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Abstract—The Windows operating system employs various
inter-process communication (IPC) mechanisms, typically involv-
ing a privileged server and a less privileged client. However,
scenarios exist where the client has higher privileges, such as a
performance monitor running as a domain controller obtaining
data from a domain member via IPC. In these cases, the server
can be compromised and send crafted data to the client.

Despite the increase in Windows client applications, exist-
ing research has overlooked potential client-side vulnerabilities,
which can be equally harmful. This paper introduces GLEIPNIR,
the first vulnerability detection tool for Windows remote IPC
clients. GLEIPNIR identifies client-side vulnerabilities by fuzzing
IPC call return values and introduces a snapshot technology to
enhance testing efficiency. Experiments on 76 client applications
demonstrate that GLEIPNIR can identify 25 vulnerabilities within
7 days, resulting in 14 CVEs and a bounty of $36,000.

I. INTRODUCTION

Modern operating systems, including Windows and Linux,
leverage Inter-Process Communication (IPC) for communi-
cation between processes, which may reside on the same
or different machines. In this context, two primary roles
are defined: the client and the server. The client initiates
communication by sending requests, which the server receives,
processes, and responds to. In remote IPC scenarios, where
IPC data is transmitted over the network, client and server pro-
cesses typically belong to different trust levels. Consequently,
the operating system implements stringent security measures,
such as access control and impersonation, to protect the trust
boundary.

In recent years, numerous security research studies [1], [2],
[3], [4], [5], [6], [7], [8], [9] have attempted to exploit the
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Fig. 1. A client vulnerability detected by GLEIPNIR (CVE-2024-38025). The
vulnerable code segment is depicted in Figure 8.

data exchanged between clients and servers to breach the trust
boundary of servers. These studies consistently assume that
the server is an entity of absolute trust, while the client is
portrayed as an attacker, dispatching malicious payloads to
uncover and exploit server vulnerabilities. This prevailing as-
sumption is consistent with the typical use cases of IPC, where
servers often handle critical operations and manage sensitive
resources, thus operating with elevated privileges compared to
clients. By June 2024, over 1,500 vulnerabilities associated
with IPC servers have been reported to the Microsoft Security
Response Center (MSRC) [10], highlighting that IPC servers
are frequent targets for attackers.

However, existing research has overlooked a critical fact:
in scenarios where IPC clients operate with higher privileges
than IPC servers, which is common in remote management
software [11], the data returned by the server can breach the
trust boundary of the clients, leading to severe consequences.

Consider CVE-2024-38025 as an example, illustrated in
Figure 1. The Windows domain controller employs a per-
formance monitor to oversee the domain member. The per-
formance monitor, acting as the IPC client, 1 receives user
interactions, such as clicks and text input. 2 These interactions
establish the necessary context for triggering an IPC call. 3
The IPC protocol is then used to transmit this call, enabling
data retrieval from the monitored machine,which plays the role
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of the IPC server. If the domain member is compromised by
an attacker, 4 the genuine data (0x00000020) is manipulated
and altered to maliciously crafted data (0x1ffffff4). The
performance monitor fails to verify this data, which can lead
to memory corruption. Consequently, this vulnerability results
in remote code execution and potentially compromising the
entire domain controller. Due to blind trust in the server’s
return values and the limited research on such values, this
vulnerability has been overlooked for 20 years.

With the increasing complexity and methodological diver-
sity of modern network systems, operating system administra-
tors are increasingly relying on various remote management
software. Examples include Performance Monitor[12], Re-
mote Desktop[13], Admin Center[14], Disk Management[15],
TeamViewer[16], and VMware vCenter[17]. These tools em-
ploy IPC to manage lower-privileged computers within the
network, which may be susceptible to attacker compromise.
Consequently, IPC client-side management tools are exposed
to significant threats that existing research has largely over-
looked, leading to numerous potential vulnerabilities similar
to CVE-2024-38025 in clients. Moreover, such vulnerabilities
can be exploited in various ways, such as Man-in-the-Middle
attacks and compromised network components, without nec-
essarily requiring a malicious server. Therefore, there is an
urgent need for a detection approach capable of identifying
such client-side vulnerabilities.

A. Differences

Fuzzing is a well-established technique that has been proven
effective in testing network applications [18], [19]. However,
existing research has primarily focused on fuzzing servers,
with limited attention given to client fuzzing. While some
studies [20], [21], [18] claim to address client fuzzing, they
often treat clients as servers, merely adapting server fuzzing
techniques. This raises a critical question: is it effective to
directly apply server fuzzing techniques to client fuzzing?

The answer is no, primarily due to the key difference
in data processing between servers and clients. As shown
in Figure 1, servers, once operational, typically receive and
process mutated data immediately without building additional
context. Although servers may need prior requests to create
context for processing certain requests, when receiving an out-
of-sequence request, they can still process or correctly reject
it without disrupting normal operation.

In contrast, clients are highly context-dependent. Without
proper context, clients may fail to execute IPC calls or pro-
cess return values. This makes client-side testing, particularly
fuzzing, more complex and requires careful context prepa-
ration. This context, comprising memory data that must be
prepared before fuzzing, plays a crucial role in client fuzzing.
For example, in Figure 1, user interactions, such as clicks
and text input, drive the client to generate memory values for
variables like cbData and cbLen, collectively referred to
as the context. The execution of the IPC call relies on this
context. Furthermore, this context plays a significant role in
subsequent IPC return value handling.

B. Challenges
The key difference highlights the critical importance of

context building in client fuzzing. Since constructing con-
text is time-consuming, it’s natural to consider employing
snapshot-based fuzzing techniques to preserve the context.
This approach allows for repeatedly restoring these snapshots,
avoiding repeatedly constructing the context while injecting
mutated return values, thereby efficiently detecting client vul-
nerabilities. However, before applying snapshot-based fuzzing
techniques to clients, three significant challenges must be
addressed in context construction and fuzzing execution.
Challenge 1: How can we precisely and automatically
identify IPC clients from large-scale binaries?

Before constructing the context and applying snapshot-
based fuzzing, it is crucial to identify appropriate clients
as fuzzing targets. Windows operating systems offer a rich
landscape of potential targets, encompassing numerous appli-
cations and APIs that utilize IPC. Although some efforts [22],
[23] have been made to identify IPC servers for server fuzzing,
there is currently no work focused on identifying IPC clients.
Furthermore, for subsequent context construction phases, it is
essential to pair clients with their corresponding servers, yet
this task remains unaddressed. Since Windows is a closed-
source system with a vast number of binary files, automating
the identification of clients and accurately pairing them with
servers can be challenging.
Challenge 2: How can we effectively trigger as many IPC
calls in clients as possible to construct the context?

Once a client is identified, our testing targets become its
code that processes IPC return values. Since a client may
contain multiple IPC calls, triggering as many calls as possible
increases the likelihood of exposing potential vulnerabilities.
However, compared to servers that merely respond to IPC
requests, client-side applications encompass a diverse array
of testing targets, including GUI-based and CLI-based ap-
plications and public APIs utilized by developers. To fuzz
the return values of IPC calls in a client application, it is
necessary to prepare a context capable of executing the target
IPC call. This context is established through GUI click events,
user text input, and sequences of IPC calls. While previous
efforts [24], [25] have attempted to automate the execution of
these programs on Windows, they have largely relied on ran-
dom strategies for inputting user interactions. This approach
has proven ineffective in triggering IPC calls consistently, as
demonstrated by our experiments in Section IV. Moreover, the
execution of a single IPC call often depends on the execution
and specific return values of several other IPC calls. This
interdependency adds complexity to the process of triggering
IPC calls. Therefore, developing an effective method to trigger
these client-side IPC calls remains a significant challenge.
Challenge 3: How can we efficiently perform snapshot-
based fuzzing for IPC clients on Windows ?

When an IPC call is triggered, we capture a snapshot to
preserve its context and employ a snapshot-based fuzzing
methodology to test IPC clients. However, two significant
factors impede the efficiency of this approach on Windows
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IPC clients. Network Communication: as demonstrated by
Nyx-net [18], network communications are time-consuming
and can significantly impact fuzzing performance. Although
Nyx-net’s network API emulation proved effective for Linux,
it falls short for Windows remote IPC due to Windows’
more complex and proprietary API structure. Furthermore,
due to the closed-source nature of Windows, achieving accu-
rate emulation becomes extremely challenging. Non-memory-
exception tests: when restoring a snapshot and injecting a test
case, a memory exception in the client process clearly indicates
the test’s conclusion. However, most tests do not result in
memory exceptions. IPC clients, such as GUI programs, often
run continuously, making it difficult to determine when a test
can be concluded. There is no simple method solution for
concluding tests that do not result in memory exceptions. An
alternative approach involves timeout settings, but this intro-
duces its own set of challenges. Setting a timeout that is too
long reduces testing efficiency, while one that is too short may
compromise the test’s effectiveness. Balancing these factors
remains a significant challenge and obstacle in developing
effective fuzzing techniques for Windows IPC clients.

C. Solutions

Automatically inferring test targets. To address the first
challenge, we conducted a comprehensive analysis of Win-
dows’ IPC mechanisms. We find that Windows uses standard-
ized APIs for remote IPC, enabling us to develop a bottom-up
algorithm for client identification. Additionally, we discovered
that clients use server IDs (SIDs) and method IDs (MIDs)
to identify servers and remote methods, enabling us to map
clients and servers .

Effectively triggering IPC call. To address the second
challenge, we observed that GUI clients primarily involve
simple clicks and text inputs, CLI programs provide help
commands and IPC APIs are well-documented in MSDN. By
combining these characteristics with large language models,
we developed automated methods for triggering IPC calls. To
compute the specific return values of other IPC calls before
executing the target IPC call, we symbolize the variables
storing these return values and perform constraint solving to
determine the required values.

