
I Know What You Asked: Prompt Leakage via
KV-Cache Sharing in Multi-Tenant LLM Serving

Guanlong Wu
SUSTech

santiscowgl@gmail.com

Zheng Zhang
ByteDance Inc.

2hang2heng@buaa.edu.cn

Yao Zhang
ByteDance Inc.

zhangyao.crypto@bytedance.com

Weili Wang
SUSTech

12032870@mail.sustech.edu.cn

Jianyu Niu∗
SUSTech

niujy@sustech.edu.cn

Ye Wu
ByteDance Inc.

wuye.2020@bytedance.com

Yinqian Zhang∗†
SUSTech

yinqianz@acm.org

Abstract—Large Language Models (LLMs), which laid the
groundwork for Artificial General Intelligence (AGI), have re-
cently gained significant traction in academia and industry due
to their disruptive applications. In order to enable scalable
applications and efficient resource management, various multi-
tenant LLM serving frameworks have been proposed, in which
the LLM caters to the needs of multiple users simultaneously. One
notable mechanism in recent works, such as SGLang and vLLM,
is sharing the Key-Value (KV) cache for identical token sequences
among multiple users, saving both memory and computation.

This paper presents the first investigation on security risks
associated with multi-tenant LLM serving. We show that the
state-of-the-art mechanisms of KV cache sharing may lead to new
side channel attack vectors, allowing unauthorized reconstruction
of user prompts and compromising sensitive user information
among mutually distrustful users. Specifically, we introduce our
attack, PROMPTPEEK, and apply it to three scenarios where the
adversary, with varying degrees of prior knowledge, is capable
of reverse-engineering prompts from other users. This study
underscores the need for careful resource management in multi-
tenant LLM serving and provides critical insights for future
security enhancement.

I. INTRODUCTION

The rise of Large Language Models (LLMs) like GPT [25]
or Llama [44] has enabled a variety of new applications,
including universal chatbots [5], virtual assistants [4], and code
generators [6], applicable to both large-scale cloud deploy-
ments and small-scale local setups. As LLM applications be-
come widespread, effectively serving concurrent requests from
multiple users has become a non-trivial research question [32],
[61], [34]. In fact, processing a single LLM request is already
costly, as it generates Key-Value (KV) cache [37] for each
token during the inference phase, occupying a considerable
amount of GPU memory [12]. With limited GPU memory

*Affiliated with the Research Institute of Trustworthy Autonomous Systems
and the Department of Computer Science and Engineering

†Corresponding Author

Figure 1: KV cache reuse.

capacity, the extensive size of the KV cache [12] restricts
the ability to serve concurrent requests, becoming a critical
bottleneck in multi-tenant scenarios.

One promising solution proposed by recent work (e.g.,
vLLM, SGLang) [32], [61], [53] is to share the KV cache
across the requests to reduce both computation and memory
usage. The rationale is that identical tokens in different re-
quests can generate the same KV cache if their preceding
tokens are also identical. Figure 1 illustrates an instance of KV
cache sharing. When the first user submits the query “Imagine
you are an IT expert and tell me how to install Windows”, the
KV cache for each token is computed and stored on the LLM
server. Thereafter, if another user issues a query “Imagine you
are an IT expert and tell me how to install Linux”, the initial
segment of the sentence—“Imagine you are an IT expert and
tell me how to install”—has an identical KV cache. Hence,
the second user can directly utilize the KV cache previously
computed for the first user, recalculating only the differing
segment, “Linux”. KV cache sharing prevents duplicate KV
storage on the GPU, allowing more user requests to be served
concurrently. More importantly, it reduces the serving time for
individual requests by eliminating unnecessary calculations.

However, in this paper, we point out that the KV cache
sharing mechanism is not secure. Our key insight is that
the KV cache sharing may inadvertently create side channel
information, which can be leveraged by the adversary to
carefully craft requests sent to the LLM server to determine
if its requests match the other users’, thereby recovering other
users’ prompts.

In this paper, we dig into the current KV cache sharing

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241772
www.ndss-symposium.org

strategies and demonstrate how these can be exploited to
reconstruct user input prompts. In particular, we propose
PROMPTPEEK, which leverages the changes of serving order
as side channel information, to repeatedly extract other users’
prompts from the LLM service. More specifically, PROMPT-
PEEK utilizes the side channel information to monitor the
KV cache hits and extracts one token at a time from another
user’s prompt. By iteratively repeating this process, PROMPT-
PEEK can reconstruct the entire prompt from another user.
We assess PROMPTPEEK across three scenarios, where the
adversary possesses different levels of background knowledge:
knowledge of the prompt template, knowledge of the prompt
input, and no background knowledge. Our results show that
the adversary can achieve an average success rate of 99% in
fully or partially reversing the prompt input, 98% in reversing
the prompt template, and 95% without additional background
knowledge, when tested on a Llama2-13B model on an A100
80G GPU. From a higher level, our results show that the attack
depends on three key factors: memory capacity, concurrent
users’ requests, and attack requests. Memory capacity sets
the feasibility of the attack, while both users’ and attack
requests accelerate memory depletion. Besides, the attacker’s
background knowledge minimizes the number of requests
needed to recover prompts.

Our contributions. To summarize, we make the following
contributions in this paper:

• We are the first to touch on the security risks in multi-tenant
LLM serving, identifying it as a new attack surface in LLM
security. We not only investigate the risks associated with KV
cache sharing but also highlight the broader implications for
any future LLM serving frameworks. Our research empha-
sizes the need for careful management of shared resources
in these environments.
• We propose PROMPTPEEK and assess its feasibility across

three scenarios. Unlike previous studies that only approx-
imate prompt content [41], [52], PROMPTPEEK accurately
reconstructs prompts, which significantly increases privacy
risks, as prompts may contain sensitive information like bank
account numbers or health records. More importantly, we
recognize that KV cache sharing is still in its early stages,
so we outline three critical attack conditions that service
providers and framework developers should consider in case
of potential security risks.
• We simulate real-world LLM scenarios to evaluate the

effectiveness and cost of our attack across three different
environments, utilizing four distinct datasets on an A100 80G
GPU. Our results reveal that our attack not only successfully
uncovers prompt secrets but also at a low cost. For example,
knowing the prompt template allows the adversary to uncover
the prompt’s secrets, including gender, age, weight, and
height, with just 60 requests in total.

Ethical considerations. We responsibly disclosed our findings
to both the framework developers (SGLang, our primary
target) and service providers, including OpenAI, ByteDance,

and Anthropic. So far, we have received a response from
ByteDance acknowledging the new side-channel vector identi-
fied in our work. Also, we are actively engaging with SGLang
to discuss updates to counter the attack.

II. LLM SERVING

In this section, we describe the background of LLM serving,
with a particular emphasis on multi-tenant LLM serving and
KV cache sharing strategies, setting the stage for our explo-
ration of potential security risks. Specifically, LLM serving
refers to deploying Large Language Models (LLMs) to offer
inference service. Various frameworks, including vLLM [32],
SGLang [61], LightLLM [34], and DeepSpeed [40], have been
developed to serve LLMs.

A. LLM Inference

As the core of LLM serving, the inference mechanism is
primarily based on Transformer blocks [47], which consist of
multi-head attention mechanisms and feed-forward networks.
Given a sequence of input tokens, LLMs sequentially produce
output tokens through an autoregressive process. The inference
process is segmented into two main phases: the prefill phase
and the incremental decoding phase. In the prefill phase, LLMs
simultaneously process all the input tokens, resulting in the
production of the first output token. Subsequently, during the
decoding phase, LLMs generate subsequent output tokens,
each relying on the previously produced token, thus building
the response iteratively.

KV cache. Through the inference process, each token gen-
erates a unique Key-Value cache (KV cache) [37], used for
decoding further tokens and reducing computational overhead.
Some notable characteristics of KV cache include:
• The computation of KV cache depends on all the previous

tokens, which means that the same token does not always
generate the same KV cache. For example, in the phrase
“How do you do?”, the two ‘do’s produce distinct caches.
• Conversely, when preceding tokens are identical, their re-

sulting KV caches are also identical. This is observed in
sentences like “I enjoy coding” and “I enjoy debugging”,
where the tokens ‘I’ and ‘enjoy’ generate the same KV cache
in both instances, under the same LLM.
• KV cache poses a significant bottleneck in LLM serving,

due to its considerable memory requirements. It consumes
roughly 1MB per token [13], and can easily grow larger than
the model weights [12]. Given the limited GPU memory,
emerging research suggests storing the KV cache in CPU
memory or on disk, and retrieving it as needed [29], [38].

B. Multi-tenant LLM Serving

Multi-tenant LLM architecture spans a wide spectrum from
small-scale local setups to large-scale cloud deployments.
A pervasive challenge across these scenarios comes from
the constrained GPU memory compared to the extensive
KV-cache demands of individual requests (Sec. II-A), which
makes batching multiple users’ requests difficult. One solution

2

Request 1:

Help me translate this
sentence into English,
...

Request 2:

Help me translate this
sentence into French,
...

(a) KV cache shared: “Help me
translate this sentence into”.

Request 1:

Help me translate this
sentence into English,
...

Request 2:

Translate this sentence
into English,
...

(b) No KV shared because the
first tokens are different.

