-dependent data may only be present in unprotected
temporary storage (e.g. flip-flops) when strictly needed. Borrowed
Time then continuously monitors the target circuit and upon
detecting an idle state, securely wipes sensitive contents.

We demonstrate the need for our countermeasure and its
effectiveness by mounting practical static power SCA attacks
against cryptographic systems on FPGAs, with and without
Borrowed Time. In one case we attack a masked implementation
and show that it is only protected with our countermeasure
in place. Furthermore we demonstrate that secure on-demand
wiping of sensitive data works as intended, affirming the theory
that the technique also effectively hinders LLSI and IA.

I. INTRODUCTION

The seminal work of Kocher [38] demonstrated that imple-
mentations of mathematically secure cryptographic primitives
can be vulnerable to attacks via side-channel analysis (SCA)

Fig. 1. Static power SCA attack stages in the face of Borrowed Time
countermeasure: (1) (2) – The attacker leverages a stopped clock for prolonged
static measurement period. (3) – Borrowed Time detects clock stoppage and
clears sensitive data. (4) – The attacker can no longer observe static leakage.

exploiting the leakage of sensitive information through physi-
cal properties of the implementation. Since then, multiple side-
channels have been demonstrated exploiting various effects,
such as timing [12, 17], power consumption [39, 48], elec-
tromagnetic emanations [27, 67], shared micro-architectural
components [28, 80], even acoustic [29] and photonic ema-
nations [43, 70]. Among the physical sources of side-channel
leakage, exploitation of power consumption, known as power
analysis, has received the most attention.

Research on power analysis has historically focused on
attacks exploiting the instantaneous power consumed dur-
ing computation, also known as dynamic power analysis.
However, with the continued down-scaling of Complementary
Metal-Oxide-Semiconductor (CMOS) technology, the relative
weight of static power—used for maintaining the logical
state of a circuit—has increased as part of the total power
budget [36, 61, 91] and so too has the relative exploitable static
power side-channel leakage. This has shifted recent attention
towards static power SCA [7, 11, 37, 54, 55, 57, 58, 59, 66].

In a typical static power SCA attack, the adversary exploits
a prolonged state of the target circuit – see Figure 1 2
/ 2 – when it is known to contain stable secret data in
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some of its state registers. This prolonged state is induced
either by a master circuit that dynamically disables the clock
provided to the target circuit 1 (e.g. via clock gating to
reduce power consumption [85]), or directly by the attacker
1 if they can stop the clock signal. The attacker waits for

some time to allow the dynamic effects of prior computation
to subside before accurately measuring the global leakage
current of the device. The latter can be achieved by dedicated
equipment for measuring nano-scale currents [7, 56], or by
averaging a large number of power measurements taken using
an oscilloscope 4 / 4 over the prolonged period, resulting in
high measurement accuracy and noise reduction [54, 58].

Beyond static power SCA attacks, there exist data extraction
methods with potentially even higher accuracy, which similarly
exploit the vulnerability of circuits in a static state. Such
attacks include Laser Logic State Imaging (LLSI) [41] and
Impedance Analysis (IA) [52]. The former is a type of optical
probing based on the reflection of laser light by transistors
under modulated supply voltage, while the latter exploits
variations in the impedance of the measured system at different
frequencies, which correlate with data temporarily stored on
a chip. Both techniques have the decisive advantage over
measurements of the global static power of a chip in that they
can better localise specific state registers and target their data
values. From hereon we refer to the grouping of these methods
with static power SCA as static SCA attacks. Crucially, all
static SCA attacks can be performed in many cases even
when the adversary does not have outright clock control. This
is for example the case when the target device keeps secret
information in unprotected temporary storage like flip-flops for
an extended period of time under normal operation [52, 54]
– a condition that is not uncommon and might even be
induced by additional power-optimising clock-gating logic that
is introduced by Electronic Design Automation (EDA) tools
during a system build, unbeknownst to the designer [90].

Since the first practical demonstration of static SCA at-
tacks [59], research in the area has demonstrated attacks on
various cryptographic primitives [7, 57], conducted investiga-
tions of attack factors [58], and attack improvements [7, 54, 57,
58]. In particular, past work has demonstrated static SCA to be
effective even against targets that implement countermeasures
which hinder dynamic power analysis [5, 6, 54, 56, 57],
demonstrating viable attacks against securely masked cryp-
tographic primitives [52, 54, 56, 57, 59]. However, despite the
clear need for dedicated protection solutions, little research
has gone towards designing countermeasures against the entire
class of static SCA. In this work we set out to fill this gap.

Our Contribution

We first observe that all published static SCA attacks require
a relatively long period, spanning at least several hundreds of
typical clock cycles (considering MHz frequencies), in which
two conditions hold simultaneously:
1) The clock signal supplied to the target circuit is stopped.
2) Registers contain sensitive data and thereby expose it to

leakage.

The core idea behind our countermeasure, called Borrowed
Time, is to prevent situations in which both conditions hold.
Specifically, Borrowed Time continuously monitors the incom-
ing clock signal. If Borrowed Time detects that the clock
is stopped for too long, it performs a masked clear, wiping
sensitive register contents by overwriting them with random
values, to prevent introducing dynamic leakage through the
action of wiping. Borrowed Time is deployed in the same
fabric as the target circuit (Figure 1 3 / 3 ).

We propose two approaches for implementing the clock-
monitor in Borrowed Time. One uses typical clock man-
agement circuitry found in conventional digital systems and
imposes minimal design-effort overhead; the other uses a
custom asynchronous circuit which is better suited to low-
power designs which may also employ clock-gating.

The first approach uses a Phase-Locked Loop (PLL), which
is a component commonly used for clock management in
digital systems. In a nutshell, a PLL uses a feedback loop
to ensure that an output clock (or clocks), which it distributes
across the circuit, remains synchronised with an input refer-
ence clock that is typically provided by an external source
such as a crystal oscillator or another circuit. Stopping the
input clock breaks synchronisation between it and the output
clock, allowing the PLL to rapidly detect such an incident.

While PLLs are effective at detecting a stopped clock, they
have two main limitations. First, PLLs are relatively large
and may therefore be too expensive in terms of power and
area consumption for some uses. Second, because PLLs take
a long time to startup by synchronising the output and input
clocks, they are unsuitable in some deployment scenarios. One
such example is within clock-gated circuits, where a master
circuit (e.g. Figure 1 1 ) dynamically disables the clock signal
provided to some circuit components in order to reduce power
consumption when these components are not active [85].

To accommodate for cases where PLLs may not be suitable,
we propose an alternative design based on an asynchronous
system that samples the clock signal at multiple points in
time and monitors its natural variation. Where this variation
is absent and the clock value is the same across all sampled
points in time, the design indicates a stopped clock. This de-
sign variant also facilitates the secure implementation of clock-
gating within a system while imposing minimal overhead,
particularly when this overhead is offset by the substantial
energy savings brought about by clock-gating.

To test Borrowed Time’s effectiveness, we perform practical
static power SCA attacks against cryptographic circuits with
and without the countermeasure in place. We implement an
unprotected AES circuit and a masked SKINNY circuit on
different Field-Programmable Gate Array (FPGA) platforms,
and we perform end-to-end static power SCA attacks against
them to recover their secret keys. With our setups, we observe
information leakage through static power in both implemen-
tations. The unprotected AES implementation exhibits strong
leakage that benefits the attacker. We recover the full AES key
using 1,500 samples, each sample being a measured power
trace from a single encryption. The SKINNY implementation
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is also vulnerable despite its masking protection, requiring
16,000 samples for a subkey recovery.

Detecting whether a clock has stopped inevitably takes
some time. At minimum, the detection mechanism needs
to wait and see a missed clock edge. For Borrowed Time
to be an effective countermeasure, detection and clear time
must be shorter than the time needed to carry out a static
SCA attack, which is typically in the range of milliseconds.
Optical attacks like LLSI are reported to require multiple
milliseconds per pixel [41]. The Vector Network Analyser
(VNA) used for IA lists the time needed for a frequency
sweep in milliseconds [52] (concrete values depend on various
parameters), though the authors rightfully point out that adver-
sarial knowledge of the frequencies to target can speed up the
attack significantly. In static power SCA attacks, measurement
accuracy is notably reduced by increasing the acquisition
speed (i.e. shortening and shifting the acquisition time window
closer to the last clock pulse), due to 1) reduced opportunity
for noise reduction through averaging [58] and 2) the memory
effect – a period where dynamic effects from prior computation
affect the power consumption measured. While some past
works report the wait time (from when the clock is stopped
until measurements start to be taken) used for attacks to be
in the order of milliseconds [57, 58], little information is
provided in support of the choice of this delay. In general, it
is clear from the literature that all reported static SCA attacks
suffer from increased noise and decreased accuracy when the
time window for the attack shrinks.

Because Borrowed Time relies in part on static leakage
not being instantly exploitable once the clock is stopped, we
evaluate how much wait time is needed to mount a static power
SCA attack. In our experiments, the attack becomes infeasible
with wait times any shorter than 200 µs, whereas Borrowed
Time can eliminate leakage in less than 1 µs, assuming the
target hardware operates in at least the MHz range.

