
Siniel: Distributed Privacy-Preserving zkSNARK
Yunbo Yang†‡§, Yuejia Cheng¶, Kailun Wang∥, Xiaoguo Li∗∗, Jianfei Sun††, Jiachen Shen†, Xiaolei Dong †(�),

Zhenfu Cao †, Guomin Yang ††, and Robert H. Deng††
†Engineering Research Center of Blockchain Data Management, Ministry of Education, East China Normal University

‡The State Key Laboratory of Blockchain and Data Security, Zhejiang University
§Hangzhou High-Tech Zone (Bin jiang) Institute of Blockchain and Data Security

¶Shanghai DeCareer Consulting Co., Ltd
∥Beijing Jiaotong University

∗∗College of Computer Science, Chongqing University
††School of Computing and Information Systems, Singapore Management University

52215902015@stu.ecnu.edu.cn, chengyuejia@foxmail.com, wangkailun@bjtu.edu.cn, csxgli@cqu.edu.cn,
jfsun@smu.edu.sg, {jcshen, dongxiaolei, zfcao}@sei.ecnu.edu.cn, {gmyang, robertdeng}@smu.edu.sg

Abstract—Zero-knowledge Succinct Non-interactive Argument
of Knowledge (zkSNARK) is a powerful cryptographic primitive,
in which a prover convinces a verifier that a given statement
is true without leaking any additional information. However,
existing zkSNARKs suffer from high computation overhead in the
proof generation. This limits the applications of zkSNARKs, such
as private payments, private smart contracts, and anonymous
credentials. Private delegation has become a prominent way to
accelerate proof generation.

In this work, we propose Siniel, an efficient private delegation
framework for zkSNARKs constructed from polynomial interac-
tive oracle proof (PIOP) and polynomial commitment scheme
(PCS). Our protocol allows a computationally limited prover
(a.k.a. delegator) to delegate its expensive prover computation
to several workers without leaking any information about the
private witness. Most importantly, compared with the recent
work EOS (USENIX’23), the state-of-the-art zkSNARK prover
delegation framework, a prover in Siniel needs not to engage in
the MPC protocol after sending its shares of private witness. This
means that a Siniel prover can outsource the entire computation
to the workers.

We compare Siniel with EOS and show significant performance
advantages of the former. The experimental results show that,
under low bandwidth conditions (10MBps), Siniel saves about
16% time for delegators than that of EOS, whereas under high
bandwidth conditions (1000MBps), Siniel saves about 80% than
EOS.

I. INTRODUCTION

Zero-knowledge Succinct Non-interactive Argument of
Knowledge (zkSNARK) is a fundamental cryptographic prim-
itive. In the zero-knowledge proof, a prover P wants to con-
vince a verifier V some statements of the form ‘Given a func-
tion F and a public instance x, there exists a private witness w
such that F (x,w) = 1’. The function can be any computation
(in the NP space) such as the hash function, digital signature,
and some other common cryptographic operations. zkSNARK

enjoys short proof size and fast verification time. They are
also considered one of the most promising approaches to real-
world applications such as private payments [1], [2], private
smart contracts [3], [4] and anonymous credentials [5], [6].

Bünz [7] pointed out that modern zkSNARKs are built
from three components: a polynomial interactive oracle proof
(PIOP), a polynomial commitment scheme (PCS), and the
Fiat-Shamir transformation. At a high level, the function F is
first represented as an arithmetic circuit and then transformed
into a constraint system that includes a set of mathematical
constraints, which is commonly encoded as a series of poly-
nomials. Second, a PIOP is designed to prove that a witness-
instance pair satisfies the constraint system. In this phase, a
prover computes the prover polynomials, and a verifier has
oracle access to these prover polynomials. Third, the PIOP
is compiled into an interactive argument with PCS. In this
phase, a prover sends commitments to the prover polynomials
instead of the polynomial itself and interacts with a verifier to
prove that the given statement is correct. Finally, the proof
system can be made non-interactive with the Fiat-Shamir
transformation.

Unfortunately, the costly proof generation hinders zk-
SNARK’s practical deployment. Specifically, its performance
bottleneck comes from two parts. First, the arithmetic circuit
C representing computation F is often much larger and more
complex than F itself. For example, although computing
SHA256 is extremely fast, we still need around 20,000 mul-
tiplication gates to express the SHA256 function. Second,
most existing zkSNARKs [8], [9], [10], [11] generate proof
over polynomials over large prime fields, and the polynomial
degrees are at least linear to the circuit size |C|. In addition,
provers also suffer from expensive operations over high-degree
polynomials including Fast Fourier Transform (FFT) and
Multi-scalar Multiplication (MSM). The computation com-
plexity grows at least linearly in |C|. Moreover, MSM requires
tens of field operations for curve addition and thousands of
field operations for multiplication by scalars [12], while the
computation complexity of FFT [13] is O(N logN), in which
N is the number of evaluation points. For example, we need

� Xiaolei Dong is the corresponding author.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240152
www.ndss-symposium.org

to perform multiple heavy FFT and MSM operations over
polynomials with degrees around 20,000 for a SHA256 com-
pression function, which is unaffordable for a computationally
limited device.

Private delegation [14], [15], [16], a special use case of
secure multiparty computation (MPC), is a way to resolve the
above-mentioned issues, in which a computationally limited
device (e.g., mobile phone) can delegate its computation to
several powerful machines (i.e., workers) without leaking any
additional information about its input. Naturally, one may
consider delegating the computationally expensive ‘zkSNARK
prover’ to several powerful machines. Yet, most existing
works are either with weak security, or inefficient in real-
world applications. For example, Garg et al. [17] proposed
zkSaaS, a general framework for private delegation. However,
their protocol only achieves security in the honest majority
setting against semi-honest parties. If one corrupted party
conducts malicious behavior, the security of zkSaaS will be
compromised. Meanwhile, Garg et al. [18] used homomorphic
encryption to let a delegator directly outsource the ciphertext
of its witness to a server. However, the computation overhead
of homomorphic encryption is too high to be practical in real-
world applications. Chiesa et al. [19] proposed EOS, a private
delegation for zkSNARK prover. The EOS delegator engages
in the MPC protocol with workers to check the correctness
of PIOP computation. Yet, EOS suffers from high round
complexity on the computationally limited delegator side.

Naturally, we raise the following question:
Is there a general framework for the private delegation of
zkSNARK prover that simultaneously achieves (1) no extra
interaction during the online phase for the delegator, (2)
lightweight operations for the delegator, and (3) malicious
security against workers?

A. Our Contributions

This paper proposes Siniel, a novel delegation framework of
zkSNARK provers, to answer the above question affirmatively.
We summarize our contributions as follows:
• A New General Delegation Framework of zkSNARK Prover.

We construct Siniel, a novel general delegation framework
of zkSNARK prover. Like EOS, this delegation framework
applies to all zkSNARKs built from PIOP and PCS. Siniel
allows a computationally limited prover to delegate the
expensive proof generation to several powerful machines
without leaking any private information. Compared with
EOS, the Siniel delegator only requires offline computation
and can delegate the entire computation to several workers
after sending its shares of witness without further inter-
action. In addition, the security proof shows that Siniel is
secure against malicious workers.

• A New ‘Consistency Checker’. EOS introduces the notion of
a ‘consistency checker’ to enable the delegator to check the
consistency of prover polynomials computed by the work-
ers. The consistency checker prevents an adversary from
performing maliciously during the online phase. However,
the EOS delegator needs to perform the consistency checker

interactively after it receives all prover polynomials in each
PIOP round. To eliminate the interaction, Siniel proposes
a new non-interactive consistency checker, which is only
executed by workers during the online phase. In brief,
the Siniel delegator generates some additional information
(e.g., authentication tag and authentication key) about the
shares of the witness in the offline phase, and all workers
jointly verify that all PIOP computations and corresponding
polynomial commitments are consistent with shares of the
private witness generated by the delegator. Therefore, the
delegator can delegate its entire proof generation to workers
without any further interaction during the online phase.

• Implementation and Evaluation Results. We conduct exper-
iments to compare Siniel with EOS in terms of the com-
putation and communication overhead on the delegator side
with different bandwidths, and the computation overhead
of the online phase on the worker side. The experimental
results show that compared with EOS, a delegator utilizing
Siniel only takes 6.5 seconds with 10MBps bandwidth to
generate the proof for the SHA256 compression function,
compared with 8.8 seconds of EOS, while under 1000MBps
bandwidth, the Siniel delegator takes 0.17 seconds compared
with 2.07 seconds of EOS delegator. Moreover, the Siniel
delegator does not engage in the MPC protocol with work-
ers. Therefore, the network is no longer a bottleneck for
the private delegation protocol, and workers do not need
to wait for the response from the delegator. Specifically, the
Siniel consistency checker is only executed by the workers
during the online phase.

B. Use Cases of Siniel

We discuss some use cases in which Siniel can speed up
proof generation while preserving the privacy of the delegator.
Private Payment. Private payment is an essential part of
web3 applications. However, it is inefficient for a resource-
constrained device to generate a zkSNARK proof. Although
powerful devices can help generate proofs, it is insecure for the
resource-constrained device to directly delegate its private key
to the powerful devices. With Siniel, a computationally limited
device can outsource the proof generation to several powerful
workers without leaking any private information (i.e., private
key). Hence, it significantly reduces the time to complete
a spend transaction and brings users a seamless experience
similar to centralized payment.
Decentralized Applications (dApps). As part of the Web3
ecosystem, dApps provide decentralized services like DeFi,
on-chain gaming, and digital identity management. We take
the digital identity as an example. In DID, users prove that
they possess certain attributes (e.g., being over 18 years old or
having specific certifications) to access certain services without
leaking private information. To achieve this, zkSNARK can
help users generate zero-knowledge proofs of their identity
attributes without revealing the actual data. However, it is
inefficient for a computationally limited device to locally
generate a proof. With Siniel, such device outsource the proof
generation to several powerful worker to generate the final

2

proof while preserving the privacy of the private information.
This can significantly reduce the time to generate zkSNARK
proofs and allow more users to participate in the web3
network.