Figure 2: KV cache sharing policy.

proposed by prior works [32], [61], [53] is to share the KV
cache among the users’ requests. In this way, the GPU can
process and batch more requests concurrently. Additionally,
leveraging the prior stored KV cache can reduce the time
required to serve the request [32], [61], [53].

KV cache sharing. As introduced in Sec. II-A, the KV
cache for a given token remains consistent across different
requests if all preceding tokens in those requests are identical;
that is, the KV cache produced by a token in the request
can be reused by another request, as long as all preceding
tokens match. Figure 2 depicts scenarios of KV cache sharing,
highlighting that sharing is feasible only when all preceding
tokens match, and a mismatch in the initial token prevents
any sharing. Automatic KV cache sharing has been enabled in
many state-of-the-art LLM frameworks, such as SGLang [61]
and vLLM [32]:
• In vLLM [32], [22], incoming requests generate KV Cache

Blocks as usual (for both prefilling and decoding phase),
each tagged with metadata including a hash of previous
tokens, last accessed time, and a reference count tracking
active sequences using the block. These caches are retained
in memory for as long as possible. When memory limits are
reached, the oldest KV caches are evicted to make space.
For subsequent requests, the system assesses the potential
for cache reuse by comparing the hashes of incoming request
blocks against those of existing KV Cache Blocks, facilitating
efficient cache sharing.
• SGLang [61], [20] presents a more thorough discussion on

the KV cache sharing mechanism. It utilizes a radix tree for
storing KV cache, also maintaining them in GPU memory
as long as space permits. In particular, when multiple users
send requests, the system queues them and forms a batch
from the first few. The KV cache for these requests is then
calculated and stored in the GPU using a radix tree.
1) For cache eviction, it uses a Least Recently Used (LRU)
strategy when GPU memory is full. Only the KV cache for
tokens in the current running batch is kept, while all other
entries are removed. For example, if ”Imagine you are an
IT expert” is stored and the running batch contains ”Imagine
you are an IT specialist,” the shared part ”Imagine you are
an IT” is preserved, but ”expert” is evicted to free memory.

Figure 3: System model.

2) For scheduling policy, SGLang implements a state-of-the-
art scheduling policy, namely Longest Prefix Match (LPM),
to mitigate cache thrashing. This policy organizes incoming
requests by sorting them based on the length of shareable
tokens that match the previously stored KV cache entries.
For example, if the KV cache for the request “Imagine
you are an IT expert” is stored and there are two pending
requests—“Imagine you are an IT specialist” and “Imagine
you are an actor”—the system prioritizes the first request
because it shares a longer token sequence with the stored
KV cache.

III. OVERVIEW

As introduced in Sec. II-B, multi-tenant LLM serving spans
a broad spectrum, from small-scale local deployments to large-
scale cloud-based applications. Some critical factors may vary
across these scenarios, posing distinct challenges in achieving
a comprehensive model of each. As the first attempt to analyze
LLM serving security, we establish a unified system model
for all scenarios in Sec. III-A, discuss the considered threat
model in Sec. III-B, and present the high-level overview of
our proposed attack, PROMPTPEEK, in Sec. III-C.

A. System Model

Figure 3 illustrates a high-level overview of our system
model. In general, multiple users send requests to the LLM
inference server independently. The scheduler aggregates the
requests into batches within the request queue and dispatches
them to the GPU worker for inference processing. Upon
completion of the inference, the results are relayed back to
the users by the scheduler.
Entities. This system model consists of three entities: users,
scheduler, and GPU worker.
• Users. We assume N users utilize the LLM service, with

each dispatching its request (denoted by r) to the inference
server at a frequency f . N and f can vary significantly from
local setups to cloud applications, which are thoroughly ana-
lyzed and evaluated in our research. Each request r consists
of i tokens {t1, t2, . . . , ti}, where i varies and represents
the length of each request. After being processed by the
inference server, each user receives an output comprising j
tokens {ti+1, ti+2, ti+3, . . . , ti+j}, where j varies and can
be specified through user-defined settings in the serving
framework (e.g., max tokens in vLLM) [20], [22].
• Scheduler. The scheduler sorts the incoming requests
through a predetermined scheduling policy PS , and assem-
bles the first m requests {r1, r2, . . . , rm} into a batch b

3

directed to the GPU worker, adhering to a specified batching
policy PB . All requests within the same batch are processed
concurrently, and their KV cache is managed by policy PKV .
After obtaining the results from the GPU worker, it ensures
each outcome is delivered to the appropriate user following
the output policy PO.
• GPU worker. The GPU executes the inference task using
the LLM loaded in its internal memory on the incoming batch
b. For simplicity, we only consider hosting a single LLM
on a single GPU in our system model. The GPU memory
capacity M is divided into three primary components: model
parameters Mmodel, KV cache MKV , and others for activa-
tion Mothers [32]. Mmodel statically persists in GPU memory
throughout the serving process; Mothers takes a small amount
of memory space, while the remainder is all for MKV , which
is allocated per request during serving. Given that the size of
each token’s KV cache, denoted by mti (mti depends on the
specific LLM), the maximum number of tokens, Tmax, can
be calculated as Tmax = MKV

mti
. As introduced in Sec. II-B,

when the KV cache sharing is on, the KV cache can be
preserved as long as there is still enough memory in the
GPU. Once the number of processed tokens reaches max
token capacity Tmax, KV cache eviction is performed, in
accordance with the eviction policy PE .

Policy specifications. We specify the suite of policies adopted
in our system model’s operations as follows:

• Scheduling policy PS . Scheduling policy refers to how
the scheduler manages the incoming requests. In our system
model, we consider the state-of-the-art scheduling policy tai-
lored for KV cache sharing—Longest Prefix Match (LPM)—
from SGLang (Sec. II-B), which is the only scheduling policy
designed to enhance KV cache sharing efficiency. In this
case, the waiting requests are sorted based on the length of
matched tokens, and those having longer shared KV will
be served earlier. Other policies include First-In-First-Out
(FIFO), which processes requests by their arrival time, and
Random, which processes requests arbitrarily [20].
• Batching policy PB . Batching policy refers to how the
scheduler groups requests for GPU processing. In our system
model, we follow the existing frameworks [32], [61] and
adopt continuous batching. Continuous batching ensures that
a batch of requests is formed whenever there is sufficient
available space in the GPU. The batch size is dynamically
determined based on the remaining memory capacity. Alter-
natives include static batching [8], where the system waits
for the entire batch to complete before starting the next.
Additionally, the batch size is also influenced by server con-
figuration parameters, such as max num seqs in vLLM [22].
These parameters impose a maximum limit on the batch
size, ensuring it does not surpass predefined thresholds. A
large batch size can enhance throughput but also increase
individual latency. Thus, having a maximum batch size is
critical to ensure balanced performance, which is vital for
the responsiveness of online LLM services [11].

Figure 4: Attack overview.

• KV cache policy PKV . KV cache policy states how the
KV cache is managed and shared. In our system model, we
follow the state-of-the-art KV cache sharing mechanism in
SGLang [61], where a radix tree is used for storing KV
cache. In fact, the concept of KV cache sharing was first
introduced by vLLM [32], but the sharing mechanism has not
been discussed in detail and is still under development [22].
• Output policy PO. Output policy refers to how the sched-
uler delivers the generated results to users. Our system model
aligns with the methodology employed by OpenAI [15],
where responses are streamed to users in real time. Specifi-
cally, the first generated token is immediately sent back to the
corresponding user, starting the response process instantly.
• Eviction policy PE . Eviction policy refers to how the

system evicts KV cache when the storage capacity is reached.
In our system model, we follow the eviction policy from
existing frameworks [32], [61], applying the Least Recently
Used (LRU) policy for KV cache eviction. Notably, when
the memory capacity is reached, all KV cache entries except
those in the current batch are evicted simultaneously, creating
substantial free space on the GPU with each eviction.

B. Threat Model

The adversary’s goal is to reconstruct the prompts sent by
other users using the side channel information. We examine
various scenarios in Sec. V where the target may vary from
the entire prompt to specific parts of it. For instance, if we
assume the adversary knows the prompt template (e.g., the
adversary and the users are using the same LLM application),
then the target is the input (Sec. V-B).

The adversary’s capabilities are the same as those of an
ordinary user, with no direct control over the inference server.
We assume the attacker knows the default internal mechanisms
of the LLM server (e.g., scheduling policy, eviction policy,
as stated in Sec. III-A), following the standard assumption in
prior side-channel research [33]. The background knowledge
of the LLM extends only to the tokenizer, which is always
accessible to the adversary. For instance, closed-source LLM
services like OpenAI publicly release their tokenizer [21], [16]
for token-level billing, and open-source LLMs [14] also make
their tokenizers public, which remain unchanged after fine-
tuning. Furthermore, adversaries can only interact with the
server through the commonly defined client APIs provided
by LLM serving frameworks [22], [20] (e.g., setting the max
output length by max tokens in vLLM) [22].

