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Abstract—Since their emergence in 2018, speculative execution
attacks have proven difficult to fully prevent without substantial
performance overhead. This is because most mitigations hurt
modern processors’ speculative nature, which is essential to many
optimization techniques. To address this, numerous scanners have
been developed to identify vulnerable code snippets (speculative
gadgets) within software applications, allowing mitigations to be
applied selectively and thereby minimizing performance degra-
dation.

In this paper, we show that existing speculative gadget scan-
ners lack accuracy, often misclassifying gadgets due to limited
modeling of timing properties. Instead, we identify another
fundamental condition intrinsic to all speculative attacks—the
timing requirement as a race condition inside the gadget. Specif-
ically, the attacker must optimize the race condition between
speculated authorization and secret leakage to successfully exploit
the gadget. Therefore, we introduce GadgetMeter, a framework
designed to quantitatively gauge the exploitability of speculative
gadgets based on their timing property. We systematically explore
the attacker’s power to optimize the race condition inside gadgets
(windowing power). A Directed Acyclic Instruction Graph is
used to model timing conditions, and static analysis and runtime
testing are combined to optimize attack patterns and quantify
gadget vulnerability. We use GadgetMeter to evaluate gadgets in
a wide range of software, including six real-world applications
and the Linux kernel. Our result shows that GadgetMeter can
accurately identify exploitable speculative gadgets and quantify
their vulnerability level, identifying 471 gadgets reported by state-
of-the-art works as unexploitable.

I. INTRODUCTION

Speculative execution attacks have emerged as a prevailing
security concern since 2018 [9], [13], [17], [18], [25], [32],
[35], [37], [39], [43], [46], [52], [55], [56], [60], [61], and their
mitigation poses an intricate challenge for modern processors.
These attacks take advantage of the speculative nature of
modern processors, e.g., conditional and indirect branch pre-
dictions, which is a fundamental principle to many optimiza-
tion techniques. This widespread adoption implies that a wide
spectrum of processors across multiple manufacturers are at

potential risk [35]. The menace of speculative attacks extends
across platforms, threatening various devices from servers and
mobile phones to embedded systems [12]. The situation is
further complicated by the frequent emergence of new variants,
empowering malicious entities to extract sensitive information
like passwords directly from the hardware [26]. Further-
more, efficacious mitigation solutions often compromise CPU
performance, introducing significant practical implementation
overhead [37], [60], e.g., as of September 2022, ESXi VM1

performance has seen a decline of up to 70% due to Intel’s
Retbleed mitigation measures [2], [60].

As described in studies [14], [23], [51], [66], speculative
execution attacks have three key phases. First, during the
initial setup phase, the attacker configures architectural and
microarchitectural states to ensure the victim program executes
transiently in a controlled manner. For instance, in a Spectre-
V1 attack [35], the attacker trains the branch predictor to
mispredict the target branch and flushes the victim’s boundary
value from the cache to expand the speculation window.
Second, during the transient execution phase, the victim code
executes transiently, and while architectural state changes are
rolled back at misspeculation, microarchitectural state changes
remain. Therefore, any secret-dependent traces can act as
covert channels to leak data. Finally, in the decoding phase, the
attacker retrieves the secret data from these covert channels.
Speculative Gadget. While the setup and decoding phases
can be achieved with the execution of attacker code, the
transient execution phase must be performed by some victim
code, which we call a speculative gadget. For a victim code
snippet (gadget) to be qualified as a speculative gadget, it must
satisfy several requirements so that the attacker can mount
a speculative execution attack on it. We summarize these
requirements into two root conditions of speculative gadgets
as described below:

• Information flow condition: On the misspeculation of a
set of instructions, there exists a propagation datapath on
the transient execution path which empowers the attacker
to control the victim’s execution to access a secret and
leak it transiently through a covert channel. We refer to

1VMware ESXi is an enterprise-class, type-1 hypervisor developed by
VMware for deploying and serving virtual computers [30].
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Fig. 1: Race condition between the resolution of authorization
instructions and leakage instructions in speculative execution
attacks (SEA). Each edge represents a happens-before rela-
tionship between two attack events, and the label is the cause.
For a gadget to be exploitable, the attacker must optimize the
race condition to ensure secret data is transmitted before the
authorizations are resolved and misspeculations are handled.

the instructions that are misspeculated inadvertently as
the authorization instructions. We refer to the instructions
that leak secret transiently as the leakage instructions. For
example, in Proof-of-Concept (PoC) Spectre-V1, a specu-
lative gadget must contain a branch instruction where the
misprediction will lead to an attacker-controlled memory
access to secret data.

• Timing condition: The gadget should have instructions
arranged in a way that the attacker can optimize the race
condition between authorization and leakage instructions.
As shown in Figure 1, to successfully exploit a gadget,
the attacker must force the leakage instructions to execute
before the resolution of misspeculated authorizations.
Otherwise, the leakage instructions will be squashed
before leaking any secrets, making the attack fail.

Gadget Detection Challenges. Extensive research [28], [33],
[42], [48], [50], [57] has focused on scanning for speculative
gadgets within programs to mitigate speculative execution
attacks. Unfortunately, existing gadget scanners have limited
soundness as they often report gadgets that are hard to exploit.
There are mainly two reasons.

First, they limit their focus on the information flow property
of gadgets but ignore the timing property. Existing scanners
apply a wide range of techniques to achieve accurate and
scalable detection of vulnerable transient information flow
within a victim application [16]. However, most of them do
not accurately model the timing property of gadgets. Instead,
they consider a gadget to satisfy the timing condition as
long as the misspeculated authorization instructions and the
transient leakage instructions can fit into the Re-Order Buffer
(ROB). This modeling, as demonstrated in Listing 1, over-
approximates the exploitability of gadgets, leading to false
positives.

Second, some gadget scanners try to model the timing con-
dition but are limited in scope. For example, SpecCheck [42]
is capable of modeling the length of the speculation window
in the cycle-accurate processor simulator Gem5, but it fails
to model an attacker optimizing the race condition. Some

1 x = user_input(); { // Injects values
2 if (x < 16) { // Misp. branch
3 y=array1[x]; // Accesses secret
4 z=array2[512*y];} // Leaks secret

Listing 1: Gadget misclassified as vulnerable by SpecFuzz
[48], Spectaint [50], and Kasper [33]. Different from classical
Spectre-V1 proof-of-concept code, with the condition bound
to be a constant number, the conditional branch at line 2
will be resolved shortly after x becomes available, while the
disclosure gadget at lines 3 and 4 is data dependent on x and
takes longer to execute. Therefore, the speculative execution
will be terminated well before the disclosure gadget leaks the
secret.

other works [20], [29], [63] consider a memory-dependent
branch as necessary for a gadget to be exploitable, which
is untrue as demonstrated in Listing 2d. The reason behind
these design failures lies in a lack of study on the windowing
power, which we defined as the attacker’s power to optimize
the race condition in gadgets. So far, most attacks simply force
a cache miss on the direct data dependency of authorization
instructions, such as the boundary value in Spectre-PHT and
the jump target address in Spectre-BTB. There is a limited
understanding of what makes a gadget exploitable on the
scanner side.
GadgetMeter Design. In this paper, we propose GadgetMeter,
a novel framework to quantitatively evaluate the exploitability
of speculative gadgets based on their timing property. Un-
like existing scanners, GadgetMeter emphasizes assessing and
prioritizing gadget exploitability rather than merely locating
gadgets. This approach enhances the effectiveness of state-
of-the-art scanning tools by providing a deeper analysis of
gadgets’ practical exploitability.

To accomplish this, we first present a systematic exploration
of the attacker’s windowing power. We view the windowing
power as an interplay between the windowing capability and
the windowing strategy. For capability, the attacker can apply
a wide range of techniques beyond cache line eviction to op-
timize the race condition. We systematically review potential
capabilities, drawing insights from microarchitectural timing
attacks, and focus on the most powerful ones. For strategy,
the attacker can employ a sophisticated attack pattern, rather
than naively targeting all data dependencies or brute force to
get the best pattern. By exploring both aspects, we discover
a large space of previously overlooked windowing power. We
then evaluate these windowing powers based on a series of
novel metrics first described in this work.

Leveraging these insights, we design GadgetMeter as a
combination of static analysis and runtime testing.

• In Step A, to model the timing condition of a gadget,
we introduce a Directed Acyclic Instruction Graph to
represent the gadget pattern and describe the timing
condition. We perform two depth-first searches from the
misspeculated branch instruction and the leaking instruc-
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tions respectively, which are then merged into one DAG
to describe the timing condition.

• In Step B, GadgetMeter simulates the attacker by con-
structing a windowing-power-optimized analytical model
and performing static analysis to select an effective attack
pattern for each target gadget.

• In Step C, to quantify the exploitability of the gad-
get, GadgetMeter performs runtime testing to derive a
vulnerability score, accurately representing the practical
exploitability.

We evaluate GadgetMeter on a variety of benchmarks, en-
compassing Kocher’s micro-benchmark [5], 6 security-centric
applications, and the Linux kernel. GadgetMeter effectively
identifies 471 unexploitable gadgets compared with state-of-
the-art scanners [33], [48]. Also, GadgetMeter can quantify the
vulnerability level of different gadgets while existing scanners
consider them as equally vulnerable. We provide three case
studies to demonstrate the capability of GadgetMeter.

To summarize, we make the following contributions:
• Provide a systematic exploration and evaluation of win-

dowing power for speculative execution attacks.
• Model the timing condition of speculative gadgets with a

Directed Acyclic Instruction Graph, where to the best of
the author’s knowledge, similar methods are not utilized
for state-of-the-art gadget scanners.