Efficient Snapshot-Based Fuzzing. To address challenge
3, we propose corresponding solutions for each efficiency
challenge. Direct IPC API emulation: to tackle the issue
of emulating network efficiently, we adopted an approach that
directly emulates remote IPC APIs, bypassing the need for
low-level network API emulation. Our approach implements
an IPC API hooking mechanism, which allows us to modify
the return values of IPC calls directly with mutated values,
effectively circumventing the actual execution of IPC calls.
This method significantly reduces the complexity and over-
head associated with network stack emulation. Moreover, it
enables client fuzzing without initializing the corresponding
server. Adaptive termination: to address the challenge of
determining when to stop testing efficiently, we designed an
adaptive approach based on the observation that achieving

a certain threshold of dirty pages indicates sufficient testing
coverage. This dynamic termination strategy optimizes the
fuzzing process by balancing thoroughness with efficiency,
avoiding unnecessary prolongation of testing while ensuring
comprehensive coverage.

D. Contributions
We implemented our approach in a new tool named GLEIP-

NIR, which consists of three phases corresponding to the
above three proposed solutions. We evaluated GLEIPNIR
on Windows 11 where it correctly discovered 76 IPC clients
and successfully triggered 2169 IPC remote calls, reporting 25
new vulnerabilities that had never been found before within
7 days. To date, Microsoft developers have confirmed 19 of
them. Of these, 14 have been assigned CVEs, with awards
totaling $36,000. All vulnerabilities are memory corruption
bugs and can be exploited to achieve remote code execution
(RCE) or sensitive information leakage.

The contributions of this paper are summarized as follows:
• We comprehensively reveal the security threats of remote

IPC clients, which have been overlooked in Windows,
and highlight the differences and challenges between
testing the server and the client.

• We have designed a novel technique to address the
challenges we identified. Our technique can precisely
identify clients and servers, effectively prepare contexts,
and efficiently fuzz clients.

• We have implemented our technique in a tool called
GLEIPNIR. The tool successfully identified 25 critical
vulnerabilities in 76 IPC clients, with 19 confirmed by
MSRC and 14 assigned CVE numbers.

• To promote the discovery of client-side vulnerabilities
in Windows and the development of snapshot technol-
ogy for Windows, GLEIPNIR will be open-sourced at
https://github.com/Anonymous130301/GLEIPNIR .

II. BACKGROUND & THREAT MODEL

This section first reviews the IPC in Windows, and then
introduces the threat model.

A. IPC in Windows
According to Microsoft’s official definition [26], Windows

provides nine different IPC mechanisms. Applications use
these IPC mechanisms to perform cross-process data ex-
change. Through further manual analysis, we found that three
of the nine IPC mechanisms provide remote communication
capabilities, as shown in Table I. These three IPC mechanisms
operate similarly on the client side, typically following a three-
stage process: (1) establishing a remote connection with the
server to obtain a proxy, (2) accessing data from the server
through the proxy, and (3) releasing the resources occupied by
the proxy upon completing the interaction. Windows provides
APIs for each stage across all three communication mecha-
nisms, which developers can utilize directly.

Gleipnir is a term from Norse mythology, referring to a magical chain used
to bind the wolf Fenrir.
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TABLE I
CLIENT-SIDE IPC APIS USED IN RPC, COM AND WINSOCK.

IPC Stage RPC API COM API WinSock API

Initialization RpcStringBindingComposeW,
RpcBindingFromStringBindingW

CoCreateInstanceEx WSAStartup, connect

Data Access NdrClientCall(V1∼V4),
NdrAsyncClientCall(V1∼V2),Ndr64AsyncClientCall ObjectStublessClient(Proxy Methods) getaddrinfo, send, recv

Finalization RpcBindingFree NdrCStdStubBuffer_Release closesocket, WSACleanup

Fig. 2. The threat model discussed in this paper.

The remaining six IPC mechanisms are for local communi-
cation or have been deprecated. For example, Pipes are divided
into Named Pipes and Anonymous Pipes, with the latter
restricted solely to local communication. Although Named
Pipes can support remote communication, they are primarily
used as a foundational protocol for RPC. Other mechanisms,
such as Clipboard, File Mapping, and Data Copy, are limited
to local communication. Early mechanisms for remote IPC
in Windows systems, such as Dynamic Data Exchange and
Mailslots, have been deprecated and are no longer used in the
latest versions of Windows.

B. Threat Model

Figure 2 illustrates the threat model discussed in this paper.
In this model, contrary to common IPC scenarios, a client
runs in a trusted zone and connects to one or more servers in
an untrusted zone. If the client does not adequately validate
the return values, these data could potentially breach the
client’s trust boundary, leading to severe vulnerabilities. These
vulnerabilities, which result in trust boundary violations [27],
are the primary focus of this paper.

This paper specifically focuses on detecting client-side
vulnerabilities triggered through three remote IPC mecha-
nisms: RPC, COM, and Winsocket. These mechanisms were
chosen because they involve remote communication, where
the client might run with higher privileges than the server.
Local IPCs were excluded because, in local scenarios, clients
typically have the same or lower privilege levels compared
to servers, and thus are not within our scope. This decision
was further validated through our discussions with Microsoft,
who confirmed that client-side bugs in Local IPCs are not
considered security issues.

It’s also important to note that our fuzzing target is not
the IPC protocol implementation but rather the client-side
application code that processes IPC call return values. This
distinction is crucial for understanding the scope of our study.

Furthermore, we focus solely on memory corruption vul-
nerabilities, which can lead to remote code execution and
sensitive information disclosure impacts on the IPC client,

thereby threatening the security of the administrator or domain
controller in the network. In the most severe cases, attackers
can exploit these vulnerabilities to take control of the entire
network. Non-memory corruption vulnerabilities, such as ac-
cess control vulnerabilities [28] or file hijacking [24], are not
within the scope of our detection.

III. GLEIPNIR

Figure 3 presents a high-level overview of our proposed
methodology. The tool operates through three distinct phases.
In Phase 1, all binaries in Windows are read and static analysis
techniques are used to identify clients using IPC and their
corresponding servers. Phase 2 launches the clients and servers
identified in Phase 1, using automated testing techniques
such as UI automation and constraint solving to trigger as
many IPC calls as possible. After each IPC call execution,
snapshot technology is utilized to capture the context. In Phase
3, GLEIPNIR restores captured snapshots and employs hook
techniques to directly modify return values of IPC calls with
mutated values, thereby avoiding network communication.
This phase also manages non-memory-exception tests by mon-
itoring dirty pages and stopping the process when a specific
threshold is reached. For memory-exception tests, GLEIPNIR
captures and systematically categorizes exceptions. These cat-
egorized exceptions are then compiled into a comprehensive
report, facilitating subsequent in-depth manual analysis.

A. Phase 1: Identify IPC Clients and Servers

In Phase 1, our tool leverages static analysis techniques to
achieve three fundamental objectives: (1) identifying all client
binaries, (2) identifying all server binaries, and (3) establishing
precise client-server mapping relationships.

1) Identify IPC Clients: Windows supports nine remote
communication modes, three of which are suitable for remote
interactions as detailed in Table I. These three remote commu-
nication modes consistently utilize APIs to execute the steps
listed in Table I.

Based on this finding, we designed a bottom-up analysis al-
gorithm to identify clients. The algorithm employs a two-phase
approach: initially, it identifies methods that invoke the IPC
APIs documented in Table I, followed by a recursive traversal
to locate all top-level methods (those not invoked by other
methods). These top-level methods can be categorized into
two distinct groups: publicly documented APIs in MSDN and
entry points of Windows built-in applications. To accurately
classify these methods, we first parsed MSDN documentation
to create a public API list, then classified top-level methods by
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Fig. 3. Overview of GLEIPNIR. The orange boxes highlight the functional component of GLEIPNIR, which include the Client Identifier, Server Identifier, UI
Automator, Input Generator, Constraint Resolver, Mutator, Hook, Fuzzing Controller, coverage Monitor, Dirtypage Monitor, and Exception Monitor.

checking their presence in this list. For built-in applications,
we leveraged our observation that such applications must
register as plugins within the Microsoft Management Console
(MMC) to enable remote machine management. The registra-
tion process involves two methods: RegisterSnapIn and
RegisterSnapinGUID. By analyzing binary files for calls
to these registration methods, we can effectively identify built-
in applications. Notably, built-in applications may also invoke
public APIs, and in our classification scheme, these public
APIs, when called by top-level methods, are considered clients
themselves.

Furthermore, RPC and COM can be multiplexed, with
their APIs supporting both local and remote method calls.
When local methods are called, the client’s execution priv-
ileges are lower than the server’s, placing them outside
our research scope. We need to distinguish between lo-
cal and remote calls in the client. For COM, the API
CoCreateInstance is used for local calls and is not con-
sidered as input for our algorithm. For RPC, we find that the
RpcStringBindingComposeW API’s second parameter,
the ProtSeq variable, determines the protocol the program
expects to use for remote RPC communication. Our obser-
vations show that the ProtSeq variable values ‘ncacn np’
(Named Pipes protocol) or ‘ncacn ip tcp’ (TCP protocol)
indicate that RpcStringBindingComposeW will be used
to connect to a remote server. Based on this finding, our
algorithm excludes local RPC calls from consideration.

2) Identify IPC Servers: To facilitate proper client-server
interaction and enable IPC call triggering, it is crucial to
identify the IPC server accurately. To achieve this, we first
apply established methodologies [29], [1] to recover semantic
information from binary code. Based on the recovered seman-
tics, we identify IPC servers within extensive binary datasets
by analyzing their specific code characteristics. The resulting
output consists of server-containing binaries that facilitate
server deployment.

