
MALintent: Coverage Guided Intent Fuzzing
Framework for Android

Ammar Askar†∗, Fabian Fleischer†∗, Christopher Kruegel‡, Giovanni Vigna‡ and Taesoo Kim†
†Georgia Institute of Technology

‡University of California, Santa Barbara
{aaskar, fleischer, taesoo}@gatech.edu, {chris, vigna}@cs.ucsb.edu

Abstract—Intents are the primary message-passing mechanism
on Android, used for both communication between intra-app and
inter-app components. Intents go across the trust boundary of
applications and can break the security isolation between them.
Due to their shared API with intra-app communication, apps may
unintentionally expose functionality leading to important security
bugs. MALintent is an open-source fuzzing framework that
uses novel coverage instrumentation techniques and customizable
bug oracles to find security issues in Android Intent handlers.
MALintent is the first Intent fuzzer that applies greybox fuzzing
on compiled closed-source Android applications. We demonstrate
techniques widely compatible with many versions of Android and
our bug oracles were able to find several crashes, vulnerabilities
with privacy implications, and memory-safety issues in the top-
downloaded Android applications on the Google Play store.

I. INTRODUCTION

The Android ecosystem allows applications to add rich sets
of functionalities on top of the operating system (OS). Unlike
most desktop threat models, these applications are isolated
from one another, preventing unilateral access to each other’s
data and code. However, for a seamless user experience,
applications need to be able to trigger and re-use functionality
in one another. For example, a photo viewer application may
want to allow the user to share a photo through an email
application. The photo viewer may also want to allow the user
to view where the photo was taken with a map application.

The primary Inter-Process Communication (IPC) mecha-
nism that enables this invoking of functionality across apps
on Android is called Intents. Components in applications that
handle these intents act as an entry point and as a trust
boundary between apps. This security boundary is critical
and can have a significant security impact. For example,
(1) an application might allow sensitive functionality to be
invoked, like sending an email without user interaction, or
(2) an application might call an image parsing library with a
memory-safety issue. In these cases, a malicious application on

∗ These authors contributed equally to this work.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
2
1

2
0
2
2

2
0
2
3

0

10

20

30

Year

N
um

be
r

of
C

V
E

s

Intent-related CVEs over time

Fig. 1: Number of CVEs caused by Intent related issues over time.
Each issue with “android” in the CPE configuration was checked.

the phone could trigger this intent to send an email without
the user’s consent or violate the security isolation between
applications by exploiting the memory-safety bug.

To further complicate matters, aside from inter-process com-
munication, applications launch and call components internal
to themselves with Intents as well [1]. This can cause devel-
opers to fail to realize that a component or code path could be
reachable from outside the application, accidentally exposing
a sensitive operation only meant to be used internally [2] by
the application itself. Figure 1 shows a steady trend of Intent-
related issues in the form of CVEs over time.

The primary intuition behind MALintent is that these intent
handlers are an effective entry point for fuzzing Android apps.
They use fairly structured data and, unlike fuzzers that target
the UI of apps, intents can be sent without user interaction
from malicious low-privileged apps purely through code.

In summary, the main contributions of MALintent are:

• Demonstrating how specifications for intents can be gath-
ered from an application using static and dynamic analy-
sis. This enables MALintent to power an intent mutation
system that can explore deep application behaviors.

• Developing a new coverage instrumentation technique
for Android applications that improves intent fuzzing
and, we believe, is helpful in general. MALintent uses

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230125
www.ndss-symposium.org

Email Support

Address

support@game.com

Subject

BugReport.log

Intent
ACTION_SEND

EXTRA_EMAIL

 support@game.com

EXTRA_SUBJECT

 Support Ticket XYZ

EXTRA_STREAM

 <BugReport.log>

Support Ticket XYZ

Fig. 2: A gaming app using an intent to trigger the user’s preferred
email app. The intent carries data to pre-fill the recipient address, the
subject of the email, and to attach a file.

this instrumentation to be the first greybox intent fuzzer
capable of fuzzing closed source Android applications.

• Introducing and evaluating three novel intent bug-oracles
for MALintent written by the authors that aim to find (1)
application crashes, (2) basic privacy violations, and (3)
memory safety issues in native code called through the
Java Native Interface (JNI).

II. BACKGROUND

Unlike most desktop OSes, Android’s security model de-
mands that apps are isolated from each other, lacking ac-
cess to each other’s data. Each app also needs to request
permissions [3] from the OS to gain access to the user’s
private data such as their camera, microphone, or memory
card. This isolation keeps users safe despite the millions of
apps on the Android app store. Users can install a critical
health or banking app alongside a lower-trust gaming app
without needing to audit its security. The permission model
grants higher privileges to trusted apps, enabling users to give
location permissions to a preferred maps app but not to a
random game.

Instead of implementing all functionality internally, Android
apps can request services from each other. For instance, a
gaming app can let users send an email to the support through
their preferred email app, as illustrated in Figure 2, rather
than implementing email functionality itself. This approach
encourages the use of mature apps, ensures a consistent
user experience with their preferred apps, and maintains the
principle of least privilege by granting permissions only to
trusted apps. This interaction between apps is enabled by
an inter-process communication (IPC) mechanism called an
Intent.

A. Intents

An Intent is the message in the message passing system on
Android. Intents contain an action to perform, such as view an
image (ACTION_VIEW) or dial a number (ACTION_DIAL), and

1 void contactSupportEmail() {
2 Intent i = new Intent(Intent.ACTION_SEND);
3 i.setData(Uri.parse("mailto:"));
4 i.putExtra(Intent.EXTRA_EMAIL, "support@game.com");
5 i.putExtra(Intent.EXTRA_SUBJECT, "Support Ticket XYZ");
6

7 File bugReport = generateBugReportLog();
8 i.putExtra(Intent.EXTRA_STREAM, Uri.fromFile(bugReport));
9

10 // Start the user's preferred email app to send email.
11 startActivity(i);
12 }

Listing 1: An example of launching an intent that would cause the
user’s email app to pre-fill an email with a subject line, recipient’s
address and attachment.

1 <activity android:exported="true"
2 android:name=".EmailComposeActivity">
3 <intent-filter>
4 <action android:name="android.intent.action.SEND" />
5 <data android:scheme="mailto" />
6 </intent-filter>
7 </activity>

Listing 2: A snippet from an app’s AndroidManifest.xml file
showing how an app subscribes to receiving email intents.

data: the image to view or the phone number to dial. This data
is often encoded in the form of a URI and its query parameters
but can contain any serializable Java data through an arbitrary
key–value map called Intent extras.

Listing 1 shows how the example from Figure 2 can be
implemented: a gaming app allowing the user to send an email
through their preferred email app. The app sets up an intent
with an action of ACTION_SEND and sets extra fields in the
intent to fill the recipient email address, the subject line, and
attach a file. When an intent is provided to the Android OS via
the startActivity method, the OS delivers it to the user’s
chosen email app. This is an implicit intent, where the OS
selects the app. Alternatively, the intent sender can specify
the target app, known as an explicit intent.

App components that receive intents must be de-
clared in AndroidManifest.xml (see Listing 2). The
android:exported property specifies if the component can
receive intents from other apps or only internally. Tags filter
the desired actions, categories, and data schemes from incom-
ing intents, further detailed in §III-A1.

B. Intent Vulnerabilities

To understand potential vulnerabilities in an app’s intent
handlers, we examine how it handles an incoming intent.
Listing 3 shows how an email app would handle the intent
from Listing 1. The handler retrieves "extras," which are key-
value pairs. In our example, the email app extracts extras from
the intent and populates the appropriate fields in the email.
There are two potential security bugs in this receiver:

• The email app accepts attachment files from the
intent’s EXTRA_STREAM and uses the method
renderPreviewIfImage to render the image. This
method calls a native C function to render the image
but naïvely uses the height and width specified in the
image’s header, which may lead to a buffer overflow in
the native code due to the lack of bounds checking.

2

1 private void handleIntent(Intent i) {
2 // ...
3 if (i.hasExtra(Intent.EXTRA_EMAIL)) {
4 setRecipient(i.getStringExtra(Intent.EXTRA_EMAIL));
5 }
6 if (i.hasExtra(Intent.EXTRA_SUBJECT)) {
7 setSubject(i.getStringExtra(Intent.EXTRA_SUBJECT));
8 }
9 if (i.hasExtra(Intent.EXTRA_STREAM)) {

10 Uri uri = i.getParcelableExtra(Intent.EXTRA_STREAM);
11 File attachment = new File(uri.getPath());
12 addAttachment(attachment);
13

14 renderPreviewIfImage(attachment);
15 }
16 if (i.hasExtra(EXTRA_EMAIL_SERVER)) {
17 sendWithServer(
18 i.getString(EXTRA_EMAIL_SERVER));
19 }
20 }
21

22 private void renderPreviewIfImage(File f) {
23 // ...
24 // Use GIFLib through the JNI.
25 GifInfoHandle handle = new GifInfoHandle(f);
26 byte[] pixels = new byte[header_height * header_width];
27 handle.renderFrame(pixels);
28 }

Listing 3: An example of receiving an email-sending intent. The
email app pre-fills the email recipient and subject and attaches the
requested attachments.

• The email app uses the extra EXTRA_EMAIL_SERVER to
decide which email server to send messages with. This is
used internally when switching sender accounts but it is
important to prevent external apps from setting this field
to ensure that a malicious app cannot intercept the email
written by the user.

C. Coverage-driven Grey-box Fuzzing

Coverage-driven grey-box fuzzing [4], [5], [6] is an au-
tomated software testing technique that effectively uncovers
vulnerabilities in target programs. Unlike grammar-based ap-
proaches, mutation-based fuzzing requires little prior knowl-
edge of the target program and generates new inputs by
modifying existing seed inputs. The general algorithm used in
coverage-driven mutation fuzzers involves maintaining a queue
of inputs, initially populated by known seeds [7]. The fuzzer
then mutates the inputs in various ways, tests the program
with the mutated inputs, and reports any crashes or bugs
encountered. Inputs that reveal new code coverage are added
back to the queue, and the process continues by mutating
inputs from the queue.

III. DESIGN

Due to the critical security boundary and declarative nature
of intents, their handlers are ideal for fuzzing. This leads us
to the overall design of MALintent (see Figure 3):

1) MALintent performs a static analysis on the tested app,
generating a list of intent handlers, actions, categories,
data, and statically detectable intent extras (§III-A).