4

C. Attack Overview

We next outline our proposed attack, PROMPTPEEK, against
multi-tenant LLM servings. The intuition behind PROMPT-
PEEK is that the state of one tenant’s request can be influenced
by others, inadvertently creating cross-tenant side channels.
Figure 4 illustrates the high-level attack overview. Initially,
the user submits a request to the LLM server, where its KV
cache is computed and retained. Subsequently, an adversary
carefully crafts and dispatches requests to the LLM server.
Using a side channel established through the response, the
adversary is able to determine if her request has reused the KV
cache previously stored for the victim user—namely, whether
it shares a consecutive token sequence starting from the initial
tokens with the victim user (see Sec. II-B). By using this side
channel information, which we will explain in more detail in
Section IV, the adversary can ascertain whether their input
tokens match with those of the user, thus reconstructing the
user’s input.

Specifically, PROMPTPEEK is executed in a loop, in which
each iteration extracts one token. The end of this loop leads to
a reconstruction of a prompt from the extracted tokens and, if
needed, repeats PROMPTPEEK to attack another prompt.
• Token extraction is the very basic attack primitive in

PROMPTPEEK to recover one token from a prompt. This pro-
cess includes the generation of candidate tokens, the selection
of tokens to be sent to the LLM, and the determination of a
match via side channels.
• Prompt reconstruction is performed after repeating the

basic attack primitive multiple times. The adversary gradually
reconstructs the whole prompt using the extract tokens. The
main task for the adversary is to determine when to conclude
the prompt reconstruction and to switch to another one.

IV. PROMPTPEEK

In this section, we present token extraction in Sec. IV-A and
prompt reconstruction in Sec. IV-B.

A. Token Extraction

PROMPTPEEK extracts one token from another user’s
prompt at a time, progressively reconstructing the entire
prompt by repeating the token extraction procedure. Therefore,
token extraction can be seen as an attack primitive, which
can be divided into two distinct phases: candidates generation
phase and token selection phase. In the candidates generation
phase, the adversary creates likely candidates for the next
token. In the token selection phase, the adversary sends these
candidates to the LLM and uses side channel information to
determine which candidate token matches the target token.
Figure 5 illustrates this token extraction attack primitive.
Assuming the LLM server has stored the KV of a prompt
“Imagine you are an IT expert,”, and the adversary is preparing
to reconstruct the next target token, ‘an’, with the already
reconstructed fragment “Imagine you are”.

Figure 5: Token extraction in PROMPTPEEK.

1) Candidates Generation: We generate candidate tokens
using existing strategy in jailbreaking attacks [42], where one
LLM is used to attack another LLM. In this case, the adversary
sets up a local LLM and uses it to generate the top k most
likely tokens as candidates, based on the already reconstructed
fragment. For instance, given the input “Imagine you are,” the
local LLM might suggest candidates such as “Imagine you are
an”, “Imagine you are a”, “Imagine you are the”, etc.

The adversary’s local LLM can be any LLM that uses
the same tokenizer as the target LLM service—a reasonable
assumption following our threat model (Sec. III-B). This is
essential because different tokenizers may segment text dif-
ferently [39]. For instance, some might treat a whole word as
one token, while others break it into subwords, leading to a
token mismatch. Different LLMs may vary in their ability to
correctly predict the next word, but it is not the focus of our
study. For simplicity, we assume the attacker uses the same
LLM as the target LLM service.

Additionally, the local LLM identifies one least likely token
as a dummy token and generates a corresponding dummy
request for the adversary (e.g., “Imagine you are %”). The
dummy token is only used to facilitate the observation of
the side channel (further explained in the token selection
phase). With a very minimal chance that the dummy token
matches the target, reconstruction of this prompt will stop and
PROMPTPEEK immediately switches to another prompt.

2) Token Selection: This phase involves strategically send-
ing dummy and candidate requests and observing the return
order as side channel information to determine if any token
matches. PROMPTPEEK exploits the default scheduling policy,
LPM (Longest Prefix Match, Sec. II-B), which prioritizes the
longest matching token sequences. More specifically, among
all incoming requests queued for scheduling, those with a
longer matched token sequence—even by one token—will be
prioritized and served first. This indicates that the successfully
matched candidate is processed before the rest, and PROMPT-
PEEK strategically sends the requests to make this effect more
distinguishable.
• Candidates sending strategy. Simply sending all candidate
requests concurrently and examining the return order cannot
determine if the order has been altered, as it is uncertain
whether the first returned request just arrived earlier by
chance or because its order was intentionally changed by
LPM. Thus, as depicted in Figure 5, we introduce dummy
requests both before and after the candidates. The pre-
candidate dummy requests fill up the waiting queue to ensure

5

Running batch:

Imagine you are % +
Imagine you are % |-Run
Imagine you are % +

Running batch:

Imagine you are % +
Imagine you are % |-Run
Imagine you are % +

Stored KV cache:

Imagine you are an IT expert (from victim)
Imagine you are % (from dummy requests)

Waiting queue:

Imagine you are % +
Imagine you are % |
Imagine you are % |-Pre
Imagine you are % |
Imagine you are % +
Imagine you are a +
Imagine you are an |-Cands
Imagine you are the+
Imagine you are % +
Imagine you are % |
Imagine you are % |-Post
Imagine you are % |
Imagine you are % +
...

(a) Serving order before LPM.

Waiting queue:

Imagine you are % +
Imagine you are % |
Imagine you are % |-Pre
Imagine you are % |
Imagine you are % +
Imagine you are an +-Match
Imagine you are % +
Imagine you are % |
Imagine you are % |-Post
Imagine you are % |
Imagine you are % +
Imagine you are a +
Imagine you are the|-Cands
...

(b) Serving order after LPM.

Figure 6: Impact of LPM on the serving order.

that all candidates are in the waiting queue and are scheduled
according to the LPM policy. The post-candidate dummy
requests amplify the order effect, creating a distinguishable
pattern when the order is indeed changed. All dummy re-
quests are identical in one iteration. Additionally, we set the
output length of all requests, whether dummy or candidate,
to just one (by exploiting the client API to set the max output
length). This approach minimizes the strain on GPU memory
and maintains the effectiveness of our attack.
• Side channel information. Figure 6 illustrates how LPM
influences the service order of incoming requests when there
is a successful match. Figure 6-a depicts the snapshot prior
to LPM taking effect, where requests arrive sequentially as
dummy-candidates-dummy (Figure 5). Initially, a batch of
dummy requests fills the running batch, causing subsequent
requests to queue up. At this stage, the dummy requests,
which are in execution, have their KV cache calculated and
stored. Now the stored KV cache contains both phrases
“Imagine you are an IT expert” from the victim, and “Imagine
you are %” from the dummy requests. Subsequently, LPM
sorts the waiting queue based on the length of tokens matches
with the stored KV cache. In this specific example, both the
dummy requests and one matched candidate have a matched
token length of 4, whereas other candidates have a matched
token length of 3. Requests with equal match lengths retain
their original order in the queue. This ordering process results
in the matched candidate being sandwiched between the
dummy requests, as shown in Figure 6-b, while other candi-
dates will wait until both the dummy and matched requests
have been processed. In summary, the observable patterns
from the adversary are straightforward: if a match occurs, the

order of return requests is, pre-candidate dummy requests, the
matched request, post-candidate dummy requests, and then
the remaining candidate requests; if no match occurs, the
sequence is pre-candidate dummy requests, post-candidate
dummy requests, followed by all candidate requests.
• Request batch size. The batch size of candidate requests

does not need to be equal to the number of candidates
generated by the local LLM. As evaluated in Sec. VI,
some tokens may require thousands of candidates to be
successfully recovered, while others need fewer than ten.
A larger candidate request batch speeds up the attack by
reducing the rounds needed to send candidates but may
waste requests. In contrast, a smaller batch makes the attack
slower but optimizes request usage. We evaluate the impact
of candidate batch size on attack time and request usage
in Sec. VI. As for the dummy request batches, the number
of pre-candidate dummy requests should exceed the server’s
max batch size setting (see Sec. III-A) to ensure that the
incoming candidate requests queue up and are scheduled by
LPM, while the number of post-candidate dummy requests
should also exceed the maximum batch size. This ensures that
unmatched candidates are not processed in the same batch as
the post-candidate dummy requests, preventing interference
with pattern observation. We also evaluate the impact of
dummy batch size on the attack in Sec. VI.

B. Prompt Reconstruction

By repeating the token extraction process, the adversary can
gradually reconstruct the prompt. Next, we present our strategy
for deciding when to finish reconstructing one prompt and
switching to another. Additionally, we propose an optimization
strategy that enables the adversary to reconstruct prompts from
a clean slate.

Adversary
GPU Memory GPU Memory GPU Memory

GPU Memory GPU MemoryGPU Memory

LLM Server

INITIAL ? ?

? ? ?

Users

? Clear GPU Memory

? Token Extraction

Token Extraction

? Prompt Switching

Send Requests

?
?

? ?
?

Figure 7: Prompt reconstruction of PROMPTPEEK.

1) Prompt Switching: The adversary should switch to re-
constructing another prompt if the current target prompt has
been evicted from memory. Although the adversary cannot
directly know when the target prompt is evicted, it can infer
so by monitoring its own unmatched candidate prompts. Since
these candidate prompts are sent after the target prompt, the
eviction of a candidate prompt indicates that the target prompt
has also been evicted based on LRU. The target prompt might

6

occasionally remain longer than the candidate requests due to
active uses by the victim user. We do not consider such corner
cases in our analysis.

