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Abstract—Federated learning (FL) allows multiple clients to
collaboratively train a global machine learning model through a
server, without exchanging their private training data. However,
the decentralized aspect of FL makes it susceptible to poisoning
attacks, where malicious clients can manipulate the global model
by sending altered local model updates. To counter these attacks,
a variety of aggregation rules designed to be resilient to Byzantine
failures have been introduced. Nonetheless, these methods can
still be vulnerable to sophisticated attacks or depend on unreal-
istic assumptions about the server. In this paper, we demonstrate
that there is no need to design new Byzantine-robust aggregation
rules; instead, FL can be secured by enhancing the robustness
of well-established aggregation rules. To this end, we present
FoundationFL, a novel defense mechanism against poisoning
attacks. FoundationFL involves the server generating synthetic
updates after receiving local model updates from clients. It
then applies existing Byzantine-robust foundational aggregation
rules, such as Trimmed-mean or Median, to combine clients’
model updates with the synthetic ones. We theoretically establish
the convergence performance of FoundationFL under Byzantine
settings. Comprehensive experiments across several real-world
datasets validate the efficiency of our FoundationFL method.

I. INTRODUCTION

In recent years, federated learning (FL) has emerged as a
promising approach to distributed learning [1]. It allows mul-
tiple clients to collaboratively train a global machine learning
model (called global model) under the coordination of a central
server, all while respecting the privacy of clients’ sensitive
training data. Essentially, in each training round, the server
distributes the current global model to all clients or a subset
of them. Each selected client refines its local machine learning
model (called local model) by using this global model and its
own local training data. Subsequently, the client sends its local
model update back to the server. Upon receiving updates from
clients, the server aggregates these updates into a global model
update, which it then integrates to further update the global
model. FL has been implemented across a range of practical
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tasks and applications, including credit risk assessment [2],
predictive text input [3], and speech recognition [4].

However, the decentralized nature of FL poses distinct chal-
lenges, with one of the most significant being its susceptibility
to poisoning attacks [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14]. In these attacks, malicious clients, under the control of
an attacker, attempt to compromise the integrity of the global
model. They do this by manipulating their local training data
or sending carefully crafted updates directly to the server.
Depending on the attacker’s objectives, poisoning attacks can
be categorized as untargeted [8], [9], [10], [11] or targeted [5],
[6], [15]. In untargeted attacks, the goal is to degrade the
overall performance of the global model. In contrast, targeted
attacks aim to induce incorrect predictions specifically on
testing inputs chosen by the attacker, while leaving predictions
for other inputs unaffected. It has been demonstrated that a
single malicious client is sufficient to successfully compromise
an FL system that uses a straightforward average aggregation
strategy. In this scenario, one malicious client can arbitrarily
manipulate the final aggregated result [8].

In response to poisoning attacks, researchers have shifted
from using a straightforward average aggregation rule to de-
veloping robust aggregation methods to increase the resilience
of FL. These include the Trimmed-mean and Median aggre-
gation rules introduced by [16], which are termed Byzantine-
robust foundational aggregation rules. Trimmed-mean is a
coordinate-wise aggregation protocol that removes some of
the largest and smallest extreme values for each dimension
before averaging the remaining values. In contrast, the Median
method calculates the coordinate-wise median of the clients’
local model updates. Despite their robustness, recent research
indicates that these rules are still susceptible to advanced poi-
soning attacks [9], [10]. To combat these vulnerabilities, newer
and more complex aggregation rules have been developed [8],
[15], [17], [18], [19], [20], [21], [22], [23], [24]. These,
however, either depend heavily on the FL system having access
to a clean dataset [15], [20], [21], [23], [24] or continue to
be prone to sophisticated attacks [25], [26]. This ongoing
escalation between attackers and defenders often results in a
costly and potentially unsustainable arms race. This situation
raises an essential research question: Do we really need to
design new Byzantine-robust aggregation rules?