2) For coverage-driven fuzzing, MALintent uses Android’s
official debugger mechanisms to instrument the target
app, ensuring wider compatibility (§III-B).

3) After identifying intent targets and collecting coverage,
fuzzing begins. An intent matching static properties from
Step 1 is generated and sent to the target app. The intent
is randomly mutated, and those with higher coverage are
added to the fuzzing queue for further mutation (§III-C).

4) During fuzzing, the app may exhibit behaviors indicating
security issues. MALintent uses bug oracles to iden-
tify intents triggering security issues, such as crashes
or memory-safety bugs, akin to sanitizers in traditional
fuzzers (§III-D).

A. Static Analysis

MALintent starts by statically examining the Android PacK-
age (APK) of the application, which includes metadata, com-
piled Java/Kotlin code, native code, and media resources.
Using the jadx [8] decompiler, we unpack the APK to analyze
its metadata and bytecode. This analysis identifies the handlers
that can receive intents, the data types and keys of extras in the
intent, and the action/category/data filters. The resulting intent
specifications are used as fuzzing seeds [7] to create initial
intents for fuzzing, ensuring they are well-formed and pass
Android’s intent filtering mechanism described in §III-A1.

1) Application Manifest: The analysis begins with the
AndroidManifest.xml file, the primary metadata file for
Android applications. It contains the app name, required
permissions, developer information, and critically for us, a list
of intent-receiving components and their accessibility to other
apps. We look for components that can receive intents:

• <activity> Activities act as the primary user-interface
component on Android. The screen to compose an email
in an email app would, for example, be an Activity.

• <activity-alias> Aliases for activities are often used
for fine-grain intent filters and backwards compatibility.

• <service> Background services may be used, for exam-
ple, to poll an email server for new emails.

• <receiver> Broadcast Receivers listen to intents broad-
cast by the system, such as the WiFi state changing.

Next, we filter the components based on their
android:exported property being set to true and the
android:permission attribute being unset. These matched
components can be invoked by all other applications without
any specific permissions needed.

Once these intent-receiving components have been identi-
fied, MALintent analyzes their child <intent-filter> tags.
The intent filter tags instruct the Android OS on what types
of intents the component is willing to receive. This feature
is called intent matching and allows apps to declaratively
filter intents. Intents that do not pass the filtering will not
be delivered to the destination application.

The <action> and <category> tags within the
<intent-filter> tag specify action and category names as
strings. In terms of filtering, the <action> tags allow the
application to specify that an intent’s action should either
match one of the actions specified in the tags or be empty.
The <category> tags require that an intent’s category list
must at least include all the required categories, or be empty.

3

AndroidManifest.xml

App Code

APK

1. Static Analysis

Application
package (.apk)

2. Coverage Instrumentation

Android Device
or Emulator

Java Virtual Machine
Tool Interface

Coverage
Instrumentation

Intent
Specification

3. Fuzzing Loop

4. Bug Oracles

 Crashes

 Privacy Violations

 Memory Safety

Generate
initial intent

from specification

Send Intent to Device

Mutate Intent

Update specification
based on dynamic

instrumentation

Check for novel coverage

Fig. 3: Overall design of MALintent. 1. Static analysis is performed on the packaged application in order to discover the components
that can receive intents and their requirements. This is used to generate intent specifications for the application. 2. MALintent leverages the
interface available for Java Virtual Machine debuggers to instrument the app on a device or emulator for coverage feedback. 3. A traditional
fuzzing loop is seeded from the intent specifications. Coverage feedback from step 2 is used to mutate and drive the fuzzer. 4. During the
execution of the intents by the fuzzer, bug oracles detect different security issues based on the state of the device and MALintent records
these issues.

The <data> child tag allows filtering based on the intent’s
“data” field, which is a Uniform Resource Identifier (URI),
and the “type” field, representing the MIME type [9] of the
data. Collectively, these two fields are used to pass files across
application boundaries.

The constituent parts of a URI are:

<scheme>://<host>:<port><path>

When the data tag specifies only an android:mimeType,
Android implicitly accepts schemes of content and file.
The android:scheme mandates that the URI matches at
least one of the required schemes (e.g., http and ftp). For
filtering other URI properties such as host, port, and path,
a scheme filter must be present. The android:host property
mandates that the URI’s hostname matches one of the required
hosts, and it allows wildcard characters at the beginning of
the host (e.g., *.google.com). The android:port property
requires the URI’s port to match one of the specified ports.
Lastly, the android:path requires the URI’s path to match
one of the specified path filters. Path filtering options include
pathPrefix, pathSuffix, and pathPattern, allowing for
matching a path with a specific prefix, suffix, or wildcard
anywhere in the filter, respectively.

2) Intent Handling Code: After going through the manifest,
MALintent uses a visitor for jadx’s abstract syntax tree to
determine the names and types of intent extras. This is ac-
complished by examining method invocations on the Intent
type that retrieve intent extras (e.g., getStringExtra and
getFloatExtra). By statically determining the value of the
string argument, MALintent stores the key and its type. Conse-

quently, it becomes possible to generate a predetermined list of
valid intent extra keys and types for the fuzzer, eliminating the
need to discover them gradually based on coverage changes
during the fuzzing process.

3) Intent Specification: Once MALintent has both analyzed
the application’s manifest and performed static analysis on
its intent-handling code, it outputs an intent specification file
with the intent-receiving components and their constraints for
the fuzzer to use. Listing 4 shows an intent specification
generated from a real-world Android application: Samsung
Internet Browser.
1 {
2 "package": "com.sec.android.app.sbrowser",
3 "name":
4 "com.sec.android.app.sbrowser.SBrowserLauncherActivity",
5 "component": "<activity>",
6 "action": "android.intent.action.VIEW",
7 "categories": [
8 "android.intent.category.DEFAULT",
9 "android.intent.category.BROWSABLE",

10],
11 "data": {
12 "scheme": ["http", "https", "about", "javascript"],
13 },
14 "extras": {
15 "android.intent.extra.REFERRER_NAME": "string",
16 "create_new_tab": "boolean",
17 "trusted_application_code_extra": "string",
18 "com.android.browser.headers": "bundle",
19 "// ..."
20 "// More extras omitted for space."
21 },
22 }

Listing 4: An example of a shortened intent specification generated
by analyzing the Samsung Browser application.

The intent specification contains one specification object per

4

intent-filter encountered. This specification object states
(1) what type of component the filter is from: <activity>,
<activity-alias>, <service> or <receiver>; (2) the
name of the component, which is required to target it for an
explicit intent; (3) the action, category, and data filters from
the manifest; and (4) the intent extras as well as their types.

B. Coverage Instrumentation

To drive the fuzzer towards deeper and more interesting
behaviors, we utilize coverage-driven (grey-box) fuzzing [10].
Traditionally, grey-box fuzzers instrument the target program
at the compiler level if the source code [6] and compilation
tool chain are available. Otherwise, such as in the case of most
popular Android applications, binary instrumentation must
be applied. Binary instrumentation usually involves using a
framework like DynamoRIO [11], PIN [12], or QEMU [13]
to hook instructions or modifying the executable binary code
to include the instrumentation [14].

MALintent utilizes a binary instrumentation approach pri-
marily because most Android applications are closed source.
Past approaches [15], [16], [17] take the APK of the ap-
plication and disassemble it to Android’s bytecode format
smali [18], optionally lifting it to Java [19]. This decompiled
code is then altered to collect coverage, after which the APK
is recompiled and used in place of the original. We forego
this alternation of the original APK in MALintent due to its
critical drawbacks as discussed in §V-A.

MALintent, instead, uses the Java Virtual Machine Tools In-
terface (JVMTI) [20] to implement its binary instrumentation.
Notably, the JVMTI is the low-level application programming
interface (API) that is used to implement debuggers in the Java
Virtual Machine (JVM) and allows access to JVM internals
when executing code (e.g., setting breakpoints and examining
thread state). MALintent uses methods that allow the mutation
of Java bytecode when it is loaded. At a high level, the process
is:

1) MALintent attaches a JVMTI agent to be loaded on the
target application’s startup. The JVMTI agent registers a
JVMTI_EVENT_CLASS_FILE_LOAD_HOOK callback to be
called when a class is loaded into the JVM.

2) When the class load callback is triggered, MALintent
checks its cache in the file system for an instrumented
version of the class. If the instrumented version is found
in the cache, MALintent retrieves and returns it.

3) If the class is not cached, MALintent generates a control
flow graph (CFG) from the bytecode. This CFG is then
used to instrument the start of each basic block to collect
basic block-level coverage information.

4) MALintent starts up a communication channel in the form
of a Unix or TCP socket to provide coverage information
back to the fuzzer.

Dynamic Bytecode Instrumentation. Our JVMTI agent
receives the Dalvik bytecode for every loaded Java class.
We employ dexter [21] (maintained by Android) to alter the
bytecode of these classes. As part of the modification, dexter
generates a CFG. MALintent traverses the basic blocks of the

CFG and inserts a call to an instrumentation method in each
one. MALintent also increments the virtual register count of
the method to account for the basic block ID argument.

The modified smali bytecode highlighting the added in-
strumentation is shown in Listing 5. Specifically, we include
two instructions: one to assign the basic block’s ID as an
argument, and another to invoke the instrumentation method.
This instrumentation method is statically implemented in a
Java class that is loaded during the agent initialization. It
updates the coverage map by adding an edge between the
previous and current blocks, as shown in Listing 6. To ensure
unique identification for each basic block, IDs are generated
deterministically during the instrumentation process. We base
this generation on the method name and signature, which
provide a distinctive identifier for each method.

1 .method public d(Lcom/dropbox/common/taskqueue/c;)V
2 - .registers 2
3 + .registers 3
4 + const v0, 0xd46f
5 + invoke-static/range {v0 .. v0}, Lcom/<redacted>/ ⌋

coverageagent/Instrumentation;->reachedBlock(I)V↪→
6 iget-object p1, p0, Lcom/dropbox/product/dbapp/ ⌋

downloadmanager/b$b;->b:Ldbxyzptlk/dq0/b;↪→
7 invoke-interface {p1}, Ldbxyzptlk/dq0/b;->onCancel()V
8 return-void
9 .end method

Listing 5: Smali bytecode of a single-basic block Java function with
coverage instrumentation. Lines 3 and 4 are added by MALintent and
the register count incremented by 1.