• Propose GadgetMeter, a comprehensive and quantitative
analysis framework for evaluating and prioritizing gad-
gets’ exploitability.

• Evaluate on security-centric applications, identifying 471
gadgets reported by state-of-the-art works as unex-
ploitable.

The code used in this paper will be released under open-source
license at https://github.com/qiling07/GadgetMeter.git.

II. BACKGROUND AND RELATED WORK

In this section, we will first provide background on the com-
ponents involved in speculative execution attacks, motivating
the need for a systematic exploration of windowing power.
Next, we will provide background on existing speculative
gadget scanners, highlighting their limitations and the need
for a gadget scanner that is aware of the timing condition.

A. Speculative Execution Attacks

To expand the attack surface, numerous studies have ex-
plored new ways to perform each step in a speculative execu-
tion attack.
Speculation mechanism. Existing attacks leverage vari-
ous speculative mechanisms in modern processors. Spectre-
V1 [35], NetSpectre [52], and SpectreRewind [25] exploit
the pattern history table (PHT) for conditional branch pre-
diction, making them hard to mitigate without performance
impact [33]. Other microarchitectural features have been ex-
ploited as well, such as branch target buffer (BTB) [13], [17],
[35], store-to-load (STL) dependency prediction [1], return
stack buffer (RSB) [37], [39], branch type prediction [61],
and predictions in string and division instructions [46].

TABLE I: Comparison of our work and prior works. Works
marked by * only simulate a naive windowing power, where
the attacker blindly evicts all memory dependencies of branch
instructions out of cache.

Scanners Model Timing
Condition

Model
Windowing

Power

Quantify
Exploitability

Spectector [28] 7 7 7
oo7 [57] 7 7 7
SpecFuzz [48] 7 7 7
SpecTaint [50] 7 7 7
Kasper [33] 7 7 7
SpecCheck [42] 3 7 7
Haunted [20] 3 3* 7
Wu [63] 3 3* 7
SpecuSym [29] 3 3* 7
Our work 3 3 3

Secret leakage channel. Existing attacks use various side/-
covert channels for transient secret leakage. Cache-based side
channels are common [6], [35], [37], [60], while other attacks
leverage execution port [13], FP division unit contention [25],
AVX2 timing [52], microarchitectural data sampling [15], and
physical channels [18], [43].
Windowing power. Only a few works have explored advanced
windowing power to optimize the timing condition (Figure 1)
in speculative execution attacks. So far, most attacks employ
cache set eviction to force a cache miss on the direct data
dependencies of authorization instructions. Examples include
cache eviction of boundary value in Spectre-PHT [17], [35],
[43], [55], jump target address in Spectre-BTB [13], [35], [41],
store target address in Spectre-STL [1], and return address
in Spectre-RSB [37], [39]. BranchSpec [32] explores more
methods to delay victim memory accesses, including TLB
misses, longer page-walk paths, and page faults. Moreover,
Milburn et al. [44] first uses SMT execution port contention
to congest the indirect branch in Spectre-BTB, proving the
lfence/jmp mitigation ineffective.

B. Speculative Gadget Scanners

To efficiently mitigate speculative execution attacks, exten-
sive research has been directed toward scanning for speculative
gadgets within programs, especially for Spectre-PHT. The
focus on Spectre-PHT arises because other variants such
as Spectre-RSB [37], [39], Spectre-BTB [35], and Spectre-
STL [1], can typically be mitigated with minimal overhead
using microcode updates [19] or software updates [34], [70].
However, mitigating Spectre-PHT poses a more significant
challenge. While adding an lfence instruction after every con-
ditional branch can prevent Spectre-PHT attacks, this approach
introduces up to 440% overhead on Phoenix benchmarks [47].

To minimize the mitigation overhead, software developers
can employ speculative gadget scanners and apply patches
only to exploitable gadgets. Spectector [28] and oo7 [57] per-
form static taint analysis and symbolic execution to search for
vulnerable information flow. SpecFuzz [48], SpecTaint [50],
and Kasper [33] all perform dynamic analyses like speculation
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exposure and dynamic taint analysis to improve the accuracy
and scalability.

Unfortunately, existing gadget scanners lack soundness and
often report hard-to-exploit gadgets. They focus on informa-
tion flow properties but fail to accurately model the timing
properties of gadgets. Most scanners consider a gadget valid
as long as the misspeculated authorization instruction and the
leakage instruction fit into the Re-Order Buffer (ROB), leading
to false positives as shown in Listing 1.

Some gadget scanners attempt to model the timing condition
but are limited in scope. For example, SpecCheck [42] is
capable of modeling the length of the speculation window
in the cycle-accurate processor simulator Gem5, but it fails
to model an attacker optimizing the timing condition through
actions such as cache line eviction. As a result, SpecCheck
can fail to identify even the PoC Spectre gadget in Listing 2a
if the boundary value happens to be in the cache. Some other
works [20], [29], [63] consider a memory-dependent branch
with cache miss as sufficient for a gadget to be exploitable.
This view on timing condition is limited as a branch with
cache miss does not necessarily make a gadget exploitable, as
in Listings 2b and 2c. What is worse is that even a branch with
no memory access can be exploitable, as seen in Listing 2d.
We tested all gadgets from Listings 1 and 2 with various
attack patterns. Listings 1, 2b, and 2c proved unexploitable
with success rates under 0.51%, while Listings 2a and 2d
were highly vulnerable with success rates over 99.8%.

Parallel to these scanners, Speculator [40] manually inves-
tigates the microarchitectural behavior of individual gadgets,
while SpeechMiner [65] studies the microarchitectural timing
of Meltdown vulnerabilities.

III. THREAT MODEL AND SCOPE

We focus on programs that, while deemed harmless, may
be susceptible to speculative attacks. We consider a local,
unprivileged attacker with the capability to invoke Application
Programming Interface (API) calls for real-world applications
and dispatch arbitrary system calls to a target kernel free
of harmful software bugs. This attacker aims to harness a
speculative gadget in these programs to leak their secret
memory. In particular, the attacker is capable of performing
speculative attacks utilizing a pattern history table, which
triggers conditional branch misprediction and leaks secrets
through side channels, including cache side channel, MDS,
or port contention-based side channel. Meltdown-type attacks,
which can be initiated from malicious programs without
executing gadgets in victim software, fall outside the scope
of our work.

IV. SYSTEMATIC STUDY OF WINDOWING POWER

Windowing power, a key primitive in speculative execution
attacks, is an interplay of two components: the windowing
capability and the windowing strategy. The former dictates the
operations the attacker can perform to influence the timing
of the gadget execution, while the latter guides the attacker
in selecting the most effective attack pattern to optimize the

1 // authorization has a unique mem access
2 x = user_input();

3 if (x < *boundaryPtr )

4 z = array2[512 * array1[x]];

(a) Gadget potentially missed by SpecCheck [42] if *boundaryPtr
happens to reside in the cache during SpecCheck’s gem5 simulation.

1 // authorization has a mem access
2 // which is also used by leakage
3 Object *obj = user_input();

4 if ( obj->x < 16){

5 y = array1[ obj->x ];

6 z = array2[512 * y];}

(b) Gadget misclassified as exploitable by Haunted RelSE [20] and
SpecuSym [29] because of the memory-dependent branch. However,
forcing a cache miss on &(obj->x) will also delay the secret access
on Line 5, leading to an unsuccessful attack.

1 // authorization has a mem access sharing
2 // a cache line with leakage’s mem access
3 Object *obj = user_input();

4 if (x < obj->boundary ){

5 y = obj->array [x];

6 z = array2[512 * y];}

(c) Gadget misclassified as exploitable by Haunted RelSE [20] and
SpecuSym [29] because of the memory-dependent branch. However,
forcing a cache miss on &(obj->boundary) will also delay the
access to &(obj->array), leading to a longer leakage time and
unsuccessful attack.

1 // authorization has no mem access,
2 // but it depends on an FP division
3 x = user_input();

4 if (x < 32. / 2. )
5 z=array2[512 * array1[x]];

(d) Gadget exploitable in practice if the division unit is congested
by the attacker, but misclassified by Haunted RelSE [20] and
SpecuSym [29] for lack of a memory-dependent branch.

Listing 2: Gadgets that are misclassified by existing scanners
for lack of analysis of their timing properties.

timing condition. A robust windowing capability equips the
attacker with a set of unit operations capable of influencing the
gadget execution by a significant number of cycles with fine-
grained control. A well-crafted windowing strategy empowers
the attacker to efficiently cherry-pick an optimal combination
of unit operations, maximizing the timing condition when
performed together.

In this section, we systematically study the attacker’s win-
dowing power by exploring the space of windowing capability
and strategy, respectively.
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A. Windowing Capability

One fundamental reason for enabling windowing capabili-
ties is a common hardware design choice: hardware resources
are shared between different programs to improve parallelism
and hardware utilization. However, this leads to a competition
between programs sharing the same resource, empowering
an attacker to slow down a victim by competing for the
resource [54].

Many microarchitectural timing attacks [11], [38], [68]
exploit the same hardware flaw by using techniques where
one program’s execution affects another’s timing, which can be
adapted for windowing capabilities. In these attacks, the sender
encodes data by competing for shared resources, slowing down
the receiver, who then decodes this information; this approach
can be adapted for windowing by having the attacker as the
sender to compete for shared resources and the victim as the
receiver that is slowed down.

However, these techniques vary in effectiveness for window-
ing capabilities. For example, using memory bus and controller
contention to exploit the PoC gadget in Listing 2a eventually
delays both the boundary and secret accesses, thus failing
the attack. Performing port contention in Listing 1 is also
ineffective, as the latency delay is too minor to allow the
transient execution of leakage instructions. In summary, a
powerful windowing capability requires two key properties:

• Large latency effect: The windowing capability should
delay the target operation by a large number of processor
cycles.