In this paper, we find a promising answer to the afore-
mentioned question. Instead of developing complex new

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241796
www.ndss-symposium.org



Byzantine-robust aggregation protocols, we aim to enhance
the robustness of FL systems by employing well-established
Byzantine-robust aggregation methods like Trimmed-mean
and Median. The unique aspect of FL is the non-identical
and non-independent (Non-IID) distribution of training data
among clients, which introduces substantial diversity. This
diversity allows malicious clients to manipulate their local
model updates to undermine the FL system, while remaining
distinct from benign clients. To mitigate these issues of hetero-
geneity, in our proposed FoundationFL framework, the server
introduces synthetic updates in each global training round. The
primary challenge then becomes determining these synthetic
updates. To tackle this, the server calculates a closeness score
for each client in every round to assess how their local model
updates align with the most extreme updates. The server then
selects the client’s local model update that deviates the most
from these extreme updates. This chosen update is used as
the basis for the synthetic updates, which are then mixed
with the clients’ local model updates. Ultimately, the server
applies Byzantine-robust foundational aggregation rules like
Trimmed-mean or Median to combine both the clients’ local
and the synthetic updates.

We offer theoretical guarantees for our FoundationFL
framework under poisoning attacks. Specifically, we provide a
theoretical demonstration that the global model learnt through
our FoundationFL, even when subjected to poisoning attacks,
converges with high probability to the optimal global model
that would be obtained in the absence of attacks, given certain
mild assumptions. We conduct comprehensive evaluations of
our FoundationFL across 6 datasets spanning various do-
mains, against 12 different poisoning attacks, and compar-
ing with 10 FL aggregation rules. Our findings show that
our proposed FoundationFL significantly surpasses current
Byzantine-robust FL methods in performance.

We summarize our main contributions in this paper as
follows:
• We introduce FoundationFL, a robust aggregation frame-

work designed to combat poisoning attacks within FL
environments.

• We demonstrate theoretically that FoundationFL remains
resilient to poisoning attacks under commonly accepted
assumptions within the Byzantine-robust FL community.

• Our thorough experiments across diverse benchmark
datasets, various poisoning attack scenarios, and practical
FL setups validate the effectiveness of our FoundationFL
framework.

II. BACKGROUND AND RELATED WORK

Notations: In this paper, the ℓ2-norm is denoted by ∥·∥.
Furthermore, for any natural number n, the set {1, . . . , n}
is represented as [n]. Additionally, matrices and vectors are
specified using bold typeface.

A. Federated Learning

Federated learning (FL) usually includes a server and n
participating clients that work together to train a global model

without exchanging private data. We denote the local training
dataset of client i as Di, where i ∈ [n]. The goal of FL is to
minimize the following global objective function:

L(θ) =
1

n

n∑︂
i=1

Li(θ), (1)

where θ ∈ Rd is the model parameter, d is the dimension of
θ, Li(θ) =

1
|Di|

∑︁
z∈Di

l(θ, z) is the local training objective
(empirical loss) of client i, |Di| denotes the count of training
example for the client i.

FL solves the above Problem (1) through an iterative pro-
cess. Specifically, in each global training round t, the following
three specific steps are executed:
• Step I: Global model synchronization. The server dis-

tributes the current global model θt to all clients or a
selected group of them.

• Step II: Local model updating. Each client i ∈ [n] fine-
tunes its local model θt

i by leveraging the current global
model θt and its local training dataset Di. Then, client i
transmits its local model update gt

i = θt
i − θt to the server.

• Step III: Global model updating. After collecting model
updates from the clients, the server employs the aggregation
rule, denoted as Agg, to merge these updates to get a global
model update. The global model is then updated as θt+1 =
θt + η · Agg{gt

i : i ∈ [n]}, where η is the learning rate.
FL repeats the aforementioned three steps across multiple

global training rounds until a specified convergence condition
is satisfied. It’s worth mentioning that various FL methods
often employ distinct aggregation protocols [1], [8], [16]. For
instance, in the case of the FedAvg [1] aggregation rule, the
server combines the model updates as Agg{gt

i : i ∈ [n]} =
1
n

n∑︁
i=1

gt
i .

