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Abstract—Secure inference is designed to enable encrypted
machine learning model prediction over encrypted data. It will
ease privacy concerns when models are deployed in Machine
Learning as a Service (MLaaS). For efficiency, most of recent
secure inference protocols are constructed using secure multi-
party computation (MPC) techniques. They can ensure that
MLaaS computes inference without knowing the inputs of users
and model owners. However, MPC-based protocols do not hide
information revealed from their output. In the context of secure
inference, prediction outputs (i.e., inference results of encrypted
user inputs) are revealed to the users. As a result, adversaries can
compromise output privacy of secure inference, i.e., launching
Membership Inference Attacks (MIAs) by querying encrypted
models, just like MIAs in plaintext inference.

We observe that MPC-based secure inference often yields per-
turbed predictions due to approximations of nonlinear functions
like softmax compared to its plaintext version on identical user
inputs. Thus, we evaluate whether or not MIAs can still exploit
such perturbed predictions on known secure inference protocols.
Our results show that secure inference remains vulnerable to
MIAs. The adversary can steal membership information with
high successful rates comparable to plaintext MIAs.

To tackle this open challenge, we propose SIGuard, a frame-
work to guard the output privacy of secure inference from being
exploited by MIAs. SIGuard’s protocol can seamlessly be inte-
grated into existing MPC-based secure inference protocols with-
out intruding on their computation. It proceeds with encrypted
predictions outputted from secure inference, and then crafts
noise for perturbing encrypted predictions without compromising
inference accuracy; only the perturbed predictions are revealed to
users at the end of protocol execution. SIGuard achieves stringent
privacy guarantees via a co-design of MPC techniques and
machine learning. We further conduct comprehensive evaluations
to find the optimal hyper-parameters for balanced efficiency
and defense effectiveness against MIAs. Together, our evaluation
shows SIGuard effectively defends against MIAs by reducing the
attack accuracy to be around the random guess with overhead
(1.1s), occupying ∼24.8% of secure inference (3.29s) on widely
used ResNet34 over CIFAR-10.

I. INTRODUCTION

Recent advancements in machine learning have spawned
numerous Machine-Learning-as-a-Service (MLaaS) offerings
for cloud providers. For example, the Google Cloud Vision
API [1] provides an intelligent service to interpret, analyze,
and derive insights from visual data. In a typical MLaaS
workflow, the cloud hosts a pre-trained neural network model
and provides API to make predictions. Users feed data to
the model through the API and receive an inference result in
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Fig. 1: Secure inference as a service.

return. However, the existing implementation of such offerings
raises paramount privacy concerns: users’ sensitive data are
sent to the cloud, and the cloud keeps a copy of the proprietary
model from the model owner. Both the privacy of individuals
and the lucrative neural network models are jeopardized.

To address these privacy concerns, recent advancements
focus on constructing secure inference as a service as a
prospective solution. As Figure 1 depicts, a user and a model
owner upload encrypted data and model to the cloud, which
then runs a secure inference protocol over encrypted data.
Ideally, such a solution ensures that only the user learns the
inference result; neither of them can learn any information
about the other’s input data. Many recent studies [2], [3], [4],
[5] opt for secure multiparty computation (MPC) techniques to
realize such guarantees on input privacy. Unfortunately, those
studies do not protect information that might be revealed from
the output of secure inference [3].

Prediction API attacks have emerged to exploit models
and underlying training data, only giving access to inference
results through black-box queries to the model [6], [7], [8].
Membership inference attack (MIA) [6], [9], [10], [11], [12]
is one such threat notably, which aims to determine whether
a specific data record belongs to the target model’s training
dataset. For example, if an MIA adversary infers that a certain
patient’s data record was used to train a disease classification
model, the adversary would know this patient is ill.

The membership inference attacks have posed the possibility
of compromising the output privacy of secure inference. This
is because those attacks are missed by the MPC’s threat model:
MPC-based protocols do not hide information inferred from
the output of the protocols [3], [13], [14]. Once the inference
result is revealed to the users, they can leverage the predictions
to carry out MIAs. Such sensitive membership information of
the training data could still leak even if the model is encrypted
via MPC, which thus makes secure inference vulnerable to
membership inference.

The privacy threats on post data have been brought to the
attention of the secure multiparty computation community.
Over the years, a flurry line of studies has identified achieving
output privacy as a desired property of secure inference [3],
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[15], [16]. Defense against MIAs in the plaintext domain can
be applied during the training phase and the inference phase.
Although models using the specific training approaches in
plaintext can be naturally combined with secure inference, this
approach inherently reduces inference accuracy [9], [15], [17],
[18], [19], [20]. Other works inject carefully crafted noises to
perturb the inference outputs [19], [20], [21], yet they are not
capable of being adopted in secure inference directly. Effective
defending MIAs without compromising inference accuracy
remains an open challenge.
Our framework. We present SIGuard (Secure Inference
Guard), a framework for empowering output privacy to ex-
isting secure inference. SIGuard secretly preserves the mem-
bership privacy of the model’s training dataset, safeguarding
it against exploitation by MIA adversaries. As an off-the-shelf
defense module, SIGuard can be seamlessly plugged into any
standard MPC-based secure inference without interfering with
the existing computation. Our key contributions are as follows:

• We are the first to investigate the threats of MIAs under
the context of secure inference. Our intensive evaluations
demonstrate that although secure inference commonly
leads to perturbed predictions, it still suffers from MIAs.

• We propose SIGuard, the first defense framework against
MIAs in secure inference stage. Built using efficient MPC
techniques, SIGuard can be readily integrated into secure
inference protocols and can securely add perturbations to
inference results without affecting accuracy.

• We conduct comprehensive evaluations over various
datasets and MIAs for SIGuard, in terms of its running
time and communication cost, and effectiveness against
MIAs. Our results confirm that SIGuard can effectively
defeat MIAs for secure inference without introducing
dominant overhead. SIGuard can reduce the attack per-
formance of MIAs to almost 50% (random guess) by only
incurring around 6% extra overhead to secure inference.
These results suggest that SIGuard is promising for
practical deployment in secure inference.

A. Summary of techniques

Evaluating membership inference against secure inference.
We observe that MPC-based secure inference often yields
perturbed predictions compared to its plaintext version given
identical user inputs. Those perturbations largely stem from
the approximations of non-linear functions in modern neural
networks, such as the softmax. Although the output privacy
threat has conveyed increasing awareness of the MPC commu-
nity, whether the MIA adversaries can still break the output
privacy with such perturbed predictions remains unclear. To
demonstrate the effectiveness of MIA, we conduct a series of
principled MIA attacks against four secure inference protocols,
i.e., SecureML [22], CrypTen [23], Piranha [24], and the work
proposed by Aly and Smart (AS19) [25]. Our results show the
adversary can successfully steal membership information for
up to 99% attack accuracy over the Location30 dataset through
multiple shadow model MIA [6]. Sometimes, the MIA risk for
a model in secure inference can be greater than that in plaintext

inference, e.g., the MIA success rate increases by 3.87% on
the Texas100 dataset as shown in Section IV.
Protecting the output privacy. To defend against MIAs
within secure inference, SIGuard’s protocol injects carefully
crafted perturbations into the encrypted predictions without
harming the inference accuracy. Such a goal is achieved
by a synergy of MPC techniques (i.e., based on replicated
secret sharing (RSS) [26]) and plaintext defense technique
MemGuard [21]. We design two secure components for noise
generation by optimizing the loss function introduced by
MemGuard. They are termed Secure Noise Optimization (Sec-
tion V-A) and Secure Noise Validation (Section V-B). The
secure noise optimization protocol aims to find an optimal
noise vector to perturb the secret-shared confidence vector,
thereby reducing the accuracy of MIAs to a level comparable
to random guessing. Meanwhile, the noise validation protocol
aims to validate that whether the secret-shared noise vector is
carefully crafted to preserve the inference accuracy. Finally,
the perturbed confidence vector in secret-shared format is
returned to the user and opened as the prediction result.
Achieving stringent privacy guarantees with optimal per-
formance. We observe that collusion between MIA adver-
saries compromising a user and secure inference adversaries
compromising a server broadens the attack surface of MIAs.
When collusion occurs, MIA adversaries can obtain knowl-
edge of how the secure defense mechanism operates. Specif-
ically, MemGuard (Algorithm 1) recursively solves an opti-
mization problem for generating the noise vector. The whole
optimization process is controlled by a while loop. The
while loop terminates when two conditions are met: 1) the
generated noise vector no longer changes the original inference
results, and 2) it demonstrates effectiveness in defending
against MIAs. However, we find that there are distributional
differences in the number of iterations between member and
non-member data, which the MIA adversary can exploit to
increase its success rate. When adapting the while loop in
MPC, the MIA adversary, by colluding with a server, can
naturally count the number of iterations, leading to additional
privacy leakage. To address that, we propose two refinements.
Refinement I (Section V-C) mitigates the leakage by fixing the
iterations for all user inputs. Refinement II (Section V-D) finds
the best trade-off that minimizes the number of iterations while
maintaining desired defense effectiveness through fine-tuning
the hyper-parameters. Refinement II reduces the overhead of
SIGuard on CIFAR-10 from looping 300 iterations to 10
iterations, while still maintaining desired defense effectiveness
(reduce MIAs to nearly random guess ∼50%).

II. PRELIMINARIES

A. Notation

We denote the single value as x, the vector as x⃗, and the
matrix as X . The i-th bit of x ∈ Z2ℓ is represented as x[i], the
i-th element of x⃗ as x⃗[i], and the element at the i-th row and
j-th column of X as X[i][j]. The L1 norm of x⃗ is denoted as
∥x⃗∥1 :=

∑n−1
i=0 |x⃗[i]|. The L2 norm of x⃗ is denoted as ∥x⃗∥2 :=
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TABLE I: Notation table.

s⃗ Original confidence vector.

s⃗′ Perturbed confidence vector.

z⃗ logits from the target model, such that s⃗ = softmax(z⃗).

z⃗′ Perturbed logits from the target model.

e⃗ Noise vector that added to logits z⃗.

h The simulated membership classifier.

√∑n−1
i=0 x⃗[i]2. Table I lists the symbols that consistently retain

their specific meanings throughout this paper.

B. Membership inference attacks in neural network inference

Neural network inference can be viewed as a mapping that
transforms a data sample into its potential category. Let the
model weights be {W i}L−1

0 , where W i represents the i-th
linear layer’s parameters. It works in a layer-by-layer fashion,
i.e., a linear layer (e.g., dense layer, convolutional layer)
followed by a non-linear layer (e.g., ReLU, softmax). The
inference output from neural network inference is a confidence
vector. It indicates a probability distribution of the input data’s
possible categories, where each entry is the probability of the
input being classified into its corresponding label. The final
predicted label is the one with the largest confidence score.
Note that, the confidence vector (denoted as s⃗) is computed
by softmax on the input: logits z⃗.

Membership inference attacks leverage the confidence vec-
tor to determine if the query data is in the target model’s
training dataset. To achieve that, the adversary trains a binary
membership classifier, taking the input as a confidence vector
and infers whether the data sample is a member of the training
dataset or a non-member.

C. MemGuard

The work of Jia et al. [21] assumes a pre-trained neural
network (target model) providing an inference service that
aims to defend against membership inference attacks. To avoid
retraining the model, MemGuard adds carefully crafted noise
vectors e⃗ and adds to the target model’s logits z⃗ for each
inference. Consequently, when these modified logits are fed
into the softmax function, the original confidence vector s⃗
undergoes perturbation.

We provide the algorithm of MemGuard in Algorithm 1.
MemGuard finds a noise vector e⃗ by iteratively solving an op-
timization problem that minimizes a composite loss function,
L, with each of its terms weighted by ci:

L =c1 · |h(softmax(z⃗ + e⃗))| (L1)
+c2 · ReLU(−z⃗[l]− e⃗[l] +maxj(z⃗ + e⃗)) (L2)
+c3 · ∥softmax(z⃗)− softmax(z⃗ + e⃗)∥1 , (L3)

The first part L1 is to defend MIAs. The crafted noise vector
should make the adversary’s attack performance close to 50%.
The 50% refers to the accuracy of random guessing by MIAs,
which is the ideal defense against MIAs that all works aim to

Algorithm 1 MemGuard
Input: z⃗, h, max iter, c3, and β.
Output: e⃗′.

1: e⃗′ ← 0⃗.
2: l← argmaxi {z⃗i}.
3: while True do
4: e⃗← 0⃗.
5: i← 0.
6: while i < max iter and (argmaxi {z⃗[i] + e⃗[i]} ̸= l or

h(softmax(z⃗ + e⃗)) · h(softmax(z⃗)) > 0) do
7: u⃗← ∂L

∂e⃗
.

8: u⃗← u⃗/ ∥u⃗∥2.
9: e⃗← e⃗− β · u⃗.

