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Abstract—Large Language Models (LLMs) have demon-
strated strong potential in tasks such as code understanding and
generation. This study evaluates several advanced LLMs—such as
LLaMA-2, CodeLLaMA, LLaMA-3, Mistral, Mixtral, Gemma,
CodeGemma, Phi-2, Phi-3, and GPT-4—for vulnerability de-
tection, primarily in Java, with additional tests in C/C++ to assess
generalization. We transition from basic positive sample detection
to a more challenging task involving both positive and negative
samples and evaluate the LLMs’ ability to identify specific
vulnerability types. Performance is analyzed using runtime and
detection accuracy in zero-shot and few-shot settings with custom
and generic metrics. Key insights include the strong performance
of models like Gemma and LLaMA-2 in identifying vulnerabilities,
though this success varies, with some configurations performing
no better than random guessing. Performance also fluctuates
significantly across programming languages and learning modes
(zero- vs. few-shot). We further investigate the impact of model
parameters, quantization methods, context window (CW) sizes,
and architectural choices on vulnerability detection. While CW
consistently enhances performance, benefits from other parame-
ters, such as quantization, are more limited. Overall, our findings
underscore the potential of LLMs in automated vulnerability
detection, the complex interplay of model parameters, and the
current limitations in varied scenarios and configurations.

I. INTRODUCTION

Vulnerability detection research has witnessed significant
progress with the advent of deep learning (DL) and natural lan-
guage processing (NLP) techniques [1], [2]. These techniques
have enabled more efficient identification of vulnerabilities
in software systems, enhancing traditional approaches, such
as static and dynamic analysis, in terms of scalability, accu-
racy, and adaptability to evolving coding practices. Moreover,
DL techniques have contributed to the field of vulnerability
detection, achieving high accuracy in predicting exploitable
vulnerabilities [3], [4]. Coupled with NLP techniques that
leverage transformer-based models, DL has shown promise in
automating vulnerability detection and improving accuracy [5].

The rise of Large Language Models (LLMs) signals
promising progress in vulnerability analysis and detection. For
instance, models such as SecureFalcon have achieved notable
accuracy in classifying vulnerabilities [6], though their focus
remains on classification rather than direct detection. Addi-
tionally, studies have examined LLM adaptation across various

fields [7], yet their capabilities for vulnerability detection are
neither well understood nor thoroughly investigated. Recent
research showcases LLMs’ strengths in code understanding
and generation, suggesting they could be especially valuable
for vulnerability detection in Java and C/C++ code, where
grasping complex syntactic and semantic structures is essential.
However, understanding the underlying factors affecting the
performance of such techniques is underdeveloped.

Existing research has advanced the field, but limitations
persist, notably in the narrow scope of evaluations regarding
models and their underlying performance. For example, Thapa
et al. [5] and Steenhoek et al. [8] focus only on C/C++ code,
and studies by Purba et al. [9] and Khare et al. [10] cover
a limited set of LLMs. Broader studies, like those by Liu et
al. [11] and Mathews et al. [1], concentrate on specific models
(GPT-3.5 and GPT-4), while Ullah et al. [12] examine
eight LLMs but with limited parameter analysis. Additionally,
research has not deeply explored factors like model size,
context window, and quantization on LLM vulnerability detec-
tion accuracy, underscoring the need for more comprehensive
studies to understand these influences.

Using five LLM families, ten architectures, 21 LLMs by
varying the architectures’ corresponding model size, and 38
by varying configurations, we address this gap by presenting
a comprehensive investigation into how various LLM charac-
teristics affect vulnerability detection performance in Java and
C/C++ codes. We focus specifically on file-level vulnerability
detection, determining whether a given code file contains
vulnerabilities. This scope is deliberately chosen to establish a
clear baseline for understanding LLMs’ capabilities in security
analysis. Unlike previous approaches that rely on external tools
or knowledge bases, our baseline considers a zero-shot ap-
proach to evaluate the models’ inherent capabilities, examining
how model families, parameter sizes, quantization methods,
and context window sizes influence detection accuracy.

With a carefully curated dataset of Java code samples,
we conduct extensive experiments with state-of-the-art LLMs,
including LLaMA-2, CodeLLaMA, LLaMA-3, Mistral,
Mixtral, Gemma, CodeGemma, Phi-2, Phi-3, and
GPT-4. Our analysis begins with positive samples (known
vulnerable code) and extends to include negative samples, pro-
viding a comprehensive assessment of the models’ discrimina-
tion capabilities. To ensure robustness, we further validate our
findings on C/C++ source code, exploring the generalizability
of our observations across programming languages.

Our investigation goes beyond basic vulnerability detection
to explore whether few-shot learning improves accuracy and
whether models can identify specific vulnerability types and
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TABLE I: Tested models. ⋆ is the mode’s mini-version.
Model Parameters Version Type Quantization CW
LLaMA-2 7B - Chat q5_K_M 4096
LLaMA-2 13B - Chat q5_K_M 4096
LLaMA-2 70B - Chat q5_K_M 4096
CodeLLaMA 7B - Instruct q5_K_M 16384
CodeLLaMA 34B - Instruct q5_K_M 16384
CodeLLaMA 70B - Instruct q5_K_M 2048
LLaMA-3 8B - Instruct q5_K_M 8192
LLaMA-3 70B - Instruct q5_K_M 8192
Mistral 7B v0.2 Instruct q5_K_M 32768
Mixtral 8x7B v0.1 Instruct q5_K_M 32768
Gemma 2B v1.1 Instruct q5_K_M 8192
Gemma 2B v1.1 Instruct fp16 8192
Gemma 7B v1.1 Instruct q5_K_M 8192
Gemma 7B v1.1 Instruct fp16 8192
CodeGemma 7B v1.1 Instruct q5_K_M 8192
CodeGemma 7B v1.1 Instruct fp16 8192
Phi-2 2.7B v2 Chat q5_K_M 2048
Phi-2 2.7B v2 Chat fp16 2048
Phi-3 3.8B⋆ - Instruct q5_K_M 4096
Phi-3 3.8B⋆ - Instruct fp16 4096
GPT-4 - - Chat - -

associate them with CVE IDs or descriptions, all without exter-
nal knowledge bases. This comprehensive evaluation system-
atically analyzes how various factors influence vulnerability
detection performance, addressing a critical research gap.

Except GPT-4, the majority of the used LLMs in this
study are open-source. A key reason for focusing on open-
source models for vulnerability detection is the security risk
associated with third-party services, since relying on closed-
source models, such as GPT-4 accessed via OpenAI’s APIs,
poses risks like data privacy breaches and potential expo-
sure of sensitive information to external servers. Open-source
models enable local processing, ensuring data remains secure
within the organization. Additionally, open-source models of-
fer transparency, allowing to audit and modify code as needed,
enhancing trust in deployment. Fine-tuning local models for
vulnerability detection is a promising area, offering specialized
and effective solutions compared to closed-source models. The
emphasis on open-source models is a commitment to secure
and transparent solutions given their competitive performance.

Research Questions. We structure our study as an inves-
tigation around several critical aspects of using LLMs for
vulnerability detection in Java and C/C++ code samples. Based
on a diverse set of models (Table I), we formulated the
following questions to guide our experiments and analysis:

RQ1. Can LLMs be used for vulnerability detection and type
identification across language? By evaluating various models
on Java and C/C++ codes, we attempt to determine the overall
efficacy of LLMs across various metrics for both vulnerability
detection and vulnerability type identification.

RQ2. Does the context window (CW) affect the overall perfor-
mance of LLMs? CW, the maximum token capacity a model
can handle at once, is critical for understanding large programs.
We hypothesize a smaller CW may reduce the accuracy. By
comparing models with CW sizes of 211–215 tokens, we aim
to quantify CW effects on model performance.

RQ3. Does quantization matter for vulnerability detection
Quantization reduces model weight precision, decreasing
memory usage and boosting inference speed. By comparing
various models under different quantizations, we identify the
trade-offs between efficiency and accuracy in our task.

RQ4. Do advanced architectures affect detection? We examine

the impact of LLMs architectural enhancements on detection
by assessing whether these improvements indeed translate to
better vulnerability detection compared to predecessors.

RQ5. Does few-shot learning improve the vulnerability detec-
tion accuracy? In realistic and constrained settings, we exam-
ine whether exposing the models to some examples pertaining
to the detected vulnerability type affect the performance.

By addressing these questions, we aim to comprehensively
analyze the capabilities and limitations of various LLMs in vul-
nerability detection. This study will highlight the strengths and
weaknesses of different models and offer insights into the prac-
tical implications of model selection, CW size, quantization,
and architectural advancements for a real-world application.

Key findings from our study reveal that while context
window size consistently improves performance, the impact
of other parameters varies significantly across model fami-
lies. Some models, particularly in the Gemma and LLaMA-2
families, demonstrate strong capabilities in identifying vul-
nerabilities, though this performance is not universal. These
insights have important implications for both the theoretical
understanding of LLMs in security analysis and their practical
application in development tools.

Contributions. This paper presents the following contribu-
tions: (1) An empirical analysis of the impact of model archi-
tecture, parameters, quantization, and context window size on
vulnerability detection performance in both Java and C/C++
code; (2) A systematic evaluation framework to assess the
inherent vulnerability detection capabilities of LLMs without
external aids; (3) Insights into factors influencing the success
of LLMs in vulnerability detection, including cross-language
performance and prompting strategies; and (4) Evidence-based
recommendations for optimizing LLM configurations for vul-
nerability detection tasks.

Organization. § II provides background, followed by related
work in § III, methodology in § IV, results in § V, discussion
in § VI, and conclusion in § VII. The limitations are deferred
to appendix J due to the lack of space.

II. BACKGROUND

LLMs have witnessed significant advancements in recent
years, driven by innovations in neural networks, Transformer-
based architectures, and training methods [13]. In particular,
the self-attention mechanism’s efficiency and ability to handle
long-range dependencies have made the Transformer a corner-
stone for subsequent LLM developments. In the following, we
provide the background of the LLMs used in this study.

The LLaMA Family. Meta’s contributions to LLMs began with
the LLaMA models family. Touvron et al. [14] introduced
LLaMA, with 7B to 65B parameters, trained on publicly
available datasets with compute-optimal approaches. Key im-
provements included pre-normalization, SwiGLU activation,
and rotary positional embeddings. LLaMA-2, presented by
Touvron et al. [15], expanded the pretraining corpus of LLaMA
by 40%, doubled the context length, and incorporated grouped-
query attention for scalability. Roziére et al. [16] extended this
line with CodeLLaMA, optimized for code generation and han-
dling sequences up to 100,000 tokens. The LLaMA-3 models
introduced enhanced tokenizers for long-context tasks [17].
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The Gemma Family. Google developed the Gemma and
CodeGemma families of transformer-based models. Mesnard
et al. [18] presented Gemma using a decoder-only architec-
ture with Multi-Query Attention, RoPE Embeddings, GeGLU
Activations, and RMSNorm. These models, trained on diverse
datasets, including web documents and code, showed strong
language understanding and reasoning performance. Cuenca et
al. [19] built on this foundation with CodeGemma, specifically
tailored for code-related tasks and maintaining high perfor-
mance on sequences up to 8192 tokens.

The Mistral Family. Jiang et al. [20] introduced Mistral
7B, leveraging grouped-query and sliding window attention for
efficient inference, outperforming larger models like LLaMA-2
13B. The Mistral architecture was further extended with
Mixtral 8x7B, employing a Sparse Mixture of Experts
(SMoE) approach to balance the performance and efficiency by
activating only a subset of its parameters during inference [21].
These innovations significantly reduced computational costs
while maintaining high performance.

The Phi Family. Microsoft’s contributions are exemplified
by the Phi family of models. Gunasekar et al. [22] intro-
duced Phi-1, a Transformer-based model designed for code
generation, with 24 layers and 32 heads, trained on high-
quality datasets. Li et al. [23] expanded this with Phi-1.5,
enhancing training data with synthetic datasets for improved
performance in common sense reasoning and general knowl-
edge tasks. Abdin et al. [24] scaled the model up to 2.7 billion
parameters in Phi-2, emphasizing data quality and innovative
scaling techniques. The Phi-3-mini model presented by
Abdin et al. [25] further demonstrated the potential of smaller,
efficiently trained models to rival much larger counterparts,
showcasing strategic data curation and training techniques.

These advances in architecture and training underscore the
rapid evolution and increasing sophistication of LLMs, setting
the stage for future breakthroughs in the field. The continued
innovation in architectural designs and strategic data curation
has significantly enhanced the performance and applicability
of LLMs across various domains.