B. Poisoning Attacks to FL

Although FL’s decentralized architecture offers privacy ben-
efits, it also renders it susceptible to poisoning attacks. In a
FL environment, malicious clients may attempt to manipulate
the global model’s performance by interfering with the training
process. This could involve corrupting their local training data
(known as data poisoning attacks [11]) or tampering with
their local model updates (known as local model poisoning
attacks [8], [9], [10]). The ultimate goal of these malicious
clients is to degrade the global model’s performance. For
instance, the final learnt global model exhibits reduced ac-
curacy when classifying testing examples. For instance, in
a label flipping attack [11], malicious clients flip the labels
associated with their training data while leaving the under-
lying features unchanged. In the Trim attack [9], malicious
clients strategically manipulate their local model updates be-
fore sending them to the central server. This manipulation
aims to exploit the vulnerabilities of Trimmed-mean [16] or
Median [16] aggregation rule employed by the server, causing
a significant deviation in the global model updates after the
attack compared to the updates before the attack.
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C. Byzantine-robust Aggregation Rules

In standard FL, the server combines the local model updates
it receives by computing their averages [1]. Nevertheless,
recent research [8] has revealed that this aggregation method,
based on averaging, is highly susceptible to Byzantine attacks.
In such attacks, a single malicious client has the ability to
manipulate the final aggregated outcome in arbitrary ways.
In order to safeguard FL against poisoning attacks, sev-
eral Byzantine-robust foundational aggregation rules, such as
Krum [8], Trimmed-mean [16] and Median [16], have been
suggested. For instance, with the Krum [8] aggregation rule,
once the server receives n local model updates from clients, it
selects and outputs the local model update that has the smallest
total distance to its n − f − 2 closest neighbors, where n
is the total number of clients, f is the number of malicious
clients. Trimmed-mean [16] aggregation rule operates on a per-
coordinate basis. Specifically, for every dimension, the server
starts by eliminating the largest c elements and the smallest
c elements, and subsequently computes the average of the
remaining values, where c is the trim parameter. Median [16] is
another coordinate-wise aggregation method. In this approach,
the server combines the received local model updates by
determining the median value for each dimension of the
updates. In recent years, several Byzantine-robust advanced
aggregation rules have been proposed [15], [19], [20], [21],
[23], [24], [27], [28], [29], [30], [31], [32]. For instance, in
Bulyan [31] aggregation rule, the server first leverage Krum [8]
aggregation rule to select a select of local model updates, then
take the Median [16] of these selected updates. The authors
in [15], [20], [21], [23], [24] assume that the server possesses a
clean validation dataset, sourced from the same distribution as
the overall training dataset. Utilizing this validation dataset, the
server calculates a benchmark model update. This benchmark
is then applied to determine if the local model updates received
are either benign or malicious.

Limitations of existing robust aggregation rules: Firstly,
current Byzantine-resistant aggregation methods are not en-
tirely secure, as they remain susceptible to sophisticated poi-
soning attacks [9], [10]. Secondly, numerous robust aggrega-
tion rules rely on strong assumptions regarding the server’s
capabilities, such as possessing a separate validation data [15],
[20], [21], [23], [24]. However, this assumption is often
impractical as it is challenging for the server to accurately
know the distribution of clients’ local training data. Moreover,
the possession of validation data by the server could infringe
upon privacy concerns, contradicting the core principles of
FL’s design.

III. THREAT MODEL

Attacker’s goal and knowledge: In our paper, we consider
the attack model as described in [9], [10], [15]. Specifically,
the attacker manipulates certain malicious clients, which may
either be fake clients injected by the attacker or benign clients
compromised by the attacker. These controlled malicious
clients send meticulously crafted updates of local models to

the server to achieve the attacker’s objectives. For instance, in
untargeted attacks, the goal is to corrupt the resulting global
model such that it incorrectly classifies a significant portion
of test examples without distinction. In targeted attacks, the
objective is to manipulate the global model so that it predicts
specific instances chosen by the attacker to match predeter-
mined labels. We consider the worst-case but realistic attack
scenario where the attacker knows the aggregation rule used by
the server, and all clients’ local model updates. For example,
the server may public its aggregation protocol, and the attacker
may eavesdrop the communication link in order to get access
to local model updates on the benign clients. We note that in
our proposed FoundationFL framework, the server generates
some synthetic updates. These generated synthetic updates are
not access to the attacker, since the server in FL is secure, it
hard and even impossible for the attacker to compromise the
server in order to have access to these synthetic updates.