10: i← i+ 1.
11: end while
12: if argmaxi {z⃗[i] + e⃗[i]} ̸= l or h(softmax(z⃗ + e⃗)) ·

h(softmax(z⃗)) > 0 then
13: return e⃗′.
14: end if
15: e⃗′ ← e⃗.
16: c3 ← 10 · c3.
17: end while

achieve. To address this, MemGuard trains a membership clas-
sifier neural network h to simulate the adversary’s membership
classifier. To simplify the computation, the architecture of h is
set as a fully connected network, it takes a confidence vector
s⃗ as input and outputs h(s⃗) ∈ R. A positive h(s⃗) indicates the
data point comes from the training dataset, while a negative
score indicates otherwise. The second part L2 is to preserve
the target model’s final predicted label argmaxi {s⃗[i]}. The
third part of L3 is to make the crafted noise as small as
possible. We refer readers to Appendix A for more details.

D. Building blocks

Replicated secret sharing. SIGuard resorts to 2-out-of-3
replicated secret sharing (RSS) from Araki et al. [26]. Let
P1, P2, P3 be the three parties involved in the computation.
For brevity, Pi−1, Pi+1 denote the prior and the succeeding
party of party Pi, where i ∈ {1, 2, 3}. Given x ∈ Z2ℓ is
an integer secret. To share a secret, x is split by uniformly
sampling three random values ⟨x⟩1, ⟨x⟩2, ⟨x⟩3 ∈ Z2ℓ such
that ⟨x⟩1 + ⟨x⟩2 + ⟨x⟩3 ≡ ⟨x⟩ (mod 2ℓ). These replicated
secret shares are distributed as pairs that P1 holds (⟨x⟩1, ⟨x⟩2),
P2 holds (⟨x⟩2, ⟨x⟩3), and P3 holds (⟨x⟩3, ⟨x⟩1). To reveal a
secret, Pi sends ⟨x⟩i to Pi+1, and each party locally adds the
three shares to reconstruct x.

Arithmetic operations are evaluated by RSS as follows.
Given two secret values x and y are shared among three
parties. Addition ⟨z⟩i = ⟨x⟩i + ⟨y⟩i (mod 2ℓ) can be locally
computed by each party ⟨z⟩ = ⟨x+ y⟩ := (⟨x⟩1+⟨y⟩1, ⟨x⟩2+
⟨y⟩2, ⟨x⟩3 + ⟨y⟩3).

Multiplication over two shares ⟨z⟩ = ⟨x⟩ · ⟨y⟩ (mod 2ℓ)
are computed interactively as follows. Each party Pi first
locally computes a 3-out-of-3 secret shares ẑi = ⟨x⟩i⟨y⟩i +
⟨x⟩i+1⟨y⟩i + ⟨x⟩i⟨y⟩i+1 such that ẑ1 + ẑ2 + ẑ3 = xy. Then,
the parties jointly perform a reshare scheme to maintain the
invariance of 2-out-of-3 sharing. Given α1, α2, α3 ∈ Z2ℓ are
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Fig. 2: Workflow of how SIGuard protect post-data privacy in the context of three-party computation.

zero sharing terms subject to α1 + α2 + α3 = 0. Each party
Pi uses αi to mask ẑi as ⟨z⟩i = ẑi + αi. Pi then sends ⟨z⟩i
to Pi−1. Parties obtain their shares as (⟨z⟩i, ⟨z⟩i+1).

When ℓ = 2, we have the RSS for Boolean secret shares
JxK ≡ JxK1 ⊕ JxK2 ⊕ JxK3, where XOR ⊕ and AND ∧ is
computed equivalent to addition and multiplication over Z2.
Fixed point representation and truncation. Normally, a
float-point number x represented by fixed-point representation
with l bits is

⌊
x · 2ℓD

⌉
, where ⌊·⌉ denotes rounding to the near-

est integer over ring Z2ℓ and ℓD denotes as the fraction part
length. Note that the multiplication of

⌊
x · 2ℓD

⌉
and

⌊
y · 2ℓD

⌉
doubles the length of fraction part. Therefore, there should be
a truncation protocol running behind each multiplication [27].

III. SYSTEM OVERVIEW

A. System setup

Figure 2 shows our system setup, which contains three
servers and users. The three servers invoke a three-party
computation (3PC) protocol. The protocol is reactive, invoked
continuously upon receiving inputs and computing the outputs.
Each user sends private inputs to the servers and receives
the outputs directly. The user interacts with the servers via
the interface of secure inference, submitting data or retrieving
outputs as its requests are processed by the servers.
Components. The protocol sequentially combines three com-
ponents: secure inference as a service, SIGuard, and secure
softmax. The secure inference as a service inputs users’ private
data and outputs the logits vectors. SIGuard inputs the logits
vectors and outputs the perturbed logits vectors. The secure
softmax converts the perturbed logits vectors into confidence
vectors. The confidence vectors are set as the servers’ outputs
(see Section VIII-D for their importance).
Workflow. Before SIGuard is operational, the model owner
deploys a pre-trained model and a simulated membership clas-
sifier (a part of SIGuard’s input) across the three servers using
RSS. Once the service requests are processed, users distribute
their private data across the servers using RSS. Then, the
servers invoke the protocol. Throughout the computation, the
intermediate results between each aforementioned component
are kept as secret shares. Upon completion, each server holds
shares of the perturbed confidence vectors. Finally, the servers
transmit the shares to the users, who reconstruct them locally
to obtain the final prediction.
Use case. In medical image analysis, a hospital trains a
machine learning model on brain tumor MRI scans to provide
diagnostic services [28]. The model is trained using patients’

private data. To address privacy concerns, the hospital deploys
the model to the cloud using secret sharing. Users resort to
secure inference for medical diagnostics while keeping their
data confidential. However, users can be compromised by
MIA adversaries. The adversaries could reveal some patients’
associations with the hospital, increasing the risk of re-
identification and causing societal harm. By plugging SIGuard
into secure inference, the threat of MIAs is largely reduced.

B. Threat model

SIGuard’s threats originate from adversaries who may
compromise a single service user, up to one cloud server, or
both. SIGuard defends against two types of corruption: 1)
independent corruption, where either a semi-honest adversary
compromises one of the cloud servers or a membership
inference adversary compromises the user; and 2) collusion,
where the compromised server colludes with the user.
Independent corruption. The independent corruption can be
further distilled into two cases, one compromised server and
one compromised user.

The first case derives from previous secure inference
works [2], [4]. It assumes the 3PC protocol is invoked in an
honest-majority setting where two servers behave honestly and
one server is corrupted by a semi-honest adversary. The cor-
rupted server is assumed to strictly follow the protocol without
deviating from it. However, the adversary may attempt to
infer additional information from the computation to uncover
the user’s private inputs, the model owner’s secure inference
model, the model owner’s simulated membership classifier,
and the generated noise vector.

The second case derives from previous studies of MIAs [6],
[21]. It grants the adversary unlimited query access to the
inference service. The adversary inputs data to the inference
service and receives the corresponding outputs. Based on the
outputs, the adversary trains a membership classifier to infer
which data was part of the model’s training set.
Collusion. The collusion between a semi-honest cloud server
and a single service user targets on: 1) the data privacy
of other users and model owners, and 2) the membership
privacy of the training data. The collusion can result in a
stronger membership inference adversary by broadening the
attack surface compared to standard MIA assumptions. With
access to the corrupted server, the adversary can observe
the protocol’s execution, learn its functionality, and measure
the execution time of each subroutine. By understanding the
functionality, the adversary knows the defense mechanism so
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Parameters: Parties P1, P2, P3, model owner O and user U .
Uploading Data: On input (⟨z⃗⟩i, ⟨z⃗⟩i+1) from Pi (i.e., shares of
logits). On input ⟨W ⟩ := {⟨W i⟩}L−1

0 from O (i.e., shares of
simulated membership classifier’s model weights).
Computation: On inputs SIGuard and softmax from the three
parties, compute the perturbed confidence vector s⃗′.
Output: Return perturbed confidence vector s⃗′ to U .

Fig. 3: FSIGuard Ideal Functionality.

that it may attempt to reverse its membership inference pre-
dictions to bypass the defense (Section VIII-B). Furthermore,
the adversary can identify the used non-linear approximations,
enabling it to design a membership classifier that mimics
the model’s behavior by using similar approximations. By
measuring the execution time of each subroutine, the adversary
gains an advantage in launching MIAs (Section V-C).

Compared to typical black-box MIAs, the knowledge of the
used models and defense mechanisms is provided as auxiliary
information rather than being inferred by the adversary. Other
auxiliary information, e.g. knowledge of the training dataset’s
distribution, is assumed to be known by the adversary.

In both types of corruption, the compromised server and
compromised user attempt to learn information regarding the
other uncorrupted service users’ input, the model owners’
model parameters (i.e., secure inference model and simulated
membership classifier), and the generated noise vectors. Ad-
ditionally, the corrupted user seeks to learn the membership
of the training data from the confidence vectors.

C. Security definition

We assume a semi-honest adversary A that corrupts one
user and one of the cloud servers. The security definition of
the whole system should ensure that A only learns the input
from the corrupted user, the final prediction, and nothing else.
As outlined in Section III-A, the 3PC protocol consists of
secure inference as a service, SIGuard, and secure softmax.
Since secure inference as a service relies on existing protocols
already secured by RSS [26], we consider SIGuard alongside
secure softmax, referring to this combination as the system
framework of SIGuard, and proceed to prove the security of
the framework. Particularly, we demonstrate that except for
receiving the perturbed confidence vectors (final predictions),
A does not learn any information about the simulated mem-
bership classifier and the generated noise vector.

We formally define the ideal functionality of the SIGuard
system framework in Figure 3. Let ΠSIGuard be a protocol that
realizes FSIGuard. Then, we define the security of the SIGuard
system framework by comparing its real-world functionality
with its ideal functionality [29].

Definition 1 (Security Definition): A protocol ΠSIGuard
securely realizes FSIGuard in the context of semi-honest ad-
versaries, if for every PPT adversary A, there exists a PPT
simulator S such that, for every P ⊂ {P1, P2, P3,O,U}:

{IdealFSIGuard,S,P(⟨W ⟩, ⟨z⃗⟩)}
c≡ {RealΠSIGuard,A,P(⟨W ⟩, ⟨z⃗⟩)},

where IdealFSIGuard,S,P(⟨W ⟩, ⟨z⃗⟩) is the output of FSIGuard’s
interaction in the ideal world and RealΠSIGuard,A,P(⟨W ⟩, ⟨z⃗⟩)
is the output of ΠSIGuard’s interaction in the real world.

Note that MPC does not prevent adversaries from observing
the protocol’s computational patterns, meaning that reducing
the expanded attack surface is beyond what MPC alone can
accomplish. Similarly, since MPC does not protect output
privacy, mitigating MIAs requires implementing a defense
mechanism, which, in our case, is MemGuard.

IV. MEMBERSHIP INFERENCE IN SECURE INFERENCE

Although the community has asserted that secure inference
is inherently vulnerable to the black-box MIAs over the
years [3], [15]. Membership inference against secure inference
differs from the one in plaintext MLaaS. Such a difference
is attributed to the distorted confidence scores stemming
from the approximated softmax in secure inference. It is
unknown under such a large perturbation caused by softmax
approximations, whether MIAs would still perniciously exploit
the secure inference. In this section, we investigate that the
privacy risks of MIAs in the MPC-based secure inference
when using different softmax approximations. Our empirical
study shows that secure inference remains as vulnerable as
plaintext inference to MIAs, and in some cases, even worse.

Specifically, practical neural networks often involve various
complex non-linear functions that are not directly supported
by MPC in secure inference. This is because standard MPC
primitives only efficiently support arithmetic operations of ad-
dition and multiplication. Computing the non-linear functions
requires approximations to reformulate the standard function
to its MPC-friendly forms [3], [27], [30], [31]. Softmax is
one such typical function. Moreover, since softmax lies at the
final step in secure inference, it plays a vital role in injecting
perturbations to MPC-based secure inference.

Following, we empirically analyze the above question. In
Section IV-A, we provide our experiment setup and the widely-
adopted softmax approximations. In Section IV-B, we inves-
tigate the risk of MIAs in MPC. We analyze scenarios where
models are equipped with four different softmax approxima-
tions. Given studies of MIAs place significant emphasis on
analyzing confidence vectors [32], [33], we particularly focus
on analyzing the confidence vectors from secure inference.