To test Borrowed Time’s effectiveness, we incorporate it in
each cryptographic target. We demonstrate that both imple-
mentations prevent the attacks, and the protected targets do
not show evidence of leakage even with 1 million samples.

To summarise, we make the following contributions:
• We present two designs of Borrowed Time, a countermea-

sure for static SCA attacks that detects a stopped clock and
performs a masked clear on the sensitive data within as little
as one clock cycle, well before the time window in which an
attacker has the opportunity to mount an attack (Section IV).

• We investigate the memory effect in the context of static
power SCA, demonstrating that an attacker needs to wait at
minimum several hundreds of clock cycles worth of time af-
ter stopping the clock before they can observe static leakage
that would be usable for mounting an attack (Section VI).

• We practically implement Borrowed Time within AES and
masked SKINNY implementations on different FPGA tech-
nologies and evaluate them by mounting end-to-end static
power SCA-based key recovery attacks with varying setups,
demonstrating that Borrowed Time effectively mitigates
these attacks, even where masking does not (Section VII).

II. BACKGROUND

A. Physical Side-Channel Analysis

The physical interactions of electronic devices with their
environment can leak information about the computations they
perform and values processed. This leakage manifests through
inherent correlations between the computation or data being
processed with the observed physical effects. The practice of
exploiting such unintended sources of information leakage to
reveal secrets is known as physical side-channel analysis.

Since the seminal work of Kocher [38], SCA has become a
significant threat to cryptographic implementations in partic-
ular, because visibility of computational intermediates defies
the black-box assumption1 that upholds the security of cryp-
tographic primitives. Side-channel attacks are categorised by
the effect responsible for leaking information, with significant
effort being invested in power analysis, which exploits the
power consumption of a target device [39, 48]. Although phys-
ical access to the target device is typically required, remote
power analysis attacks through cloud-integrated FPGAs [95]
and software [46, 49] have also recently been demonstrated.

B. Static Side-Channel Analysis

Static SCA attacks are physical hardware attacks which
exploit the leakage or response behaviour of integrated circuits
(ICs) when in a stable, static state. We further divide this
family into power (which our experiments are based on) and
non-power static SCA attacks.

1) Static Power SCA Attacks: The majority of power analy-
sis attacks historically explored is concerned with the dynamic
power consumption of target devices, i.e. the instantaneous
consumption associated with changing the logical state of
electronic gates. In contrast, static power SCA is concerned
with the power dissipated to maintain the logical state of the
device, which exhibits a dependence on the stored data [1, 30].

Any digital circuit can be abstracted as a system made up of
pipelines of combinatorial logic elements sectioned between
sequential (state) elements. The core idea of exploiting static
power information leakage is that a target device can be held in
a certain state (represented by the contents of all state register
elements) by stopping the clock signal fed to the device for a
long enough time such that: all dynamic effects from transi-
tioning into the given state have died off, and measurements
can be taken across a sufficiently long window to average
away a large amount of noise. Static power SCA considers this
averaged univariate random variable (the measurement trace)
as representative of a target’s given state, whereas dynamic
power SCA considers an instantaneous power trace as a time-
dependent multivariate random variable representative of a
computation performed by the target (related to its transition
between states). Static power SCA adversaries must be able
to make use of clock manipulation, however, as Moos [54]
shows this does not strictly require a stronger threat model
(than dynamic) where the attacker outright controls the target’s

1Black-box: adversaries can only observe inputs and corresponding outputs.
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clock signal, instead they can leverage the interrupted clock
signal provision to a clock-gated target (Figure 1 left side).

The earliest reports on this class of attack were based on
simulated analysis [30, 45] and the first practical demonstra-
tion was performed by Moradi [59] in 2014 against FPGA
targets. Since then, more works [7, 11, 37, 54, 55, 57, 58, 66]
have practically evaluated static power SCA attacks. A com-
prehensive history of the research area is described in [56, 58].
Technology Down-Scaling. The contribution of static leakage
to overall power consumption among modern CMOS tech-
nology is becoming proportionally larger [36, 61, 91] with
the continued down-scaling of semiconductors as a proponent
of Moore’s law [53]. Simulations focusing on nanometer
CMOS technologies show a direct increase in static leakage
with smaller scale technologies [45]. From practical results,
Moradi [59] demonstrated that the absolute leakage current
and leakage related to data contents does not necessarily
directly increase with smaller technologies between different
FPGA families, although this does not mean the same holds for
relative proportions. The tested technology families had more
differences than just scale however, the details of which are
not publicly available and could potentially influence leakage.
Moos [54] performs similar testing with ASICs (Application-
Specific Integrated Circuits), finding a direct increase in data-
dependent static leakage across shrinking CMOS technologies.
Measurement Factors. In static power SCA, while keeping
a target circuit in a certain state via some form of clock
control, many power measurements are taken over a long
measurement window which are then averaged into a single
trace value representative of its given state. This intra-trace
averaging reduces noise exponentially [58]. The most promi-
nent physical effects responsible for quiescent current flow in
CMOS circuits are sub-threshold leakage current and reverse
biased PN junction current [6]. Moos et al. [58] investigate
the influence of voltage and temperature on this static leakage,
finding an exponential dependence on operating temperature,
while increases in operating voltage only marginally increase
leakage. Moos [54] shows that the influence of temperature
on static leakage is greater for smaller process technologies.
Moreover, the nonlinear temperature dependencies can be
leveraged to conduct multivariate attacks [8, 24].
Memory Effect and Measurement Interval. To exploit
leakage of static register contents an attacker must wait ample
time for the dynamic effects within the target circuit to settle
before taking measurements. One might therefore expect it
to be sufficient to wait until all of the signal value changes
from a clock transition are propagated to the end of their
paths. However, it turns out that dynamic effects continue
to be observable in the measurements of a circuit’s power
consumption profile well beyond this time, even extending
across several clock cycles in a phenomena coined the memory
effect in [60]. This may arise from slow transient response of
the leakage current among individual CMOS elements, and/or
from aggregated system effects like reflections, both inside
the device under test and in interaction with the (active) com-
ponents of the measurement setup. Moradi and Mischke [60]

use the memory effect to combine leakages from operations
across multiple clock cycles into univariate readings. Against
their FPGA target, this significantly extends the window of
usable dynamic leakage by several microseconds.

Past works observe that the memory effect is highly in-
fluenced by the power measurement setup used [57, 58, 60].
These works use very similar setups; both incorporate a high-
gain low-bandwidth DC amplifier. The works mention that
from their analysis the memory effect influences static power
measurement for 20 ms, but go into no further detail on how
this was evaluated.

2) Non-Power Static SCA Attacks: Laser Logic State Imag-
ing [41] (LLSI) is a recently proposed laser-assisted SCA
technique that can be used to directly observe the states
of circuit registers during a certain stopped clock cycle. By
modulating the target’s voltage supply and imaging its signal
lines using lasers, they are able to observe different reflected
responses dependent on the state (stored 1 or 0). Though this
approach requires knowledge of sensitive register’s physical
locations, LLSI can also be used to assist their discovery [42].

Impedance Analysis (IA) [52] similarly involves modulating
the circuit’s supply voltage during a stopped clock cycle,
but instead performing a frequency sweep and observing the
system response. This response varies based on the system’s
overall impedance which is dependent on circuit state, and
thereby leaks information. Moreover, registers at certain loca-
tions are responsible for the responses at certain frequencies.

Both of these techniques present unique methods of observ-
ing the static state of a circuit with different, higher-resolution
representations and localisation features compared to static
power SCA (while also requiring far more sophisticated re-
sources to mount). Crucially however, as with static power
SCA, both methods when performed as described by their
authors require stopping the clock signal fed to the target
circuit for a prolonged period.

C. Countermeasures

Countermeasure approaches against physical SCA fall into
two main categories: information masking, which algorithmi-
cally amplifies existing noise; and information hiding, which
either decreases the exploitable signal (a.k.a. equalisation) or
increases the noise (a.k.a. randomisation) [48].

Masking or ‘secret sharing’ is a widely adopted class
of countermeasures, in which the sensitive values used for
computation within a system are never explicitly stored or pro-
cessed in the system at any given moment [22]. For example,
a sensitive intermediate bit x is encoded as a set of randomly
generated shares x0, x1, ..., xn, such that x = x0⊕x1⊕...⊕xn.
The data is ‘split’ and processed in the form of these shares
and combined at the end to produce the output. Masking
schemes, especially those based on Boolean encodings, are
known to work as intended only if the adversarial observations
made are sufficiently noisy [50]. This condition, however,
tends to be violated in presence of static SCA adversaries.
For example, previous works have indicated that attackers
leveraging static power SCA can exploit higher-order leakages
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of masked systems with much lower data complexity than
attackers leveraging dynamic leakage [54, 57]. With the low
noise and precise localisation capabilities of non-power static
SCA attacks like LLSI and IA, masking can sometimes even
be completely circumvented [41, 52]. The security of coun-
termeasure schemes that rely on randomness is inextricably
linked to the security of the source of randomness. Cassiers
et al. [21] assess the costs of various methods of generat-
ing cryptographically-strong random bits for applications like
masking, ultimately recommending a hybrid system for high-
security settings that involves using a cryptographically secure
Pseudo-Random Number Generator (e.g. Trivium [18]) which
takes an initial 80-bit seed from a True Random Number
Generator (e.g. ES-TRNG [92]) at power-up.