Defender’s goal and knowledge: Our goal is to develop
an effective Byzantine-robust method that accomplishes the
following three objectives:
• Competitive performance: The proposed defense scheme

for FL should also perform effectively in non-adversarial en-
vironments. Specifically, in the absence of malicious clients,
the model trained using our algorithm should achieve a
testing error rate comparable to that of averaging-based
aggregation, which is known to deliver state-of-the-art per-
formance in non-adversarial FL settings.

• Byzantine robustness: The proposed method should
demonstrate robustness against Byzantine attacks, both em-
pirically and theoretically.

• Efficiency: The proposed algorithm should not increase the
communication costs between the server and clients, nor
should it lead to significant computational demands on the
server side.
Regarding the defender’s knowledge, the defender (server)

is unaware of the attacker’s methods of conducting attacks.
Additionally, the defender does not have knowledge about
the distribution of the clients’ local training data. Note that,
following [9], [10], [25], we assume in our threat model that
the majority of clients are benign.

IV. OUR METHOD

A. Overview

In this section, we provide a formal demonstration that
the server can enhance the robustness of the FL system by
using established Byzantine-robust foundational aggregation
rules. This indicates that creating new, complex Byzantine-
robust aggregation protocols is unnecessary. In our framework,
the server takes a proactive approach by generating synthetic
updates upon receiving local model updates from clients.
Following this, the server employs existing Byzantine-robust
foundational aggregation protocols, such as Trimmed-mean or
Median, to combine the local model updates from clients with
the generated synthetic updates.
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B. FoundationFL

Trimmed-mean [16]: Let gt represent the global model
update at the training round t, where gt = Agg{gt

i : i ∈
[n]}. The k-th component of vector gt, denoted gt[k] for
k ∈ [d], is calculated using the Trimmed-mean aggregation
method. In this method, for each dimension, the largest c
and smallest c values are discarded, and the mean of the
remaining values is computed. Specifically, gt[k] is obtained
by gt[k] = Trimmed-mean{gt

1[k], . . . , g
t
n[k]}.

Median [16]: The Median is another rule for aggrega-
tion that also operates on each coordinate individually. For
every dimension, the server calculates the median of the
values from the clients’ local model updates. Specifically,
for the k-th dimension, gt[k] is determined by gt[k] =
Median{gt

1[k], . . . , g
t
n[k]}.

In FL, a distinctive feature is the non-identical and non-
independent (Non-IID) distribution of clients’ training data.
This diversity across different clients means that the training
data is not uniformly distributed, making it significantly varied.
As clients train their local models using the current global
model and their unique training data, even benign local model
updates exhibit notable differences. As a result, this hetero-
geneity can mask the activities of malicious clients, who may
take advantage of these differences to manipulate their local
model updates and launch poisoning attacks without detection.
These malicious clients craft their updates that, while aimed
at undermining the global model, appear as normal within the
range of local model updates from benign clients. This subtle
manipulation makes it exceedingly challenge to detect and
neutralize such threats within the FL system. Moreover, this
inherent heterogeneity underscores why existing Byzantine-
robust foundational aggregation rules, such as Trimmed-
mean [16] and Median [16] (described further above), remain
vulnerable to Byzantine attacks. This vulnerability has been
illustrated in [9], [10], highlighting the ongoing challenges in
securing FL systems against sophisticated poisoning attacks.