1 public static void reachedBlock(int blockId) {
2 coverageMap[(blockId ^ prevBlock) % COVERAGE_MAP_SIZE]++;
3 prevBlock = blockId >> 1;
4 }

Listing 6: The instrumentation method in Java. Adds an edge
between the previous and current block to the coverage map. This is
the algorithm used in the AFL [5] fuzzer.

C. Fuzzing Loop

MALintent crafts an initial set of intents based on the spec-
ifications generated from the static analysis step in §III-A3.
These intents act as the seeds to start the fuzzing loop. The
following initial intents are created:

• An intent with no action or categories but fulfilling the
data filter requirements.

• An intent with no action but with all required categories
that fulfills the data filter requirements.

• One intent per action with no categories that fulfills the
data filter requirements.

• One intent per action with all required categories that
fulfills the data filter requirements.

These are all the possible intents that pass the intent filters
in the application’s manifest and get delivered to the target
application as explained in §III-A1. The action and category
filters allow for cases where they are empty but the data filter
requires that the data URI always meet the requirements.

5

1) Sending Intents: MALintent uses the Android Debug
Bridge (ADB) to communicate with an Android emulator
or device in order to send intents to the target application.
We invoke the Android ActivityManagerService [22] through
ADB, which then dispatches the intent to the target applica-
tion. The intent is serialized by the fuzzer and sent across
ADB in the form of command-line arguments. How the values
are passed depends on the extra type: for regular data types
such as integers and strings, we pass the values as command-
line arguments. For extras of the content type, we provide
the fuzzing data in a file or via a content provider, which
is Android’s recommended interface for sharing larger data
among applications. In addition, the data field of the intent
can hold either of the three input types: a direct value as a
command-line argument, the path of a file, or the URI of an
object provided by a content provider.

To collect accurate feedback information, MALintent needs
to gather coverage from the point the intent is delivered until
the application becomes idle after processing the intent. We
use the ActivityThread, which oversees the main thread,
activities, and broadcast operations, to detect when the ap-
plication reaches an idle state. Once the Idler in the activity
thread identifies the target activity as idle, the coverage agent
of MALintent stops recording executed basic blocks, marking
the completion of intent execution.

After the intent has been delivered and the application
finished processing it, MALintent communicates with the
coverage instrumentation system in §III-B to retrieve the
latest coverage map. The fuzzer then compares this coverage
information with that of prior runs to determine if the fired
intent discovered new coverage.

Aside from coverage, the instrumentation system also sets
callbacks to collect data on how Intent objects get used
dynamically. This allows MALintent to update its intent speci-
fication as it reaches deeper code paths. For example, runtime
usages of hasExtra are monitored to gather additional in-
tent keys and registerReceiver is intercepted to identify
broadcast receivers that are registered at runtime. Listing 7
demonstrates code where MALintent dynamically identifies
the types and keys for intent extras that were not constants.

1 int index = 0;
2 while (intent.hasExtra(URI_EXTRA + "_" + index)) {
3 Uri uri = Uri.parse(
4 intent.getStringExtra(URI_EXTRA + "_" + index)
5);
6 mediaItems.add(
7 createMediaItemFromIntent(uri, intent)
8);
9 index++;

10 }

Listing 7: Intent handling code from a media player application
where the intent extra key is not a constant. MALintent’s dynamic
instrumentation allows it to identify the key at runtime.

2) Mutating Intents: After an intent has been determined
to add new coverage, it is added back to the fuzzing queue
to be mutated. Our approach mutates the input intents in a
structure-aware way. We implement several mutation strategies
in MALintent to mutate the different parts of the intent.

Data Mutator. Most importantly, MALintent mutates the
data field of the intent. This field can directly hold a sequence
of bytes, the path of a file, or the URI of an object provided
by a content provider. Our mutator modifies both the type of
the input and its contents.

MIME Type Mutator. With the MIME type, the sender of
the intent can specify the type of the intent data. MALintent
comes with a mutator to change the MIME type.

Flag Mutator. MALintent also mutates the flag field of the
intent, which impacts how the Android OS delivers the intent
to the target application. (e.g,. the flag field controls the back
button behavior of the launched activity).

Extra Mutators. MALintent incorporates a series of mu-
tators to modify the extra keys. One mutator introduces
additional extras, while another alters the keys of the existing
extras, utilizing keys derived from both the static analysis and
dynamic discovery. MALintent also includes mutators for the
extra content, type, and suffix of files, applicable when the
extra content is a file path or a URI. As discussed in §III-C1,
the content of the extra could be a standard type like an integer,
string, or byte array, which are directly mutated. Alternatively,
it could be a file path or URI, where the file content is mutated.
Another mutator adjusts the input type—file, content provider,
or direct input. Lastly, a mutator modifies the suffix of the file
or URI using a list of common file types.

D. Bug Oracles
MALintent uses multiple different oracles to detect whether

the execution of an intent has triggered a security issue.
Denial-of-service issues in the form of crashes are detected
by the crash oracle. The privacy oracle uses dynamic dataflow
analysis to find privileged API calls such as placing phone
calls or accessing the filesystem where inputs are controllable
through an intent. The novel JNI memory safety oracle uses
dynamic traces of native code in order to fuzz these code
components and find memory safety issues inside them.

1) Crashes: The crash oracle aims to identify intents that
crash the target application. This is usually caused by app
developers utilizing poor error handling practices, in particular,
around nullability. Many developers directly use objects from
the intent extras without checking if they are present with
hasExtra as shown in Listing 8.

1 String text = intent.getStringExtra(Intent.EXTRA_TEXT);
2 if (text.startsWith("tel:")) {
3 // ...

Listing 8: Intent handling code that throws a null pointer exception
when the extra TEXT is not present.

Such a crash allows a malicious app to be able to continu-
ously deny a user access to an app. If such a crash is present
in a critical system app such as the dialer, this can lead to a
user being unable to call emergency services.

MALintent monitors the Android logcat utility to check the
system crash log buffer. When an application crashes, Android
dumps its Java stack trace to the logcat buffer. By taking this
stack trace and hashing the call stack, MALintent deduplicates
unique crashes.

6

Private Data Sources

...

Location

location.getLatitude()
...

Camera

CameraDevice.
createCaptureSession()

App Database

SQLiteDatabase.query()

Sinks

Filesystem
To attacker readable file

Network
To attacker controlled location

Dataflow

Dataflow
to host or URL

Intent Data

URI

Extras

Call
To attacker controlled number

Dataflow
to phone number

Fig. 4: Overview of the sources and sinks in MALintent’s privacy
oracle. Dataflow is tracked from private sources such as the user’s
location and camera to sinks where the attacker can read the data.

2) Privacy Violations: The privacy violation oracle aims to
find bugs where the user’s private data such as their location,
camera, or microphone can be determined by the attacker from
an unprivileged application without the user’s consent. The
latter part is key, while it is expected for an app to be able
to request that the user take a photo through their camera, or
pre-fill a phone number to dial, it is not acceptable for the app
to unilaterally take a photo or place a call unless it has been
permitted to do so.

MALintent approaches this problem by performing dynamic
taint analysis [23] on the application. In our analysis, we
consider our sources to be APIs that access privacy-sensitive
data such as the camera or location. The sinks we track are
filesystem locations and network locations that can be read by
the attacker application. Since MALintent performs no GUI
interaction with the target application, any path from a source
to a sink constitutes a leak of private data: from an application
with high privilege to the attacker application. An overview
of these sources and sinks is shown in Figure 4.

While fuzzing, if privacy sensitive data flows from their
respective APIs to places readable by the attacker appli-
cation, a privacy violation is detected. Concretely, MA-
Lintent uses taint analysis sources identified in the past
work FlowDroid [24]. This includes Android APIs such as
Location.getLatitude, access to the application’s internal
database with SQLiteDatabase.query.

For sinks, MALintent uses a more conservative set of easily
verifiable sinks to minimize false positives. In particular, it
tracks filesystem access and considers any files created that

would be readable by the attacker application to be a valid
sink. This means an application writing to its own private data
directory will not be considered but writing to a world readable
folder would be.

MALintent also checks for situations where there is a
dataflow from a privacy sensitive function to the network and
the network location (socket connection host, URL, etc.) has a
dataflow path from the intent. This captures behaviors where
the application can be tricked into sending private data to a
server controlled by the attacker. Lastly, MALintent also tracks
dataflow from intents to SMSManager.sendTextMessage and
TelecomManager.placeCall to detect telephony and mes-
saging apps placing calls or sending messages without the
user’s consent to attacker controlled numbers.

3) JNI Memory Safety: While Android applications are
typically built in Java or Kotlin, both memory-safe languages,
Android allows applications to include native code written in
memory-unsafe languages such as C/C++. This native code
can then be called from Java using the JNI [25]. This feature
allows optimized code to improve the performance of critical
code paths such as graphics rendering. Developers may also
prefer to reuse mature C/C++ libraries such as giflib [26]
instead of rewriting them in Java. Third parties also often
distribute proprietary libraries as closed-source shared objects
for advertising frameworks [27] and digital rights manage-
ment [28]. Writing and using Java wrappers around native
libraries can be challenging as developers have to ensure the
Java code upholds the invariants of the native code. Due to this
difficulty and the high impact of memory corruption issues,
native code has been a valuable target for attackers in the
past [29], [30], [31].

MALintent, therefore, incorporates an oracle that observes
JNI code invoked during the execution of intents to discover
memory safety issues in the native code. From dynamic
execution traces, the oracle generates fuzzing harnesses for
native code included in the application. The fuzzing harnesses
wrap the native libraries at the JNI boundary, which allows
us to fuzz the libraries. A major component of the fuzzing
harnesses is the emulation of the JNI environment, which the
libraries use to interact with the state of the JVM.

Dynamic Invocation Sequences. MALintent collects in-
vocation sequences of Java methods implemented in native
code, also called native methods. For each input of the fuzzing
corpus, MALintent creates a sequence of the native methods
invoked at run time. Each entry includes the invoked native
method, its concrete argument, and return values which MA-
Lintent later uses to generate the fuzzing harnesses. Addition-
ally, MALintent enhances the traces by applying two checks
to determine if the input is passed via a file. In particular,
MALintent marks an argument in the trace as file input, if:

• The argument type is a string, and the argument contains
the path of an existing, regular file, or

• The argument type is an integer, and the argument value,
interpreted as a file descriptor, refers to an existing,
regular file in the file system.