Using the example from Figure 5 where we are reversing
the prompt “Imagine you are an IT expert” and have already
reversed “Imagine you are” with the next target token being
“an”. If a previous candidate request to guess “are” was
“Imagine you were”, we can determine if the target prompt is
still in memory by testing if “Imagine you were” is flushed. If
it is flushed, it indicates that the target prompt has also been
flushed and it’s time to switch to another prompt. This check
can be done every round or every few rounds, serving as the
condition to switch to another prompt.

We continue to employ the strategy outlined in Sec. IV-A to
determine whether an unmatched candidate request has been
flushed. We resend the previously sent candidate request and
surround it with dummy requests of the same length, both
before and after the candidate. If this candidate request is
already flushed, its order will be disrupted, as it has one fewer
token than the matched length of the dummy requests. For
instance, if the prompt “Imagine you were” is flushed, the
sequence “Imagine you” remains active and is not flushed due
to continuous extraction efforts. Therefore, “were” is the only
part that gets flushed, resulting in one shorter matched length.

2) Optimization: Our attack strategy exploits the available
GPU memory, where more remaining memory enables longer
prompt reconstructions. However, each time we initiate a new
prompt reconstruction, the GPU’s memory usage is unknown.
To ensure a fresh start for each prompt reconstruction, we
manually flush the GPU’s KV cache. According to the eviction
policy, when GPU memory reaches capacity, all stored KV
caches, except those used by the current batch of requests,
are automatically cleared (Sec. III). To trigger the eviction,
we send non-identical dummy requests to saturate the GPU
memory. By periodically checking if any dummy request is
flushed—same as the prompt switching method—we can tell
if the KV cache eviction is triggered and has released most
of the KV cache. After a brief waiting period to allow new
prompts from the victim user to arrive, PROMPTPEEK begins
reconstructing a new prompt from these newly arrived ones.

Non-identical dummy requests. During the token extraction
phase, we used identical dummy requests to avoid additional
memory use. However, for non-identical dummy requests, we
begin each request with a unique token followed by a long
token sequence, which ensures that each request cannot share
the KV cache. Also, we set the output token length for these
requests to the maximum possible, contrasting with the single-
token output used in identical dummy requests.

Figure 7 details the prompt reconstruction process. Initially,
the adversary clears the KV cache by sending dummy requests,
creating a clean slate. After a brief waiting period t, during
which N users send requests at frequency f (Sec. III), the
server accumulates N × f × t prompts. The adversary then
hooks one of these prompts and reconstructs this prompt by re-
peating token reconstruction. During this process, both users’

requests and the attacker’s requests squeeze the remaining
GPU memory. The process concludes once the GPU reaches
its capacity and this prompt is confirmed to be flushed from
memory. By repeating the process, the adversary continuously
extracts prompts from the LLM service.

V. ATTACK SCENARIOS

In this section, we explore three widely recognized scenarios
to demonstrate the application of PROMPTPEEK.

A. Scenario 1: Whole Prompt Reconstruction

Scenario description. This scenario represents the basic case,
where the adversary has no prior knowledge about the victim
users or the prompt. It also represents the most common
situation in today’s LLM services [5], where diverse users
independently send their prompts to the service without shar-
ing commonalities in their content. This scenario serves as
the baseline, and is used to test the overall effectiveness of
PROMPTPEEK.

Threat model. This scenario follows the threat model de-
scribed in Sec. III-B.

Methodology. This scenario employs the attack mechanism
outlined in Sec. IV without any modification to assess the
PROMPTPEEK’s effectiveness.

B. Scenario 2: Input Reconstruction

Figure 8: Input reconstruction.

Scenario description. This scenario follows the attack model
shown in Figure 4, where the attacker possesses additional
knowledge of the users’ prompt template and tries to recon-
struct the exact users’ input. The prompt template, a creation
of prompt engineering [50], [48], is designed to guide users
in submitting inputs to achieve more accurate answers. Com-
monly, these templates may be shared by different users or
within a specific group, whereas the precise inputs remain con-
fidential between individual users. As LLM applications [60]
become increasingly prevalent, this scenario is gaining promi-
nence, with users of the same application often employing
identical prompt templates. Figure 8 demonstrates this scenario
using a template from PromptBase, one of the largest prompt
marketplaces [18]. In this case, the majority of the prompt is
predetermined by the template. The elements “[language]”,
“[subject]”, and “[number]” are placeholders where users
insert their specific, confidential information, representing the
victim’s core secrets. We consider two main prompt templates
in our research following the previous study [17]:

7

Table I: Prompts dataset.

Prompt style Dataset Example Count

general ultrachat [28] What are some of the most intriguing museums to discover in the city of Paris, France? Wow, there are
so many interesting museums in Paris! Which one do you think I should visit first? I think I’ll start with
the Louvre since it’s so iconic. Can you give me any tips on how to navigate such a massive museum?
I’m so excited to see the Mona Lisa. Do you think it’s worth waiting in the crowds to get a closer look?

77444

cloze-style PromptBase [18] You are an [language] teacher who will provide me with vocabulary exercises on [subject] with [number]
questions when I write to you. You’ll send me a detailed correction, explaining the mistakes I’ve made
and and and you’ll put a space between each correction for visibility.

180

role-based awesome-chatgpt-
prompts [3]

I want you to act as my personal shopper. I will tell you my budget and preferences, and you will suggest
items for me to purchase. You should only reply with the items you recommend, and nothing else. Do
not write explanations. My first request is “I have a budget of $100 and I am looking for a new dress.”

153

instruction-based alpacca-gpt4 [2] Reword the following sentence to the past tense. She is writing a novel inspired by her grandfather. 1000

• Cloze-style prompts: These prompts consist of incomplete
sentences or paragraphs with missing words or phrases,
where the users fill in with their personal information.
Figure 8 is an example of the cloze-style prompts.
• Prefix-style prompts: These prompts begin with a prefix
that sets the direction for the user’s response. Variants in-
clude role-based prompts, where the LLM adopts a specific
role (e.g. “imagine you’re an IT expert”); instruction-based
prompts, which provide a single instruction to LLM (e.g.,
Reword the following sentence to the past tense. She is
writing a novel inspired by her grandfather.).

Threat model. Building on the threat model in Sec. III-B,
the adversary’s goal changes to deduce the other users’ inputs
instead of the whole prompt. Besides, the adversary’s capa-
bilities are enhanced by possessing background knowledge of
the prompt template used by the users.

Methodology. The methodology differs depending on whether
cloze-style or prefix-style prompts are used.
• Cloze-style prompts: Under cloze-style prompts, directly

using local LLM to generate candidate tokens is tricky.
Instead, we adopt prompt engineering [50], [48] to guide
the local LLM to generate a better result. and we use the
prompt “Give you a template: ‘cloze-template’. Sequentially
guess the detailed input:” to guide the local LLM to generate
candidate tokens.
• Prefix-style prompts: The prefix in the prefix-style prompts

ensures that the sequence contains enough information for
the local model to predict the next token. We still adopt
prompt engineering to guide the local LLM to generate better
candidate tokens. Specifically, for role-based prompts, we
use the prompt “Here’s a template for your role: role-based
template, based on your role, guess what I will give you:”
to generate candidates, and we use the prompt “Below is an
instruction that describes the task, please infer the most likely
paired inputs:” to generate candidate tokens for instruction-
based prompts.

C. Scenario 3: Template Reconstruction

Scenario description. In this scenario, the input is known
while the template is unknown. The value of the template itself

Figure 9: Template reconstruction.

is of significance, as prompt templates are closely guarded se-
crets within prompt engineering services. Various studies [36],
[57] have shown the value of the prompt templates and
some possible attacks to extract these templates. Figure 9
illustrates an example of template reconstruction scenarios. In
this case, the adversary initially utilizes a prompt engineering
service to send a targeted request to the LLM server, which
automatically appends the prefix “Imagine you are an IT
expert.” Subsequently, the adversary directly interacts with the
LLM server to launch an attack aimed at deducing the prompt
templates that were added by the prompt engineering service.

Threat model. This threat model slightly diverges from the
one described in Sec. III-B. Here, the adversary’s goal shifts
from deducing another user’s prompt to reconstructing the
prompt template used by the prompt engineering service.
Besides, the adversary’s background knowledge also shifts to
having access to the input and output from the LLM server,
whereas the prompt template remains unknown. Nonetheless,
the adversary still has no direct control over the LLM server
or the prompt engineering service.

Methodology. Similar to Sec. V-B, we also consider the cloze-
style and prefix-style prompts, and utilize prompt engineering
to help generate candidate tokens and sequentially reverse the
prompt template. The only difference is the prompts used by
the local LLM to generate candidate tokens. Since we know
both input and output, the prompt is set as “Below are a pair of
input and out corresponding to an instruction which describes
the task: Please inferring the instruction:” for instruction-based
prompts; “Here’s the input and output based on your role:
Guess the prompt that defines your role:” for the role-based

8

prompts, and “Here’s the input and output: Guess the prompt:”
for cloze-style prompts.

VI. EVALUATION

In this section, we evaluate PROMPTPEEK in the three
scenarios as described in the previous section, addressing two
main questions:
• [RQ1] Effectiveness: How effective is PROMPTPEEK at

extracting prompts from the LLM server?
• [RQ2] Cost: How many attack requests are sent in

PROMPTPEEK to extract one prompt?