III. RELATED WORK

Code Generation. Tipirneni et al. [26] introduced Struct-
Coder, a Transformer-based model for code generation that
integrates Abstract Syntax Tree (AST) and Data Flow Graph
(DFG) into its encoder and decoder, enhancing its under-
standing of syntactic and semantic relationships in code.
StructCoder also utilizes a structure-aware self-attention and is
pretrained with a structure-based denoising autoencoding task.
It excels in code translation and text-to-code generation tasks,
surpassing baselines like CodeT5 in BLEU, exact match, and
CodeBLEU metrics on the CodeXGLUE benchmark.

Vulnerability Detection. Thapa et al. [5] investigated
transformer-based models for detecting vulnerabilities in
C/C++ code. They developed a framework using “code gad-
gets,” which are groups of semantically related code slices
with data or control dependencies. This framework involved
normalizing code, extracting function and variable definitions,
and identifying relevant code lines based on data depen-
dencies. Each code gadget was treated as a unit for binary
and multi-class classification to detect vulnerabilities. Results

indicated that transformer models, especially GPT-2 Large
and GPT-2 XL, outperformed the traditional RNN models.

Purba et al. [9] evaluated LLMs for multi-label
vulnerabilities classification in C/C++ code, using the code
gadgets (focused on memory management and buffer overflow)
and CVEfixes (including SQL injection and buffer overflow)
datasets. They compared four LLMs—GPT-3.5-Turbo,
GPT-3.5-Turbo-0613, Codegen-2B-multi, and
Davinci—through fine-tuning and zero-shot approaches.
Although LLMs showed high false-positive rates compared to
traditional tools, fine-tuned models demonstrated an ability to
recognize common vulnerability patterns.

Khare et al. [10] evaluated the capabilities of pre-
trained LLMs, such as GPT-4, CodeLLaMA-7B, and
CodeLLaMA-13B, for vulnerability detection across five
benchmarks in Java and C/C++. In their study, vulnerability
detection was defined as identifying code patterns associated
with specific Common Weakness Enumeration (CWE) classes
within isolated code snippets, rather than complete source files
or projects. They found that CWE-specific prompts and data
flow analysis-based prompts notably enhanced LLM perfor-
mance, with GPT-4 achieving high F1 scores on synthetic
datasets like OWASP and Juliet.

Mathews et al. [1] applied LLMs to Android vulnera-
bility detection using the Ghera dataset, refining prompts to
address high false-positive rates. Using a retrieval-augmented
generation approach, which allowed models to access key files
(e.g., AndroidManifest.xml, MainActivity.java), they improved
vulnerability identification despite noise from irrelevant files.

Steenhoek et al. [8] provided an evaluation of eleven
LLMs, including GPT-4 and CodeLLaMA, for vulnerability
detection in isolated code functions, rather than entire source
code. They define vulnerability detection as the model’s ca-
pacity to identify security flaws within functions by reasoning
through code structure, boundary checks, and logical flow.
The authors introduced three prompting techniques: in-context
prompting, chain-of-thought prompting from CVE descrip-
tions, and from static analysis. However, the LLMs struggled,
achieving Balanced Accuracy scores between 0.5 and 0.63
and failing to differentiate between buggy and fixed function
versions 76% of the time. Human participants significantly
outperformed LLMs in bug localization, where LLMs correctly
located only 6 of 27 bugs in DbgBench.

Liu et al. [11] evaluated ChatGPT’s performance on six
vulnerability management tasks, such as bug report summa-
rization and vulnerability repair, using a dataset of 70,346
samples and comparing GPT-3.5 and GPT-4 to 11 state-
of-the-art approaches. They found ChatGPT effective in tasks
like bug report summarization but noted challenges in more
complex tasks, highlighting the critical role of prompt design
and model selection for vulnerability management.

Ullah et al. [12] introduced SecLLMHolmes, a framework
for evaluating LLMs on vulnerability identification and rea-
soning across 228 code scenarios, including CVEs and aug-
mented examples. Testing eight LLMs with varied prompting
techniques, they found limitations in LLMs, including non-
deterministic outputs and poor performance on real-world
scenarios, concluding that current LLMs are unreliable for
automated vulnerability detection.
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Original Dataset (Java or C/C++)

o Curation and cleaning
o Dataset integration
o Source code retrieval and cleaning
o Manual inspection and exclusion

Key Assessment
o Models controlled evaluation
o Parameters size impact
o Impact of quantization
o Different LLMs impact
o Context window impact

Generalization Assessment

o Positive and negative samples
o Few shot learning evaluation
o Vulnerability type identification
o Prompt evaluation time

Fig. 1: Overview of our evaluation.

This Work. We present a comprehensive evaluation of LLMs’
capabilities for real-world vulnerability detection scenarios,
addressing limitations in existing work through several key
aspects: (1) evaluating complete source code files rather than
isolated snippets, better reflecting actual development envi-
ronments, (2) employing zero-shot learning as our primary
strategy to assess out-of-box performance without relying on
fine-tuning or external information (e.g., CVE/CWE descrip-
tions), simulating realistic scenarios where vulnerability detec-
tors lack prior knowledge, (3) testing with both positive and
negative samples to simulate real deployment conditions, and
(4) examining cross-language generalization between Java and
C/C++. By evaluating multiple open-source LLMs, including
LLaMA-2, CodeLLaMA, LLaMA-3, Mistral, Mixtral,
Gemma, CodeGemma, Phi-2, and Phi-3, we provide in-
sights into their practical applicability for security analysis.
Unlike previous studies that focused on code snippets or
relied on external knowledge bases, our work offers a holistic
assessment of LLMs’ inherent capabilities in vulnerability
detection under realistic constraints, contributing to a deeper
understanding of their potential in enhancing software security.

IV. METHODOLOGY

As Our evaluation, per Figure 1, begins with the auto-
mated retrieval of relevant data, followed by a cleaning and
preprocessing for both Java and C/C++ datasets. Next, the
dataset undergoes vulnerability detection testing, employing
a systematic approach to address key evaluation questions
regarding LLM performance in isolation and the influence
of factors like model size, quantization, context window, and
architecture. To broaden the scope of our evaluation, we
also investigate vulnerability detection using negative samples,
prompt settings such as few-shot learning, vulnerability type
identification, and prompt evaluation time.

A. Datasets

Java Dataset. Our primary Java dataset is sourced from the
Vul4J dataset developed by Bui et al. [27]. The Vul4J
dataset was created by analyzing 1,803 fix commits addressing
912 Java vulnerabilities, resulting in 79 reproducible vul-
nerabilities from 51 open-source projects across 25 CWE
types, with 28 vulnerabilities corresponding to OWASP’s Top
10 risks. The dataset includes PoV tests, patches, and build
information for evaluating APR tools.

The dataset curation process involved automated retrieval
of CVE and CWE descriptions using the OpenCVE API,
followed by data cleaning to ensure consistency by removing
whitespaces and newlines. We integrated these descriptions
into the dataset and retrieved source code using the GitHub
API, tracking changes between pre-patched and post-patched
versions. Source codes no longer available on GitHub were
excluded. After removing comments to reduce context token
length, we manually inspected and filtered the data, excluding

non-Java files such as XML to ensure accuracy and relevance.
Details are deferred to appendix A for the lack of space.

Final Java Dataset. The final dataset comprises 280 Java
files, consisting of 140 pairs of vulnerable and non-vulnerable
versions covering 74 different vulnerabilities.

C/C++ Dataset. To evaluate the generalizability of our find-
ings, we extended our analysis to assess LLMs’ ability to
detect vulnerabilities in C/C++ code. Utilizing the same data
curation pipeline described in section IV-A, we processed
data from the Big-Vul dataset [28]. The Big-Vul dataset
initially includes 348 projects associated with 4,432 unique
code commits, addressing 3,754 vulnerabilities across 91 CWE
types. After processing, the dataset comprised 8,314 code files,
representing 4,157 pairs of pre-patched (vulnerable) and post-
patched (non-vulnerable) code.

Final C/C++ Dataset. To ensure consistency and facilitate
a robust validation process, we randomly sampled 200 code
files (100 vulnerable and 100 non-vulnerable) from the pro-
cessed Big-Vul dataset. This sample size mirrors our Vul4J
dataset, allowing for direct comparison and reinforcing the
reliability of our generalizability assessments.

B. Model Selection and Configurations

The selection of models for our work was based on
their performance in the field of LLMs and their capabil-
ities in various NLP tasks. We included models from sev-
eral prominent families, namely LLaMA-2, CodeLLaMA,
LLaMA-3, Mistral, Mixtral, Gemma, CodeGemma,
Phi-2, Phi-3, and GPT-4. The primary reasons for these
selections stem from their architectural innovations, perfor-
mance benchmarks, and relevance in current LLMs research.

We selected a diverse range of models with varying ar-
chitectures, parameter sizes, and training objectives, focus-
ing solely on fine-tuned models optimized for instruction-
following and dialogue. These ”chat” or “instruct” models
are designed for conversational understanding and response,
aligning our evaluation with real-world applications where
LLMs are used interactively, such as vulnerability detection via
dialogue. This approach allows us to assess the effectiveness
of fine-tuned models under conditions relevant to security
analysis. Model details are provided in Table I.

Context Window (CW). CW refers to the maximum number
of tokens a model can process simultaneously. For example,
most CodeLLaMA models have a CW of 16,384 tokens, except
for the 70B model, which has a notably smaller CW of 2048
tokens, as verified in our tests. This discrepancy may reflect
specific architectural choices. The CW sizes for other models
align with their descriptions in the respective research papers.

Reference Model. GPT-4, developed by OpenAI, was chosen
as a benchmark to evaluate open-source models against a
top closed-source model. While the exact parameter count
of GPT-4 is not officially disclosed1, it is known for its
strong performance. Released in different versions with vary-
ing CWs, such as GPT-4-0613 with an 8192-token CW and
GPT-4-turbo-0125-preview with up to 128,000 tokens,

1Although details are largely undisclosed, some sources suggest GPT-4
consists of 8 models totaling 1.76 trillion parameters.
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its quantization specifics remain undisclosed but likely use full
precision (fp32). Given GPT-4’s evolving specs, details like
CW and quantization may change; thus, they were excluded
from Table I to avoid inaccuracies and reflect potential updates.

Quantization. Quantization reduces the precision of a model’s
weights to lower memory usage and boost inference speed
with minimal performance impact. Our experiments mainly
employed the Q5_K_M method, which strikes a balance be-
tween performance and efficiency by applying Q6_K to half
of the attention and feed-forward tensors while using Q5_K
for the rest, retaining most of the model’s performance. Other
methods include Q5_K_S, which applies Q5_K across all
tensors for reduced resource usage at a slight performance cost,
and Q6_K, which utilizes Q8_K for all tensors, providing high
accuracy but demanding substantial resources. Additionally,
Q8_0 closely resembles fp16 (16-bit floating point) in per-
formance but requires more resources, making it less practical.

Justification. The choice of Q5_K_M is driven by its ability to
preserve most models’ performance while optimizing resources
making it ideal for large-scale evaluations. Models with fp16
precision were included as a baseline, helping to evaluate the
effectiveness of the quantization applied to some models.

C. Experimental Pipeline

Our pipeline is designed to evaluate the effectiveness of
LLMs in performing vulnerability detection on Java code. We
highlight our pipeline in more detail in the following.

System Prompt. In our pipeline, the system prompt guides
the LLMs in executing intended task and is crafted to simulate
an expert Java programmer, instructing the model to carefully
analyze the provided Java code and determine its vulnerability
status. Our approach employs a zero-shot prompting strategy,
deliberately chosen to evaluate the inherent capabilities of
LLMs in vulnerability detection without task-specific fine-
tuning or examples. This approach provides crucial insights
into the models’ baseline performance and generalization abil-
ities in a challenging security context. The prompt leverages
the generative capabilities of LLMs by not only requesting
a binary yes/no response but also requiring them to provide
reasoning for their decision. The used prompt is as follows:

You are an expert Java programmer who can carefully
analyze the provided Java code. The goal is to judge if the
provided code is vulnerable or not. Your answer should be
concise, with a yes or no to represent the code’s type. If it
is vulnerable, then yes; otherwise, no. Also, please explain
concisely why you made the decision.

This prompt sets a clear context, describing the specific task
and constraining the response format to ensure consistency.
The model is expected to respond with a simple “yes” or “no”
followed by a concise explanation of the decision, mimicking
the behavior of a human expert (examples are in appendix C).

Pre-patched Code. The user prompt also provides the pre-
patched Java code for each tested file, formatted to ensure
clarity. The user prompt template is structured as follows to
include the following comma-separated lines: template =
f""", ‘‘‘java, {pre_code}‘‘‘, """. This straightfor-
ward format ensures that the Java code is presented clearly to
the LLMs for analysis, for effective task execution.

Model Configuration. Our pipeline implements the chosen
model configurations to ensure reproducibility, consistency,
and fair comparison across LLMs. For open-source models,
we standardized several parameters to maintain rigor.