C. Related Work

Private delegation [14], [15], [16] enables a party to dele-
gate its computation to several workers without leaking any
additional information about its private input. It is natural to
consider delegating the ‘zkSNARK prover’ work to several
workers. For example, Ozdemir et al. [12] first constructed a
delegation protocol in which a set of parties with shares of the
witness jointly generate proofs with respect to that witness.
They proposed protocols for three zkSNARKs [10], [8], [9]
based on SPDZ [20], a dishonest majority MPC protocol with
additive secret sharing, and GSZ [15], an honest majority
MPC protocol with guaranteed output delivery. Chiesa et
al. [19] found that the delegation protocols of [12] rely on
expensive cryptographic primitives to ensure the correctness
of protocol execution, and they optimized [12] by introducing
a ‘consistency checker’, in which a delegator participates
in the MPC protocol to check the consistency of prover
polynomials. In addition, this protocol is secure against any
number of malicious adversaries. Although the security level
of the proposed Siniel (i.e., honest majority) is weaker than
EOS (i.e., dishonest majority), it achieves better usability and
efficiency. Most importantly, the honest majority assumption
is sufficient for many real-world decentralized applications,
where a dishonest majority threat model is often unnecessarily
strong. Siniel can be applied in decentralized systems with
consensus protocols that assume an honest majority, such as
those with corruption thresholds up to 1/3 for BFT or 1/2 for
PoS/PoW, allowing efficient detection of malicious behavior
through voting.

In a concurrent and independent work of [19], Grag et al.
[18] proposed another private delegation of zkSNARK provers
called zkSaaS. In zkSaaS, they design several dedicated secure
multiparty computation protocols for polynomial arithmeti-
zation and MSM operations. However, this protocol is only
secure under the honest majority setting against semi-honest
adversaries. The security level of zkSaaS (i.e., semi-honest
corruption) is weaker than that of Siniel (i.e., malicious corrup-
tion). Subsequently, Grag et al. [17] delegated the zkSNARK
computation to a single untrusted server instead of several
servers based on fully homomorphic encryption (FHE). Com-
pared with Siniel, the FHE-based private delegation protocol
is high in computation overhead and makes this delegation
protocol less practical in real-world applications.

Additionally, some works focus on distributed ZKP, in
which it scales existing ZKP to large circuits with several
distributed algorithms. Namely, assume the size of the entire
circuit is N and a prover holds M machines participating
in the protocol. After that, each machine is responsible for
generating a proof for a subcircuit of size T = N

M with a part
of the plain witness.

For example, DIZK [21] focused on delegating the prover
computation to several workers. However, the communication
overhead of DIZK is linear in the circuit size. Then, Xie
et al. [22] proposed deVirgo, a distributed zero-knowledge
proof protocol of Virgo [23]. However, deVirgo also has a
linear communication cost among the workers, and the proof
size is relevant to the number of workers. Recently, Liu et
al. proposed Pianist [24], a distributed zero-knowledge proof
protocol of Plonk [9], to improve the overall performance
of DIZK. Although these protocols do not hide the part of
the witness from each machine, they are still important as
these protocols mentioned above focus on optimizing the
space complexity of each worker. Therefore, these works are
complementary to Siniel, as we can employ the techniques of
distributed ZKP to improve the scalability of Siniel, and also
protect the privacy of the delegator.

II. TECHNICAL OVERVIEW

In this section, we first introduce the background of zk-
SNARKs. After that, we review EOS and zkSaaS, two state-
of-the-art private delegation protocols of zkSNARKs, as a
starting point for Siniel, and point out the disadvantages of
both protocols. Finally, we address these issues step-by-step.

A. Background: Design Paradigm for zkSNARKs

The design of the state-of-the-art zkSNARKs relies on two
components, polynomial interactive oracle proof and poly-
nomial commitment scheme. In this subsection, we review
these components and show how to combine these two cryp-
tographic primitives to obtain zkSNARKs.
Polynomial Interactive Oracle Proof (PIOP) for a relation
R = {(x,w)} is an interactive proof with a tuple PIOP =
(F,K, S, P, V) in which F is a finite field with a large prime
order, K is the total rounds of PIOP, S(j) is the number of
prover polynomials in the jth PIOP round. In each round,
P receives a message from V and replies with S(j) prover
polynomials. Then, V can have oracle access to these prover
polynomials with several evaluation points. Finally, V decides
whether to accept or reject based on the response from the
polynomial oracles.
Polynomial Commitment Scheme (PCS) allows a prover to
first commit to a private polynomial. Then the prover opens
the polynomial at a given point along with an opening proof.
It is hard for a malicious prover to alter the private polynomial
inside the public commitment once committed. In this paper,
we focus on the KZG polynomial commitment scheme [25].
Constructing zkSNARKs from PIOP and PCS. A zk-
SNARK in the random oracle model for a relation R =
{(x,w)} is a tuple of algorithms ARG = (G,P,V) defined
as below.

The interactive argument prover P and verifier V invoke
PIOP prover P and verifier V, respectively. In each PIOP
round, P commits to the prover polynomials generated by P
using PCS.Commit. Then, P sends these commitments to
V instead of the polynomial oracles. After the PIOP phase,
V invokes V to generate its query to polynomials inside the

3

commitments. P responds to the evaluation at the given query
along with an opening proof. Finally, V accepts or rejects
based on the response.

In addition, one can apply the Fiat-Shamir transformation
under the random oracle model to achieve non-interactivity.
The random oracle can be instantiated with a standard cryp-
tographic hash function.

B. Siniel: An Efficient Private Delegation Framework of zk-
SNARKs

Starting point: EOS and zkSaaS. First, we review the system
model of EOS and zkSaaS, as shown in Fig. 1.(a) and Fig.
1.(b), respectively.

EOS consists of an offline phase and an online phase. In the
offline phase, a delegator D prepares shares of the (private)
witness and distributes each share to each worker, while in the
online phase, all workers jointly execute a predefined MPC
protocol to generate the final proof. In EOS, D is always
online and needs to perform a consistency checker in each
PIOP round against malicious workers. D should wait for all
workers to finish the MPC computation before executing the
consistency checker. These drawbacks limit the applications
of EOS.

zkSaaS also consists of an offline phase and an online phase.
In the offline phase, a delegator D generates shares of the
private witness and outsources the entire zkSNARK computa-
tion to several workers. In the online phase, all workers jointly
generate the final proof without any further interaction with D.
However, this protocol is only secure under an honest majority
assumption with a semi-honest corruption model. If one of the
workers conducts malicious behavior, the security and privacy
of the entire protocol will be compromised.

We show how to simultaneously overcome the limitations of
EOS (i.e., excessive interaction with the delegator) and zkSaaS
(i.e., semi-honest security) below.
System Architecture of Siniel. We first introduce the system
architecture of Siniel, shown in Fig. 1.(c). Concretely speak-
ing, a delegating prover (a.k.a. delegator D) outsources its en-
tire zkSNARK computation to a set of workers P1, P2, . . . , Pn.
D will not interact with workers during the online computa-
tion. In the offline phase, D generates shares of the private
witness and some additional information about the shares of
the private witness. Then, D distributes them to workers.
In the online phase, each worker executes the delegation
protocol with its share of the private witness. All workers also
jointly conduct the consistency checker to check the protocol
execution. Finally, if the consistency checker passes, then they
aggregate the final proof and forward it to D.

Siniel guarantees that the private witness w⃗ is completely
hidden from all workers if more than half of the workers are
honest and do not collude with others. Malicious workers can
arbitrarily deviate from the protocol.

Next, we show how to simultaneously eliminate the online
interaction with the delegator and achieve malicious security
step-by-step.

Step 1: Dividing Circuit for zkSNARK Computation into
Multiple Chunks. First, we divide the circuit for zkSNARK
computation into three chunks, as shown in Fig. 2. The Siniel
delegator first distributes each share of the private witness
along with a public instance to each worker. In the online phase
(i.e., PIOP computation and proof generation), each worker
executes the computation with its share of the private witness.
Finally, all workers jointly reconstruct the final proof.

For the sake of simplicity, we first consider all workers to
be semi-honest, in which each semi-honest worker honestly
follows the protocol but tries to get private information from
other honest workers.

First, each worker takes a share of the private witness and
a public instance as inputs to the PIOP circuit and outputs
a share of prover polynomials. PIOP circuit only consists of
polynomial arithmetization so it only consists of addition and
multiplication gates over the finite field, which is referred to
as AddF and MulF , respectively. In the PIOP circuit, each
worker locally computes the sum of shares and uses the Beaver
multiplication protocol to compute the multiplication of shares.

Second, each worker commits to all prover polynomials.
This stage only consists of addition and multiplication over an
elliptic curve group, which is referred to as AddG and MulG
gates, respectively. It is natural that the worker can compute
the AddG locally. The worker can also compute the MulG
locally as at least one of the inputs is public. Therefore, each
worker can locally compute the commitment to the shares of
prover polynomials without any further interaction.

Third, all workers share the same Fiat-Shamir randomness
and get the same evaluation point with a call to a random
oracle. Each worker then evaluates the prover polynomials at
the evaluation point along with an opening polynomial. This
part involves polynomial arithmetization and only consists of
AddF and MulF . After that, each worker commits to the
opening polynomial. This stage relies on operations over an
elliptic curve and consists of AddG and MulG. Finally, all
workers jointly reconstruct the final proof with their shares of
the proof.
Step 2: Enforcing Malicious Security. Second, a malicious
worker may conduct various attacks in each chunk, as shown
in Fig. 2. In this step, we introduce potential attacks in each
chunk. We address these potential attacks by introducing a
novel consistency checker in step 3.
1. Inputs to PIOP Circuit: The potential attacks are as follows:

• Attack 1.1: Generate inconsistent commitment to a share
of the private witness. A malicious worker may first
commit to an incorrect share. This will directly lead to
the failure of generating an invalid proof.

Therefore, before the PIOP computation, all workers should
jointly verify that all commitments are consistent with all
shares of the private witness.
2. PIOP Computation: The potential attacks are as follows:

• Attack 2.1: Generate a consistent commitment to the
share of the private witness but use another share to
execute the PIOP computation. A malicious worker may

4

Fig. 1: System Model.