7

JNI Environment Emulation

Populate the object's field
value with inputs from the
fuzzer

1

2

3

Create new java class
without any fields

Add object fields to the
new class

JNI Emulation of
JNI Memory Safety Oracle

Fuzzing Target
(Native Library)

</>

Proprietary Code from
Android Application

FindClass("com.package.class")

return classID;

GetFieldID(classID, "fieldName")

return fieldID;

Get/SetFieldValue(fieldID, objectID)

return value;

Fig. 5: JNI Environment Emulation. The native library, which is
called from the fuzzing harness (not displayed), interacts with the JNI
environment. Our emulation creates objects with lazy instantiation
and keeps track of objects with which the native library interacts.

Harness Generation. Using the dynamic invocation se-
quences, MALintent constructs fuzzing harnesses for an An-
droid application’s native libraries. The invocation sequence
is filtered according to a targeted Java class, which clusters
corresponding native functions semantically. Native methods
are only included in the harness if they are invoked, that is
when an entry in the invocation sequence exists. Invocation
sequences are unified simplistically by forming a tree of
invocations. Two invocations from different sequences are
represented by the same node in the tree, if they share the
same list of previous invocations. MALintent then flattens
the tree and automatically creates a harness in C utilizing
a template we created. The harness then gets compiled and
linked against the native library intended for fuzzing. This
harness also includes the emulated execution environment.

Execution Environment Emulation. We design an exe-
cution environment that emulates the runtime of the native
libraries, namely the JNI environment. Our environment in-
cludes an emulation stub for each of the 233 JNI Environment
(JNIEnv) functions of the JNIEnv structure. The emulation
stubs emulate the behavior of the JVM and, by default, return
values from the fuzzing input stream. We have replaced 40
of those stubs with more complex functions to consistently
model Java objects. The subsequent paragraphs describe the
aspects of the JNIEnv emulation.

JVM state and lazy object instantiation. For correct emu-
lation of the JNIEnv, it is necessary to maintain the state of
the emulated Java objects and consistently return the same
values in subsequent calls that request the same resources.
Additionally, the full state of the JVM is unknown since our
emulation cannot be aware of the entire state of the JVM;
yet, we need to emulate those unknown objects as they are
accessed.

Our emulated environment uses the design of the JNIEnv to
employ lazy object instantiation and internally maintains the
state of the objects that were already used. For instance, to
get or set the value of an object member, the fuzzing target
needs to call multiple JNIEnv functions. Figure 5 illustrates a
typical interaction with the emulated JNIEnv.

1) FindClass. First, the fuzzing target requests the ID of

the Java class, given the class name as a string. If not
previously used, the emulation will create a new opaque
ID for the class, add the class with the ID to the list of
all classes, and return the class’s ID.

2) GetFieldID. Second, the fuzzing target gets the ID of the
desired field of the Java class, given the class ID and
the field name as a string. Similarly to the class ID, the
emulation adds the new field with a new opaque ID to
that class and returns the field ID.

3) Get/Set<Type>Field. Last, the fuzzing target obtains or
sets the value of a field, given the field and object IDs.
When first accessing a field, the emulation populates
the field value with fuzzing input. Subsequent get and
set operations will read or write the value stored in the
emulated Java object.

This design makes the JNI emulation generic so it can provide
reasonable fuzzing input even for objects that are initialized
in the Java code.

IV. IMPLEMENTATION

MALintent is implemented in four distinct components: (1)
The coverage instrumentation JVMTI client consists of 500
lines of C++ code. (2) The static analysis for the APK is
done in 400 lines of Kotlin code. (3) The intent fuzzer itself
is implemented using LibAFL [32] in 2500 lines of Rust.
(4) Crash and privacy oracles are written in 2000 lines of
Kotlin code, with the privacy oracle requiring modifications
to Android itself. The JNI memory safety oracle consists of
400 lines of C++ code for the dynamic instrumentation, 1400
lines of Python to generate the harness, and 3100 lines of C
for the execution environment emulation.

V. EVALUATION

To evaluate MALintent, we performed experiments and
gathered data to answer the following research questions
related to MALintent’s main contributions:
RQ1 Is MALintent’s coverage instrumentation method more

widely compatible than past approaches on Android?
RQ2 Does MALintent’s coverage feedback mechanism allow

it to reach deeper behavior?
RQ3 Does MALintent improve over the state of the art?
RQ4 Does MALintent’s modular bug oracle system allow it

to discover bugs from past intent bug discovery works?
RQ5 How much static overhead does MALintent require?
RQ6 Was MALintent able to discover novel bugs related to

intent security? What is the impact of those bugs?
For our experiments, we ran the fuzzer on servers with

AMD Ryzen 9 3900X 12-Core CPUs (3.8 GHz) and 32 GB
RAM. The servers run Ubuntu 18.04 as the host OS. On the
servers, we used virtual Android devices based on a dockerized
version of Android 13 [33] with Google Play services.

A. Coverage Instrumentation

To answer RQ1, we conducted an empirical study on
approaches to instrumenting closed-source apps for coverage

8

Coverage Supported Android Incompatibility
System Versions Reason

MALintent 8 – 14a pre-jvmti Android versions

COSMO 2 – 5 multi-dex, dex format
ACVTool 1 – 5 multi-dex
ELLA 1 – 5 multi-dex, dex format
BBoxTester 2 – 5 multi-dex, dex format
aLatest Android version at time of writing

TABLE I: Comparison of MALintent’s coverage instrumentation
compatibility with major Android versions compared to prior cover-
age instrumentation systems.

feedback on Android. From a literature review, we collected
the following systems used in prior works:

• COSMO: Code Coverage Made Easier for Android. [16]
• ACVTool: Fine-grained code coverage measurement in

automated black-box Android testing. [15]
• ELLA: A Tool for Binary Instrumentation of Android

Apps. [34]
• BBoxTester: Towards Black Box Testing of Android

Apps. [35]
• InsDal: A safe and extensible instrumentation tool on

Dalvik byte-code for Android applications. [36]
• CovDroid: A Black-Box Testing Coverage System for

Android. [37]

Note that it was not possible to evaluate InsDal or CovDroid
because the authors did not make their tool available and their
source code is not public.

We evaluated which major versions of Android each cover-
age instrumentation system is fully compatible with. This was
done by compiling an application with each possible Android
compileSdkVersion and then using each tool to try to
instrument it for coverage. These results are shown in Table I.
MALintent works with a wide range of Android versions up
to the latest version of 14 at the time of writing starting at the
version where the JVMTI API was made available.

ACVTool, the most mature of the binary coverage in-
strumentation systems available is not fully compatible with
Android version 5 and up due to its lack of support for
Android’s new multi-dex bytecode format [38]. ELLA also
lacks support for the new multi-dex format and additionally
uses a dex bytecode writing system that does not support the
newest instruction format. COSMO and BBoxTester both rely
on the tool dex2jar to first lift Android bytecode to a .jar
file and then use traditional Java instrumentation tools. The
dex2jar version used by them does not support the multi-
dex format and COSMO’s evaluation excludes all multi-dex
apps for this reason. Additionally dex2jar does not support
dex bytecode instructions from Android 8 and upwards [39].

MALintent is compatible with Android versions 8 to
14 (the latest version as of writing), surpassing other
coverage tools in terms of compatibility.

B. Effect of Coverage Feedback on Fuzzing

For RQ2, we evaluate whether the use of coverage feedback
helps MALintent to reach deeper behavior in apps. Therefore,
we run the MALintent intent fuzzer twice for each target
application: one time with coverage feedback and another
time without feedback. We compared how many edges of the
CFG the fuzzer covered with and without our feedback. We
conducted this experiment on two different datasets:

• Top Google Play (TGP): The top-50 overall most popular
and the top-50 productivity Android apps on the Google
Play store as of March 2023 (those sets did not overlap
at that time).

• F-Droid (FDROID): 500 randomly sampled applications
from the F-Droid Android app repository [40].

For TGP, we the fuzzer was run for 4 hours on each app
component; for the larger FDROID dataset, we allocated 4
hours of fuzzing for each app.

On the TGP dataset, we found that MALintent covered
additional edges on 81.8% of all applications with coverage
enabled. On average, the coverage feedback helped to discover
3.1 times more edges, with a mean of 4.6% overall more edges
(standard deviation of 9.6).

On the FDROID dataset, MALintent was able to cover
additional 16.5% edges on average, with a mean of only
1.4% more edges (standard deviation of 0.7). We found that
the smaller improvement on the FDROID dataset stems from
the simplicity of those apps: In general, applications on F-
Droid have fewer functionalities and less code. Thus, on these
simpler apps, a fuzzer without feedback is able to trigger a
larger part of the intent handling code such that the use of the
coverage feedback helps cover more code only on fewer apps.
Nonetheless, MALintent was able to cover additional edges on
56.5% of the apps in FDROID due to our coverage feedback.

We conclude that the coverage feedback significantly
increases the code coverage in our system MALintent,
increasing the edge coverage on 81.8% and 56.5%
apps of the Google Play and F-Droid datasets, respec-
tively.

C. Comparison to State of the Art

To address RQ3, we evaluate the performance of MALintent
in comparison to previous work measuring code coverage.
For this purpose, we conducted multiple runs on each app
to determine the significance of the results, opting for longer
runs on a smaller set of applications to ensure reliability.

From the TGP dataset, we randomly sampled six ap-
plications and executed each fuzzer—MALintent and Icc-
Droid [41]—on each app five times. We excluded an older
tool based on MATE [42] because we were unable to get
it running; the reproduction package failed to instrument the
provided APKs. Despite contacting the authors and access to
the source code, we were unable to use the tool to instrument
real-world APKs and perform the fuzzing.

9

0.0m

0.3m

0.6m

0.9m

1.2m

0 6 12 18 24
0.0m

0.3m

0.6m

0.9m

0 6 12 18 24
0.0m

0.4m

0.8m

1.2m

0 6 12 18 24

0.0m

0.4m

0.8m

1.2m

0 6 12 18 24
0.0m

0.4m

0.8m

1.2m

0 6 12 18 24
0.0m

0.2m

0.5m

0.8m

0 6 12 18 24

ed
ge

co
un

t
(a) AdobeReader (b) Notepat (c) Cardsapp

(d) Dropbox

time in hours

IccDroid MALintent

(e) Instagram (f) Outlook

Fig. 6: Coverage comparison between MALintent and IccDroid.