We set the temperature to 0.5 for all open-source mod-
els, balancing between deterministic outputs and maintaining
necessary flexibility in response generation. This setting is
important for vulnerability detection tasks where we need
focused, precise answers while allowing the model to explain
its reasoning. The choice of 0.5 aligns with the standard 0-1
temperature scale used by open-source LLMs, providing better
comparability across models than OpenAI’s 0-2 range.

To enhance reproducibility, we fixed the random seed to 42
for all open-source models. This ensures that given the same
pre-trained weights and input, the models generate consistent
outputs across different runs. The fixed seed is fundamental
for scientific validation and benchmarking purposes, allowing
other researchers to replicate our results reliably.

For output generation, we implemented a 2048-token limit
across all models, serving multiple purposes: to prevent exces-
sive generation, avoid potential memory issues, and ensures
efficient post-processing and manual analysis of results. The
limit was empirically chosen to provide sufficient space for
detailed explanations while addressing large-scale evaluation.

For GPT-4, we maintained its default configuration with-
out modifications. This decision acknowledges GPT-4’s non-
deterministic nature and allows it to serve as a baseline for
comparing open-source model performance. While this means
GPT-4’s responses may show slight variations across runs, it
represents real-world usage scenarios more accurately.

CW Configurations. We designed two distinct configurations
by varying the CW size: the restricted and the maximum CW.
① Restricted CW. We restrict all LLMs to an input CW of
2048 tokens to ensure fair comparison across all models, as
some models like Phi-2 have a maximum input token length
of 2048. By standardizing to this length, we create a level
playing field for evaluation while maintaining the 2048-token
output limit and temperature of 0.5 for consistent responses.
② Maximal CW. We remove the input token restriction, al-
lowing each LLM to operate at its maximum supported CW
capacity to evaluate the true capabilities of open-source LLMs
in their out-of-box settings while maintaining the 2048-token
output limit. For instance, CodeLLaMA-7B can process inputs
up to 16,384 tokens in this setting, potentially allowing for
more comprehensive code analysis.

Preventing Leakage. A key aspect of our pipeline is pre-
venting data leakage between evaluations. For each new user
prompt, we fully offload and reload the LLM to ensure that
evaluations remain independent and free from influence by
prior interactions. This model reload strategy preserves the
zero-shot nature of the assessment, ensuring each evaluation
is based solely on the current input. Although computationally
intensive, this process guarantees the integrity of our results.
This comprehensive configuration of our experimental pipeline
ensures reproducible, fair, and unbiased evaluation of LLM
performance in vulnerability detection. The careful balance of
parameters and strict data leakage prevention measures enable
us to systematically address the research questions outlined in
Table I while maintaining scientific rigor.
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D. Evaluation Metrics

The evaluation metrics are the accuracy and explicitness of
the model’s response in determining whether the provided Java
code files are vulnerable. Given that all Java code files in our
curated dataset are indeed vulnerable, the evaluation focuses
on the explicitness and correctness of the LLMs’ responses.

Custom Metrics. Manual evaluation is conducted to ensure
accuracy due to the varied freestyle nature of LLM responses,
making automatic assessments difficult. Responses are cate-
gorized as (1) Correct if marked as vulnerable (weighted 1),
(2) Incorrect if marked as not vulnerable (weighted 0), and
(3) Irrelevant if they do not address vulnerability (weighted
-1). The accurate response as a percentage (AP) represents the
proportion of correct responses marked as vulnerable, while
the explicit response as a percentage (EP) reflects responses
that clearly state the vulnerability status. Vulnerability-level
aggregation groups code files by vulnerability ID (VID), with
correct VID assessment requiring at least one file marked as
vulnerable and explicit VID response requiring at least one ex-
plicit statement of vulnerability status. As such, vulnerability-
level accurate responses (VAP) and vulnerability-level explicit
responses (VEP) assess the proportion of VIDs correctly and
explicitly evaluated, respectively. Details of these metrics are
deferred to appendix B for the lack of space.

Other Standard Metrics. We evaluated our models using
three standard metrics: precision (P), recall (R), and F1 score
(F1), all expressed as percentages. These metrics are defined as
follows. (1) Precision (P): The ratio of true positive predictions
to the total number of positive predictions made by the
model reflecting the model’s ability to correctly identify actual
vulnerabilities without generating false alarms. (2) Recall (R):
The ratio of true positive predictions to the total number of
actual positive cases, indicating the model’s effectiveness in
detecting all existing vulnerabilities. (3) F1 Score (F1): The
harmonic mean of P and R, providing a single metric that
balances both false positives and false negatives.

V. EVALUATION AND RESULTS

We present the detailed results of our evaluation based on
the metrics defined above. The results highlight the perfor-
mance of different LLMs for best performant in isolation, best
performant variants, both with Java codes, extended results for
C/C++, testing with positive and negative samples, few-shot
learning, vulnerability identification, and time overhead.

A. Controlled Model Comparison

We focus on a controlled model comparison by fixing the
parameters for the best-performing models and highlighting
their performance. More details are delegated to Appendix F.

AP/VAP. Table II shows the overall performance.

Best Performance. Gemma achieves the highest performance
in both metrics, with an AP of 78.57% and a VAP of 93.24%,
indicating its superior ability to identify vulnerabilities and
correctly assess specific VIDs accurately. LLaMA-2 also ex-
hibits strong performance with an AP of 70.00% and a VAP
of 82.43%, significantly (and surprisingly) higher than its
successor, LLaMA-3, which records an AP of 38.57% and
a VAP of 52.70%. This result suggests that LLaMA-3, despite

being a newer version that performs better on a range of tasks,
does not necessarily outperform its predecessor, LLaMA-2,
in these specific tasks. This finding underscores the need to
understand the different model variants for the specified task.

Contradictory Results. CodeLLaMA, a variant of LLaMA-2
specifically trained for code understanding and generation,
shows an AP of 39.29% and a VAP of 58.11%, which
are significantly and surprisingly lower than LLaMA-2 but
higher slightly than LLaMA-3. Similarly, CodeGemma, an-
other model tailored for code-related tasks, achieves an AP
of 48.57% and a VAP of 59.46%, slightly outperforming
CodeLLaMA but still falling short compared to its base model,
Gemma, which is supposed to improve for this specific task.

Moreover, Mixtral, claimed to be an advanced version
of Mistral, performs poorly with an AP of 12.86% and a
VAP of 21.62%, compared to Mistral’s AP of 20.71% and
VAP of 39.19%. This indicates that Mixtral enhancements
did not translate to better performance in these specific tasks.
Similarly, we found that Phi-2 outperforms its successor,
Phi-3, with APs of 40.71% vs. 30.00%, and VAPs of 55.41%
vs. 45.95%, respectively. This demonstrates that Phi-3, al-
though a more recent version, does not improve on Phi-2 in
accurately identifying vulnerabilities. Finally, GPT-4, known
for its performance in various tasks, achieves a disappointing
AP of 37.86% and a VAP of 51.35%, ranking 7th overall.

Open vs. Closed Source. When comparing open-source models
to GPT-4, it is evident that certain open-source models, such
as Gemma and LLaMA-2, outperform GPT-4 in both AP and
VAP metrics. These results show that performant open-source
models can rival or even exceed the capabilities of proprietary
models in specific vulnerability detection tasks. The availabil-
ity of these open-source models provides significant value to
the research community by offering accessible alternatives that
do not compromise performance.

Takeaway. Our results illustrate that specialized models have
strengths but do not consistently outperform their general
purpose or earlier versions across all metrics. Moreover, the
comprehensive evaluation of both AP and VAP provides valu-
able insights into each model’s capabilities in detection.

EP/VEP Performance. The right-hand side of Table II shows
the overall performance of the different models.

Best in-class Models. As observed, GPT-4 and Mixtral
achieve the highest scores of 100% in both EP and VEP,
indicating that these models provide clear and explicit assess-
ments of vulnerability status in all instances. CodeLLaMA
and LLaMA-3 also demonstrate strong performance with high
EP and VEP scores, showcasing their ability to make explicit
vulnerability assessments effectively.

Consistent Results. CodeLLaMA outperforms LLaMA-2, with
an EP/VEP of 71.43%/83.78%. This underscores the effec-
tiveness of domain-specific training in improving the model’s
ability to provide explicit responses. Similarly, CodeGemma
shows marked improvements over Gemma in both metrics.

Similarly, LLaMA-3 performs better than LLaMA-2, in-
dicating improved model architecture and training methods.
Mixtral surpasses Mistral, and Phi-3 outperforms
Phi-2, following the trend that newer versions and specif-
ically trained models achieve better results in making explicit
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TABLE II: File- and VID-level performance of the different models.
Model Param Quant CW AP VAP EP VEP
LLaMA-2 7B q5_K_M 2048 45.71 62.16 45.71 62.16
LLaMA-2 7B q5_K_M 4096 68.57 82.43 70.71 82.43
LLaMA-2 13B q5_K_M 2048 17.86 28.38 45.71 62.16
LLaMA-2 13B q5_K_M 4096 45.71 63.51 71.43 83.78
LLaMA-2 70B q5_K_M 2048 45.00 62.16 45.71 62.16
LLaMA-2 70B q5_K_M 4096 70.00 82.43 70.71 82.43
CodeLLaMA 7B q5_K_M 2048 2.14 4.05 45.0 60.81
CodeLLaMA 7B q5_K_M 16384 22.86 39.19 92.14 98.65
CodeLLaMA 34B q5_K_M 2048 9.29 16.22 44.29 59.46
CodeLLaMA 34B q5_K_M 16384 13.57 25.68 82.14 93.24
CodeLLaMA 70B q5_K_M 2048 39.29 58.11 45.0 62.16
LLaMA-3 8B q5_K_M 2048 12.86 21.62 47.86 62.16
LLaMA-3 8B q5_K_M 8192 38.57 52.70 90.71 97.3
LLaMA-3 70B q5_K_M 2048 2.86 4.05 47.86 62.16
LLaMA-3 70B q5_K_M 8192 2.86 4.05 92.86 98.65
Mistral 7B q5_K_M 2048 9.29 17.57 45.0 62.16
Mistral 7B q5_K_M 32768 20.71 39.19 97.86 97.3
Mixtral 8x7B q5_K_M 2048 7.14 10.81 45.0 60.81
Mixtral 8x7B q5_K_M 32768 12.86 21.62 100.0 100.0
Gemma 2B q5_K_M 2048 52.14 64.86 52.14 64.86
Gemma 2B q5_K_M 8192 68.57 85.14 70.0 85.14
Gemma 2B fp16 2048 53.57 66.22 53.57 66.22
Gemma 2B fp16 8192 78.57 93.24 78.57 93.24
Gemma 7B q5_K_M 2048 32.86 51.35 53.57 66.22
Gemma 7B q5_K_M 8192 69.29 87.84 94.29 98.65
Gemma 7B fp16 2048 37.86 54.05 53.57 66.22
Gemma 7B fp16 8192 77.86 90.54 94.29 98.65
CodeGemma 7B q5_K_M 2048 13.57 22.97 54.29 66.22
CodeGemma 7B q5_K_M 8192 48.57 59.46 95.0 98.65
CodeGemma 7B fp16 2048 10.00 17.57 53.57 66.22
CodeGemma 7B fp16 8192 42.86 59.46 89.29 98.65
Phi-2 2.7B q5_K_M 2048 40.71 55.41 42.14 58.11
Phi-2 2.7B fp16 2048 40.00 55.41 40.71 56.76
Phi-3 3.8B1 q5_K_M 2048 22.14 37.84 45.71 62.16
Phi-3 3.8B1 q5_K_M 4096 30.00 45.95 52.14 66.22
Phi-3 3.8B1 fp16 2048 16.43 28.38 45.71 62.16
Phi-3 3.8B1 fp16 4096 23.57 36.49 52.14 66.22
GPT-4 - - - 37.86 51.35 100.0 100.0

vulnerability assessments. Phi-2, with the lowest scores in
both EP and VEP, demonstrates the least effective perfor-
mance, whereas Phi-3 shows considerable improvement.

Takeaway. While GPT-4 sets a high benchmark with per-
fect performance, open-source models like CodeLLaMA,
LLaMA-3, and Mixtral exhibit strong performance with
explicit and accurate responses. These results highlight the
importance of domain-specific training in enhancing the ef-
fectiveness of LLMs for vulnerability detection.

B. Performance Analysis of Model Variants

1) AP/VAP Performance: Table II presents the AP and VAP
across different models by altering the model size (i.e., the
number of parameters in the model), CW size, and quantization
method. In both tables, the distinct colors highlight the best-
performing models within each family (i.e., best-in-class).

Both tables show a comprehensive analysis of the impact
of different model parameters on the performance of LLMs in
identifying vulnerabilities in Java codes. The analysis of these
tables reveals similar trends, with the number of parameters,
quantization methods, CW sizes, and model advancements
showing varied impacts on performance across models.