RPC servers. To identify embedded RPC servers within
binaries, we leverage the distinctive code characteristics of
binaries containing RPC servers. Specifically, if a target binary
includes an RPC server, its .data segment will contain a
MIDL_SERVER_INFO structure. By scanning the binary’s

data segment for the presence of this structure, we can
effectively identify binaries that implement RPC servers.

COM servers. The identification of COM servers requires
a systematic examination of the Windows Registry, particu-
larly within the HKEY CLASSES ROOT\CLSID key struc-
ture, where each COM server’s registration information is
maintained. This registration information includes the server’s
binary location. Servers restricted to local calls register their
binary file locations in the InprocServer32 key, while servers
capable of remote invocation register their binary file location
in the LocalServer32 key. Given our threat model’s focus on
IPC with remote communication capabilities, we locate target
COM servers by tracing the binary file paths specified in the
LocalServer32 key.

Winsock Servers.Winsock server programs establish port
bindings through the server-side Winsock APIs, i.e., bind and
connect. Therefore, GLEIPNIR identifies Winsock server
binaries through static analysis specifically by detecting the
concurrent invocation of bind and connect within the
executable code.

3) Map Client and Server : Upon identifying the client
and server, GLEIPNIR facilitates the mapping of IPC methods
from the client side to their respective counterparts on the
server side. To invoke a remote method via IPC, the client must
specify a unique Server ID (SID) that distinctly identifies the
method’s service provider. This SID enables the IPC protocol
to locate the corresponding server accurately. Additionally, a
Method ID (MID) is required to pinpoint the exact method
within the server. Therefore, achieving a static mapping be-
tween the client and server necessitates the accurate identifi-
cation of both the SID and MID. The identification method is
designed based on the IPC mechanism.

a) Identifying SIDs and MIDs on Client: (1)RPC.
The NdrClientCall methods listed in Table I use
the first parameter, MIDL_STUBLESS_PROXY_INFO, to
identify parameters for the remote RPC request, includ-
ing the SID and MID. We need to parse this parame-
ter to obtain the SID and MID. The parsing process, il-
lustrated in Figure 4, involves first parsing the first pa-
rameter of MIDL_STUBLESS_PROXY_INFO to obtain the
MIDL_STUB_DESC structure, then parsing the first field of
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MIDL_STUBLESS_PROXY_INFO 

MIDL_STUB_DESC* pStubDesc
u8* ProcFormatString
u16* FormatStringOffset
RPC_SYNTAX_IDENTIFIER* pTransSyntax

MIDL_STUB_DESC

RPC_CLIENT_INTERFACE* pInfo
PFN_RPC_ALLOCATE pfnAllocate
PFN_RPC_FREE pfnFree 
MIDL_STUB_DESC_0* imp_handle_info

RPC_CLIENT_INTERFACE

unsigned int length
RPC_SYNTAX_IDENTIFIER IntfId(UUID)
RPC_SYNTAX_IDENTIFIER TransSyntax
...

Server RPC Endpoint(UUID)

Proc0([out]lpcbData,
Proc1([in]lpData, [in]lpcbLen)
Proc2([in]intVar)
Proc3([out]intVar)

Fig. 4. Parsing Procedure of MIDL STUBLESS PROXY INFO.

Remote COM Object
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Proc0
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...

COM Client Process

CoCreateInstanceEx(CLSID, IID, &ObjPtr)

ObjPtr->Proc0 COM 
Runtime

ProxyStub
ObjPtr->Proc1

Fig. 5. CLSID, interface id and the method

MIDL_STUB_DESC to get the RPC_CLIENT_INTERFACE
structure. The second field of RPC_CLIENT_INTERFACE
contains the RPC_SYNTAX_IDENTIFIER structure, which
identifies the SID of the target interface for the remote call
initiated by NdrClientCall, i.e., the SID. Subsequently,
we can obtain the method number of the remote IPC interface
from the second parameter of NdrClientCall, nProcNum,
i.e., the MID. By combining the SID and MID, we can
uniquely determine the specific method in the RPC server that
NdrClientCall intends to access. (2)COM. We found that
the CoCreateInstanceEx method listed in Table I has
remote calling capabilities. As shown in Figure 5, the first
and second parameters of CoCreateInstanceEx represent
the CLSID and IID of the remote COM object request,
respectively. CoCreateInstanceEx returns a proxy(i.e.,
ObjPtr), which calls the remote method as if calling a regular
method. Therefore, we can determine the remote method
by the method signature. In summary, the CLSID and IID
constitute the SID, and the method signature is the MID.
(3)Winsock. The client connects to the server using the APIs
connect and the WSAStartup , specifying the port. The
client then uses the send and recv methods to send requests
and receive responses. Thus, the port serves as the SID,
with send corresponding to the server’s recv, and recv
corresponding to the server’s send.

b) Identifying SIDs and MIDs on Server:
(1)RPC. In the process of identifying RPC servers, the
MIDL_SERVER_INFO structure is discovered. Utilizing the
established tool findrpc [29], we parsed this structure to
develop the Server RPC Endpoint data structure, as illustrated
in Figure 4. This structure comprises a UUID field, serving
as the SID, which uniquely identifies each RPC server.
Additionally, it includes MIDs, labeled as Proc0, Proc1, etc.
(2)COM. Utilizing the automated interface decompilation
and enumeration methods provided by [30] and the virtual
table recovery methods from [1], we recovered the CLSIDs,
IIDs, and virtual table method lists of COM servers. Each
COM object is uniquely identified by a CLSID and IIDs,

forming the SID. Each COM object contains a method list,
where each method is a member of the COM object and is
callable remotely. These method signatures serve as MIDs.
(3)Winsock. The server utilizes the bind and connect
methods for network initialization. In this context, the SID
corresponds to the port number specified in these methods.
The server also uses the recv method for request handling
and the send method for response. The signatures of these
two methods are MIDs.

B. Prepare Contexts

To effectively perform fuzz testing on clients, it is essential
to trigger as many IPC calls within the client as possible. This
requires preparing the context to trigger IPC calls. Figure 3
illustrates how Phase 2 prepares the context. The UI Automator
component is used to automate the triggering of UI events.
The Input Generator serves public APIs and CLI programs,
generating the necessary programs and commands to drive
API execution. The Constraint Resolver is used to solve the
expected return values of IPC calls. Next, we will analyze the
characteristics of client application behaviors in sequence and
demonstrates how these characteristics guided our component
design decisions.

a) UI applications: For UI applications, IPC calls are
primarily triggered by two types of events: user inputs and
click events. The typical objective of the client UI program
is to monitor the server, often requiring user input in the
form of the monitored machine’s address. For example, in the
performance monitor scenario shown in Figure 1, to acquire
data from a monitored machine, the user must input the target
machine’s IP address. Consequently, whenever user input is
required, we supply the server’s IP address. Furthermore,
we observed that client programs are typically monitoring
applications, and their UI events primarily involve simple
click actions to retrieve data without the need for complex
operations. Based on this observation, we implemented our
own UI Automator to retrieve information about the UI and
send inputs to controls. Using UI Automator, we enumerate
all clickable and input elements in a GUI program’s inter-
face. Furthermore, we observe that the monitored applications
demonstrate a structured hierarchy in the sequential ordering
of their UI element interactions. Based on this observation, we
adopt a depth-first traversal strategy starting from the top-level
UI element, traversing different combinations of UI elements,
and eventually covering all operational combinations of the
UI. This methodical traversal triggers the UI application to
generate numerous IPC requests.
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TABLE II
EXAMPLES OF TESTING NFSADMIN.EXE

Prompt Type Template Instantiation
Interaction 1: CmdLine Arguments Generation

CmdLine Con-
text

Start Prompt: [As a professional security researcher, we
want to test the CommandLine based <AppName> App. We
need to pass proper arguments to make it functional. Here’s
the default output of the App: <Hint>]

As a professional security researcher, we want to test the Com-
mandLine based “nfsadmin.exe” App. We need to pass proper
arguments to make it functional. Here’s the default output of
the App: “Invalid option argument. Usage: nfsadmin [server |
client | mapping ] [\\ host]. For detailed help type nfsadmin
[server|client|mapping] /?”

Command
Memory

[List of Tested Commands: “listgroups, addmembers, ...,
<Output>”

[nfsadmin.exe, {Help Text}]

Command
Question

What is the command currently being tested?
What is the execution result of the command?
(<CommandLine>+<result>)

What is the Command currently being tested? What is the
execution result of the Command? (“nfsadmin.exe”, “Invalid
option argument”)

Input question What is the next commandline to execute? What is the next commandline to execute?
LLM Answer Current command: “<Command>”. Status: <result>. Oper-

ation: “<NextInput>”
Current Command: “List Help”. Status: Yes. Operation: “nfsadmin
mapping /?”