• Fine-grained controllability: The attacker should be able
to apply the windowing capability in a fine-grained
manner. For capabilities affecting pipeline operations, the
attacker can affect the latency of some types of instruc-
tions but not others. For capabilities affecting memory
operations, the attacker can affect the accesses to some
addresses but not others.

With these insights, we present a systematic study of possi-
ble windowing capabilities, as shown in Table II. We enumer-
ate all known resources shared between different processes.
For each shared resource, we examine existing microarchi-
tectural timing attacks to search for techniques that can slow
down other users of this resource and be adjusted to window-
ing capabilities. To evaluate the effectiveness of these newly
discovered windowing capabilities, we quantitatively analyze
their latency effect and control granularity with experiments.
Focus of GadgetMeter. In this paper, we focus on one
persistent and one volatile windowing capability. For the
persistent capability, we choose LLC set eviction, the most
powerful capability targeting memory operations. For the
volatile capability, we select FP/INT division unit contention,
the most powerful capability targeting the processor pipeline.
Still, our approach is general and can easily be adapted to
other persistent or volatile capabilities.

Among all windowing capabilities targeting memory oper-
ations, we select LLC set eviction, which has a larger latency
effect and finer control granularity than most other capabilities.

One exception is L1D cache bank contention, which can be
controlled with even finer granularity. However, it suffers from
a limited latency effect (1s of cycles).

Among all windowing capabilities targeting pipeline op-
erations, we choose to focus on division unit contention,
which has the largest latency effect (100s of cycles) than
any other techniques (1s of cycles) we tested. Contradicting
existing work [25], which measures the contention effect on
each division instruction to be 1s of cycles, we find that this
contention effect can scale to 100s of cycles if the attacker has
much more division instructions in the pipeline than the victim
thread. Specifically, when the attacker is constantly executing
division instructions while the victim only has a few division
instructions to execute, the victim’s division instructions can
be delayed by around 200 cycles on an AMD Zen4 processor
and an Intel Skylake processor we tested. We hypothesize
that this unusual contention is due to the processor’s unfair
scheduling policy when two sibling threads have different
demands for the FP division unit.

We conducted an experiment to verify our observation and
hypothesis. The simplified experiment code is provided in List-
ing 3a and Listing 3b. In the experiment, an attacker repeatedly
executed 7 division instructions with no data dependency.
Inside the loop body, we duplicated the 7 division instructions
128 times to obtain a low ratio of control flow logic to overall
instructions retired. After the attacker had run for a while, we
started a victim thread on a sibling thread, which executed a
classical Spectre-V1 gadget with a division-dependent branch.
To measure the contention effect on the speculation window
size, we gradually delayed the secret leakage by inserting
dummy cache hits. We recorded the maximum cache hits
inserted before the attack failed.

The results are shown in Figure 2. As can be observed,
without SMT contention, the attack fails if the secret leakage
is delayed by more than 6 cache hits. However, this number
increases to 75 if there’s an attacker executing contention
workload on the sibling thread. We also conducted the same
experiment on the integer division unit, floating point and
integer multipliers, and execution ports used by the condition
branch. As can be observed from the figure, the latency
effect of division unit contention is significantly larger than
multiplier and execution ports, indicating that division unit
contention is the most powerful.

B. Windowing Strategy

A windowing strategy strives to search for the most optimal
attack pattern to optimize the timing condition. An attack
pattern is a combination of zero or more unit windowing
operations, which are determined by the attacker’s windowing
capability. Essentially, the windowing strategy acts as a search-
ing algorithm in an optimization problem, where the search
space includes all possible attack patterns, and the optimization
function is the probability that the leakage instructions are
executed before the misspeculated authorizations are resolved
if the attack pattern is employed.
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TABLE II: Systematic exploration of windowing capabilities and quantitative evaluation based on their latency effect and
control granularity.

Shared Resource Windowing Capability Latency Effect on One Target Operation Control Granularity

Pe
rs

is
te

nt

Cache Set LLC set eviction [38], [67] 100s of cycles (LLC miss penalty) 64B (typical cache line size)
TLB TLB set eviction [27], [31] 10s of cycles (L2 TLB miss penalty) 4KB (typical page size)
DRAW Row Buffer DRAW row buffer eviction [49] 10s of cycles (DRAM row conflict penalty) 8KB (DDR4 row size)
BTB BTB entry eviction [22], [59] 1s of cycles (BTB miss penalty) Aliased jmp instructions
MITE & DSB & LSD DSB or LSD eviction [21] 1s of cycles (Micro-op delivery path penalty) Instruction stream

Vo
la

til
e

Cache Bank L1D cache bank contention [68] 1s of cycles (double L1D cache latency) 8B (typical cache bank size)
Memory Bus Memory bus contention [64] 100s of cycles (memory bus contention penalty) All accesses on a memory bus

Memory Controller Memory controller contention [45],
[69]

100s of cycles(memory controller contention
penalty)

All accesses through a mem-
ory controller

Execution Ports Execution port contention [11] 1s of cycles (measured, due to halved instruc-
tion throughput)

Instructions using the same
port

FP/INT Division Unit FP division unit contention [25] 100s of cycles (measured, potentially due to
unfair scheduling policy) Division instructions

FP/INT Multiplier Unit Multiplier unit contention [8], [58] 10s of cycles (measured, potentially due to
unfair scheduling policy) Multiplication instructions

1 1:
2 .rept 128
3 divd %xmm0, %xmm1
4 divd %xmm0, %xmm2
5 ...
6 divd %xmm0, %xmm7
7 .endr
8 jmp 1b

(a) Attacker

1 if (x < 32./2. ){
2 y = array1[x];
3 idx = buckets[idx];
4 ... // N cache hits
5 idx = buckets[idx];
6 y = y+idx;
7 temp&=array2[y*512];
8 }

(b) Victim

Listing 3: Simplified test code to verify the latency effect of
SMT FP division unit contention.

A good windowing strategy should achieve a large optimiza-
tion function and good runtime efficiency. A large optimization
function allows the attacker to optimize the timing condition
of a gadget and exploit it successfully with a higher success
rate. Good runtime efficiency allows the attacker to complete
the attack before the environment changes or the attacker is
detected.

Windowing strategies used by existing speculative attacks
have very limited optimization functions, despite their efficient
runtime. They employ an attack pattern consisting of all
windowing operations targeting the direct data dependencies of
authorization instructions. These strategies can run efficiently
as they only rely on simple static analysis. However, they don’t
perform well on gadgets other than the proof-of-concept ones,
as seen in Section II-B.

For a windowing strategy to achieve an optimal optimization
function, it has to enumerate through the combinational search
space, evaluate each possible attack pattern, and select the
most effective one. An example of such a strategy is to
construct an attacker-controlled environment that closely re-
sembles the real attack environment, where each attack pattern
can be performed, and the one with the highest attack success
rate is selected. Despite the optimal attack pattern, this brute-

force method takes a long time to run as the pattern space
includes all combinations of possible windowing operations.
Even worse, performing attacks is time-consuming due to the
overhead in setting up the environment, performing attacks,
recovering secrets from the side channel, and repeating to
compute attack success rates.
Focus of GadgetMeter. In this paper, we propose and simu-
late an attacker strategy that is capable of finding an optimal
attack pattern with minimal runtime overhead. To achieve
this, we use an analytical model to statistically evaluate and
select the most effective attack pattern. More details on this so-
phisticated attacker strategy, including the specific techniques
and algorithms used in the analytical model, will be provided
in Section V-B.

V. DESIGN OF GADGETMETER

The goal of GadgetMeter is to quantitatively assess and
prioritize speculative gadget exploitability based on timing
properties. In Step A (Modeling), we introduce the Directed
Acyclic Instruction Graph (iDAG) to analytically model the
race between authorization and leakage. In Step B (Attacker
Simulation), we propose two algorithms to simulate the pow-
erful windowing capabilities evaluated in Section IV-A, and to
select the optimal attack pattern. In Step C (Runtime Testing),
we simulate the selected pattern at runtime and measure a
"feasibility score" as an intuitive and accurate metric of gadget
exploitability.

This section will accordingly cover the analytical model,
attacker simulation algorithms, GadgetMeter’s security metric,
and runtime measurement.

A. Directed Acyclic Instruction Graph

We introduce a Directed Acyclic Instruction Graph (iDAG)
to describe the instruction patterns of gadgets. In the graph,
each vertex represents an instruction. An edge between two
vertices indicates the existence of a timing dependency be-
tween the two instructions, i.e., the destination instruction
can only be executed after the source instruction is resolved.
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(a) FP DIV contention delays branch resolution by 70 cache hits.

(b) INT DIV contention delays branch resolution by 11 cache hits.

(c) FP MUL contention delays branch resolution by 4 cache hits.

(d) INT MUL contention delays branch resolution by 3 cache hits.

(e) Negligible impact of execution port contention on the branch.

Fig. 2: Experiment results demonstrating the latency effect
of different volatile capabilities. We explored contention at
FP/INT division and multiplication units and execution ports.
As can be observed, SMT contention on the FP/INT division
has the most significant latency effect on the victim program.

This timing dependency sources from the read-after-write data
dependency between instructions. If there’s no path between
two vertices, they can execute in parallel. Also, each vertex is
associated with a weight, representing the execution latency
of the instruction. Therefore, the execution time of a series of
dependent instructions can be simplified as the weighted sum
of the corresponding path.

