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Abstract—Software-Defined Networking (SDN) improves net-
work flexibility by decoupling control functions (control plane)
from forwarding devices (data plane). However, the logically
centralized control plane is vulnerable to Control Policy Ma-
nipulation (CPM), which introduces incorrect policies by ma-
nipulating the controller’s network view. Current methods for
anomaly detection and configuration verification have limitations
in detecting CPM attacks because they focus solely on the
data plane. Certain covert CPM attacks are indistinguishable
from normal behavior without analyzing the causality of the
controller’s decisions. In this paper, we propose PROVGUARD,
a provenance graph-based detection framework that identifies
CPM attacks by monitoring controller activities. PROVGUARD
leverages static analysis to identify data-plane-related controller
operations and guide controller instrumentation, constructing
a provenance graph from captured control plane activities.
PROVGUARD reduces redundancies and extracts paths in the
provenance graph as contexts to capture concise and long-term
features. Suspicious behaviors are flagged by identifying paths
that cause prediction errors beyond the normal range, based
on a sequence-to-sequence prediction model. We implemented
a prototype of PROVGUARD on the Floodlight controller. Our
approach successfully identified all four typical CPM attacks that
previous methods could not fully address and provided valuable
insights for investigating attack behaviors.

I. INTRODUCTION

Software-Defined Networking (SDN) separates network
control from individual forwarding devices into a logically
centralized control plane [9]. The control plane (CP), con-
sisting of one or more controllers, manages network devices
and provides global network state information to applications.
An SDN controller determines and issues control policies that
direct the actions of forwarding devices in the data plane
(DP), making it essential to the network’s functionality and
security. Consequently, the controller becomes a primary target

for attacks aiming to disrupt the network. Control Policy
Manipulation (CPM) is a type of SDN attack that alters or
deactivates forwarding rules and security policies by exploiting
vulnerabilities in the controller’s processing logic [11], [31].
Since controllers maintain network state knowledge by extract-
ing information from DP messages, compromised DP devices
can influence control decisions by injecting malicious payloads
or subtly changing their states. Malicious manipulation of the
controller’s cognition and decision-making threatens network
correctness and security, enabling various attacks, such as
traffic eavesdropping, man-in-the-middle attacks [11], network
device hijacking [13], bypassing access control [28], and black
hole routing [2], [11], [12].

Prior efforts to mitigate CPM attacks include anomaly
detection [8], [11], [23], [24] and network configuration ver-
ification [1], [14], [22], [25]. Anomaly detection methods
defend against policy manipulation by identifying illegal net-
work state changes according to predefined rules, including
attack-specific rules [11], [24] and generic invariant rules
(e.g., valid network identifier bindings and bidirectionality of
links) [8]. Network configuration verification methods detect
control decision errors and conflicts by verifying network-wide
invariants (e.g., path reachability, loop-free routing) and the
consistency of forwarding rules and security policies.

However, these rule-based anomaly detection methods and
network configuration verification tools have limitations in de-
tecting CPM attacks. Specifically, they rely solely on metadata
extracted from control-data plane messages to characterize and
verify network states, making it difficult to distinguish covert
CPM attacks from normal behavior. Malicious devices can
exploit controller logic defects to manipulate policies through
seemingly legitimate state changes, such as bypassing access
control rules by orchestrating compliant host migrations [28].
Furthermore, rule-based methods require prior knowledge of
attack behaviors, limiting their ability to detect manipulation
attacks that exploit unknown control logic vulnerabilities.
Additionally, adversaries can deceive controllers into issuing
incorrect or malicious instructions without causing policy-level
conflicts. For instance, link fabrication [11] can poison the
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controller’s view of network topology, facilitating man-in-the-
middle attacks. Traditional network configuration verification
methods fail to detect such attacks since they do not produce
policy conflicts or violate network-wide invariants.
Key observation. Malicious data-plane devices manipulate
control decisions by fabricating or orchestrating the messages
they send to the controller. The controller’s operations for
processing these data-plane packets implicitly contain contex-
tual semantics that influence control decisions. For example,
the controller generates forwarding rules based on host IP
addresses, which are influenced by IP change events triggered
by messages from the data plane. The contexts in which IP
change events are handled by controllers reflect how data-
plane devices affect IP address knowledge and control deci-
sions. Therefore, such implicit contextual information derived
from the handling of data-plane events in the controller allows
for a deeper understanding of how control decisions are
influenced and potentially compromised. Analyzing the con-
textual semantics from control plane logs (especially controller
activities) can serve as a basis for detecting anomalous changes
in control policies caused by CPM attacks.
Our approach. In this paper, we propose a detection frame-
work, PROVGUARD, designed to identify CPM attacks orig-
inating from the data plane using the provenance graph of
controller activities. Our approach models controller handling
operations through static program analysis, instruments the
controller, and collects network activities related to data-plane
message processing at runtime. We represent execution traces
of network behaviors as a provenance graph and leverage
the causality within this graph to extract contexts related to
packet processing and control policy generation. Based on the
semantics of these causal contexts, our approach detects CPM
attacks by identifying deviant contexts without requiring prior
knowledge of specific attack patterns.

There are two main challenges in extracting behavioral
contexts from the provenance graph of the SDN control plane:
(a) the graph contains the entire history of controller activity,
making it difficult to capture and correlate critical contexts
of long-term behaviors, and (b) the collected controller oper-
ations (i.e., control-plane logs) contain significant redundant
information that can obscure the semantics of attack-related
operations. To accurately characterize the influence of external
inputs on control policies and filter out unrelated behaviors,
we identify controller operations triggered by DP packets
through static program analysis and collect relevant controller
activities. We then quantify the importance of edges in the
provenance graph during log processing to further reduce
redundancy. Instead of directly using graph structures, we
extract paths as behavioral contexts to capture relationships
between operations associated with long-term behaviors and
detect anomalies by identifying deviant contexts that cause
larger prediction errors. Additionally, our method provides
relevant execution traces of suspicious contexts to aid in
anomaly investigation.

We evaluate the effectiveness of PROVGUARD in identify-
ing four typical CPM attacks in a simulated network managed

by a Floodlight controller. Experimental results demonstrate
that it successfully recognizes deviant contexts for all attack
cases and provides related execution traces to aid manual
investigation without requiring expert knowledge. By locating
suspicious contexts in the provenance graph, our method
reduces the manual audit workload to 6.02% of edges. In terms
of overhead, controller instrumentation increases the average
round-trip time by 1.8% to 24% across networks of varying
diameters, with a storage overhead of 1.3 GB/hr for logs.
Contribution. In summary, we make the following contribu-
tions in this paper.
• We design a context-aware, graph-based anomaly detection

framework for SDN, which transforms controller activity
logs into a provenance graph and identifies anomalies based
on contextual deviations.

• We propose a path extraction method to capture the context
of long-term CPM attacks. To extract concise contexts,
we leverage static program analysis to identify relevant
controller operations and introduce a redundancy reduction
method that filters out noise based on operation importance.

• We prototype and evaluate our approach. Experimental
results demonstrate that our method outperforms existing
techniques in detecting control policy manipulation attacks
without requiring expert knowledge. Furthermore, it facil-
itates anomaly investigation by reducing manual workload
and highlighting attack-related controller activities.

Paper Organization. The rest of this paper is organized as
follows. Section II discusses the background and motivation
of our work. Section III describes the threat model, the data
provenance graph model introduced in our solution, and the
overview of our approach. Section IV presents our CPM de-
tecting approach, PROVGUARD. We implement and evaluate
our approach in Section VI. Section VII discusses the related
work, and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Control Policy Generation

The SDN controller manages data-plane resources through
communication channels based on the OpenFlow protocol.
Each forwarding device maintains a flow table that dictates
actions on incoming packets according to flow rules (i.e.,
flow entries). If there is no matching rule, the packet will
be encapsulated in a PACKET_IN message and sent to the
controller. By parsing this message, the controller obtains
information such as switch port, network identifier, and source
or destination IP address to calculate control policies. For-
warding decisions are sent back to data-plane devices via
PACKET_OUT or FLOW_MOD messages to instruct how to
process and forward the packets.