The experiment results are shown in Figure 6, depicting the
average code coverage achieved by each tool, with transpar-
ent areas indicating the range from minimum to maximum
coverage across all runs. Our findings show that MALintent
outperforms IccDroid in coverage for all applications except
Notepat. A one-sided Mann-Whitney U test returned p< .01
for all but Notepat, which had a p-value of .07215 making the
result on Notepat insignificant. Thus, we reject the null hy-
pothesis, confirming that MALintent significantly outperforms
IccDroid on five out of six apps.

For Notepat, where IccDroid achieved higher average cov-
erage, we found that IccDroid reached additional activities
through graphical user interface (GUI) interactions, enabling
it to cover more code. However, interacting with the GUI
contradicts MALintent’s goal of identifying privacy leaks
without user interaction. Future research will explore detecting
GUI interactions that do not break MALintent’s threat model
and extending MALintent to trigger those interactions.

We conclude that MALintent significantly (p< .01)
covers more code than the state of the art, IccDroid,
on most apps.

D. Bug Oracles

To answer RQ4, we evaluate MALintent against past re-
search work trying to automate finding bugs in Android intent
handlers. We demonstrate that through its oracles and the
generic nature of the fuzzing framework MALintent provides,
it was able to rediscover all the bugs found in those projects.

In particular, we found the following past works that focus
on security issues in intents:

• Intent Fuzzer: Crafting Intents of Death [43]
• DroidFuzzer: Fuzzing the Android Apps with Intent-Filter

Tag [44]
• Identifying Android inter-app communication vulnerabil-

ities using static and dynamic analysis [45]

System Coverage Bug Types
Instrumentation

MALintent Yes Crashes, Privacy, and
Memory Safety

IccDroid [41] Only w/
Source Code Crashes

Intents of Death [43] Only w/
Source Code Crashes

DroidFuzzer [44] No Crashes,
Resource Exhaustion

Demissie et al. [45] No Privacy
AndroidIntentFuzzer [46] No Crashes

MindMacIntentFuzzer [47] No Crashes

TABLE II: Comparison of the types of bugs detected and whether
the fuzzer uses coverage instrumentation against prior work and open
source projects. MALintent is able to use grey-box instrumented
fuzzing for all applications and detects a wide variety of bug types.

Prior Work Bugs Reported Time to
Discover

Intents of Death [43] 10 Crashes 1m
DroidFuzzer [44] 14 Crashes and DoS 2m
Demissie et al. [45] 9 Privacy Violations 38m

TABLE III: Evaluation of MALintent’s bug findings against appli-
cation datasets from past works. The time column is the average time
in minutes to find each bug.

To summarize, the Crafting Intents of Death paper fuzzes
to find intents that crash the target application, similar to our
crash oracle described in §III-D. It uses a black-box fuzzing
approach based on data from APK files. DroidFuzzer also uses
black-box fuzzing using only the <data> portions of the intent
filter to find crashes in applications. Identifying Android inter-
app communication vulnerabilities by Demissie et al. uses
static data-flow analysis to find flows from intents in an activity
to privileged Android OS calls such as the one to dial a phone
call. Table II compares these works to MALintent in terms of
coverage instrumentation and the type of bugs detected.

We ran MALintent against the datasets reported in each pa-
per to see if our oracles could find the bugs they did. Table III
shows the number of vulnerabilities in each application found
by those projects and how much time it took to find with
MALintent on average.

The crashes described in Crafting Intents of Death were
found in all 10 of the applications with their reported versions.
For DroidFuzzer we could not find an apk for the exact version
of an application they used (MX Player) version 1.7.14, so
we used the next available version 1.7.15. We confirmed that
each of the crashes and resource exhaustion bugs reported in
the paper were triggerable by MALintent and detected by its
crash oracle. Triggering the bugs described in the work by by
Demissie et al. took longer as they involved deeper bugs in the
application’s behavior. Demissie et al. indicated that it took 5
hours on average per app for them to discover bugs, showing
that our gray-box fuzzing may be a faster approach here.

10

MALintent’s oracles were able to rediscover all is-
sues from past automated intent-security issue-finding
works, sometimes faster than them.

JNI Memory Safety Oracle. The JNI memory safety oracle
of MALintent tests native code of the Android application,
which previous work did not test. To evaluate the effectiveness
of the JNI memory safety oracle, we compare the harnesses
generated by our framework against baseline harnesses, which
we created by removing the data dependencies that MALintent
detected. More specifically, MALintent internally uses an in-
termediate representation (IR), which we designed to describe
the native harnesses—for the baseline harnesses, we removed
data dependencies from the harness IR and let MALintent
continue with the modified IR.

Our evaluation is based on nine target libraries, which
MALintent found when running on the TGP dataset and six
libraries from the FDROID dataset. We fuzzed each of the
harnesses with AFLPlusPlus [48] for 24 hours.

Code Coverage. We evaluate whether MALintent is able to
help explore the target libraries. Therefore, we compare the
coverage of MALintent and baseline harnesses on the TGP
and FDROID datasets, as illustrated in Figure 7 and Figure 8,
respectively. We find that our harnesses gain significantly more
coverage in most cases, and similar coverage in some cases. In
one instance (sqlcipher), the reported coverage is significantly
higher in the baseline harness compared to MALintent.

We found that sqlcipher’s baseline harness shows inflated
coverage due to unstable feedback from handling incorrect
inputs. One of the input arguments is a string representing a
SQL database file path. If the string points to files modified
by the fuzzer between runs, it causes different paths to
be triggered, leading to instability and inflated coverage. In
contrast, MALintent detects the argument as a file path and
provides a file input, but the fuzzer fails to generate the
correct SQL database file format in the given time, resulting
in poor coverage. Generating input seeds to match the target’s
expectations is a separate issue and is considered future work.

The baseline harness for xzinputstream couldn’t run due
to immediate false positive crashes. Overall, we conclude
that MALintent effectively generates harnesses that cover the
targeted native code.

False Positives. Harnesses based on heuristics can cause
false positive crashes by incorrectly modeling API invoca-
tion. To assess MALintent’s performance, we compared false
positive crashes of MALintent and the baseline fuzzer for
each harness (see Figure 9). In four out of five cases, MA-
Lintent outperformed the baseline, with two cases showing
zero false positives and crashes in pdfjni and pdfjni2 being
non-reproducible. For nativedocument, both MALintent and
the baseline had higher false positives due to different root
causes. The baseline lacks constraints present in the MALin-
tent harness, while MALintent crashes are non-reproducible
or due to incomplete JNIEnv emulation, unlike the baseline.
We plan to extend our emulation environment to fix this.

0.0k

0.3k

0.6k

0.9k

1.2k

1.5k

0 6 12 18 24
0.0k

1.5k

3.0k

4.5k

6.0k

0 6 12 18 24
0.0k

0.2k

0.4k

0.6k

0.8k

0 6 12 18 24

0.0k

0.1k

0.2k

0.3k

0 6 12 18 24
0.0k

0.5k

1.0k

1.5k

2.0k

2.5k

0 6 12 18 24
0.0k

0.3k

0.6k

0.9k

1.2k

1.5k

0 6 12 18 24

0.0k
1.5k
3.0k
4.5k
6.0k
7.5k
9.0k

0 6 12 18 24
0.0k

1.0k

2.0k

3.0k

0 6 12 18 24
0.0k

0.1k

0.2k

0 6 12 18 24

(a) 7zofficeassetdecoder (b) modpdfium (c) nativedocument

ed
ge

co
un

t

(d) nativeroundingfilter (e) pdfjni (f) pdfjni2

(g) pdfpreviewjni

time in hours
MALintent Baseline

(h) sqlcipher (i) xzinputstream

Fig. 7: Coverage comparison between MALintent and baseline JNI
fuzzing (Top Google Play dataset).

0.0k

1.0k

2.0k

3.0k

4.0k

0 6 12 18 24
0.0k

0.1k

0.2k

0.3k

0.4k

0 6 12 18 24
0

25

50

75

100

0 6 12 18 24

0.0k

0.5k

1.0k

1.5k

0 6 12 18 24
0.0k

0.5k

1.0k

1.5k

0 6 12 18 24
0.0k

1.0k

2.0k

3.0k

0 6 12 18 24

ed
ge

co
un

t

(a) anddown (b) gcmcipher (c) gifinfohandle

(d) sqliteconn1

time in hours

MALintent Baseline

(e) sqliteconn2 (f) sqlitedb

Fig. 8: Coverage comparison between MALintent and baseline JNI
fuzzing (F-Droid dataset).

Other baseline crashes result from missing dependencies and
incorrect input formats, which MALintent handles by using
dynamic invocation sequences for harness generation.

The memory safety oracle in MALintent reduces false
positives and increases coverage compared to a naïve
fuzzer running against JNI entry points.

E. Static Overhead

To address RQ5, we evaluated the execution time of the
static analysis component of MALintent on each dataset. For
the larger, simpler FDROID dataset, the average execution
time was 7.4 s (median 6 s). The maximum time recorded was

11

0

5

10

15

20

25

30

nativedocument pdfjni2 pdfjni pdfpreviewjni sqlcipher

fa
ls

e
po

si
tiv

e
co

un
t

Baseline
MALintent

Fig. 9: False positive crashes comparison between MALintent and
baseline JNI fuzzing. Lower is better. Only targets that resulted in
false positive crashes are included.

75 s, with 75% of applications completing in 10 s or less.
On the smaller but more complex TGP dataset, the average
execution time increased to 62 s (median 53 s). The longest
execution time recorded was 4.5 minutes, though 75% of
applications completed in 77 s or less.

We conclude that the static analysis is well within
acceptable time frames, with most apps completing in
around one minute, even for complex real-world cases.

F. Bug Discovery

To answer RQ6, we ran MALintent against real-world
Android applications to investigate whether it could detect
security issues. For these experiments, we ran MALintent
on both the TGP and FDROID datasets. We fuzzed each
application using MALintent for 16 hours.