Interaction 2: CmdLine Arguments Generation
CLI Context The tested result is : <ReturnValue> The tested result is: nfsadmin mapping [computer name] [com-

mon options]...
Command
Memory

[List of Tested commands: “listgroups, addmembers, ...,
<Output>”

[nfsadmin.exe, ”nfsadmin.exe mapping /?”, {Help Text}]

Command
Question

What is the command currently being tested?
What is the execution result of the command?
(<CommandLine>+<result>)

What is the command currently being tested? What is the
execution result of the command? (“nfsadmin.exe mapping /?”,
“Yes”)

Input Question What is the next commandline to execute? What is the next commandline to execute?
LLM Answer Current command: “<command>”. Status: result. Operation:

“<NextInput>”
Current command: “List mapping’s help”. Status: Yes. Operation:
“nfsadmin -u -p mapLookup”

TABLE III
EXAMPLES OF TESTING MPRAPI

Prompt Type Template Instantiation
Interaction: Public API Generation

API Context Start Prompt: [ We want to test APIs of <HeaderFile>.
API-1 <InitAPI> is responsible for initializing connections,
API-2 <ProcessAPIs> is responsible for processing user data
inputs. Here is the reference information about the APIs
<Reference>]

We want to test APIs of <MprAPI.h>. API-1
<MprAdminServerConnect> is responsible for initializing
connections, API-2 <MprAdminPortEnum> is responsible for
processing user data inputs. Here is the reference information
about the APIs {MSDN-Docs}

Input question Please compose C++ client for correctly using the two APIs. Please compose C++ client for correctly using the two APIs.
LLM Answer <Composed Client Code> Simplified version is in Figure 6, complete version of generated

client code is in the Appendix A.

1 #include <windows.h>
2 #include <mprapi.h>
3 ...
4 // API-1: MprAdminServerConnect
5 dwError = MprAdminServerConnect(NULL,

&hMprServer);↪→

6 DWORD dwTotalEntries = 0;
7 DWORD dwEntriesRead = 0;
8 PMPR_PORT_0 pPorts = NULL;
9 DWORD dwLevel = 0;

10 // API-2: MprAdminPortEnum
11 dwError = MprAdminPortEnum(hMprServer, dwLevel,

NULL, 0, &pPorts, &dwEntriesRead,
&dwTotalEntries);

↪→

↪→

12 MprAdminServerDisconnect(hMprServer); // Added by
GPT-4.↪→

Fig. 6. Part of generated code by the query in Table III

b) CLI applications: For CLI applications, we found
that they all include a HELP parameter that outputs usage
information for the application. Therefore, for applications
that interact with users via CLI, we extract the detailed
HELP information provided by the command itself to automate

CLI  Under
Testing

Run CommandLine
with input Extract Result Prompting 

Template

Memory Execution
Commands Memory Prompt

Output: New Command with Input

Fig. 7. Workflow of testing CLI clients

the acquisition of essential elements needed to invoke target
commands, using a large language model(LLM) to guide our
input for reasonable CLI calls.

However, a CLI application has a nested command structure,
a hierarchical organization where commands and options are
arranged on multiple levels, resembling a tree. The root level
contains the main command, subsequent branches represent
subcommands that further specify actions, and the leaves
are options or arguments providing detailed configuration. To
obtain all possible commands of the CLI application, all paths
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in this tree must be traversed.
Based on this concept, we designed the workflow of the

Input Generator in Figure 3 for testing the CLI application,
as shown in Figure 7. The Input Generator iteratively executes
the CLI application and uses the output results and execution
history to guide the LLM in exploring all possible commands.
The Input Generator first runs the target CLI program and
extracts the program’s output, incorporating it into the prompt.
The output of the CLI program can be of two types: if the
command is invalid, the output is help information, which
guides the LLM to continue exploring valid commands in
the next iteration; if the input is valid, the output is the
result of the command execution, which guides the LLM on
whether to terminate exploration on that path. Additionally, the
Input Generator remembers the commands already executed
and their outputs, including them in the prompt. This avoids
repetitive exploration and guides the LLM in the next step’s
exploration direction. The combined prompts are then sent to
the LLM to obtain the next command to be executed.

Table II shows the prompts for testing the nfsad-
min.exe with LLM. Interaction 1: Initially, we execute
nfsadmin.exe, and the nfsadmin program prints the help
information. We put the help information into the Prompt
context and use Command Memory to remember the current
command. Then, we ask questions using Command question
and Input question. The Prompt context, Command memory,
Command question, and Input question form a prompt sent to
the LLM, and we get an answer, including the next command
to execute. Interaction 2: Next, we execute the next command
given by the LLM and feedback the result into the CLI
Context, adding the command to Command Memory. We then
form a prompt with the Command question and input question
and send it again to the LLM. We get the next command
to execute: ‘nfsadmin -u -p mapLookup‘, which is a valid
command and triggers IPC execution. We will repeat the
above process until no new commands are added to Command
Memory.

c) Public APIs: For public APIs, the Input Generator
extracts the usage context of each API from the MSDN
documentation and uses an LLM to generate valid API calls.
We also need to address dependencies between APIs. In
Section III-A1, we identify which IPC APIs are included
in the public API during client identification. As shown in
Table I, there are dependency relationships between IPC calls.
We derive public API dependencies based on these relation-
ships. For instance, if public API-1 includes only initializa-
tion methods (e.g., RpcBindingFromStringBindingW)
and public API-2 includes only data access methods (e.g.,
NdrClientCall), we infer that API-2 must be executed
after API-1.

We create an API context by combining the MSDN doc-
umentation and the derived dependency relationships. To-
gether with the input question, we use this context to prompt
the LLM to generate C++ programs that drive the API
calls. Figure 6 presents the simplified code generated by
the LLM. The correct requests for API-1 and API-2 were

1 PERF_MACHINE::BuildNameTable(PERF_MACHINE *this,
void *a2){↪→

2 v54 = RegConnectRegistryW(v53,
HKEY_PERFORMANCE_NLSTEXT, &phkResult);↪→

3 a2 = phkResult;
4 ...
5 cbData = 4;
6 if ( RegQueryValueExW((HKEY)a2, L"Last Help",

0i64, &Type, (LPBYTE)&Data, &cbData) )↪→

7 goto LABEL_121;
8 if ( RegQueryValueExW((HKEY)a2, L"Last Counter",

0i64, &Type, v83, &cbData) )↪→

9 goto LABEL_121;
10 v84 = cbData;
11 if (v84 > 0x40000) {goto FAILURE;}
12 if (v84 + *Data < 0) {goto FAILURE;}
13 if ( !*(_DWORD *)v83 < *Data && *Data < 0) {goto

FAILURE;}↪→

14 v89 = 8 * (v84 + 1);
15 v22 = operator new(v89 + 7);
16 // arbitrary memory write
17 if ( !RegQueryValueExW(v13, ValueName, 0i64,

&Type, (LPBYTE){(v89 + *v83), &cbData) )↪→

18 }

Click and user input

Return Value

Fig. 8. CVE-2024-38025: A client vulnerability in Windows Perfor-
mance Monitor. The text at the starting point of the arrow indicates
the conditions required to trigger the instruction pointed to by the ar-
row. RegConnectRegistryW and RegQueryValueExW serve as wrap-
per methods for the IPC APIs RpcStringBindingComposeW and
NdrClientCall listed in Table I, respectively.

generated, ensuring the dependencies were maintained. The
LLM also initialized the correct values for the API parame-
ters (lines 6-9). Interestingly, we did not specify the use of
MprAdminServerDisconnect in the prompt. The LLM
automatically included this API call. We did not include
MprAdminServerDisconnect because this API is only
used for finalization and does not return a value.

d) IPC calls: When we need to trigger a target IPC
call, the return values of a preceding series of IPC calls must
meet specific conditions, as these return values appear in the
control conditions for executing the target IPC call. Therefore,
Constraint Resolver derives the path constraints from the last
executed IPC call to the target IPC call. We use backward
data flow analysis to collect these path constraints. If a loop
is encountered, it should be unrolled 10 times. To accelerate
constraint solving and minimize memory corruption, avoiding
program errors, we symbolically mark the return value of the
IPC call with the fewest constraints and use Z3 for constraint
solving, setting a timeout of 5 minutes for each attempt. If a
solution is found, we forcibly modify the return value to the
derived solution. If not, we proceed to symbolically mark the
return value of the IPC call with the second fewest constraints,
and so on.

Taking Figure 8 as an example, the last executed IPC call
occurs at line 8, and our target IPC call is at line 17. Three
if statements between these lines (lines 11–13) generate
four constraints: v84 > 0x40000, v84 + *Data < 0,
*v83 < *Data, and *Data < 0. The variable *v83 is
involved in one constraint, v84 in two constraints, and Data
in three constraints. These variables hold return values from
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the IPC calls at lines 6 and 8. Consequently, we prioritize the
symbolization of variables based on the number of constraints
each variable influences: first *v83, then v84 if unresolved,
and finally *Data if necessary.

C. Snapshot-based Fuzzer

After Phase 2, multiple IPC calls are triggered, and their
corresponding execution snapshots are captured. In Phase 3,
GLEIPNIR iteratively tests these IPC calls until the execution
time exceeds a user-defined threshold. For each IPC call,
GLEIPNIR initiates a fuzzing controller to oversee and manage
the testing process, as shown in Figure 3. The fuzzing process
aligns with traditional snapshot-based fuzzing techniques by
incorporating a Mutator for seed mutation, a coverage monitor
for tracking code coverage, and an exception monitor for
reporting potential vulnerabilities. To address the efficiency
challenges associated with network communication and non-
memory exception tests, GLEIPNIR employs two key compo-
nents: a hook program and a dirty page monitor. These com-
ponents enable two optimizations: direct IPC API emulation
and adaptive termination, as described in Section I.

1) Fuzzing controller: As illustrated in Figure 3, the
fuzzing controller manages the entire fuzzing process through
six distinct steps. 1 The fuzzing controller retrieves mutated
return values from the Mutator, which generates these values
by applying mutation operations to the existing entries in
the seed queue. 2 Upon acquiring this mutated value, it
sends a command to the virtual machine to load a snapshot.
3 Subsequently, it invokes the hook program to inject the
mutated value into the memory address that stores the return
value. 4 The controller then instructs the virtual machine to
resume executing the client process. 5 At the start of the
testing phase, the fuzzing controller initiates three distinct
monitors to enable continuous data collection. 6 Based on
the collected monitoring data, these monitors make critical
decisions regarding test progression: either terminating the
current mutation test or halting the entire fuzzing process.
Upon receiving a signal to terminate the mutation, the fuzzing
controller begins a new iteration of steps 1 – 5 with the next
mutation. Alternatively, if instructed to halt the entire fuzzing
process, the controller saves the seed queue values and clears
the queue. These saved values are subsequently restored when
the same IPC call undergoes further testing iterations. The
controller then advances to the next IPC call in the test
sequence and reinitializes the testing cycle through steps 1 – 5 .
Additionally, the Exception Monitor outputs details of excep-
tions, facilitating manual analysis for potential vulnerabilities.