Model Size and Performance. Our analysis reveals that
the number of parameters does not consistently correlate
with better performance across different model families.
LLaMA-2 models show inconsistent improvements with pa-
rameter increases, while CodeLLaMA models generally benefit
from more parameters, albeit inconsistently. Surprisingly, the
Gemma and CodeGemma models with fewer parameters often

outperform larger models, highlighting the importance of other
parameters in determining performance.

Quantization and Model Performance. Quantization meth-
ods, such as q5_K_M and fp16, play a significant role in
model performance. In the Gemma family, fp16 quantiza-
tion generally enhances performance compared to q5_K_M.
However, this trend is not universal, as demonstrated by the
Phi family, where the effectiveness of quantization varies
significantly between configurations.

CW and Performance. Increasing the CW size generally
enhances model performance, though results vary across dif-
ferent model families. The LLaMA-2, CodeLLaMA, Gemma,
and Mistral model families consistently benefit from larger
CWs. However, inconsistencies are observed in the LLaMA-3
family, where the 70B model does not improve with a larger
CW. These findings indicate that while larger CWs are benefi-
cial, their effectiveness is influenced by model-specific factors
like architecture and quantization methods, necessitating fur-
ther investigation to optimize performance.

Advanced Variants and Performance. Advancements in
model architecture and specialized training datasets result
in varied performance improvements. CodeLLaMA mod-
els, specialized for code understanding, show mixed re-
sults, often underperforming compared to LLaMA-2 mod-
els. LLaMA-3 models exhibit improved performance with
increased CWs in some cases but do not consistently out-
perform LLaMA-2. Mixtral models, intended as improved
versions of Mistral, display inconsistent performance gains.
Similarly, CodeGemma models, fine-tuned for code tasks,
do not always surpass the original Gemma models. Phi-3
models do not improve over Phi-2 models, indicating that
the architectural advancements and improved training datasets
in Phi-3 do not result in better performance. While some
advancements offer benefits, they do not universally guarantee
better performance across all configurations.

Takeaway. File-level and VID-level analyses highlight the com-
plex interplay between model parameters, quantization, CW,
and architectures in determining the performance of LLMs in
vulnerability detection. While specific trends emerge, such as
the general benefits of larger CWs and the effectiveness of
fp16 quantization in some cases, the inconsistencies observed
across models highlights the need for further research to
optimize these models for specific tasks and domains.

2) EP/VEP Performance: Table II presents the perfor-
mance of the different models and their variants in terms of
EP and VEP. The data in the table allows for a comprehensive
analysis of the impact of different model parameters on the
file-level and VID-level performance evaluation of LLMs
identifying vulnerabilities. Overall, the analysis of these tables
reveals similar trends as those in section V-B1, and the detailed
analysis is delegated to appendix G for the lack of space.

C. Positive vs. Negative Samples

We extend our analysis by incorporating both vulnerable
(positive) and non-vulnerable (negative) Java code samples
into our testing pipeline. This setting assesses the LLMs’
ability to accurately distinguish between vulnerable and non-
vulnerable code, providing a more realistic evaluation of their
performance in practical detection scenarios.
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TABLE III: Performance comparison of various LLM models for
Java and C/C++ vulnerability detection with positive-negative samples
using precision, recall, and F1 score. The total samples for Java were
280 and for C/C++ were 200 samples. 1 mini-4k-instruct.

Java C/C++
MF Param Quant CW P R F1 P R F1
LLaMA-2 7B q5_K_M 4096 41.38 68.57 51.61 20.16 25.00 22.32
LLaMA-2 13B q5_K_M 4096 37.43 45.71 41.16 8.08 8.00 8.04
LLaMA-2 70B q5_K_M 4096 41.18 70.00 51.85 20.80 26.00 23.11
CodeLLaMA 7B q5_K_M 16384 51.61 22.86 31.68 28.57 32.00 30.19
CodeLLaMA 34B q5_K_M 16384 24.68 13.57 17.51 8.05 7.00 7.49
CodeLLaMA 70B q5_K_M 2048 28.95 39.29 33.33 9.09 10.00 9.52
LLaMA-3 8B q5_K_M 8192 42.86 38.57 40.60 20.56 22.00 21.26
LLaMA-3 70B q5_K_M 8192 23.53 2.86 5.10 0.00 0.00 0.00
Mistral 7B q5_K_M 32768 50.88 20.71 29.44 20.51 8.00 11.51
Mixtral 8x7B q5_K_M 32768 50.00 12.86 20.45 13.64 3.00 4.92
Gemma 2B q5_K_M 8192 40.68 68.57 51.06 20.63 26.00 23.01
Gemma 2B fp16 8192 44.35 78.57 56.70 21.43 27.00 23.89
Gemma 7B q5_K_M 8192 44.50 69.29 54.19 29.29 41.00 34.17
Gemma 7B fp16 8192 46.19 77.86 57.98 29.58 42.00 34.71
CodeGemma 7B q5_K_M 8192 65.38 48.57 55.74 23.71 23.00 23.35
CodeGemma 7B fp16 8192 54.05 42.86 47.81 20.79 21.00 20.90
Phi-2 2.7B q5_K_M 2048 29.08 40.71 33.93 9.91 11.00 10.43
Phi-2 2.7B fp16 2048 28.72 40.00 33.43 9.91 11.00 10.43
Phi-3 3.8B1 q5_K_M 4096 26.58 30.00 28.19 6.93 7.00 6.97
Phi-3 3.8B1 fp16 4096 23.40 23.57 23.49 4.12 4.00 4.06

Experimental Setup. For this evaluation, we used the com-
plete Vul4J benchmark dataset, comprising 280 Java source
files with paired vulnerable (pre-patched) and non-vulnerable
(post-patched) versions (examples are in appendix D). This
setup allowed us to evaluate the LLMs’ ability to detect vul-
nerabilities. Each code sample was analyzed individually under
a zero-shot learning setting, providing insights into the models’
generalization abilities. All models were tested with their
largest available CW sizes, without adapters or extensions,
as prior work suggested larger CWs enhance performance.
Models limited to a 2048-token CW were excluded to ensure
sufficient capacity for processing full code samples.

System Prompts. We maintained the same system prompt used
in our main experiments shown in section IV-C.

Irrelevant Responses. Irrelevant responses—those that fail to
address the task—are classified as incorrect predictions: they
are treated as false positives when the ground truth is non-
vulnerable and as false negatives when it is vulnerable. This
ensures that our metrics accurately reflect the models’ capa-
bility to deliver relevant and correct vulnerability assessments.

Analysis Results. Table III presents the performance metrics
of various LLMs on the Java vulnerability detection task.
Analyzing the results, we observe the following. (1) Precision:
The highest precision is achieved by the CodeGemma 7B
model with q5_K_M quantization, attaining 65.38%. This
indicates that when this model predicts a vulnerability, it is
correct 65.38% of the time, suggesting a lower rate of false
positives. Conversely, models like Phi-3 3.8B fp16 have the
lowest precision at 23.40%, indicating more false positives. (2)
Recall: The highest recall is observed in the Gemma 2B model
with fp16 quantization, achieving 78.57%, closely followed
by the Gemma 7B fp16 with 77.86%. This demonstrates
these models’ effectiveness in identifying a majority of the
actual vulnerabilities, minimizing false negatives. In contrast,
the LLaMA-3 70B model has the lowest with 2.86%. (3) F1
Score: The highest F1 score is achieved by the Gemma 7B
model with fp16 quantization, at 57.98%, indicating the best
balance between precision and recall among the models tested.
The LLaMA-3 70B q5_K_M have a score of 5.1%. More
details are in appendix H for the lack of space.

Impact of Parameter Size. Examining the effect of param-
eter size on performance: (1) LLaMA-2 Family. Increasing
the parameter size from 7B to 13B results in a decrease
in Precision (from 41.38% to 37.43%) and F1 Score (from
51.61% to 41.16%), while Recall decreases from 68.57% to
45.71%. However, further increasing the size to 70B improves
Recall to 70.00% and F1 Score to 51.85%, but Precision
remains similar at 41.18%. (2) CodeLLaMA Family. The 7B
model achieves higher precision and F1 score compared to the
34B model (51.61%) and (31.68% vs. 24.68% and 17.51%),
indicating that increasing parameter size does not guarantee
better performance. (3) Gemma Family. Moving from 2B to 7B
improves precision (44.35% to 46.19%) and F1 score (56.70%
to 57.98%), while decreasing recall (78.57% to 77.86%).

These observations suggest that larger models do not con-
sistently lead to better performance in vulnerability detection.

Impact of Quantization Methods. Analyzing the im-
pact of quantization methods, we found the following (1)
Gemma Models. Switching from q5_K_M to fp16 quantiza-
tion improves the Gemma 2B model’s precision (from 40.68%
to 44.35%), recall (from 68.57% to 78.57%), and F1 score
(from 51.06% to 56.70%). The Gemma 7B model shows simi-
lar improvements. (2) CodeGemma Models. The performance
drops when using fp16 quantization compared to q5_K_M,
with precision dropping from 65.38% to 54.05%, recall from
48.57% to 42.86%, and F1 score from 55.74% to 47.81%.
(3) Phi-2 Models. This model shows negligible differences
among methods, indicating quantization-independence.

These results indicate that the impact of quantization on
performance is inconsistent across different models.

Comparing Different LLM Architectures. Evaluating per-
formance across different model families and architectures,
we found the following. (1) LLaMA-2 vs. LLaMA-3. The
LLaMA-3 8B model achieves an F1 score of 40.60%, which is
lower than the LLaMA-2 7B model (51.61%). The LLaMA-3
70B model performs poorly with an F1 score of 5.10%, despite
the increased model size. (2) Mistral vs. Mixtral The
Mistral 7B model has an F1 score of 29.44%, whereas
the advanced Mixtral 8x7B model achieves a lower F1
score of 20.45%.Phi-2 vs. Phi-3 The newer Phi-3 3.8B
model does not outperform Phi-2 2.7B. The Phi-2 model
with q5_K_M quantization achieves an F1 score of 33.93%,
compared to 28.19% with Phi-3. These observations suggest
that advanced architectures and larger model sizes do not
necessarily lead to improved performance in detection tasks.

Summary. Our evaluation indicates that LLMs hold promise
for vulnerability detection, though effectiveness varies across
settings. Performance metrics differ among models, with no
single model consistently excelling. The impact of quantization
is variable; some models benefit from higher precision (fp16),
while others perform better with lower-precision quantization
(q5_K_M). Advanced architectures and larger parameter sizes
do not consistently enhance vulnerability detection. Code-
specialized models, such as Gemma and CodeGemma, out-
perform general-purpose models, highlighting the benefits of
domain-specific training. While effective in zero-shot scenar-
ios, LLMs require further fine-tuning for practical applications.
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D. Vulnerability Detection in C/C++ Codes

Experimental Setup. For the C/C++ code evaluation, we
modified the prompt in section IV-C to reflect the change in
programming language only (that is, in the original prompt,
we replaced the word Java with C/C++ in all occurrences).
This adjustment ensures that the LLMs are appropriately
contextualized for the specific programming language being
analyzed while maintaining consistency in the task structure
across both Java and C/C++ evaluations.

Results and Analysis. Table III presents the performance
of various LLMs for C/C++. The LLMs can be employed
for vulnerability detection in C/C++ code but exhibit varying
degrees of effectiveness. The highest F1 score achieved is
34.71% by the Gemma 7B model with fp16 quantization,
with a precision of 29.58% and a recall of 42.00%, reflecting
a moderate balance between identifying true vulnerabilities
and minimizing false positives. (1) Precision. The Gemma 7B
models exhibit the highest precision, with 29.58% for fp16
quantization, followed closely by 29.29% for q5_K_M. The
CodeLLaMA 7B model also shows relatively high precision
at 28.57%. In contrast, models like Phi-3 3.8B with fp16
quantization have the lowest precision at 4.12%, indicating a
higher rate of false positives. (2) Recall. The highest recall is
achieved by the Gemma 7B fp16 model at 42.00%, followed
by its q5_K_M counterpart at 41.00%. The CodeLLaMA 7B
model also performs reasonably with 32.00%. The LLaMA-3
70B shows the poorest performance with 0.00%, failing to
identify any vulnerabilities. (3) F1 Score. The Gemma 7B
fp16 model achieves the highest F1 score of 34.71%, indicat-
ing the best overall balance between precision and recall. The
CodeLLaMA 7B model follows with 30.19%, while Phi-3
3.8B fp16 shows the poorest performance with 4.06%.