In addition, some controller services actively probe the
network state, and their knowledge of network state also
influences control decisions. For instance, the controller ac-
quires knowledge of links between forwarding devices through
the link discovery service. Specifically, the controller period-
ically sends Link Layer Discovery Protocol (LLDP) packets
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to switches. When a switch receives an LLDP packet, it
broadcasts the packet into the network. The next-hop switch
then reports this LLDP packet to the controller. In this way,
the controller can determine connections between switches and
calculate forwarding rules based on the network topology.

B. Control Policy Manipulation

Since control plane (CP) decisions impact the correctness
and security of the entire network, CPM attacks have re-
ceived increasing attention in SDN security research [11],
[15], [31]. Adversaries can exploit communication channels
between network entities and the CP to inject fake or fabricated
messages, altering the controller’s network view and leading
to incorrect control decisions. In this section, we introduce
two typical CPM attacks - access control bypass via host
migration and link fabrication - and discuss the limitations
of prior approaches.

1) Access Control Bypass via Host Migration: The Access
Control List (ACL) application in the SDN controller calcu-
lates and issues access control rules to switches. However,
due to a logical vulnerability in the ACL application of the
Floodlight1 controller, it does not update control policies when
host locations are migrated. As a result, the intended access
control rules may not be effectively enforced in the data
plane. Exploiting this vulnerability, attackers can bypass ACL
rules by migrating hosts. As illustrated in Fig. 1, an attacker
controls two hosts (h1 and h3), with an ACL rule that blocks
communication between 10.0.0.1 (h1) and 10.0.0.2 (h2). The
attack proceeds as follows. Step ¬: The attacker sends a packet
from h1 to h3. Since switch s1 has no matching forwarding
rule, the packet is encapsulated in a PACKET_IN message and
sent to the controller. Step : The controller obtains h1’s IP
address and triggers an IP update event. The ACL application
processes this event with the IPV4Changed handler. Step ®:
The controller sends a FLOW_MOD message to s1, installing
an ACL rule that denies traffic between h1 and h2. Step ¯:
The attacker migrates h1 to port p1 of switch s3, denoted as
h1’, which triggers a host migration event. However, since
the ACL application’s deviceMoved handler disregards the
migration event, the access control policy in the DP remains
not updated. Steps ° and ±: When h1’ sends packets to
10.0.0.2, the controller issues a forwarding rule invalidating
the ACL rule.
Limitation of rule-based solutions. Existing rule-based so-
lutions fail to identify this anomaly for various reasons.
Detection methods designed for specific attacks [11], [13],
[24] rely on expert knowledge, limiting their ability to detect
unknown vulnerabilities. Typical rule-based detection frame-
works [8], [23] collect and verify metadata of network flows
to identify anomalies. In this case, rule-based checkers will
modify existing invariants about the malicious host and update
network identifier bindings (e.g., MAC-IP-Switch-Port) for the
migrating host based on potentially misleading events. Also,
some detection approaches assume the controller is trusted

1http://www.projectfloodlight.org/
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Fig. 1. Exploiting access control bypass vulnerability via host migration. The
controller activities shown in this figure are a simplified illustration.

TABLE I
THE LEGEND IN FIG. 1 AND FIG.2.

DP Description
network link

control-data plane
communication

packet flow

insecure network flow
denied network flow

CP Description
controller operation

missed operation
handler

data instance
event

attribute

(e.g., Sphinx [8]), and will allow controller-generated flow
rules (±), even if they violate the access control policy.

2) Link Fabrication: An adversary can deceive the con-
troller into believing that a fabricated link exists between
switches by modifying, forging, or relaying valid LLDP pack-
ets [2], [11]. As shown in Fig. 2, a malicious host h2 connects
to switches s1 and s3. The attack proceeds as follows. Steps
¬ and : The controller receives a PACKET_IN message
from h2 and updates its device data. Step ®: h2 relays LLDP
packets between s1 and s3. Step ¯: Each switch appears as
the “next hop” of the other, which the controller interprets as
a legitimate link.
Limitation of network verification-based approaches. Gen-
erally, network verification methods aim to detect misconfigu-
rations and ensure flow rule consistency. However, maintaining
flow policy consistency alone cannot prevent CPM attacks that
do not introduce policy conflicts or violations. Link fabrication
poisons the controller’s network view and misleads it into
generating conflict-free but insecure flow rules. Without ana-
lyzing controller activities, detection methods cannot identify
incorrect network state knowledge.

C. Motivation

Existing anomaly detection and configuration verification
methods struggle to identify CPM attacks because they pri-
marily verify metadata in control-data plane messages based
on predefined knowledge, overlooking the underlying causality
of these attacks — specifically, how the controller’s decisions
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Fig. 2. An example of link fabrication attack. The controller activities shown
in this figure are a simplified illustration.

are influenced by abnormal states. As shown in Fig. 1 and
2, controller operations provide direct insights into device
behavior, network states, and their impact on control decisions.
For instance, when a malicious host forges a link, two contra-
dictory operations — host data update and link data update (as
shown in Fig. 2) — signal suspicious activity, since a device
cannot function as both a host and a switch simultaneously. As
such, capturing the causality of controller operations is crucial
for detecting CPM attacks.

To detect CPM attacks, particularly long-term attacks, the
first step is to extract concise and effective contexts of con-
trol operations over an extended period. A straightforward
approach is to use operation sequences segmented by finite
time or event windows to capture contextual information.
However, this strategy provides only a partial view of the
attack and may overlook key operations that lead to the
abnormal state, especially if the attack spans multiple win-
dows. We observe that provenance graphs can describe the
causal dependencies between various entities and operations,
offering closely related contextual information that aids in
anomaly detection. In system security, provenance graph-based
behavior representation methods reconstruct system logs into
a graph and extract semantics from substructures (e.g., nodes,
paths, or subgraphs) for behavior clustering and anomaly
detection [10], [17], [32], [33]. Inspired by these methods,
we propose using provenance graphs of SDN controller ac-
tivities to identify CPM attacks. Specifically, we construct a
provenance graph that captures controller activities related to
network states and control decisions, allowing us to detect
malicious behaviors by identifying deviant contexts within
the graph. While incorporating provenance graphs into SDN
security is promising, several challenges must be addressed
to effectively extract and represent behavioral contexts. In the
following section, we discuss these challenges and our goals
for addressing them.

D. Challenges

In this section, we analyze the primary challenges that our
work confronts. As a motivating example, we illustrate the
provenance graph of an access control bypass attack in Fig. 3.
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Fig. 3. Provenance graph of the access control bypass attack in Fig. 1. The
corresponding relations between types of shapes and entities are trapezoid
- attribute, rectangle - function, rounded rectangle - event, and oval - data
instance. p1 is the PACKE_IN message ¬. FLOW_MOD_1 is the message ®.
p3 is a PACKE_IN message triggering the host migration event ¯. p4 is the
PACKE_IN message °. P_OUT is the message ±.

Long-Term Feature Extraction. The provenance graph cap-
turing the entire processing history can grow large and com-
plex over time, making it challenging to identify CPM behav-
iors, especially long-term behavioral features. SDN controller
provenance graphs exhibit two key characteristics: unclear
behavioral boundaries and neighborhood similarity. The lack
of clear boundaries between behaviors in controller activities
complicates the correlation of different stages in a long-term
attack. Consequently, querying the graph within a limited
time window may fail to capture a complete picture of such
attacks. For example, in the attack shown in Fig. 1, attackers
may migrate host h1 to a new port long after updating its
IP address to evade detection. With a limited time window,
analysts might only obtain the subgraph circled by the blue
dot-dash line in Fig. 3, which appears to depict a normal host
migration. Additionally, high similarity among neighboring
nodes complicates the semantic representation of nodes using
fixed-hop neighbor features, leading to confusion between
different entities. For example, different instances of the same
data object may become nearly indistinguishable due to highly
similar adjacent contexts (functions that read or write them).