Notably, the fuzzing controller can obtain multiple mutated
values from the Mutator at once and execute a snapshot for
each value on separate CPU cores, enabling parallel testing of
these mutated values.

2) Mutator: This component first checks for the existence
of a previously persisted seed queue for the current IPC call.
If such a queue is found, it restores saved values. Otherwise,
it extracts the return value from the snapshot of the targeted
IPC call and initializes the seed queue with this value as

RegQueryValueExW

NdrClientCall
ProxyInfo
ProcNum
Status
arg0
arg1
arg2
arg3

Hook Program

BaseRegQueryValue
[In] hKey
[In] lpValueName
[Out] lpType
[Out] lpData
[Out] lpcbData
[Out] lpcbLen

Fig. 9. The hook example for IPC call in Figure 8. BaseRegQueryValue
is the server method. NdrClientCall is the IPC API in Tab I.

the primary seed for mutation. Subsequently, it employs AFL
mutation strategies to generate a series of mutated values,
updating the seed queue according to coverage feedback.

3) Hook program: Figure 9 illustrates our hook mechanism
using the IPC call example presented in Figure 8. IPC calls
utilize parameters (arg0–arg3) from the IPC APIs in Figure I
to store memory addresses that point to buffers designated
for storing return values. To transform mutated values into
return values, we implement an interception methodology
using inline hooks. This technique modifies the entry point
of IPC APIs to redirect execution to a custom hook program,
enabling inspection and manipulation of data being written to
the target buffers, whose addresses are obtained from the API
parameters.

The hook program operates through several distinct stages.
Initially, it retrieves the mutated value corresponding to the
IPC call. It then identifies the parameters that point to re-
turn value buffers. For RPC and COM APIs with variable-
length parameter lists, parameters serve dual purposes: stor-
ing either request buffer addresses or response/return value
buffer addresses. The determination of parameter types in-
volves analyzing server-side methods within the IPC call.
During Phase 2, we recover server method signatures (e.g.,
BaseRegQueryValue in Figure 9), which are tagged with
in for request parameters and out for response parameters.
As shown in Figure 9, there is a direct one-to-one mapping
between server-side method parameters and IPC API parame-
ters. This mapping enables the identification of parameters that
store return values on the client side. In the case of Winsock,
the return value address is stored in the second parameter,
buf, of the recv method.

An important consideration is that an IPC call may contain
multiple parameters pointing to different return value buffers.
To address this complexity, we implement a two-phase ap-
proach. First, we consolidate these separate buffers into a
single byte array to enable unified mutation handling. Then,
during the propagation phase, the hook program randomly
segments the mutated value into n portions, where n corre-
sponds to the number of original buffers. These segments are
systematically distributed to their respective target buffers.

4) Coverage Monitor: This monitor utilizes Intel’s proces-
sor trace hardware [31] to accurately collect code coverage
data, encompassing both basic block and edge coverage met-
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rics. After each test case execution, the monitor aggregates
the coverage results into a comprehensive fuzzing coverage
profile. If the overall coverage does not increase within a
predetermined period, defined by a user-specified threshold
(default is 4 hours), the monitor alerts the fuzzing controller
to terminate the current fuzzing process. The fuzzing controller
then initiates testing of the next IPC call.

5) Dirty-Page Monitor: This monitor, based on Intel page
modification logging [32], tracks the number of dirty pages in
memory during non-memory exception tests. When the count
of dirty pages exceeds 1,000, the fuzzing controller is notified
to stop the current test. This adaptive termination strategy is
based on a key observation from our testing process: in non-
memory exception tests, the number of dirty pages typically
remains below 300 before the client processes the IPC return
values. However, once the IPC return values are fully handled,
the number of dirty pages on the client side rapidly increases
to over 1,000 due to activities such as UI maintenance.
Performance experiments [33] conducted using Nyx indicates
that when the number of modified pages exceeds 1,000, the
execution speed drastically decreases from 1,000 operations
per second to 100, significantly affecting testing efficiency.
Consequently, our strategy for non-memory exception tests is
to instruct the fuzzing controller to terminate the test if the
number of dirty pages exceeds 1,000.

6) Exception Monitor: This monitor performs two essential
functions within GLEIPNIR. Once an exception is detected, it
first dumps detailed information about the exception. It then
notifies the fuzzing controller to terminate the current test. In
this section, we primarily discuss the first function.

The reason for dumping the exception details is that we
rely on software exceptions thrown by the client to deter-
mine whether the mutated value has triggered a vulnera-
bility. However, Windows has numerous exception types,
and not all of them lead to security issues. For example,
an ArithmeticException caused by division by zero
does not pose a security threat. Although this exception might
cause a crash if not caught by the client, it is generally not
considered a Denial-of-Service (DoS) attack, and Microsoft
does not recognize it as a security issue. Only one exception
type, the Access Violation Exception, which occurs due to
invalid memory access, is considered a security risk. This
exception comprises three specific types:

• ACCESS VIOLATION READ: Occurs when reading
from unauthorized memory, often due to invalid pointers
or out-of-bounds access.

• ACCESS VIOLATION WRITE: Occurs when writing
to unauthorized memory, usually due to pointer errors or
exceeding array boundaries.

• ACCESS VIOLATION EXECUTE: Occurs when exe-
cuting code from unauthorized memory, typically in code
injection attacks or invalid addresses.

Thus, the monitor needs to distinguish between above three
specific types of exceptions and other general exceptions.

The exception monitor is implemented based on the Win-
dows independent exception-handling mechanism, Structured

TABLE IV
NUMBER OF INFERRED IPC CLIENTS

Client Number Matched
Server

Expected
Server

IPC Call
RPC COM Winsock2 Total

Built-in App 18 73 84 1,182 324 180 1,686
Public API 145 56 64 874 212 62 1,148

Total 163 129 148 2,056 536 242 2,834

Exception Handling (SEH) [34]. When an exception occurs, it
is first caught by the kernel. If it originates from a user-space
process, the kernel passes it back to the throwing process,
invoking the registered exception handling code on the SEH.
Based on this mechanism, the monitor intercepts all excep-
tions from the RtlDispatchException method, which
belongs to SEH and primarily handles exception dispatching.
If the exception is identified as an Access Violation
Exception based on the exception code, the monitor tags
it as vulnerability-induced. Otherwise, it is tagged as a bug.
The monitor then extracts the call stack, key parameters and
exception type, from the EXCEPTION_RECORD structure and
dumps them along with our tags. Subsequently, we conduct
a manual analysis of these exceptions to determine if they
represent vulnerabilities and evaluate their attack vectors for
possible exploitation. Although our primary goal is to identify
vulnerabilities, we also record bugs because they may affect
the client’s functionality, and we responsibly report them to
Microsoft.

IV. EVALUATION

We implemented GLEIPNIR on Windows. The implemen-
tation comprises 11.2k lines of C++ code and 5.0k lines of
Python code. In Phase 1, the algorithms for identifying clients
are mainly implemented in Python using an IDA plugin. In
Phase 2, we developed our UI Automator based on Microsoft
UI Automation [12]. We leverage GPT-4 as our large language
model. We implemented the process in Figure 7 in Python,
interacting with GPT-4 via its official API [35]. In Phase 3,
we developed the controller in C++ and implemented hooks
using Microsoft Detours [36].

We evaluated GLEIPNIR by analyzing all binaries on the
Windows 11 and Windows Server 2025 platforms, ranging
from Windows Insider Build 26040.1 to Build 26080.1. These
analyses were conducted on systems running their default
configurations on an i9-13900HX desktop (featuring 32 cores)
equipped with 64GB of memory and a 2.0 TB SSD. For each
IPC call, we concurrently tested 32 mutated values, with each
test pinned to a dedicated core.

Our evaluation addresses the following research questions:

• RQ1: How effective is GLEIPNIR in identifying clients
and servers?

• RQ2: How effective is GLEIPNIR in preparing the con-
text?

• RQ3: How effective is GLEIPNIR in detecting client
vulnerabilities?

• RQ4: How efficient is GLEIPNIR in fuzzing clients?
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• RQ5: How does GLEIPNIR compare with other fuzzing
approaches?

• RQ6: How effective are the strategies adopted by GLEIP-
NIR (ablation study)?

A. RQ1: Identifying clients and servers

Table IV shows the identification results on Windows In-
sider Build 26080.1. GLEIPNIR identified 18 built-in applica-
tions, 145 Public APIs, and 129 servers. However, the expected
number of corresponding servers on the client side is 148.
The missing servers are due to some legacy clients whose
corresponding servers have been removed by Microsoft. We
manually verified these clients and servers and found no false
positives. These clients include a rich set of IPC calls totaling
2,834. Among these, the number of RPC calls accounts for
72.54%, COM IPC accounts for 18.91%, and Winsock IPC
accounts for 8.54%. This result indicates that RPC and COM
are the primary means of IPC. Although the number of built-
in applications is only 18, these built-in applications contain
a wealth of remote IPC calls. Therefore, the remote servers
they support are more numerous than public APIs.