Fig. 2: Potenital Attacks on zkSNARK Circuit.

first generate a consistent commitment to the share. After
that, it tampers with the share, takes the tampered share
as input to the PIOP circuit, and honestly follows the
protocol. Chiesa et al. [19] showed that this may leak
some parts of the private witness when the proof is
invalid.
Let us take an example to illustrate this attack. Suppose
three workers jointly compute a final proof for a bit
constraint b · (1− b) = 0 with additive secret sharing,
and the plain witness is b = 1. The delegator distributes
a share [b]i of b = 1 to worker Pi. Suppose P1 receives
[b]1 = −1, P2 receives [b]2 = 1 and P3 receives [b]3 = 1
such that [b]1 + [b]2 + [b]3 = 1.
In the EOS setting (malicious majority), two of the
workers are malicious and one is honest. An adversary
conducts an attack as follows: First, it controls P2, P3

and sees their shares of the witness. It then guesses that
the actual witness b is 1, and infers that the share held by
P1 is [b]1 = −1. After that, it can alter the shares held
by P2 and P3 to shares of b′ = 2. It sets [b′]2 = 2 and
[b′]3 = 1. The share held by P1 is ‘obliviously’ changed
to the share of b′ = 2. Then, the adversary honestly
follows the protocol but the final proof is invalid. This
invalid proof reveals the information about the original
witness b.
This problem also occurs in the Siniel setting (honest
majority with Shamir secret sharing). Briefly speaking,
suppose there are three workers, two of them are honest
and one is malicious. An adversary controls the malicious
one. The adversary holds the share held by the malicious
worker and guesses the plain witness. It can reconstruct
the ‘guessed’ polynomial and infer ‘guessed’ shares held
by the other two honest workers. Then, it alters the
share held by the malicious worker and honestly follows

the protocol. The shares held by two honest workers
are ‘obliviously’ changed to other shares of an invalid
witness. Finally, the proof is also invalid and leaks some
information about the original witness.

• Attack 2.2: Deviate from the PIOP protocol. A malicious
worker may arbitrarily deviate from the PIOP computa-
tion and generate incorrect prover polynomials. This will
lead to the failure of generating a correct proof.

• Attack 2.3: Generate inconsistent commitments to the
outputted prover polynomials. A malicious worker may
generate inconsistent commitments to the prover polyno-
mial or commit to other random polynomials. This will
lead to the failure of generating a correct proof.

Therefore, all workers should jointly verify (1) all prover
polynomials generated by each worker are consistent with the
share of the private witness held by each worker (i.e., the
input is correct), (2) the PIOP computation is correct, and (3)
all commitments generated by each worker are consistent with
all prover polynomials.
3. Proof Generation: In the third part, the potential attacks are
as follows:

• Attack 3.1: Generate invalid final proofs. A malicious
worker may output incorrect evaluations or corresponding
opening proofs. It will lead to the failure of reconstructing
a correct proof.

Therefore, all workers should jointly verify the validity of the
final proof.
Step 3: A non-interactive consistency checker for check-
points. In this step, we introduce the non-interactive con-
sistency checker for the above-mentioned checkpoints. Note
that “non-interactive” means the consistency checker is only
executed among workers during the online phase.

For the first checkpoint (i.e., inputs to the PIOP circuit),
we need to ensure that the commitment to the input (share

5

of witness) generated by each worker is consistent with the
share held by each worker. The delegator in Siniel generates
some additional information in the offline phase to help
workers verify during the online phase. Technically, for the
witness w⃗, the delegator first generates a random element α,
then computes w⃗(α), and generates shares of w⃗(α). In the
verification phase, each worker computes shares of witness
polynomials at α along with an evaluation proof. After that,
they broadcast shares of witness polynomials at α and recover
the witness polynomials at α. We refer to it as w⃗′(α). Finally
they jointly recover w⃗(α), and check whether w⃗(α) = w⃗′(α)
and that each evaluation proof is valid. We refer to it as the
witness consistency checker.

For the second checkpoint (i.e., PIOP computation), all
workers jointly check that (1) all prover polynomials are
consistent with the shares of the private witness, (2) the PIOP
computation is correct, and (3) all commitments are consistent
with the prover polynomials. We introduce the authentication
mechanism to add verifiability to all shares. Technically, for
each worker Pi, a delegator generates a share [w⃗]i of witness
w⃗ along with an authentication tag τ[w⃗]i and two authentication
keys µ, v[w⃗]i such that τ[w⃗]i = µ · [w⃗]i + v[w⃗]i . Then for every
other worker Pj ̸= Pi, the delegator generates a share of
authentication keys [µ]j and v[w⃗]j . The delegator distributes
[w⃗]i along with τ[w⃗]i to Pi, and distributes [µ]j and v[w⃗]j to Pj .
A malicious worker Pi can forge a tag with only a negligible
probability without the authentication keys. In addition, PIOP
only consists of addition and multiplication over scalar fields,
and both operations enjoy linear homomorphism. Therefore,
each Pi can locally update the corresponding authentication
tag, while each Pj can locally update the corresponding shares
of authentication keys. We refer to it as the PIOP consistency
checker.

At the end of PIOP computation, suppose each worker
Pi holds a prover polynomial f(X) = f0 + f1 · X +
. . .+ fd ·Xd along with corresponding tags τf0 , τf1 , . . . , τfd ,
while each other worker Pj holds corresponding authentication
keys [µ]j , [v]f0 , [v]f1 , . . . , [v]fd . To check the correctness of
the prover polynomial and the consistency of commitment,
each worker Pi acts as a prover, and all other workers
Pj act as a verifier. First, Pj sends a random challenge
β to Pi. Pi responses f(β) along with corresponding tag
τf(β) = τf0 + τf1 · β + . . . + τfd · βd and an opening
proof. Each Pj updates the corresponding authentication key
as [vf(β)]j = [τf0]j + [vf1 · β]j + . . . + [vfd · βd]j . Then all
Pj jointly reconstruct µ and vf(β) and verify whether the tag
is consistent with the key such that τf(β) = µ · f(β) + vf(β)
and the opening proof is valid. The tag ensures that the prover
polynomial is consistent with the input share as well as the
PIOP computation is correct, while the opening proof ensures
that the commitment is consistent with the prover polynomial.
We refer to it as the PIOP consistency checker.

The third checkpoint (i.e., proof generation) is straightfor-
ward. All workers jointly reconstruct the final proof and then
verify the validity of the final proof.
Final Protocol. In brief, the final protocol works as follows:

Setup. A trusted third party or an MPC ceremony is utilized
to generate commitment key ck.
Offline. A delegator D distributes a share of the witness
along with the authentication tag and some other additional
information about the witness to Pi while distributing shares
of the authentication keys to other workers.
PIOP Computation.

• Invoke the Witness Consistency Checker. Upon generat-
ing commitments to all shares of the private witness, all
workers jointly invoke the witness consistency checker to
check the consistency of the commitment.

• PIOP Computation. Each worker computes the prover
polynomials with a PIOP circuit and commits to the
prover polynomials. In addition, each worker also updates
the corresponding authentication tags, while each other
worker updates the corresponding authentication keys.

• Invoke the PIOP Consistency Checker. Each worker Pi

and all other workers jointly invoke the PIOP consistency
checker to check the correctness of PIOP computation
and the consistency of the prover polynomials and the
commitments.

Proof Generation. Each worker generates evaluations of prover
polynomials along with opening proofs. Then, all workers
reconstruct the final proof. Finally, they verify the validity of
the final proof before sending it to the delegator.

By combining these optimizations, we propose Siniel, a
novel private delegation protocol of zkSNARK provers, that
achieves no online interaction with the delegator as well as
malicious security.

III. PRELIMINARIES

Notations. In this paper, we denote [s]i is a share of secret
s held by the worker Pi, while [s⃗]i is a share of a vector of
secret s⃗ held by Pi. τw, µ, vw are denoted as the authentication
tag of the share w, the global authentication key, and the local
authentication key of vw, respectively. In addition, µ(i) means
the global authentication key of the worker Pi. In addition, n
is the number of workers, while t is the maximum number of
corrupted workers (i.e., threshold).

A. Shamir Secret Sharing

In Siniel, we use the Shamir secret sharing (SSS) scheme.
For a finite field Fp, a degree-t secret sharing is a vector
(s1, . . . , sn), which satisfies that, there exists a polynomial
f of degree at most t, such that f(0) = s. We denote each
share of secret s held by worker Pi as [s]i. Formally, a (t, n)
threshold SSS consists of two algorithms:

• SSS.Share(t, n, s)→ ([s]1, [s]2, . . . , [s]n) : Select a ran-
dom polynomial f(x) = s+a1x+a2x

2+. . .+at−1x
t−1,

where s is the secret. Choose n different values idi,
compute the value [s]i over f(x), set [s]i = f(idi). In
default, we can use idi = i, and each share has the form
(i, [s]i). Usually, we write (i, [s]i) as [s]i for simplicity.

• SSS.Recover(t, n, ([s]1, [s]2, . . . , [s]n)) → s : Upon re-
ceiving ([s]1, [s]2, . . . , [s]n), interpolate as a polynomial
f(x) over (xi, [s]i) for i ∈ [n],compute s = f(0).

6

Additionally, the Shamir shares of commitments and open-
ing proofs lie in the exponentiation of the generator. Therefore,
we adopt the algorithm proposed by Applebaum et al. [26] to
reconstruct the secret over the exponent with O(n) additions.

B. Multiparty Computation with Authentication Tags

Multiparty computation allows several parties to compute
a given function without leaking any additional information.
Some existing MPC protocols [15] use the authentication tag
mechanism to enhance security. An authentication tag is a
new way to commit to shares generated by a dealer. It helps
detect any dishonest parties who lie about their shares during
computation. This is necessary for the honest majority setting,
where SSS is used to do the secret sharing.

We use the idea of [27] to instantiate the authentication tag.
In more detail, a worker Pi, acting as a prover, holds a share
[x]i and an attached authentication tag τi, while another worker
Pj , acting as a verifier, holds the corresponding authentication
key (µ, v), such that τi = µ · [x]i+ v. Pi is not able to tamper
the share [x]i to another share [x′]i without the authentication
key (µ, v) except with negligible probability. For incorrect
shares, the verifier can easily detect and filter out.

In some previous works, the tag is locally computed by the
dealer. In Siniel, the delegator honestly follows the protocol in
the offline phase. It can directly generate shares of the private
witness, and distribute authentication keys and tags to other
workers. In addition, with the nice linear homomorphism of
the authentication tag, the prover and the verifier can locally
update authentication tags and authentication keys during the
MPC computation, respectively. At the end of the protocol,
the verifier can check the correctness of protocol execution by
checking the corresponding authentication tags. The protocol
is executed correctly if the authentication tags of the final
shares held by Pi are consistent with the authentication keys
held by Pv . Namely, in the Siniel setting, each worker Pi

acts as a prover with a share [w]i and corresponding tag
τi, while each other worker Pj acts as a verifier with a
share of authentication tags [µ]j and [v]j . During the PIOP
computation, Pi updates authentication tags while each other
worker Pj updates a share of authentication keys, In the ver-
ification phase, Pi responds with a final share [x]i along with
a corresponding tag τi, then all Pj reconstruct authentication
keys µ and v, and check whether τi = µ · [x]i + v.