Moreover, initiating provenance graph searches from in-
appropriate starting points can lead to incomplete behavior
extraction. For example, PicoSDN [27] finds the root causes
of anomalies by tracing common ancestors from several initial
search points (pieces of evidence). It can diagnose similar
bypass attacks in the SDN controller ONOS2 by backtracking

2https://wiki.onosproject.org/
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TABLE II
NODES IN EXECUTION UNIT GRAPHS.

Node Description
function ClassName.FunctionName
event EventType.EventHash
data ClassName.VarName.VarHash.Key
thread ThreadID
attribute IPAddress/MACAddress/SwitchPort

the operations associated with three messages: FLOW_MOD_1,
which installs an ACL rule; FLOW_MOD_2, generated by the
mobility application to delete the existing ACL rule; and
P_OUT, which forwards a packet out. However, since there is
no rule deletion mechanism in Floodlight’s control logic, the
absence of FLOW_MOD_2 as an initial point prevents PicoSDN
from discovering the deviceMoved event, leaving only the
subgraph circled by the green dashed line in Fig. 3. For
unhandled operations, analysts cannot define search starting
points. This incomplete view of behavior resembles normal
forwarding rule generation. In brief, we need to extract
substructures that provide sufficient long-term behavioral
contexts (C1).
Redundant Information. A large portion of routine oper-
ations in the controller’s activity log can overshadow the
semantics of attack-related operations. Existing diagnostic
tools do not consider the relative importance of operations
when describing causality, resulting in redundancy within
search results. For example, the overlapping rectangles in
Fig. 3 represent repeated operations in different processing
pipelines. These repetitive operations contribute minimally to
semantics and can even obscure distinctions between normal
and abnormal behaviors. Therefore, redundancy reduction
(C2) is essential.

III. OVERVIEW

This section outlines our assumptions about the attack
scenario (III-A), introduces the relevant SDN controller knowl-
edge essential for our design and our provenance model
(III-B), and provides an overview of our approach (III-C).

A. Threat Model

In an SDN-based network, hosts, switches, and applications
may disrupt the controller’s forwarding or security policy
calculation via malicious inputs. Among these, DP devices
(hosts and switches) are the most challenging to supervise and
authenticate, acting as the primary source of CPM attacks.
We assume that DP devices may be compromised and can
influence control decisions by injecting packets or changing
their states. We also assume that most DP devices are benign
and seldom trigger CP errors. Additionally, core services and
applications in the CP are considered benign, though they
may contain logical vulnerabilities. Administrative access to
CP through command lines and Web APIs is assumed to be
benign as well.

TABLE III
EDGES IN EXECUTION UNIT GRAPHS.

Edge Description
call Caller (function) → Callee (function)

dispatch Event dispatcher (function) → event
receiveBy event → Event listener (function)
write function → data
readBy data → function

hasAttribute event → attribute
exe thread → function

B. Data Provenance Graph

Our approach aims to infer the functional impact of data-
plane messages on the SDN controller by examining the
semantics of control-plane operations related to message pro-
cessing. Several properties of the control plane are crucial for
designing our solution:
• Event-Driven Control. Mainstream SDN controllers, such

as Floodlight, ONOS, OpenDayLight3, and POX4, em-
ploy an event-driven architecture where concurrent modules
(controller core services and applications) communicate
through event dispatching and listening. For example, when
a new host is detected, the host management module
dispatches a host event (DEVICE_ADDED) to registered
listeners (e.g., handlers in ACL or firewall). Our provenance
model characterizes event dispatching and listening to de-
scribe interactions between controller modules.

• Execution Partitioning. Some controller modules use
event-handling loops to process messages, which can lead
to incorrect associations of operations across loops executed
by the same thread. Execution partitioning is an effective
technique to mitigate this dependency explosion. By track-
ing the start of each event-handling loop, we can partition
operations that process different messages, preventing unre-
lated transactions executed by the same thread from being
incorrectly associated.
Through execution partitioning, collected logs are divided

into execution units. We use the provenance graph model
introduced in this section to describe relationships among
data, entities, and operations within and across execution
units. Assume we obtain N execution units by execution
partitioning. A provenance graph G of SDN CP behavior
comprises execution unit graphs and inter-unit edges:

G = ({U1,U2, ...,UN} , Einter) = (V, Eintra, Einter) (1)

Ui(i = 1, ..., N) denotes the subgraph of the ith execution unit
ui. Einter represents relations between nodes across execution
units. The first equation represents that the provenance graph
consists of execution unit subgraphs connected by inter-unit
edges. V contains all nodes in G. Intra-unit edges in Eintra
represent actions/relations between nodes within each execu-
tion unit. The second equation indicates that the provenance

3https://docs.opendaylight.org/
4https://github.com/noxrepo/pox
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Fig. 4. The architecture of PROVGUARD.

graph comprises the set of nodes and the sets of intra- and
inter-unit edges.

Nodes in V fall into five types, summarized in Table II. (1)
The function nodes represent functions in the controller’s
source code, denoted by class and function name. (2) The
event nodes represent messages between controller modules,
denoted by type and hash code. (3) The data nodes represent
data instance variables maintained by controller modules to
store network states. A data node is recorded by the class
and variable name, along with its unique identifier (hash code).
For data objects such as lists and mapping tables, the index
or key value of read/write operations is also recorded for fine-
grained description. (4) The thread nodes represent controller
threads, identified by thread ID. To prevent unintended inter-
unit associations, threads in different execution units are
distinguished. (5) The attribute nodes represent event details,
such as the MAC address, IP address, or attachment point
associated with a DEVICE_ADDED event.

Intra-unit edges in Eintra are classified into seven types,
detailed in Table III. (1) The call edges represent call relations,
pointing from a caller to a callee. (2) The dispatch edges
represent dispatching actions, pointing from a dispatcher to
the dispatched event. (3) The receiveBy edges represent
listening actions, pointing from an event to its listener. (4)
The write edges represent data modification actions, point-
ing from a writing function to the modified data instance.
(5) The readBy edges represent reading actions, pointing
from the accessed data instance to the reading function.
(6) The hasAttribute edges associate events with attributes.
For example, PACKET_IN hasAttribute−−−−−−−−→ switch1:port1
specifies that a PACKET_IN message is received from port1
of switch1. (7) The exe edges represent thread execution ac-
tions, pointing from a thread to the function it executed. Inter-
unit edges in Einter, denoted as inter, associate subgraphs
to describe long-term behaviors. Section IV-B1 explains how
we add inter edges to the provenance graph. For clarity, a

notation summary is available in Appendix A.

C. Approach Overview

The key idea behind PROVGUARD is to analyze the causal-
ity of how incoming messages influence control decisions in
the SDN control-plane provenance graph, enabling the de-
tection of control policy manipulation attacks. PROVGUARD
extracts paths from the provenance graph as causally related
contexts and identifies CPM attacks based on contextual
semantics. As shown in Fig. 4, PROVGUARD operates in three
phases: controller activity modeling and collection, behavior
path generation, and suspicious behavior detection.
Controller Activity Modeling & Collection. PROVGUARD
extracts the control logic and dataflow of the controller via
static analysis, identifying activities related to DP message
processing (DP-related activities) to build a controller activity
model. According to the DP-related operations in the model,
we instrument the controller and run the Activity Logger as a
controller module to collect logs.
Behavior Path Generation. PROVGUARD partitions the con-
troller activity logs and reconstructs them into execution unit
graphs interconnected by inter-unit edges through Execution
Unit Reconstruction and Inter-Unit Connection. Path Extrac-
tion extracts behavior contexts by searching paths in the
provenance graph.
Suspicious Behavior Detection. We apply a sequence-to-
sequence (Seq2Seq) prediction model, trained on a dataset of
normal behaviors, to measure contextual deviations and detect
anomalies. In Suspicious Path Aided Manual Investigation
phase, PROVGUARD presents analysts with suspicious paths
and illustrates relevant execution unit graphs for investigation.