We aimed to assess the false negatives in our IPC client
and server identification approach. Establishing ground truth
for these entities proved challenging, so we focused our
analysis on identifying potential sources of false negatives.
One significant factor is the incomplete coverage of IPC APIs,
as some are not included in Figure I. Additionally, GLEIPNIR
’s reliance on existing tools [29], [1] for extracting semantic in-
formation from binaries introduces another potential source of
error. The inherent limitations of these tools likely contribute
to false negatives in our analysis.

B. RQ2: Preparing Context

Table V shows the results of GLEIPNIR preparing the
context. GLEIPNIR prepared the context for IPC calls at
2,834 different call sites identified through static analysis.
These call sites targeted 537 unique remote methods. We
attempted to trigger 1,686 IPC calls from BuiltIn applications
and 1,148 IPC calls from Public APIs using methods such as
user clicks, user input, and constraint solving. Additionally,
for each CLI program, we utilized an average of 12.85
queries to the LLM. For testing Public APIs, which do
not involve GUI, we focused on LLM-generated programs.
Initially, LLM generated 78 programs. However, 16 of these
programs proved non-executable due to complex parameter
dependencies that remained unresolvable even after manual
intervention attempts. This resulted in a final test set of 58
programs, which contained 145 APIs generated from 58 LLM
queries. Overall, we successfully triggered 2,169 IPC requests,
using 846 user clicks and 410 user inputs. Constraint solving
was able to bring about an 11.28% improvement (from 1,949
(the fourth column) to 2,169 (the third column)). The time
required to create fuzzing contexts was 8.53 hours, with UI
testing taking 1.24 hours, and constraint solving consuming
2.10 hours.

TABLE V
RESULT OF PREPARE FUZZING CONTEXTS. RIC STANDS FOR RECOVERED
IPC CALL, TIC STANDS FOR TRIGGERED IPC CALL, AND TW/O STANDS

FOR TRIGGERED WITHOUT CONSTRAINTS RESOLVE.

ID Application RIC TIC Tw/oCS Events
User Click User Input

01 Performance Monitor 78 72 66 36 1
02 Eventlog Viewer 102 88 82 76 2
03 Device Manager 32 26 24 27 1
04 Windows Server Backup 60 45 42 32 1
05 Windows Disk Management 86 70 65 26 2
06 Service Management 70 59 52 68 1
07 Routing and Remote Access 116 92 86 77 6
08 Task Scheduler 80 64 59 84 12
09 Shared Folders 48 37 37 52 3
10 File Server Resource Manager 73 56 54 49 14
11 DFS Management 56 40 33 39 4
12 Group Policy Management 84 54 50 96 22
13 dfs replication 54 42 41 0 24
14 wmic 92 76 64 0 66
15 nfsadmin 60 44 40 0 32
16 mount 62 45 38 0 28
17 ftp 42 32 29 0 42
18 Windows Admin Center 491 365 300 184 77

Builtin Total 1,686 1,307 1,162 846 338
Public APIs 1,148 862 787 0 58
Total 2,834 2,169 1,949 846 410

Furthermore, We manually analyzed the reasons why some
IPC calls are failed to trigger :

• 350 IPC calls are located within exception handling logic,
which is only invoked when an error or exception occurs
in the previous IPC request. Since we did not insert steps
to trigger exceptions during the server runtime, these IPC
calls could not be triggered.

• 186 IPC calls fail to trigger due to the complexity
of constraint solving. The complexity of constraints or
the need to unroll loops more than 10 times prevented
determining the necessary return values for reaching a
path containing the IPC call.

• 129 IPC calls fail to trigger when the built-in GUI
program requires user input other than the IP address.
This user input must meet complex format requirements.

C. RQ3: Detecting vulnerabilities

Based on the prepared context, GLEIPNIR performed fuzz
testing on the actual IPC calls that could be triggered. The
results of detecting vulnerabilities are shown in Table VI.
GLEIPNIR successfully discovered 25 vulnerabilities in 7 built-
in applications and 8 Public APIs (column 2). The third
column lists the functions containing IPC calls that led to
vulnerabilities in the built-in applications, while the fourth
column shows the Windows versions.

Currently, 14 vulnerabilities have received CVE numbers
(column 5), and 19 vulnerabilities have been confirmed by
Microsoft. These 25 vulnerabilities led to memory corruption,
20 of them could lead to remote code execution, and 5 could
result in information leakage (column 6).

1) Security Impact: Currently, 14 vulnerabilities have re-
ceived CVE numbers, and a total of 19 vulnerabilities have
been confirmed by Microsoft. These 25 vulnerabilities led to
memory corruption, and 20 of them could lead to remote code
execution, and 5 could result in information leakage.

The cause of sensitive information leakage is due to a
vulnerability modifying the address of the next IPC call’s sent
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TABLE VI
LIST OF VULNERABILITIES DISCOVERED BY GLEIPNIR (CONFIRMED BY MSRC).

ID IPC Client Name Function Name Windows Version Status Security Impact
1 Routing and Remote Access DeleteProtocolFromRouterConfig Windows 11 Insider Build 26063.1 CVE-2024-30014 Remote code execution
2 Routing and Remote Access CDhcpRelayComponent::QueryDataObject Windows 11 Insider Build 26063.1 CVE-2024-30015 Remote code execution
3 Routing and Remote Access TFSComponent::Construct Windows 11 Insider Build 26063.1 CVE-2024-30022 Remote code execution
4 Windows Performance Monitor GetSystemPerfData Windows 11 Insider Build 26040.1 CVE-2024-38019 Remote code execution
5 Windows Performance Monitor PERF MACHINE::BuildNameTable Windows 11 Insider Build 26040.1 CVE-2024-38025 Remote code execution
6 Windows Performance Monitor UpdateMultiCounterV2CounterValue Windows 11 Insider Build 26040.1 CVE-2024-38028 Remote code execution
7 Windows Performance Monitor CollectServerQueueObjectData Windows 11 Insider Build 26040.1 confirmed Remote code execution
8 Windows Performance Monitor PerflibV2QueryCounterData Windows 11 Insider Build 26040.1 confirmed Remote code execution
9 Windows Eventlog Viewer Event::SetData Windows 11 Insider Build 26040.1 confirmed Information Disclosure
10 Windows Eventlog Viewer Event::SetDataEx Windows 11 Insider Build 26040.1 confirmed Information Disclosure
11 Windows Eventlog Viewer Event::ProcessData Windows 11 Insider Build 26040.1 pending Information Disclosure
12 Windows Admin Center ApplicationServer Windows 11 Insider Build 26040.1 confirmed Remote code execution
13 Windows Admin Center CategorySample Windows 11 Insider Build 26040.1 CVE-2024-43475 Information Disclosure
14 Windows Disk Management ActivationUser Windows 11 Insider Build 26040.1 pending Information Disclosure
15 Windows Disk Management AppExtension Windows 11 Insider Build 26040.1 pending Remote code execution
16 Windows Task scheduler TaskSchedulerProcess Windows 11 Insider Build 26040.1 pending Remote code execution
17 Windows DFS Replicator BundlePackage Windows 11 Insider Build 26040.1 pending Remote code execution
18 PublicAPI MSMQManagement.BytesInQueue Windows 11 Insider Build 26040.1 CVE-2024-20680 Remote code execution
19 PublicAPI CollectDiskObjectData Windows 11 Insider Build 26040.1 pending Remote code execution
20 PublicAPI MprAdminPortEnum Windows 11 Insider Build 26080.1 CVE-2024-38114 Remote code execution
21 PublicAPI MprAdminConnectionEnum Windows 11 Insider Build 26080.1 CVE-2024-38115 Remote code execution
22 PublicAPI MprAdminDeviceEnum Windows 11 Insider Build 26080.1 CVE-2024-38116 Remote code execution
23 PublicAPI MprConfigTransportEnum Windows 11 Insider Build 26080.1 CVE-2024-30023 Remote code execution
24 PublicAPI MprAdminInterfaceEnum Windows 11 Insider Build 26080.1 CVE-2024-30024 Remote code execution
25 PublicAPI MprConfigInterfaceEnum Windows 11 Insider Build 26080.1 CVE-2024-30029 Remote code execution

1 System.Diagnostics.CategorySample.CategorySample(...){
2 ...
3 long value = GetCategorySample(...); // First RPC Query
4 IntPtr intPtr = new IntPtr(value); // value is

controlled data from remote IPC server↪→
5 Marshal.PtrToStructure(intPtr, perf_DATA_BLOCK); //

Interpreted as C# Structure↪→
6 ref perf_INSTANCE_DEFINITION perfInstance =

MemoryMarshal.AsRef(perf_DATA_BLOCK.member1);↪→
7 ...
8 array3 = this.GetInstanceNamesFromIndex(
9 perfInstance.ParentObjectTitleIndex); // second RPC

Query, leak triggered↪→
10 }

Fig. 10. CVE-2024-43475: A vulnerability causing information disclosure in
Windows Admin Center.

data points to the memory location containing sensitive infor-
mation. Figure 10 gives such a case in Windows Admin Cen-
ter, a contemporary system administration tool primarily devel-
oped using C#. It is widely believed that C# is a memory-safe
language, and thus, programs written in C# should not intro-
duce memory corruption causing information leakage. How-
ever, GLEIPNIR has breached this assumption through rigorous
fuzzing. In line 3, variable value receives a value controlled
by the malicious IPC server, the value is then used to create a
structure in C# language context: perf_DATA_BLOCK. Then
perf_DATA_BLOCK member is used to create another C#
structure perf_INSTANCE_DEFINITION, and the struc-
ture is then used in line 9, where part of its memory will
be sent to the malicious server through the second RPC call.
The server can force variable perfInstance pointing at
arbitrary memory locations in the process of Windows Admin
Center via value. If perfInstance points to sensitive
memory sections, the data in that area will be exposed to the
remote malicious server, causing serious information leakage.