Impact of Quantization Methods. The impact of quan-
tization on model performance is inconsistent as seen in
the following. (1) Gemma Family. Switching from q5_K_M
to fp16 quantization marginally improves the Gemma 7B
model’s performance, increasing the F1 score from 34.17%
to 34.71%, with marginal gains in precision and recall. (2)
CodeGemma Family. This model experiences a decrease in
performance when using fp16 quantization compared to
q5_K_M, with the F1 score dropping from 23.35% to 20.90%.
(3) Phi-2 Family. Phi-2 shows no change in performance
between quantization methods, maintaining an F1 score of
10.43%. (4) Phi-3 Family. Phi-3 shows decreased perfor-
mance with higher precision fp16 quantization (F1 of 4.06%)
compared to q5_K_M quantization (F1 of 6.97%).

These observations suggest that the effect of quantization
is model-dependent and does not uniformly enhance the per-
formance across different architectures.

Effect of Model Size and Advanced Architectures. Increas-
ing model size and employing advanced architectures do not
necessarily lead to improved performance. We confirm this
finding with the following. (1) LLaMA-2. The LLaMA-2 7B
outperforms its larger counterparts (13B and 70B) in terms of
F1 score (22.32% vs. 8.04% and 23.11%, respectively). The
70B model shows a slight improvement over 7B in recall but
not in precision. (2) LLaMA-3. Despite architecturally advanc-
ing LLaMA-2, the LLaMA-3 models has worse performance.
The 8B model achieves an F1 score of 21.26%, while the 70B

TABLE IV: Performance of select LLM models for Java vulnera-
bility detection with irrelevant samples. Total samples: 278.

MF Param Quant CW P R F1
LLaMA-2 70B q5_K_M 4096 27.66 37.41 31.80
Mistral 7B q5_K_M 32768 33.33 2.16 4.05
Gemma 7B fp16 8192 43.24 46.04 44.60
Phi-2 2.7B q5_K_M 2048 0.00 0.00 0.00

model fails entirely with 0.00%, indicating that architectural
improvements do not translate to better vulnerability detection.
(3) Mistral vs. Mixtral. The advanced Mixtral 8x7B
model performs worse than the Mistral 7B model, with F1
scores of 4.92% and 11.51%, respectively.

Zero Performance. Notably, the LLaMA-3 70B model ex-
hibits performance metrics all at 0.00%, where it did not detect
any true positives. Such a result suggests potential issues with
the model’s training or its applicability to this specific task.

E. Few-Shot Learning

1) Few-Shot for Java Samples: Experimental Setup. To
evaluate few-shot learning in vulnerability detection, we mod-
ified the experimental pipeline to include example cases in
the system prompt. Two samples—one vulnerable and one
non-vulnerable—were randomly selected from the dataset as
examples, leaving 278 samples for evaluation. This approach
prevents data leakage while providing concrete examples of
vulnerability cases. We preserved the core structure of the
system prompt from Section IV-C and augmented it with
these examples to guide model responses. For this experiment,
we selected top-performing models from each family based
on zero-shot results: LLaMA-2 70B, Mistral 7B, Gemma
7B, and Phi-2 2.7B. This selection enables us to assess
how different architectures respond to few-shot learning while
ensuring computational efficiency.

Performance Analysis. The results in Table IV indicate a
notable decline in performance with the few-shot approach
compared to zero-shot. The Gemma 7B model, which achieved
the highest F1 score of 57.98% in zero-shot, dropped to
44.60% in few-shot, while LLaMA-2 70B’s F1 score decreased
from 51.85% to 31.80%. Most strikingly, Phi-2 2.7B failed
entirely, yielding zero precision, recall, and F1 scores. This
unexpected degradation may stem from a few factors. First,
adding examples increases input length, potentially saturat-
ing the context window and limiting the models’ ability to
effectively process the target code. Second, examples might
introduce noise or conflicting patterns, disrupting model repre-
sentations, especially in models with smaller parameter counts
or context windows. The dramatic recall reduction in the
Mistral 7B model (from 20.71% to 2.16%) suggests that
few-shot learning may render some models overly conserva-
tive in vulnerability predictions, possibly due to overfitting
to provided examples. This finding challenges the common
belief that few-shot learning generally enhances model perfor-
mance, especially in security-critical tasks like vulnerability
detection. These findings challenge the conventional wisdom
that few-shot learning typically enhances model performance,
suggesting that vulnerability detection may require different
approaches or more sophisticated prompt engineering strate-
gies. Future work should investigate whether increasing the
number of examples or using more diverse example sets could
help mitigate these performance issues.
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2) Few-Shot for C/C++: Experimental Setup. For this
evaluation, we selected the best-performing model from each
family based on their zero-shot F1 scores: CodeLLaMA 7B
(F1: 30.19%), Mistral 7B (F1: 11.51%), Gemma 7B (F1:
34.71%), and Phi-2 2.7B (F1: 10.43%). All other configura-
tions are similar to Java’s case above, tailored for C/C++.

Performance Analysis. The results reveal a complete perfor-
mance collapse in the few-shot setting, with all models failing
to make predictions (0% precision, recall, and F1). Analysis
of response patterns shows varied behaviors across models.
Mistral 7B exhibited a strong bias toward non-vulnerable
classifications, with 33.84% true negatives while CodeLLaMA
7B was entirely indecisive, with equal rates of false positives
and negatives (50% each). Despite the highest zero-shot perfor-
mance, the Gemma 7B model had limited success in identifying
non-vulnerable cases (4.04% true negatives) and produced a
high false positive rate (45.96%). Similarly, the Phi-2 model
achieved only 1.01% true negatives and 48.99% false positives.

This uniform failure, regardless of model, highlights funda-
mental challenges in C/C++ vulnerability detection under few-
shot conditions. The added context from examples appears to
overwhelm the models’ accuracy, suggesting that alternative
approaches, such as specialized training or adjusted prompts,
may be essential for effective vulnerability detection.

F. Vulnerability Type Identification

We explored the potential of the LLMs in identifying
vulnerability types, representing a real-world scenario of multi-
class classification. Table V presents the performance of var-
ious LLMs in terms of Accurate Responses as a Percentage
(AP) and Correct Vulnerability Type Count (C) in both zero-
shot (AP0, C0) and few-shot (APf , Cf ) settings.

Setup. We modified the prompt (§ IV-C) to instruct models to
provide the CVE ID and a brief description for each code
sample. Unlike previous experiments, only vulnerable code
samples were included, focusing on evaluating the models’
accuracy in identifying vulnerability types rather than merely
detecting their presence. Evaluations were conducted in both
zero-shot and few-shot settings. In the few-shot setting, two
vulnerable code examples of different types were added to the
prompt to guide the models, with these examples randomly
selected and excluded from the main evaluation set to prevent
data leakage. A total of 140 vulnerable samples were analyzed
in the zero-shot setting and 138 in the few-shot setting.

Impact of Few-Shot Learning. Table V shows that AP
generally declined from the zero-shot to few-shot setting across
most models. For example, the Gemma 7B model with fp16
quantization had a notable drop in AP from 77.86% in the zero-
shot setting to 39.86% in the few-shot setting. Similarly, the
LLaMA-2 70B model’s AP decreased from 68.57% to 21.01%.

Interestingly, some models showed an increase in AP
from the zero-shot setting. The CodeLLaMA 7B model’s
AP rose from 12.86% in zero-shot to 34.06% in few-shot,
and LLaMA-3 70B improved from 4.29% to 20.29%. More-
over, the CodeGemma 7B with q5_K_M quantization saw a
slight increase in AP from 21.43% to 22.46%. Notably, the
LLaMA-2 70B model (q5_K_M, CW 4096) outperformed the
newer LLaMA-3 70B model in both settings. Moreover, the

TABLE V: Performance comparison of LLM models for Java
vulnerability type identification. Subscript 0 denotes zero-shot, f

denotes few-shot. Total samples: 140 (zero-shot), 138 (few-shot).
Model Parameters Quantization CW AP0 (%) APf (%)
LLaMA-2 7B q5_K_M 4096 64.29 18.12
LLaMA-2 13B q5_K_M 4096 32.14 7.97
LLaMA-2 70B q5_K_M 4096 68.57 21.01
CodeLLaMA 7B q5_K_M 16384 12.86 34.06
CodeLLaMA 34B q5_K_M 16384 10.00 7.97
CodeLLaMA 70B q5_K_M 2048 35.00 1.45
LLaMA-3 8B q5_K_M 8192 59.29 23.91
LLaMA-3 70B q5_K_M 8192 4.29 20.29
Mistral 7B q5_K_M 32768 2.86 0.72
Mixtral 8x7B q5_K_M 32768 12.86 4.35
Gemma 2B q5_K_M 8192 73.57 7.25
Gemma 2B fp16 8192 75.00 9.42
Gemma 7B q5_K_M 8192 75.71 37.68
Gemma 7B fp16 8192 77.86 39.86
CodeGemma 7B q5_K_M 8192 21.43 22.46
CodeGemma 7B fp16 8192 25.71 18.84
Phi-2 2.7B q5_K_M 2048 39.29 0.00
Phi-2 2.7B fp16 2048 42.86 0.00
Phi-3 3.8B1 q5_K_M 4096 14.29 5.80
Phi-3 3.8B1 fp16 4096 6.43 3.62

base Gemma 7B model (q5_K_M, CW 8192) significantly
outperformed its code-specialized CodeGemma 7B (q5_K_M,
CW 8192), with AP values of 75.71% vs. 21.43% in zero-shot
and 37.68% vs. 22.46% in few-shot settings, respectively.

Vulnerability Type Identification. Our analysis of the correct
vulnerability type count (C) highlights limitations across mod-
els in identifying specific vulnerability types. Predominantly,
C values of zero emerged in both experimental setups. In
the zero-shot setting, minimal success was observed only in
the LLaMA-2 70B and LLaMA-3 8B models, each correctly
identifying a single vulnerability type (C0 = 1). The few-
shot setting showed slightly improved but still limited per-
formance, with five models—LLaMA-2 7B, LLaMA-2 70B,
LLaMA-3 8B, CodeLLaMA 7B, and Gemma 7B (q5_K_M)—
each achieving one correct identification (Cf = 1). These
results suggest that while certain models exhibit a rudimentary
ability to identify vulnerability types, possibly due to their
architecture or specialized training, their overall capacity re-
mains highly limited. This shortcoming persists across differ-
ent model sizes, architectures, and training methods, indicating
a fundamental challenge in vulnerability type identification.

Comparison with the Original Results. Compared to the
original task (Table II), where models needed to determine
if code was vulnerable, we see generally higher AP in that
simpler task. Notably, the Gemma 7B model (fp16, CW 8192)
maintained an AP of 77.86% in both the original and the zero-
shot settings of the type identification task, though its perfor-
mance dropped to 39.86% in the few-shot setting of the latter.
Similarly, the LLaMA-2 70B model (q5_K_M, CW 4096)
achieved an AP of 70.00% in the original task, decreasing to
68.57% in zero-shot and 21.01% in few-shot settings for type
identification. These results show how the added requirement
of identifying specific vulnerability types increases the task
complexity, leading to a reduced performance across models.

G. Prompt Evaluation Time with Varying Context Windows

Our analysis indicates that increasing the CW generally
lengthens prompt evaluation time but shortens response gen-
eration time. For instance, the Gemma model (7b parameters,
q5_K_M quantization) with a CW of 8192 tokens had a prompt
evaluation time of 5.58 seconds and an evaluation duration
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of 4.34 seconds. Reducing the CW to 2048 tokens lowered
the prompt evaluation time to 2.85 seconds but increased the
evaluation duration to 9.50 seconds. This suggests that while
larger CWs extend prompt processing, they expedite response
generation by providing more context during decoding.

In the same LLM family, larger parameter sizes result in
longer processing times. In the LLaMA-2 series (q5_K_M
quantization, CW of 4096 tokens), the LLaMA-2 7b model
had a prompt evaluation time of 3.71 seconds and an evaluation
duration of 22.94 seconds. This increased to 7.38 seconds and
31.78 seconds for the 13b model, and to 35.24 seconds and
77.79 seconds for the 70b model. This trend reflects the greater
computational demands of larger models.

Quantization methods also notably affect performance. For
the Gemma models (7b parameters, CW of 8192 tokens),
the q5_K_M quantization resulted in an evaluation duration
of 4.34 seconds, whereas the fp16 quantization increased
it to 8.71 seconds under the same CW. This illustrates that
efficient quantization can decrease processing times without
significantly impacting prompt evaluation duration.

In summary, processing efficiency involves a trade-off be-
tween CW size, model complexity, and quantization methods.
While larger CWs and models may improve performance,
they come with increased computational costs, which efficient
quantization methods can help offset.