A. Experiment setup

Softmax approximations. In SIGuard, we focus on four
exemplary approximations: ReLU-based approximation in Se-
cureML [22], limit-based approximation in CrypTen [23],
approximation-based on normalization and logistic function in
Piranha [24], and logarithmic-based approximation proposed
in Aly & Smart [25] (denoted as AS19). Given the input logits
z⃗, these approximations can be computed as follows:
· SecureML [22] substitutes the exponential function with

ReLU: softmax(z⃗) = ReLU(z⃗[i])/ΣReLU(z⃗[j]).
· CrypTen [23], [34] calculates the exponential function with

base e by using its definition of the limit (limit approxima-
tion): exp(z⃗[i]) = limn→∞(1 + z⃗[i]/2n)2

n

.
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TABLE II: Comparison of membership inference attacks in secure inference under different softmax approximations and
datasets (D1=CIFAR-10, D2=CIFAR-100, D3=CH-MINIST, D4=Location30, and D5=Texas100).

plaintext SecureML [22] CrypTen [23] Piranha [24] AS19 [25]

lowest highest lowest highest lowest highest lowest highest lowest highest

D1 57.51% (NN-M) 60.48% (LiRA) 50.11% (entr) 86.56% (LiRA) 56.71% (entr) 61.58% (LiRA) 26.88% (LiRA) 59.11% (conf) 57.15% (entr) 60.76% (LiRA)
D2 70.10% (entr) 82.53% (LiRA) 52.15% (entr) 90.90% (LiRA) 71.43% (NN-M) 82.58% (LiRA) 60.40% (LiRA) 75.73% (Mentr) 66.40% (entr) 82.30% (LiRA)
D3 68.50% (LiRA) 77.95% (conf) 58.20% (entr) 74.70% (NN-M) 69.05% (LiRA) 77.75% (NN-M) 35.35% (LiRA) 67.75% (conf) 69.60% (LiRA) 76.95% (NN-M)
D4 72.00% (LiRA) 99.26% (NN-M) 67.26% (entr) 88.66% (NN-M) 72.06% (LiRA) 99.06% (NN-M) 54.13% (LiRA) 86.40% (Mentr) 71.73% (LiRA) 98.93% (NN-M)
D5 73.58% (LiRA) 77.38% (NN-M) 54.58% (NN-M) 75.80% (Mentr) 73.61% (entr) 77.23% (NN-M) 53.88% (LiRA) 81.25% (Mentr) 72.88% (entr) 78.36% (NN-M)

· Piranha [24] combines normalization with an approximation
of logistic function [22]:

exp(z⃗[i]− z⃗max)

≈

{
0.5(z⃗[i]− z⃗max) + 1 if z⃗[i]− z⃗max ≥ −2
0 otherwise

· AS19 [25] use logarithmic identities to convert ex into
2x·log2 e. Denote y = x · log2 e and we further express
y as the sum of its integer part and fractional part, such
that y = ⌊y⌋ + {y}. Then the problem is decomposed into
calculating 2⌊y⌋ and 2{y}.

exp(z⃗[i]) = 2z⃗[i]·log2 e = 2y = 2⌊y⌋+{y},

2{y} ≈ 1 + (ln(2)/1!){y}+ · · ·+ (ln(2)n/n!){y}n.

Datasets. We select six real-world datasets to conduct our ex-
periments, CIFAR-10 [35], CIFAR-100 [35], CH-MNIST [36],
Location30 [6], and Texas100 [6]. They are widely employed
in the analysis of MIAs [6], [11], [12], [21]. We use the
CINIC-10 dataset (a drop-in replacement for CIFAR-10) for a
more comprehensive evaluation when comparing our approach
to training-stage defense algorithms.
MIAs. We selected five MIAs encompassing almost all
categories of MIAs in literature, Multiple shadow model
attack (NN-M) [6], Confidence-based attack (conf) [18],
Entropy-based attack (entr) [18], Modified entropy-based at-
tack (Mentr) [18], and Likelihood Ratio Attack (LiRA) [12].

For NN-M, based on the auxiliary dataset, the adversary can
train a binary membership classifier. For conf, the adversary
finds a confidence threshold for each classification label to
differentiate between member and non-member data. For entr,
the adversary finds an entropy threshold for each classification
label to differentiate between member and non-member data.
For Mentr, the adversary distinctively treats the classification
label associated with the input confidence vectors during
entropy computation. For LiRA, the adversary treats inferring
the membership information as conducting a hypothesis test
of whether the target model has trained on a specific data
sample or not. LiRA presents an online attack and an offline
attack. Although the online attack exhibits marginally better
performance of TPR at low FPR than the offline attack,
the latter demonstrates superior efficiency. In our paper, we
implement the offline attack version of LiRA, it is calculated
as a one-sided hypothesis.
Evaluation metrics. The evaluation of MIAs hinges upon
Balanced Accuracy (Bal. Acc.) and TPR at low FPR, where

TPR at low FPR is computed from the receiver operating
characteristic (ROC) curve. Bal. Acc. reflects the success rate
of MIAs on a dataset composed of 50% member samples and
50% non-member samples, reflecting the average-case risk.
The ROC curve illustrates how MIAs balance the true positive
rate (TPR) and false positive rate (FPR), where a perfect
attack would achieve a TPR of 1.0 and an FPR of 0.0 at a
specific threshold. Specifically, the TPR at low FPR measures
the extreme case of whether the attack can confidently identify
any members of the training set.
Experimental procedures. We train target models on each
dataset and deploy these models for MPC-based secure infer-
ence. For each model, we execute secure inference equipped
with four different softmax approximations, as described ear-
lier, and obtain the resulting confidence vectors. Finally, the
confidence vectors are fed into the membership classifiers to
assess the privacy risk.

B. Analyze the risk of MIAs on secure inference

Table II lists the highest and the lowest Bal. Acc. achieved
by MIAs on both plaintext inference and secure inference.
Table II illustrates the risk of membership inference against
secure inference remains significant, and in some cases, is
even higher. For example, applying LiRA to plaintext inference
on CIFAR-10 achieves a maximum Bal. Acc. of 60.48%.
However, when applied to secure inference on the same dataset
using SecureML, the Bal. Acc. increases to 86.56%. Other
MIAs’ effectiveness can be found in Table X.

Table II also shows that when the approximations are
accurate, the risk of MIAs will be comparable to that of
plaintext inference; otherwise, it will differ from plaintext
inference. The approximations of Crypten and AS19 exhibit
the closest resemblance to the true softmax function; hence,
their Bal. Acc. of MIAs tend to be closer. The approximations
by SecureML and Piranha are less precise compared to those
by Crypten and AS19. SecureML preserves only positive
logits; however, in certain scenarios, it suffers from more
severe MIAs compared to other approximations. Piranha rep-
resents the softmax approximation with the smallest effective
range, often exhibiting the lowest MIA performance among all
softmax approximations in most cases. Even the entries with
the lowest MIA risk often reach up to 60%, indicating that the
risk of MIA in MPC cannot be overlooked.

6



V. THE SIGUARD PROTOCOL

The overarching objective of SIGuard is to secretly gen-
erate noise vectors to perturb the final predictions of secure
inference, specifically the confidence vectors. SIGuard is
required to maintain both efficiency and defense effectiveness
for practical purposes. We identify two core components from
MemGuard (i.e., noise optimization and noise validation) and
demonstrate how we use MPC to implement them, particularly
for computing the non-linear operations within these functions.

Section V-A presents Secure Noise Optimization OPT for
secretly computing the derivatives of the loss function L.
Section V-B presents Secure Noise Validation VAL for secretly
validating the acceptability of the currently generated noise
vectors. We find additional leakage caused by the direct im-
plementation of MemGuard via MPC. To address the leakage,
we present our finding and corresponding mitigation in Refine-
ment I, Section V-C. We strike a balance between the defense
effectiveness and efficiency of SIGuard through empirical
evaluation in Refinement II, Section V-D. We integrate various
softmax approximations into SIGuard to evaluate its defense
performance in Section V-E. Finally, we provide SIGuard’s
secure protocol in Section V-F.

A. Secure noise optimization

The secure noise optimization protocol OPT aims to craft
a noise vector by iteratively optimizing a composite loss
function L. It mainly takes the replicated secret-shared logits
⟨z⃗⟩ and noise vector ⟨e⃗⟩ as input and securely calculates the
loss functions’ derivatives ⟨u⃗⟩, such that u⃗ = ∂L

∂e⃗ . The primary
goal of OPT is to securely optimize the loss function L, which
composes three terms: the membership loss L1, the utility loss
L2, and the perturbation loss L3.

1) Differentiate secure membership loss function: The gra-
dient of the membership loss L1 can be decomposed into
the product of a scalar, the derivative of an absolute value
function, the derivative of the simulated membership classifier
(backward pass), and the derivative of the softmax function:

∂L1

∂e⃗
= c1︸︷︷︸

scalar

·
∂
∣∣∣h(s⃗′)∣∣∣
∂h(s⃗′)︸ ︷︷ ︸

absolute value

· ∂h(s⃗′)

∂s⃗′︸ ︷︷ ︸
backward pass

· ∂s⃗′

∂e⃗︸︷︷︸
softmax

, (1)

where s⃗′ := softmax(z⃗+ e⃗) stands for the confidence vector
that is perturbed by adding the noise vector e⃗.

In what follows, we illustrate how to securely compute Eq. 1
in SIGuard. There are mainly three derivatives needed to
securely compute for differentiating the secure membership
loss function: secure absolution, secure membership classifier,
and secure softmax.
Secure absolution. The derivative of an absolute value func-
tion is equivalent to the sign of its input, except at zero. Note
that we omit handling the case of zero during computation as it
rarely occurs. To extract the sign of a secret-shared value ⟨x⟩,
we resort to the standard secure bit decomposition mechanism
ΠA2B for the most significant bit (MSB) extraction [2], [27].
ΠA2B outputs a list of boolean shares, from which we retain

Protocol 1: Secure Noise Optimization OPT

Input: Replicated secret-shared logits ⟨z⃗⟩, original confi-
dence vector ⟨s⃗⟩, noise vector ⟨e⃗⟩, neural network h with
model weights {⟨W i⟩}L−1

0 ; the hyper-parameters c1, c2 of
loss function L’s and its replicated secret-shared trainable
weight ⟨c3⟩.
Output: Parties hold gradient ⟨u⃗⟩.

1: ⟨z⃗′⟩ ← ⟨e⃗⟩+ ⟨z⃗⟩.
2: ⟨s⃗′⟩ ← ΠSoftmax(⟨z⃗′⟩).
3: ⟨J⟩ ← ΠDSoftmax(⟨s⃗′⟩).

Secure Membership Loss L1

4: {⟨g⃗′i⟩}L−2
0 , ⟨m⟩ ← ΠForward(h, {⟨W i⟩}L−1

0 , ⟨s⃗′⟩).
5: ⟨signm⟩ ← ΠABS(⟨m⟩).
6: ⟨g⃗⟩ ← ΠBackward(h, {⟨g⃗i⟩}L−2

0 ).
7: ⟨u⃗1⟩ ← ⟨signm⟩ · ⟨J⟩ · ⟨g⃗⟩.

Secure Utility Loss L2

8: ⟨σ⃗l⟩ ← Π1AGM(⟨s⃗⟩).
9: ⟨σ⃗l′⟩ ← Π1AGM(⟨s⃗′⟩).

10: ⟨u⃗2⟩ ← ⟨σ⃗l′⟩ − ⟨σ⃗l⟩.
Secure Perturbation Loss L3

11: (Jb0K · · · Jbn−1K)← ΠA2B(⟨s⃗′⟩ − ⟨s⃗⟩).
12: ⟨ ⃗sign⟩ ← (1− 2 · Jb0K · · · 1− 2 · Jbn−1K).
13: ⟨u⃗3⟩ ← ⟨J⟩ · ⟨ ⃗sign⟩.
14: return ⟨u⃗⟩ ← c1 · ⟨u⃗1⟩+ c2 · ⟨u⃗2⟩+ ⟨c3⟩ · ⟨u⃗3⟩.

only the MSB JbK. To compute the arithmetic shared sign bit
⟨sign⟩ = 1−2·JbK using the boolean shared MSB JbK, we need
to compute a public value multiplying a boolean shared value.
We follow the ABY3 framework [2] for a direct multiplication,
which is more efficient than first converting the boolean to its
arithmetic share and performing the multiplication.

Given above, on input shared value ⟨x⟩, our secure absolu-
tion ΠABS securely computes ⟨sign⟩ as follows:

1) P1, P2, P3 run Jx[0]K, · · · , Jx[ℓ− 1]K ← ΠA2B(⟨x⟩) to
decompose arithmetic share to its boolean shared bit string.

2) Pi sets JbK← Jx[ℓ− 1]K as shared MSB.
3) P1, P3 sample random value c1

$←− Z2ℓ .
4) P2, P3 sample random value c3

$←− Z2ℓ .
5) P3 set m0 ← 1− 2 · (0⊕ JbK1 ⊕ JbK3)− c1 − c3.
6) P3 set m1 ← 1− 2 · (1⊕ JbK1 ⊕ JbK3)− c1 − c3.
7) P3 (sender) and P2 (receiver) invoke Oblivious Transfer,

with P3 inputs m0,m1 and P2 inputs JbK2. In the end, P2

gets c2 ← mJbK2 .
8) P2 sends c2 to P1.
9) The ⟨sign⟩ is set as P1 holds (c1, c2), P2 holds (c2, c3),

P3 holds (c3, c1).