To address the issue of data heterogeneity in FL and to
enhance system robustness, our approach focuses on leverag-
ing existing Byzantine-robust foundational aggregation rules,
rather than developing new ones. The core concept of our
proposed FoundationFL framework involves a proactive step
by the server: after receiving local model updates from clients
during each global training round, the server generates addi-
tional synthetic model updates. These synthetic updates, when
combined with the clients’ local model updates, are then ag-
gregated using established Byzantine-robust aggregation rules
like Trimmed-mean or Median. The fundamental advantage of
our proposed method is that by introducing synthetic model
updates, we create a more homogeneous set of updates—where
the augmented model updates (comprising both clients’ local
model updates and the synthetic updates) exhibit much lower
variance compared to the original solely client-sourced up-
dates. This reduction in variance across the updates makes
the aggregated model less susceptible to outliers and potential
poisoning attacks. By feeding these more uniform updates

into proven robust aggregation mechanisms, we significantly
enhance the system’s ability to thwart malicious interventions,
thereby increasing the overall security and reliability of the FL
system. This strategy leverages the strengths of existing robust
aggregation frameworks while effectively countering the chal-
lenges posed by data heterogeneity in federated environments.
In what follows, we demonstrate how to construct the synthetic
updates.

In each global training round t, assuming the server gen-
erates m synthetic updates, represented as {ḡt

1, . . . , ḡ
t
m}. The

central challenge lies in determining these m updates effec-
tively. Remember that Trimmed-mean and Median are robust
statistical methods designed to eliminate outliers (extreme
values) from each dimension of clients’ local model updates.
Motivated by this observation, the server first identifies a
client’s local model that deviates the most from the extreme
updates, and augments clients’ local model updates by in-
corporating multiple copies of this selected update. Define
gt

max ∈ Rd and gt
min ∈ Rd as the vectors representing the

largest and smallest updates across all dimensions, respec-
tively. Specifically, gt

max[k] is the maximum value of the set
{gt

1[k], g
t
2[k], . . . , g

t
n[k]}, and gt

min[k] is the minimum value of
the same set for the dimension k. The values of gt

max[k] and
gt

min[k] are determined as:

gt
max[k] = max{gt

1[k], . . . , g
t
n[k]}, k ∈ [d] (2)

gt
min[k] = min{gt

1[k], . . . , g
t
n[k]}, k ∈ [d]. (3)

Upon deriving gt
max and gt

min, the server assigns a score
sti to each client i ∈ [n]. This score quantifies how closely
each client i’s local model update gt

i aligns with the extreme
updates, namely gt

max and gt
min. A higher sti indicates a greater

likelihood that the update gt
i is malicious. In our proposed

FoundationFL, the server calculates sti by taking the lesser
of the distances between gt

i and the vectors gt
max and gt

min, as
shown below:

sti = min{∥gt
i − gt

max∥, ∥gt
i − gt

min∥}. (4)

The server then selects one local model update from the
set {gt

1, . . . , g
t
n} that exhibits the greatest deviation from the

extreme updates gt
max and gt

min. Let i∗ ∈ [n] be defined as the
client with the largest score, such that sti∗ ≥ sti for all i ∈ [n].
Formally, this selection criterion is defined as:

i∗ = argmax
i∈[n]

sti. (5)

Following that, the server designates each synthetic update
as ḡt

j = gt
i∗

for all j ∈ [m]. It then supplements the clients’
local model updates with these m synthetic updates. To derive
the global model update, the server applies Byzantine-robust
foundational aggregation protocols. The resulting global model
update, denoted by ĝt, is computed as follows: if the Trimmed-
mean protocol is employed for aggregation, each dimension
k ∈ [d] is updated according to:

ĝt[k] = Trimmed-mean{gt
1[k], . . . , g

t
n[k], ḡ

t
1[k], . . . , ḡ

t
m[k]}

(6)
s.t. ḡt

1[k] = · · · = ḡt
m[k] = gt

i∗ [k].
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Algorithm 1 Training procedure of FoundationFL.