VI. DISCUSSION

Unified Evaluation. The results presented in Table II establish
a baseline for assessing whether LLMs can detect vulnerabil-
ities using only positive Java samples. We define minimum
performance thresholds of 50% for the AP (Accuracy of
Positive samples) metric and 70% for the EP (Explicitness
of Positive samples) metric, as performances below these
thresholds are worse than random guessing. Models achieving
AP between 50% and 75% and EP between 70% and 90% are
considered partially usable, while those exceeding 75% AP
and 90% EP are deemed usable. We introduce QX and CX as
the changes in AP and VAP (or EP and VEP) when varying
quantization and context window (CW) settings, respectively,
while keeping other parameters constant. The evaluation results
are detailed in Table VI and Table VII.

Building upon these findings, we expanded our analysis
to include negative Java samples, employing precision, recall,
and F1 score metrics as shown in Table III. This allowed us to
assess the models’ effectiveness in distinguishing vulnerable
code from non-vulnerable code. We further evaluated the
models’ generalizability to C/C++ code, with results presented
in Table III. To explore the impact of prompting strategies, we
analyze few-shot prompts to provide additional context, testing
whether this approach enhances performance for both Java and
C/C++ code. Lastly, we examined the models’ capability in
identifying specific types of vulnerabilities within positive Java
samples

Model Performance Evaluation. Our evaluation, as shown
in Table VI and Table VII, highlights the effectiveness of
LLMs in detecting vulnerabilities. Models like Gemma and
LLaMA-2 achieve high usability scores, demonstrating strong
performance in both AP and EP metrics. These tables provide

TABLE VI: Unified LLMs performance, highlighting models perfor-
mance as a baseline: # means unusable, with performance ≤ 50%,
G# means partially usable, with performance > 50% but < 75%,
and  means usable with performance ≥ 75%. QX denotes the
performance change in AP due to a change in quantization while
fixing all other parameters, and CX denotes the performance change
in AP due to CW while all other parameters are fixed. Highlighted
rows indicate usable performance across both AP and VAP.

MF Param Quant CW AP VAP QX CX
LLaMA-2 7B q5_K_M 2048 # G# - -
LLaMA-2 7B q5_K_M 4096 G#  - 22.86
LLaMA-2 13B q5_K_M 2048 # # - -
LLaMA-2 13B q5_K_M 4096 # G# - 27.85
LLaMA-2 70B q5_K_M 2048 # G# - -
LLaMA-2 70B q5_K_M 4096 G#  - 25.00
CodeLLaMA 7B q5_K_M 2048 # # - -
CodeLLaMA 7B q5_K_M 16384 # # - 20.72
CodeLLaMA 34B q5_K_M 2048 # # - -
CodeLLaMA 34B q5_K_M 16384 # # - 4.28
CodeLLaMA 70B q5_K_M 2048 # G# - -
LLaMA-3 8B q5_K_M 2048 # # - -
LLaMA-3 8B q5_K_M 8192 # G# - 25.71
LLaMA-3 70B q5_K_M 2048 # # - -
LLaMA-3 70B q5_K_M 8192 # # - 0.00
Mistral 7B q5_K_M 2048 # # - -
Mistral 7B q5_K_M 32768 # # - 11.42
Mixtral 8x7B q5_K_M 2048 # # - -
Mixtral 8x7B q5_K_M 32768 # # - 5.72
Gemma 2B q5_K_M 2048 G# G# - -
Gemma 2B q5_K_M 8192 G#  - 16.43
Gemma 2B fp16 2048 G# G# 1.43 -
Gemma 2B fp16 8192   10.00 25.00
Gemma 7B q5_K_M 2048 # G# - -
Gemma 7B q5_K_M 8192 G#  - 36.43
Gemma 7B fp16 2048 # G# 5.00 -
Gemma 7B fp16 8192   8.57 40.00
CodeGemma 7B q5_K_M 2048 # # - -
CodeGemma 7B q5_K_M 8192 # G# - 35.00
CodeGemma 7B fp16 2048 # # -3.57 -
CodeGemma 7B fp16 8192 # G# -5.71 32.86
Phi-2 2.7B q5_K_M 2048 # G# - -
Phi-2 2.7B fp16 2048 # G# -0.71 -
Phi-3 3.8B1 q5_K_M 2048 # # - -
Phi-3 3.8B1 q5_K_M 4096 # # - 7.86
Phi-3 3.8B1 fp16 2048 # # -5.71 -
Phi-3 3.8B1 fp16 4096 # # -6.43 7.14
GPT-4 - - - # G# - -

a comprehensive view of model performance across various
configurations, emphasizing the importance of context window
size and quantization in enhancing detection capabilities.

When examining precision, recall, and F1 score for the
zero-shot prompt, as detailed in Table III, we observe vari-
ability in the models’ ability to accurately distinguish between
vulnerable and non-vulnerable code. For instance, the Gemma
7B fp16 model achieves a precision of 46.19%, recall of
77.86%, and an F1 score of 57.98% in Java, indicating a
balanced performance. However, the generalizability to C/C++
code presents challenges, with the best F1 score dropping to
34.71% (Gemma 7B fp16), suggesting significant challenges
in cross-language adaptation.

Vulnerability Type Identification. The models demonstrate
severe limitations in identifying specific vulnerability types.
In zero-shot settings, only LLaMA-2 70B and LLaMA-3 8B
could correctly identify a single vulnerability type (C0 = 1).
The few-shot setting showed minimal improvement, with
five models (LLaMA-2 7B, LLaMA-2 70B, LLaMA-3 8B,
CodeLLaMA 7B, and Gemma 7B) each achieving only one
correct identification (Cf = 1). This consistent poor perfor-
mance across different model sizes and architectures indicates
a fundamental challenge in vulnerability type identification.

Open-Source vs. Proprietary Models. The comparison be-
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TABLE VII: Unified LLMs performance with the same symbols
as in Table VI. QX and CX are defined similarly for the change
in quantization and CW, while all other parameters are fixed. High-
lighted rows indicate usable performance across both EP and VEP.

MF Param Quant CW EP VEP QX CX
LLaMA-2 7B q5_K_M 2048 # # - -
LLaMA-2 7B q5_K_M 4096 G# G# - 25.00
LLaMA-2 13B q5_K_M 2048 # # - -
LLaMA-2 13B q5_K_M 4096 G# G# - 25.72
LLaMA-2 70B q5_K_M 2048 # # - -
LLaMA-2 70B q5_K_M 4096 G# G# - 25.00
CodeLLaMA 7B q5_K_M 2048 # # - -
CodeLLaMA 7B q5_K_M 16384   - 47.14
CodeLLaMA 34B q5_K_M 2048 # # - -
CodeLLaMA 34B q5_K_M 16384 G#  - 37.85
CodeLLaMA 70B q5_K_M 2048 # # - -
LLaMA-3 8B q5_K_M 2048 # # - -
LLaMA-3 8B q5_K_M 8192   - 42.85
LLaMA-3 70B q5_K_M 2048 # # - -
LLaMA-3 70B q5_K_M 8192   - 45.00
Mistral 7B q5_K_M 2048 # # - -
Mistral 7B q5_K_M 32768   - 52.86
Mixtral 8x7B q5_K_M 2048 # # - -
Mixtral 8x7B q5_K_M 32768   - 55.00
Gemma 2B q5_K_M 2048 # # - -
Gemma 2B q5_K_M 8192 # G# - 17.86
Gemma 2B fp16 2048 # # 1.43 -
Gemma 2B fp16 8192 G#  8.57 25.00
Gemma 7B q5_K_M 2048 # # - -
Gemma 7B q5_K_M 8192   - 40.72
Gemma 7B fp16 2048 # # 0.00 -
Gemma 7B fp16 8192   0.00 40.72
CodeGemma 7B q5_K_M 2048 # # - -
CodeGemma 7B q5_K_M 8192   - 40.71
CodeGemma 7B fp16 2048 # # -0.72 -
CodeGemma 7B fp16 8192 G#  -5.71 35.72
Phi-2 2.7B q5_K_M 2048 # # - -
Phi-2 2.7B fp16 2048 # # -1.43 -
Phi-3 3.8B1 q5_K_M 2048 # # - -
Phi-3 3.8B1 q5_K_M 4096 # # - 6.43
Phi-3 3.8B1 fp16 2048 # # 0.00 -
Phi-3 3.8B1 fp16 4096 # # 0.00 6.43
GPT-4 - - -   - -

tween open-source models like Gemma and proprietary models
such as GPT-4 reveals that open-source models can achieve
competitive performance. In some configurations, open-source
models even surpass proprietary ones, with Gemma achieving
higher AP (78.57%) than GPT-4 (37.86%), highlighting their
potential as cost-effective alternatives for both vulnerability
detection and type identification.

Takeaway. Overall, while LLMs show promise in vulnera-
bility detection, their effectiveness varies significantly across
tasks and languages. The performance gap between Java and
C/C++ detection, coupled with limited success in vulnerability
type identification, suggests that current LLMs require further
optimization for security applications. The strong performance
of some open-source models indicates potential for accessible,
effective vulnerability detection tools, though improvements
are needed for consistent cross-language performance and
accurate vulnerability classification.

Answering RQ1. LLMs can be utilized for vulnerability
detection and type identification across languages, though ef-
fectiveness varies significantly. While models show promise
in detecting vulnerabilities, particularly in Java, their per-
formance in C/C++ is notably weaker, and their ability to
identify specific vulnerability types remains limited.

CW. Our analysis, as summarized in Table VI and Table VII,
reveals that the CW size plays a crucial role in the performance
of LLMs in vulnerability detection tasks. The CW refers
to the maximum number of tokens a model can process

simultaneously, and our hypothesis was that smaller CWs
might lead to hallucinations or inaccurate responses.

Performance Variations with Different CW Sizes. Models
with larger CW sizes universally demonstrate better perfor-
mance metrics. For instance, models like Mixtral with a
CW of 32768 tokens achieve higher AP and VAP scores
compared to its variant with a CW of 2048. In contrast, models
with smaller CWs, such as 2048 tokens, often exhibit lower
performance metrics. This trend suggests that a larger CW
allows the model to maintain context more effectively, leading
to more accurate vulnerability assessments. For instance, as
seen in Table VI, models with CWs of 4096 tokens, such
as LLaMA-2 and CodeLLaMA, show significant performance
improvements (CX scores of 22.86 and 20.72, respectively)
when compared to their 2048 token counterparts.

Explicit Responses and Hallucinations. The EP and VEP
metrics, which measure the explicitness of the models’ re-
sponses, are crucial in determining the occurrence of hallucina-
tions. Models with CWs of 8192 and above, such as LLaMA-3
and Mixtral, show higher EP and VEP percentages, indi-
cating a lower likelihood of hallucinations and a more reliable
performance in explicitly stating the vulnerability status of the
code. For instance, Table VII demonstrates that models like
Gemma (with CW of 8192) achieve significant improvements
in EP (CX score of 40.72), highlighting their enhanced ability
to maintain context and reduce hallucinations. On the other
hand, models with smaller CWs, such as those with 2048
tokens, tend to have lower EP and VEP scores, suggesting
a higher probability of hallucinations or incomplete responses
due to their limited context-processing capability.

Takeaway. The findings emphasize that CW size greatly
influences LLM performance in vulnerability detection. Larger
CWs improve context retention, boosting accuracy and clarity
while reducing hallucinations. Thus, optimizing CW size is
essential for enhancing LLM effectiveness in security appli-
cations. Future research should aim to balance CW size with
computational efficiency to create models that are both robust
and feasible for large-scale deployment and tasks.

Answering RQ2. Yes, the CW size significantly impacts
LLM performance, with larger CWs generally improving
both accuracy and explicitness in vulnerability detection (as
shown in the CX columns in Table VI and Table VII).

Advantages and Trade-offs of Quantization. Quantization
provides substantial benefits in terms of model size, memory
usage, and inference speed. While fp16 models are resource-
intensive, the q5_K_M quantization reduces model size by
over two-thirds. Looking at Table VI, impacts vary across
models. Gemma 2B shows small QX improvements when
switching from q5_K_M to fp16 at lower CW, with larger
gains at higher CW. Gemma 7B demonstrates similar QX
improvements across CW sizes. Looking at Table VII, the
impact on explicitness (EP) shows similar patterns. Gemma
maintains consistent EP across quantization methods (QX =
0.00), while CodeGemma shows slight degradation (QX = -
0.72 at CW 2048 and -5.71 at CW 8192).

When examining Java code metrics in Table III, quan-
tization effects become clearer. Gemma 2B with CW 8192
sees modest improvements in precision, recall and F1 score
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when moving to fp16. Gemma 7B shows similar gains.
However, CodeGemma exhibits the opposite trend, with per-
formance drops across all metrics when using fp16. This
pattern continues in C/C++ code (Table III), where Gemma 7B
shows slight improvements with fp16, while CodeGemma
experiences decreases. Phi-2 maintains identical F1 scores
across quantization methods.