Overall Bug Findings. The overall bug findings are pre-
sented in Table IV. During its fuzzing, MALintent was able
to find 1 memory safety bug, 9 privacy issues, and 49 crashes.

Crashes. The 49 crashes were generally caused by
null pointer exceptions in applications using methods like
getStringExtra before checking hasExtra. There were
also some index out of bounds exceptions caused by assump-
tions of the length of arrays passed as intent extras. Each crash
report has an exact intent to trigger the bug and had no false
positives.

Privacy Violations. Privacy violations were found in 9 apps.
We filtered out 4 invalid reports where our dataflow analysis
incorrectly showed sensitive data in attacker accessible files
even though it had been redacted. We analyze and describe
four privacy violations in greater detail:

(1) In the Chrome web browser, there was an exposed
TracingControllerAndroidImpl broadcast receiver used
to begin GPU profiling data in the browser. This receiver
accepted an intent with a string key of file corresponding
to where to store the profiled data. This profiling data reads
from the app’s private database and contains sensitive user
information including the URLs of the tabs open in the
browser as well as their headers (including session cookies).

(2) In WhatsApp, a chat application, there is an exported
CameraActivity component. When sent with an action of

uri pointing to a local file (or content provider) and with the
boolean extra more_images set to true, the camera immedi-
ately takes one picture and stores it in a location where an
attacker app can read it.

(3) The TextNow application, an alternative dialer that
utilizes Voice over Internet Protocol (VoIP), contains a
DialerActivity that can be sent intents. If an intent is sent
containing a boolean extra answer_call with a value of true
and a phone_number, the application calls the phone number
without the user’s consent.

(4) In Forbis VideoCall, the main SplashActivity
can receive an intent extra api_url nested inside a
SharedIntent.extras bundle. This causes the application to
make a connection to the URL specified with some metadata
from the application.

Bugs 1 and 4 leak privileged data to the attacker. Bug 2
allows a malicious application to access the user’s camera
without permission. Bug 3 can cause an unprivileged app to
access the user’s microphone by having them call the attacker.

JNI Memory Safety. The memory safety bug was found in
Fresco, a common GUI framework used by Facebook and
Instagram. The framework provides an API to add rounded
corners to an image. This feature is implemented in native
code and invoked through the JNI. The native implementation
uses memset to modify the bitmap data of the provided
image. However, MALintent found an off-by-one error in the
calculation of the destination pointer that is passed as argument
to memset. The off-by-one lets the destination pointer point
past the bitmap array resulting in an out-of-bounds write.
Four other reports were found to be duplicated false positive
crashes from MALintent’s incomplete JNIEnv emulation.

MALintent was able to discover 47 crashes, 9 privacy
violations and 1 memory safety issue in the Top
Google Play and F-Droid datasets.

Responsible Disclosure. We reported all findings to their
respective vendors, where applicable. We did not scan for bugs
in applications other than the ones specified in the evaluation.
All findings were confirmed or fixed by developers except 3
privacy bugs and 12 crashes in umaintained applications where
we did not receive a response.

VI. DISCUSSION

A. Coverage Instrumentation

Coverage instrumentation for closed-source applications on
Android ecosystem has been a consistent challenge. Prior
research becomes hard to evaluate when coverage tools only
support outdated versions of Android [49]. These old versions
of Android are usually unable to run the latest applications
limiting evaluations to older code with less mature security and
engineering practices. In order to improve this situation, we
have released MALintent’s coverage instrumentation tool as

12

Application Component Oracle Bug Description

Instagram libnative-filters.so JNI Memory Safety Out-of-bounds write in the Fresco GUI framework used by Instagram and
Facebook.

Chrome Browser TracingController Privacy Violation Exposed memory profiler leaks private browser data: URL and headers
including cookies.

WhatsApp CameraActivity Privacy Violation Sending an intent with the uris extra pointed to an attacker controlled
content provider and add_more_images set to true causes a camera image
to be saved.

TextNow DialerActivity Privacy Violation An intent with the boolean extra answer_call set to true and phone_-
number causes the app to call up a number without user interaction or
consent.

Forbis VideoCall SplashActivity Privacy Violation Creates a connection to an attacker controlled URL through the api_url
extra.

Easy-phone RealCallActivity Privacy Violation Calls an attacker controlled phone number passed through the NUMBER_-
TO_CALL extra.

OpenGPX CacheListActivity Privacy Violation App accepts an arbitrary URI to copy gpx map files. Path traversal allows
copying app’s files including user location.

AndrOBD GpsProvider GpsProvider Privacy Violation AndrODB allows different plugins to provide data to a central application.
The GpsProvider plugin allows leaking of GPS data.

RethinkDNS HomeScreenActivity Privacy Violation Allows restoring config from backup, can set a malicious proxy and
intercept all traffic.

OpenCamera Sensors MainActivity Privacy Violation Sending VIDEO_CAPTURE with DURATION_LIMIT extra captures video
without interaction.

WhatsApp HomeActivity Crash Sending an intent with the NDEF_DISCOVERED action and no code extra
causes a null pointer exception.

WhatsApp HomeActivity Crash Sending an intent with an empty NDEF_MESSAGES extra causes an index
out of bounds.

47 other crashes omitted for space

TABLE IV: Security bugs found by running MALintent against the top-50 productivity, top-50 most popular apps on the Google Play
Store (TGP) and 500 randomly sampled F-Droid apps (FDROID).

an independent open source project that can be used by others
at https://github.com/sslab-gatech/AndroidCoverageAgent.

As described in §III-B, MALintent’s binary instrumentation
method uses the Android JVMTI API instead of decompiling
and recompiling application apks like past approaches. MA-
Lintent’s technique carries significant advantages, first being
its broad compatibility with Android versions.

Secondly, some apps check their own signatures before ex-
ecuting. Developers also utilize Android’s permissions system
where certain permissions are granted to all of the apps by
a single developer. For example, Google Docs grants special
permissions to Google Calendar to render document previews.
In these situations, it is impossible to re-sign the apk with the
developer’s original key causing them not to function. Since
MALintent does not recompile applications, they continue to
function even with their signature checks.

B. Limitations

The static analysis (§III-A) used by MALintent to generate
initial intent specifications is quite simple. If the app is using
dynamic code execution techniques such as reflection [50]
or obfuscation [51] in its intent handlers, MALintent may
be unable to fuzz it efficiently. Additionally, Android allows
the registration of BroadcastReceivers at runtime with a
IntentFilter object in code instead of declaring it in the
application manifest [52]. These dynamic receivers are not
currently handled by MALintent. Supplementing the static
analysis by introspecting the intent receivers through the OS
at runtime could be a solution to this problem.

C. Future Work

While MALintent implements a complete approach to
fuzzing and mutating intents, there is a wealth of new fuzzing
mutation techniques. These could be used to improve the
performance of the fuzzer. We built three oracles for MA-
Lintent. However, our implementations of the oracles are only
prototypes to show the potential of our approach. We release
our fuzzer to allow the community to develop additional
oracles and explore further possibilities.

For example, our privacy oracle uses a very conservative
set of sinks to minimize false positives. More mature dynamic
taint analysis work on Android applications would allow the
privacy oracle to potentially find more bugs. Another beneficial
technique for assisting the fuzzer may be symbolic execution.

Also, our JNIEnv emulation only supports a subset of
JNI environment functions. Our emulation is not complete
and may not support all native libraries. In addition, our
environment emulation does not support the invocation of Java
methods through the JNIEnv. While this was not needed in
our evaluation, there may exist libraries that would require
the correct invocation of Java methods.

Broadly, intents are not the only entry point to Android
applications: user input, network events, and Firebase cloud
messages also exist. However, in those scenarios, the threat
model is not as clearly defined. It depends on the target
application: if an attacker can control, for example, a Firebase
cloud message or the contents of a network packet used by the
target application. Thus, additional research needs to identify,
which parts of the input may be controlled by an attacker.

13

https://github.com/sslab-gatech/AndroidCoverageAgent

While a new fuzzer would need to be developed, our coverage
instrumentation can be readily used in those scenarios.

VII. RELATED WORK

GUI Fuzzing. Using automated tools to explore and inter-
act with the graphical interface of applications to maximize
coverage has been a widely explored area of research [53],
[54], [55], [56], [57], [58], [59], [60]. GUI fuzzing aims
to systematically explore the program space to find crashes
and bugs rather than security issues. Some GUI fuzzers are
coverage-guided but as per our evaluation of MALintent in
§V-A, their coverage instrumentation is not robust and breaks
with Android updates.

Android Coverage Instrumentation. In the space of cov-
erage instrumentation for closed-source Android applications,
there have been attempts that try to lift the bytecode to a
Java .jar files in order to use traditional Java instrumentation
tools. [16], [35] Other tools disassemble the bytecode and
then reassemble it back into an application [15], [34], [36],
[37]. MALintent uses an approach similar to these tools,
however, it modifies the bytecode directly in the Android
runtime using the JVMTI instead of having to extract and
repackage applications.

Intent Vulnerabilities. In the space of outlining and de-
tecting bugs related to intents, Enck et al. [61] pointed out
intent broadcast receivers that were unintentionally exposed
allowing malicious apps to trigger functionality inside them.
ComDroid [1] takes a deeper look at intent vulnerabilities
and offers a static analysis tool to detect intent hijacking (a
malicious app receiving intents it should not be able to).

More recent static analysis tools around intents have worked
to find code paths from intent handlers to privileged OS
functions [45], [62], [63], [64]. This includes finding intent
handlers that forward intents at a higher privilege level [65].

Intent Fuzzing. Prior work on fuzzing intent handlers has
greatly explored black-box intent fuzzing on Android [43],
[44], [66], [67], [68], [69]. This existing work generates
intents but has no feedback mechanism to explore deeper code
behaviors like MALintent. Previous approaches also detect
only crashes in the target application rather than finding other
types of security bugs like with MALintent’s oracles.

JNI Security. Several tools leverage static and dynamic
analyses at the JNI level to detect errors in JNI usage [70],
[71], [72], [73]. Those tools employ static checks with type-
state analysis [70], track exception states with data-flow anal-
ysis to detect unsafe JNI operations [71], and provide static
and dynamic checks to guarantee type safety in JNIEnv inter-
actions [72]. Those analyses are limited to specific categories
of bugs, mainly consider interactions with the JNIEnv only,
cannot be used for Android apps, and do not use fuzz testing.