A. Experimental Setup

Although vLLM [32] first introduced the concept of KV
cache sharing, this function is not comprehensively discussed
and is still in development [22]. By contrast, SGLang [61]
offers a more comprehensive discussion on KV cache sharing,
scheduling, and eviction policy. Thus, our experiments are
based on SGLang with additional configurations. All experi-
ments are performed using one A100 80G and Llama2-13B [9]
as the target LLM.
• LLM server configurations. We employ a standard LLM

service configuration with all features related to KV cache
sharing enabled (Sec. III-A). We set the temperature to zero
for deterministic output, and exclude optimizations like beam
search. We add the maximum running batch size to 16 [11]
and a maximum output token length for each request at 128.
• User configurations. To simulate an online LLM service,

we set each user’s request frequency at 40 requests every 3
hours (0.004 requests per second), according to the standard
of OpenAI ChatGPT4 [7]. We increase the number of users
to simulate higher levels of concurrent requests. For example,
having 250 users results in 1 request per second. Besides, we
randomly select prompts from our test dataset to serve as the
prompt sent by each user.

Prompt dataset. As stated in Sec. V-B, we adopt various
distinct types of prompts from four separate datasets. Table I
shows the dataset we use and the examples of each dataset. In
particular, the ultrachat [28] dataset is the general chat history
with no specific structure or template. We use it to simulate
the real-world prompts and to evaluate the effectiveness of
PROMPTPEEK in Sec. VI-B. Besides, for the other three
datasets with certain prompt styles, we use these in our cost
evaluation (Sec. VI-C) to show how different types of prompts
affect the attack cost of PROMPTPEEK.
• General prompts. To simulate the interaction between users

and LLM servers in real-world, we selected the Ultrachat [28]
as the general prompts. This dataset is constructed by two
chatbots, resulting in large-scale dialogue data. Specifically,
each dialogue contains multiple rounds of questions and
answers, in which the questions are extracted and used as
the prompts to be guessed.
• Cloze-style prompts. We get the cloze-style prompts from
one of the largest prompt marketplaces—PromptBase [18]. In
general, it contains 18 categories, including Ads, Business,

Chatbots, Coaches, Conversion, Code, Copy, Emails, Fash-
ion, Finance, Fun, Funny, Food, Games, Health, Ideas, Lan-
guage, and Marketing. Each category consists of 10 prompts,
resulting in a total of 180 prompts. Each prompt consists of
two parts: inputs and templates. The inputs are unique, user-
specific elements, while the template remains constant. In the
example from Table I, the [language], [subject], and [number]
represent the input fields, and we use the “example input” of
this prompt from PromptBase to serve as the input. The rest
is the template for this prompt.
• Role-based prompts. We get 153 role-based prompts
from the open-source prompt dataset awesome-chatgpt-
prompts [3]. We treat the role-playing instruction as the
template, while specific questions are considered the inputs.
For the example in Table I, the sentence “I have a budget of
$100 and I am looking for a new dress.” is the input and the
rest is the template.
• Instruction-based prompts. We randomly select 1000
instruction-based prompts from another open source prompt
dataset alpacca-gpt4 [2]. We treat the instruction as the
prompt template and the actual question as the input. For
the example in Table I,“Reword the following sentence to
the past tense” is the template and the rest is the input.

Evaluation metrics. We adopt two evaluation metrics.
• Extracted prompt length. We evaluate the effectiveness of

PROMPTPEEK by measuring the number of tokens in each
extracted prompt. In particular, we consider the average
length of all extracted prompts as the metrics.
• Attack requests count. We evaluate the cost of PROMPT-

PEEK by the number of requests sent by the adversary. We
count the requests required to extract both entire prompts and
individual tokens.

B. RQ1: Effectiveness Evaluation

We evaluate the effectiveness of PROMPTPEEK in scenario
1, the most challenging scenario where the adversary holds
no prior knowledge of other users’ prompts. We randomly
select prompts from the dataset and send them to the LLM
server, meanwhile launching PROMPTPEEK until 100 prompts
are extracted. The average length of these prompts serves as
a measure of attack effectiveness. As mentioned in Sec. IV,
the effectiveness of PROMPTPEEK largely relies on the attack
space, i.e. the remaining GPU memory, which is influenced by
three key factors: the system’s GPU capacity, the number of
concurrent requests from normal users, and the attack requests.
We individually evaluate these three factors and demonstrate
how each one affects the effectiveness of the attack.

1) Impact of concurrent users’ requests: We assume each
user sends requests at a frequency of 0.004 requests per second
(Sec. VI-A), and we gradually increase the number of users to
raise the concurrency level. All other conditions remain con-
stant, where we set the memory capacity to the full 80GB and
configure attack parameters with a dummy request batch size
of 20 and a candidate request batch size of 50. Figure 10 shows
the impact of the concurrency level. When the number of users

9

1 5 25 50 100 150 200 250 350 500 750 1000
Number of concurrent users

0

50

100

150

200

250

300

350
Ex

tr
ac

te
d
pr
om

pt
 le

ng
th

Figure 10: Impact of concurrency level.

40 50 60 70 80
GPU memory size

0

50

100

150

200

250

300

Ex
tr
ac

te
d
pr
om

pt
 le

ng
th

Figure 11: Impact of memory capacity.

1 5 10 20 40 60 80 100 140 200
Batch Size

0

20

40

60

80

100

120

140

160

Ex
tr
ac

te
d
pr
om

pt
 le

ng
th

Dummy Size
40
80
120
160

Figure 12: Impact of attack requests.

is less than 200, the average extracted prompt length remains
consistent, indicating that PROMPTPEEK efficiently extracts
nearly the entire prompt every time and is not significantly
impacted by the concurrent users’ requests. However, when
the number of users exceeds 200, the average extracted prompt
length significantly decreases, indicating that the concurrency
level starts to dominate and strains the attack space. This
suggests PROMPTPEEK performs better when the GPU is
underloaded and constrained when the GPU is overloaded.

2) Impact of memory capacity: We adjust the GPU memory
capacity from 40GB to 80GB by forcing the size of usable
memory, while keeping all other conditions the same as before,
including 200 concurrent users. Figure 11 shows the impact
of the GPU memory, where capacities below 70GB start to
affect PROMPTPEEK’s effectiveness. The result offers another
perspective on how the available attack space influences
PROMPTPEEK’s effectiveness. Considering the latest proposals
that transferring KV cache to CPU or disk, PROMPTPEEK can
still be effective even if the GPU is overloaded.

3) Impact of attack requests: As stated in Sec. IV, the
attack parameters, including the candidate batch size and the
dummy batch size, can vary and also affect the effectiveness
of PROMPTPEEK. We evaluate how the size of candidate batch
and dummy batch affect the effectiveness respectively in Fig-
ure 12. Firstly, a small candidate batch size reduces the number
of requests but increases the number of rounds required to
send batches. This extends the time needed to reverse one
token, allowing more users’ requests to accumulate, which
strains GPU memory and affects the attack’s effectiveness.
By contrast, a large candidate batch size decreases the time
required to reverse each token but can introduce redundant
candidate requests, potentially straining GPU memory and
impacting overall system performance. From Figure 12 we
can tell the effectiveness first goes up then goes down as we
gradually increase the candidate batch size, and peaks at a
batch size of 40. Secondly, using a larger dummy batch size
can reduce the effectiveness of PROMPTPEEK. A larger size
increases the time required to reverse each token, resulting in
an accumulation of user requests that strain the GPU memory.

C. RQ2: Cost Evaluation
Our previous evaluation (Section VI-B) demonstrates the

three key factors impacting the attack’s effectiveness. Notably,

the number of attack requests not only affects the attack’s
effectiveness but also represents an overall cost. Unlike static
factors like concurrency level or memory capacity, attack cost
is variable and influenced by multiple factors, not only attack
parameters such as batch sizes or dummy requests, as well as
different scenarios and prompt types.

To gain deeper insights into attack cost, we conduct exten-
sive experiments across varying widely recognized scenarios,
diverse prompt datasets and different caching methodologies.
We configure the candidate batch size to one and only con-
sider a single user sending prompts from each dataset. This
approach enables us to target every prompt in the dataset,
providing a more detailed analysis of attack cost at both
prompt and token levels.

1) Overall evaluation results: Table II shows the overall
results for all three scenarios on three different datasets. Since
the size of dummy requests is fixed that determined by the
adversary, we solely count the number of candidate requests.
The results demonstrate that PROMPTPEEK is effective in
various scenarios and additional background knowledge can
enhance PROMPTPEEK’s performance while reducing attack
cost. Compared to scenarios where the adversary lacks back-
ground knowledge, both the average number of requests to
extract one token and the number of requests to extract the
whole prompt significantly decreases when the adversary is
aware of the prompt template or input. On one hand, additional
background knowledge enables the local LLM in PROMPT-
PEEK to generate correct candidates more easily, resulting in
a lower attack cost per token. On the other hand, possessing
additional background knowledge means the adversary already
knows parts of the prompts, reducing the unknown segments
and further decreasing the attack cost per prompt.