Logic balancing schemes [25, 56, 62, 65, 76, 77] are a
hiding class of countermeasures that aim to balance the data-
dependence of power dissipation of logic elements. They use
complementary signals to balance the number of bits toggled
and stored in computation. These logic styles rely on perfectly
balanced power consumption from the underlying transistors
and signal routing, which is very difficult to achieve in practice
due to semiconductor process variation [56]. Some results have
suggested that balanced logic styles resistant to dynamic power
analysis can actually heighten vulnerability to static power
SCA [5, 6]. Although balancing countermeasures have not
been tested against other static SCA attacks such as LLSI and
IA, we anticipate that these attack approaches are similarly
capable of circumventing the protections. Both of these SCA
techniques are able to observe the leakage of bits as a function
of their position in the circuit. If optimal resolution is achieved,
adversaries may simply identify which stored bits correspond
to the actual secret state while ignoring their counterparts used
for balancing, rendering most such approaches void.

Time-enclosed logic [9, 10, 11, 15] extends balancing
approaches to encode data in the time domain such that infor-
mation is only present for evaluation in a limited evaluation
phase time window during each clock cycle. This requires an
internally derived secondary clock signal to complete the eval-
uation phase. These countermeasures have the effect of shift-
ing information leakage to higher frequencies as additional
switching activity is performed. Bellizia et al. [11] evaluated a
time-enclosed logic style against static power SCA and found
it to be effective in eliminating leakage from combinatorial
gates, however, information still leaks from state elements.
Since these state elements are the targets of LLSI and IA, its
security against these attacks is equally questionable as for the
previously mentioned balancing countermeasures.

Secure implementation of masking and/or logic balancing
countermeasures imposes substantial overhead. A comparison
of PRESENT2 co-processor ASIC implementations with vari-
ous countermeasure suites on 28 nm technology [56] finds an
overhead of ×2.58-3.17 (258-317%) from first-order masking
in terms of total power consumption, and ×2.85-3.78 area
overhead. Similarly for Exhaustive Logic Balancing, which is

2A lightweight symmetric block cipher, less resource-intensive than AES.

the current state-of-the-art balancing scheme to thwart static
attacks, power overhead is ×4.63-6.38 and area overhead is
×7.97-8.38. Combining such schemes then becomes signifi-
cantly expensive. As discussed before, even at such a high
price it is unlikely that the combination of masking and
balancing leads to strong resistance against all static SCA
attacks, including LLSI and IA.

Randomising the order of independent operations [84] can
significantly heighten SCA difficulty as adversaries, even with
knowledge of the targeted implementation, will not know
exactly which sensitive values are being computed or stored
at any given moment. Several other proposed countermeasures
[93, 94, 97] generate additive noise within the system to reduce
the signal-to-noise ratio in power leakage. Randomisation-
based approaches are generally not expected to provide suf-
ficient protection against static SCA, as the localisation and
noise reduction features of such attacks are potentially strong
enough to negate their impact (e.g., by simply reading the
digital values that determine the current order of operations in
a shuffling countermeasure).

In summary, with more attention having gone towards
dynamic attacks, similarly countermeasures have mostly been
evaluated by their resistance to dynamic leakage. Despite their
high cost, they offer limited protection against static SCA
attacks. While some protections against static power SCA have
been proposed, they can also still be overcome. Moreover, no
countermeasure (to the best of our knowledge) has yet been
designed to thwart the entire family of static SCA attacks.

D. Clocking in Digital Systems

In the context of digital systems, a clock is a signal that
oscillates between a high (1) and low (0) state at a given
frequency. Clocks coordinate the actions of digital systems;
sequential (or ‘synchronous’) logic elements (e.g. registers) in
a system change state in response to active clock edges.3

Phase-Locked Loops. Clock signals must be distributed to
all synchronous elements in a circuit. To drive this high fan-
out clock network load in large circuits, digital designs will
typically generate internal oscillatory signals for distribution
and synchronise them to a reference clock generated by a
crystal oscillator, which is highly accurate and stable. A Phase-
Locked Loop (PLL) is the closed-loop control system used to
achieve this synchronisation. PLLs are found in many digital
systems within their clock management primitives, they are
commonly used for clock generation, timing distribution, clock
recovery, frequency synthesis, and frequency demodulation.

Fig. 2. Block diagram showing basic elements of a PLL.

3Typically systems use the rising edge (transition from 0 to 1) as the active
edge, falling edge (1 to 0) can be used too, or a combination of both.
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The basic structure of a PLL is shown in Figure 2. The
system clock distributed throughout the circuit is generated
by a Voltage Controlled Oscillator (VCO), whose frequency
depends on the input voltage. The VCO output is fed back
to a Phase Detector comparator. This phase difference acts as
an error signal fed forward to the VCO so that it adjusts its
frequency to match the reference. A Low-Pass Filter removes
unwanted high frequency noise.

Clock-Gating. While certain portions of a circuit are inactive,
driving clock signals to them causes an unnecessary drain
on power. In a common design practice known as clock-
gating [85], extra circuitry is incorporated in a system to
dynamically enable clock distribution only to modules that
are active. This significantly reduces the dynamic power
dissipation of the gated circuit with relatively low overhead
of implementing extra gating logic. This design practice is
also automated by EDA tools for optimisation [73, 90] and
can thus occur without the designers knowledge. In ASICs
not only can the clock be gated, but circuits that are not in
use can be switched off [68]. This is known as power gating
and it additionally reduces static power dissipation in a system.

Clock-gating has been shown to reduce power consumption
by up to 40% in smartcards [96] and up to 50% in mobile
Systems on a Chip (SOCs) [44]. We note that PLLs cannot
work inside clock-gated circuits as PLLs require a long-term
stable incoming clock before they can achieve synchronisation.

Clocking in Side-Channel and Fault Injection Attacks.
Another popular class of attack that involves clock signal ma-
nipulation are clock glitching fault injection attacks [2, 3]. In
these attacks rapid glitched clock pulses are injected between
regular pulses which violate a circuit’s timing constraints. This
can be used to bypass certain security-critical operations or
instructions by not giving them sufficient time to terminate
between pulses. Luo and Fei [47] simulate a proposed method
for detecting high frequency clock signal fault injection. They
maintain a higher frequency clock in the target and use it to
sample the incoming reference signal.

Clock Sensors. In safety-critical applications, Clock Failure
Detection (CFD) systems [51, 74] are often implemented for
fault resilience. Their purpose is to detect if an incoming clock
(provided by an external source such as a crystal oscillator) has
failed and typically this indicator is used to signal the system to
switch over to an internal clock source for long enough to carry
out any necessary emergency actions. The failure model for
CFD systems is not generally geared to security and does not
account for disruption by malicious actors with full knowledge
of the design and complete physical system access.

In the context of security, Kömmerling and Kuhn [40]
discuss incorporating a robust low-frequency (clock) sensor
in the context of protecting smartcards from bus observation
using a Scanning Electronic Microscope. Lowering the target’s
clock frequency is said to make this kind of e-beam testing
easier. They suggest that implementations of filter elements
used to detect low-frequency input clocks are commonly
found in smartcard processors but are inadequate, and they

highlight that defences should be designed to be embedded
within processors. Farheen et al. [26] design a clock-freeze
detection sensor alongside a voltage modulation sensor as a
proposed countermeasure to LLSI [41], they claim it may
also be applicable to static power SCA attacks. However, this
detection mechanism has only been implemented in isolation
and has not been evaluated within a larger design, or against
any attacks. Moreover, their design does not allow operation
within a clock-gated system since their detector takes several
cycles to de-assert its detection alarm flag.

III. THREAT MODEL

As in past works [39, 48], we consider a threat model
wherein an attacker has physical access to the target device
and full knowledge of its underlying implementation. The
attacker aims to leverage an idle state where the clock signal
provided to the target circuit, which may only be a small
component within a larger device, is stopped at a particular
cycle. During such an idle state, sensitive data remains present
in state register elements (i.e. flip-flop cells) for the duration
of an extended measurement period, long enough to extract
information through static leakage. For the non-power static
SCA attacks (LLSI and IA) this period requirement is demon-
strated to be in the order of milliseconds. For static power
SCA, in Section VI we find it to be in the order of hundreds
of microseconds. The idle state can manifest in two ways:
1) Attacker-controlled clock (Figure 1 right panel): IC pack-

ages in embedded systems will commonly expose a clock
pin, so in many cases this is a trivial extension of the
physical access requirement already imposed. This likely
requires some extra work such as interrupting a circuit
board connection between the target and its external clock
source to connect an attacker-controlled source in place.