Secure membership classifier. The derivative of the simulated
membership classifier h can be computed layer by layer, using
a backward pass that starts from the last layer and progresses to
the first layer. The structure of h is set to be a fully connected
network that only comprises linear layers and ReLU layers.
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To compute the backward pass, we must first calculate the
forward pass of h to obtain the derivative of each ReLU
layer [37]. For the linear layer, the forward pass involves
secure matrix multiplication (we omit the bias term for sim-
plicity), and its derivative is simply the matrix parameters
themselves. For the ReLU layer, its forward pass requires
computing max(0, x) for each element x in the input and its
derivative is denoted as 1 if the element x remains greater
than zero, and 0 otherwise. Here, we resort to ABY3 [2]
to securely realize the forward pass of ReLU. Specifically,
the ReLU layer’s forward pass involves using a share of JbK
to select between a secret value ⟨x⟩ and 0 by computing
JbK · (0−⟨x⟩)+ ⟨x⟩. To compute JbK · (0−⟨x⟩), parties invoke
Protocol ΠBMS, which computes boolean share multiplying
secret share [2]. For the rest operations, we omit the notation
of ΠBMS and directly represent the multiplication of any
arithmetic share ⟨x⟩ by a Boolean share JbK as JbK · ⟨x⟩.
Secure softmax and its derivative. Given the approximation
of AS19 has the greatest defense strength and is more accurate
than others, we select it to construct our SIGuard. On input
shared logits ⟨z⃗⟩ ∈ Zn×1

2ℓ
, our secure softmax with AS19

ΠSoftmax securely computes shared confidence vector ⟨s⃗⟩ ∈
Zn×1
2ℓ

. The confidence value s⃗[i] is computed from ez⃗[i]∑
ez⃗[j]

,
which involves computing two non-linear operations, secure
exponential ΠExp [25] and secure reciprocal ΠRec [30]. Our
secure softmax protocol ΠSoftmax works as follow:
1) Pi sets s⃗ := (0, · · · , 0) ∈ Rn×1.
2) P1, P2, P3 invoke ⟨s⃗⟩ ← ΠShr(s⃗). //Share public value.
3) for i ∈ {0, · · · , n− 1}
4) P1, P2, P3 invoke ⟨s⃗[i]⟩ ← ΠExp(⟨z⃗[i]⟩).
5) end for.
6) P1, P2, P3 invoke ⟨Σ⟩ ←

∑n−1
j=0 ⟨s⃗[j]⟩.

7) P1, P2, P3 invoke ⟨Σ−1⟩ ← ΠRec(⟨Σ⟩).
8) for i ∈ {0, · · · , n− 1}
9) P1, P2, P3 invoke ⟨s⃗[i]⟩ ← ⟨Σ−1⟩ · ⟨s⃗[i]⟩.

10) end for.
The derivative of the softmax function can be represented

by a Jacobian matrix J ∈ Rn×n (n := len(s⃗)). Each element
of this matrix is given by:

∂s⃗[i]

∂e⃗[j]
= J [i][j] = s⃗[i] · (δij − s⃗[j]), (2)

where δij = 1 if and only if i = j. We define the secure
derivative of the softmax function as ΠDSoftmax (Protocol 4).

2) Differentiate secure utility loss function: The gradients
of the utility loss L2 can be computed as below:

∂L2

∂e⃗
= c2 ·

∂ReLU(maxi,i ̸=l(z⃗[i] + e⃗[i])− z⃗[l]− e⃗[l])

∂e⃗
=σ⃗l′ − σ⃗l, (3)

where l′ := argmaxi(z⃗[i] + e⃗[i]) and σ⃗l :=
(0, 0, · · · ,+1, · · · , 0). σ⃗l is an one-hot vector with
the l-th entry equals to 1. If the perturbed confidence
vector’s prediction label is identical to the original
predicted label l, the loss and its gradients will be

equal to 0⃗. Otherwise, the protocol outputs a vector of
σ⃗l′ − σ⃗l = (0, 0,+1, · · · ,−1, · · · , 0), with the index of l
to be −1 and the index of l to be 1. To secretly compute
σ⃗l′ − σ⃗l, the indices of l and l′ should not be known by any
party, so it is impossible to directly set +1 and −1 to the
index we want. Thus, we propose Secure One-hot Argmax
Π1AGM to compute the operation.
Secure one-hot argmax. On input of ⟨x⃗⟩, Π1AGM outputs the
one-hot vector in secret σ⃗l′ , where l′ = argmaxi(x⃗[i]) is the
index of the maximum value in x⃗. Π1AGM iteratively compares
each value to maintain the maximum value. Simultaneously, it
preserves a one-hot vector where the index corresponding to
the current maximum value is set to one. Then, parties extract
the MSB from the secret shares. By utilizing a boolean share,
parties invoke ΠBMS to compute JbK · (⟨x⃗[j]⟩ − ⟨max⟩). Our
secure one-hot argmax protocol Π1AGM works as follows:
1) Pi sets ⟨max⟩ ← ⟨x⃗[0]⟩ as the first element of ⟨x⃗⟩.
2) Pi sets σ⃗0 := (1, · · · , 0) ∈ Rn×1 with all entries zero.
3) Pi shares ⟨y⃗⟩ ← ΠShr(σ⃗0) as RSS.
4) for j ∈ {1, · · · , n− 1}
5) P1, P2, P3 invoke JbK← ΠA2B(⟨max⟩− ⟨x⃗[j]⟩) to extract

the MSB JbK. Here, b = 0 indicates that max ≥ x⃗[j], and
b = 1 otherwise.

6) P1, P2, P3 invoke ⟨max⟩ ← JbK·(⟨x⃗[j]⟩−⟨max⟩)+⟨max⟩.
7) P1, P2, P3 invoke ⟨y⃗⟩ ← JbK · (⟨σ⃗j⟩− ⟨y⃗⟩)+ ⟨y⃗⟩ to get the

resulting one-hot max value vector ⟨y⃗⟩.
8) end for.

3) Differentiate secure perturbation loss function: The
derivative of the perturbation loss L3 can be expanded as:

∂L3

∂e⃗
= c3 ·

∂
∥∥∥s⃗′ − s⃗

∥∥∥
1

∂s⃗′ − s⃗
· ∂s⃗

′ − s⃗

∂e⃗
. (4)

It breaks down the derivative into the product of derivatives
associated with the L1 norm and the softmax function. The
derivative of the L1 norm can be computed in ΠABS for each
entry of s⃗′ − s⃗ and the softmax function’s gradient can be
computed with Equation 2.

4) Protocol: Protocol 1 securely computes the gradient ⟨u⃗⟩
of the loss function L. On input replicated secret-shared logits
⟨z⃗⟩, the original confidence vector ⟨s⃗⟩, noise vector ⟨e⃗⟩, a fully
connected neural network h with its linear layer’s weights
{⟨W i⟩}L−1

0 , and L’s weights c1, c2, ⟨c3⟩, the secure noise
optimization OPT outputs RSS gradient ⟨u⃗⟩.

Parties first add noise vector to the logits ⟨z⃗⟩. In Steps 2-3,
parties invoke ΠSoftmax and ΠDSoftmax to get the perturbed
confidence vector ⟨s⃗′⟩ and Jacobian matrix ⟨J⟩. In Step 4,
parties invoke ΠForward on membership classifier h to get
ReLU’s derivative {⟨g⃗′i⟩}L−2

0 and the inference result ⟨m⟩
such that h(s⃗′) = m (Protocol 5). In Step 5, parties invoke
ΠABS on ⟨m⟩ to get the sign of m, ⟨signm⟩ In Step 6, parties
run ΠBackward to get h’s derivative ⟨g⃗⟩ (Protocol 6). In Step
7, parties compute the gradients of L1 as ⟨u⃗1⟩. In Steps 8-9,
parties invoke Π1AGM on normal confidence vector ⟨s⃗⟩ and
perturbed one ⟨s⃗′⟩ to get ⟨σ⃗l⟩ and ⟨σ⃗l′⟩. In Step 10, parties
compute the gradients of L2 as ⟨u⃗2⟩. In Step 11, parties invoke
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ΠA2B on each element of ⟨s⃗′⟩ − ⟨s⃗⟩ to its MSB, denoted as
Jb0K · · · Jbn−1K. In Step 12, parties compute the sign on each
element. In Step 13, parties compute the gradients of L3 as
⟨u⃗3⟩. In Step 14, parties output the composite gradient ⟨u⃗⟩.

B. Secure noise validation

VAL takes the shares of noise vector ⟨e⃗⟩ as input and
outputs a bit JbK indicates that whether ⟨e⃗⟩ is valid to be added
to the logits z⃗ or not. VAL performs the final step before
MemGuard returns the crafted noise vectors, as outlined in
Step 12 of Algorithm 1. VAL outputs JbK where b = 1 iff
two conditions are satisfied: 1) whether the share of crafted
noise ⟨e⃗⟩ do not change the original prediction; 2) whether
the share of crafted noise ⟨e⃗⟩ change the neural network
h’s membership prediction. The first condition requires to
compute the equality by parties invoking ΠEQZ [38]. The
second condition is equivalent to computing its sign, where
parties can invoke ΠLTZ to compute.
Secure equal to zero. To determine if two RSSs, ⟨a⟩ and
⟨b⟩, are equal, the problem is reduced to evaluating whether
⟨a⟩ − ⟨b⟩ equals zero. We use ΠEQZ [38] for the secure
computation of this equality. Parties first invoke ΠA2B to
convert the result of ⟨a⟩ − ⟨b⟩ into bits. Then, they perform
successive OR operations

∨
on each bit [39]. The result of

these operations is XORed with 1 and returned. On input
of ⟨x⟩, ΠEQZ [38] securely computes whether a secret value
equals to zero as follows:
1) Jx[0]K, · · · , Jx[ℓ− 1]K← ΠA2B(⟨x⟩).
2) JbK← 1⊕

∨ℓ−1
i=0(Jx[i]K).

1) Protocol: Protocol 2 securely validates whether the gen-
erated noise vector is effective. At the beginning, parties hold
logits ⟨z⃗⟩ ∈ Zn×1

2ℓ
, original confidence vector ⟨s⃗⟩ ∈ Zn×1

2ℓ
,

generated noise vector ⟨e⃗⟩, original predicted label ⟨l⟩, original
neural network’s output ⟨m⟩, and neural network h with its
linear layer’s weights {⟨W i⟩}L−1

0 .
Parties first compute perturbed logits ⟨z⃗′⟩. In Step 2, parties

invoke ΠSoftmax on ⟨z⃗′⟩ to get ⟨s⃗′⟩. In Step 3, parties invoke
ΠArgmax [40] on ⟨s⃗′⟩ to get ⟨l′⟩. In Step 4, parties invoke
ΠEQZ on ⟨l′⟩ − ⟨l⟩ to get Jb1K. In Step 5, parties invoke
ΠForward on h, {⟨W i⟩}L−1

0 , ⟨s⃗′⟩ to get ⟨m⟩. In Step 6, parties
invokes ΠLTZ (Less Than Zero [38]) on ⟨m⟩·⟨m′⟩ to get Jb2K.
Since m ·m′ < 0 indicates a shift in the neural network h’s
prediction from positive to negative or vice versa, it implies
that the noise vector has caused the prediction’s membership
information to change. In Step 7, parties output JbK.

C. Refinement I: mitigating potential leakages from iterations

Applying RSS to a single secure branching operation is rel-
atively straightforward. A standard approach is to use a secret-
shared selection bit and its Two’s complement to multiply the
secret-shared condition results and obliviously choose between
them [41]. For example, parties compute JbK·⟨x⟩+(1⊕JbK)·⟨y⟩
to securely branch between ⟨x⟩ and ⟨y⟩.

However, MemGuard, as shown in Algorithm 1, involves
two while loops to recursively optimize the loss functions.
If directly adapted to MPC, the conditions for evaluating

Protocol 2: Secure Noise Validation VAL

Input: Parties hold logits ⟨z⃗⟩ ∈ Zn×1
2ℓ

, original confidence
vector ⟨s⃗⟩ ∈ Zn×1

2ℓ
, noise vector ⟨e⃗⟩, original predicted

label ⟨l⟩, original neural network’s output ⟨m⟩, and neural
network h with its linear layer’s weights {⟨W i⟩}L−1

0 .
Output: Parties hold validation result JbK.

1: ⟨z⃗′⟩ ← ⟨e⃗⟩+ ⟨z⃗⟩.
2: ⟨s⃗′⟩ ← ΠSoftmax(⟨z⃗′⟩).
3: ⟨l′⟩ ← ΠArgmax(⟨s⃗′⟩).
4: Jb1K← ΠEQZ(⟨l′⟩ − ⟨l⟩).
5: ⟨m′⟩ ← ΠForward(h, {⟨W i⟩}L−1

0 , ⟨s⃗′⟩).
6: Jb2K← ΠLTZ(⟨m⟩ · ⟨m′⟩).
7: return JbK← Jb1K ∧ Jb2K.

while loops are in the encrypted domain. Those secret
conditions cannot be used to determine when to terminate the
loop [41]. Thus, parties have to open the secret conditions.
Furthermore, the number of loops could also reveal certain
information about the while conditions. For instance, if the
loop terminates after the first loop, the adversary should infer
that the share of the vector with zero entries is returned, feeling
confident to make MIAs on that data sample.

Considering that the adversary can corrupt a single party,
it naturally becomes aware of the defense mechanism. In
general cases, different data samples should make SIGuard
to terminate at different optimization stages. In Figure 4, we
count the number of iterations in the while loop for each
data sample during the execution of SIGuard. The experiment
demonstrates there exist differences in iteration counts across
data samples are linked to their membership information.
For instance, there is no member data when the number of
iterations is greater than 160 in Figure 4e.