Input: The n clients with local training dataset; number of
global training rounds T ; number of synthetic updates m;
learning rate η; Byzantine-robust foundational aggregation
rule Agg.

Output: Global model θT .
1: Initialize θ0.
2: for t = 0, 1, · · · , T − 1 do
3: // Step I: Global model synchronization.
4: The server send the global model θt to all clients.
5: // Step II: Local model updating.
6: for each client i ∈ [n] in parallel do
7: Client i fine-tunes its local model and sends the

local model update gt
i to the server.

8: end for
9: // Step III: Global model updating.

10: The server compute the score sti for i ∈ [n] based on
Eq. (4).

11: The server chooses client i∗ with the highest score as
defined in Eq. (5), and generates each synthetic update as
ḡt
j = gt

i∗
for all j ∈ [m].

12: The server computes the global model update ĝt based
on Eq. (6) if using the Trimmed-mean aggregation rule,
or according to Eq. (7) if using the Median aggregation
rule.

13: The server updates the global model as θt+1 = θt +
η · ĝt.

14: end for

Similarly, if the Median protocol is used, the global model
update for each dimension k ∈ [d] is determined by:

ĝt[k] = Median{gt
1[k], . . . , g

t
n[k], ḡ

t
1[k], . . . , ḡ

t
m[k]} (7)

s.t. ḡt
1[k] = · · · = ḡt

m[k] = gt
i∗ [k].

Finally, the server updates the global model with θt+1 =
θt + η · ĝt. It is important to note that the server does not
update the global model directly using the selected local model
update gt

i∗
. Although gt

i∗
shows the greatest deviation from the

extreme updates, it may still contain extreme values in certain
dimensions. Thus, the server employs coordinate-wise robust
aggregation methods like the Trimmed-mean or Median to mit-
igate the influence of outliers in each dimension. Algorithm 1
shows the pseudocode of FoundationFL framework.

V. THEORETICAL ANALYSIS

In this section, we present a convergence analysis of our
proposed FoundationFL framework. In our theoretical proof,
we assume that the server generates synthetic model updates
using a clean dataset D0. Both D0 and the collective training
data D =

⋃︁n
i=1 Di from clients are presumed to be drawn

from the same distribution. This assumption is strictly for
theoretical analysis purposes. As demonstrated in Section IV,
the server generates synthetic model updates based exclusively
on the received model updates from clients. Define Q as

Q = max{|D0|, |D1|, · · · , |Dn|}. Additionally, we adopt the
standard assumptions prevalent in the FL literature [16], [27],
[33], [34].

Assumption 1. The loss function L(θ) is µ-strongly convex.
Let Θ represent the parameter space. For any θ1,θ2 ∈ Θ, the
following inequality holds:

L(θ1) + ⟨∇L(θ1),θ2 − θ1⟩+
µ

2
∥θ2 − θ1∥2 ≤ L(θ2).

Assumption 2. The loss functions are λ-smooth. For any
θ1,θ2 ∈ Θ, the following inequalities are satisfied:

∥∇L(θ1)−∇L(θ2)∥ ≤ λ ∥θ1 − θ2∥ ,
∥∇l(θ1, D)−∇l(θ2, D)∥ ≤ λ ∥θ1 − θ2∥ .

Assumption 3. The diameter of the parameter space is
limited. Specifically, for any θ1,θ2 ∈ Θ, it can be stated that:

∥θ1 − θ2∥ ≤ ϖ.

Assumption 4. The expected squared norm of gradient is
bounded by ζ, and the variance of gradient is bounded by σ2.
Specifically, for any θ ∈ Θ, the following inequalities hold:

E[∥∇l(θ, D)∥2] ≤ ζ,

E[∥∇l(θ, D)− E[∇l(θ, D)]∥2] ≤ σ2.

Assumption 5. For a given dimension k ∈ [d], let ∂kl(θ, D)
denote the partial derivative of l(θ, D) with respect to θ[k],
where θ[k] represents the k-th dimension of the model param-
eter θ. We assume that ∂kl(θ, D) is ρ-sub-exponential for any
k ∈ [d].