C. Beaver Triples

In SSS-based multiparty computation, a dealer shares a
secret s and all parties compute over the shares of secret
s. Finally, they jointly aggregate the final results with their
computed shares. For the addition gate, it is cheap as all parties
can locally compute the sum of corresponding shares without
any further interaction. Meanwhile, for the multiplication gate,
all parties should use the Beaver multiplication protocol to
compute the product of shares.

Suppose there exists a trusted third party (or a secure
protocol) in the preprocessing phase to generate a Beaver triple
([a]i, [b]i, [c]i) such that c = a · b. Then every party Pi holds a

Beaver triple ([a]i, [b]i, [c]i). For two private inputs ([x]i, [y]i),
Pi executes the following step to get [x · y]i.

• Locally compute

[A]i = [x]i − [a]i = [x− a]i

[B]i = [y]i − [b]i = [y − b]i

• Open [A]i, [B]i to let all parties learn A = x + a, B =
y + b.

• Let all workers compute

[z]i = A · [b]i +B · [a]i + [c]i +A ·B

In addition, in the Siniel setting, except for computing the
share, each Pi needs to compute a corresponding authentica-
tion tag, while each other worker Pj needs to update the share
of the corresponding authentication key as follows:

• Each Pi broadcasts

[A]i = [x]i − [a]i = [x− a]i

[B]i = [y]i − [b]i = [y − b]i

• Each Pi reconstructs A and B.
• Each Pi computes

[z]i = [x · y]i = A · [b]i +B · [a]i + [c]i +A ·B

τ[z]i = A · τ[b]i +B · τ[a]i + τ[c]i

while Pj computes

[v[z]i]j = A · [v[b]i]j +B · [v[a]i]j +[v[c]i]j− [µ(i)]j ·A ·B

D. Polynomial Commitment Scheme

In a polynomial commitment scheme (PCS), a sender first
commits to a private polynomial p, and later opens the
polynomial p at a given point α. It should satisfy completeness
and knowledge soundness under the algebraic group model
(AGM). In Siniel, we use the KZG polynomial commitment
scheme [25] to instantiate the PCS, and KZG is a tuple
of algorithms (Setup,Commit,Open, V erify) defined as
follows:

• KZG.Setup(1λ) → ck : On input a security parameter
λ, output a commitment key ck.

• KZG.Commit(pub ck, priv p)→ pub C : On input ck
and a private polynomial p, output a public commitment
C to p.

• KZG.Open(pub ck, priv p, pub C, pub point z) →
(pub v, pub π) : On input ck, p, C and a given point
z, output its public evaluation v = p(z) along with the
opening proof π.

• KZG.V erify(pub ck, pub π, pub C, pub v, pub z) →
1/0 : On input ck, π, C, v = p(z) and output accept (1)
or reject (0) based on π.

7

E. Polynomial Interactive Oracle Proof

A polynomial interactive oracle proof (PIOP) for a relation
R is an interactive proof with a tuple PIOP = (F,K, S,P,V)
in which F is a finite field, K is the total round of PIOP, S(j)
is the number of prover polynomials in the jth round, P and
V are defined as below.

In each round j ∈ [K], P(F,x,w) receives a message
µj ∈ F ∗ from V(x) and replies with S(j) prover polynomials
pj,1, . . . , pj,s(j). V then have oracle access to these prover
polynomials with several evaluation points. After the inter-
action, the verifier accepts or rejects. The PIOP should satisfy
perfect completeness, negligible knowledge soundness error,
and zero knowledge.

F. zkSNARK

A zkSNARK in the random oracle model is a tuple of
algorithm ARG = (G,P,V) for a relation R = {(x,w)}
shown as follows.
Constructing zkSNARKs from PIOP and PCS. The inter-
active argument prover P and verifier V invoke PIOP prover
P and verifier V, respectively. In each round, P commits to
the prover polynomials generated by P using PCS.Commit
instead of directly sending the polynomial oracles. Then, P
forwards these commitments to V . After the interaction, V
invokes V to generate its query to the committed polynomials.
P responds to the evaluation at the given query along with
an opening proof. Finally, V accepts or rejects based on the
response. To get a zkSNARK, one can apply the Fiat-Shamir
transformation under the random oracle model. In addition,
we can use any cryptographic hash function to instantiate the
random oracle.

IV. CIRCUITS FOR COMMON OPERATIONS

A. Circuit Model

Many efficient MPC protocols express a computation as an
arithmetic circuit, only with field addition and multiplication
gates. In our case, the computation also requires elliptic curve
group arithmetic, random oracle as well as recovering the
secret. The gates are defined in Definition 1, while the gate
executions are shown in Fig. 3.

The proof of KZG-based zkSNARKs includes three parts,
commitments to the prover polynomials, evaluations of the
prover polynomials at given points, and opening proofs to
the evaluations. The commitments and opening proofs are
group elements, while the evaluations are scalar elements.
In Siniel, each worker holds a share of these elements after
the MPC protocol. They aggregate these shares to get the
final zkSNARK proof. To recover various types of shares,
we extend the EOS circuit model by introducing two new
gates, OutputF for scalar aggregation and OutputG for group
element aggregation. In addition, private visibility means that
a worker holds a share of the secret, while public visibility
means that a worker holds a public value.

When evaluating the AddF and MulF , each worker Pi

needs to compute its share [w]i along with a corresponding
authentication tag τ[w]i , while other party Pj holds a share

of global authentication key [µ(i)]j and needs to compute a
new authentication key [v[w]i]j corresponding to the share [w]i,
such that τ[w]i = µ(i) · [[w]i + v[w]i .

Definition 1: Let F be a finite field with a large prime p, G
be the p−order subgroup of an elliptic curve, and transcript
stores all public values and is initialized empty. Then, the
circuit model consists of the following gates:

• AddF (wi ∈ F,wj ∈ F)→ wk ∈ F : Set wk = wi +wj ,
where + denotes scalar addition in F .

• MulF (wi ∈ F,wj ∈ F) → wk ∈ F : Set wk = wi · wj ,
where · denotes scalar multiplication in F .

• AddG(wi ∈ G,wj ∈ G)→ wk ∈ G : Set wk = wi+wj ,
where + denotes addition in G.

• MulG(wi ∈ F,wj ∈ G) → wk ∈ G : Set wk = wi · wj ,
where · denotes multiplication in G. In KZG circuits,
wj ∈ G has public visibility.

• Reveal(wi) → pub wi : Set wi public, and put it into
the transcript.

• RO(public transcript) → pub wk = ρ(transcript) :
Output a public random challenge wk with a call to the
random oracle ρ, and add the output to transcript.

• OutputF ([wi] ∈ F)→ pub wi ∈ F : Get shares of wi ∈
F from at least t+ 1 workers, and recover wi ∈ G.

• OutputG([wi] ∈ G)→ pub wi ∈ G : Get shares of wi ∈
G from at least t+ 1 workers, and recover wi ∈ G.

The circuit model satisfies:
• Each wire takes an element in either F or G, and is either

private or public. If the input w is public, each party holds
a publicly known value w, otherwise, each party Pi holds
a share [w]i of w.

• For every gate except Reveal, RO, and Output, the output
wk is public if and only if both wi and wj are public.

B. Circuit for PIOP

The fundamental objects in PIOP-based zkSNARKs are
polynomial arithmetic. We now describe efficient circuits for
common operations. If one of the inputs to the PIOP circuit
is private, then the output is private. PIOP circuits include
polynomial addition, FFT, inverse FFT (IFFT), polynomial
evaluation at a public point, polynomial multiplication, and
polynomial division. All operations in PIOP circuits are over
gates AddF and MulF . The difference from EOS is that
we support multiplication between two polynomials with any
visibility. The circuits for PIOP are shown in Fig. 4.

C. Circuit for KZG

A circuit for the KZG polynomial commitment scheme
consists of two operations: committing to a private polynomial
and opening the committed private polynomial at a given point.
Except for evaluating the polynomial at a given point, all
other KZG operations are over the group element (AddG and
MulG). Therefore, the MSM is the core building block for
KZG. In addition, the difference from EOS is that each party
should reveal its commitment to the shared polynomial once
committed and its opening proofs once evaluated. The circuits
for KZG are shown in Fig. 5.

8

Each worker Pi and each other worker Pj (i ̸= j) proceed to each gate as follows:
• AddF (wa ∈ F,wb ∈ F)→ wc ∈ F :

– If wa and wb are both public, Pi locally computes pub wc = wa + wb, while Pj does nothing.
– If wa and wb are both private, Pi locally computes priv [wc]i = [wa]i + [wb]i and τ[wc]i = τ[wa]i + τ[wb]i , while

Pj locally computes [v[wc]i]j = [v[wa]i]j + [v[wb]i]j .
– If wa is public and wb is private, then P1 sets [wc]1 = wa + [wb]1 and τ[wc]1 = τ[wb]1 ,other worker Pi sets

[wc]i = [wb]i and τ[wc]i = τ[wb]i , while Pj sets [v[wc]1]j = [v[wb]1]j − [µ(i)]j · wa and [v[wc]i]j = [v[wb]i]j .
• MulF (wa ∈ F,wb ∈ F)→ wc ∈ F :

– If wa and wb are both public, locally computes pub wc = wa · wb.
– If wa and wb are both private, Pi and Pj jointly compute priv [wc]i = [wa · wb]i, τ[wc]i and [v[wc]i]j with the

Beaver multiplication protocol as shown in section III-C.
– If wa is public and wb is private, Pi locally computes priv [wc]i = wa · [wb]i and τ[wc]i = wa · τ[wb]i , while Pj

locally computes [v[wc]i]j = wa · [v[wb]i].
Each worker Pi proceeds to each gate as follows:

• AddG(wa ∈ G,wb ∈ G)→ wc ∈ G :

– If wa and wb are both public, Pi computes pub wc = wa + wb.
– If wa and wb are both private, Pi computes priv [wc]i = [wa]i + [wb]i.
– If wa is public and wb is private, then P1 sets [wc]i = wa + [wb]i, while other worker Pi sets [wc]i = [wb]i.