We emphasize that such leakage issues inherently exist in
recursive-based algorithms. When these algorithms are applied
in MPC, careful attention must be paid to their iteration count.
If the issue is placed in the plaintext configuration of black-box
membership inference attacks (MIAs), the adversary can still
measure the iteration by counting the service’s running time;
however, network latency or other factors may introduce some
level of ambiguity. If the issue is placed in our threat model,
the adversary can count the iteration sample by sample.

For intuition, we think the different distribution of total iter-
ation number between member and non-member data is caused
by each sample’s optimization hardness. In the optimization
of MemGuard, some data samples make it easy to find noise
vectors. In such cases, MemGuard keeps increasing c3 and
begins a new round of iteration. Conversely, for data samples
that are difficult to find noise vectors or smaller noise vectors,
MemGuard terminates immediately.

With our insight of SIGuard’s optimization mechanism, we
make the following refinement: we substitute the while loops
in the MemGuard (Steps 3, 6 of Algorithm 1) with two fixed
for loops, parameterized by outer loop and inner loop.

9
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Fig. 4: Comparison of iteration frequency between member and non-member samples.

Protocol 3: SIGuard

Input: Parties hold logits ⟨z⃗⟩ ∈ Zn×1
2ℓ

, neural network h

with its linear layer’s weights {⟨W i⟩}L−1
0 , learning rate

⟨β⟩, loss function L’s weights c1, c2, ⟨c3⟩, and iteration
parameters outer loop, inner loop.
Output: Parties hold crafted noise vector ⟨e⃗′⟩ ∈ Zn×1

2ℓ
.

1: ⟨e⃗′⟩ ← ΠShr(0, · · · , 0).
2: ⟨s⃗⟩ ← ΠSoftmax(⟨z⃗⟩).
3: , ⟨m⟩ ← ΠForward(h, {⟨W i⟩}L−1

0 , ⟨s⃗⟩).
4: for i← 0 to outer loop do
5: ⟨e⃗⟩ ← ΠShr(0, · · · , 0).
6: for j ← 0 to inner loop do
7: ⟨u⃗⟩ ← OPT(⟨z⃗⟩, ⟨s⃗⟩, ⟨e⃗⟩, h, c1, c2, ⟨c3⟩).
8: ⟨u⃗sq⟩ ← ⟨u⃗⟩ · ⟨u⃗⟩.
9: ⟨Σ⟩ ←

∑n−1
j=0 ⟨u⃗sq[j]⟩.

10: ⟨u⃗⟩ ← ΠInvSqrt(⟨Σ⟩) · ⟨u⃗⟩.
11: ⟨e⃗⟩ ← ⟨e⃗⟩ − β · ⟨u⃗⟩.
12: end for
13: JbK← VAL(⟨z⃗⟩, ⟨s⃗⟩, ⟨e⃗⟩, ⟨l⟩, ⟨m⟩, h).
14: ⟨e⃗′⟩ ← JbK · (⟨e⃗⟩ − ⟨e⃗′⟩) + ⟨e⃗′⟩.
15: ⟨c3⟩ ← JbK · (⟨10 · c3⟩ − ⟨c3⟩) + ⟨c3⟩.
16: end for
17: return ⟨e⃗′⟩.

D. Refinement II: balance efficiency & accuracy

MemGuard’s hyper-parameters for maximum iterations are
no longer practical in SIGuard, as it crafts noise vectors
using a fixed number of iterations as refined in Section V-C.
According to MemGuard’s code1, it sets maximum iterations
for the while loops in Steps 3 and 6 of Algorithm 1 to
6 and 300, respectively. However, in MPC, such a setting
is impractical due to the significantly higher runtime cost
compared to the plaintext computation. MemGuard’s iteration
limits of 6 and 300 serve only as the upper bound within
the while loop, meaning that each data sample’s optimization
process varies. In SIGuard, using fixed iterations means that
some data, which can find smaller noise vectors when the
weights of L3 are increased, will fully utilize all the iterations.
Conversely, data that cannot find smaller noise vectors or any

1https://github.com/jinyuan-jia/MemGuard

feasible solutions will waste computation by looping without
progress. This is a side-effect of setting iterations fixed, and
we certainly do not want this scenario to significantly harm
efficiency. Therefore, we need to balance the total number of
iterations (efficiency) and defense performance (accuracy).

We need to demonstrate that through parameter selection,
our solution should not only reduce iterations to improve
efficiency but also maintain SIGuard′s utility. This means
that even with reduced iterations, SIGuard can still achieve
a performance level close to that of a random guess (50%).
Therefore, for each choice of inner loop (the iteration count
from the inner loop in Protocol 3), we adjust the learning rates
β. The results of these runs, for various iteration counts and
learning rates, are displayed in Figure 5. We evaluate defense
performance by launching the MIA of NN-M. In summary,
these results indicate that optimization with fewer iterations
but a higher learning rate achieves defense performance com-
parable to that of more iterations with a lower learning rate.
For example, in the dataset of CIFAR-10, setting the iteration
as 19 and the learning rate as 0.4 can achieve a better
performance than setting the iteration as 300 and the learning
rate as 0.1 Meanwhile, we reduce outer loop, which is mainly
used to control the norm size of the generated noise, from 6
to 3, as MemGuard’s evaluation shows outer loop = 3 and
outer loop = 6 achieve nearly the same performances [21].

Thus, based on our empirical studies of performing se-
lections of the hyper-parameters, we make the following
refinement: We reduce the number of iterations inner loop
and increase the learning rate β. Based on our empirical
studies, for each dataset, we can find proper hyper-parameters
to balance the efficiency and utility.

E. Analysis of SIGuard on softmax approximations

Securely computing the softmax and its derivatives is essen-
tial in SIGuard’s computation. This is because the underlying
defense mechanism adopted by our system is MemGuard [21],
which crafts noise vectors to perturb confidence scores and
then optimizes the noise vectors to reduce the accuracy loss
using a series of loss functions (i.e., Equation 1). Such compu-
tations of L1 and L3 extensively involve softmax. An improper
softmax approximation might lead to incorrect convergence of
those loss functions in the optimization [27]. Moreover, since
the adversary’s membership classifiers can be derived from the

10
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Fig. 5: Comparison of SIGuard’s defense performance under different learning rates and iterations (inner loop ∈
{10, 19, 38, 75, 150, 300}).

actual softmax function, inaccurate approximations may fail
to capture these classifiers effectively. In a nutshell, how the
choice of softmax approximations would impact the defense
strength is still unknown.
Secure softmax selection. As shown in Table X, we adapt
different softmax approximations into SIGuard to evaluate
how different approximations affect the defense performance
of SIGuard. We observe that using CrypTen and AS19
will give us better performance, compared to using Piranha
and SecureML. The use of the softmax approximation with
SecureML shows that SIGuard struggles to achieve defense
degradation across CIFAR-10 and CIFAR-100. The softmax
approximation using Piranha outperforms SecureML but does
not compare favorably to the approximations of CrypTen and
AS19. The defense performance of SIGuard using CrypTen
and AS19 is nearly equivalent, effectively addressing MIAs.

F. Wrapping up

Protocol 3 presents the final protocol for SIGuard.
SIGuard’s protocol comprises two recursive optimizations: an
inner loop (Steps 6-12) and an outer loop (Steps 4-16). The
inner loop is to find an optimal noise vector in the encrypted
domain that can be used to perturb the secret-shared logits
⟨z⃗⟩ such that the MIAs attack accuracy is around the random
guess (∼50%). In Step 10, to securely compute the inverse
square root, parties invoke ΠInvSqrt [31]. The outer loop is to
validate whether the current secret-shared noise vector ⟨e⃗⟩ is as
small as possible to preserve the inference accuracy. Once the
above two conditions of loops are achieved, all cloud servers
obtain the secret shares of crafted noise vector ⟨e⃗′⟩ ∈ Zn×1

2ℓ
,

which can then be added to the encrypted confidence vector,
and opened to the user as the final prediction result.

VI. SECURITY PROOF

Theorem 1: The protocol of SIGuard securely realizes the
ideal functionality FSIGuard using Definition 1.

Proof. To prove Theorem 1, we let S simulate the joint
distribution of FSIGuard’s inputs and outputs in the ideal world,
and then demonstrate that the simulated distribution is com-
putationally indistinguishable from the real-world distribution.
We construct S as follows:

Simulation for Corrupted Model Owner. Model owner O
does not participate in the computation but contributes to the
parameters of the simulated membership classifier. In the ideal
world, the simulator S plays as the corrupted model owner
by inputting the parameters W of the simulated membership
classifier to the ideal functionality FSIGuard. The remaining
protocol ΠSIGuard is invoked by three honest parties. Finally,
only the share of the perturbed confidence vector ⟨s⃗′⟩ is
returned to the user U , while nothing is returned to O. In
the simulation, S can simply output W in a dummy way. The
output of S is identically distributed to the view of O, making
the real and ideal worlds indistinguishable.

Simulation for corrupted user. The user U does not par-
ticipate in the computation but contributes its data, denoted
as x⃗, by partitioning x⃗ into replicated secret shares ⟨x⃗⟩
and distributing them to each party. In the ideal world, the
simulator S plays as the corrupted user by inputting the x⃗
to the ideal function that computes the secure inference and
FSIGuard. Upon receiving the inference result s⃗′ from FSIGuard,
S samples two random vectors r⃗1, r⃗2 from Z2ℓ and computes
r⃗1, r⃗2, r⃗3 := s⃗′ − r⃗1 − r⃗2. Then S outputs r⃗1, r⃗2, and r⃗3. The
security follows from the fact that the replicated secret shares
formed by r⃗1, r⃗2, and r⃗3 are uniformly random values in Z2ℓ
and are identically distributed to the output in the real world.
Since the inputs are the same, the inputs and outputs in both
the real and ideal worlds are indistinguishable.

Simulation for corrupted parties. We demonstrate that the
view of the corrupted party from A’s perspective can be
simulated by S. The three parties P1, P2, P3 collaboratively
invoke ΠSIGuard in a symmetric way and each party does not
provide their own private inputs or receive any outputs. During
the computation of ΠSIGuard, the servers interact with each
other over replicated secret shares. Given the symmetric nature
of replicated secret sharing, it is sufficient for S to simulate
the view of only one party. S then sequentially simulates
the subroutines that have been proven secure in previous
works by showing that the transmitted messages are uniformly
distributed over Z2ℓ . Furthermore, between each execution of
these subroutines, there are no interactive messages. Hence, S
can simulate the views of the parties corrupted by A, implying
indistinguishability. The above concludes the proof. □
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Secure against MIAs. Assume MemGuard perfectly defends
against MIAs, which means that the adversaryA, who colludes
one of three parties and multiple service users, cannot correctly
guess the membership information with a non-negligible ad-
vantage more than 50%. In our solution, MPC ensures that
no meaningful intermediate results are disclosed to any party.
With SIGuard being proved as secure, A cannot get access
to any meaningful intermediate results in the 3PC protocol,
such as the generated noise vector. Since A cannot access
any meaningful intermediate results, it only sees the final
results, the perturbed confidence vectors. Because MemGuard
perfectly defends against MIAs, our solution is secure against
MIAs, too.

VII. EVALUATION

Implementation. We implemented SIGuard 2 in 2,988 lines
of Python code. We leverage the MP-SPDZ 3 [42] framework
as the skeleton of SIGuard. MP-SPDZ is a toolkit that
includes various secure protocols realized by replicated secret
sharing [26]. The neural network models are trained by Py-
Torch. To evaluate defense performance and efficiency in the
LAN setting, we deployed SIGuard on a machine equipped
with a 13th Gen Intel(R) Core(TM) i9-13900K, 12 CPUs and
24 GB of RAM. For efficiency in the WAN setting, we deploy
SIGuard in an Amazon AWS EC2 workspace equipped with
a 4th Gen Intel Xeon Sapphire Rapids processor, featuring 8
CPUs and 32 GB of RAM. The WAN setting was simulated
using the Linux tc, configured with a bandwidth of 100 Mbps
and a latency of 20 ms across three Docker containers.

A. Defense performance of SIGuard
First, we demonstrate our SIGuard effectively reduces the

risk of MIAs when evaluated using Bal. Acc. and TPR @
Low FPR. Second, we compare SIGuard with SOTA defense,
HAMP [20]. HAMP injects noises(soft labels) during training
and applies tailored perturbations to the confidence vector
during inference. Due to its inference-stage design, we believe
further adaptation is needed for use in MPC.
Balance accuracy mitigation. Table III demonstrates that
SIGuard reduces Bal. Acc. across all MIAs. For each dataset,
we selected the optimal hyper-parameters for inner loop and
learning rate β, as determined by our refinement process.
Under the attack of NN-M, SIGuard reduces the Bal. Acc.
from 57.60% to 50.30% on CIFAR-10, bringing the attack
accuracy close to that of random guessing (50%). For the rest
of MIAs, SIGuard can mitigate their effectiveness to a certain
degree and sometimes to the level of random guessing.
TPR @ Low FPR mitigation. Figure 6 plots the log-scale
ROC curves for LiRA, showing the MIA privacy loss at
a TPR of 0.1% FPR. Figure 6 demonstrates that SIGuard
can significantly reduce the accuracy of MIAs at low FPR.
For example, at an FPR of 0.1%, LiRA achieves a TPR of
nearly 10% in Location30, whereas, SIGuard reduces it to
to below 1%. Similarly, for the remaining datasets, SIGuard

2https://github.com/Wangxinqian/SIGuard-secure-MIA-defense
3https://github.com/data61/MP-SPDZ

TABLE III: Attack performance in PPML w/o SIGuard.