Takeaway. The findings demonstrate that quantization, espe-
cially with q5_K_M, can maintain performance while signif-
icantly reducing resource requirements. While some models
like Gemma show improved performance with fp16, others
like CodeGemma perform better with q5_K_M, indicating
that the relationship between quantization and performance
is model-dependent. This suggests that careful consideration
of model-specific characteristics is crucial when selecting
quantization methods for vulnerability detection tasks.

Answering RQ3. Quantization partly impacts model perfor-
mance, yet its effects vary across models and configurations.

Comparison between LLaMA-2 and LLaMA-3. The per-
formance comparison reveals that LLaMA-3 consistently un-
derperforms compared to LLaMA-2 across multiple metrics.
In Table II, LLaMA-3 70B shows significantly lower ac-
curacy and vulnerability assessment performance compared
to LLaMA-2 70B. When evaluating Java code vulnerability
detection in Table III, LLaMA-3 70B demonstrates substan-
tially weaker precision, recall and F1 scores than its prede-
cessor. This pattern extends to C/C++ code (Table III), where
LLaMA-3 70B completely fails to detect vulnerabilities while
LLaMA-2 70B maintains moderate performance.

Comparison Between Phi-2 and Phi-3. The newer
Phi-3 model shows no consistent improvements over Phi-2.
In Table II, Phi-3 with 3.8B parameters achieves lower
accuracy and vulnerability assessment scores compared to
Phi-2. This trend continues across precision, recall, and F1
metrics for Java code vulnerability detection (Table III), where
Phi-2 consistently outperforms Phi-3. The pattern persists
in C/C++ evaluation, with Phi-2 achieving better detection
rates than Phi-3.

Takeaway. The findings show that architectural advancements
alone do not guarantee superior performance in vulnerability
detection. Factors like model size, CW, and specific training
data significantly impact outcomes. Although newer architec-
tures like LLaMA-3 and Phi-3 show promise, their real-
world effectiveness in vulnerability detection is variable. Thus,
optimizing LLMs for security applications requires careful
model selection based on empirical performance data.

Answering RQ4. No, advanced architectures do not consis-
tently improve vulnerability detection performance.

Zero-shot vs. Few-shot. The observed decrease in AP from
zero-shot to few-shot settings for most models can be attributed
to several interconnected factors. The inclusion of examples
in the few-shot setting increases the input length, potentially
exceeding the models’ effective context window capacity,
particularly when combined with long code snippets. This
context window saturation is especially problematic for models
with smaller context windows, such as LLaMA-2 models with
CW 4096, which may struggle to process both the additional

examples and the main code input effectively. Furthermore, the
inherent complexity of identifying specific vulnerability types,
compared to binary vulnerability identification, requires deeper
understanding and reasoning capabilities from the models.
The models may also fail to effectively leverage the provided
examples to improve their performance, possibly due to lim-
itations in their training or architecture. All in all, although
previous findings showed that a larger CW generally enhances
LLM performance in vulnerability identification tasks, this
observation highlights the importance of context quality.

Regarding code-specialized models, while CodeLLaMA
7B showed an increase in AP for Java, it still failed to
surpass the performance of the base Gemma 7B model. This
observation suggests that code-specific fine-tuning alone may
be insufficient to enhance performance in vulnerability type
identification, indicating the need for more sophisticated ap-
proaches to improve model capabilities in this domain. The ob-
servation is seen in C/C++, where CodeLLaMA and LLaMA-3
do not consistently outperform their base counterparts, calling
for further refinement and targeted training for the given task.

Takeaway. The few-shot approach did not universally improve
LLM performance in vulnerability type identification and often
decreased accuracy. The general decline in AP suggests that
the increased context length and complexity introduced by the
examples can overwhelm models, regardless of whether they
are code-specialized or not. Moreover, code-specialized models
like CodeLLaMA and CodeGemma did not consistently out-
perform their base models in this task. For instance, the Gemma
7B model (fp16, CW 8192) outperformed the CodeGemma
7B model in both zero-shot (AP0 of 77.86% vs. 25.71%) and
few-shot (APf of 39.86% vs. 18.84%) settings.

The low correct type count in all models poses a significant
challenge in accurately identifying vulnerabilities. This sug-
gests that models lack the necessary understanding to perform
detailed vulnerability analysis without further enhancements.

Answering RQ5. No, simple few-shot learning degrades
performance compared to zero-shot across most models.

VII. CONCLUSION

This study examined the effectiveness of LLMs for vul-
nerability detection in Java and C++ code files, evaluating
38 models. Notable performers, including Gemma, achieved
strong results, although these results were inconsistent across
languages, underscoring the potential and limitations of LLMs
for automated vulnerability detection and security assessments
without task-specific fine-tuning.

The variability in performance gains from architectural
advancements indicates promising avenues for future research
to confirm the factors contributing to these inconsistencies.
Studies could employ analyses to isolate the effects of specific
architectural features and training strategies on model effec-
tiveness. Additionally, exploring ways to balance extended
context length with short-context performance, as seen in
models like LLaMA-3, may yield valuable insights for LLM
design. Finally, the observed performance drop in few-shot
scenarios highlights the need for more refined, task-specific
prompt engineering.
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While both datasets we used in this study are in the public
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APPENDIX

A. Java Dataset Curation Pipeline

Automated Description Retrieval. We automated the retrieval
of vulnerability descriptions from the OpenCVE API to collect
detailed CVE and CWE descriptions for each vulnerability.
This ensured consistency and scalability in gathering contex-
tual information about the vulnerabilities.
Data Cleaning and Preprocessing. Retrieved descriptions un-
derwent cleaning to remove whitespace and newline charac-
ters, ensuring suitable formatting for subsequent analysis and
improving quality and usability. This step was crucial for stan-
dardizing the format across different vulnerability descriptions.
Integration of Descriptive Data. Cleaned CVE and CWE
descriptions were integrated into the dataset, providing richer
context for each vulnerability. This enhanced description is
crucial for testing the robustness of LLMs in vulnerability
detection across different programming languages.
Source Code Retrieval. Using the GitHub API, we extracted
relevant source code changes from the repositories based on
commit information provided in the dataset, including both
pre-patched (vulnerable) and post-patched (non-vulnerable)
versions. Documents no longer hosted on GitHub or that could
not be found were excluded from our analysis.
Cleaning Source Code Data. Comments were removed from
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both pre- and post-patch versions to prevent context token
length inflation and reduce variability in LLMs’ decisions. This
ensures consistent evaluation across different codebases and
languages as comments are not consistently present across dif-
ferent codebases, and their inclusion could lead to inconsistent
performance in the vulnerability detection task.
Manual Inspection and Exclusion. We manually inspected
every collected source code in the curated dataset to ensure
relevance and accuracy. Files unrelated to Java code, such as
XML and other non-Java files, were excluded. This review
process ensured that the dataset remained focused and relevant
to our research objectives.

B. Custom Metrics

Manual Evaluation. We manually review all responses to
ensure accuracy and account for the varied styles of different
LLMs. This step is essential, as the freestyle nature of re-
sponses often lacks consistent grammar, making automatic as-
sessment of explicitness and accuracy challenging. A response
might begin with “No, the code is vulnerable,” but only a full
review clarifies the response’s explicitness on the vulnerability.

✧ Responses. We categorize responses as follows: (1) Correct
Response (1). If the response states the code as vulnerable, it
is marked as 1. (2) Incorrect Response (0). If the response
explicitly states that the code is not vulnerable, it is marked
as 0. (3) Irrelevant Response (-1). If the response is irrelevant
or does not state the vulnerability, it is marked as -1. Based
on these cases of response, we define the following metrics to
evaluate the overall performance of the LLMs:
① Accurate Responses as a Percentage (AP). This metric
quantifies the proportion of responses that correctly identify the
code as vulnerable and is calculated by dividing the explicit
and correct responses (marked as vulnerable) by the total
responses and scaling the result to 100 (percentage; file-level).
② Explicit Responses as a Percentage (EP). EP measures the
proportion of explicit responses that state the code file’s vulner-
ability calculated by dividing the number of explicit responses
by the total number of responses scaled as a percentage.

Vulnerability-level Aggregation. We aggregate the Java code
files based on their VID to evaluate the responses at the VID
level. Each Java code file has an ID in the format of n m,
where n represents a unique vulnerability and m is the file
ID under that unique vulnerability. For example, if a file has
the ID “1 0” and another has the ID “1 1”, both files are
considered part of the same VID, i.e., VID-1.
✧ Aggregated Responses. For VID-level aggregation of
responses, we define the following terms. (1) Correct VID
Assessment: The LLM is deemed correct if it marks at least
one file associated with the VID as explicit and correct
(vulnerable). (2) Explicit VID Response: A VID is considered
explicit if at least one associated file response explicitly states
the vulnerability status (either vulnerable or not vulnerable).
① Vulnerability-level Accurate Responses (VAP). This met-
ric measures the proportion of vulnerabilities at the VID level
that are accurately assessed. Moreover, this metric is calculated
as the number of correctly assessed VIDs divided by the total
number of VIDs, scaled to 100 (i.e., percentage).
② Vulnerability-level Explicit Responses (VEP). VEP mea-
sures the proportion of VIDs with at least one associated code
file response that explicitly states the vulnerability status. VEP

is calculated by dividing the number of VIDs with explicit
responses by the total VIDs and scaling the result to 100.

C. Examples of LLM Responses

This appendix provides examples of problematic responses
generated by Large Language Models (LLMs) during vulnera-
bility detection tasks. These examples illustrate the challenges
discussed in the main text, particularly regarding grammatical
inconsistencies and deviations from given instructions.

1) Grammatical Inconsistency and Contradictory State-
ments: Our analysis revealed significant variability in the
quality of responses generated by LLMs for the vulnerability
detection task. Three primary issues emerged across different
model sizes and architectures: grammatical inconsistency and
contradictions, deviation from instructions and task misinter-
pretation, and empty or non-responsive outputs. While those
issues are not the core of vulnerability detection, they indirectly
impact the evaluation metrics, so we highlight them.

The Phi-3-3.8b-mini-4k-instruct-f16 model,
for instance, produced responses with contradictory state-
ments, initially declaring no vulnerabilities before pro-
ceeding to list several security issues. In contrast, the
CodeLlama-34B-Instruct model, despite its large pa-
rameters and CW of 16384 tokens, completely failed to
address the vulnerability detection task in one case, instead
providing a general description of code functionality and
structure (refer to Appendix C2). We also observed in-
stances where LLMs failed to generate any response, e.g.,
CodeLlama-34B-Instruct.

The following response, produced by
Phi-3-3.8b-mini-4k-instruct-f16 with the
CW set to be 2048 (file ID: 48 0), demonstrates grammatical
issues and contradictory content:

No, the code provided does have vulnerabilities related to im-
proper input validation and exception handling which could lead
potential security issues like information leakage or denial of
service (DoS). [...]

Observations. We note include the following. (1) The response
begins with ”No,” but immediately contradicts this by stating
that the code does have vulnerabilities. (2) There are grammat-
ical errors, such as ”which could lead potential security issues”
instead of ”which could lead to potential security issues.”
(3) The response is overly verbose and repetitive, making it
difficult to extract clear, concise information.

2) Deviation from Instructions: The following example,
generated by CodeLlama-34B-Instruct-q5_K_M with
a CW of 16384 (file ID: 7 3), illustrates how an LLM can
deviate from the given instructions and misinterpret the task
of vulnerability detection:

This code is a unit test for the ‘ZipArchiveInputStream‘ class
in Apache Commons Compress library. It tests various scenarios
such as reading ZIP archives with different compression methods
(Deflate, Store), handling of Unicode file names and entry sizes
that are not known until all data has been read from an archive
stream (‘getNextEntry()‘).
java 14-20: The test class is annotated to run the tests in a specific
order. This ensures that each method runs after its dependencies
have completed successfully, preventing false positives or nega-
tives due to interdependencies between methods.
36 - 57 : In this section of code , we see several unit testing cases
. Each test case is designed to exercise the functionality provided
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TABLE VIII: Performance loss in AP change (APC) and VAP
change (VAPC) when quantization changes from fp16 to q5_K_M.
 means usable with performance loss <5%, G# means partially
usable with performance loss ≥5% but <20%, # means unusable
with performance loss ≥20%, and H# means irregular with negative
performance loss (performance gain).

MF Param CW APC (%) VAPC (%)

Gemma 2B 2048   
Gemma 2B 8192 G# G#
Gemma 7B 2048 G# G#
Gemma 7B 8192 G#  
CodeGemma 7B 2048 H# H#
CodeGemma 7B 8192 H#  
Phi-2 2.7B 2048 H#  
Phi-3 3.8B1 2048 H# H#
Phi-3 3.8B1 4096 H# H#

by a specific class in Apache Commons Compress library and
ensure that it works as expected under various conditions such as
different compression method, Unicode file names or entry sizes.
80 - 125 : This section of code defines methods for setting up data
required for testing . For example , we can see the ‘getFile()‘
method which is used to retrieve a test input stream from an
external resource and set it into our unit tests context so that they
have access to this file during execution.