• MulG(wa ∈ F,wb ∈ G)→ wc ∈ G :

– If wa and wb are both public, Pi locally computes pub wc = wa · wb.
– If wa is private and wb is public, Pi locally computes priv [wc]i = [wa]i · wb.

• Reveal(wa)→ wb :

– If wa is public, set wb = wa.
– If wa is private, make wa public, and set wb = wa.

• RO(transcript)→ wb = ρ(transcript) :
Set wb = ρ(transcript).

• OutputF ({[wa]i} ∈ F}i∈[n])→ wa ∈ F :
1. Pi broadcasts its share [wa]i ∈ F .
2. Upon receiving all shares, recover secret

wa = SSS.Recover(t, n, ([wa]1, [wa]2, . . . , [wi]n))

• OutputG({[wa]} ∈ G}i∈[n])→ wa ∈ G :
1. Pi broadcasts its share [wa]i ∈ G.
2. Upon receiving all shares, use algorithm in [26] to recover wa ∈ G.

Fig. 3: Gate Execution of the Siniel Online Phase.

V. CONSISTENCY CHECKER FOR PIOPS

As described in the previous section, a corrupted worker
may alter its share of witness and generate the final proof with
this invalid share. This may leak some parts of the private
witness and cause privacy leakage. In the Siniel setting, all
workers should jointly verify the correctness of the prover
polynomials. In addition, the delegator does not engage in
the online phase after it distributes each share of the private
witness to each worker.

Therefore, we introduce two consistency checkers named
witness consistency checker and PIOP consistency checker.
The witness consistency checker checks that the commitment
to each share of witness is correct, while the PIOP consistency
checker checks that (1). the prover polynomials are consistent
with the input shares as well as the commitments, and (2). the

prover polynomial is correctly generated. The security models
for the witness consistency checker and PIOP consistency
checker are shown in the Appendix.A.

A. Construction of Witness Consistency Checker

Before the PIOP computation, all workers jointly execute
the witness consistency checker to verify whether the commit-
ment is consistent with the share of the private witness. The
protocol for the consistency checker is proposed in Fig. 6. The
security proof for the witness consistency checker protocol is
given in Appendix.C.

In more detail, each worker Pi first broadcasts its share
[α]i. Upon receiving all shares of α from other workers,
it broadcasts the evaluation [w⃗′(α)]i along with an opening
proof. After that, Pi aggregates the evaluation w⃗′(α) along
with the opening proof, then broadcasts its share [w⃗(α)]i.

9

PolyAdd(poly p1, poly p2)→ poly p3:
For i ∈ 0, . . . , d, set p3,i := AddF (p1,i, p2,i).
Claim 1: This circuit requires no interaction.

FFT (poly p1, pub subgroupH)→ {p(wj)}|H|−1
i=0 :

Compute the FFT with the standard algorithm [13], using
only additions and multiplications by public values.
Claim 2: This circuit requires no interaction.

IFFT (evaluations {p(wj)}|H|−1
i=0 , pub subgroup H) →

poly p:
Compute the IFFT with the standard algorithm [13], using
only additions and multiplications by public values.
Claim 3: This circuit requires no interaction.

PolyEval(poly p1, pub point z)→ poly p(z):
Set p(z) =

∑d
i=0 p1,i · zi

Claim 4: This circuit requires no interaction.

PolyMul(poly p1, poly p2)→ poly p3:
1. Construct a domain H with at least 2d+ 1 points.
2. Compute e1 := FFT (p1, H) and e2 := FFT (p2, H).
3. Compute e3,i = MulF (e1,i, e2,i).
4. Compute p3 := IFFT (e3, H).
Claim 5: If both polynomials are private, This circuit
requires one round of interaction. otherwise, it requires no
interaction.
Proof : If both polynomials are private, then we need
to use Beaver multiplication protocol to compute the
MulF (e1,i, e2,i), which consists of one interaction round,
otherwise, they can locally compute the final results.

PolyDiv(poly p1, pub poly d)→ (q, r):
1. Obtain quotient q and remainder r via Euclidean divi-
sion.
Claim 6: This circuit requires no interaction.

Fig. 4: Circuit for PIOP

Finally, upon receiving all shares of ⃗w(α) along with the
opening proofs, then Pi checks if w⃗′(α) = ⃗w(α) and the
corresponding opening proof is valid. If at least t+1 workers
disagree with the verification, then the protocol outputs 0.

B. Construction of PIOP Consistency Checker

For each worker Pi, each other worker Pj acts as a verifier
and runs the PIOP consistency checker as shown in Fig. 7 to
check the correctness of the PIOP computation executed by
Pi. The PIOP consistency checker checks that (1). the prover
polynomials are computed correctly with a given PIOP circuit;
(2). the prover polynomials are consistent with the input share
of the private witness; (3). the commitments are consistent
with the prover polynomials. The security proof for the PIOP
consistency checker protocol is given in Appendix.D.

MSM(priv c⃗ ∈ F d, pub G⃗ ∈ Gn)→ priv R ∈ G:
Output R :=

∑d
i=0 MulG(ci, Gi).

Claim 7: This circuit requires no interaction.
Proof : As is claimed above, one can locally compute the
MulG gate without any interaction.

KZG.Commit(pub ck, priv poly p)→ C:
1. Parse ck as {αi ·G}di=0.
2. C := MSM(p, {αi ·G}di=0).
3. Reveal(C).
Claim 8: This circuit requires one round of interaction.
Proof : Once a polynomial is committed, the party invokes
the Reveal gate to broadcast its commitment to the private
polynomial.

KZG.Open(pub ck, priv poly p, pub C, pub point z)→
(v = p(z), proof π):
1. Compute priv v = p(z) = PolyEval(p, z).
2. Compute proof polynomial ŵ := PolyDiv(p−v,X−z).
3. Commit to ŵ as Ŵ = KZG.Commit(ck, w).
4. Reveal(v, π = Ŵ).
Claim 9: This circuit requires one round of interaction.
Proof : Once a polynomial is opened, the party invokes the
Reveal gate to broadcast its evaluation result v = p(z)
along with the proof π.

Fig. 5: Circuit for PCS

Parameters:
[w⃗]i is the share of the private witness w⃗ held by Pi.
[w⃗]i(α) is the evaluation of the corresponding (share of)
witness polynomial at point α.
Protocol: Each worker Pi proceeds the protocol as follows:
1. Broadcast share [α]i, and recover α upon receiving all
shares.
2. Compute the opening proof

([w⃗]i(α), π[w⃗]i) := KZG.Open(ck, [w⃗]i, C[w⃗]i , α)

3. Aggregate all shares of opening proof

Cw⃗ := OutputG(C[w⃗]i)

w⃗′(α) := OutputF ([w⃗]i(α))

πw⃗ := OutputG(π[w⃗]i)

4. Invoke Reveal([w⃗(α)]i), and computes

w⃗(α) := OutputF ([w⃗(α)]i)

5. Output 1 if w⃗′(α) = w⃗(α) and

KZG.V erify(ck, πw⃗, Cw⃗, w⃗(α), α) = 1

otherwise outputs 0.

Fig. 6: The Protocol for Witness Consistency Checker πwcc

10

At a high level, the delegator distributes a share of the
private witness along with corresponding authentication tags to
each worker Pi, while each other worker Pj gets a share of the
authentication keys. It is hard for Pi to generate another valid
authentication tag for another share without the corresponding
authentication keys. With the linear homomorphism of the
authentication tag mechanism, during the PIOP computation,
each worker Pi updates its corresponding authentication tag,
while each other worker Pj updates the share of the authen-
tication keys. Then, Pi generates commitments to the prover
polynomials.

After that, each worker Pi and all other workers jointly
execute the PIOP consistency checker as follows. For a sake
of simplicity, we assume that Pi outputs a prover polynomial
f(X) = f0 + f1 ·X + . . .+ fd ·Xd along with corresponding
tags τf0 , τf1 , . . . , τfd and a commitment comf to f(X), while
each other worker Pj outputs shares of final authentication key
[µ]j , [vf0]j , [vf1]j , . . . , [vfd]j such that τfk = µ · fk + vfk , for
each k ∈ [0..d].

First, all other workers send a random challenge β to
Pi. Pi responses with an evaluation f(β), a corresponding
authentication tag τf(β) = τf0 + τf1 · β + . . . + τfd · βd,
and a KZG opening proof to the evaluation. Then, each
other worker Pj updates the corresponding authentication
key as [vf(β)]j = [vf0]j + [vf1]j · β + . . . + [vfd]j · βd.
Finally, they jointly reconstruct µ and vf(β), check whether
τf(β) = µ · f(β) + vf(β) and the KZG opening proof is valid.

The authentication tag mechanism ensures that the prover
polynomials are computed correctly with a given PIOP circuit
and are consistent with the input shares, while the KZG
opening proof ensures that the commitments are consistent
with the prover polynomials.

VI. SINIEL: DELEGATED ZKSNARK

Siniel consists of setup, offline, PIOP computation, and
proof generation phases, as shown in Fig. 8. Before PIOP com-
putation, all workers invoke the witness consistency checker
to jointly verify that the commitments to the input shares are
correct. At the end of each PIOP round, each worker Pi proves
to all other parties that its PIOP computation is correct and
all commitments to the prover polynomials are consistent.
Finally, all workers jointly open the prover polynomials at
given evaluation points and generate corresponding opening
proofs. If more than t + 1 workers do not agree with the
verification at any time, then the protocol aborts. In addition,
the security model and the security proof of Siniel are shown
in Appendix.B and Appendix.E, respectively.
Setup: A trusted setup will be performed to initialize the
commitment key ck. This operation will be performed only
once as we can reuse ck in subsequent executions. This stage
can be securely implemented with an MPC ceremony.
Offline: The delegator distributes a share of the private witness
along with authentication tags to each worker Pi and sends
the share of the authentication keys to each other worker
Pj . The authentication mechanism ensures that a malicious
worker Pi is hard to alter the share and generate a valid

Parameter:
S(t) is the number of prover polynomials in the tth PIOP
round.
d is the maximum degree of prover polynomials.
comf(k) is the commitment to a prover polynomial f (k).
Protocol: For each worker Pi and each other worker Pj ,
they proceed the protocol as follows:
1. All workers except Pi send a random challenge β to Pi.
2. Pi responses with (f (k)(β), τf(k)(β), πk) to each worker
Pj , for each k ∈ S(t), in which

(f (k)(β), πk) = KZG.Open(ck, f, com, β)