Dataset Group NN-M conf entr Mentr LiRA

CIFAR-10
PPML 57.60 58.35 56.80 58.75 61.95

SIGuard 50.30 57.35 52.00 57.60 44.05
∆ ↓ 7.30 ↓ 1.00 ↓ 4.80 ↓ 1.15 ↓ 17.90

CIFAR-100
PPML 68.85 73.00 65.10 73.00 82.55

SIGuard 54.45 67.10 53.45 67.85 67.20
∆ ↓ 14.40 ↓ 5.90 ↓ 11.65 ↓ 5.15 ↓ 15.35

CH-MINIST
PPML 76.95 72.10 70.50 71.50 69.60

SIGuard 50.90 54.45 48.90 55.70 61.55
∆ ↓ 26.05 ↓ 17.65 ↓ 21.60 ↓ 15.80 ↓ 8.05

Location30
PPML 98.93 92.40 92.40 92.86 71.73

SIGuard 51.86 50.00 50.00 50.00 71.00
∆ ↓ 47.07 ↓ 42.40 ↓ 42.40 ↓ 42.86 ↓ 0.73

Texas100
PPML 78.00 75.85 73.00 75.65 72.70

SIGuard 53.90 58.40 52.45 59.15 72.55
∆ ↓ 24.10 ↓ 17.45 ↓ 20.55 ↓ 16.50 ↓ 0.15

TABLE IV: Model utility and attack performance in PPML
under no defense, SIGuard, and HAMP.

Dataset Group Pred Acc NN-M

CIFAR-10
PPML 90.70% 59.20%

SIGuard 90.70% (↓ 0%) 52.53% (↓ 6.67%)
HAMP 87.20% (↓ 3.50%) 50.00% (↓ 19.20%)

CIFAR-100
PPML 63.15% 73.05%

SIGuard 63.15% (↓ 0%) 53.68% (↓ 19.37%)
HAMP 62.75% (↓ 0.40%) 50.00% (↓ 23.05%)

CINIC-10
PPML 82.95% 52.40%

SIGuard 82.95% (↓ 0%) 51.32% (↓ 1.08%)
HAMP 81.55% (↓ 1.40%) 50.00% (↓ 2.40%)

significantly reduces the TPR, with a degradation pattern
consistent with that of MemGuard.
Comparison to prior art (defend MIAs in training). Ta-
ble IV shows that our SIGuard and HAMP achieve same-
level defense effectiveness on MIAs of NN-M. Additionally,
we want to emphasize that our goal is not to develop a
better MIA defense algorithm. Table IV also illustrates the
trade-off between privacy and utility, highlighting the cost a
model must incur to achieve improved defense performance.
Although HAMP has a higher Bal. Acc., it results in a slight
decrease in model inference accuracy compared to SIGuard,
which has no loss in inference accuracy.

B. Efficiency of SIGuard

We analyze how different hyper-parameters of SIGuard
affect the total running time and communication cost in both
WAN and LAN settings. Then, we evaluate the feasibility of
SIGuard for practical secure inference services under both
WAN and LAN conditions. Last, we compare plaintext model
training with HAMP [20] and DP-SGD [17], the defense
mechanisms that run in the training stage, to show the extra
cost introduced in total running time and inference accuracy
when selecting defense in the training stage. Since SIGuard
is applied during the secure inference stage, we assume that
the model is trained in plaintext before being used in MPC.
LAN setting. Table V examines the communication and
computation costs for various iteration counts across all input
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Fig. 6: Log scale ROC CRUVE of LiRA under no defense, MemGuard, and SIGuard.

TABLE V: Total running time (seconds) and bandwidth cost
(MB) of SIGuard over Z264 with different iteration and input
length {8, 10, 30, 100}. Note that the iteration (in 1st column)
represents outer loop× inner loop.

Iteration Cost CH-MINIST CIFAR-10 Location30 CIFAR-100

3× 10
Time(s) 0.99 1.09 1.30 2.41

Bandwidth (MB) 4.66 5.38 17.52 130.12

3× 19
Time(s) 1.83 1.87 2.38 5.13

Bandwidth (MB) 8.54 9.87 32.16 240.50

3× 38
Time(s) 3.55 5.04 4.77 9.06

Bandwidth (MB) 16.73 19.36 63.64 489.18

3× 75
Time(s) 6.91 7.03 9.59 18.02

Bandwidth (MB) 32.68 37.84 124.96 963.60

3× 150
Time(s) 14.41 14.86 19.10 36.78

Bandwidth (MB) 65.10 75.41 249.29 1925.19

3× 300
Time(s) 30.51 32.04 38.87 85.34

Bandwidth (MB) 129.87 150.46 497.71 3848.34

shapes. The iteration counts are represented as outer loop×
inner loop, following the notation used in Protocol 3. For
example, 3×19 means that our hyper-parameters for SIGuard
are outer loop = 3 and inner loop = 19. Table V shows
that the total time (s) and bandwidth costs (MB) of SIGuard
increase linearly with the number of iterations. For example,
with an input length of 30, when the number of iterations
increases from 30 to 900, the running time and bandwidth cost
both increase approximately 30 times, specifically by factors
of 29.9 and 28.4, respectively.

Note that from Refinement II (Section V-D), we optimize
the iterations from inner loop = 300 to inner loop = 10.
According to Table V, the optimized iteration parameters
ensure that for any input length of 100 or less, setting the
number of iterations to 3 × 10 or lower can result in a total
prediction time of less than 2.50 seconds, which is at least
29× faster than iterations of 3× 300.

Figure 7 further analyzes the communication and computa-
tion costs on the optimised iteration setting. It illustrates how
the communication and computation costs increase with the
length of SIGuard’s input under the inner loop = 10 and
19, respectively. With iteration times set to 3× 10, all inputs
with lengths up to 400 have execution times under 10 seconds.
Also, when the iteration times increase to 3 × 19, SIGuard
still can process 200 inputs within 10 seconds.

Figure 8 illustrates SIGuard’s breakdown costs. It shows
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Fig. 7: Total running time (left) and bandwidth cost (right) with
different input lengths under optimized inner loop settings.
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Fig. 8: Breakdown of SIGuard’s secure protocols.

the non-linear computations of inverse square root and softmax
dominate the execution time.
WAN setting. Table VI evaluates the total time (s) and
bandwidth cost (MB) of SIGuard with the iteration of 3× 10
and 3× 19. Given the bottleneck for MPC protocols is com-
munication/interaction, the end-to-end latency is increased. For
instance, with an input length of 8 and 3 × 10 iterations, the
total running time increased from approximately 1 second in
the LAN setting to about 114 seconds in the WAN setting. We
recommend SIGuard deploying with dedicated networking or
cloud data centre networking for low latency.
Feasibility study. Figure 9 and Figure 10 show the time
cost ratio for SIGuard in both LAN and WAN settings
during secure inference of practical neural networks, using
3 × 10 iterations with an input length of 10. The overall
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TABLE VI: Total running time (seconds) and bandwidth cost
(MB) of SIGuard over Z264 with WAN setting.

Iteration Cost CH-MINIST CIFAR-10 Location30 CIFAR-100

3× 10
Time(s) 113.97 126.43 186.89 418.61

Bandwidth (MB) 4.45 5.17 17.05 129.90

3× 19
Time(s) 209.65 225.86 352.57 768.77

Bandwidth (MB) 8.15 9.48 31.79 245.11
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secure inference includes the time for SIGuard. In the LAN
setting, except LeNet and ResNet18, all the execution time
of SIGuard only accounts for less than 27% of the overall
secure inference cost. In the WAN setting, except LeNet, FCN,
and MobilenetV1, all the execution time of SIGuard only
accounts for less than 16% of the overall secure inference cost.
Compared to the WAN and LAN settings, their ratios decrease
by 9.00% to 18.62% across most neural network architectures,
including AlexNet, the VGG series, and the ResNet series,
demonstrating that SIGuard is scalable.
Comparison to prior art (defend MIAs in training). We
train our target model using standard plaintext training for
200 epochs, then train the models with HAMP and DP-SGD
for an extended period (600 epochs), stopping only if their
inference accuracy gap is within 1% of the plaintext accuracy.
Table VII and Table VIII illustrate that, given sufficient data,
it is possible to train the target model to achieve equivalent

TABLE VII: Training overhead of HAMP and DP-SGD under
different training sample sizes in maintaining the equivalent
performance of standard plaintext training on CIFAR-10.

Plaintext HAMP DP-SGD
# data Acc Time (s) Acc Time (s) Acc Time (s)

5000 71.77% 599 57.56% 4971 37.96% 7868
10000 81.17% 1371 71.18% 8908 45.22% 13180
15000 85.24% 2058 80.83% 11814 47.99% 18565
20000 87.29% 2743 85.42% 15108 50.26% 24091
25000 88.58% 3464 87.59% 3595 52.97% 29188
30000 90.29% 4047 89.30% 4260 52.27% 34397
35000 90.86% 4798 90.06% 4657 54.62% 44377
40000 91.65% 4656 90.99% 4554 57.70% 45161

TABLE VIII: Training overhead of HAMP and DP-SGD under
different training sample sizes in maintaining the equivalent
performance of standard plaintext training on CIFAR-100.

Plaintext HAMP DP-SGD
# data Acc Time (s) Acc Time (s) Acc Time (s)

5000 31.86% 596 28.16% 4893 7.82% 7850
10000 47.00% 1333 43.86% 8740 10.37% 13100
15000 53.85% 2023 52.95% 2272 11.41% 18512
20000 59.62% 2763 59.18% 2904 13.84% 24042
25000 62.80% 3433 61.85% 2356 14.99% 14212
30000 65.58% 1968 64.92% 1281 14.59% 16837
35000 67.24% 2344 66.65% 1502 16.37% 24263
40000 68.14% 2703 68.08% 1662 16.56% 27750

TABLE IX: Comparison of model utility, attack performance,
and training overhead under SIGuard, HAMP, and DP-SGD
in training with fixed epoch numbers {150, 100, 150}.

Evaluation CIFAR-10 CINIC-10 CIFAR-100

Train Size 33000 33000 33000

Test Size 9000 27000 9000

Plaintext
Train Acc 99.33% 84.85% 96.83%
Test Acc 88.73% 77.04% 62.18%
Time (s) 3716.89 7387.98 3717.03

HAMP
Train Acc 96.60% (↓ 2.73%) 82.34% (↓ 2.51%) 93.50% (↓ 3.33%)
Test Acc 83.59% (↓ 5.14%) 75.80% (↓ 1.24%) 59.99% (↓ 2.19%)
Time (s) 4073.88 (↑ 356.99) 8088.20 (↑ 700.22) 4083.21 (↑ 366.18)

DP-SGD
Train Acc 44.90% (↓ 54.43%) 42.53% (↓ 42.32%) 10.33% (↓ 86.50%)
Test Acc 44.36% (↓ 39.23%) 42.08% (↓ 34.96%) 10.31% (↓ 51.87%)
Time (s) 9569.26 (↑ 5849.37) 19114.76 (↑ 11724.78) 9477.32 (↑ 5760.29)

performance of normal plaintext training. However, when
the dataset size is small, the trained model tends to exhibit
degraded performance. For example, Table VII shows that
when the data samples are decreased from 25000 to 5000, the
gap between HAMP and plaintext normal training is enlarged
from 0.99% to 14.21%. Then, we set our training set with a
sufficiently large dataset and used different training algorithms
to train the target model with fixed epochs. Table IX still shows
that using HAMP and DP-SGD training algorithms can lower
the model’s inference accuracy on the test dataset.

VIII. DISCUSSION

A. Different security definitions

We emphasize that MemGuard and SIGuard are based on
fundamentally different security definitions.
MemGuard [21]. MemGuard is tailored to reduce the ad-
versaries’ membership advantage, rendering their membership
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inference accuracy down to nearly 50%. In functionality,
MemGuard generates noise vectors to perturb the outputs
of confidence vectors, which fools the simulated member-
ship classifier. The inherent reason for fooling a simulated
membership classifier to help defend against real-world MIA
adversaries is the use of the transferability of the adversarial
examples [43]. However, there is limited theoretical analysis
explaining why MemGuard works; most of its success is
attributed to the empirical results [19].
SIGuard. The trust models of SIGuard and MemGuard differ
significantly. MemGuard relies on a single trusted and honest
party, ensuring that no privacy concerns arise during compu-
tation. In contrast, SIGuard operates across three independent
parties, using a distributed trust model. An important security
goal of SIGuard is to ensure that the parties running the
protocols do not learn anything about the model owner’s model
parameters and the users’ input data in the computation.