IV. DESIGN

A. Controller Activity Modeling & Collection

Our approach differs from previous forensic methods [29]
by focusing on capturing the impact of data-plane messages
on control policies to detect CPM attacks. To this end, we

6



Algorithm 1: DP-related Call Graph Extraction and
Variable Operation Recognition

Input: Function set F = {f1, ..., fk}, function call set
C = {(f1, f2, l1), ..., (fi, fj , ln)}, initial function
finit.

Output: DP-related function call set Cout ⊆ C and variable
operation set
O = {(f1, v1, o1, l1), ..., (fp, vq, or, ls)}.

1 worklist← [finit], visited← {}, Fsum ← {};
2 Cout ← {}, O ← {};
3 while worklist 6= ∅ do
4 f ← getLast(worklist);
5 doSkip← False;
6 for (f, c, l) ∈ getCallees(f, C) do
7 if c /∈ Fsum.keys then
8 doSkip← True;
9 worklist append c;

10 end
11 end
12 continue if doSkip;
13 Cout appendAll getCallees(f, C);
14 dataF low ← {};
15 for s ∈ getStmts(f) do
16 dataF low ←

updateDataF low(s, dataF low,Fsum);
17 O append getV arOperation(s, dataF low,Fsum);
18 end
19 for r ∈ getReadV arFunction(dataF low,F) do
20 worklist append r if r /∈ visited;
21 end
22 worklist remove f , visited add f ;
23 Fsum[f ]← dataF low;
24 end

use the data-plane message handler in the SDN controller as
the entry point for static analysis to avoid recording irrelevant
operations. Briefly, we model controller activities as DP-
related function calls and variable read/write operations. Based
on the identified DP-related operations, we inject collectors
into the controller to capture activity data, which is then logged
by the Activity Logger.

1) Static Program Analysis: To filter out irrelevant informa-
tion and mitigate dependency explosion, we extract operations
related to DP device behaviors through static analysis of the
controller source code. Algorithm 1 presents the logic for
generating the DP-related call graph and identifying variable
operations. The listener function for DP messages serves as the
initial function finit (entry point) for generating the call graph.
Starting from finit, the algorithm traverses forward to record
operations impacted by DP messages. We use all call relations
C = {(f1, f2, l1), ..., (fi, fj , ln)} in the controller source code
as an input, where (fi, fj , ln) represents that function fi calls
function fj at line ln of fi’s source code. For each function
f in worklist, we identify f ’s callees in C and append these
call relations to the output Cout (Line 13).

To fully analyze the effect of DP packets on controller
behavior, we account for variable read/write operations during
packet handling. The algorithm generates a dataflow summary
for each function to identify variable read/write operations.

For each statement in function f , the algorithm updates f ’s
dataF low (Line 16) and records the variables read/written by
f (Line 17). DP-related variable operations are represented
as O = {(f1, v1, o1, l1), ..., (fp, vq, or, ls)}, where o1, ..., or ∈
{write, read} and (fp, vq, or, ls) represents the function fp
reading/writing (as specified by or) variable vq at line ls.
As shown in Line 19, getReadV arFunction() identifies
functions that read variables written by f based on f ’s
dataF low. These reading functions are added to worklist for
further analysis (Line 20). Since the dataflow summarization in
Algorithm 1 only covers the functions defined in the controller
source code, we manually summarize the dataflow of library
functions, such as get(), add(), and append() defined in
library classes. To reduce this workload, we select a specific
set of library functions that might be called during data-plane
message processing. Specifically, we assume that any data
accessed by a function could be tainted, and conduct pre-
analysis to identify potentially invoked library functions.

2) Execution Unit Starting Points: To partition collected
logs into execution units, we identify possible unit starting
points by finding functions without callers in Cout generated
by Algorithm 1. Collectors are then inserted at these points to
mark the start of execution units and record the beginning of
handling loops.

3) Network Activity Logging: Based on the model gener-
ated by Algorithm 1, we insert collectors into the controller
source code to capture activity information, with the Activity
Logger recording these details at runtime. Each log entry
includes various runtime details depending on the type of
operation, such as a timestamp with nanosecond precision,
thread ID, operation type (i.e., edge type), the executing
function name, callee function name, variable name and
memory address (e.g., virtual memory address for Java-based
controllers), concrete field of the variable, as well as event
attributes (e.g., ID, IP address, and switch port) related to
objects (e.g., switch, link and host) involved in the event.

B. Behavior Path Generation

1) Behavior Graph Reconstruction: In Execution Unit
Reconstruction, operations in logs are grouped according to
threads, and these thread-centric operations are partitioned
into execution units at recorded starting points (mentioned
in Section IV-A2). For each execution unit, log entries are
converted into a single execution unit graph based on the
provenance model described in Section III-B. For example, as
shown in Fig. 5, we obtain three execution unit graphs, each
depicting only partial operations for simplification. Then,
Inter-Unit Connection connects execution unit graphs with
inter-unit edges (inter) to construct the entire provenance
graph. Specifically, execution units sharing the same attributes
(attribute nodes) or data instances (data nodes) are associated
via inter edges. To alleviate dependency explosions, each data
instance’s write operation connects only to the next write and
any intervening reads. For example, for a host data instance,
read/write operations in execution units follow a sequence like
[(u1, write), (u2, read), (u3, read), (u4, write), (u5, read)].
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Fig. 5. Suspicious behavior graph of link fabrication. Diamonds represent
threads, and other shapes have the same meanings as in Fig. 3. The anomalous
path identified is highlighted in blue, while additional context, shown in white,
includes relevant actions from execution unit graphs containing the suspicious
path. Note that the write, hasAttribute, and exe edges are treated as
bidirectional during path searching.

Inter-unit edges link hostu1 to hostu2 , hostu3 , and
hostu4 . After the next write in u4, access on host (in
u5) is disconnected from u1. For each attribute, inter-unit
edges only connect nodes in earlier units to those in later
ones. As illustrated in Fig. 5, after Inter-Unit Connection, the
attribute nodes switch:port=03:3 and the data nodes
deviceMap_1 in Ua and Ub are connected, and so are the
attribute nodes in Ub and Uc.

2) Redundancy Reduction: Repetitive operations and rou-
tines in the provenance graph do not contribute meaningful
behavioral semantics. To reduce noise from these operations
(C2), we assess the importance of edges before Path Extrac-
tion and ignore trivial edges during path searches.
Maximum Common Subgraph Identification. To quan-
tify importance, we first define the execution unit pattern
p to identify units with the same operational flow. Using
a function s(·), subgraphs are mapped to patterns by con-
verting graph elements into structured text. For example,
a data node deviceMap.85617803.3 is generalized as
deviceMap<*> to match other instances in deviceMap.
Also, s(·) merges repetitive edges within execution unit
graphs. The mapping of an execution unit graph Ua(a =
1, ..., N) to its pattern pi (i < N ) is represented as pi = s(Ua).
The set of patterns P results from applying s(·) to all execution
unit graphs.

Based on P , we compute the Maximum Common Sub-

graph (MCS) across execution unit graphs matching the same
pattern, that indicates routines in each operational flow. We
perform redundancy reduction within the scope of MCSs
to protect other important operations from being removed.
The insight is that edges outside an MCS reflect differences
between units with the same operational flow, thus providing
valuable contextual information. For example, a data instance
counter, frequently written by the same function in ex-
ecution unit graphs mapped to a packet handling pattern
ppkt, offers negligible behavioral semantics. The counter
writing operation might be filtered out since it is included
in the MCS of ppkt. On the contrary, updates to different
device<*> instances, being outside MCSs, are retained to
capture behaviors tied to distinct devices.