2) Naturally stopped, gated clock (Figure 1 left panel):
lightweight systems typically employ clock-gating for its
substantial power savings. Such systems usually involve a
master circuit that clock-gates (deactivates the clock pro-
vided to) a target circuit. For example, a master processor
only activates the clock signal for a cryptographic co-
processor when tasking it to encrypt some data, and at all
other times the co-processor is clock-gated. Concerningly,
clock-gating can be incorporated in systems by design tool
optimisers without the designers knowledge.

The target can also implement a suite of state-of-the-art
SCA countermeasures, e.g. from the masking and/or hiding
domains. In the case of a cryptographic target we assume
that the fundamental key storage is secure, be it hardened or
naturally resistant to direct key readout attacks from optical
and physical probing as well as impedance and power mea-
surements. Otherwise, it would be simpler to directly extract
keys from storage than to perform SCA. This secure storage
may be realised for example through Secure Non-Volatile
Memory (SNVM) or device fingerprint extraction using a weak
Physically Unclonable Function (PUF).

6



IV. BORROWED TIME COUNTERMEASURE

We propose an in-chip countermeasure called Borrowed
Time, to be deployed within a target circuit, that addresses the
above threat model and eliminates exploitable leakage of sensi-
tive data under any form of stopped clock condition. Borrowed
Time involves equipping a target design with circuitry that
monitors the incoming clock signal for a stop condition. Upon
detection, the countermeasure triggers an alarm that clears any
sensitive (e.g. key-dependent) information registered, thereby
eliminating the exploitable source of static data leakage.

We propose two approaches for detecting a stopped clock,
both of which are applicable to ASIC and FPGA implemen-
tations. The first uses standard clock management circuitry
that contains a PLL, as found in many conventional digital
designs. The second solution involves a custom asynchronous
delay-based clock-sampling module. This can be used in
conventional designs as well as in clock-gated systems, where
PLLs will not work. For each approach we also propose
minimal alteration of the target circuit implementation such
that internal registers storing sensitive intermediate data are
immediately cleared upon a detection alarm, with the aim of
preventing information leakage of those intermediates during
periods of clock inactivity.

Outside of incorporating Borrowed Time we recommend
any target circuit clears its sensitive registers between opera-
tions, e.g. after encryptions/decryptions. We also recommend
signalling the alarm to any master circuitry (e.g. ‘data invalid’
signal) to prevent false positives from affecting the overall
system’s functional correctness.

The means by which registers are cleared could be as
simple as tying the detection alarm signal to the asynchronous
reset input of sensitive registers. These resets set registers
to zero without needing an active clock edge. However, we
note that this would invoke a number of 1-to-0 transitions
equal to the hamming weight of the stored sensitive value,
so clearing in this manner may increase dynamic leakage of
sensitive values, even in cases where the registered values are
masked. To address this, we propose the implementation of a
masked clear, a means of clearing where sensitive values are
replaced by randomness [13, 55], similarly performed by the
OpenTitan4 [64] cryptographic modules. For this we assume
the availability of a cryptographically secure RNG that can
provide the randomness needed at any crucial clock cycle.
The RNG can take the same clock input as the target, as it
will present the fresh randomness needed at its output for the
masked clear even when its clock source has stopped.

Our countermeasure is implemented at the logic design
stage and requires no alternative logic style and no alteration
in the standard cell libraries. We now describe our two
approaches for implementing Borrowed Time in greater detail.

A. PLL-Based Detection

For targets that receive a stable clock signal our clock
monitoring solution is based on the function of a PLL. The

4An open-source, state-of-the-art hardware root-of-trust.

main advantage of this design is that it relies on existing, well-
understood engineering solutions that provide robust clock
management. The other advantage is that minimal design effort
is required. PLLs are commonplace in larger designs, so in
some cases building our proposed protection will only involve
adding the extra components outside of the PLL. Otherwise
the extra engineering for implementing this solution is still
minimal, incorporating PLLs is straightforward as established
solutions are widely available for deployment on most varieties
of FPGA and ASIC platforms.

When a PLL’s reference (input) clock and internally gen-
erated clock (output provided to the system) are frequency-
and phase-matched, the PLL is said to be locked. To ensure
synchronisation, sequential logic elements clocked by a PLL
can be held in a reset state until lock is achieved. For this
reason clock management modules that contain PLLs usually
provide hardware designers with the option of using output
status signals, such as a LOCKED signal, to indicate lock
synchronisation. The time a PLL needs to attain a locked state
is known as lock time, and is a crucial design parameter among
PLLs, generally in the order of microseconds [34, 89].

We propose using the logical NOT of the LOCKED signal
(LOCKED) as our clock monitor. PLLs are typically sensitive
enough to de-assert LOCKED within one clock cycle of a
stopped reference signal [87]. Therefore, by using such a
signal to trigger a register clear we can reduce the time in
which data-dependent power consumption is observable to
only one immediate additional clock period.

Fig. 3. PLL-based Borrowed Time countermeasure system design. Upon
detection of a stopped clock, the alarm signal LOCKED selects random values
to be written into sensitive registers, performing the masked clear.

In order to clear sensitive register contents we propose
using the alarm signal (LOCKED) to select a random number
generator (RNG) as the input source of the registers, see
Figure 3. We highlight data_mux in orange because it is
the only internal modification of the target circuit required,
aside from additional input signals. The registers require an
active clock edge to latch the updated inputs. For this, in
some cases PLLs will briefly continue to provide a ticking
output that we can leverage. Otherwise we can use the delayed
pulse mechanism which we describe in the next design variant.
So long as the (LOCKED) signal is not tied to the register
resets (as it would be if we wanted to perform a clear-to-zero
instead of masked clear) nor to the RNG reset, the first active
clock edge will clear sensitive registers with random values.
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This is a similar operating principle to that of CFD systems,
where an internal oscillating signal is fallen back on to execute
operations allowing safe (or in this case secure) failure.

The main limitation of the PLL-based solution is that it
is not applicable in clock-gated circuits because in order
to operate correctly, PLLs rely on a stable incoming clock
signal over a long period of time. Introducing a PLL inside
a clock-gated circuit would cause long start-up times, that
are incompatible with the need to activate such circuits on-
demand. Another limitation of this solution is the amount of
power drawn by PLLs which is relatively large compared to
the demands of a lightweight logic core. This makes the PLL
solution far less suitable for lightweight, low-power systems.

B. Asynchronous Delay-Based Detection

Given the limitations of the PLL-based solution, we now
propose a lightweight alternative. The main advantage of this
alternative is that it is low-power, both from the overall circuit
overhead, and from the fact that it can work in clock gated-
architectures. Thereby it allows the system in which it is
deployed to benefit from substantial further energy savings.
Since we cannot rely on a continually transitioning clock, we
build this alternative from asynchronous circuitry, i.e. digital
circuitry that does not use a global clock for synchronisation. It
is applicable to ASIC and FPGA systems, however it requires
significantly more engineering effort than the PLL-based solu-
tion. Though it is ultimately implemented at the logic design
stage, this solution requires a careful design process informed
by multiple development stages, from logic design down
to physical layout. Moreover, designs for certain underlying
CMOS technologies are not directly portable to others. Porting
the design between technologies at minimum requires tuning
it for the target platform’s physical characteristics.

The overall goal of our custom system is to overwrite
sensitive register values with random data upon detection
of a stopped clock signal, otherwise allowing the target to
operate as normal without interrupting its operation. At a
high level, we require two main mechanisms. We first need
to detect that a clock has stopped, and then we need to
generate another clock edge that will allow us to clear the
registers. We note that our system fails securely in the event
of false positives, performing an unintended clear. Our system
is inherently disruptive, i.e. an encryption cannot be completed
if Borrowed Time is triggered during its execution. Therefore
we prioritise minimising false positives to not adversely affect
performance. Considering the threat model, we must also
design for robustness in the face of adversarial manipulation.
We now describe how we implement these mechanisms and
then discuss important design considerations and how we
avoid triggering false positives.
Clock Monitoring. The clock-monitor circuit consists of a
chain of unit delay elements that takes the incoming clock
signal as the input. See the left side of Figure 4. The output
of each element is a version of the clock, time-shifted by the
propagation delay time through the delay element. A subset
of these time-shifted versions of the clock are fed as input to

a combinatorial logic circuit that goes high if all of its inputs
are equal. If all inputs to the combinatorial gate are zero, the
clock has been stopped low; if they are all one, it is stopped
high. In both of these cases the stop_detect signal goes
high, otherwise it stays low. We refer to each input signal line
fed to this circuit as a tap on the chain of delay elements.
Generating an Active Clock Edge. Upon detecting that
the clock has stopped, we need to clear sensitive registers.
Again, we note that a naive clear-to-zero can be performed
by tying stop_detect to registers’ asynchronous reset. To
instead do so with a masked clear, we follow the approach
of the PLL-based solution and multiplex the registers’ input
(D) using data mux such that RNG output is selected by
stop_detect upon a stopped clock condition. However,
unlike the usual case of the PLL-based solution we can no
longer rely on a continuously generated clock signal to drive
the register clear, because the stopped input clock will not
generate active edges. Instead, we also multiplex the clock
signal fed to the registers (clk mux) to select a source signal
which we can guarantee to provide an active edge (low to
high) transition while the actual clock source is held (stopped)
high or low. For this we feed in a time-delayed version of the
stop_detect signal, labelled delayed_edge. Figure 5
shows the entire process in a timing diagram. Importantly,
we note that while the figure only shows the case that the
clock is stopped low, the countermeasure works the same
if stopped high. The reason being that immediately after
‘Stopped’, clk mux will assign delayed_edge (which will
be temporarily held low) to drive sys_clk.
Timing Design. Before describing the technical details of this
solution we first establish some notation. We label the ith time-
shifted clock signal on the delay chain as ci and denote the
propagation delay from the original clock signal clk to ci as
ti. Our solution effectively samples the incoming clock signal
concurrently at n different points in time from the current
clock to the clock tn seconds earlier. tn is the time-shifted
version of the clock with the longest delay from the original.