2) Responsible Disclosure : As Client vulnerabilities can
lead to severe consequences, we took the responsibility of dis-

closing all the 25 vulnerabilities we identified in 76 clients(18
built-in applications and 58 programs generated by GPT-4 for
public APIs) with a detailed report and Proof of Concept (PoC)
via MSRC [10]. As per responsible disclosure practices, we
will not publicly release any unfixed vulnerabilities until the
developers address them. It is worth noting that all vulnera-
bilities with detailed information in our paper have been fixed
by developers. At present, 19 of the identified vulnerabilities
have been either confirmed or fixed, and 14 CVE identifiers
have been assigned to these issues.

D. RQ4: Efficiency

Figure 11 illustrates the testing efficiency of GLEIPNIR
across 18 built-in applications. As shown in the figure, within
four hours, the test coverage increased rapidly, with four ap-
plications reaching a stable coverage rate. Within 24 hours, the
coverage rate for all applications stabilized, and 14 vulnerabil-
ities were detected during this period. Over the subsequent six
days of testing, the coverage rate for 7 applications increased
slowly due to the triggering of deeper code layers, resulting
in the detection of 3 additional vulnerabilities.

E. RQ5: Comparison

We compared GLEIPNIR with two popular Windows plat-
form fuzzing tools, WinAFL [37] and WINNIE [38]. WinAFL
is a Windows port of AFL, and WINNIE adds fork mode
support to WinAFL. We further modified these tools to test
server-side return values by replacing the original return values
as mutated values. The server then returns these mutated
values to the client. Our testing targets exclude built-in Apps,
as these tools cannot create harnesses for them and thus
cannot be tested. For Public APIs, GLEIPNIR has generated
harnesses to drive IPC call execution. We selected a specific
number of public APIs known to have vulnerabilities and
compared the performance of the three tools over a 7-day
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Fig. 11. Performance of testing built-in applications. The left y-axis represents the percentage of basic block coverage relative to IPC-related code, while the
right y-axis displays the absolute values of covered basic blocks. Absolute values are shown with solid lines, and percentages are depicted with dashed lines.

period. Each fuzzer was fixed to a single core, utilizing the
same harness programs. For statistical robustness, we repeated
the entire fuzzing process five times for each tool and used
the average values in our final results. We also considered
comparing GLEIPNIR with Winfuzz-Winnie [39]. However,
Winfuzz-Winnie merely redirects socket traffic to file inputs
and cannot handle complex network behaviors such as IPC,
resulting in malfunctions across all our test subjects.

Table VII presents the experimental results. We observed
that the execution speed(i.e., tested mutations per second)
and coverage of WinAFL and WINNIE were significantly
lower(achieved speeds of 2.88 and 3.24 executions per second,
alongside coverage of 289.7 and 323.5 new basic blocks
(BBs)) than those(with a speed of 234.5 executions per sec-
ond and a coverage of 1,718 new BBs) of GLEIPNIR. Our
analysis revealed that network request speed was the primary
performance bottleneck for these tools. Our snapshot design
mitigated network-related issues, improving execution speed
and coverage. All 10 test cases reached stable coverage within
a week. Consequently, our tool detected 20/4 and 20/3 more
bugs/vulnerabilities than WinAFL and WINNIE, respectively.

F. RQ6: Ablation study

We conducted ablation studies by removing or replacing
different strategies of GLEIPNIR to evaluate their individual
contributions. The experimental results are presented in Ta-
ble VIII.

During GUI testing, we employed a depth-first strategy and
IP-based input testing. Each of these strategies was individ-
ually replaced with a random strategy. The results showed
that the random input strategy failed to trigger any IPC calls,
leading to zero vulnerability detections. The random click
strategy triggered 665 IPC calls and detected 8 vulnerabilities,
which was 403 fewer IPC calls and 8 fewer vulnerabilities
compared to our original strategy. For CLI applications, the
random input strategy was unable to trigger any IPC calls or
detect vulnerabilities.

Furthermore, the experimental results indicated that our
constraint-solving strategy improved IPC call triggering and
vulnerability detection across all testing scenarios. In GUI
testing, it increased IPC calls from 950 to 1,068 (+12.4%)
and vulnerabilities from 13 to 16 (+23.1%). In CLI testing,
it enhanced IPC calls from 220 to 239 (+8.6%) and doubled

the vulnerabilities from 2 to 4 (+100%). In public API testing,
it increased IPC calls from 750 to 862 (+14.9%) and raised
vulnerability detection from 32 to 40 (+25%).

Table VIII also reveals that without enabling the snap-
shot feature, our testing efficiency was significantly reduced,
achieving only 5.3 executions per second (2.2% of our tool’s
capacity with Stop-1000) and detecting only 11 vulnerabilities
over 7 days, missing 14 potential vulnerabilities. Additionally,
when we set the dirty page threshold to 2,000 and 3,000,
both the efficiency and effectiveness of vulnerability testing
declined. Conversely, when the threshold was set to 500,
testing efficiency improved to 282 executions per second,
but 5 vulnerabilities were missed compared to our Stop-1000
strategy.

V. DISCUSSIONS

A. What is the likelihood of this type of vulnerability appear-
ing on other platforms, such as Linux and IOT devices?

Our proposed threat model is not limited by platform
and can be extended to software and devices across various
operating systems, including Linux and Internet of Things
(IoT) devices. For instance, Linux users often use remote
management software like xrdp or VNC to access and manage
potentially untrusted remote machines. Complex IoT devices
frequently incorporate various software applications to mon-
itor device operational status and network traffic, mirroring
the functionality of the Windows Performance Monitor. For
example, we identified a vulnerability in the widely-used
ThingsBoard IoT platform [40]. This vulnerability occurs
when a monitored device transmits a large packet via RPC,
triggering an Out-of-Memory error and resulting in a DoS.
We have reported this vulnerability, and it has been assigned
CVE-2024-9358. Hence such software and IoT devices could
also become targets for malicious attackers.

While Windows offers a broader variety of IPC channels,
vulnerabilities of the kind discussed directly impact the secu-
rity of both domains and personal computers, thus drawing our
primary focus. It is crucial to acknowledge that while the threat
model is universally relevant, its specific expressions and
consequences may differ across platforms and device types.
For instance, software providing performance monitoring for
IoT devices might be implemented as web services or using
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TABLE VII
COMPARISON OF GLEIPNIR SNAPSHOT FUZZING AGAINST WINAFL AND WINNIE. FOR ”SPEED” AND ”COVERAGE,” THE LAST ROW IN THE TABLE

INDICATES THE AVERAGE VALUES ACROSS ALL APPLICATIONS. FOR ”BUGS/VULNERABILITIES FOUND,” THE LAST ROW DENOTES THE TOTAL NUMBER
ACROSS ALL APPLICATIONS.

Application Speed(exec/sec) Coverage(# of new BBs) Bug/Vuln Found
WinAFL WINNIE GLEIPNIR WinAFL WINNIE GLEIPNIR WinAFL WINNIE GLEIPNIR

RemoteQMStartReceive2 1.8 2.2 238 320 365 1,026 1/0 1/1 3/1
QuerySnapshotsByVolume 2.1 2.3 215 336 352 2,072 2/0 2/0 5/2
QMMgmgGetInfo 1.8 2.4 176 291 310 1,872 2/1 2/1 6/2
CollectDiskObjectData 3.5 3.6 252 190 252 2,417 1/1 2/1 4/1
MprAdminPortEnum 3.2 3.1 222 224 265 1,644 3/1 3/1 5/1
MprAdminConnectionEnum 3.5 4.2 275 230 280 1,571 1/0 2/0 3/0
MprAdminDeviceEnum 3.1 3.8 185 298 365 1,820 1/0 1/0 2/0
MprConfigTransportEnum 3.0 3.3 218 318 327 1,440 4/1 2/1 5/1
MprAdminInterfaceEnum 3.5 3.6 289 320 330 1,520 2/0 2/0 3/0
MprConfigInterfaceEnum 3.3 3.9 275 370 389 1,798 3/0 3/0 4/0

Average/Total 2.88 3.24 234.5 289.7 323.5 1,718 20/4 20/5 40/8

TABLE VIII
TESTING STRATEGIES AND THEIR RESULTS. CS STANDS FOR

CONSTRAINT SOLVING, WHILE PUB REPRESENTS PUBLIC API.

Strategies TIPC Vulns AvgSpeed (exec/sec)
GUI-RandomInput 0 0 -
GUI-RandomClick 665 8 -
GUI-W/O CS 950 13 -
GUI-GLEIPNIR 1068 16 -
CLI-RandomInput 0 0 -
CLI-W/O CS 220 2 -
CLI-GLEIPNIR 239 4 -
PUB-W/O CS 750 32 -
PUB-GLEIPNIR 862 40
W/O Snapshot - 11 5.3
Stop-500 - 20 282
Stop-1000 - 25 240
Stop-2000 - 22 186
Stop-3000 - 16 120

scripting languages. As a result, the likelihood of memory cor-
ruption vulnerabilities within such software is comparatively
lower. However, these implementations may still be vulnerable
to issues such as cross-site scripting and SQL injection. The
security risks posed by these vulnerabilities remain consistent
with our proposed threat model.

B. What are the limitations of GLEIPNIR?

GLEIPNIR utilizes static analysis algorithms to identify
clients and servers but does not guarantee soundness. Some
clients do not match with corresponding servers, which does
not imply that these clients are free from the threat model
discussed in this paper. On the contrary, due to their inability to
be successfully matched, they are more likely to have untested
and potentially more severe security issues. Our tool does not
support the automated creation of servers for testing in such
cases. Additionally, some IPC calls within client internals are
not fully triggered, and GLEIPNIR cannot detect vulnerabilities
caused by these IPC calls. The fuzzing methods currently
employed by GLEIPNIR do not support all vulnerabilities in
client software, such as those related to access control and
credential handling.