For each pattern pi ∈ P , its MCS Spi
is the intersection of

all execution unit graphs {Upi

1 , ...,U
pi

k } mapped to pi, repre-
sented as Spi =

⋂k
j=1 U

pi

j . To expedite MCS computation, we
follow these steps: (i) for each pattern graph pi, identify the
set of edges {eu} matching each pattern edge, i.e., s(eu) = ep
(eu ∈ Upi , ep ∈ pi), (ii) prune pattern edges with more
than one corresponding edge, and (iii) replace edges in the
remaining pattern graph with their corresponding edges, i.e.,
ep → eu.
Intra-unit Redundancy Reduction. To measure the impor-
tance of operations, we use frequency as a metric, since
operations that appear more frequently across different opera-
tional flows tend to offer less semantic differentiation between
patterns. We apply Inverse Document Frequency (IDF) to
weight edges in the provenance graph, making edge impor-
tance inversely proportional to its frequency. Specifically, an
edge e ∈ Upi

j is filtered out if we = log(NE

Ne
) < δe, e ∈ Spi

,
where NE is the total number of edges in execution unit graphs
(Eintra), Ne is the count of occurrences of edge e, and δe is
a predefined importance threshold. To avoid removing critical
edges, edge e is filtered only if it is within the MCS Spi (i.e.,
e ∈ Spi

). Edges with importance we lower than the threshold
δe are deemed redundant and excluded from further processing
in the Path Extraction module.
Inter-unit Redundancy Reduction. For inter-unit edges, we
evaluate their importance based on the importance of the units
they connect. The importance of a unit upi mapped to pattern
pi is defined as wui

= log( Nu

Npi
), where Nu is the total count

of execution units, and Npi
is the number of execution unit

graphs mapped to pattern pi. To emphasize pivotal execution
units, importance weights are propagated along inter-unit
edges. During each propagation, a new importance weight for
unit ui is calculated as follows:

wnew
ui

= wui
+

1

NUadj
i

∑
u∈Uadj

i

wu (2)

where Uadj
i is the set of units adjacent to ui, and NUadj

i
is the

size of this adjacency set. An inter-unit edge eab ∈ Einter,
connecting ua to ub, is ignored if the importance weight
of either connected unit is below a preset threshold δu.
This filtering process preserves inter-unit edges that link less
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frequent, and therefore more semantically distinct, units in
long-term behavior patterns.

3) Path Extraction: To address the challenge C1, PROV-
GUARD extracts paths in the provenance graph as contexts
for anomaly detection instead of relying on graph semantics.
By focusing on paths that span multiple execution units, this
approach enables the detection of contextual anomalies in
multi-phase, long-term attacks.

To reduce search costs, our method constructs fixed-length
paths within each execution unit graph through a depth-first
search and associates these intra-unit paths via inter-unit edges.
Specifically, intra-unit paths originate from either data or
attribute nodes, with the requirement that each starting node
connects to at least one inter-unit edge. We choose attribute
and data nodes as starting points for the following reasons. (1)
Attributes serve as identifiers for network devices, allowing ac-
tivities related to devices with the same label to be associated.
For example, prior SDN anomaly detection methods identify
devices using a unique identifier like a host’s attachment
point (switch port) to monitor device state [11], [27]. (2)
Data instances relate to the controller’s network state view.
By connecting read and write operations of data instances,
our method describes dataflows between units, capturing the
causal relationships between network state changes and con-
troller decisions. During intra-unit path extraction, the write,
hasAttribute, and exe edges are treated as bidirectional, and
a visited set is maintained to prevent revisiting nodes.

To characterize long-term behaviors, we associate a fixed
number of intra-unit paths using inter-unit edges, forming a
path that spans multiple execution unit graphs. Two subpaths
are head-tail connected whenever an inter edge points from
a node in one subpath to a node in the other. In other
words, we use inter edges to associate inter-unit contexts,
rather than including them as part of the path. For instance,
in Fig. 5, subpaths form a complete path through solid red
lines. Finally, a path is represented as a sequence of triples
{(v1, e12, v2), ..., (vi, eij , vj), ...}, where eij denotes the edge
from vi to vj .

C. Suspicious Behavior Detection

We identify contextual discrepancies by evaluating the pre-
dictability of operations in paths, because anomalous events
are harder to predict for models trained on normal behavior.
We use an LSTM-based Seq2Seq model with the Luong
attention mechanism to capture the semantics of long-term
behaviors. LSTM is preferred over other Seq2Seq techniques
because it can retain long-term dependencies, enabling us
to capture potential relationships between operations in long
behavioral sequences. The LSTM layers in the encoder incor-
porate the input sequence into a context vector, and during
decoding, the model generates a subsequent sequence based
on the context. For further details on the model, refer to the
cited works [18], [26].

To input paths into the prediction model, we represent each
triple in a path as an action. Suppose a path containing m
edges spans n execution unit graphs. We convert the path

into a sequence of length m:
{
x11, x

1
2, ..., x

n
m−1, x

n
m

}
. Each

xba represents an action consisting of two nodes and an edge
in a triple (e.g., x11 = v1 e12 v2), where a ∈ {1, ...,m}
indexes the action within the path, and b ∈ {1, ..., n} indexes
the execution unit graph to which the action belongs. The
prediction model takes

{
x11, x

1
2, ..., x

n−1
l−1 , x

n−1
l

}
as input to

predict the subsequent actions
{
xnl+1, ...x

n
m

}
. In this way, the

behavioral semantics of subpaths in the first n−1 units provide
the context to predict the behavior of subpath in the nth unit.

To handle unseen data instances or attributes in new
logs, we preprocess data and attribute nodes by com-
bining the data type (e.g., device, link) or the at-
tribute type (e.g., MAC, IP, SWITCH_PORT) with their
sequence order within the same type. For example, in
the sequence {f1 write linkA, linkA readBy f2,
f2 write linkB}, linkA and linkB are preprocessed
as link_1 and link_2, respectively.

We train the model on normal behavior sequences
to minimize prediction error. This model uses cross-
entropy to measure the deviation between predicted and
target sequences. Mathematically, for an input sequence{
x11, x

1
2, ..., x

n−1
l−1 , x

n−1
l

}
, the target value r = (rl+1, ..., rm)

is a sequence of one-hot encoded vectors, representing the
target action sequence

{
xnl+1, ..., x

n
m

}
. The predicted result

g = (gl+1, ...,gm) is a vector sequence of
{
x̂nl+1, ..., x̂

n
m

}
,

representing the predicted actions. The prediction error (cross-
entropy) between g and r is calculated as follows:

εpredict =
1

m− l

m∑
j=l+1

1

d

d∑
i=1

(P (rij)logP (g
i
j)) (3)

where P (·ij) represents the probability of the jth predicted
action gj = (g1j , ..., g

d
j ) or target action rj = (r1j , ..., r

d
j ) on

the ith dimension, and d is the dimension of the one-hot en-
coded word vectors. Finally, in Suspicious Path Aided Manual
Investigation, we select paths with a prediction error εpredict
that falls outside the normal range and provide analysts with
the relevant execution unit graphs of these suspicious paths to
facilitate investigation.

V. IMPLEMENTATION

We prototyped our approach on the Java-based OpenFlow
controller, Floodlight version 1.2, simulated a virtual network
using Mininet5, and utilized Cbench6 to generate OpenFlow
messages for performance analysis.
Static Program Analysis & Instrumentation. We imple-
mented Static Program Analysis with the Soot framework for
the Java-based controller. We set the processOFMessage
method in the OFChannelHandler class, which listens
to DP messages, as the entry point. Before executing Al-
gorithm 1, we conducted a coarse-grained identification of
read/write operations to avoid extensive manual effort in
summarizing the dataflow of library methods. We identified
558 library methods, for which we wrote dataflow summaries.