Our system relies on observing variation of the clock signal
as an indicator that the clock is operating normally. Therefore,
the span of time across which we sample the clock must be
long enough to capture its variation, otherwise the system
will trigger false positives. This gives a minimum bound of
tn > Tclk/2, where Tclk is the nominal clock signal period.
Figure 5 depicts a near-minimum-allowable tn. It shows the
temporal relationship between three different versions of the
clock signal: the original clk, the time shifted cn with the
maximum delay (tn) from the original, and one of the in-
between delayed clock signals cn/2 with approximately half of
the maximum delay. At any given moment in the time window
from t0 to immediately before time ‘Stopped’, the values of
the three versions of the clock are not all equal, which means
that at these times, the combinatorial circuit does not trigger
an alarm, allowing the target circuit to operate as normal.

At time tn after the clock (clk) has stopped, all versions
of the clock agree, and the combinatorial circuit detects the
situation (marked ‘Stopped’ in Figure 5). If tn were less
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Fig. 4. Asynchronous delay-based Borrowed Time countermeasure system design. Upon detection of a stopped clock, the alarm signal stop_detect selects
random values to be written into sensitive registers. delayed_edge, a delayed version of stop_detect, is instantly selected by stop_detect as the
target system clock and provides an active clock edge to latch random input values, performing the masked clear.

Fig. 5. Timing diagram of system signals with a stopped clock condition.

than Tclk/2, then a false positive would be triggered in our
combinatorial circuit because all of the sample signals would
be 0 immediately before the second clock pulse in clk, despite
the clock actually still operating normally at that time.

tn also sets how quickly our system can detect a stopped
clock. In Figure 5 the final transition (1 to 0) of cn occurs
tn seconds after the same transition for clk, and only then is
the stopped clock detected. While the absolute limit is that tn
must be greater than half the clock period, a larger tn should
be used in implementation for robustness in the face of clock
jitter and possible variations in the chain’s propagation delays.

Another potential source of false positives is aliasing, which
can occur when the sampling frequency is too low, i.e. below
the Nyquist Limit.5 A simple example of how this can trigger
a false positive is if our sampling frequency is exactly the

5fs > 2fsignal , where fs is the sampling frequency and fsignal is
frequency of the signal being observed.

same as the incoming clock frequency. In such a case, each
sample point would be at the same phase of different clock
cycles thus signal variation would not be captured. We define
the sampling frequency of our system using the shortest delay
between any successive taps on the delay chain that are fed into
the combinatorial logic element, i.e. fs = 1/min(ti − ti−1).
To avoid aliasing fclk < fs/2.

When stop_detect goes high, the input of sensitive
registers switches to the RNG. This change must be stable
long enough before the active delayed_edge arrives to
clock the new value into the register, such that the hold time
requirements of the registers are met. Since typical register
hold times are very small compared to clocking periods,
setting the secondary chain (s1, ..., sm) total delay tm to be
comparable with half a clock is a safe choice.
Clock Glitching and Gated-Restart. Our design is tolerant
of attacker-induced clock glitching with the inclusion of some
delay (clk_delay) on the clock line fed into clk_mux.
Without this, an attacker could send a series of well-timed
glitched clock pulses which would set stop_detect low
while no clock transitions reach the target circuit. We elaborate
on this scenario in Appendix A. In design, clk_delay must
be greater than the delay through the combinatorial element
(e.g. from c0 to stop_detect). Upon circuit reactivation,
using the delayed clock also enables the circuit to work from
the first active clock edge following a stopped/gated period as
stop_detect will be de-asserted before the edge reaches
the target. This introduces some clock skew between the target
and master circuits that must be accounted for in design.

C. Comparison of Proposed Designs.

In Table I we summarise the pros and cons of each design.

Low-power Clock-gating Low design cost
compatible

PLL ✕ ✕ ✓
Asynchronous ✓ ✓ ✕

TABLE I
PROS AND CONS OF BORROWED TIME VARIANTS.
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D. Potential Design Automation

Most aspects of applying Borrowed Time to different targets
could lend themselves to automation. Implementing a PLL
for the detection mechanism already requires low engineering
effort as it only involves instantiating an IP, which in many
cases may be further assisted by Clocking Wizard tools typi-
cally provided by FPGA design suites. Tuning the delay chain
for the alternative detection mechanism can similarly be au-
tomated given the availability of characterisation information
about the delay of circuit elements. All that designers would
need to decide on is the operating frequency and tolerable false
positive margins. Otherwise, the Trivium RNGs are flexible to
produce as many random bits as needed per cycle. The only
remaining problem is the identification of registers that store
sensitive values at any point during execution. For expansive
designs a manual process could be cumbersome and prone to
mistakes. For such situations, we recommend using automated
tools such as REBECCA [14, 35] to assist the process. Using
REBECCA, designers can annotate circuit inputs with labels
‘sensitive’, ‘mask’, or ‘public’. The tool propagates these
throughout the circuit, ultimately informing the designer which
registers store sensitive values at any point during execution.

V. EVALUATION SETUP

To evaluate our Borrowed Time countermeasure, we per-
form practical static power SCA attacks using various attack
setups and against different target cryptographic hardware
devices, attempting to extract their secret keys with and
without Borrowed Time in place. We perform Correlation
Power Analysis (CPA) [16] attacks against AES and masked
SKINNY implementations. We describe CPA against AES and
SKINNY in detail in Appendices C and D, respectively. Here
we describe the targeted implementations, our specific mea-
surement setups for attacking each, then the general procedure
for mounting attacks. Lastly, we carry out end-to-end attacks
against the unprotected targets to validate the setups.

A. AES Target without SCA Protections on 7 Series FPGA

Our first target is a third-party AES core [69] configured
onto a Xilinx 28 nm Kintex-7 FPGA. The FPGA is housed on
a SAKURA-X6 [33] board, which features dedicated measure-
ment points across a shunt on the FPGA’s power supply line.
The implementation has no SCA protections and uses a round-
based architecture (one round is performed per clock cycle).
We purposely attack an implementation without standard side-
channel protections and under optimal conditions to bias in
favour of the attacker and best illustrate the contrast in ease
of key extraction without vs. with Borrowed Time deployed.

Point-of-Interest. We mount a final-round attack as described
in Appendix C, where the intermediate key-dependent values
we aim to recover are the inputs to the final round SBoxes.
In our target these are registered between the penultimate and
final active clock edges. We stop the clock during this cycle.

6Also known as the SASEBO-GIII.

Measurement Equipment. We derive the current drawn by
our target from voltage measurements across its shunt resistor.
We measure this with a LeCroy AP 034 Active Differential
Probe attached to a LeCroy Waverunner 6100A oscilloscope.

Temperature Control. For optimal attack conditions we place
the target inside a climate chamber, the utility of which is two-
fold. Static leakages are amplified at higher temperatures [58],
and the controlled environment stabilises some of the influence
that temperature variations have on leakage. We set the climate
chamber to 60◦C, because the SAKURA-X board was found
to sporadically power off at higher temperatures.

B. SKINNY Target with first-order Masking on 6 Series FPGA

Our other target is a third-party SKINNY core [81] with
first-order masking protection in place, using two shares.
Specifically, the implementation realises SKINNY-128-128
encryption based on a SCA-protected core developed to study
the leakage resistance of the NIST lightweight cryptography
competition finalist Romulus [72, 83]. We configure the im-
plementation onto a Xilinx 45 nm Spartan-6 FPGA which is
housed on a SAKURA-G [31] board. We target this imple-
mentation to demonstrate that Borrowed Time can seamlessly
be integrated with standard side-channel protections which, on
their own, are insufficient to protect against static SCA attacks.

Point-of-Interest. We mount a second-round second-order
attack as described in Appendix D, this is the first round that
involves key material in computation. We stop the clock after
the second SBox of the second round has been computed.
At this point the result is stored in registers in a masked
representation while part of the multi-cycle pipelined Sbox
circuit (see [83]) is also still holding related information. This
maximises the amount of leakage that can be exploited.