B. Defense MIAs in secure inference

We emphasize that defending against MIAs in secure infer-
ence is a new challenge. To defend plaintext MLaaS against
MIAs, existing solutions rely on plaintext computation during
training and inference. When defending secure inference as a
service against MIAs, defense mechanisms used for plaintext
inference require additional design, while training-stage de-
fenses can be naturally integrated. However, when the model
training takes place in an encrypted domain, it is impossible
to directly apply plaintext defenses during training. In such
scenarios, new solutions are needed to defend against MIAs
in secure computation, which is the focus of SIGuard.

C. Adaptive attacks

An MIA adversary compromising a server potentially pro-
vides it with insights into the defense mechanism. As a result,
the adversary may attempt to repeatedly interact with the
server, submitting the same sample to test for membership
multiple times to the server. SIGuard is designed to defend
against such adaptive attacks. For repeated identical inputs,
the perturbed output confidence vector remains stable, and
the number of iterations for both member and non-member
data is fixed during perturbation generation, ensuring no ad-
ditional information leakage. Additionally, SIGuard securely
implements MemGuard, which also accounts for adaptive
attacks, reducing the adversary’s inference accuracy to that
of random guessing. Even if the adversary attempts to adjust
its prediction, the MIA success rate remains close to 50%.

D. Viability of SIGuard

Perturbed confidence vector to defense MIAs. Studies
of black-box MIAs place significant emphasis on analyzing
confidence vectors. On the one hand, providing confidence
vectors as final outputs is a common practice in MLaaS
platforms, largely due to concerns of quality control [44].
When users question the predicted labels, confidence vectors
can help determine whether to accept the prediction or flag
it for human review. For instance, if the final predicted label

does not align with the user’s expectations, but their expected
result is ranked second highest in confidence vectors, the
user may still consider the prediction as a useful reference.
Only returning a label might not be sufficient for applications
with critical requirements on accuracy and analysis. On the
other hand, recent studies have shown that confidence vectors
are closely linked to the risk of MIAs [32], [33]. The work
theoretically shows that the optimal membership inference
for each data sample from the training distribution can be
derived by evaluating its loss, which is computed from the
confidence vectors. Therefore, in secure inference, we should
place equivalent emphasis on protecting these vectors.
Non-colluding three servers. Note that the semi-honest as-
sumption with only one corrupted server is realistic, as cloud-
based MLaaS providers won’t risk their business model and
reputation to behave maliciously and deploy competent full-
fledged intrusion detection [16]. Non-colluding cloud servers
are used in practice (e.g., Facebook’s Crypten, Cape’s TF-
Encrypted, and Mozilla Telemetry), with three servers de-
ployed across clouds in separate trust domains.

E. The limitation of SIGuard
We acknowledge the existence of other privacy attacks, such

as attribute inference attack [45], model extraction attack [46],
data reconstruction attack [47], and property inference at-
tack [48]. These attacks can be similarly risky in secure infer-
ence. However, SIGuard is only designed to defend against
membership inference attacks, consequently, SIGuard can not
mitigate these other types of privacy attacks. To the best of
our knowledge, balancing the mitigation of various privacy
attacks is challenging, and few studies have comprehensively
addressed this. Effective defense against these privacy attacks
should build upon the progress made in existing mitigation
efforts. Furthermore, since the perturbations in SIGuard are
applied to confidence vectors rather than actual predictions, we
acknowledge the existence of label-only MIAs [49]; however,
these are beyond the scope of this study.

IX. RELATED WORK

A. Privacy-preserving machine learning

Privacy-preserving Machine Learning (PPML) aims to en-
able encrypted computation over encrypted machine learning
models and encrypted data. In essence, PPML protocols are
designed to perform linear (e.g., multiplication and addition)
and nonlinear (e.g., exponential and comparison) operations in
the encrypted domain. In the literature, PPML is designed to
support a wide range of machine learning model on inference
and/or training, e.g., DNN [3], [22], [34], [37], [50], [51], [52],
[53], [54], GNN [55], and Transformers [56], [57].

Most efficient PPML protocols are constructed using secure
multi-party computation (MPC) techniques, which can be
categorized under party settings. The two-party computation
starts at the beginning of MPC-based PPML. The first MPC-
based PPML work, CryptoNets [50], utilizes Fully Homomor-
phic Encryption (FHE) to perform addition and multiplica-
tion. For non-linear functions, CryptoNets adopts polynomial
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approximation to facilitate secure evaluation. SecureML [22]
replaces FHE with additive secret sharing for efficiently
computing addition and multiplication and utilizes Garbled
Circuits (GC) to securely compute non-linear functions such as
ReLU. However, it requires the generation of Beaver’s triplets
(extra communication due to Oblivious Transfer) before each
multiplication operation.

For 3PC protocols, ABY3 [2] employs Replicated Secret
Sharing [26] (RSS) to perform multiplications, thereby elimi-
nating the need to generate Beaver’s triplets and improving ef-
ficiency by reducing one round of communication (55K times
faster then SecureML compared in secure machine learning
training). Furthermore, ABY3 [2] supports hybrid operations
by facilitating conversions between Arithmetic Secret Sharing,
Boolean Secret Sharing, and GC. SecureNN [51], a three-
party framework, relies solely on secret sharing, significantly
enhancing efficiency. Beside the work mentioned above, con-
siderable efforts [4], [23], [24], [52] have been made to
perform various machine learning tasks.

On the other hand, the four-party computation protocols are
proposed [58], [59], [60]. As the number of parties involved
in the computation increases, the computational cost generally
decreases, although the communication cost tends to rise.
Furthermore, the system’s resilience to adversaries increases.
For instance, if two parties are corrupted by adversaries, the
remaining two parties can still complete the computation using
two-party computation protocols.

B. Output privacy in secure inference

Output privacy refers to any privacy leakage arising from
the output of the PPML framework. In our work, we specifi-
cally focus on privacy leakage exploited by machine learning
attacks, which are membership inference attacks (MIAs). The
issue of output privacy was identified in previous studies.
Delphi [3] noted that most MPC-based PPML systems cannot
conceal information that is eventually disclosed. Namely, the
adversary who controls a client can learn the output (label,
confidence vector) of a PPML inference protocol and perform
MIAs, just like launching MIAs in the plaintext inference
scenario. However, there are only a few studies addressing
output privacy for PPML. To mitigate this risk, Ruan et al. [15]
propose sophisticated machine learning training techniques
using Differential Privacy. However, DP will bring utility loss
which has been well known.

C. Membership inference attack and defense

MIAs aim to determine whether a specific data record
belongs to the target model’s training dataset. Shokri et al. [6]
propose the first MIA against ML models. After that, one
line of work focuses on investigating MIAs over various
attack settings, e.g., white-box access [32], [33], black-box
access [11], [12], and label-only access [49]. Another line
of work attempts to adapt MIAs to diverse ML models, e.g.,
graph neural networks [61], [62], generative models [63], and
recommendation systems [64]. To mitigate MIAs, existing so-
lutions can be categorized into provable defenses and practical

defenses [19], [20]. Provable defenses leverage Differential
Privacy [17] to inject carefully crafted noise for obscuring
the gradient information during training. However, such an
approach often results in reduced model accuracy [17]. Prac-
tical defenses sophisticated advanced training algorithms [9],
[18], [19], [20] or introduce carefully crafted noise to inference
results [21], effectively defending against MIAs in empirical
studies. Compared to defending against MIAs during training,
defending against MIAs during inference [21] is more efficient
and can be easily implemented without the need for time-
consuming retraining. However, those defenses are focused
on the inference in plaintext, and cannot be applied to PPML
protocols for secure inference.

X. CONCLUSION

We propose SIGuard, a secure protocol to defend MIAs
against secure inference. SIGuard secretly generates noise
vectors and adds them to the model’s outputs in the encrypted
domain without compromising the accuracy of secure infer-
ence. We comprehensively evaluate SIGuard across five real-
world datasets and various MIAs, selecting optimal hyper-
parameters for efficiency and defense effectiveness. Results
show SIGuard is practical, cost-effective, and successfully
safeguards secure inference.

ACKNOWLEDGMENTS

The authors would like to thank all the anonymous review-
ers and the shepherd for their invaluable comments. This work
is supported in part by Australian Research Council (ARC)
Discovery Projects (DP190102835 and DP220102803) and
Linkage Project (LP220200649).

REFERENCES

[1] “Cloud vision api, features list,” https://cloud.google.com/vision/docs/
features-list, accessed: 2024-09-06.

[2] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for
machine learning,” in CCS, 2018.

[3] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security, 2020.

[4] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” PoPETs, 2021.

[5] C. Dong, J. Weng, J. Liu, Y. Zhang, Y. Tong, A. Yang, Y. Cheng, and
S. Hu, “Fusion: Efficient and secure inference resilient to malicious
servers,” in NDSS, 2022.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in S&P, 2017.

[7] H. Yu, K. Yang, T. Zhang, Y.-Y. Tsai, T.-Y. Ho, and Y. Jin, “Cloudleak:
Large-scale deep learning models stealing through adversarial exam-
ples,” in NDSS, 2020.

[8] S. Mehnaz, S. V. Dibbo, E. Kabir, N. Li, and E. Bertino, “Are your
sensitive attributes private? novel model inversion attribute inference
attacks on classification models,” in USENIX Security, 2022.

[9] M. Nasr, R. Shokri, and A. Houmansadr, “Machine learning with
membership privacy using adversarial regularization,” in CCS, 2018.

[10] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“Ml-leaks: Model and data independent membership inference attacks
and defenses on machine learning models,” in NDSS, 2019.

[11] J. Ye, A. Maddi, S. K. Murakonda, V. Bindschaedler, and R. Shokri, “En-
hanced membership inference attacks against machine learning models,”
in CCS, 2022.

[12] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer,
“Membership inference attacks from first principles,” in S&P, 2022.

16

https://cloud.google.com/vision/docs/features-list
https://cloud.google.com/vision/docs/features-list


[13] O. Goldreich, Foundations of cryptography: volume 2, basic applica-
tions. Cambridge university press, 2009.

[14] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in CRYPTO,
2000.

[15] W. Ruan, M. Xu, W. Fang, L. Wang, L. Wang, and W. Han, “Private,
efficient, and accurate: Protecting models trained by multi-party learning
with differential privacy,” in S&P, 2023.

[16] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “Muse: Secure
inference resilient to malicious clients,” in USENIX Security, 2021.

[17] M. Abadi, A. Chu, I. Goodfellow, B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in CCS, 2016.

[18] L. Song and P. Mittal, “Systematic evaluation of privacy risks of machine
learning models,” in USENIX Security, 2021.

[19] X. Tang, S. Mahloujifar, L. Song, V. Shejwalkar, M. Nasr,
A. Houmansadr, and P. Mitta, “Mitigating membership inference attacks
by Self-Distillation through a novel ensemble architecture,” in USENIX
Security, 2022.

[20] Z. Chen and K. Pattabiraman, “Overconfidence is a dangerous thing:
Mitigating membership inference attacks by enforcing less confident
prediction,” in NDSS, 2024.

[21] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Memguard: De-
fending against black-box membership inference attacks via adversarial
examples,” in CCS, 2019.

[22] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in S&P, 2017.

[23] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “Crypten: Secure multi-party computation meets
machine learning,” in NeurIPS, 2021.

[24] J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU platform for
secure computation,” in USENIX Security, 2022.

[25] A. Aly and N. P. Smart, “Benchmarking privacy preserving scientific
operations,” in ACNS, 2019.

[26] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-
throughput semi-honest secure three-party computation with an honest
majority,” in CCS, 2016.

[27] M. Keller and K. Sun, “Secure quantized training for deep learning,” in
ICML, 2022.

[28] “Project innereye – democratizing medical imaging ai,” https://
www.microsoft.com/en-us/research/project/medical-image-analysis/, ac-
cessed: 2024-08-10.

[29] Y. Lindell, “How to simulate it–a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich, 2017.

[30] Catrina, Octavian, and A. Saxena, “Secure computation with fixed-point
numbers,” in FC, 2010.

[31] W. jie Lu, Y. Fang, Z. Huang, C. Hong, C. Chen, H. Qu, Y. Zhou,
and K. Ren, “Faster secure multiparty computation of adaptive gradient
descent,” in PPMLP, 2020.

[32] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning,” in S&P, 2018.

[33] A. Sablayrolles, M. Douze, Y. Ollivier, C. Schmid, and H. Jégou,
“White-box vs black-box: Bayes optimal strategies for membership
inference,” in ICML, 2019.

[34] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the gpu,” in S&P, 2021.

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[36] “Colorectal histology mnist,” https://www.kaggle.com/datasets/kmader/
colorectal-histology-mnist, accessed: 2024-07-08.

[37] N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and A. Gascón, “Quotient:
Two-party secure neural network training and prediction,” in CCS, 2019.

[38] O. Catrina and S. de Hoogh, “Improved primitives for secure multiparty
integer computation,” in Security and Cryptography for Networks, 2010.