5http://mininet.org
6https://github.com/andi-bigswitch/oflops
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For execution partitioning, we identified 46 methods with no
call sites through static analysis, treating these as the start of
execution units. The analysis module ultimately output 828
DP-related operations for 430 methods, and we automatically
instrumented the controller based on this output. Further
details can be found in Appendix B.
Data Collection. We collected normal network activity logs
in the simulated network to establish a dataset of benign
behavior paths for model training. Two networks were sim-
ulated in Mininet: one with three hosts and another with
five. SDN logs were collected under two conditions: with
and without configured access control rules. We simulated
representative host behaviors managed by the SDN controller,
such as communication, host addition/removal, IP updates,
and host migration. For more specific behaviors, we suggest
using test cases provided by the SDN controller designer to
capture expected contexts. To assess our approach’s anomaly
detection capabilities, we executed four typical CPM attacks
— network identifier hijacking, link fabrication, access control
rule bypass, and switch ID spoofing — on the simulated
network, generating logs that include anomalous behaviors.
Behavior Path Generation. To filter out redundant edges,
we set importance thresholds of δe = 0.4 and δu = 0.7.
All importance scores of edges and units were normalized.
During path search, each path spanned three execution units
(n = 3), and each intra-unit subpath was limited to a length
of five. Section VI-C discusses the reason for selecting these
thresholds and path-length parameters. Given these settings,
we extracted 487,939 paths from 27,614 normal behavior log
entries for model training, and 19,395 unique paths from
27,492 log entries of potentially malicious behavior for model
evaluation (unique paths are obtained by preprocessing and
excluding duplicates).
Prediction Model Training. The embedding layer of our
prediction model converts each one-hot encoded action into
a 256-dimensional vector. The LSTM layer then incorporates
each input sequence into a 1024-dimensional context vector.
The prediction model was trained on 32,000 randomly selected
normal paths, reaching convergence after 10 iterations.
Experimental Setup. The instrumented Floodlight controller,
with the Activity Logger as an add-on application, was hosted
on a 64-bit Ubuntu 20.04 virtual machine configured with 4
Intel Core i9-13900k 5.8 GHz CPUs and 16 GB of memory.
Model training was conducted on macOS Ventura, using an
8-core Apple M1 CPU, an 8-core GPU, and 8 GB of memory
with the Tensorflow 2.0 framework.

VI. EVALUATION

In this section, we evaluate the prototype of PROVGUARD
in terms of its anomaly detection capability, the effect of
contextual semantics, path search performance, workload re-
duction performance, and logging overhead to answer the
following research questions (RQs):
• Can our approach extract paths of long-term behavior and

distinguish suspicious contexts? How does it compare to
other defense mechanisms in detecting CPM attacks?

• How does the contextual semantic information from the
provenance graph contribute to anomaly detection?

• How effective is the redundancy reduction in filtering out
noise and decreasing the number of extracted paths?

• To what extent can Suspicious Path Aided Manual Investi-
gation reduce the workload of manual log auditing?

• Is the additional overhead from controller instrumentation
and activity logging acceptable?

A. Attack Detection

To evaluate PROVGUARD’s capability to detect CPM at-
tacks, we examine four typical attack cases: network identifier
hijacking, link fabrication, access control rule bypass, and
switch ID spoofing. These cases include attacks launched from
compromised switches (switch ID spoofing) and hosts (other
cases), with tactics involving state manipulation (access con-
trol bypass) or packet forgery (other cases). We illustrate how
the identified suspicious paths facilitate anomaly investigation
and conceptually compare our approach with current state-of-
the-art defense schemes. Additionally, we analyze anomaly
detection performance by replaying the four typical attack
cases, along with two variations, under different settings.

1) Case Study: For each case, we select the suspicious
path with the highest prediction error to illustrate how PROV-
GUARD assists in attack investigation. Due to space con-
straints, detailed analyses of the network identifier hijacking
and switch ID spoofing cases are provided in Appendix C.
Link Fabrication Attack. An adversary can poison
the controller’s view of network topology by relaying
or forging LLDP packets, misleading it into recogniz-
ing fabricated links. Details on implementing this at-
tack are provided in Section II-B. As shown in Fig. 5,
the suspicious path reveals that packets from a sin-
gle switch port (switch:port=03:3) triggered both
host information updates (processed by deviceAdded or
deviceIPV6AddrChanged) and switch link modifications
(handled by addOrUpdateLink). A similar path was ob-
served in another set of execution unit graphs, where the
switch port was 01:3 instead of 03:3. According to this
observation, analysts can infer that a malicious host is forging
a fake link between ports 01:3 and 03:3. Notably, although
this attack did not generate observable DP anomalies, PROV-
GUARD identified malicious behavior through CP actions,
demonstrating its capability to capture CP behavioral conflicts
critical for CPM detection.
Data Plane Access Control Bypass. An adversary can
exploit a vulnerability in Floodlight’s ACL application to
illegally circumvent access control policies by triggering
a host migration event. Details on this attack are pro-
vided in Section II-B. As illustrated in Fig. 6, the device
deviceMap_1, initially attached to switch:port=01:1,
changed its IPv4 address, triggering a DEVICE event.
This DEVICE event, involving IP 10.0.0.1, was han-
dled by ACL.deviceIPV4AddrChanged and resulted in
a FLOW_MOD message being sent to the switch. Later,
deviceMap_1 migrated to switch:port=03:1, activat-
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Fig. 6. Suspicious behavior graph of DP access control bypass. For simplicity,
the same attribute/data nodes in different units are merged.

TABLE IV
CPM ATTACK DETECTION CAPABILITY COMPARISON.

Network
Identifier
Hijacking

Link
Fabrication

Access
Control
Bypass

Switch
ID

Spoofing
SPHINX [8] • •
Veriflow [14] •

PacketChecker [7] •
TopoGuard [11] • •

SPV [3] •
FlowChecker [1] •

ProvGuard • • • •

ing the ACL.deviceMoved method to handle the device
migration event. However, ACL.deviceMoved failed to
update the rules properly, as no new FLOW_MOD message was
issued for deviceMap_1. Therefore, our method can help
analysts to discover improper controller handling.

2) Comparison with Existing Defense Schemes: To illus-
trate the advantages of our approach, we conceptually compare
PROVGUARD with existing defense schemes. As summarized
in Table IV, rule-based efforts [3], [7], and [11] are tailored
for specific attacks, limiting their generalizability. Flow rule
verification approaches [1] and [14] are constrained, as they
cannot detect abnormal flow rules without policy conflicts,
such as in cases of forged bidirectional links. Attacks like
network identifier hijacking add further complexity: when the
flow rule derived from the victim host’s information expires,
the controller may generates a new forwarding rule based

TABLE V
PERFORMANCE OF PROVGUARD

Precision (%) Rate2 avg FP3

3-host 5-host diff. AP1 paths units

Network Identifier
Hijacking (IP) 100 94.85 100 30/30 0.28 0.17

Network Identifier
Hijacking (MAC) 81.79 88.46 90.27 22/30 2.36 0.93

Bidirectional
Link Fabrication 97.80 99.92 99.44 30/30 1.74 0.39

Unidirectional
Link Fabrication 100 90.13 77.38 27/30 2.33 0.42

Access
Control Bypass 100 95.55 99.95 30/30 3.59 0.73

Switch
ID Spoofing 97.46 85.71 85.87 27/30 5.31 1.46

1 We varied the attacker’s host location (attachment point) within a 5-host network.
2 Detection rate for each attack case.
3 Average false positives per 100,000 log entries.

on the attacker host’s information. In this case, rule conflict
is not a necessary outcome, leading us to believe that flow
rule verification is insufficient for addressing network iden-
tifier hijacking. Additionally, rule-based anomaly detection
methods, e.g., Sphinx [8], struggle with attacks leveraging
unknown vulnerabilities in the control plane, such as access
control bypassing. Also, switch ID spoofing attacks, which
cause frequent removal of victim switches, interfere with the
controller’s flow rule calculations for packets traversing the
attacking and victim switches. Consequently, defense mecha-
nisms relying solely on metadata from flow rules and packets
fall short in countering attacks like switch ID spoofing.

3) Detection Performance: We assessed PROVGUARD’s
effectiveness against CPM attacks by repeating the four main
attack scenarios, along with two variants, ten times each on
3-host and 5-host networks. To test the variants, we focused
on two types of network identifier hijacking: IP address and
MAC address hijacking, as well as two forms of LLDP packet
spoofing attacks (forged bidirectional and unidirectional links).
Due to the lack of ground truth, we defined correct detection
as any path involving either attacking or victim devices.