Based on this graph, we describe the timing condition of
gadgets as a graph property. We use the maximum root-to-
sink path sinking at the authorization instruction to represent
how long it takes to resolve the misspeculated authorization.
We use the maximum root-to-sink path sinking at the leakage
instruction to represent how long it takes for the leakage
instruction to execute and leak secret. We then model the

timing condition of the gadget as the weight comparison of
these two max paths:

TimingConditionIndex(iDAG) =

MaxPathWeight(Auth)−MaxPathWeight(Leak) (1)

A larger timing condition index indicates that the gadget
is more likely to be exploited successfully since the leakage
instructions are left with more time to leak the secret. An
example is provided in Figure 3b, which models the timing
condition of the gadget in Figure 3a in the absence of an
attacker. Note that with dynamic programming, the timing
condition index of an iDAG can be computed in linear
time regarding the number of instructions (vertices) in the
iDAG [53].

B. The Analytical Model for Windowing Power

Modelling windowing capability. Based on the Directed
Acyclic Instruction Graph, we describe the windowing capa-
bility using Algorithm 1. The algorithm models an attacker
capable of performing cache line eviction and division unit
contention. It takes the raw iDAG of the target gadget and
outputs all possible operations that may affect the timing con-
dition. Specifically, the algorithm iterates over each instruction
insn in the iDAG and checks its opcode. If the instruction
insn involves memory access, the algorithm identifies the
target address and includes an eviction operation for the
corresponding cache line targetCacheLine within the set of
possible actions ops. Likewise, if insn is a division operation,
the algorithm adds a division unit contention operation to ops.
Notably, this algorithm runs in linear time as it simply iterates
over each instruction and performs a constant-time check.

Each operation in the operation set ops in Algorithm 1 can
be applied to the raw iDAG and change the execution of some
instructions. For a cache line eviction operation, the latency of
all instructions that access the affected cache line is increased
by 300 cycles. For a division unit contention operation, the
latency of all division instructions is increased by 100 cycles.
The latency penalty of each operation is approximated based
on our pre-processing evaluation in Table II. Such approxi-
mation is sufficient for our analytical model to identify the
optimal attack pattern, as demonstrated in Figure 4 later in
this section.
Modelling windowing strategy. We propose a sophisticated
windowing strategy that is effective and practically efficient,
as described in Algorithm 2. The algorithm iterates over all
attack patterns allPatterns in the combinational search space,
evaluates their effectiveness with score, and selects the most
effective one patternoptimal. The effectiveness of all attack
patterns is evaluated and compared using our analytical model
for the timing condition. First, the attack pattern is applied to
the raw iDAG of the target gadget, potentially changing the
latency (weight) of multiple instructions (vertices). As detailed
in the function ApplyPattern in Algorithm 2, we iterate over
each operation op in the given pattern pattern and update the
latency of target instructions.
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1 mov (%rsi), %rax
2 mov (boundary), %rbx
3 cmp %rbx, %rax
4 jge .Lend
5 mov array1(,%rax,4), %rax
6 shl $9, %rax
7 mov array2(,%rax,4), %rax
8 .Lend:

(a) X86 assembly for the PoC Spectre-V1 gadget, except that the
attacker-controlled index is in memory instead of a register.

jge .Lend

mov (boundary), %rbx mov (%rsi), %rax

mov array1(,%rax,4), %rax

shl $9, %rax

mov array2(,%rax,4), %rax

cmp %rbx, %rax 1

5

1

52

MaxPath = 5 + 1 + 2 = 8

RC
8 < 16

MaxPath = 5 + 5 + 1 + 5 = 16

3 5

(b) iDAG modeling the timing condition. Timing condition index is
8− 16 = −8.

jge .Lend

mov (boundary), %rbx mov (%rsi), %rax

mov array1(,%rax,4), %rax

shl $9, %rax

mov array2(,%rax,4), %rax

cmp %rbx, %rax 1

5

1

52

MaxPath = 303 + 1 + 2 = 306

RC
306 > 16

MaxPath = 5 + 5 + 1 + 5 = 16

53+300

(c) Analytical model for the attack pattern performing cache line
eviction of (boundary). Timing condition index increases (306 −
16 = 290) compared with Figure 3b.

jge .Lend

mov (boundary), %rbx mov (%rsi), %rax

mov array1(,%rax,4), %rax

shl $9, %rax

mov array2(,%rax,4), %rax

cmp %rbx, %rax 1

5

1

52

MaxPath = 305 + 1 + 2 = 308

RC
308 < 316

MaxPath = 305 + 5 + 1 + 5 = 316

3+300 5+300

(d) Analytical model for the attack pattern performing cache line
eviction of both (boundary) and (%rsi). Timing condition index
remains the same (308− 316 = −8) as Figure 3b.

Fig. 3: An example showing how we use Direct Acyclic Instruction Graph to model the timing condition of a gadget and
analyze the effectiveness of different attack patterns. Since attack pattern 1 results in a larger ∆TimingConditionIndex than
attack pattern 2, attack pattern 1 is considered more effective in optimizing the timing condition.

Second, we compute the increase in the Timing Condition
Index (TCI) after applying the attack pattern and compare the
effectiveness of different attack patterns based on this increase.
Specifically, we calculate the new TCI for iDAGnew using
Equation 1, and determine the difference by subtracting the
original TCIraw from the updated TCInew. This increase
serves as a metric to evaluate and compare the effectiveness of
different attack patterns. Two examples are illustrated in Fig-
ure 3c and Figure 3d. In Figure 3c, the attack pattern consists
of a single cache line eviction of the address of boundary,
resulting in a largely increased TCI. For Figure 3d, the attack
pattern consists of two cache line evictions, resulting in an
unchanged TCI. Therefore, we conclude that the first attack
pattern is more effective than the second one as it increases
the TCI the most.

Algorithm 2 is guaranteed to identify the optimal attack
pattern within our analytical model by exhaustively exploring
the entire attack pattern space and selecting the one with the
highest effectiveness score. We also demonstrate the algo-
rithm’s capability to find the most effective pattern in practice.
For instance, for the gadget illustrated in Figure 3, the search
space comprises four potential attack patterns, generated by
iterating all combination methods of the two cache line evic-
tion operations. We calculate effectiveness scores for each
pattern, execute attacks using all four patterns, and record
their success rates. To allow for comparison, we standardize
both scores and success rates by subtracting the mean and
dividing by the standard deviation. Figure 4 reveals a strong

correlation between effectiveness scores and attack success
rates, demonstrating that Algorithm 2 can reliably identify the
optimal attack pattern in practice based on effectiveness scores.

Additionally, Algorithm 2 can maintain practical efficiency.
Although the algorithm explores a combinational search
space2, it remains feasible in real-world scenarios for two
reasons. First, instead of performing real attacks with each
attack pattern as a brute-forth strategy, we evaluate and com-
pare pattern effectiveness with static analysis, which is more
efficient and consistent. Second, over 99.28% of the evaluated
real-world gadgets contain fewer than five attack operations,
with none exceeding ten. This results in a manageable attack
pattern search space, allowing our proposed attack strategy to
run efficiently in practice.

C. The Security Metric and Runtime Scoring System

Timing feasibility score. To evaluate the exploitability of
speculative gadgets based on their timing properties, we pro-
pose using timing feasibility as the quantitative security metric.
A gadget’s timing feasibility refers to the probability that under
the assumed windowing power, the leakage instructions can
leak secrets transiently before the misspeculated authorization

2This exponential complexity is likely inevitable in order to find the optimal
attack pattern, because the optimization problem we propose is potentially
NP-hard due to its combinational search space and non-trivial objective
function. In fact, the 0/1 Knapsack Problem is reducible to a variant of our
problem in which we maximize MaxPathWeight(Auth) with a constraint on
MaxPathWeight(Leak).
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Fig. 4: Correlation between standardized pattern effectiveness
scores and standardized real attack success rates for four attack
patterns targeting the gadget in Figure 3a. The four attack
patterns are combinations of the two windowing operations,
namely cache line eviction of (boundary) and (%rsi).

Algorithm 1 Windowing capability of GadgetMeter

input: a Directed Acyclic Instruction Graph iDAG
output: a set of windowing operations ops
ops← {}
for each insn in iDAG do

if IsMemAccess(insn) then
targetCacheLine← GetCacheLine(insn)
newOp← evict targetCacheLine
ops← ops ∪ {newOp}

end if
if IsDiv(insn) then

newOp← congest division unit
ops← ops ∪ {newOp}

end if
end for
return ops

Algorithm 2 Windowing strategy of GadgetMeter

input: a Directed Acyclic Instruction Graph iDAGraw, a
set of windowing operations ops
output: an attack pattern patternoptimal

patternoptimal ← {}, scoremax ← 0
for each pattern in PowerSet(ops) do

iDAGnew ← iDAGraw

for each op in pattern do ▷ Apply pattern to iDAG
for each insn in TargetInsnsOf(op) do

Update latency of insn in iDAGnew

end for
end for
tciraw ← TimingConditionIndex(iDAGraw)
tcinew ← TimingConditionIndex(iDAGnew)
score← tcinew − tciraw ▷ Impact of pattern
if score > scoremax then

patternoptimal ← pattern, scoremax ← score
end if

end for
return patternoptimal

instructions are resolved. Since the timing condition is funda-
mental to all speculative attacks, a gadget’s timing feasibility
acts as a universal bottleneck to exploitability.