[39] E. Kiltz, “Unconditionally secure constant-rounds multi-party computa-
tion for equality, comparison, bits and exponentiation,” TCC, 2006.

[40] G. Asharov, K. Hamada, D. Ikarashi, R. Kikuchi, A. Nof, B. Pinkas,
K. Takahashi, and J. Tomida, “Efficient secure three-party sorting with
applications to data analysis and heavy hitters,” in CCS, 2022.

[41] J. D. Nielsen and M. I. Schwartzbach, “A domain-specific programming
language for secure multiparty computation,” in PLAS, 2007.

[42] M. Keller, “Mp-spdz: A versatile framework for multi-party computa-
tion,” in CCS, 2020.

[43] S. Ma, Y. Liu, G. Tao, W.-C. Lee, and X. Zhang, “Nic: Detecting
adversarial samples with neural network invariant checking,” in NDSS,
2019.

[44] “Interpret and improve model accuracy and analysis confidence
scores,” https://learn.microsoft.com/en-us/azure/ai-services/
document-intelligence/concept-accuracy-confidence?view=doc-intel-4.
0.0, accessed: 2024-04-10.

[45] B. Jayaraman and D. Evans, “Are attribute inference attacks just impu-
tation?” in CCS, 2022.

[46] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot,
“High accuracy and high fidelity extraction of neural networks,” in
USENIX Security, 2020.

[47] B. Balle, G. Cherubin, and J. Hayes, “Reconstructing training data with
informed adversaries,” in S&P, 2022.

[48] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permutation
invariant representations,” in CCS, 2018.

[49] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-
only membership inference attacks,” in ICML, 2021.

[50] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in ICML, 2016.

[51] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure
computation for neural network training,” PoPETs, 2018.

[52] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in S&P, 2020.

[53] X. Liu, Y. Zheng, X. Yuan, and X. Yi, “Medisc: Towards secure and
lightweight deep learning as a medical diagnostic service,” in ESORICS,
2021.

[54] ——, “Securely outsourcing neural network inference to the cloud with
lightweight techniques,” TDSC, 2022.

[55] Z. Xu, S. Lai, X. Liu, A. Abuadbba, X. Yuan, and X. Yi, “Oblivgnn:
Oblivious inference on transductive and inductive graph neural network,”
in USENIX Security, 2024.

[56] K. Gupta, N. Jawalkar, A. Mukherjee, N. Chandran, D. Gupta, A. Pan-
war, and R. Sharma, “Sigma: Secure gpt inference with function secret
sharing,” PoPETs, 2024.
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APPENDIX A
AN ILLUSTRATION OF MEMGUARD

The input of Algorithm 1 includes: z⃗, h, max iter (max-
imum iterations), c1, c2, c3 (c1, c2 remains as constants), and
β (optimization learning rate). Then, it outputs a vector e⃗′,
which is utilized to store the feasible solution of e⃗ (Step 17,
Algorithm 1) through optimization. In Steps 9-11, Algorithm 1
iteratively optimizes the noise vector e⃗ along the direction of
minimizing the loss L. In Steps 8 & 14, Algorithm 1 checks
whether the noise vector e⃗ is validated based on two rules: 1)
the noise vector should change the h’s prediction (the switch
of the h’s prediction implies the prediction should be close
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TABLE X: Attack performance in PPML w/o SIGuard under different datasets and softmax approximations.

Dataset Group SIGuard with SecureML SIGuard with CrypTen SIGuard with Piranha SIGuard with AS19 (final selection)

NN-M conf entr Mentr LiRA NN-M conf entr Mentr LiRA NN-M conf entr Mentr LiRA NN-M conf entr Mentr LiRA

CIFAR-10
PPML 51.68 56.95 50.11 57.56 86.56 57.26 58.56 56.71 58.68 61.58 55.75 59.11 55.80 59.08 26.88 57.51 58.81 57.15 59.10 60.76

SIGuard 51.36 57.10 50.08 57.46 86.41 54.61 58.10 53.63 58.26 46.66 55.70 59.06 55.78 59.03 26.85 51.03 58.31 52.83 58.06 42.06
∆ ↓ 0.32 ↑ 0.15 ↓ 0.03 ↓ 0.10 ↓ 0.15 ↓ 2.65 ↓ 0.46 ↓ 3.08 ↓ 0.42 ↓ 14.92 ↓ 0.05 ↓ 0.05 ↓ 0.02 ↓ 0.05 ↓ 0.03 ↓ 6.48 ↓ 0.50 ↓ 4.32 ↓ 1.04 ↓ 18.70

CIFAR-100
PPML 53.00 65.88 52.15 66.20 90.90 71.43 77.20 73.65 77.36 82.58 68.01 75.68 67.81 75.73 60.40 69.78 74.30 66.40 74.31 82.30

SIGuard 53.00 65.88 52.15 66.20 90.88 51.85 61.50 52.63 60.08 64.91 59.00 73.81 60.91 73.85 58.46 51.88 69.78 54.88 69.01 64.85
∆ ↓ 0.00 ↓ 0.00 ↓ 0.00 ↓ 0.00 ↓ 0.02 ↓ 19.58 ↓ 15.70 ↓ 21.02 ↓ 17.28 ↓ 17.67 ↓ 9.01 ↓ 1.87 ↓ 6.90 ↓ 1.88 ↓ 1.94 ↓ 17.90 ↓ 4.52 ↓ 11.52 ↓ 5.30 ↓ 17.45

CH-MNIST
PPML 74.70 69.25 58.20 71.90 64.10 77.75 77.60 76.70 76.80 69.05 65.00 67.75 66.35 67.75 35.35 76.95 72.10 70.50 71.50 69.60

SIGuard 56.15 60.00 48.85 60.65 55.40 48.35 53.30 52.35 53.05 56.50 55.45 64.10 57.10 64.05 34.85 50.90 54.60 48.90 55.65 61.65
∆ ↓ 18.55 ↓ 9.25 ↓ 9.35 ↓ 11.25 ↓ 8.70 ↓ 29.40 ↓ 24.30 ↓ 24.35 ↓ 23.75 ↓ 12.55 ↓ 9.55 ↓ 3.65 ↓ 9.25 ↓ 3.70 ↓ 0.50 ↓ 26.05 ↓ 17.50 ↓ 21.60 ↓ 15.85 ↓ 7.95

Location30
PPML 88.66 86.53 67.26 87.06 72.80 99.06 92.53 92.73 92.13 72.06 81.93 86.40 82.00 86.40 54.13 98.93 92.40 92.40 92.86 71.73

SIGuard 69.86 66.13 39.66 67.26 71.66 50.26 50.00 50.00 50.00 70.33 72.00 82.33 73.00 82.33 52.73 51.86 50.00 50.00 50.00 70.66
∆ ↓ 18.80 ↓ 20.40 ↓ 27.60 ↓ 19.80 ↓ 1.14 ↓ 48.80 ↓ 42.53 ↓ 42.73 ↓ 42.13 ↓ 1.73 ↓ 9.93 ↓ 4.07 ↓ 9.00 ↓ 4.07 ↓ 1.40 ↓ 47.07 ↓ 42.40 ↓ 42.40 ↓ 42.86 ↓ 1.07

Texas100
PPML 54.58 75.58 58.63 75.80 73.06 77.23 76.50 73.61 76.73 74.38 77.00 81.23 76.80 81.25 53.88 78.36 76.61 72.88 76.56 73.28

SIGuard 53.98 70.78 57.78 71.03 65.76 47.75 60.16 54.38 59.45 73.53 63.10 76.30 65.88 76.28 50.70 50.78 58.46 52.95 58.36 71.31
∆ ↓ 0.60 ↓ 4.80 ↓ 0.85 ↓ 4.77 ↓ 7.30 ↓ 29.48 ↓ 16.34 ↓ 19.23 ↓ 17.28 ↓ 0.85 ↓ 13.90 ↓ 4.93 ↓ 10.92 ↓ 4.97 ↓ 3.18 ↓ 27.58 ↓ 18.15 ↓ 19.93 ↓ 18.20 ↓ 1.97

Protocol 4: Secure Softmax Differentiation ΠDSoftmax

Input: Parties hold confidence vector ⟨s⃗⟩ ∈ Zn×1
2ℓ

.
Output: Parties hold Jacobian matrix ⟨J⟩ ∈ Zn×n

2ℓ
, where

each entry of J [i][j] = ∂s⃗[i]
∂z⃗[j] .

1: ⟨J⟩ ← ΠShr(⟨0⟩), where J ∈ Rn×n.
2: for i ∈ {0, · · · , n− 1} do
3: for j ∈ {0, · · · , n− 1} do
4: ⟨J [i][j]⟩ ← ⟨s⃗[i]⟩ · (δij − ⟨ ⃗s[j]⟩).
5: end for
6: end for
7: return ⟨J⟩.

to 50%). 2) the noise vector should not change the target
model’s final predicted label. In Step 18, once a validated noise
vector e⃗ is found, Algorithm 1 proportionally increases c3 and
subsequently starts a new round of optimization. Finally, if the
current optimization does not find a more suitable noise vector
with the new increased c3, the algorithm returns at Step 14.

APPENDIX B
BUILDING BLOCKS

Protocol 4. ΠDSoftmax secretly computes the derivative of
softmax function. At the beginning, parties confidence vector
⟨s⃗⟩ ∈ Zn×1

2ℓ
. In Step 3, parties input the share of the Jacobian

matrix with all zeros. In Step 6, for each element of ⟨J [i][j]⟩,
parties update its value with ⟨s⃗[i]⟩ · (δij − ⟨ ⃗s[j]⟩), where δij
denotes as the Kronecker delta function. In Step 9, parties
output ⟨J⟩.
Protocol 5. ΠForward secretly computes the forward pass of
h, an L-layer fully-connected neural network. First, parties
hold the linear layer’s parameters of {⟨W i⟩}L−1

0 and ⟨x⃗⟩. In
Step 3, parties set ⟨x⃗⟩ as ⟨a⃗0⟩, where a⃗i will represent the
intermediate output from the ReLU function of the i-th linear
layer. In Step 5, for each linear layer, parties secretly compute
the multiplication of the model parameters with ⟨a⃗i⟩. In Step
6, parties invoke ΠReLU on ⟨⃗ai⟩ and get ⟨⃗ai⟩, ⟨g⃗i⟩. In Step 8,
parties secretly compute ⟨⃗aL−1⟩, which is the last linear layer’s
output. In Step 9, parties output {⟨g⃗i⟩}L−2

0 and ⟨⃗aL−1⟩.

Protocol 5: Secure Forward Pass [37] ΠForward

Input: Parties hold neural network h with its weights
{⟨W i⟩}L−1

0 and ⟨x⃗⟩.
Output: Parties hold intermediate gradients of the ReLU
function {⟨g⃗i⟩}L−2

0 and ⟨y⟩, where y = h(x⃗).
1: ⟨⃗a0⟩ ← ⟨x⃗⟩.
2: for i ∈ {0, · · · , L− 2} do
3: ⟨⃗ai⟩ ← ⟨W i⟩ · ⟨⃗ai⟩.
4: ⟨⃗ai⟩, ⟨g⃗i⟩ ← ΠReLU(⟨⃗ai⟩).
5: end for
6: ⟨⃗aL−1⟩ ← ⟨WL−1⟩ · ⟨⃗aL−1⟩.
7: return {⟨g⃗0⟩, · · · , ⟨g⃗L−2⟩}, ⟨y⟩ ← ⟨⃗aL−1⟩.

Protocol 6: Secure Backward Pass [37] ΠBackward

Input: Parties hold neural network h with its weights
{⟨W i⟩}L−1

0 , the intermediate gradients {⟨g⃗′i⟩}L−2
0 from

the each ReLU function, and ⟨y⃗⟩, where y = h(x⃗).
Output: Parties hold share of ⟨g⃗⟩, where g⃗ = ∂h(x⃗)

∂x⃗ .
1: ⟨g⃗⟩ ← ⟨WL−1⟩.
2: for i ∈ {L− 2, · · · , 0} do
3: ⟨g⃗⟩ ← ⟨g⃗′i⟩ ◦ ⟨g⃗⟩.
4: ⟨g⃗⟩ ← ⟨W i⟩ · ⟨g⃗⟩.
5: end for
6: return ⟨g⃗⟩.

Protocol 6. ΠBackward secretly computes the backward pass
of h, an L-layer fully-connected neural network. At the
beginning, the linear layer’s parameters of {⟨W i⟩}L−1

0 and the
ReLU layers’ derivatives {⟨g⃗′i⟩}L−2

0 that behind each linear
layer. As the last layer does not have a linear layer, the number
of g⃗′i is L− 1. In Step 3, parties set the derivative ⟨g⃗⟩ as the
last layer’s weights ⟨WL−1⟩. In Step 5, for each layer except
the last, parties compute ⟨g⃗′i⟩ ◦ ⟨g⃗⟩, where ◦ represents the
element-wise multiplication. In Step 6, parties secret compute
⟨W i⟩ · ⟨g⃗⟩. In Step 8, parties output ⟨g⃗⟩, such that g⃗ = ∂h(x⃗)

∂x⃗ .
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