C. Where can we make improvements to GLEIPNIR

1) More platforms: To migrate GLEIPNIR to other plat-
forms, such as Linux and IoT platforms, we need to undertake
the following efforts across three phases:

• In the first phase, our bottom-up client identification
algorithm is cross-platform. However, we still need to
manually specify IPC APIs on other platforms and ana-
lyze the code characteristics of these IPCs to identify the
SIDs and MIDs.

• In the second phase, considerable effort is required to
adapt the UI operations for different platforms. For in-
stance, while we currently use Microsoft UI Automation
on Windows, we need to replace it with the Linux Desk-
top Testing Project on Linux systems. Other techniques
in this phase, such as LLM-powered automated testing
for CLI programs, are cross-platform compatible.

• In the third phase, our snapshot-based approach can be
migrated to other platforms. For snapshot-based fuzzing
techniques, we can use technologies from other platforms,
such as nyt-net on Linux. We can apply our IPC emula-
tion and dirty-page-based adaptive termination techniques
to this technology for acceleration, but this requires
some effort. Additionally, the exception monitor requires
significant modifications to identify vulnerabilities based
on the exception handling mechanisms of other platforms.

2) More Vulnerability patterns: Client applications are di-
verse. For example, an IoT monitoring platform essentially
functions as a web server. Consequently, it is susceptible to
common vulnerability patterns such as file inclusion, injection,
Server-Side Request Forgery (SSRF), and others. Currently,
extensive work has been done to fuzz these types of vul-
nerabilities. For instance, SSRFuzz [41] focuses on fuzzing
SSRF vulnerabilities, while Atropos [42] targets SQL injection
and file inclusion vulnerabilities. GLEIPNIR can integrate these
fuzzing tools into its internal fuzzing processes to detect other
common types of vulnerabilities effectively.

3) More Servers: Due to our tool’s limitations, we were
unable to identify corresponding servers for all clients. To
test clients lacking servers, a feasible approach is to mock
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a server that provides the APIs requested by the client. The
specific functionalities of these APIs may need to be manually
analyzed based on the context of the client’s calls and then
implemented in the API code.

4) More Triggered IPC Calls: As discussed in Section IV,
there are three reasons why IPC calls may fail to trigger. For
exceptions, instrumentation techniques can be used to insert
exceptions into the program, thus triggering the execution
of exception handling code and the IPC requests located
within that logic. For constraint solving, the loop threshold
in constraint solving can be increased, although this might
reduce runtime efficiency. For complex user inputs, integrating
the user input part of GUI testing with an LLM can enhance
the validity of user inputs.

VI. RELATED WORK

Fuzz. In recent years, fuzzing [43], [38], [37] has become
very popular due to its efficiency in discovering vulnerabili-
ties. Various fuzzing tools have been developed for different
testing targets, such as operating systems [44], [45], virtual
machines [46], [33], [47], [48], and web applications [42],
[49], [41]. Among them, several fuzzing techniques for IPC
server-side [2], [18], [3], [1] have been proposed to detect
server-side issues like data race vulnerabilities. While some
researches [20], [21], [18] have attempted to apply fuzzing
techniques to client-side applications, these approaches often
oversimplify the problem by treating clients as servers and
directly applying server fuzzing technology. This paper high-
lights a key difference between client and server fuzzing: the
importance of context in client fuzzing. To address this gap, we
introduce GLEIPNIR, a novel fuzzing tool designed specifically
for client-side applications. Our approach excels in context
building and leverages enhanced snapshot-based technology
to achieve efficient client fuzzing.
Snapshot. Snapshot technology provides a restore point for
fuzz testing, allowing the testing process to quickly revert to a
previous state, thereby avoiding the overhead of restarting the
program each time. Snapshot-based fuzzing is widely applied
in scenarios where harness construction is challenging, such
as operating system kernel testing [44], [39], [50], virtual
machine testing [33] and Windows binaries testing [39], [51].
In this paper, we introduce snapshot technology for preserving
execution contexts of IPC calls, complemented by adaptive
termination and direct IPC API simulation, to achieve efficient
and accelerated client fuzzing.
Binary Analysis. Binary analysis serves as the foundational
approach for examining Windows and other closed-source
systems. Numerous binary analysis techniques have been pro-
posed and developed in recent years [52], [53], [54], [55], [56].
BAP [52] and BinCAT [53] are binary analysis platforms pro-
viding fundamental support for static analysis on binary files.
Angr [56], an advanced binary analysis framework, extends
the capabilities of such platforms by incorporating sophisti-
cated features such as control-flow analysis, data-dependency
analysis, and symbolic execution. GLEIPNIR leverages these
tools to identify IPC clients and servers and employs data flow

analysis techniques from these works to aid in constructing the
fuzzing context.
Harness. Harness generation has become a very popular
topic recently. Tools like WINNIE [38], [57], [58], [59], [60]
have introduced powerful harness generation techniques to
bypass GUI restrictions and directly test critical code. The
implementation of these techniques often requires the testing
target to meet certain conditions, such as having critical
code accessible via public APIs. Additionally, in particularly
complex targets, harness generation can significantly reduce
the cost of manual construction. In our scenario, based on
snapshot technology, we transform the harness generation task
into preparing the testing context for snapshots, achieving the
goal of testing critical code without the need to bypass the
GUI, thus providing a more realistic testing environment.
LLM powered test. Considering the powerful performance of
LLM, researchers have successfully leveraged it for software
testing. OSS-Fuzz has attempted to use LLM for completely
automatic fuzz target generation [61]. TitanFuzz [62] has used
LLM to generate input programs for fuzzing deep learning li-
braries. QTypist [63] leveraged LLM to generate text inputs for
passing a GUI page, aiming to improve the testing coverage of
mobile testing. GPTDroid [64] asks LLM to propose different
actions to interact with the target app. Unlike these works,
this paper utilizes LLM to explore the execution parameters
of CLI programs and generate programs to drive the execution
of public APIs, thereby preparing the fuzzing context to test
the return values of an IPC server.

VII. CONCLUSION

This paper introduces GLEIPNIR, a novle vulnerability
detection tool specifically designed for Windows remote IPC
clients. Unlike previous research that primarily targets server-
side vulnerabilities, GLEIPNIR addresses the critical and often
overlooked client-side vulnerabilities. By fuzzing the return
values of IPC calls and leveraging snapshot technology to
enhance testing efficiency, GLEIPNIR effectively identifies
vulnerabilities in client applications. Our experiments on 76
client applications revealed 25 vulnerabilities within 7 days,
resulting in 14 CVEs and a total bounty of $36,000.
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APPENDIX

A. GPT Generated Testcase.

The complete code corresponding to Figure 6 is shown in
Figure A, which was obtained by querying GPT-4 with the
queries from Table III.

1 #include <windows.h>
2 #include <mprapi.h>
3 #include <iostream>
4 #pragma comment(lib, "mprapi.lib")
5 int main() {
6 HANDLE hMprServer = NULL;
7 WCHAR serverName[] = L"192.168.1.5";
8 DWORD dwError;
9 std::cout << "Attempting to connect to remote server:

" << "192.168.1.5" << std::endl;↪→
10 // Test Case 1: Connect to remote server
11 dwError = MprAdminServerConnect(serverName,

&hMprServer);↪→
12 if (dwError == NO_ERROR) {
13 std::cout << "Successfully connected to remote

server." << std::endl;↪→
14 } else {
15 std::cerr << "Failed to connect to remote server.

Error code: " << dwError << std::endl;↪→
16 return 1;
17 }
18 // Test Case 2: Get server information
19 MPR_SERVER_0 serverInfo;
20 dwError = MprAdminServerGetInfo(hMprServer, 0,

(LPBYTE*)&serverInfo);↪→
21 if (dwError == NO_ERROR) {
22 std::wcout << L"Server name: " <<

serverInfo.lpwsServerName << std::endl;↪→
23 std::wcout << L"Server version: " <<

serverInfo.dwServerVersion << std::endl;↪→
24 } else {
25 std::cerr << "Failed to get server information.

Error code: " << dwError << std::endl;↪→
26 }
27 // Test Case 3: Enumerate interfaces
28 LPBYTE pBuffer = NULL;
29 DWORD dwEntriesRead = 0;
30 DWORD dwTotalEntries = 0;
31 dwError = MprAdminInterfaceEnum(hMprServer, 0,

&pBuffer, (DWORD)-1, &dwEntriesRead,
&dwTotalEntries, NULL);

↪→
↪→

32 if (dwError == NO_ERROR) {
33 std::cout << "Number of interfaces: " <<

dwEntriesRead << std::endl;↪→
34 MPR_INTERFACE_0* pInfo =

(MPR_INTERFACE_0*)pBuffer;↪→
35 for (DWORD i = 0; i < dwEntriesRead; i++) {
36 std::wcout << L"Interface name: " <<

pInfo[i].wszInterfaceName << std::endl;↪→
37 }
38 MprAdminBufferFree(pBuffer);
39 } else {
40 std::cerr << "Failed to enumerate interfaces.

Error code: " << dwError << std::endl;↪→
41 }
42 // Test Case 4: Disconnect from remote server
43 if (hMprServer != NULL) {
44 MprAdminServerDisconnect(hMprServer);
45 std::cout << "Disconnected from remote server." <<

std::endl;↪→
46 }
47 return 0;
48 }

Fig. 12. The complete code in Figure 6.
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