Case study. Without the background knowledge from either
knowing prompt input or the prompt template, extracting
certain tokens becomes even more challenging. For example,
for the same prompt “How did the division of the Frankish
Kingdom into separate states affect the course of European
history?”, the token “Frank” takes 4093 requests to extract
when the adversary holds no background information while it
only needs 24 requests with certain background knowledge.

2) Whole prompt extraction (scenario 1): According to
Table II, while the ability to extract prompts is lower than the

10

Table II: Attack results under all three scenarios. Succ. is the number of fully extracted prompts, Part. is the number of
partially extracted prompts and Fail is the number of unsuccessfully extracted prompts. SR stands for success rate, RR stands
for reversal ratio (i.e., extracted length / total length), Req./inp is the average number of requests to extract the entire input,
and Req./tok is the average number of requests to extract one token.

Whole Prompt Extraction Input Extraction Template Extraction

Succ. Part. Fail SR RR Req.
/inp

Req.
/tok Succ. Part. Fail SR RR Req.

/inp
Req.
/tok Succ. Part. Fail SR RR Req.

/inp
Req.
/tok

cloze 56 102 22 87% 64% 4843 212 170 4 6 96% 98% 3115 132 102 78 10 94% 77% 4641 59
role 120 33 0 100% 87% 1502 126 151 2 0 100% 99% 1234 68 150 3 0 100% 99% 1687 21
instruction 899 101 0 100% 93% 2183 172 997 3 0 100% 99% 948 50 995 5 0 100% 99% 1298 18

other two scenarios across all three datasets, the evaluation
result on the cloze dataset drops significantly. After digging
into the results, we notice that it’s related to the dataset,
where the dataset used for the cloze prompts is more chaotic.
We notice that unlike public datasets such as alpacca-gpt4 or
awesome-chatgpt-prompts, the prompts in PromptBase contain
irregular structures, unnecessary symbols, emojis, and typos,
making it more challenging to extract.

Case study. Rarely used sentence patterns can significantly
increase the attack cost, especially when the adversary holds
no knowledge about the prompt. For example, unlike the
consistent “I want you to act ...” structure typically found
in awesome-chatgpt-prompts, one prompt might follow the
format, “CONTEXT \n \n You are an... TASK \n \n You have
to...”, where the sections labeled “CONTEXT” and “TASK”
are challenging to predict, leading to an average of 2,145
requests per token.

3) Input extraction (scenario 2): The input extraction
scenario shows a clearly lower request count per prompt
compared to the other two scenarios since the adversary is
already familiar with most of the prompt (i.e., the template)
and only needs to extract a few user-defined tokens. This
scenario presents the greatest risk, allowing the adversary to
extract core secrets from our users at the lowest attack cost.

Case study. Extracting inputs from cloze-style prompts can
easily expose a user’s core secret because the attacker doesn’t
have to extract the entire context. For example, given the
prompt: “Calculate BMI with an explanation, then create two
plans: one for exercise, one for daily nutrition meals. Include
detailed KPIs, budget estimates, and a shopping checklist,
using the following inputs: [your gender], [age], [weight],
[height].”, where the user inputs are “male”, “35”, “90kg”, and
“5 feet 9 inches”, the attacker only need 60 requests to reverse
all the placeholders and uncover the user’s secrets. In this case,
the partial success can also be damaging. For a long prompt
“Act as a financial advisor skilled in personalized budget plan-
ning. Utilize the user’s monthly income [Monthly Income],
detailed regular expenses (housing, utilities, food, transporta-
tion, insurance, discretionary spending) [Regular Expenses],
debt information [Debt Details], savings and investment con-
tributions [Savings and Investments], ...”, we can only reverse
part of it, resulting in [Monthly Income] as “$4,000”, [Regular
Expenses] as “Housing $1,200, Utilities $300, Food $500,
Transportation $400, Insurance $200, Discretionary Spending

$300”, but it still poses a severe secret leakage.
4) Template extraction (scenario 3): Template extraction

requires significantly fewer requests per token compared to
the other two scenarios. After digging into this, we uncover
that noun words or words that are directly related to a user’s
secret tend to be harder to extract due to the numerous
possible choices, and a lack of contextual clues. By contrast,
connective words like “how,”,“is,” and “the” are easier to
extract, which are the most common components inside a
prompt template. Besides, we find that the prompt template
from the public dataset, no matter instruction-based or role-
based, always follow a similar structure which makes it easier
to reconstruct. However, PrompBase exhibits a diverse style
of templates, which makes it relatively hard to extract.

Case study. Extracting prompt templates can be much easier
than extracting the prompt input. For example, one rep-
resentative example is the prompt “I want you to act as
an English translator,... My first sentence is “istanbulu cok
seviyom burada olmak cok guzel”, where it takes already
1200 requests and still can not guess the first token “ist”. By
contrast, when given the input, it only needs 129 requests to
extract the template. Another factor that simplifies template
extraction is that the adversary has access to the output
generated by the prompt, which can be used to help reverse-
engineer the prompt template. For instance, for the template
“I want you to act as Spongebob’s Magic Conch Shell ...”,
where “Spongebob” might typically be a challenging noun to
reverse. Since the output also mentions “Spongebob’s Magic
Conch Shell”, it takes just 34 requests to reverse-engineer
the “Spon”, illustrating how access to the output can make
reversing easier, even for complex words.

5) Request count per token: Figure 13 shows the distribu-
tion of the request count per token. Generally, over 90% of
tokens are extracted with fewer than 10 candidate requests,
confirming the effectiveness of our method where we deploy
one LLM to predict inputs for another. Additionally, only few
tokens prove exceptionally challenging to reverse, and possess-
ing prior knowledge significantly enhances the effectiveness of
PROMPTPEEK. Despite over 90% of tokens being extracted
with fewer than 10 candidate requests, the average number
of requests per token still spans from dozens to hundreds,
indicating that some tokens are inherently irretrievable. Given
that our attack method reconstructs the prompt token by token,
the inability to reverse even a single token can disrupt the

11

0 5000 10000 15000 20000 25000 30000 35000
Number of tokensclo

ze
-st
yle

ro
le-
ba
se
dins

tru
cti
on
-ba
se
d

(a) Input extraction

<10
10-50
50-200

200-500
500-1000
>1000

0 2000 4000 6000 8000 10000 12000
Number of tokensclo

ze
-st
yle

ro
le-
ba
se
dins

tru
cti
on
-ba
se
d

(b) Template extraction

Figure 13: Request number per token distribution.

Table III: Attack results for Llama3-8B-GQA.

Succ. Part. Fail SR RR Req.
/inp

Req.
/tok

whole prompt extraction 153 0 0 100% 100% 5505 306
input extraction 153 0 0 100% 100% 2670 148
template extraction 153 0 0 100% 100% 2675 35

entire reversal process and cause it to fail. This highlights
a potential defensive strategy: obfuscating prompts with rare
tokens increases their resistance to PROMPTPEEK.

6) Impact of different caching mechanisms: Various KV
caching methods have been proposed, with the state-of-the-art
Grouped-Query Attention (GQA) [23], which reduces memory
usage by allowing multiple query heads to share a single key-
value pair. Despite the differences in caching methods, we
find cache sharing still applies to GQA, where PROMPTPEEK
remains effective. To evaluate how different caching methods
impact the attack, we use Llama3-8B-GQA [10] (with the
default setting of 8 key-value heads) as the target LLM on
the role-based dataset, and the results and attack costs are
presented in Table III. We find that PROMPTPEEK achieves
a better result with 100% success rate, fully reconstructing
the prompts across all three scenarios. This is due to GQA’s
significant compression of the KV cache size, which reduces
the impact of each request on memory, allowing the attacker
to send more requests before the target prompt is flushed.

D. Summary

Our evaluation covers both the effectiveness and cost of
PROMPTPEEK. We evaluate the effectiveness from a large-
scale dataset and mimic the real-world LLM deployment. We
show that the effectiveness of PROMPTPEEK is collectively
influenced by three key factors, which are concurrency level,
memory capacity, and number of attack requests, i.e., attack
cost. In particular, as the concurrency level increases, the con-
current requests quickly take over the GPU remaining memory
and affect the effectiveness of our attack. For the system model

where the KV cache is only stored on the GPU memory,
PROMPTPEEK performs better when the GPU is underloaded.
Besides, we also evaluate how the memory capacity affects
the effectiveness of PROMPTPEEK. Considering the emerging
proposals that suggest transfer KV cache to CPU memory or
disk space, PROMPTPEEK will still be efficient under this
setting. Lastly, we show how the attack parameters affect
the effectiveness of the attack. We modify the candidate and
dummy requests batch and indicates how attack requests affect
the effectiveness as well.

We then expand our evaluation of the attack cost and
evaluate three different datasets across three scenarios. In the
input reversing scenario, our attack reaches 99% of average
success rate and an average reversal ratio of 99% across all
cases. In the template reversing scenario, the average success
rate is 98%, with an average reversal ratio of 91%. Even in
the whole prompt reversing scenario, our attack can still reach
a success rate of 95%, with a reversal ratio of 81%. Since
our attack works by reversing the victim’s prompt token by
token, one potential defense is to obfuscate prompts with rare
tokens, which can make them more difficult to reverse. Lastly,
it’s worth mentioning that we only adopt these three common
scenarios to illustrate our attack’s feasibility, but the approach
can be adjusted for other cases. For example, if the attacker
possesses a corpus of the victim’s chat history with the LLM,
they can fine-tune a local model with this data, leading to
better reversing results.