A runtime approach is essential to measuring the timing
feasibility score, even though our proposed Algorithm 2 is
capable of assigning effectiveness scores to different attack
patterns. This is because while our model computes the
location difference between the two latency distributions
(MaxPathWeight(Auth) − MaxPathWeight(Leak)),
which helps distinguish effective attack patterns from
ineffective ones (as seen in Section V-B), this location
information alone is insufficient to estimate the likelihood
of the speculation window being more significant than the
disclosure window. The shapes and spreads of the latency
distributions, which are necessary for such calculations, can’t
be accurately captured with static analysis only. Therefore, we
opt for a runtime approach to reflect gadgets’ exploitability
accurately and intuitively.
Runtime scoring system. We derive a gadget’s timing feasi-
bility score by measuring and comparing how long it takes for
the authorization instructions to resolve (speculation window)
and for the leakage instructions to execute (disclosure dura-
tion), under the statically selected attack pattern. We avoid
deriving the score from real attack success rates to eliminate
noises from other steps in an attack such as training or com-
munication. Specifically, to measure the speculation window,
we insert timing instructions (e.g., rdtsc) before and after the
data dependencies of the authorization instruction. Similarly,
we insert timing instructions around the data dependencies
of the leakage instruction to measure the disclosure duration.
After collecting enough samples from runtime measurement,
we derive the timing feasibility by calculating how likely the
disclosure duration can fit into the speculation window as
follows:

score = 10 ∗ P [S > D]

= 10 ∗
∑n

i=1

∑m
j=1 1si>dj

nm

(2)

where S and D contain all sampled lengths of the speculation
window and disclosure duration, respectively. 1si>dj

is an
indicator function that evaluates to 1 if the statement is true
and 0 otherwise.

We conducted an experiment to verify that this score aligns
well with the actual attack success rate. We used the PoC
Spectre-V1 gadget as our test case to reduce noises in other
steps of the attack. To examine the accuracy of our method
under different timing conditions, we modified the PoC gadget
by incrementally adding workloads to the leakage instructions
and created 18 test cases (similar to Listing 3b). We performed
actual attacks on these gadgets and recorded their success
rates. We also evaluated their timing feasibility scores using
the method previously described. Figure 5 shows that the
timing feasibility scores align well with the actual attack
success rates, demonstrating that our proposed security metric
can accurately reflect different gadgets’ exploitability based on
their timing conditions.
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Fig. 5: Correlation between feasibility scores and real attack
success rates on 18 gadgets whose exploitability is mainly
limited by their timing properties.

VI. GADGETMETER IMPLEMENTATION DETAILS

In Figure 6, we present the workflow of GadgetMeter,
which is designed to evaluate the exploitability of gadgets
based on their timing conditions. In general, GadgetMeter
consists of three steps. In the first step, GadgetMeter constructs
a Directed Acyclic Instruction Graph to model the timing
condition of the input gadget. In the second step, GadgetMeter
simulates an attacker with the windowing power described in
Section V-B and selects an effective attack pattern. In the third
step, GadgetMeter derives a timing feasibility score through
runtime testing. To simplify the implementation, we perform
static analysis at the LLVM Intermediate Representation level.
A. Timing Condition Modeling Module To model the timing
condition of the input gadget, GadgetMeter builds a Directed
Acyclic Instruction Graph by analyzing the use-def chains
of IR instructions. In particular, GadgetMeter performs two
depth-first searches from the misspeculated branch instruction
and the leaking instruction respectively, which are then merged
into one DAG. All cycles are eliminated from the graph by
duplicating the first nodes causing cycles during the search.
To assign weights to each vertex, GadgetMeter evaluates the
latencies of each IR instruction by first compiling them into
assembly code and querying LLVM’s Machine Code Analyzer
for latency information.
B. Attacker Simulation Module In this module, GadgetMeter
simulates an attacker with the windowing power described
in Section V-B. To generate the space of possible attacker
patterns, GadgetMeter models an attacker capable of cache line
eviction and FP division unit contention as in Algorithm 1. To
evaluate the effectiveness of each attack pattern, GadgetMeter
applies each pattern to the raw iDAG from the previous step
and calculates how the timing condition index is changed, as
in Algorithm 2. To figure out whether an instruction will be in-
fluenced by a cache eviction operation, GadgetMeter analyzes
the alias relationship between different memory locations with
LLVM’s AliasAnalysis pass. Finally, GadgetMeter selects the
attack pattern with the highest analytical score.
C. Runtime Testing Module In this module, GadgetMeter
instruments the gadget and profiles it on a real machine. To
measure the speculation window, GadgetMeter takes a cycle
count using rdtsc before and after the data dependencies of

the misspeculated branch instruction. The same thing is done
to measure the disclosure duration. To simulate the previously
selected attack pattern, GadgetMeter inserts a function call to a
customized attacker simulator before each measurement. For
attack patterns containing cache line evictions, this attacker
simulator function performs clflush to targeted addresses.
For attack patterns containing SMT FP division unit con-
tention, it instantiates a sibling thread that constantly executes
division instructions. The measurement is repeated to collect
enough samples, with which the timing feasibility score is
calculated with Equation 2.

VII. EVALUATION

We evaluate GadgetMeter to answer the following two
questions:

• How effective is GadgetMeter at evaluating gadgets’
exploitability based on their timing condition, compared
with existing tools?

• How many of the gadgets with vulnerable information
flow in real-world applications are truly exploitable?

In Section VII-A, we compare GadgetMeter against pre-
vious approaches with two micro-benchmarks and a macro-
benchmark. In Section VII-B, we apply GadgetMeter to eval-
uate the exploitability of thousands of gadgets discovered by
state-of-the-art scanners in six userspace applications and the
Linux kernel under our assumed windowing power (cache line
eviction and division unit contention).

A. Comparison With Existing Solutions

1) Experiment Setup: We compare GadgetMeter with three
prior methods on a variety of datasets.
Baseline methods. We compare GadgetMeter with three dif-
ferent strategies used by existing scanners to evaluate gadgets’
timing conditions. To compare with the majority of scanners
that consider a gadget exploitable as long as the branch in-
struction and the leakage instruction can fit into the RoB [28],
[33], [48], [50], [57], we use an LLVM pass to count the
instructions in between and compare them with the RoB size.
To compare with scanners that perform cycle-accurate analysis
with the absence of any windowing power [42], we perform
attacks on tested gadgets without any cache evicting or SMT
congesting behavior and use the attack results to represent their
detection results. To compare with scanners that consider every
memory-dependent branch vulnerable [20], [29], [63], we use
an LLVM pass to examine the data dependencies of target
branches.
Evaluation datasets. The evaluation is conducted on three
datasets. We collect Kocher’s 15 Spectre examples as a plau-
sible microbenchmark for the basic detection capabilities. Still,
Kocher’s dataset is simple as all gadgets include a branch that
compares an attacker-controlled index with a boundary value
in memory. To evaluate how the baseline methods perform
on more complex gadgets, we extend Kocher’s dataset with
another 15 gadgets, which have complex data dependencies
and resemble gadgets we observe in real-world programs. We
also collect 15 gadgets in LibYAML, a C library for parsing
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Fig. 6: GadgetMeter workflow, which takes in a gadget with vulnerable information flow, evaluates its timing condition under
a simulated attacker, and presents a timing feasibility score as its exploitability.

and emitting YAML; each gadget possesses a vulnerable infor-
mation flow as detected by state-of-the-art scanner SpecFuzz.
Evaluation metrics. For the two micro-benchmarks, we per-
form attacks on each gadget to verify their exploitability and
use the attack results as the ground truth. For LibYAML,
we verify the original gadgets, construct test gadgets with
similar data dependency structures, and use the attack re-
sults on these test gadgets as the ground truth. Next, we
calculate the precision, recall, and accuracy to quantify the
effectiveness of our proposed approach and baseline methods.
The precision is calculated as P% = TP

TP+FP . The recall is
calculated as R% = TP

TP+FN . The accuracy is calculated as
A% = TP+TN

TP+TN+FP+FN .
Configuration. The experiments are conducted natively on a
server with Intel(R) Xeon(R) Silver 4114 CPU and 187G of
RAM and running Linux 5.15.

2) Experiment Results: As can be observed from Table III,
GadgetMeter performs better than all three existing solutions
in precision, recall, and accuracy.
Kocher’s micro-benchmark. According to our attack results,
all 15 gadgets are exploitable. This is because they share
the same data dependency structure: they take in an attacker-
controlled index, perform a sanity check using some boundary
value in memory, and access memory using the controlled
index. To exploit each gadget, the attacker can flush the
boundary value used for the sanity check out of the cache. This
action delays the branch resolution by hundreds of cycles.

Due to the simplicity of this micro-benchmark, all solutions
other than the cycle-accurate simulation perform well on
this dataset. The cycle-accurate simulation strategy falsely
classifies all 15 gadgets as unexploitable due to the absence
of windowing power simulation. This strategy doesn’t perform
cache eviction on the boundary value used by the branch. As a
result, the speculation window isn’t large enough for the secret
to be transmitted, as the boundary value tends to reside in the
cache for frequent accesses.
GadgetMeter’s micro-benchmark. To establish the ground
truth for this extended micro-benchmark, we try out all pos-
sible attack patterns on each gadget and consider a gadget
exploitable if any of the patterns succeed. According to the
attack results, 7 gadgets are exploitable, while 8 are not.