Implementation Details. The masked SKINNY core is built
based on trivially composable gadgets, following the Hardware
Private Circuits (HPC) masking scheme [20]. The authors have
formally verified its security using the fullVerif tool [20].
Additionally, we have practically verified the absence of first-
order leakage using 100 million dynamic power traces and
1 million static power traces using a fixed-vs-random t-test
from the standard Test Vector Leakage Assessment7 (TVLA)
methodology [71]. Therefore, all the following attacks we
present on this target are based on second-order analysis.

Measurement Equipment. In this setup we directly measure
the current drawn by our target. We connect it to a Keithley
2450 Source Measure Unit (SMU) which serves a dual pur-
pose of supplying power along with capturing high-accuracy
measurements of the current drawn. The same kind of device
has been used in previous literature [19, 56].

C. Measurement Procedure

Input Control and Measurement Interval. When we
stop the target clock at the point-of-interest for our given
measurement interval we also set all other inputs to zero. We

7A method of evaluating device leakage without performing an attack.
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must stop the clock long enough for the memory effect to
subside before we start taking measurements, and we need a
sufficiently long measurement period for intra-trace averaging
to remove a significant amount of noise. We refer to the length
of time from when we stop the clock to the beginning of
measurement acquisition as the offset, and to the time from
start to end of the acquisition period as the window length. Past
works [57, 58] have indicated 20 ms as a good rule of thumb.
In our attacks we use a 25 ms offset and a 20 ms window.

Pre-Measurement Warm Up. We find that internal (in-chip)
temperature effects have considerable impact on leakage mea-
surements. Performing computations generates heat within the
targets. To stabilise this effect we warm up the chip internally
by performing the same computations (i.e. encryptions) at the
same rate as then performed in the measurement phase.

Post-Processing Temperature Control. When placed either
in a room or placed inside a climate chamber, the targets are
subjected to temperature drifts. These effects are exhibited in
static power traces mostly as slow drifts up and down, whose
variation far exceeds that between successive traces. Previ-
ous works mitigated this noise with various post-processing
strategies such as moving-average high-pass filtering [58] or
interleaving measurements with a known baseline state and
taking the differences [59]. We have opted to remove all low-
frequency signal components by applying a high-pass filter to
the traces taken over the measurement period.

D. Validation with End-to-End Attacks

Our CPA attacks successfully recover keys from both tar-
gets. Thus, we validate our attack setups and procedures as a
viable means of exploiting static power side-channel leakage.

Attacking Unprotected AES. Figure 6 shows the correla-
tion of the static power measurements with expected power
consumptions for each of the 256 potential AES subkeys, for
the 10th byte (subkey) of the key. The correlation of each of
the 255 incorrect candidate subkey guesses over the 30,000
traces are shown as grey lines, and the correlation of the
correct subkey guess is shown by the red line. Here, the correct
subkey candidate for the 10th key byte clearly emerges with
the greatest correlation after the first 800 traces. Note, this is
from one subkey. On average, recovering all 16 correct subkey
candidates took approximately 1,500 measurement traces, so
our Measurements to Disclosure (MTD) [78] value (of the
whole key) is 1,500. We calculated this average across all
subkeys by using 10 disjoint subsets of our measurement trace.
This attack success metric offers a relative benchmark on the
level of leakage under optimal conditions given our setup.

Attacking Masked SKINNY. Similarly, Figure 7 shows
the results of a second-order CPA performed on 100,000
measurement traces of the first-order masked SKINNY imple-
mentation, targeting the second key byte of the second round.
The attack succeeds in isolating the correct key candidate after
approximately 16,000 MTD. While the first-order protection
increases the amount of measurements needed to perform a
successful attack (compared to the unprotected AES), it is

Fig. 6. CPA on unprotected AES targeting the 10th key byte, 600 MTD.

evidently insufficient to resist static SCA, due to the low noise
property of such attacks.

Fig. 7. Second-order CPA on unprotected (i.e. not equipped with Borrowed
Time) first-order masked SKINNY targeting the 2nd key byte, 16,000 MTD.

VI. ASSESSING THE MEMORY EFFECT.

We have described our CPA attack setups and procedures
and validated them by performing key recovery attacks against
both targets, also producing MTD metrics indicative of system
leakage. Now, we use the same techniques to assess the
influence of the memory effect on overall attack performance
by using acquisition windows with shorter offsets, i.e. the
window starts closer to the final clock edge before it is stopped.
Given that the AES target exhibits much higher overall leakage
(lower MTD), we use this setup for our memory effect analysis
to continue biasing in favour of the attacker.

We recall that due to the memory effect, dynamic effects
from circuit state transitions do not subside immediately once
the logical transitions themselves have terminated [60]. These
effects linger and can influence power measurements taken
long after the transitions [57, 58, 60]. This is significant
for Borrowed Time’s effectiveness against static power SCA
because it drastically increases the time window that data
needs to remain stable and available for attacks to succeed.

We evaluate the memory effect by repeating the attack
against the unprotected AES target with varying time offsets
and window lengths in order to gauge the duration and extent
of its influence on leakage measurements. We begin by fixing
the offset at 20 ms and narrowing the acquisition window over
repetitions of the attack until there is a noticeable decrease in
attack performance. We find a 250 µs window length to be
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the smallest with comparable attack performance to the 20 ms
window. Performing the attack with this window length will
be very sensitive to the leakage signal strength.

Therefore, we then fix the window length to 250 µs and
repeat the attack, shifting the time offset closer to zero each
time, i.e. bringing the whole span of the acquisition window
nearer to the last active clock edge before the clock is stopped.
Figure 8 shows the results of the attack for varying offsets.

Fig. 8. CPA attack performance against unprotected AES for various start-
time offsets with 250µs measurement window.

We find that the memory effect appears to influence mea-
surements for offsets as late as 800 µs. Offsets from 1 ms
upward all had similar performance of around 1,500 MTD.
Figure 9 shows an example CPA key guess progression with
just under 20,000 MTD at the 400 µs offset. From that point,
with reducing offset the memory effect influence increases
until 200 µs where the attack is unsuccessful with 100,000
measurements. We use this as our cut-off since it is approxi-
mately two orders of magnitude greater than the optimal MTD.
From these results, we deem the memory effect to be dominant
for at minimum the first 200 µs after the last active clock edge.

Fig. 9. CPA against 10th key byte of unprotected AES with 400µs offset,
250µs measurement window, 18,000 MTD.

Regarding our countermeasures, if we take this to be the
memory effect duration specific to our measurement setup, any
configuration that detects a stopped clock within 200 µs should
protect the circuit from static power SCA attacks. We believe
that the attack is increasingly difficult for shorter offsets until
a point where the memory effect noise obscures leakage to
the point where the attack is infeasible. Borrowed Time (in
both of its variants) can detect a stopped clock within one
clock period. This means that if Borrowed Time is deployed
within a cryptographic co-processor, whose typical operating
frequency would be in the MHz range, detection and clear
under a stopped clock condition occurs at latest after 1 µs.

VII. COUNTERMEASURE IMPLEMENTATIONS AND
EVALUATION WITH ATTACKS

Having described the general design and approach of in-
corporating the Borrowed Time countermeasure in hardware
systems earlier in Section IV, we now describe our implemen-
tations of it within the target FPGA devices.8 Then, using the
same evaluation setups described in Section V we attempt to
attack the now-protected targets.

A. Borrowed Time Implementations

PLL-Based Solutions. To build this version of our counter-
measure into our 7 Series (AES) target we use the Mixed-Mode
Clock Manager (MMCM) [87] primitive. We use an optional
status output it provides called CLKINSTOPPED. For the 6
Series (SKINNY) target we use a PLL BASE [88] primitive
and its LOCKED output signal (logical NOT as the alarm).
Both indicate a stopped input clock within one missed cycle.
Asynchronous Delay-Based Solutions. To build the delay
chains for clock monitoring, we are constrained to using
the resources built into the target FPGAS. As an aside, an
ASIC implementation where circuit elements are customisable
as with more aspects of their placement and routing would
provide designers greater control over timing characteristics.

We build the delay chains using Lookup Table (LUT)
circuit primitives. These are configurable truth tables that can
implement any Boolean function to implement combinatorial
logic in FPGAs. We use the smallest such elements available
for each target: 1-input 1-output LUT1s in our 7 Series (AES)
target, and 5-input 1-output LUT5s in the 6 Series (SKINNY)
target. Post Place and Route Simulation on delay chains built
in each of our targets indicate the propagation delay between
successive elements to be 190 ps and 620 ps on average,
respectively. We consider these estimates to be reliable as they
are the ground-truth used for timing analysis of digital designs.

To feed our clock sampling logic, in the 7 Series target we
tap every 66th element along the delay chain until around the
1900th tap. We run this core at 8MHz. This gives an average
12.5 ns gap between taps and a total delay at the final element
of 360 ns. The operating frequency range this allows for is
therefore 2.5 MHz < f < 40 MHz. In the 6 Series target we
tap every 3rd element along the delay chain until the 90th tap.