The closest to our JNI-fuzzing component is a Quarkslab
blog post [74], which describes setting up a JNI fuzzer
with AFLPlusPlus Frida mode. While MALintent also uses
AFLPlusPlus, we developed our fuzzer before the blog post
was published and, thus, the internals are different: We auto-
matically generate harnesses from a custom harness IR, which

we designed only for MALintent internally. In addition, our
fuzzer emulates the JNI environment allowing MALintent to
automatically instantiate objects, which need to be manually
initialized with the Quarkslab setup.

VIII. CONCLUSION

We introduce MALintent, a framework for fuzzing Intent
handlers in Android applications. MALintent uses a novel
coverage instrumentation method for coverage-guided fuzzing
on Android. MALintent was able to rediscover all intent bugs
from previous works as well as 49 new crashes, 9 privacy
violations, and 1 memory safety issue in the top-50 overall
most popular and top-50 productivity on Google Maps, as well
as 500 random F-Droid applications. MALintent’s coverage
instrumentation is open source and available at https://github.
com/sslab-gatech/AndroidCoverageAgent. MALintent’s intent
fuzzer is open source and available at https://github.com/sslab-
gatech/MALintent.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
comments and valuable suggestions that helped improve the
quality of this paper.

This material is based upon work supported by the Office of
Naval Research under awards N00014-23-1-2387 and N00014-
23-1-2095, by the National Science Foundation under grants
no. 2229876 and CNS-1749711, by the Defense Advanced
Research Projects Agency under grant N66001-21-C-4024,
and is supported in part by funds provided by the National
Science Foundation, by the Department of Homeland Security,
by the Technology Innovation Institute (UAE), by IBM, by
Facebook, by Mozilla, by Intel, by VMware, and by Google.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation or its federal agency and industry partners.

REFERENCES

[1] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 239–252. [Online]. Available:
https://doi.org/10.1145/1999995.2000018

[2] Curesec, “CVE-2013-6271: Remove device locks from android phone,”
Curesec Security Research Blog, Nov 2013, accessed 27-01-2024.
[Online]. Available: https://curesec.com/blog/article/blog/CVE-2013-
6271-Remove-Device-Locks-from-Android-Phone-26.html

[3] I. Mohamed and D. Patel, “Android vs ios security: A comparative
study,” in 2015 12th International Conference on Information Technol-
ogy - New Generations, 2015, pp. 725–730.

[4] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based
greybox fuzzing as markov chain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: Association for Computing
Machinery, 2016, p. 1032–1043. [Online]. Available: https://doi.org/10.
1145/2976749.2978428

[5] M. Zalewski, “American fuzzy lop,” 2017, accessed 27-01-2024.
[Online]. Available: http://lcamtuf.coredump.cx/afl

[6] R. Swiecki, “Honggfuzz: A general-purpose, easy-to-use fuzzer
with interesting analysis options,” 2017. [Online]. Available: https:
//github.com/google/honggfuzz

14

https://github.com/sslab-gatech/AndroidCoverageAgent
https://github.com/sslab-gatech/AndroidCoverageAgent
https://github.com/sslab-gatech/MALintent
https://github.com/sslab-gatech/MALintent
https://doi.org/10.1145/1999995.2000018
https://curesec.com/blog/article/blog/CVE-2013-6271-Remove-Device-Locks-from-Android-Phone-26.html
https://curesec.com/blog/article/blog/CVE-2013-6271-Remove-Device-Locks-from-Android-Phone-26.html
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
http://lcamtuf.coredump.cx/afl
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz

[7] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren,
G. Grieco, and D. Brumley, “Optimizing seed selection for
fuzzing,” in 23rd USENIX Security Symposium (USENIX Security
14). San Diego, CA: USENIX Association, Aug. 2014, pp.
861–875. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/rebert

[8] skylot, “jadx: Dex to Java decompiler,” 2023, accessed 27-01-2024.
[Online]. Available: https://github.com/skylot/jadx

[9] E. Levinson, “RFC 2387: the mime multipart/related content-type,”
Network Working Group, Tech. Rep., 1998.

[10] P. Godefroid, “Fuzzing: Hack, art, and science,” Commun. ACM,
vol. 63, no. 2, p. 70–76, jan 2020. [Online]. Available: https:
//doi.org/10.1145/3363824

[11] D. Bruening and Q. Zhao, “Tutorial: Building dynamic instrumentation
tools with dynamorio,” in International Symposium on Code Generation
and Optimization (CGO 2011), 2011, pp. xxi–xxi.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” SIGPLAN
Not., vol. 40, no. 6, p. 190–200, jun 2005. [Online]. Available:
https://doi.org/10.1145/1064978.1065034

[13] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41. Califor-nia,
USA, 2005, p. 46.

[14] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Breaking through binaries: Compiler-quality instrumentation for
better binary-only fuzzing,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1683–1700. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/nagy

[15] A. Pilgun, O. Gadyatskaya, S. Dashevskyi, Y. Zhauniarovich, and
A. Kushniarou, “An effective android code coverage tool,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 2189–2191. [Online].
Available: https://doi.org/10.1145/3243734.3278484

[16] A. Romdhana, M. Ceccato, G. C. Georgiu, A. Merlo, and P. Tonella,
“Cosmo: Code coverage made easier for android,” in 2021 14th IEEE
Conference on Software Testing, Verification and Validation (ICST),
2021, pp. 417–423.

[17] A. Pilgun, O. Gadyatskaya, Y. Zhauniarovich, S. Dashevskyi,
A. Kushniarou, and S. Mauw, “Fine-grained code coverage measurement
in automated black-box android testing,” ACM Trans. Softw. Eng.
Methodol., vol. 29, no. 4, jul 2020. [Online]. Available: https:
//doi.org/10.1145/3395042

[18] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing droids:
Program slicing for smali code,” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, ser. SAC ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 1844–1851.
[Online]. Available: https://doi.org/10.1145/2480362.2480706

[19] G. Sharma and D. Hiran, “Reverse engineering for potential malware
detection: Android apk smali to java,” Journal of Information Assurance
& Security, vol. 15, no. 1, pp. 26–34, 2020.

[20] J. Howarth, I. Altas, and B. Dalgarno, “Information flow control using
the java virtual machine tool interface (jvmti),” in 2010 International
Conference on Availability, Reliability and Security, 2010, pp. 689–695.

[21] A. O. S. Project, “platform/tools/dexter,” 2023, accessed 27-01-
2024. [Online]. Available: https://android.googlesource.com/platform/
tools/dexter/

[22] Q. Gan and H. Wu, “The research of android broadcast intercept
technology based on priority,” in 2012 Fourth International Conference
on Multimedia Information Networking and Security, 2012, pp. 556–
559.

[23] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “Taintman:
An art-compatible dynamic taint analysis framework on unmodified
and non-rooted android devices,” IEEE Trans. Dependable Secur.
Comput., vol. 17, no. 1, p. 209–222, jan 2020. [Online]. Available:
https://doi.org/10.1109/TDSC.2017.2740169

[24] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” SIGPLAN Not., vol. 49, no. 6, p. 259–269, jun 2014. [Online].
Available: https://doi.org/10.1145/2666356.2594299

[25] Oracle, “Java native interface specification,” 2021, accessed 27-
01-2024. [Online]. Available: https://docs.oracle.com/en/java/javase/17/
docs/specs/jni/index.html

[26] E. S. Raymyond, “giflib,” 2019, accessed 27-01-2024. [Online].
Available: http://giflib.sourceforge.net/

[27] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim,
“FLEXDROID: enforcing in-app privilege separation in Android,”
in 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/2017/
09/flexdroid-enforcing-in-app-privilege-separation-android.pdf

[28] M. Barbareschi, A. Cilardo, and A. Mazzeo, “Partial FPGA bitstream
encryption enabling hardware DRM in mobile environments,” in
Proceedings of the ACM International Conference on Computing
Frontiers, ser. CF ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 443–448. [Online]. Available: https:
//doi.org/10.1145/2903150.2911711

[29] National Institute of Standards and Technology, “National vulnerability
database - CVE-2019-11931 detail,” 2019, accessed 27-01-2024.
[Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2019-11931

[30] ——, “National vulnerability database - CVE-2019-11932 detail,”
2019, accessed 27-01-2024. [Online]. Available: https://nvd.nist.gov/
vuln/detail/CVE-2019-11932

[31] ——, “National vulnerability database - CVE-2019-11933 detail,”
2019, accessed 27-01-2024. [Online]. Available: https://nvd.nist.gov/
vuln/detail/CVE-2019-11933

[32] A. Fioraldi, D. C. Maier, D. Zhang, and D. Balzarotti, “Libafl: A
framework to build modular and reusable fuzzers,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1051–1065. [Online]. Available:
https://doi.org/10.1145/3548606.3560602

[33] Z. Zhou, “Redroid—remote android,” 2024, accessed 06-08-2024.
[Online]. Available: https://github.com/remote-android

[34] S. Anand and L. Clapp, “ELLA: A tool for binary instrumentation
of android apps,” 2016, accessed 27-01-2024. [Online]. Available:
https://github.com/saswatanand/ella

[35] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Mas-
sacci, “Towards Black Box Testing of Android Apps,” in 10th Interna-
tional Conference on Availability, Reliability and Security, ser. ARES,
2015, pp. 501–510.

[36] J. Liu, T. Wu, X. Deng, J. Yan, and J. Zhang, “Insdal: A safe
and extensible instrumentation tool on dalvik byte-code for android
applications,” in 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2017, pp. 502–506.

[37] C.-C. Yeh and S.-K. Huang, “Covdroid: A black-box testing coverage
system for android,” in 2015 IEEE 39th Annual Computer Software and
Applications Conference, vol. 3, 2015, pp. 447–452.

[38] A. Developers, “Enable multidex for apps with over 64k methods,”
2023, accessed 27-01-2024. [Online]. Available: https://developer.
android.com/build/multidex

[39] habreil, “dex2jar issue #333: Is there any plan to support android
q version?” 2019, accessed 27-01-2024. [Online]. Available: https:
//github.com/pxb1988/dex2jar/issues/333

[40] F-Droid Contributors, “F-droid—free and open source android
app repository,” 2010, accessed 04-08-2024. [Online]. Available:
https://f-droid.org/

[41] H. Guo, T. Su, X. Liu, S. Gu, and J. Sun, “Effectively finding ICC-related
bugs in android apps via reinforcement learning,” in 2023 IEEE 34th
International Symposium on Software Reliability Engineering (ISSRE),
2023, pp. 403–414.