Observations. We note the following. (1) The model com-
pletely misinterprets the task of vulnerability detection, instead
providing a general description of the code’s functionality
and structure. (2) There is no mention of potential security
vulnerabilities or risks associated with the code. (3) The
response focuses on explaining the purpose of unit tests and
the structure of the code, which is not relevant to the task of
vulnerability detection.

D. Example Codes

All of the codes used in our dataset are confirmed vulnera-
ble codes, thus the expected correct answer by the LLM in our
experiments should be a simple “yes” with the justification as
to why this answer is made. An example vulnerable code and
the corresponding patched code are shown in Figure 2.

E. Quantization Methods Comparison

The results in Table VIII show that quantization signif-
icantly affects the performance of models in terms of AP
change (APC) and VAP change (VAPC) when moving from
fp16 to q5_K_M. This is expected due to the inherent
reduction in precision from 16 bits to 5 bits per weight.
Despite this reduction, models like Gemma with 2B parameters
and a CW of 2048 demonstrate minimal performance loss,
indicated by the  symbol, meaning the model remains highly
usable. Furthermore, models such as CodeGemma with 7B
parameters and the same CW even exhibit performance gains
(H#), highlighting the efficiency of q5_K_M quantization.

F. Best in Class Models for Java

The plots in Figure 3 compares the performance of the best-
performing models from various LLM families on Java code
file level (AP) while Figure 4 does the same at the VID level
(VAP). Similarly, Figure 5 presents a comparison between the
different models in terms EP at the Java code file and Figure 6
shows the comparison aggregated in terms of VEP at the VID-
level, both defined in section IV-D.

package com.alibaba.json.bvt.bug;
import com.alibaba.fastjson.JSON;
import junit.framework.TestCase;
import java.util.List;
public class Issue1005 extends TestCase {

public void test_for_issue() throws Exception {

Model model = JSON.parseObject("{\"values\":[1,2,3]}
", Model.class);

assertNotNull(model.values);
assertEquals(3, model.values.size());
assertEquals(Byte.class, model.values.get(0).

getClass());
assertEquals(Byte.class, model.values.get(1).

getClass());
assertEquals(Byte.class, model.values.get(2).

getClass());
}
public static class Model {

public List<Byte> values;
}

}

(a) Vulnerable code.

package com.alibaba.json.bvt.bug;
import com.alibaba.fastjson.JSON;
import junit.framework.TestCase;
import java.util.List;

public class Issue1005 extends TestCase {
public void test_for_issue() throws Exception {

Model model = JSON.parseObject("{\"values
\":[[1,2,3]]}", Model.class);

assertNotNull(model.values);
assertEquals(3, model.values[0].size());
assertEquals(Byte.class, model.values[0].get(0).

getClass());
assertEquals(Byte.class, model.values[0].get(1).

getClass());
assertEquals(Byte.class, model.values[0].get(2).

getClass());
}
public void test_for_List() throws Exception {

Model2 model = JSON.parseObject("{\"values
\":[1,2,3]}", Model2.class);

assertNotNull(model.values);
assertEquals(3, model.values.size());
assertEquals(Byte.class, model.values.get(0).

getClass());
assertEquals(Byte.class, model.values.get(1).

getClass());
assertEquals(Byte.class, model.values.get(2).

getClass());
}
public static class Model {

public List<Byte>[] values;
}
public static class Model2 {

public List<Byte> values;
}

}

(b) Patched code.

Fig. 2: Examples of vulnerable and patched code snippets.

G. EP/VEP Performance

In this section, we elaborate on the results of EP/EVP
performance for model variants over Java codes.

Model Size and Performance. Across different model fam-
ilies, the relationship between the number of parameters and
performance shows varied results. For the LLaMA-2 family,
increasing the parameters does not seem to enhance the
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performance significantly, as both the 7B and 70B models
achieve similar explicit response percentages under constant
CW sizes. In the CodeLLaMA family, a larger CW can
enhance the performance, although the number of parameters
alone does not have a consistent impact. LLaMA-3 models
exhibit a predictable pattern where a larger CW significantly
improves the performance, but parameter count alone shows
a minimal effect. In contrast, the Gemma family demonstrates
a clear positive correlation between the increased number of
parameters and the improved performance, with higher explicit
response percentages observed as the parameters increase.
Overall, while the parameter count alone does not always
predict performance improvement, CW size consistently en-
hances model effectiveness, highlighting the complex interplay
between model architecture, parameters, and CW size.

Quantization and Performance. The impact of quantization
on model performance varies across different models. For
the Gemma models, increased quantization precision generally
enhances performance, as seen with the 2B model where
explicit response improves at different CW sizes. However, the
CodeGemma models show mixed results, with slight decrease
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in performance at certain CW sizes. In the Phi models
family, higher quantization precision does not consistently
improve the performance, as the Phi-2 model’s explicit
response percentage decreases at a CW of 2048. Overall,
while increased quantization precision generally benefits the
performance in some model families, such as Gemma, it
does not universally enhance performance across all models,
highlighting the model-specific nature of quantization impact.

CW and Performance. Increasing the CW size generally
results in improved performance across all model families.
For LLaMA-2 models, explicit response rates increase signifi-
cantly with larger CWs. Similarly, CodeLLaMA models show
higher explicit response values with extended CWs. LLaMA-3
models also benefit greatly from larger CWs. Gemma mod-
els exhibit consistent performance gains with increased CW
sizes. CodeGemma and Mistral models show notable im-
provements as well, with Mixtral models achieving perfect
explicit response rates with larger CWs. While the Phi models
show more moderate enhancements, they still benefit from in-
creased CWs. Overall, larger CWs play a role in optimizing the
performance of LLMs by enhancing their explicit responses.

Advanced Variants and Performance. Advancements in
model architecture and fine-tuning for specific tasks signifi-
cantly enhance explicit response performance across various
model families. For instance, CodeLLaMA, a fine-tuned ver-
sion of LLaMA-2 optimized for code tasks, shows significant
improvements compared to the base LLaMA-2 model. The
LLaMA-3 models also exhibit superior performance over
LLaMA-2. Mixtral models, representing an improvement
over Mistral, achieve perfect explicit response rates, and
surpassing their predecessor. Similarly, CodeGemma, opti-
mized for code generation, achieves higher explicit response
rates than Gemma. Lastly, Phi-3 shows a notable edge over
Phi-2, with higher explicit response percentages.

Overall, these results highlight the substantial gains from
task-specific fine-tuning and advancements in model architec-
ture, underscoring the importance of continual model develop-
ment and specialization in optimizing performance.

H. More Results on Positive vs. Negative

Despite these findings in Table III, the overall F1 score
across all models was moderate, with none exceeding 60%,
suggesting significant room for improvement in the accuracy
by minimizing the false positive and false negative rates. We
notice that irrelevant responses had a notable impact on the
overall performance of the models by increasing the false

17



positive (non-vulnerable irrelevant responses), thus affecting
the accuracy, and negative (vulnerable irrelevant responses),
thus affecting the recall.

This dynamic significantly impacts the F1 score. For exam-
ple, in Phi-3 3.8B fp16, irrelevant responses make up 52.5%
of total outputs (147 out of 280), with only 33 true positives
and 32 true negatives. When treating irrelevant responses as
incorrect predictions, this results in a precision of 23.40% and
recall of 23.57%. Interestingly, Phi-2 2.7B fp16, despite
fewer parameters and older architecture, outperforms Phi-3
with 56 true positives and just 1 true negative, though it
shows a higher irrelevant response rate of 60% (168 out
of 280). With a precision of 28.72% and recall of 40.00%,
Phi-2 demonstrates that architectural advances and increased
parameter counts don’t guarantee better vulnerability detection.

This is further evidenced by Mixtral 8x7B q5_K_M,
which, despite its advanced architecture and lowest irrelevant
response rate (0.36% or 1 out of 280), achieves only 18 true
positives, resulting in an F1 score of 20.45%. This suggests
that while irrelevant responses affect metrics, the key factor is
a model’s inherent ability to accurately identify vulnerabilities,
as shown by true positive and true negative rates.

Takeaway. Evaluating LLMs for vulnerability detection re-
quires an approach with multiple metrics. Notably, Gemma
excels in delivering both explicit and accurate responses, with
high EP and VEP scores indicating its ability to provide clear
vulnerability status and high AP and VAP scores crucial for
accurate detection. Open-source models have shown promise,
sometimes surpassing proprietary models on specific metrics.
However, the varied performance across model variants and
versions underscores the importance of thorough evaluation
and the ongoing need for research to develop models that
perform consistently well across all metrics in vulnerability
detection.

I. Customized Models

There have been a lot of efforts to build language models
tailored for codes only, such as StructCoder [26], and a
natural question is whether such models can be used more
effectively to address the problem at hand. While Struct-
Coder [26] presents a novel approach for code generation by
incorporating code structure, several limitations make it less
suitable for vulnerability detection tasks. Firstly, StructCoder’s
preprocessing stage relies on generating Data Flow Graph
(DFG) information, which may not be feasible for all code
snippets in our dataset. Secondly, the dynamic updating of
node types during preprocessing can lead to incompatibility
issues and incorrect model initialization. Furthermore, our
initial experiments found that StructCoder imposes limitations
on the code generation process by truncating the input and
output based on fixed maximum lengths, which is unsuitable
for detection, where the patched code size varies significantly.

StructCoder also requires detailed natural language de-
scriptions for generating code, which may not be available
in our vulnerability detection scenario. Lastly, StructCoder is
intended for code translation tasks rather than code generation,
as it does not require an accurate language description for
the expected code output. Given these limitations, we con-
clude that directly applying the StructCoder or other related
approaches to our vulnerability detection is infeasible.

J. Limitations

Dataset Limitations. While our evaluation used established
benchmarks (Vul4J for Java and Big-Vul for C/C++), these
datasets may not fully represent the diversity and complexity
of vulnerabilities found in real-world applications. The datasets
are also limited in size (280 Java samples and 200 C/C++
samples), which may affect the generalizability of our findings.
A limitation of our pipeline is its reliance on pre- and post-
patch code as proxies for vulnerable and non-vulnerable sam-
ples, assuming post-patch code is non-vulnerable. However,
these samples may require future patches for new vulnera-
bilities, reflecting the evolving nature of vulnerability detec-
tion. Moreover, to mitigate data leakage, we implemented
two measures: (1) fully offloading the LLM with each user
prompt to prevent influence from prior interactions, and (2)
acknowledging that while Vul4J and Big-Vul datasets (from
2022 and 2020) were used, we could not verify if these were
in the LLMs’ training data. Future work could address this
by generating new datasets from recent projects, expanding
dataset size and vulnerability coverage while verifiably mini-
mizing or precluding the overlap with LLM training data.
Model Selection. Although we evaluated a range of open-
source LLMs, our study does not include all models. Some
potentially effective models may have been excluded due to re-
source constraints or availability issues. Additionally, our eval-
uation focused primarily on models with parameter sizes rang-
ing from 2B to 70B, potentially missing insights from smaller
or larger models. Recent models such as LLaMA-3.1 and
LLaMA-3.2, and proprietary models like GPT-4, Claude
Sonnet 3.5, and GPT-4-o were not evaluated.
Zero-Shot and Few-Shot Limitations. Our zero-shot and few-
shot approaches, while demonstrating the models’ inherent
capabilities, may not represent the optimal way to leverage
LLMs for vulnerability detection. The dramatic performance
degradation in few-shot learning, particularly for C/C++ code,
suggests that our prompt engineering approach may need
refinement or that alternative methods might be more effective,
including alternative classification frameworks.
Language Coverage. Our study focused on Java and C/C++
code, leaving out many other popular programming languages.
The effectiveness of LLMs in detecting vulnerabilities in
other languages, particularly those with different paradigms
or security models, remains unexplored.
Resource Requirements. The computational resources re-
quired for running these models, particularly the larger ones,
may limit their practical applicability in real-time vulnerability
detection. Our evaluation was conducted on Apple M-series
hardware, which may not be representative of all deployments.
Advanced Techniques. Our study did not explore several ap-
proaches that could potentially improve vulnerability detection.
Implementing Retrieval-Augmented Generation (RAG) could
enhance the models’ ability to access and utilize relevant vul-
nerability information. Moreover, using multiple LLM agents
collaboratively for vulnerability detection through multi-agent
systems could provide more robust and accurate results.
Comparison with Specialized Tools. Our study did not direct
compare with specialized vulnerability detection tools, as that
falls out of the scope of this work. Future work should compare
with such analyzers and commercial scanners to possibly
devise hybrid approaches combining LLMs with such tools.
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