For the remaining elements, we construct the combinatorial
clock-sampling logic element using LUT6s9 for both targets.
For clock multiplexing we use a BUFGCTRL [87] primitive in
the 7 Series and a BUFGMUX [86] in the 6 Series. These can
instantly switch between two asynchronous clock sources.
Randomness Generation. Following the recommendations
of Cassiers et al. [21], in all instances of Borrowed Time
we implement an unrolled instance of the cryptographically
secure Trivium [18] with a fixed initial seed as our source of
generating fresh random bits each clock cycle. For the AES
target, we configure it to generate 128 random bits per cycle

8The source RTL for both of these design artefacts is available at:
https://github.com/0xADE1A1DE/Borrowed-Time

9The largest available Xilinx LUT primitive type by input size.
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Power Overhead (%)
Power [mW] [Total (Fixed / Variable)] Critical Path [ns] Max. Frequency [MHz] LUTs Regs

AES Base Unprotected 116 – 5.008 199.7 1387 535
PLL BT Protected 203 75.0 (62.9 / 12.1) 6.009 166.4 2274 1149
Async. BT Protected 138 19.0 (6.9 / 12.1) 6.009 166.4 4079 1163

Masked Base Unprotected 115 – 7.936 126.0 2715 2722
SKINNY PLL BT Protected 227 97.4 (80.9 / 16.5) 7.950 125.8 3598 3793

Async. BT Protected 135 17.4 (0.9 / 16.5) 7.950 125.8 3697 3793

TABLE II
BORROWED TIME POWER OVERHEAD, CRITICAL PATH (MAXIMUM OPERATING FREQUENCY) AND RESOURCE UTILISATION.

so that the entire state register can be cleared at any point in
execution. The SKINNY target requires less fresh randomness
at only 64 bits since there is no key-whitening in its first
round, meaning the first round state only depends on plaintext.
This allows us to accumulate the unused randomness generated
during the first round in our design. If more random bits are
needed for masked clears, either the unrolling degree can be
enlarged, or multiple Trivium instances can be used.

Runtime Overhead. Borrowed Time imposes no overhead in
terms of additional clock cycles on what is already a round-
based AES implementation, nor for the masked SKINNY im-
plementation. However, the insertion of the data mux element,
shown in orange in Figure 3 and Figure 4, may affect a
protected circuit’s maximum possible clock frequency if the
combinatorial path going into sensitive registers is the system’s
critical path. To evaluate the impact on our targets’ maximum
possible clock frequency we assess the critical path of the
original (base) and the protected circuits, listed in Table II.

Power Overhead. Both variants of Borrowed Time intro-
duce overhead to the protected circuit. We use the Xilinx
toolchain to estimate the power consumption of the unpro-
tected targets as standalone base systems, and when each
variant of Borrowed Time is incorporated. These estimates
are shown in Table II. The presented overheads incorporate
all components built in for Borrowed Time, including the
randomness generation circuitry. The asynchronous delay-
based solutions are indeed better suited for lightweight, low-
power systems, incurring only 19.0% and 17.4% overhead
compared to 75.0% and 97.4% from the corresponding PLL
variants. Importantly, these are all drastically cheaper than
state-of-the-art countermeasures which instead impose several
multiples of overhead [56] such as Exhaustive Logic Balanc-
ing (463-638%), (first-order) masking (258-317%), and their
combination (1357%).

We break down the power overheads into fixed and variable
components. The fixed cost is from the one-off instance of the
clock monitoring circuitry. The variable cost component scales
with the number of sensitive registers (bits) protected and this
is dominated by the randomness generation circuitry. This is
another aspect where Borrowed Time compares favourably
to state-of-the-art schemes, as the majority portion of their
overhead is variable whereas most of Borrowed Time’s is
fixed. We also note that since the fixed overhead of PLL-based

Borrowed Time is from the PLL itself, it would be negligible
in systems that already incorporate a PLL for other purposes.

Area Overhead. We list FPGA LUT and register utilisation
in Table II. We note that these numbers do not distinguish
between LUTs of various input sizes, and that the LUT
primitives themselves are likely to be implemented differently
between targets as they are differing generations of FPGA.

We also note that these counts are typically a measure of
logical complexity whereas our constructions of Borrowed
Time leverage analogue effects. For this reason there are
several shortcomings in using these metrics to evaluate our
solutions. We cannot make a meaningful comparison to the
clock management primitives used in the PLL solutions. The
delay-chains use a large number of LUTs, particularly for
the AES target. We can significantly reduce this by replacing
segments of the chain (currently composed of many LUTs)
between each tap with purposefully long manually routed
signal wires with equivalent propagation delays. While this
would drastically reduce the LUT count essentially for free,
the additional power overhead from driving much longer signal
lines would be captured in power overhead. Thus we consider
power to be the most representative metric.

Combination with Masking. In practice, designers of phys-
ically secure cryptographic systems need to protect their cir-
cuits against both dynamic and static SCA attacks. Borrowed
Time alone cannot plausibly claim any (positive or negative)
impact on the vulnerability of cryptographic implementations
through dynamic (power) SCA. However, one of its core ad-
vantages over state-of-the-art schemes is that it can be trivially
combined with any common masking countermeasure to resist
dynamic attacks without its overhead scaling with the order of
masking used (drastically reducing relative overhead numbers
compared to the ones listed above). This is due to the fact that
clearing a single share of any encoded data, by definition of
the secret-sharing principle, removes all available information
about the corresponding variable from the circuit. We design
our implementation for protecting the masked SKINNY target
to clear a single share. Applying Borrowed Time to a masked
implementation instead of an unmasked one can eventually
become even less costly (in relative and absolute overhead),
since 1) RNGs will already be present and 2) a masked clear
may not always be required as, depending on implementation
and masking scheme, in some cases temporarily increasing the
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leakage of one share may not harm security. This would permit
cheaper Borrowed Time implementation with a clear-to-zero.

Previous literature has combined masking with hiding coun-
termeasures from the equalisation or randomisation domains
to achieve strong protection against static and dynamic at-
tacks simultaneously. However, as discussed earlier, we do
not expect such hiding countermeasures to be secure against
LLSI and IA static attacks. Furthermore, the masking +
hiding combination (especially where hiding = balancing) has
been shown to be significantly more costly than Borrowed
Time applied to a masked implementation [56]. Moreover, if
first-order Boolean masking (as implemented in the masked
SKINNY target) is deemed insufficient to thwart dynamic
attacks without additional hiding, higher-order masking or
prime-field encodings with a proven resistance to low noise
levels can be considered [19, 50]. The key takeaway is that
we expect the combination of Borrowed Time with any form of
secure masking to be significantly cheaper than other state-of-
the-art combined approaches, while providing much stronger
overall resistance to a wider range of advanced SCA attacks.

B. CPA Attacks Against Targets Protected with Borrowed Time

To evaluate the security of Borrowed Time we repeat the
attacks of Section V with each variant of Borrowed Time. We
find there to be no useful information leakage and are therefore
unable to recover any subkeys with 1 million traces. See CPA
plots Figure 10, Appendix B - Figure 12 and Figure 13. This
is shown in the figures as the correct key guesses do not
emerge with higher correlation than other candidates, instead
staying around zero. With this we confirm that the masked
clears happen correctly and there is no usable residual leakage
of previous data contents that can be exploited in the static
power attack model. We therefore conjecture that Borrowed
Time equally protects against LLSI and IA attacks, as the
sensitive information is simply not available long enough to
be effectively targeted by such static SCA techniques.

Fig. 10. CPA over 1 million traces on 10th key byte of asynchronous
Borrowed Time-protected AES, no emergence of correct candidate.

VIII. LIMITATIONS AND FUTURE WORK

When Borrowed Time clears sensitive state components the
computation that is interrupted can no longer be completed,
making it a potentially disruptive countermeasure. In normal
operation where Borrowed Time is not triggered this will

not affect runtime, however it may do so if false positive
triggers occur, forcing parts of computations to be repeated.
For example with the asynchronous Borrowed Time variant,
a false positive during the execution of our round-based AES
target would incur runtime overhead equal to the number of
rounds (clock cycles) which had already completed (and would
require repeating) for that given encryption. To account for
this, we design our implementations with heavy prioritisation
on robustness to false positives. Namely, we establish a wide
frequency range to mitigate false positive risks of aliasing (in
case of clock frequency increases) and from failing to capture
clock variation (clock frequency drops).

Although we have not produced explicit experimental ev-
idence for it (due to the costly setup and engineering effort
required), we firmly expect Borrowed Time to provide effec-
tive protection against the non-power static SCA attacks of
LLSI [41] and IA [52] as they have hitherto been demon-
strated, since both of these attacks rely on clock control for
the continued presence of sensitive stored values. However,
performing these attacks may also be viable during normal
execution without clock stopping, within clock-cycle time-
spans. Unlike the static power SCA scenario, such attacks
might not be directly affected by the memory effect reducing
the usability of measurements taken during such a time-
span. With such capability, these attacks would effectively
be possible without needing a stopped clock. However, we
expect that other factors related to required scan and sweep
times to severely limit non-power static SCA attacks in such a
setting. We leave a more careful investigation of this to future
work. These attacks are also claimed to work during extended
periods when a target circuit continues to receive a ticking
clock signal but does not overwrite sensitive registered values,
as would be the case with a cryptographic implementation
that does not clear or overwrite registers immediately after
the current operation is finished. To prevent such scenarios,
we reiterate our recommendation to ensure any cryptographic
implementation protected by Borrowed Time performs masked
clears of its registers between encryptions/decryptions.