The experimental results in Table V reveal that PROV-
GUARD effectively detects most CPM attacks. Occasionally,
the model flags rare but normal behaviors as suspicious, with
false positive paths ranging from 0.28 to 5.31 per 100,000
log entries, and less than two false-positive execution units
requiring manual inspection. However, MAC hijacking attacks
present a unique challenge, as the controller relies on MAC
addresses as primary identifiers to track hosts. These attacks
generate frequent host migration events that closely resemble
normal host migrations. Despite this, the controller’s prove-
nance graph enables identification of suspicious patterns, like
an abnormal fan-in of data nodes, which can be used to detect
these frequent data updates. Therefore, although behavioral
semantic difference is subtle, such anomalies related to MAC
hijacking remain detectable. Filtering these frequent data up-
date operations also reduces search space during path analysis.
Similarly, switch ID hijacking, which prompts frequent switch
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removal events, can be effectively identified by filtering fre-
quent operations or analyzing semantic deviations.

ANS1: PROVGUARD effectively captures long-term be-
havior features and outperforms existing detection ap-
proaches in identifying CPM attacks. It supports anomaly
detection and investigation with minimal reliance on
domain-specific knowledge or predefined rules.

B. The Effect of Contextual Semantics

We indirectly verified the effect of contextual semantics
by demonstrating that isolated actions in paths lack suf-
ficient differentiation to distinguish anomalies. Specifically,
we selected key actions from suspicious paths and relevant
execution unit graphs discussed in Section VI-A, such as
calling deviceAdded (in Fig. 5 and 6), deviceMoved
(in Fig. 6), writeOFMessageToSwitch (in Fig. 6), and
addOrUpdateLink (in Fig. 5). We then analyzed the distri-
bution of prediction errors in normal paths that included these
actions. We also analyzed common actions, such as calling
learnDeviceByEntity and updating deviceMap, to
compare prediction error of paths containing these non-critical
actions. As shown in Fig. 7, the violin plot illustrates the
distribution of prediction errors for paths containing specific
actions. Most paths show slight prediction errors, regardless of
whether they include critical actions, indicating that individual
actions alone do not significantly affect error distribution.
Only different device updates (writeOtherDevice in Fig. 7)
within the same context, such as two write operations on
different device data instances within a single path, cause
notable differences in error distribution. This difference arises
because writeOtherDevice actions incorporate contextual in-
formation directly into individual actions via preprocessing,
which indicates the impact of context.

ANS2: It is not the presence of individual actions that
leads to higher prediction errors, but the contextual dis-
crepancies between actions. Thus, contextual semantics
are crucial for effective anomaly detection.

C. Path Extraction Performance

This section evaluates the effectiveness of our redundancy
reduction approach and explains the rationale behind our path
feature selection.
Intra/inter-unit Edge Threshold. The Path Extraction applies
redundancy filtering in execution unit graphs by excluding
edges with importance weights below the intra-unit threshold
δe. Fixing the inter-unit edge importance threshold δu at 0.7,
we tested the impact of varying δe on the number of extracted
paths. For this test, we collected activity logs from networks of
varying sizes, each with a different number of active hosts. As
shown in Fig. 8a, the number of paths decreases significantly
when δe ≥ 0.4. Since the number of collected log entries
varies by network scale, Fig. 8b demonstrates the ratio of
paths to log entries (i.e., the number of extracted paths per log
entry). When δe ≥ 0.4, this ratio remains consistent despite
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Fig. 7. Distribution of prediction errors for normal paths containing different
actions. ∗-marked actions are non-critical, while unmarked actions are critical.

network size differences. This result indicates that δe ≥ 0.4
effectively reduces redundant intra-unit edges, achieving a
steady extraction ratio regardless of network size. We also
varied the inter-unit edge threshold δu while maintaining
δe = 0.4. Fig. 8c and 8d show that the number of paths
decreases substantially when δu ≥ 0.7, and the ratio of paths
to log entries remains stable regardless of network scale. This
stability occurs because redundant operations are effectively
filtered out, leaving only critical operations to form paths.
Path Extraction. Based on above analysis, we chose impor-
tance thresholds as δe = 0.4 and δu = 0.7. We further vali-
dated the path extraction performance with these settings under
various network scales, as shown in Fig. 9. The redundancy
filtering achieves an order-of-magnitude reduction in the total
extracted paths per log entry and effectively decreases the
computational costs of path search and contextual semantic
analysis. Also, the number of unique paths remained nearly
constant across different network scales and log volumes. This
indicates that behavior graphs exhibit repeating patterns and
that excluding duplicate paths during preprocessing effectively
reduces the paths requiring further analysis. Additionally, we
evaluated the impact of components in Path Extraction on
anomaly detection performance in Appendix D.

ANS3: Our approach effectively filters out mundane
operations, significantly reducing semantic noise in logs.

Path Length and Span. We evaluated the diameter of exe-
cution unit graphs across various network sizes to determine
optimal path-length parameters, as shown in Fig. 10. On
average, the diameter remains close to 5 hops as network scale
increases, with a maximum of 6. Based on these findings,
we set the intra-unit subpath length to 5 hops to ensure
thorough searches within each unit. For the overall path span,
i.e., the number of intra-unit subpaths, we accounted for
the complexity of long-term behaviors. Considering common
attack patterns and the model training workload, each behavior
path spans three execution unit graphs. In this setup, the
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Fig. 8. Effect of intra/inter-unit edge threshold (δe/δu) on the number of extracted paths and average paths per log entry. As shown in the legend, different
markers represent different network scales (number of active hosts). During the evaluation, all hosts in the network communicated with each other. Some data
points are omitted to avoid excessive path counts. In Fig. 8a and 8b, the 30-host case is ignored for δe < 0.39. In Fig. 8c and 8d, the 20-host and 30-host
cases are excluded for δu < 0.65.
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Fig. 10. Diameters of execution
unit graphs under different network
scales.

importance score of each execution unit is propagated twice
along inter-unit edges, as specified in Eq (2).

D. Efficacy in Attack Investigation

PROVGUARD provides analysts with execution unit graphs
containing suspicious paths, narrowing the focus for manual
review by localizing anomalies to specific CP activities. To
assess the investigation workload, we simulated a network of
three hosts and three switches, collecting logs of the attacks
described in Section VI-A. Execution unit graphs containing
paths with prediction errors exceeding the highest observed in
normal behavior are flagged for manual review. For the four
attack logs, the number of edges, execution units, and manual
review workloads are shown in Fig. 11. Our approach reduces
the manual analysis burden considerably. Of 1,378 execution
unit graphs, only 51 require manual verification (3.70% of the
total), and only 6.02% of edges require review. For instance,
in the link fabrication attack log, only 18 out of 405 execution
unit graphs need manual inspection. Further analysis reveals
that these 18 subgraphs represent just eight execution unit
patterns, reducing the actual workload even further.

ANS4: Our approach significantly reduces the workload
of manual investigation.

E. Overhead of Activity Logger

We evaluate the impact of Activity Logger on SDN network
performance by examining latency and storage overheads.

Latency. Controller’s response latency to DP messages im-
pacts SDN network performance. Our approach collects net-
work activity by instrumenting controller modules, which
inevitably introduces additional latency. To quantify this, we
used Cbench to generate traffic requiring the controller to
calculate and install new forwarding rules. We measured the
round-trip time (RTT) for each traffic packet across varying
topologies. Fig. 12 compares response latencies before and
after instrumentation. Activity collection caused RTT exten-
sions averaging between 1.8% and 24% over the uninstru-
mented controller. Fig. 13 compares packet processing times
for several controller applications, with the maximum average
additional processing time being 78.4 µs.
Storage. The Activity Logger functions by continually logging
streams of CP activity information, adding to CP infrastructure
storage requirements. We evaluated storage overhead by sim-
ulating a network with 10 switches and 100 hosts, generating
1000 new flows per second [27], [29]. Under this workload,
the Activity Logger produced an average of 1.3 GB/hr of audit
log data, higher than ForenGuard’s 0.93 GB/hr [29], another
Floodlight monitoring system.

ANS5: The latency and storage overheads of controller
activity collection are within acceptable limits.