τf(k)(β) = τ
f
(k)
0

+ τ
f
(k)
1
· β + . . .+ τ

f
(k)
d

· βd

3. For each k ∈ S(t), each Pj computes

[vf(k)(β)]j = [v
f
(k)
0

]j + [v
f
(k)
1

]j · β + . . .+ [v
f
(k)
d

]j · βd

4. For each k ∈ S(t), all workers except Pi reconstruct the
authentication key (µ, vf(k)(β)), and verify whether

τf(k)(β) = µ · f (k)(β) + vf(k)(β)

KZG.V erify(ck, πk, comf(k) , f (k)(β), β) = accept

Fig. 7: The Protocol for PIOP Consistency Checker πwcc

authentication tag without the authentication keys. To compute
the Beaver multiplication protocol, the delegator generates
Beaver triples, the corresponding authentication tags, and
authentication keys. In addition, the delegator also generates
some additional information about the private witness to help
all workers execute the witness consistency checker.
PIOP Computation: PIOP computation consists of three
stages. First, all workers jointly execute the witness consis-
tency checker to ensure that each worker uses the correct
share of the private witness to generate the initial commitment.
Second, all workers jointly execute the PIOP computation and
commit to the prover polynomials. At the end of each PIOP
round, each worker Pi and all other workers execute the PIOP
consistency checker to ensure the correctness of the PIOP
computation and the consistency of commitments.
Proof Generation: If both verifications pass in the PIOP
computation, each worker Pi first applies the Fiat-Shamir
transformation for public randomness to get evaluation points.
Then, Pi computes evaluations of the prover polynomials
along with opening proofs. After that, all workers jointly
reconstruct the final proof and verify its validity. If at least
t + 1 workers agree with the verification, then all workers
send the final proof to the delegator.

VII. IMPLEMENTATION AND PERFORMANCE

A. Experimental Setup

We use one delegator and three workers in the experiment.
In the private delegation of zkSNARK like Siniel and EOS,
an excessive number of workers would significantly increase

11

Setup: Run KZG.Setup(1λ)→ ck = (g, τ · g, τ2 · g, . . . , τ t · g).

Offline: For each worker Pi and each other worker Pj , D does following:
1. Parse w as a vector w⃗, and generate share [w⃗]i of witness w⃗ with SSS.
2. Sample a random point α ← F , and compute w⃗(α) with barycentric evaluation [28] in O(n) field operations, and
generate share [w⃗(α)]i and [α]i.
3. Choose a global authentication key µ(i) and for each [wk]i ∈ [w⃗]i choose a local authentication key v[wk]i .
4. For each [wk]i ∈ [w⃗]i, compute τ[wk]i = µ(i) · [wk]i + v[wk]i , generates shares [µ(i)]j and [v[wk]i]j .
5. Generate a sufficient number of Beaver triples {([am]i, [bm]i, [cm]i)}m∈[γ·CMul], in which γ is a predefined constant,
CMul is the number of MulF .
6. Generate corresponding authentication keys {(v[am]i , v[bm]i , v[cm]i)}m∈[γ·CMul] and authentication tags
{(τ[am]i = µ(i) · [am]i + v[am]i , τ[bm]i = µ(i) · [bm]i + v[bm]i , τ[cm]i = µ(i) · [cm]i + v[cm]i)}m∈[γ·CMul].
7. Generate shares of corresponding keys {([v[am]i]j , [v[bm]i]j , [v[cm]i]j)}m∈[γ·CMul].
8. Send ([α]i,x, [w⃗]i, [w⃗(α)]i, {τ[wk]i}[wk]i∈[w⃗]i , {([am]i, [bm]i, [cm]i)}m∈[γ·CMul], {(τ[am]i , τ[bm]i , τ[cm]i}m∈[γ·CMul]) to
Pi, and ([µ(i)]j , {[v[wk]i]j}[wk]i∈[w⃗]i , {([v[am]i]j , [v[bm]i]j , [v[cm]i]j)}m∈[γ·CMul]) to Pj .

PIOP Computation:
1. Each worker Pi do following:
1.1 Initialize transcript = x, and prover state stp = (x, [w⃗]i).
1.2 Pi sets the round j = 1, and total PIOP round is K.
1.3 Compute commitment to shares of witness: C⃗[w⃗]i := KZG.Commit([w⃗]i, ck).
2. All workers invoke the ideal functionality Fwcc of the witness consistency checker as shown in Fig. 11, each Pi

takes ([w⃗]i, [w⃗]i(α), C⃗[w⃗]i , [α]i) as inputs, if Fwcc outputs 0, then the protocol aborts.
3. For each k ∈ K, each worker Pi and each other worker Pj do following:
3.1 Pi computes βk := RO(transcript) as randomness of the PIOP verifier V.
3.2 Pi computes prover polynomials [p⃗k]i with the PIOP prover P: (stp, [p⃗k]i) := P(stp, βk), and updates corresponding
authentication tags τ[p⃗k]i , while Pj updates corresponding authentication keys ([µ(i)]j , [v[p⃗k]i]j), as shown in Fig. 3.
3.3 Pi commits to all prover polynomials: C⃗[p⃗k]i := KZG.Commit([p⃗k]i, ck).
3.4 Pi and all other workers invoke the ideal functionality Fpcc of the PIOP consistency checker as shown in Fig. 12.
Pi takes (ck,x, [w⃗]i, τ[w⃗]i , p⃗k]i, τ[p⃗k]i , C⃗[p⃗k]i) as inputs, while each Pj takes ([µ(i)]j , [v[p⃗k]i]j) as inputs, if Fpcc outputs
0, then the protocol aborts.
3.5 Set k = k + 1.

Proof Generation: For each k ∈ [K], each worker Pi does following:
1. Compute query set Q := RO(transcript), and evaluate shared polynomials at Q, compute proofs as

([p⃗k]i(Q), π[p⃗k]i) := KZG.Open(ck, [p⃗k]i, C[p⃗k]i , Q)

2. Aggregate all shares of proofs Cp⃗k
:= OutputG(C[p⃗k]i), p⃗k(Q) := OutputF ([p⃗k]i(Q)), and πp⃗k

:= OutputG(π[p⃗k]i).
3. Check whether V outputs accept and KZG.V erify(ck, πp⃗k

, Cp⃗k
, p⃗k(Q), Q) = 1.

If at least t + 1 workers do not agree with the verification, then the protocol aborts. Otherwise, for each k ∈ [K],
assemble and send the proof (Cp⃗k

, p⃗k(Q), πp⃗k
) to D.

Fig. 8: Siniel Construction

the cost, and thus sacrifice the efficiency of the entire system.
A small number of workers is often optimal as it balances
efficiency and security without overburdening the delegator.
Therefore, we set the number of workers to three, which is
the minimum required for an honest majority setting.

Implementation. We use the arkworks library [29] as a base-
line to implement Siniel and EOS. The Marlin code is open-
sourced. All implementations are written in Rust. Different
from the basic operations including addition, multiplication,
and MSM in the original arkworks library, all operations in

Siniel and EOS are over shares. Therefore, we modify the
arkworks library to accommodate our settings as follows.
First, we add codes for Shamir secret sharing to share the
private witness and reconstruct the secret. These codes include
operations over scalar elements and group elements. Second,
we add codes for the multiplication of two shares. These
codes include generating Beaver triples and executing the
Beaver multiplication protocol. Third, based on the codes
for share multiplication, we add codes for shared polynomial
arithmetizations including addition and multiplication.

12

(a) 10MBps (b) 100MBps (c) 1000MBps

Fig. 9: Running time in seconds of the naive Marlin prover, EOS delegator, and Siniel delegator under different network
bandwidths (10MBps, 100MBps, 1000MBps) and circuit sizes (from 212 to 220).

(a) 10MBps (b) 100MBps (c) 1000MBps

Fig. 10: Running time in seconds of the EOS worker and Siniel worker under different network bandwidths (10MBps, 100MBps,
1000MBps) and circuit sizes (from 212 to 220).

Evaluation. The delegator is an AWS c5a.4xlarge instance
with 32 GB of RAM and an AMD EPYC 7R32 CPU at
3.3 GHz with 16 cores, while all three workers are AWS
c5a.8xlarge instances with 64GB of RAM and an AMD EPYC
7R32 CPU at 3.3 GHz with 32 cores. We measure the private
delegation of the Marlin prover with different circuit sizes
(from 212 to 220). We evaluate the performance with different
bandwidths (10MBps, 100MBps, 1000MBps). We evaluate
both EOS and Siniel ten times and take the average as the final
result. The round-trip latency is only for the setup phase, and
we did not include it in the time for online proof-generation.
Therefore, the total running time of Siniel and EOS includes
the online communication time as well as the computation
time.

B. Cost of the Delegator

In this subsection, we measure the running time of the del-
egator, as shown in Fig. 9 under different network bandwidths
(10MBps, 100MBps, 1000MBps). The naive Marlin is the
baseline that a delegator directly runs the Marlin computation
without outsourcing its computation to several workers.

The running time of the Siniel delegator is much faster
than that of the EOS delegator and naive Marlin prover.
For example, for circuit size 220 and network bandwidth
10MBps, Siniel completes in 419 seconds compared to the
naive Marlin’s 1549 seconds, an approximate 3-fold speedup,
and compared to the EOS’s 503 seconds, an approximate 1.2-

fold speedup. As the network bandwidth grows, the Siniel
delegator spends less time than the EOS delegator. This is
because the running time of the EOS delegator consists of
two parts, the preprocessing phase, in which the delegator
distributes the share of the private witness, and the online
phase, in which the delegator engages the computation with
workers to check the PIOP computation, while that of the
Siniel delegator only consists of the preprocessing phase. In
EOS, the delegator should engage in the MPC computation for
the PIOP consistency checker and wait for workers to finish
the computation. Meanwhile, the Siniel delegator can entirely
outsource the zkSNARK computation to several workers
without any further interaction. The communication overhead
of Siniel is a major bottleneck under low network bandwidth
since the communication overhead of Siniel consists of Beaver
triples, authentication keys, authentication tags, and shares of
the private witness, while that of EOS consists of shares of
the private witness.

First, the Siniel delegator distributes tags and keys to
workers to help them verify the correctness of zkSNARK
computation. Compared with EOS, no further interaction is
needed for the delegator during the online phase. On the other
hand, EOS adopts a technique to reduce the communication
overhead in which a delegator sends a full share of witness
to a single party while others get PRG seeds. This reduces
communication overhead from O(n|w⃗|) to O(|w⃗|), in which
n is the number of workers and |w⃗| is the length of witness.