The scenarios considered in this work do not account for
power-gated ASIC designs. Many power gating schemes are
based on multiple-threshold circuit design [68], and of those
some also allow for data retention in low-power (gated) states.
With or without data retention, it is unclear whether such
systems expose static leakage and to our knowledge there
have been no demonstrations of their exploitation. We leave
exploration of this to future work. As with our proposed
system, we recommend that power-gated systems perform
masked clears of sensitive data before entering the gated state.

Our countermeasure instances are likely to be less effective
against adversaries that have highly advanced invasive capa-
bility such as the capability to edit circuits, e.g. by using a
focused ion beam [32]. With such capability, an adversary can
disable Borrowed Time, e.g. by disrupting the alarm signal.
However, taking extra measures to route the Borrowed Time
logic on the lowest metal layers can be an ASIC-based defense
against such attacks. At the same time, circuit editing facili-
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tates other much stronger attacks, including directly observing
register contents, which bypasses any need to carry out side-
channel analysis. Moreover, circuit editing equipment is quite
expensive and requires a high level of expertise, significantly
limiting the number of potential adversaries.

Less powerful adversaries may try to disrupt Borrowed
Time, e.g. by using a laser to disable the alarm signal [75].
However, such fault injection attacks have a low spatial reso-
lution as laser spot diameters are on the order of at minimum
1 µm [82], whereas modern silicon features are typically below
100 nm. Hence, if system layout tightly couples the alarm
signal to the target circuit, or employs some form of protective
routing [79], isolated disruption of the alarm is likely to be
impractical. We leave validation of this to future work.

IX. CONCLUSION

Side-channel attacks that exploit the vulnerability of secret
data stored in register elements on integrated circuits that
are temporarily in an idle mode are becoming increasingly
common. Different variants of such attacks exploiting vari-
ous physical phenomena exist, including Static Power Side-
Channel Analysis, Laser Logic State Imaging and Impedance
Analysis. The emergence of these attacks motivates a clear
need for dedicated countermeasures. In this work we present
Borrowed Time, a simple yet effective countermeasure against
static SCA attacks. Borrowed Time operates by ensuring that
registers do not contain sensitive secrets when the circuit is
stopped. We evaluate Borrowed Time using practical experi-
ments and demonstrate that it provides an effective protection
against physical attacks while imposing modest overhead.
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APPENDIX A
CLOCK-GLITCHING ROBUSTNESS

As discussed in Section IV-B, implementing asynchronous
Borrowed Time without delaying the clock supplied to the
target leaves it susceptible to circumvention by clock-glitching.

Figure 11 shows such a scenario where an attacker sends
well-timed glitched pulses. After stopping the clock, for a
brief period the attacker allows stop_detect to be asserted,
during which time delayed_edge will be selected as the
system clock. Ideally when the pulse arrives at clk it would
go through to the system clock and provide an active edge for
the registers. However, if the delay from c0 through to (de-
assert) stop_detect is longer than the pulse’s width, then
in the short time that clk is high it will not be selected by
clk_mux (so it will not provide an active edge). This results
in no edge clocking out sensitive data from target registers.

However, using a delayed clock (as shown in Figure 4)
solves this (for example if we consider cn/2, although this
would not be used in an implementation since it provides
much more delay than needed) as the pulse will arrive when
stop_detect is de-asserted and therefore go through to
provide the target an active edge.

APPENDIX B
PLL BORROWED TIME

In Figure 12 we show an unsuccessful attack against our
PLL-Borrowed Time-protected AES circuit. Similarly, Fig-

Fig. 11. Clock glitching against naive implementation without delay on
system clock.

ure 13 shows an unsuccessful attack against the Borrowed
Time-protected SKINNY circuit.

Fig. 12. CPA over 1 million traces on 10th key byte of PLL Borrowed Time-
protected AES, no emergence of correct candidate.

APPENDIX C
CPA AGAINST AES

Here we describe the procedure for carrying out final-round
Correlation Power Analysis (CPA) against AES [23, 63] to
recover the secret key from side-channel leakage.

Power Model. The first step for performing CPA is to
select a power model that approximates the dependency of
the power consumption of a CMOS circuit on the data being
processed within. The most commonly used leakage models
are Hamming weight (HW) and Hamming distance (HD)
(or ‘switching distance’). In the HW model [39], power
consumption is dependent on the number of bits that are set on
(to 1) in stored data. In the HD model [16], the consumption
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Fig. 13. Second-order CPA over 1 million traces on 2nd key byte of
asynchronous Borrowed Time-protected first-order masked SKINNY, no emer-
gence of correct candidate.

depends on how many bit transitions (0 → 1 or 1 → 0) occur
in a computation. Since we are concerned with static leakages
which depend on fixed register contents, we use the HW power
model against the stored intermediate, i.e. we expect that the
power consumption for a given state is correlated with the
number of register bits that are set to 1.

Target Intermediate. Next we identify a computational
intermediate (a value registered at some point in execution)
that depends on a combination of known values (inputs and/or
outputs) with a part of the secret value that has a relatively
small guess space. We opt for a final-round attack on AES128
where the target intermediate xi is the ith byte of the output
state from the penultimate (ninth) round, and final round
SBox input. This intermediate depends on a combination of
an adversary-known value (output ciphertext) and part of the
secret key value with a small guess space. All final round AES
operations are byte-wise since MixColumns is not performed.
Reversing the final round, each byte of the intermediate can
be derived using Equation (1) from the known corresponding
output ciphertext byte cj , and the corresponding round subkey
kj which has a 256-candidate guess space.

xi = InverseSubBytes(cj ⊕ kj) (1)

i is a given index of a byte of the ninth round output, and i
maps to j after the final round ShiftRows operation.

Attack Procedure. We now describe last-round CPA against
AES. In the acquisition phase we perform many (N ) encryp-
tions with various random plaintexts, and for each we measure
the power (trace) consumed by the device during a clock
cycle when we know it stores the intermediate. For a given
encryption, the intermediate value should influence the power
trace according to our hypothesised HW power model. For
each encryption we store a tuple of the power trace P and the
corresponding output ciphertext cj .

Separate from acquisition is the processing phase, outlined
in Algorithm 1. For this explanation we consider one subkey
byte, i.e. one i in Algorithm 1. One trace at a time, for
each of the 256 possible round subkey guesses we derive the
value that the intermediate would assume based on the stored
output and the key guess using Equation (1), and we store the

Algorithm 1 CPA against final round of AES
1: for i← 0 to 15 do ▷ For all key block bytes
2: j ← ShiftRowIndex(i)
3: for traces ← 0 to N do
4: for kj ← 0 to 255 do ▷ For all subkey guesses
5: xi ← InverseSubBytes(cj ⊕ kj) ▷ Target intermediate
6: H[kj ].append(HW(xi)) ▷ H: 256× traces
7: end for
8: C[kj ]← correlation(H[kj ],P )
9: Subkey guess← argmax(|C|)

10: end for
11: end for

HW of this calculated intermediate (in H). We end up with
a 256 × N matrix where each row represents the expected
power consumption for all traces for a given subkey guess. The
correlation between the expected power consumption for each
subkey guess across all traces H[kj] with the measured power
consumption P is then calculated. Given enough traces are
gathered, only the correct subkey expected power consumption
will exhibit correlation with the measured consumption.

For explanation’s sake we distinguished acquisition and
processing phases, describing the overall process for a limited
number (N ) of traces. However, we actually perform these
phases simultaneously rather than sequentially. Moreover, we
do not set out with a predefined number of traces (N ), instead
as we acquire more traces we repeatedly evaluate to see if a
standout candidate has emerged.

APPENDIX D
SECOND-ORDER CPA AGAINST MASKED SKINNY

Here we describe the procedure for carrying out second-
order Correlation Power Analysis (CPA) against SKINNY [4]
to recover secret subkeys from side-channel leakage.
Target Intermediate. For our purposes we consider
SKINNY-128-128 with no tweak, i.e. all 128 tweakey bits
are key material and therefore secret. 40 rounds are performed
in this variant. SKINNY has no key addition in either its first
or last rounds. Only half of the state (and key) is involved
with key addition in each round, therefore retrieving the entire
key requires attacking two encryption rounds, which depends
on which subkey the attacker wants to retrieve. Our target
intermediates are similarly the round output states which are
inputs to subsequent round SBoxes.
Attack Procedure. The procedure for attacking the masked
SKINNY implementation is mostly similar to that we pre-
viously describe for attacking our AES target, with a few
differences. We follow the same steps described in Algo-
rithm 1, but replacing the target intermediate (line 5) and
Equation (1) with the SKINNY intermediates. Since we target
a masked implementation we must perform a higher (second)
order attack to leak the sensitive value from measurements of
the masked intermediates. To do so, we subtract the average
value across traces P from all traces then square the results.
This is before computing the correlation between traces P and
intermediates for each subkey guess (line 8).
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