VII. LESSONS LEARNT: ATTACK CONDITIONS

Both our attack description in Sec. IV and our evaluation in
Sec. VI demonstrate the feasibility and potential consequences
of exploiting the KV cache sharing. We recognize that LLM
serving frameworks are rapidly evolving, and the practice of
KV cache sharing is still in its early stages. Our research
extends beyond existing frameworks or policies, aiming to
shed light on the future development of KV cache sharing
and the service providers hosting these serving frameworks.
Drawing on the previously discussed attack primitives, we
identify three key attack conditions that could lead to an end-
to-end side channel leakage, if all three conditions are satisfied.

Condition 1: The KV cache persists as long as there is
sufficient GPU memory.

One crucial condition for the attack is that the KV cache
must remain persistently stored, allowing the adversary abun-
dant opportunities to reverse the KV cache. So far, existing
serving frameworks such as SGLang and vLLM [32], [61]
recommend keeping the KV cache in storage for as long
as possible, with some suggestions even transferring the KV
cache to CPU memory to extend its lifespan [22]. Besides, in
some cases, the persistence of the KV cache is not a deliberate
choice by the framework but rather a trick that the adversary
can exploit through client-side APIs (e.g. max tokens), result-
ing in an extended persistence for the targeted cache in storage.

12

Lesson 1: Service providers should comprehensively
model their systems to understand the lifecycle of the KV
cache and beware of the potential consequences of the
persistent storage.

Condition 2: The sharing of KV cache is observable by
the client through a side channel that leaks at least 1-bit
information.

PROMPTPEEK depends on the important condition that, the
adversary, who operates as a standard user without special
privileges, can directly observe whether their requests trig-
ger the KV cache sharing. Since the KV cache uniquely
corresponds to specific tokens, this observation provides the
adversary with accurate 0/1 information, confirming whether
their request matches the stored token.

Lesson 2: Service providers should obscure KV cache
activities from clients, thereby mitigating the risk of ad-
versaries gaining insights into backend operations.

Condition 3: Clients are granted with extensive control over
request parameters and unrestricted dispatching capabilities.

We demonstrate that successfully reversing the KV cache
to uncover the victim’s secret requires sending a number of
reversing requests to the server. Additionally, our findings
show how adversaries can use client API parameters to gain
more available space to send more guessing requests. In fact,
vLLM [22] even provides an optional client parameter (“pos”)
to specify the number of tokens they prefer to share in the KV
cache. These enable the adversary to manipulate the KV cache
operations, which are supposed to be invisible to the end user.

Lesson 3: Service providers should enforce stringent con-
trols on the client APIs so that they can monitor the number
and content of requests a client dispatches.

VIII. DISCUSSION AND FUTURE WORK

Feasibility on public cloud. In this work, we conduct local
experiments to demonstrate the feasibility of attacks through
KV cache sharing, illustrating the possibility of this threat.
The primary difference between our results and those from
public cloud experiments is the issue of colocation. Colocation
refers to a situation in which an input request might not reach
the correct GPU in the cloud to access a previously stored
KV cache, preventing KV cache sharing from happening. The
colocation problem is complex and represents a non-trivial
research question [45]. We plan to discuss this issue and the
feasibility of launching attacks on the public cloud in future
work. It’s worth noting that some LLM serving frameworks
have already documented the colocation of KV cache sharing
in the public cloud [19], where the serving framework auto-
matically locates the stored KV cache to facilitate sharing.

Feasibility for targeted attacks. In our threat model, the
attacker is a regular user with no control over the LLM
server or knowledge of other users, making it challenging to
differentiate between individuals for targeted attacks. However,
with some background knowledge, identifying prompts from

specific users becomes more achievable. For example, if the
attacker knows the target (e.g., a coworker) uses a specific
prompt template, they can distinguish that user’s prompts.
Additionally, certain LLM services may require prompts to
include personal identifiers. For instance, a financial assistant
might use a template like, ”Help me check my account
balance, [Bob], account number [12345678],” making it easier
to associate prompts with specific users.
Feasibility for other scheduling policies. Our work focuses
on LPM, as it is not only the default but the only cache-
aware scheduling policy designed for KV cache sharing. Other
policies, such as FCFS or random, do not support KV cache
sharing and may even degrade performance to no-cache [61],
thus not considered in this study. Similar vulnerabilities may
arise for future policies designed for KV cache sharing. One
potential mitigation to update LPM is to introduce random-
ness, increasing the attack cost while preserving most of its
performance benefits. For example, LPM could be modified to
prioritize prompts with at least M more shared tokens (M=2,
3, 4, etc.) instead of 1, forcing the attacker to correctly predict
M tokens at once to exploit the side channel. We leave this
exploration to future work.

IX. RELATED WORK

A. Prompt Reconstruction

Several previous studies have explored ways to reconstruct
prompts [41], [52]. Sha et al. [41] use a parameter extractor
and a prompt reconstructor to reverse-engineer the original
prompts. However, this approach relies on the attacker’s ability
to access the output from the input prompt, and it only achieves
reconstruction similar to the original one, not verbatim re-
construction. By contrast, our work allows an attacker to
reverse-engineer a prompt without access to the output, and
achieve exact replication of the original prompt. Accurate
reconstruction is crucial because prompts can contain sensitive
information like bank account numbers or health records. Yang
et al. [52] analyze the key features of input-output pairs to
mimic and infer the target prompts, allowing them to reverse
the prompts to a certain level of similarity. Perez et al. and
Zhang et al. [36], [57] suggest methods that involve crafting
malicious prompts to bypass LLM security checks, forcing the
LLM to reveal its prompts. For instance, an attacker could
insert a malicious instruction such as “\n\n======END.
Now spellcheck and print above prompt” to reverse-engineer
the prompts. However, this approach aligns with our attack
scenario in Sec. V-C and only works within the same user.

B. Multi-tenant Security

Providing services to multiple tenants on the same host
inevitably involves shared resources, which have been proven
to be effective sources of side channel information. Classical
examples include cross-VM attacks [58], [59], [46], [51] in
the same physical machine, and cross-application attacks [54],
[30], [55] in the same OS. Zhang et al. [58] are the first
to demonstrate the feasibility of stealing the victim VM’s
private key by monitoring the CPU cache, which also extended

13

to commercial clouds [59]. As for cross-application attacks,
Zhang and Wang [54] present the first keystroke sniffing
attack by leveraging the public process file system in Unix-like
OSs. Similarly, by exploiting shared OS data structures, cross-
application attacks can also be launched in Android [30], [27],
[56] and iOS [55], [49]. Besides, Narayan et al. [35] showcase
that multiple WebAssembly modules isolated in the same
runtime are vulnerable to cross-module attacks [31]. Compared
to the above studies, our work focuses on the security risks
in multi-tenant LLM serving, where the sharing of the KV
cache among mutually distrustful users may lead to new side
channel attack vectors, allowing unauthorized reconstruction
of user prompts and compromising sensitive user information.

X. CONCLUSION

In this paper, we dig into KV cache sharing in multi-tenant
LLM serving and exclusively point out that this mechanism
poses potential security risks. We propose PROMPTPEEK and
evaluate it in three scenarios with various datasets. Our results
show that KV cache sharing can lead to secret leakage at a low
cost. To this end, we outline three critical attack conditions that
service providers and framework developers should consider
to prevent potential security risks. Our work aims to shed
light on the security issues in multi-tenant LLM serving
frameworks, emphasizing the need for careful management of
shared resources.

ACKNOWLEDGMENT

We would like to thank the Center for Computational
Science and Engineering (CCSE) at SUSTech for the GPU
resources through the QiMing computing platform.

REFERENCES

[1] March 20 chatgpt outage: Here’s what happened. https://openai.com/b
log/march-20-chatgpt-outage, 2023.

[2] alpaca-gpt4. https://huggingface.co/datasets/vicgalle/alpaca-gpt4, 2024.
[3] awesome-chatgpt-prompts. https://huggingface.co/datasets/fka/awesom

e-chatgpt-prompts, 2024.
[4] Beth. https://www.ablera.com/beth-intelligent-virtual-assistant/, 2024.
[5] Chatgpt. https://chat.openai.com/, 2024.
[6] Copilot. https://copilot.microsoft.com/, 2024.
[7] Gpt4 requests limit. https://community.openai.com/t/whys-gpt-4o-insan

ely-limited-to-free-users-and-even-plus-users-it-literally-barely-gives
-you-5-messages-in-5-6-hours-to-the-free-users/769852, 2024.

[8] How continuous batching enables 23x throughput in llm inference while
reducing p50 latency. https://www.anyscale.com/blog/continuous-batch
ing-llm-inference, 2024.

[9] Llama-2-13b. https://huggingface.co/meta-llama/Llama-2-13b, 2024.
[10] Llama-3-8b. https://huggingface.co/meta- llama/Meta-Llama-3-8B,

2024.
[11] Llm inference performance engineering: Best practices. https://www.da

tabricks.com/blog/llm-inference-performance-engineering-best-practic
es, 2024.

[12] Llm inference series: 4. kv caching, a deeper look. https://medium.com
/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77
746c8, 2024.