13

However, this technique is only applicable for additive secret
sharing rather than Shamir secret sharing. In addition, offline
time includes the time to generate shares of the private witness
and send the shares to all workers, and it is mainly determined
by the worker receiving the largest amount of communication.
In EOS, all workers must wait until one worker receives
the entire share before the online phase, while in Siniel,
D concurrently sends each share along with corresponding
authentication keys and tags to each worker.

C. Cost of the Worker

In this subsection, we evaluate the running time of the
worker in the online phase, as shown in Fig. 10. The experi-
mental results show that the Siniel workers consume less time
than EOS workers in the low bandwidth environment (i.e.,
10MBps), while Siniel workers consume more time in the high
bandwidth environment (i.e., 1000MBps). For example, for the
circuit size 220 and 10MBPS network bandwidth, Siniel and
EOS spend around 130 and 400 seconds, respectively, while
Siniel and EOS respectively spend around 79 and 70 seconds
for the circuit size 220 and 1000MBPS network bandwidth.

The running time of the EOS worker consists of online
MPC computation as well as the time to wait for delegator
verification. As the verification for the delegator is very fast,
the communication overhead becomes a major bottleneck in
low network bandwidth (i.e., 10MBps). On the other hand,
in Siniel, the verification for the delegator is replaced with
wcc and pcc executed by the workers. In the high network
bandwidth, the time to transfer data in the online phase can
be neglected. Therefore, the communication is no longer the
bottleneck for EOS workers.

Compared with EOS, Siniel should execute two additional
consistency checkers to ensure the correctness of zkSNARK
computation. The communication overhead of wcc and pcc is
negligible as it only consists of a few elements. Thus, both
checkers are not limited to the network bandwidth.

ACKNOWLEDGEMENT

This work was supported in part by the National Key
Research and Development Program of China under Grant
2022YFB2701400, and in part by the National Natural Science
Foundation of China under Grant 62132005, Grant 62172162,
and Grant 62172161. Guomin Yang is supported by the Lee
Kong Chian Fellowship awarded by Singapore Management
University. This work was also supported by AXA Research
Fund.

REFERENCES

[1] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In IEEE Symposium on Security
and Privacy (SP), pages 459–474, 2014.

[2] Christina Garman, Matthew Green, and Ian Miers. Accountable privacy
for decentralized anonymous payments. In Financial Cryptography and
Data Security (FC), pages 81–98, 2017.

[3] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush
Mishra, and Howard Wu. Zexe: Enabling decentralized private computa-
tion. In IEEE Symposium on Security and Privacy (SP), pages 947–964,
2020.

[4] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In IEEE Symposium on Security
and Privacy (SP), pages 839–858, 2016.

[5] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, and
Bryan Parno. Cinderella: Turning shabby x. 509 certificates into elegant
anonymous credentials with the magic of verifiable computation. In
IEEE Symposium on Security and Privacy (SP), pages 235–254, 2016.

[6] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers.
zk-creds: Flexible anonymous credentials from zksnarks and existing
identity infrastructure. In IEEE Symposium on Security and Privacy
(SP), pages 790–808, 2023.

[7] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent snarks
from dark compilers. In Advances in Cryptology (EUROCRYPT), pages
677–706, 2020.

[8] Nicholas Ward, Alessandro Chiesa, Pratyush Mishra, Yuncong Hu, Noah
Vesely, and Mary Maller. Marlin: Preprocessing zksnarks with universal
and updatable srs. pages 738–768, 2020.

[9] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive, 2019.

[10] Jens Groth. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology (EUROCRYPT), pages 305–326, 2016.

[11] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential
transactions and more. In IEEE Symposium on Security and Privacy
(SP), pages 315–334, 2018.

[12] Alex Ozdemir and Dan Boneh. Experimenting with collaborative
zk-snarks zero-knowledge proofs for distributed secrets. In USENIX
Security, pages 4291–4308, 2022.

[13] James W Cooley and John W Tukey. An algorithm for the machine
calculation of complex fourier series. Mathematics of computation,
19(90):297–301, 1965.

[14] Vipul Goyal and Yifan Song. Malicious security comes free in honest-
majority mpc. pages 618–646, 2020.

[15] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery
comes free in honest majority mpc. In Annual International Cryptology
Conference (CRYPTO), pages 618–646, 2020.

[16] Vipul Goyal, Hanjun Li, Rafail Ostrovsky, Antigoni Polychroniadou, and
Yifan Song. Atlas: efficient and scalable mpc in the honest majority
setting. In Annual International Cryptology Conference (CRYPTO),
pages 244–274, 2021.

[17] Sanjam Garg, Aarushi Goel, and Mingyuan Wang. How to prove
statements obliviously? Cryptology ePrint Archive, 2023.

[18] Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and
Sruthi Sekar. zksaas: Zero-knowledge snarks as a service. pages 4427–
4444, 2023.

[19] Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang.
Eos: Efficient private delegation of zksnark provers. In USENIX Security,
pages 6453–6469, 2023.

[20] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Annual
International Cryptology Conference (CRYPTO), pages 643–662, 2012.

[21] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and
Ion Stoica. {DIZK}: A distributed zero knowledge proof system. In
USENIX Security, pages 675–692, 2018.

[22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-
chain bridges made practical. In ACM SIGSAC Conference on Computer
and Communications Security (CCS), pages 3003–3017, 2022.

[23] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Trans-
parent polynomial delegation and its applications to zero knowledge
proof. In IEEE Symposium on Security and Privacy (SP), pages 859–
876, 2020.

[24] Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng
Zhang. Pianist: Scalable zkrollups via fully distributed zero-knowledge
proofs. IEEE Symposium on Security and Privacy (SP), pages 35–35,
2024.

[25] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Advances in
Cryptology (ASIACRYPT), pages 177–194, 2010.

[26] Benny Applebaum, Oded Nir, and Benny Pinkas. How to recover a
secret with o(n) additions. In Advances in Cryptology (CRYPTO), pages
236–262, 2023.

14

[27] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority. In Proceedings of the twenty-first annual
ACM symposium on Theory of computing, pages 73–85, 1989.

[28] Jin Li and Jinzheng Qu. Barycentric lagrange interpolation collocation
method for solving the sine–gordon equation. Wave Motion, 120:103159,
2023.

[29] A. developers. arkworks, 2020. In https://github.com/arkworks-rs.

APPENDIX

A. SECURITY DEFINITIONS FOR CONSISTENCY CHECKERS

First, we define the security model of the witness consis-
tency checker, as shown in Fig. 11. In the witness consistency
checker, all workers jointly verify the consistency of commit-
ments to the input shares (i.e., shares of the private witness). In
the ideal world, a trusted third party receives each commitment
cmi to [w⃗]i held by the worker Pi. If cm and w⃗ are consistent
with w and w⃗(α) = w(α), then the trusted third party informs
to all workers that the verification passes.

Formally, the protocol for the witness consistency checker
π securely implements the ideal functionality Fwcc, if it is
a protocol between n workers [Pi]

n
i=1 such that for every

efficient adversary A in the real world, there exists a simulator
S in the ideal world, such that the view in the real world is
computationally indistinguishable from the view in the ideal
world.

1. For each i ∈ [n], receive ([w⃗]i, [w⃗]i(α), cmi, [α]i) from
each worker Pi.
2. Aggregate cmi, [w⃗]i, [w⃗]i(α), [α]i and gets cm, w⃗, w⃗(α)
and α.
3. If cm and w⃗ are consistent with w and w⃗(α) = w(α),
it outputs 1 to all parties, otherwise, it outputs 0.

Fig. 11: Witness Consistency Checker Ideal Functionality Fwcc

Second, we define the security model of the PIOP consis-
tency checker, as shown in Fig. 12. In the PIOP consistency
checker, all other workers jointly verify that the PIOP com-
putation executed by Pi is correct. In the ideal functionality,
a trusted third party receives the prover polynomial f(X),
corresponding authentication tag τf⃗ , and corresponding com-
mitment comm from Pi, in which f⃗ is the coefficients of the
polynomial f(X). If the authentication tags τf⃗ are consistent
with the prover polynomials f(X) (i.e., f(X) is correctly
computed with a PIOP circuit C), f(X) is consistent with
the input share [w⃗]i, and the commitment comm to f(X) is
correct, then the trusted third party informs other parties that
the verification succeeds.

Formally, the protocol for the PIOP consistency checker π
securely implements the ideal functionality Fpcc, if it is a pro-
tocol between a worker Pi and all other workers [Pj]

n
j=1∩j ̸=i

such that for every efficient adversary A in the real world,
there exists a simulator S in the ideal world, such that the
view in the real world is computationally indistinguishable
from the view in the ideal world.

1. Receive (ck,x, [w⃗]i, τ[w⃗]i , f(X), τ[f⃗]i , comm) from Pi.
2. Receive ([µ]j , [v[f⃗]i]j) from each other worker Pj .
3. Reconstruct µ and v[f⃗]i .
3. Output 1 to all parties Pj (i ̸= j), if
(1). For each fk ∈ f⃗ , τ[fk]i = µ · [fk]i + v[fk]i ,
(2). comm is consistent with f(X), and
(3). f(X) is consistent with [w⃗]i,
otherwise, output 0.

Fig. 12: PIOP Consistency Checker Ideal Functionality Fpcc

1. Receive (ck,x,w) from D.
2. Compute π ← P(ck,x,w).
3. Send (ck,x, π) to all workers (and hence to S).
4. If at least t + 1 workers output reject, output ⊥,
otherwise, send π to D.

Fig. 13: Ideal Functionality FSNARK

B. SECURITY DEFINITION FOR SINIEL

Siniel focuses on the honest majority with secure with
abort setting. ‘Honest majority’ means that at least half of
the workers do not behave maliciously, while ‘secure with
abort’ means that the protocol halts if malicious behavior is
detected. In addition, Siniel guarantees that the private witness
w is completely hidden from all workers if no more than t
workers collude (n = 2t+ 1 in total). Malicious workers can
arbitrarily deviate from the protocol.