Due to the complexity of this micro-benchmark, the three
baseline methods misclassify many gadgets. The instruction
counting strategy only considers the instruction-level distance
between the branch and the fault but ignores their timing, thus

falsely classifying 8 unexploitable gadgets as vulnerable. The
cycle-accurate simulation strategy fails to identify 6 vulnerable
gadgets, which are exploitable only if the attacker performs
cache eviction and SMT contention actions. The memory
access detection strategy misclassifies 5 unexploitable gadgets
as vulnerable. The misclassifications result from the fact that
not all gadgets with a memory-dependent branch can be ex-
ploited, as seen in Listing 2b and Listing 2c. This strategy also
misclassifies 3 vulnerable gadgets as unexploitable due to their
lack of memory-dependent branch. In contrast, GadgetMeter
correctly classifies the exploitability of every gadget.
JSMN. To establish the ground truth for this macro-
benchmark, we first construct a series of test gadgets sharing
the same data dependency structures as the raw gadgets in
the program. Next, similar to what we did to the micro-
benchmarks, we enumerate all possible attack patterns on
each test gadget. We consider a raw gadget exploitable if
the corresponding test gadget can be exploited by any of the
attack patterns. According to the attack results, 7 gadgets are
exploitable, while 8 are not.

Similar to GadgetMeter’s micro-benchmark, all three base-
line methods misclassify a significant portion of the gadgets,
while GadgetMeter correctly classifies all of them. One notable
difference is that the memory access detection strategy cor-
rectly classifies all exploitable gadgets, achieving 100% recall.
This is because of the instruction and data dependency patterns
of JSMN, making a memory-dependent branch a necessary
condition for an exploitable gadget.

B. Evaluting Gadgets in Real-World Programs
To demonstrate GadgetMeter’s capability to evaluate gad-

gets’ exploitability in large-scale applications, we apply Gad-
getMeter on real-world gadgets with vulnerable information
flow identified by two state-of-the-art scanners SpecFuzz [48]
and Kasper [33].
Gadget collection. We configure SpecFuzz and Kasper ac-
cording to their evaluation setup. We run SpecFuzz on each
application for one hour to collect gadgets as pairs of (mispre-
dicted branch, fault). For gadgets with nested branch mispre-
dictions, we evaluate the timing feasibility score for each pair
of branch instruction and fault instruction. Then, we use the
lowest score to represent the score for this gadget because
successfully exploiting a nested gadget requires the secret
to be transmitted before any of those mispredicted branches
resolve. We also run Kasper on the Linux kernel for 6 hours
and collect gadgets as tuples of (mispredicted branch, secret
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TABLE III: Evaluation results of three baseline methods and GadgetMeter on three datasets. The leftmost column is the ground
truth established based on attack results. (P: positive; N: negative; FP: false positive; FN: false negative; P%: precision; R%:
recall; A%: accuracy)

Datasets INSTRUCTION COUNTING CYCLE-ACCURATE SIM MEM ACCESS DETECTION GADGETMETER
Name P N FP FN P% R% A% FP FN P% R% A% FP FN P% R% A% FP FN P% R% A%
Kocher’s 15 0 0 0 100 100 100 0 15 NA 0.0 0.0 0 0 100 100 100 0 0 100 100 100
GMeter’s 7 8 8 0 46.7 100 46.7 0 6 100 14.3 60.0 5 3 44.4 57.1 46.7 0 0 100 100 100
JSMN 7 8 8 0 46.7 100 46.7 0 4 100 42.9 73.3 8 0 46.7 100 46.7 0 0 100 100 100
Total 29 16 16 0 64.4 100 64.4 0 25 100 13.8 44.4 13 3 66.7 90.0 64.4 0 0 100 100 100

TABLE IV: Timing feasibility scores for gadgets in six
security-centric userspace applications and the Linux kernel,
where GadgetMeter identifies 503 unexplotiable, 3390 mildly
exploitable, and 852 exploitable gadgets.

Score 0 1 2 3 4 5 6 7 8 9 10

Brotli 154 66 74 35 16 17 18 13 10 69 249
HTTP 3 1 1 3 0 1 1 0 1 1 2
JSMN 8 0 0 0 1 1 0 0 0 1 4

LibHTP 36 25 29 41 18 8 7 8 0 9 67
LibYAML 9 12 26 15 0 3 1 3 4 46 65
OpenSSL 261 200 229 364 215 82 58 33 11 61 236

Linux 32 36 92 157 304 345 237 111 66 204 229

Total 503 3390 852

access, secret leakage). We target the mispredicted branch and
the secret access and evaluate their timing feasibility score.
To achieve a conservative result, we don’t include the secret
leakage instruction because the leakage instruction does not
have to be fully executed (transiently) to transmit the secret.
Configuration. For the six userspace applications, the ex-
periments are conducted natively on a server with Intel(R)
Xeon(R) Silver 4114 CPU and 187G of RAM and running
Linux 5.15. For the Linux kernel, the experiments are con-
ducted on an Intel(R) Xeon(R) Gold 5318Y CPU with 252G
of RAM, where the GadgetMeter-instrumented kernel (v5.12)
runs as a guest VM on a host running Ubuntu 22.04.2 LTS
(kernel 5.15.0-73-generic).
Results. The experimental results are summarized in Table IV.
Of all gadgets analyzed, 503 received a timing feasibility score
of 0, indicating they are unexploitable under our assumed
windowing power. This includes 48% with no memory access
or division instructions, and 52% affected by shared memory
and division instructions that limit exploitation. In contrast,
852 gadgets were scored 10, signifying high vulnerability,
primarily due to cache line evictions, with four caused by
division unit contention. The remaining gadgets were scored
between 1 and 9, suggesting mild exploitability with varying
success rates. We present three case studies in Section IX and
Appendix A.

To further verify the evaluation results, we introduce a
ground truth analysis with cross-validation on the three base-
line methods used in Section VII-A. We manually verified
any unmatched result to derive the ground truth. As shown
in Table V, GadgetMeter outperforms prior methods in both
under/over-approximation rates. First, we verified that all of

TABLE V: Under/over-approximations resulted from Gadget-
Meter and prior approaches in the large-scale experiment. An
evaluation score is classified as an under/over-estimation if it’s
smaller/larger than the ground truth by 5 out of 10.

Under-Approx. Over-Approx.
INSTRUCTION COUNTING 0% 51.10%
CYCLE-ACCURATE SIMULATION 16.44% 0%
MEM ACCESS DETECTION 9.63% 23.60%
GADGETMETER 0.67% 0.63%

Fig. 7: The performance overhead after patching w.r.t the
execution time with no defense added.

the instruction counting method’s over-estimations are due to
its inability to model the timing condition of gadgets. Second,
we verified that all of the cycle-accurate simulation method’s
under-estimations are due to its inability to simulate even the
most naive attacker (as in Lising 2a). Third, we verified that
all of the memory access detection method’s over-estimations
are due to its naive windowing strategy (as in Listing 2b and
Listing 2c). At the same time, all of the under-estimations
are due to its limited view of what windowing capabilities
comprise (as in Listing 2d).

Also, we identify two sources of over/under-approximations
in GadgetMeter, with a smaller ratio compared with the ex-
isting three approaches. First, we verified that GadgetMeter’s
over-estimations are due to our conservative instrumentation
method in Step C runtime testing. We also verified that
GadgetMeter’s underestimation is due to inaccuracy in the
static analysis passes used in Steps 1 and 2. Nevertheless, the
misclassification rate remains acceptable. We discuss possible
solutions in Section VIII.

Finally, we evaluate the performance gained by eliminating
patches for the unexploitable gadgets identified by Gadget-
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Meter. Specifically, we utilize the serialization tool provided
by SpecFuzz to patch programs by selectively serializing
gadgets with LFENCE. We use the same benchmarks as
SpecFuzz for all applications. For the Linux kernel, we use
sysbench [36], a widely adopted system benchmark tool. We
patch all gadgets reported by state-of-the-art scanners Spec-
Fuzz and Kasper. For GadgetMeter, we only patch exploitable
gadgets with a non-zero score. For the full-patching baseline,
we patch every conditional branch.

As shown in Figure 7, GadgetMeter reduces the patching
overhead by up to 31.2% on JSMN and 44.1% on OpenSSL.
On average, GadgetMeter reduces the patching overhead by
20.66% compared with state-of-the-art scanners’ patching and
59.80% with full hardening, as a result of 29.01% less fences
compared with the two baseline scanners. After an investi-
gation with perf, we noticed that the speedup is mainly due
to the eliminated patching for false positives on program hot
paths. For example, in JSMN, we observed that most of the
improvement is due to removing a single fence in a hot code
region responsible for 98.7% of executed instructions. Similar
trends are observed in OpenSSL and LibYAML, demonstrating
the performance gains achievable with a high-precision gadget
scanner, especially for gadgets on hot paths.

VIII. DISCUSSION

In this section, we discuss the limitations we have discov-
ered in the current implementation of GadgetMeter. We also
highlight potential ways to overcome these limitations.
Dependency analysis. During the cross-validation for the
large-scale experiment, we discovered that inaccuracy in the
compiler analysis tool that GadgetMeter relies on may result in
misclassifications. In Steps A and B, GadgetMeter relies on
LLVM Dependencey Analysis [3] to construct an iDAG for
each gadget and select the optimal attack pattern. Its limited
precision, especially when dealing with pointer alias analysis,
may result in an inaccurate iDAG and a suboptimal attack
pattern, leading to under-approximations. In Step C, to deal
with the unclear dependencies, GadgetMeter conservatively
adjusts the window measurement to include (or exclude)
unclear dependencies for branches (or faults). This might lead
to over-approximations. To fix this, we can leverage more
advanced dependency analysis tools, such as the dynamic alias
analysis error detector NEOGOBY [62].
Hardware dependency. Although GadgetMeter’s evaluation
results are specific to hardware, our toolchain can be operated
on different hardware with ease. In Steps B and C, Gadget-
Meter obtains instruction latencies for different microarchi-
tectures using LLVM MCA [4]. While LLVM MCA offers
extensive support, alternative tools [7], [24] exist to measure
latencies on arbitrary processors. Moreover, Step C has low
overhead, as we only perform runtime testing on one optimal
attack pattern for each gadget.
Windowing capability modeling. Our prototype focuses on
cache line eviction and division unit contention, but can be
easily adapted to other capabilities. We define each window-
ing capability using two rules: a) how it differentiates between

1 typedef struct BrotliTransforms { ...
2 uint32_t num_transforms;
3 const uint8_t* transforms; ...
4 } BrotliTransforms;
5 BrotliDecoderErrorCode ProcessCommandsInternal

(...) { ...
6 if (transform_idx <

transforms->num_transforms ) {
7 len = BrotliTransformDictionaryWord(...,

transforms, transform_idx); ...
8 }
9 #define BROTLI_TRANSFORM_SUFFIX_ID(T, I) \

10 ( (T)->transforms [((I) * 3) + 2])
11 #define BROTLI_TRANSFORM_SUFFIX(T, I) \
12 (&(T)->prefix_suffix[ \
13 (T)->prefix_suffix_map[ \
14 BROTLI_TRANSFORM_SUFFIX_ID(T, I)]])
15 int BrotliTransformDictionaryWord(...,
16 const BrotliTransforms* transforms,
17 int transform_idx) {
18 const uint8_t* suffix =

BROTLI_TRANSFORM_SUFFIX(transforms,
transform_idx);

19 ...