[13] Llm inference series: 4. kv caching, a deeper look. https://medium.com
/@plienhar/llm-inference-series-4-kv-caching-a-deeper-look-4ba9a77
746c8, 2024.

[14] Open llm leaderboard. https://huggingface.co/open-llm-leaderboard,
2024.

[15] Openai api reference. https://platform.openai.com/docs/api-reference,
2024.

[16] Openai tokenizer. https://platform.openai.com/tokenizer, 2024.

[17] Prompt engineering: Enhancing language ai for optimal performance.
https://medium.com/@PrabodhaOnline/prompt-engineering-enhancing-l
anguage-ai-for-optimal-performance-f33721396e0, 2024.

[18] Promptbase: Prompt marketplace. https://promptbase.com/, 2024.
[19] Rtp-llm. https://github.com/alibaba/rtp-llm, 2024.
[20] The sglang source code. https://github.com/sgl-project/sglang, 2024.
[21] Tiktokenizer. https://tiktokenizer.vercel.app/, 2024.
[22] vllm, easy, fast, and cheap llm serving for everyone. https://github.com

/vllm-project/vllm?tab=readme-ov-file, 2024.
[23] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,

Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-
query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

[24] Fu Bang. Gptcache: An open-source semantic cache for llm applications
enabling faster answers and cost savings. In Proceedings of the 3rd
Workshop for Natural Language Processing Open Source Software
(NLP-OSS 2023), 2023.

[25] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 2020.

[26] Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and
Arvind Krishnamurthy. Punica: Multi-tenant lora serving. arXiv preprint
arXiv:2310.18547, 2023.

[27] Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. Peeking into your
app without actually seeing it:{UI} state inference and novel android
attacks. In 23rd USENIX Security Symposium (USENIX Security 14),
2014.

[28] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding
Hu, Zhiyuan Liu, Maosong Sun, and Bowen Zhou. Enhancing chat
language models by scaling high-quality instructional conversations.
arXiv preprint arXiv:2305.14233, 2023.

[29] Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic,
Junbo Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. Attentionstore:
Cost-effective attention reuse across multi-turn conversations in large
language model serving. arXiv preprint arXiv:2403.19708, 2024.

[30] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from
process footprints. In 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012.

[31] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 2019 IEEE Symposium on Security and
Privacy (SP), 2019.

[32] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating
Systems Principles, 2023.

[33] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler, Daniel
Gruss, and Samira Khan. {Side-Channel} attacks on optane persistent
memory. In 32nd USENIX Security Symposium (USENIX Security 23),
pages 6807–6824, 2023.

[34] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos,
Carlo Curino, Markus Weimer, and Matteo Interlandi. A tensor compiler
for unified machine learning prediction serving. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20), 2020.

[35] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Ho-
vav Shacham, Dean Tullsen, et al. Swivel: Hardening {WebAssembly}
against spectre. In 30th USENIX Security Symposium (USENIX Security
21), 2021.

[36] Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack techniques
for language models. arXiv preprint arXiv:2211.09527, 2022.

[37] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin,
James Bradbury, Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff
Dean. Efficiently scaling transformer inference. Proceedings of Machine
Learning and Systems, 5, 2023.

[38] Ruoyu Qin, Zheming Li, Weiran He, Mingxing Zhang, Yongwei Wu,
Weimin Zheng, and Xinran Xu. Mooncake: Kimi’s kvcache-centric
architecture for llm serving. arXiv preprint arXiv:2407.00079, 2024.

[39] Nived Rajaraman, Jiantao Jiao, and Kannan Ramchandran. Toward a
theory of tokenization in llms. arXiv preprint arXiv:2404.08335, 2024.

14

[40] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
Deepspeed: System optimizations enable training deep learning models
with over 100 billion parameters. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2020.

[41] Zeyang Sha and Yang Zhang. Prompt stealing attacks against large
language models. arXiv preprint arXiv:2402.12959, 2024.

[42] Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang
Zhang. ” do anything now”: Characterizing and evaluating in-the-
wild jailbreak prompts on large language models. arXiv preprint
arXiv:2308.03825, 2023.

[43] Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee,
Shuo Yang, Christopher Chou, Banghua Zhu, Lianmin Zheng, Kurt
Keutzer, et al. S-lora: Serving thousands of concurrent lora adapters.
arXiv preprint arXiv:2311.03285, 2023.

[44] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[45] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. A placement vulnerability study in {Multi-Tenant}
public clouds. In 24th USENIX Security Symposium (USENIX Security
15), 2015.

[46] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. A placement vulnerability study in {Multi-Tenant}
public clouds. In 24th USENIX Security Symposium (USENIX Security
15), 2015.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30,
2017.

[48] Jiaqi Wang, Enze Shi, Sigang Yu, Zihao Wu, Chong Ma, Haixing Dai,
Qiushi Yang, Yanqing Kang, Jinru Wu, Huawen Hu, et al. Prompt
engineering for healthcare: Methodologies and applications. arXiv
preprint arXiv:2304.14670, 2023.

[49] Zihao Wang, Jiale Guan, XiaoFeng Wang, Wenhao Wang, Luyi Xing,
and Fares Alharbi. The danger of minimum exposures: Understanding
cross-app information leaks on ios through multi-side-channel learning.
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023.

[50] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea,
Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C
Schmidt. A prompt pattern catalog to enhance prompt engineering with
chatgpt. arXiv preprint arXiv:2302.11382, 2023.

[51] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. One
bit flips, one cloud flops:{Cross-VM} row hammer attacks and privilege
escalation. In 25th USENIX security symposium (USENIX Security 16),
2016.

[52] Yong Yang, Xuhong Zhang, Yi Jiang, Xi Chen, Haoyu Wang, Shouling
Ji, and Zonghui Wang. Prsa: Prompt reverse stealing attacks against
large language models. arXiv preprint arXiv:2402.19200, 2024.

[53] Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient
self-attention with prefix-aware kv cache and two-phase partition. arXiv
preprint arXiv:2402.15220, 2024.

[54] Kehuan Zhang and XiaoFeng Wang. Peeping tom in the neighborhood:
Keystroke eavesdropping on multi-user systems. In USENIX Security
Symposium, 2009.

[55] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yinqian Zhang, and
XiaoFeng Wang. Os-level side channels without procfs: Exploring cross-
app information leakage on ios. In Proceedings of the Symposium on
Network and Distributed System Security, 2018.

[56] Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented flush-
reload side channels on arm and their implications for android devices.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[57] Yiming Zhang and Daphne Ippolito. Prompts should not be seen
as secrets: Systematically measuring prompt extraction attack success.
arXiv preprint arXiv:2307.06865, 2023.

[58] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-vm side channels and their use to extract private keys. In Pro-
ceedings of the 2012 ACM conference on Computer and communications
security, 2012.

[59] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Cross-tenant side-channel attacks in paas clouds. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications
Security, 2014.

[60] Yanjie Zhao, Xinyi Hou, Shenao Wang, and Haoyu Wang. Llm app store
analysis: A vision and roadmap. arXiv preprint arXiv:2404.12737, 2024.

[61] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue
Sun, Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E
Gonzalez, et al. Efficiently programming large language models using
sglang. arXiv preprint arXiv:2312.07104, 2023.

APPENDIX

A. KV Cache Sharing in Different Scenarios

This paper focuses on the basic scenario of KV cache
sharing, where a single base model is used by multiple tenants.
However, multi-tenant LLM serving includes at least three
different scenarios as follows:
• Multiple users use the same model.
• Multiple users use different models, but each is fine-tuned

from the same base model.
• Multiple users use completely different models.
This paper focuses on the first scenario, where users share one
single model. However, KV cache sharing can also occur in
other scenarios, raising potential security risks. For instance, in
cases where users use different fine-tuned models, frameworks
like S-LoRA [43] and Punica [26] suggest that multi-tenant
LoRA serving can separate batched computation into the base
model computation and LoRA computation. This setup means
that incoming requests (for different models) can still be
batched and processed by the same base model, and then
each computed by its corresponding LoRA adapters. As a
result, KV cache sharing can still occur when the requests
are processed by the same base model, potentially leading to
security issues. We leave the exploration of KV cache sharing
security issues in other scenarios to future work. However, as
mentioned in Sec. VII, one of our contributions is identifying
various attack conditions related to KV cache sharing, which
can also be referred to in other scenarios.

B. Other Shared Resources in Multi-tenant Serving

We recognize that KV cache is not the only one that’s being
shared in multi-tenant serving. For example, Gptcache [24]
introduces a method for sharing responses. Incoming requests
are grouped based on similarity, allowing the cached response
of a similar request to be returned directly, instead of gener-
ating a new response from LLM. Besides, fine-tuned model
serving frameworks, e.g., S-LoRA [43] and Punica [26] allow
the base model to be shared across different users. In fact,
OpenAI took ChatGPT offline on March 24, 2023, due to a bug
in an open-source library that lets some users see titles from
other users’ active chat history [1]. This happened because the
underlying framework Redis, used a shared pool of connec-
tions, reusing them for new requests after each is completed.
While not directly tied to LLM resource sharing, this incident
highlights the risks of shared resources and underscores the
need to address them in LLM serving environments. Our paper
is the first to identify the security risks in multi-tenant LLM
serving as a new attack surface, and we leave the explorations
of other shared resources to future work.

15