Formally, let ARG = (G,P,V) be a SNARK for an NP
relation R = {(x,w)}. Then πSNARK is a delegation protocol
for ARG and securely implements the ideal functionality
FSNARK as shown in Fig. 13, if it is a protocol between
a delegator D and n workers [Pi]

n
i=1 such that for every

(x,w) ∈ R and every efficient adversary A in the real world,
there exists a simulator S in the ideal world, such that the view
of the real execution is indistinguishable from the view of the
ideal execution. We give a formal security proof in section E.

C. SECURITY PROOF FOR WITNESS CONSISTENCY
CHECKER

Theorem 1: The protocol for the witness consistency
checker as shown in Fig. 6 securely implements the ideal
functionality Fwcc as shown in Fig. 11.

Proof. The simulator S for the corrupted workers does as
follows:

• Recover α′ with shares [α′]i.
• Receive shares of evaluations and opening proofs
([⃗̂w]i(α

′), π[⃗̂w]i
) from the adversarial workers.

• Compute
C⃗̂w := OutputF (C[⃗̂w]i

)

⃗̂w
′
(α′) := OutputF ([⃗̂w]i(α

′)

π⃗̂w := OutputG(π[⃗̂w]i
)

15

• Check whether
⃗̂w
′
(α′) = ⃗̂w(α′)

KZG.V erify(ĉk, π⃗̂w, C⃗̂w,
⃗̂w
′
(α′), α′) = 1

• If the proof does not pass, it outputs 0. If the proof passes,
run the KZG extractor to obtain ⃗̂w inside the commitment
C⃗̂w. If the extracted ⃗̂w is the expected one, then output
1, otherwise, output 0.

We prove the indistinguishability between the real world
and the ideal world as follows:

• Hybrid 0: The real protocol.
• Hybrid 1: This hybrid is identical to hybrid 0 except that
α in the real execution is replaced with α′ in the ideal
execution. This hybrid is indistinguishable as it leaks
nothing about the witness.

• Hybrid 2: This hybrid is identical to hybrid 1 except
that shares of w⃗ in the real world are replaced with
the shares of ⃗̂w in the ideal world. With the property
of the KZG commitment scheme, the commitment and
opening proof do not leak any information about the plain
witness. Therefore, this hybrid is indistinguishable from
the previous one.

• Hybrid 3: This hybrid is identical to hybrid 2 except that
S extracts the witness inside the commitment. With the
knowledge soundness of the KZG polynomial commit-
ment scheme, if the proof is not valid, then the extraction
fails with a non-negligible probability. Therefore, this
hybrid is indistinguishable from the previous hybrid.

D. SECURITY PROOF FOR PIOP CONSISTENCY CHECKER

Theorem 2: The protocol for the PIOP consistency checker
as shown in Fig. 7 securely implements the ideal functionality
Fpcc as shown in Fig. 12.

Proof. The simulator S for the corrupted Pi does as follows:
• If Pi is an honest party, send a random challenge β′ to
Pi, otherwise, send β′ to the adversarial worker.

• For each k ∈ S(i), receive (f (k)(β′), τf(k)(β′), πk) from
the adversarial worker.

• For each k ∈ S(i), honestly update the authentication key
vf(k)(β′), and check that

τf(k)(β) = µ · f (k)(β) + vf(k)(β)

KZG.V erify(ck, πk, comf(k) , f (j)(β), β) = accept

• If the above verification passes, then run a KZG extractor
to extract each f (k)(X) inside the commitment comf(k) .

We prove the indistinguishability between the real world
and the ideal world as follows:

• Hybrid 0: The real protocol.
• Hybrid 1: This hybrid is identical to hybrid 0 except that
S chooses another random challenge β′ instead of β. This
hybrid is indistinguishable from hybrid 0.

• Hybrid 2: This hybrid is identical to hybrid 0 except
that S extracts the polynomial inside the commitment.
With the knowledge soundness of the KZG polynomial

commitment scheme, the extractor fails with a negligible
probability. Therefore, this hybrid is indistinguishable
from the hybrid 1.

E. SECURITY PROOF FOR SINIEL

Theorem 3: Let R = {x,w} be an NP relation with the
following components:

• PIOP=(F,K, S,P,V) is a PIOP for R satisfying com-
pleteness, knowledge soundness and zero-knowledge.

• KZG=(Setup,Commit,Open, V erify) is a PCS sat-
isfying completeness and knowledge soundness under
AGM.

• SSS=(Share,Recover) is a (t, n) threshold SSS.
• An ideal functionality Fwcc as shown in Fig. 11.
• An ideal functionality Fpcc as shown in Fig. 12.

Let ARG = (G,P,V) be a zkSNARK for the relation R based
on PIOP and KZG. Then Siniel as shown in Fig. 8 securely
implements FSNARK in the Fwcc, Fpcc− hybrid model with
corruption at most t workers (n = 2t+ 1 workers).
Proof : The simulator S for the Siniel is shown in Fig. 14. We
prove the indistinguishability between the ideal world and the
real world as follows:
Input. From the view of corrupted parties, the received shares
of ˆ⃗w are indistinguishable from random.
Linear Gates. No interaction is needed between workers.
Therefore, no information is exchanged in the real world and
the ideal world.
Multiplication Gates with Two Private Wires. We use the
standard Beaver multiplication protocol plus the verification
mechanism. Therefore, the adversary learns nothing about the
shared values.
Random Oracle Gate. The programmed random oracle is
chosen uniformly at random. Therefore, no adversary can
distinguish them.
Reveal Gate. The inputs to ’Reveal’ have two kinds of values:
the scalar field and the group element. We analyze them as
follows:

• Evaluations of Shared Prover Polynomials. In the ideal
world, we reveal evaluations of shares of random poly-
nomials, while in the real world, we reveal evaluations
of shares of prover polynomials. Since PIOP is zero-
knowledge, the views of both worlds are indistinguish-
able.

• Commitments to Shared Polynomials and Opening Proofs
of the Evaluations. In the ideal world, we reveal shares of
commitments to random polynomials and corresponding
opening proofs, while in the real world, we reveal shares
of commitments to the real prover polynomials and corre-
sponding opening proofs. Since PIOP is zero-knowledge,
the prover polynomials seem random. Therefore, the
distribution of both worlds is indistinguishable.

Output Gate. ’Output’ gate has two kinds of values: the
OutputF for the scalar field and OutputG for the group
element. We analyze them as follows:

16

Setup and Offline: For each Pi ∈ Corr and each other party Pj , S does the following:
1. Sample a random τ̂ ∈ F , and sets

ĉk = (g, τ̂ · g, τ̂2 · g, . . . , τ̂ t · g)

2. Receive x and π from FSNARK .
3. Set a simulated witness ˆ⃗w ← F |w⃗|, and compute

[ˆ⃗w]i ← SSS.Share(t, n, ˆ⃗w)

4. Set α′ ← F , compute ˆ⃗w(α′),
[ˆ⃗w(α′)]i ← SSS.Share(t, n, ˆ⃗w(α′))

[α′]i ← SSS.Share(t, n, α′))

5. Choose authentication keys µ(i) and v[ˆ⃗w]i
, computes τ[ˆ⃗w]i

= µ(i) · [ˆ⃗w]i + v[ˆ⃗w]i
.

6. For each other worker Pj (j ̸= i), generate shares of authentication key ([µ(i)]j , [v[ˆ⃗w]i
]j), send to adversarial parties

(ĉk,x, [α′]i, [ˆ⃗w(α
′)]i, [ˆ⃗w]i, τ[ˆ⃗w]i

) and to Pj ([µ(i)]j , [v[ˆ⃗w]i
]j).

PIOP Computation: S proceeds as follows:
1. S invokes the ideal functionality Fwcc as shown in Fig. 11.
2. For each Pi ∈ Corr, S does the following:
Simulate the protocol execution as follows:

• There is no interaction between workers for gates AddF , AddG,MulG, so computation proceeds locally according
to Siniel.

• If at least one of the wires in MulF is public, proceed locally according to Siniel. Otherwise, evaluate it with a
Beaver multiplication protocol shown in Fig. III-C.

• To evaluate the random oracle gate RO, read all outputs O⃗ of ρ. Add the mapping ini → oi to the programming
µ, for each oi ∈ O⃗.

• To evaluate Reveal, proceed the computation according to Siniel.
3. S invokes the ideal functionality Fpcc as shown in Fig. 12.
Proof Generation: S proceeds as follows:
1. Compute the query set Q, and sends Q to adversarial workers.
2. Receive all shares of evaluations and opening proofs of the prover polynomials from the adversarial workers.
3. Compute OutputG over all shares of commitments to prover polynomials, and the opening proofs of evaluation, and
OutputF over all shares of evaluations of prover polynomials. Assemble these aggregated proofs π′.
4. If V (ĉk,x, π′) = 0, send ⊥ to FSNARK .
Finally, if the protocol does not abort, send π′ to D.

Fig. 14: Simulator S for Siniel

• OutputF . This gate as shown in Fig. IV is identical to
SSS.Recover.

• OutputG. This gate as shown in Fig. IV is almost
identical to SSS.Recover except that it recovers the
secret over group elements.

Leakage in the Verify Phase. We discuss the verification as
follows:

• Verification for the witness. There is no leakage in this
phase other than the validity of the witness. If this
verification aborts, no information about the final proof
will be revealed to D.

• Verification for the PIOP computation. There is no leak-
age in this phase other than the validity of this verifica-
tion. If this verification aborts, no information about the
final proof will be revealed to D.

• Verification for the final proof. There is no leakage in this
phase other than the final proof and its validity. If this

verification aborts, no information about the final proof
will be revealed to D, since in the real world, D receives
the final proof when at least t+1 workers agree with the
verification, and in the ideal world, D receives the final
simulated proof when at least t+1 workers send accept
to FSNARK

Rejection in the PIOP Computation Phase. If the adversary
behaves honestly, with the correctness property of PIOP and
KZG extractor, Fpcc will output 1. S also extracts the share
of the private witness from Fpcc. The extracted share equals
the simulated share with non-negligible probability.
Rejection in the Proof Generation Phase. If the adversary
behaves honestly, with the correctness property of PIOP and
KZG extractor, both verifications will pass. If the adversary
does not follow the protocol, with the knowledge soundness of
PIOP and KZG, the probability that the ideal world passes both
verifications and the ideal world does not pass the verifications

17

is negligible.
Probability of Rejection due to an Incorrect Output Proof.
In both worlds, all workers check if the proof is correct.
The knowledge soundness of zkSNARK ensures that the
probability of the real check passing (D receives the proof)
but the ideal check failing (D does not receive the proof) is
negligible.

18