Listing 4: An unexploitable gadget in Brotli.

instructions (control granularity) and b) its impact on instruc-
tion latencies (latency effect). Each capability is simulated
through a runtime function activated before executing each
target gadget. Adapting the prototype for different attacker
capabilities is straightforward, provided they can be defined
by the two rules and simulated through instruction execution.
Our prototype demonstrates this by simulating one volatile
and one persistent capability. We also extend our prototype to
simulate multiplier unit contention and successfully observe
two more gadgets enabled in OpenSSL.

IX. CASE STUDY – UNEXPLOITABLE GADGET IN BROTLI

Brotli [10] is a generic-purpose lossless compression pro-
gram. SpecFuzz reports a vulnerable information flow in-
troduced by a gadget in function ProcessCommandsInternal
and BrotliTransformDictionaryWord, as presented in Listing 4.
SpecTaint [50] also detects this gadget and uses this gadget
as a case study to demonstrate its capability. The vulnerable
branch is on line 6, and the macro on line 10 performs the
vulnerable memory access. The program first checks whether
the transfrom_idx propagated from user inputs is within a
boundary value transforms → num_transforms. If the index
is within the boundary, transform_idx and transforms are then
passed to BrotliTransformDictionaryWord, which performs a
series of indirect memory accesses from line 9 to line 14.

SpecTaint considered this gadget as exploitable be-
cause a cache miss on the boundary value transforms →
num_transforms could delay the branch resolution by hun-
dreds of cycles, thus opening up the speculation window for
leaking secrets. However, GadgetMeter scored this gadget at
0, suggesting that the gadget is unexploitable. After careful
examination, we noticed that due to the definition of the
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structure BrotliTransforms on line 1 to line 4, the boundary
value transforms → num_transforms is co-located on the
same cache line with the base array pointer transforms →
transforms, which is used on line 10 to access an out-of-
bound memory secret. Therefore, a cache line eviction of the
boundary value transforms → num_transforms will also halt
the secret leaking, thus failing the attack. We verified that this
gadget was unexploitable in practice, even if the boundary
value was flushed out of the cache.

We present two more case studies in Appendix A: one
identifies a gadget in Linux with low exploitability, and the
other finds an exploitable gadget in OpenSSL.

X. CONCLUSION

This paper presents GadgetMeter, a framework that im-
proves gadget exploitability assessment using precise timing
analysis. By employing a Directed Acyclic Instruction Graph
and combining static and runtime analysis, GadgetMeter ac-
curately evaluates and prioritizes vulnerabilities. Benchmarks
show that GadgetMeter outperforms existing scanners in ac-
curacy. Overall, GadgetMeter enhances mitigation strategies
with minimal performance impact while improving security.
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APPENDIX A
ADDITIONAL CASE STUDIES

In this section, we demonstrate two more case studies,
where using GadgetMeter, we reveal a gadget in Linux with
low exploitability and a gadget in OpenSSL expoitable with
DIV contention.

A. A Gadget in Linux with Low Exploitability

In function flock_lock_inode of kernel, Kasper [33] reports
an MDS-based gadget, as presented in Listing 5. This gadget
is similar to the case study shown by Kapser in their paper,

1 BIGNUM *bn_wexpand(BIGNUM *a, int words) {
2 return (words <= a->dmax) ? a : bn_expand2(

a, words);
3 }
4 static BIGNUM *bin2bn(const unsigned char *s,

int len, BIGNUM *ret,...) { ...

5 n = ((len - 1) / BN_BYTES) + 1;

6 if (!ossl_assert(bn_wexpand(ret, (int)n )
!= NULL)) { ...

7 return NULL;
8 } ...

9 for (i = 0; n-- > 0 ; i++) { ...
10 ret->d[i] = l;
11 ...

Listing 6: An exploitable gadget in OpenSSL.

traversing a cyclic linked pointer list through the macro
list_for_each_entry and accessing contents with the pointer.
Kasper considers this gadget as exploitable because if the
conditional branch on line 9 performed by the macro on line
3 is mispredicted, there’s no associated data structure for it.
As it is controlled by the attacker, some secret data can be
accessed and leaked through the MDS-based side channel.

However, GadgetMeter scored this gadget at 3.3, suggesting
that the gadget can be explored with a relatively low success
rate. After carefully examining the gadget, we noticed that
the branch only performs a value comparison of two pointer
values. The attacker can hardly optimize this attack since it
doesn’t depend on memory accesses or division instructions.
Still, the attack can succeed at a relatively low probability due
to the simplicity of leaking instructions (one load instruction
only).

B. A Gadget in OpenSSL Expoitable with DIV Contention

OpenSSL is a general-purpose cryptographic library. In
function bin2bn of OpenSSL, SpecFuzz [48] identifies a
vulnerable information flow introduced by a gadget with two
branch mispredictions on line 6 and line 9 and a corrupted
memory access on line 10. In this function, the program
first examines whether the variable n, calculated from user-
provided input, is within the boundary of the ret array. Next,
the function fills up the ret array with a for loop, where the
variable n acts as a boundary value. On the misprediction of
branches on line 6 and line 9, the i on line 10 will reach out of
the array boundary, and a speculative boundary check bypass
on store would happen.

GadgetMeter scored this gadget at 10, suggesting that it
is highly exploitable. After carefully examining the gadget,
we noticed that even though the branch has no memory
dependence, it depends on an integer division instruction.
Therefore, by performing SMT division unit contention on
a sibling thread, the attacker can largely delay the branch
resolution, opening up the speculation window for secret leak-
age. We verified this finding with real attacks. This example
demonstrates that compared with the existing naive windowing
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power, our enhanced windowing power can expand the attack
surface by making more gadgets exploitable in practice.

APPENDIX B
GROUND TRUTH ANALYSIS OF LIBYAML

In Table VI, we demonstrate the ground truth analysis for
gadgets in the LibYAML application. For each gadget, we list
the scores evaluated through different methods:

• IC stands for Instruction Counting.
• CAS stands for Cycle-Accurate Simulation.
• MAD stands for Memory Access Detection.
• GMeter stands for GadgetMeter.

Since Instruction Counting and Memory Access Detection
can’t provide quantitative scores, we treat "exploitable" as a
score of 10 and "unexploitable" as a score of 0.

For each gadget, we also list the ground truth (GT) derived
from our manual inspection. Based on the data dependencies
of gadgets and all the judgments and reasonings made by dif-
ferent methods, we classify all gadgets into Highly Exploitable
(HE), Mildly Exploitable (ME), and Unexploitable (UE). An
evaluation score is classified as an under/over-estimation if
it’s smaller/larger than the ground truth by 5 out of 10. We
also provide our reasoning for the misclassifications made
by different methods in the last column. Misclassifications of
other tools are colored in purple while those of GadgetMeter
are colored in orange. The reasons are as follows:

• A—false positive of Instruction Counting due to the
inability to model timing conditions, as in Listings 1, 2b
and 2c.

• B—false negative of Cycle-Accurate Simulation due to
the inability to simulate windowing power, as in Listing
2a.

• C—false positive of Memory Access Detection due to
the limited windowing strategy, which slows down all
data dependencies, as in Listings 2b and 2c.

• D—false negative of Memory Access Detection due to
the limited windowing capabilities, as in Listing 2d.

• E—false positive of GadgetMeter due to the conservative
window measurement to include/exclude unclear depen-
dencies.

• F—false negative of GadgetMeter due to the suboptimal
attack pattern sourced from an inaccurate iDAG.

The ground truth analysis for other applications and
the Linux kernel is presented at https://github.com/qiling07/
GadgetMeter.git.

TABLE VI: Ground truth analysis of LibYAML application.