VII. RELATED WORK

Anomaly Detection. Traditional approaches for defending
against specific SDN attacks often rely on predefined rules,
such as event condition checking, port state verification [11],
network identifier binding checking [7], packet integrity
checking [6], and packet latency checking [3], [24]. However,
these rule-based methods are limited to known attack patterns
and are ineffective for identifying unknown threats. Unlike
these methods, our approach detects anomalies without pre-
configured rules or prior knowledge of specific threats. An-
other common technique involves setting network invariants
for real-time anomaly detection [8], [23]. Typically, Sphinx [8]
dynamically constructs abstract flow graphs and detects secu-
rity threats by verifying graph increments over time. However,
without visibility into controller activities, these efforts fail
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to identify CPM attacks that exploit vulnerabilities in control
logic through seemingly legitimate state changes.
Policy Verification. Policy verification techniques detect
anomalies by verifying control policy consistency in flow
table configurations [5], [14], [20]–[22], [25]. For example,
VeriFlow [14] performs dynamic checking for policy viola-
tions based on network-wide invariants, such as destination
reachability, security policies, and loop-free routing. Despite
their advantages, these approaches are limited to assessing the
legality of DP flow rules and cannot detect cases where the
control plane’s view of network state has been corrupted in
ways that do not trigger policy conflicts.
Provenance for SDN. Provenance analysis in SDN aims
to model network activities and investigate the root causes
of anomalies [4], [16], [27], [29], [30]. Tools like Foren-
Guard [29] and PicoSDN [27] track the root causes of anoma-
lies by collecting runtime activities and tracing back through
execution graphs. However, as discussed in Section II-D, these
tools face challenges in global graph-based anomaly detection
due to unclear behavioral boundaries and semantic noise.
Graph-Based Anomaly Detection. Graph-based anomaly de-
tection technology is widely applied in fields such as system
security, digital content security, finance, and pharmacology.
By leveraging the expressiveness of graphs, these techniques
reframe anomaly detection as a task of identifying graph dis-
crepancies [19]. Abnormal nodes, edges, paths, or subgraphs
can reveal suspicious entities, relationships, contexts, and
behaviors [10], [17], [33]. Building on these techniques, we
introduce the first provenance graph-based anomaly detection
framework specifically aimed at CPM attacks in SDN.

VIII. CONCLUSION

In this paper, we introduce PROVGUARD, a provenance
graph-based framework for detecting control policy manip-
ulation attacks in SDN environments. Our approach models
controller operations through static program analysis and
instruments the controller to log network activities related
to data plane message processing at runtime. This method
represents execution traces of network behaviors as a prove-
nance graph, where contextual deviations in paths signal
potential anomalies. Our evaluation results demonstrate that

PROVGUARD can effectively detect a broader range of CPM
attacks than prior approaches, with minimal dependence on
expert knowledge, and provide execution graphs that facilitate
efficient investigation.
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APPENDIX A
NOTATION SUMMARY

The notations used throughout are summarized in Table VI.

APPENDIX B
CODE INSTRUMENTATION

Fine-grained Operation Record. To mitigate dependency
explosion, operations on different data instances like tables,
queues, and lists are differentiated using indices, keys, or
hashes. We manually marked fine-grained data fields for 61
read/write functions to distinguish data instances. For example,
a hook records the hash of key a in hashMap.put(a,b)
based on our specified data fields.

Beginning of Execution Unit. Through manual verifi-
cation, various methods, such as REST request handlers
(e.g., removeAllRules in the ACL module), were identi-
fied as beginning of execution unit. Singleton methods like
timeoutLinks in the LinkDiscovery module, which
periodically deletes expired links, also mark the start of an ex-
ecution unit. The selected entry point, processOFMessage,
is also a beginning of unit.

Instrumenting Point. Table VII lists the number of instru-
menting points for several controller modules.
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TABLE VI
NOTATION SUMMARY.

Sign Description
N Number of execution units
G Provenance graph
ui ith execution unit (i = 1, ..., N)
Ui Graph of ui (i = 1, ..., N)
V Set of nodes in G
Eintra Set of intra-unit edges in G
Einter Set of inter-unit edges in G
F Set of functions in controller source code
finit Initial function of static analysis
C Set of call relations in controller source code
Cout Set of DP-related call relations
O Set of DP-related variable operations
pi Pattern of execution units (i < N )
s(·) Function mapping subgraphs to their patterns
P Set of patterns
δe Intra-unit edge importance threshold
δu Inter-unit edge importance threshold
Upi
j jth unit graph mapped to pi, where s(Uj) = pi

Spi MCS of unit graphs mapped to pi, where Spi =
⋂k

j=1 U
pi
j

m Number of edges in extracted path
n Number of intra-unit subpaths in extracted path
v Node in V
e Edge in Eintra

xba Action in a path where a ∈ {1, ...,m} indexes action
in path, and b ∈ {1, ..., n} indexes execution unit graphs
to which the action belongs

g Predicted vector sequence
r Target vector sequence
d Dimension of one-hot encoded word vectors
P (·ij) Probability of jth action on ith dimension (i = 1, ..., d)
gj jth predicted vector in g, gj = (g1j , ..., g

d
j )

rj jth target vector in r, rj = (r1j , ..., r
d
j )

εpredict Prediction error

TABLE VII
INSTRUMENTING POINTS FOR MODULES IN FLOODLIGHT.

Module # of instrumenting points
Forwarding 22

DeviceManager 93
LinkDiscovery 89

AccessControlList 35
LearningSwitch 11

Topology 25
Firewall 10

APPENDIX C
ATTACK CASE STUDY

Network Identifier Hijacking Attack. A malicious host
can broadcast spoofed ARP packets to bind its MAC ad-
dress to a victim’s IP address, causing network identifier
hijacking. This attack alters device data instances in the
controller and triggers IP update events. As illustrated in
Fig. 14, two threads (thd_1 and thd_2) triggered mod-
ifications on the device data instance deviceMap_1. The
DeviceManager.notifyListeners method dispatched
two DEVICE events containing different attributes, indicating
a change in the device’s IP address (from IP_1 to IP_2).
Further investigation of relevant execution unit graphs reveals
that the malicious host on switch:port=01:1 deceived
the controller into incorrectly binding its MAC address with
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Fig. 14. Suspicious behavior graph of network identifier hijacking.
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Fig. 15. Suspicious behavior graph of switch ID spoofing.

the victim’s IP address (IP_2).
Switch ID Spoofing. Malicious forwarding devices or man-
in-the-middle (MITM) attackers may alter the switch identifier
during the handshake phase of control-data plane communica-
tion. The Floodlight controller identifies connected switches by
their data plane ID, which attackers can forge to hijack legiti-
mate switches. In the suspicious context shown in Fig. 15, two
hosts on the same port, switch:port=01:2, triggered data
updates for different host instances (differentiated by MAC
addresses), since switch ID spoofing caused the controller to
misinterpret different switch ports as identical.

APPENDIX D
PATH EXTRACTION COMPONENT EVALUATION

Our method uses Intra-unit Redundancy Reduction and
Inter-unit Redundancy Reduction to remove unimportant edges
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before path extraction. As demonstrated in Section VI-A,
the remaining paths, after redundancy reduction, still retain
semantic deviations useful for detecting anomalies. To fur-
ther analyze the impact of each component, we selected a
benchmark set of logs from which PROVGUARD can detect
all attacks. By adjusting the importance thresholds δe and
δu, we found that higher thresholds filtered out some critical
behaviors, leading to detection failure for certain attacks, as
noted in Table VIII. Additionally, we protect critical nodes by
restricting redundancy reduction to the Maximum Common
Subgraph (MCS) of execution unit graphs that match the same
pattern. To assess the effect of this scheme, we set δe = 0.4
and δu = 0.7 while excluding MCS restriction. As a result,
our approach failed to detect MAC hijacking attacks due to
the omission of critical update operations.

TABLE VIII
THE EFFECT OF COMPONENTS IN PATH EXTRACTION

default δe = 0.7 δu = 0.9 no MCS
Host Location
Hijacking (IP) 3 7 7 3

Host Location
Hijacking (MAC) 3 7 7 7

Bidirectional
Link Fabrication 3 7 3 3

Unidirectional
Link Fabrication 3 7 3 3

Access
Control Bypass 3 7 7 3

Switch
ID Spoofing 3 3 3 3
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