[42] M. Auer, A. Stahlbauer, and G. Fraser, “Android fuzzing: Balancing
user-inputs and intents,” in 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST), 2023, pp. 37–48.

[43] R. Sasnauskas and J. Regehr, “Intent fuzzer: crafting intents of death,”
in Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, De-
bugging, and Analytics (PERTEA), 2014, pp. 1–5.

[44] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing the
android apps with intent-filter tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, ser.
MoMM ’13. New York, NY, USA: Association for Computing

15

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://github.com/skylot/jadx
https://doi.org/10.1145/3363824
https://doi.org/10.1145/3363824
https://doi.org/10.1145/1064978.1065034
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://doi.org/10.1145/3243734.3278484
https://doi.org/10.1145/3395042
https://doi.org/10.1145/3395042
https://doi.org/10.1145/2480362.2480706
https://android.googlesource.com/platform/tools/dexter/
https://android.googlesource.com/platform/tools/dexter/
https://doi.org/10.1109/TDSC.2017.2740169
https://doi.org/10.1145/2666356.2594299
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/index.html
https://docs.oracle.com/en/java/javase/17/docs/specs/jni/index.html
http://giflib.sourceforge.net/
https://www.ndss-symposium.org/wp-content/uploads/2017/09/flexdroid-enforcing-in-app-privilege-separation-android.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/flexdroid-enforcing-in-app-privilege-separation-android.pdf
https://doi.org/10.1145/2903150.2911711
https://doi.org/10.1145/2903150.2911711
https://nvd.nist.gov/vuln/detail/CVE-2019-11931
https://nvd.nist.gov/vuln/detail/CVE-2019-11932
https://nvd.nist.gov/vuln/detail/CVE-2019-11932
https://nvd.nist.gov/vuln/detail/CVE-2019-11933
https://nvd.nist.gov/vuln/detail/CVE-2019-11933
https://doi.org/10.1145/3548606.3560602
https://github.com/remote-android
https://github.com/saswatanand/ella
https://developer.android.com/build/multidex
https://developer.android.com/build/multidex
https://github.com/pxb1988/dex2jar/issues/333
https://github.com/pxb1988/dex2jar/issues/333
https://f-droid.org/

Machinery, 2013, p. 68–74. [Online]. Available: https://doi.org/10.1145/
2536853.2536881

[45] B. F. Demissie, D. Ghio, M. Ceccato, and A. Avancini, “Identifying
android inter app communication vulnerabilities using static and
dynamic analysis,” in Proceedings of the International Conference
on Mobile Software Engineering and Systems, ser. MOBILESoft ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
255–266. [Online]. Available: https://doi.org/10.1145/2897073.2897082

[46] Fuzion24, “AndroidIntentFuzzer: Android Null Intent Fuzzer,” 2015,
accessed 17-04-2024. [Online]. Available: https://github.com/Fuzion24/
AndroidIntentFuzzer

[47] MindMac, “IntentFuzzer,” 2017, accessed 17-04-2024. [Online].
Available: https://github.com/MindMac/IntentFuzzer

[48] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++ : Combining
incremental steps of fuzzing research,” in 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association, Aug.
2020. [Online]. Available: https://www.usenix.org/conference/woot20/
presentation/fioraldi

[49] sunxiaobiu, “Timemachine issue #15: How can i instrument closed-
sourced apk?” 2022, accessed 27-01-2024. [Online]. Available:
https://github.com/DroidTest/TimeMachine/issues/15

[50] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of java reflection - literature review and empirical study,” in
2017 IEEE/ACM 39th International Conference on Software Engineer-
ing (ICSE), May 2017, pp. 507–518.

[51] D. Pizzolotto and M. Ceccato, “[research paper] obfuscating java pro-
grams by translating selected portions of bytecode to native libraries,”
in 2018 IEEE 18th International Working Conference on Source Code
Analysis and Manipulation (SCAM), 2018, pp. 40–49.

[52] M. Alhanahnah, Q. Yan, H. Bagheri, H. Zhou, Y. Tsutano, W. Srisa-An,
and X. Luo, “Dina: Detecting hidden android inter-app communication
in dynamic loaded code,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 2782–2797, 2020.

[53] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ser. ICSE ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
481–492. [Online]. Available: https://doi.org/10.1145/3377811.3380402

[54] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of Android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 641–660.
[Online]. Available: https://doi.org/10.1145/2509136.2509549

[55] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: Association for Computing Machinery, 2013, p.
224–234. [Online]. Available: https://doi.org/10.1145/2491411.2491450

[56] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016. New York, NY, USA: Association for Computing Machinery,
2016, p. 94–105. [Online]. Available: https://doi.org/10.1145/2931037.
2931054

[57] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based GUI testing of Android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 245–256. [Online].
Available: https://doi.org/10.1145/3106237.3106298

[58] T. Gu, C. Sun, X. Ma, C. Cao, C. Xu, Y. Yao, Q. Zhang, J. Lu, and Z. Su,
“Practical GUI testing of Android applications via model abstraction
and refinement,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 269–280.

[59] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android
apps with minimal restart and approximate learning,” SIGPLAN
Not., vol. 48, no. 10, p. 623–640, Oct. 2013. [Online]. Available:
https://doi.org/10.1145/2544173.2509552

[60] P. Bose, D. Das, S. Vasan, S. Mariani, I. Grishchenko, A. Continella,
A. Bianchi, C. Kruegel, and G. Vigna, “Columbus: Android app testing
through systematic callback exploration,” in 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE), 2023, pp.
1381–1392.

[61] W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, “A study of
android application security.” in USENIX security symposium, vol. 2,
no. 2, 2011.

[62] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert: Compositional
analysis of android inter-app permission leakage,” IEEE Transactions on
Software Engineering, vol. 41, no. 9, pp. 866–886, 2015.

[63] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically
vetting android apps for component hijacking vulnerabilities,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 229–240. [Online].
Available: https://doi.org/10.1145/2382196.2382223

[64] J. Zhong, J. Huang, and B. Liang, “Android permission re-delegation
detection and test case generation,” in 2012 International Conference
on Computer Science and Service System, 2012, pp. 871–874.

[65] B. F. Demissie and M. Ceccato, “Security testing of second order
permission re-delegation vulnerabilities in android apps,” in Proceedings
of the IEEE/ACM 7th International Conference on Mobile Software
Engineering and Systems, ser. MOBILESoft ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1–11. [Online].
Available: https://doi.org/10.1145/3387905.3388592

[66] MindMac, “Intentfuzzer,” 2013, accessed 27-01-2024. [Online].
Available: https://github.com/MindMac/IntentFuzzer

[67] Fuzion24, “Android null intent fuzzer,” 2014, accessed 27-01-2024.
[Online]. Available: https://github.com/Fuzion24/AndroidIntentFuzzer

[68] T. Wu and Y. Yang, “Crafting intents to detect icc vulnerabilities of
android apps,” in 2016 12th International Conference on Computational
Intelligence and Security (CIS), 2016, pp. 557–560.

[69] K. Choi, M. Ko, and B.-M. Chang, “A practical intent fuzzing tool
for robustness of inter-component communication in android apps,”
KSII Trans. Internet Inf. Syst., vol. 12, pp. 4248–4270, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:53112930

[70] G. Kondoh and T. Onodera, “Finding bugs in java native interface
programs,” in Proceedings of the 2008 International Symposium on
Software Testing and Analysis, ser. ISSTA ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 109–118. [Online].
Available: https://doi.org/10.1145/1390630.1390645

[71] S. Li and G. Tan, “Finding bugs in exceptional situations of JNI
programs,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security, ser. CCS ’09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 442–452. [Online].
Available: https://doi.org/10.1145/1653662.1653716

[72] G. Tan, A. W. Appel, S. Chakradhar, A. Raghunathan, S. Ravi, and
D. Wang, “Safe java native interface,” in Proceedings of IEEE Interna-
tional Symposium on Secure Software Engineering, vol. 97. Citeseer,
2006, p. 106.

[73] M. Furr and J. S. Foster, “Polymorphic type inference for the JNI,”
in Programming Languages and Systems, P. Sestoft, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 309–324.

[74] E. L. Guevel, “Android greybox fuzzing with AFL++ frida
mode,” Quarkslab’s blog, 2023, accessed 06-08-2024. [On-
line]. Available: https://blog.quarkslab.com/android-greybox-fuzzing-
with-afl-frida-mode.html

16

https://doi.org/10.1145/2536853.2536881
https://doi.org/10.1145/2536853.2536881
https://doi.org/10.1145/2897073.2897082
https://github.com/Fuzion24/AndroidIntentFuzzer
https://github.com/Fuzion24/AndroidIntentFuzzer
https://github.com/MindMac/IntentFuzzer
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://github.com/DroidTest/TimeMachine/issues/15
https://doi.org/10.1145/3377811.3380402
https://doi.org/10.1145/2509136.2509549
https://doi.org/10.1145/2491411.2491450
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/2544173.2509552
https://doi.org/10.1145/2382196.2382223
https://doi.org/10.1145/3387905.3388592
https://github.com/MindMac/IntentFuzzer
https://github.com/Fuzion24/AndroidIntentFuzzer
https://api.semanticscholar.org/CorpusID:53112930
https://doi.org/10.1145/1390630.1390645
https://doi.org/10.1145/1653662.1653716
https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html
https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html

	Introduction
	Background
	Intents
	Intent Vulnerabilities
	Coverage-driven Grey-box Fuzzing

	Design
	Static Analysis
	Application Manifest
	Intent Handling Code
	Intent Specification

	Coverage Instrumentation
	Fuzzing Loop
	Sending Intents
	Mutating Intents

	Bug Oracles
	Crashes
	Privacy Violations
	JNI Memory Safety

	Implementation
	Evaluation
	Coverage Instrumentation
	Effect of Coverage Feedback on Fuzzing
	Comparison to State of the Art
	Bug Oracles
	Static Overhead
	Bug Discovery

	Discussion
	Coverage Instrumentation
	Limitations
	Future Work

	Related work
	Conclusion
	References