Gadget IC CAS MAD GMeter GT Reasoning
1 10.0 8.55 10.0 10.0 HE /
2 10.0 5.04 10.0 10.0 HE /
3 10.0 3.34 10.0 3.09 ME AC
4 10.0 6.34 10.0 10.0 HE /
5 10.0 2.18 10.0 10.0 HE B
6 10.0 4.8 10.0 9.99 HE B
7 10.0 6.68 10.0 5.52 ME /
8 10.0 9.39 10.0 9.72 HE /
9 10.0 9.34 10.0 9.87 HE /
10 10.0 9.63 10.0 9.79 HE /
11 10.0 9.51 10.0 9.79 HE /
12 10.0 9.45 10.0 9.86 HE /
13 10.0 9.5 10.0 9.84 HE /
14 10.0 9.23 10.0 9.26 HE /
15 10.0 9.39 10.0 9.57 HE /
16 10.0 9.48 10.0 9.52 HE /
17 10.0 9.37 10.0 9.57 HE /
18 10.0 9.32 10.0 9.38 HE /
19 10.0 9.37 10.0 9.59 HE /
20 10.0 2.8 10.0 2.81 ME AC
21 10.0 4.98 10.0 10.0 HE B
22 10.0 2.86 10.0 2.98 ME AC
23 10.0 0.72 10.0 0.56 UE AC
24 10.0 8.74 10.0 10.0 HE /
25 10.0 6.13 10.0 10.0 HE /
26 10.0 5.33 10.0 10.0 HE /
27 10.0 3.41 10.0 10.0 HE B
28 10.0 3.24 10.0 10.0 HE B
29 10.0 5.36 10.0 10.0 HE /
30 10.0 3.43 10.0 10.0 HE B
31 10.0 8.7 10.0 10.0 HE /
32 10.0 1.83 10.0 2.12 ME AC
33 10.0 5.82 10.0 5.54 ME /
34 10.0 3.45 10.0 9.99 HE B
35 10.0 7.85 10.0 10.0 HE /
36 10.0 7.38 10.0 10.0 HE /
37 10.0 7.91 10.0 8.59 ME /
38 10.0 4.48 10.0 5.45 ME /
39 10.0 9.35 10.0 9.67 HE /
40 10.0 9.47 10.0 9.71 HE /
41 10.0 9.71 10.0 9.89 HE /
42 10.0 9.54 10.0 9.82 HE /
43 10.0 9.47 10.0 9.62 HE /
44 10.0 9.74 10.0 9.91 HE /
45 10.0 9.29 10.0 9.42 HE /
46 10.0 9.31 10.0 9.61 HE /
47 10.0 9.3 10.0 9.66 HE /
48 10.0 7.85 10.0 10.0 HE /
49 10.0 7.81 10.0 10.0 HE /
50 10.0 2.52 0.0 3.05 ME A
51 10.0 1.38 10.0 9.99 HE B
52 10.0 3.44 10.0 2.52 ME AC
53 10.0 3.27 10.0 3.56 ME AC
54 10.0 4.47 10.0 10.0 HE B
55 10.0 2.21 10.0 10.0 HE B
56 10.0 9.26 10.0 10.0 HE /
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TABLE VI (Continued): Ground truth analysis of LibYAML application.

Gadget IC CAS MAD GMeter GT Reasoning
57 10.0 9.46 10.0 10.0 HE /
58 10.0 1.36 10.0 10.0 HE B
59 10.0 3.33 10.0 10.0 HE B
60 10.0 9.57 10.0 9.79 HE /
61 10.0 9.0 10.0 9.57 HE /
62 10.0 9.34 10.0 9.57 HE /
63 10.0 9.52 10.0 9.83 HE /
64 10.0 9.5 10.0 9.75 HE /
65 10.0 9.54 10.0 9.84 HE /
66 10.0 9.79 10.0 9.89 HE /
67 10.0 9.71 10.0 9.83 HE /
68 10.0 1.27 10.0 10.0 HE B
69 10.0 9.45 10.0 10.0 HE /
70 10.0 9.57 10.0 10.0 HE /
71 10.0 1.48 10.0 10.0 HE B
72 10.0 2.69 10.0 2.7 ME AC
73 10.0 3.19 10.0 10.0 HE B
74 10.0 2.14 10.0 2.7 ME AC
75 10.0 6.64 10.0 10.0 HE /
76 10.0 3.24 10.0 3.5 ME AC
77 10.0 7.88 10.0 10.0 HE /
78 10.0 5.59 10.0 10.0 HE /
79 10.0 7.82 10.0 10.0 HE /
80 10.0 3.78 10.0 10.0 HE B
81 10.0 3.5 10.0 10.0 HE B
82 10.0 8.07 10.0 8.31 ME /
83 10.0 1.8 10.0 10.0 HE B
84 10.0 2.85 0.0 2.91 ME A
85 10.0 7.08 10.0 7.3 ME /
86 10.0 1.38 10.0 2.28 ME AC
87 10.0 8.08 10.0 9.99 HE /
88 10.0 8.74 10.0 10.0 HE /
89 10.0 1.42 0.0 1.4 ME A
90 10.0 3.9 10.0 10.0 HE B
91 10.0 3.71 10.0 10.0 HE B
92 10.0 3.52 10.0 10.0 HE B
93 10.0 0.87 10.0 0.34 ME F
94 10.0 1.94 0.0 1.85 ME A
95 10.0 7.06 10.0 10.0 HE /
96 10.0 3.27 10.0 3.49 ME AC
97 10.0 3.19 10.0 2.83 ME AC
98 10.0 1.75 10.0 1.82 ME AC
99 10.0 3.36 10.0 2.96 ME AC

100 10.0 3.69 10.0 10.0 HE B
101 10.0 1.83 10.0 2.36 ME AC
102 10.0 2.71 10.0 2.3 ME AC
103 10.0 1.83 10.0 2.47 ME AC
104 10.0 3.32 10.0 3.66 ME AC
105 10.0 8.55 10.0 10.0 HE /
106 10.0 1.73 10.0 2.22 ME AC
107 10.0 3.29 10.0 10.0 HE B
108 10.0 3.14 0.0 2.94 ME A
109 10.0 6.56 10.0 7.8 ME /
110 10.0 1.23 10.0 1.52 ME AC
111 10.0 1.03 10.0 10.0 ME E
112 10.0 2.98 0.0 2.85 ME A
113 10.0 1.32 10.0 0.73 UE AC
114 10.0 2.63 0.0 2.71 ME A
115 10.0 3.36 0.0 3.55 ME A
116 10.0 2.93 10.0 2.92 ME AC
117 10.0 5.43 10.0 8.2 ME /
118 10.0 1.69 0.0 2.35 ME A
119 10.0 3.7 10.0 3.87 ME AC
120 10.0 8.44 10.0 8.92 ME /

Gadget IC CAS MAD GMeter GT Reasoning
121 10.0 1.75 10.0 1.86 ME AC
122 10.0 1.72 10.0 1.75 ME AC
123 10.0 1.5 0.0 2.39 ME A
124 10.0 2.03 10.0 3.03 ME AC
125 10.0 3.03 0.0 3.84 ME A
126 10.0 2.12 10.0 10.0 HE B
127 10.0 2.02 10.0 2.48 ME AC
128 10.0 2.11 10.0 2.43 ME AC
129 10.0 2.4 0.0 2.07 ME A
130 10.0 3.78 10.0 3.48 ME AC
131 10.0 2.63 10.0 2.63 ME AC
132 10.0 2.81 0.0 3.12 ME A
133 10.0 3.27 10.0 10.0 HE B
134 10.0 3.55 10.0 3.74 ME AC
135 10.0 3.59 10.0 3.38 ME AC
136 10.0 2.55 10.0 2.3 ME AC
137 10.0 8.9 10.0 9.47 HE /
138 10.0 9.41 10.0 9.82 HE /
139 10.0 1.02 0.0 0.64 UE A
140 10.0 1.7 0.0 1.03 ME A
141 10.0 1.97 0.0 1.99 ME A
142 10.0 1.45 0.0 0.05 UE A
143 10.0 1.43 0.0 1.69 ME A
144 10.0 1.04 0.0 1.7 ME A
145 10.0 1.38 0.0 1.13 ME A
146 10.0 8.02 10.0 10.0 HE /
147 10.0 1.2 0.0 1.56 ME A
148 10.0 1.18 0.0 0.75 UE A
149 10.0 4.03 10.0 10.0 HE B
150 10.0 0.55 0.0 0.36 UE A
151 10.0 2.41 0.0 2.35 ME A
152 10.0 0.88 0.0 0.68 UE A
153 10.0 0.72 0.0 0.16 UE A
154 10.0 9.7 10.0 9.88 HE /
155 10.0 9.34 10.0 9.55 HE /
156 10.0 9.74 10.0 9.8 HE /
157 10.0 9.24 10.0 9.45 HE /
158 10.0 7.77 10.0 7.66 ME /
159 10.0 5.17 10.0 10.0 HE /
160 10.0 7.05 10.0 10.0 HE /
161 10.0 3.97 10.0 10.0 HE B
162 10.0 6.33 10.0 10.0 HE /
163 10.0 1.81 10.0 10.0 HE B
164 10.0 9.08 10.0 10.0 HE /
165 10.0 1.22 10.0 10.0 HE B
166 10.0 3.75 10.0 10.0 HE B
167 10.0 9.79 10.0 9.89 HE /
168 10.0 9.41 10.0 9.69 HE /
169 10.0 9.42 10.0 9.66 HE /
170 10.0 9.48 10.0 9.91 HE /
171 10.0 9.43 10.0 9.38 HE /
172 10.0 9.2 10.0 9.26 HE /
173 10.0 9.35 10.0 9.68 HE /
174 10.0 9.51 10.0 9.67 HE /
175 10.0 9.48 10.0 9.69 HE /
176 10.0 9.48 10.0 9.63 HE /
177 10.0 2.32 10.0 10.0 HE B
178 10.0 8.81 10.0 10.0 HE /
179 10.0 6.8 10.0 6.82 ME /
180 10.0 6.36 10.0 9.76 ME E
181 10.0 6.97 10.0 10.0 HE /
182 10.0 7.0 10.0 10.0 HE /
183 10.0 3.1 0.0 3.18 ME A
184 10.0 8.87 10.0 10.0 HE /
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