Based on the above assumptions, we present the theoretical
results of our proposed FoundationFL framework.

Theorem 1. Assuming that Assumptions 1-3 and Assumption 5
are valid and the client’s learning rate is α = 1

λ , our
proposed FoundationFL framework uses the Trimmed-mean
aggregation rule to combine both generated synthetic model
updates and model updates from clients. Given υ > 0,
if β = f

n+m and the trim parameter c meet the criteria
β ≤ c

n+m ≤ 1
2 − υ, where f is the number of malicious

clients. Then after T rounds of global training, the probability
of achieving the following result is at least 1− 4d

(1+(n+m)λϖQ)d
:⃦⃦

θT − θ∗⃦⃦ ≤ (1− µ

µ+ λ
)T

⃦⃦
θ0 − θ∗⃦⃦+

2B1

µ
,

where θT is the global model at training round T , θ0 is the
initial global model, θ∗ is the optimal model under no attack,
B1 = O(( ρcd

υ(n+m)
√
Q
+ ρd

υ
√

(n+m)Q
)
√︁
log((n+m)λϖQ)).

Proof. The proof is relegated to Appendix A.

Theorem 2. Under the assumptions that Assumptions 1-4
hold true and the client’s learning rate is set as α = 1

λ ,
our proposed framework, denoted as FoundationFL, uses
the Median aggregation rule to merge synthetic updates and
updates contributed by clients. Assuming υ > 0, if β = f

n+m
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satisfies β + ϵ ≤ 1
2 − υ, then after T rounds of global

training, the probability of achieving the following outcome
is guaranteed to be at least 1− 4d

(1+(n+m)λϖQ)d
:⃦⃦

θT − θ∗⃦⃦ ≤ (1− µ

µ+ λ
)T

⃦⃦
θ0 − θ∗⃦⃦+

2B2

µ
,

where ϵ = 0.4748ζ√
Q

+
√︂

d log(1+(n+m)λϖQ)
(n+m)(1−β) , B2 = 2

√
2

(n+m)Q+
2
√
πσ(β+ϵ) exp( 1

2 (Φ
−1(1−υ))2)√

Q
, and Φ represents the cumulative

distribution function of the standard Gaussian distribution.

Proof. The proof is relegated to Appendix B.

Remark. In our theoretical analysis, we adopt simplifying
assumptions commonly used in the FL community [16], [27],
[33], [34]. However, we acknowledge that these assumptions
may not fully capture real-world conditions. To assess Foun-
dationFL’s sensitivity, we conduct additional experiments by
relaxing certain assumptions, such as Assumption 1, which
pertains to the non-convexity of deep neural networks. Specif-
ically, we test FoundationFL on two CNN architectures and
the more complex ResNet-18 model [35], neither of which
satisfies Assumption 1. Extensive experimental results show
that our proposed FoundationFL remains secure even when
certain assumptions are partially relaxed.

VI. EVALUATION

A. Experimental Setup

1) Datasets: In our experiments, we use six dis-
tinct datasets from various domains, which encompass
MNIST [36], Fashion-MNIST [37], Human Activity Recog-
nition (HAR) [38], Purchase [39], Large-scale CelebFaces
Attributes (CelebA) [40], and CIFAR-10 [41].
a) MNIST [36]: The MNIST dataset consists of 60,000
training images and 10,000 testing images, encompassing a
total of 10 unique classes.
b) Fashion-MNIST [37]: The Fashion-MNIST dataset com-
prises a total of 70,000 fashion images. The training dataset
contains 60,000 images, and the testing set contains 10,000
images. Each image in Fashion-MNIST is assigned to one of
10 classes.
c) Human Activity Recognition (HAR) [38]: The HAR
dataset is a practical dataset used for predicting human ac-
tivities. It includes data collected from 30 users who used
smartphones in their daily routines, totaling 10,299 instances.
Each instance consists of 561 features and is classified into
one of six distinct categories. Following the approach in [15],
in our experiments, we randomly assign 75% of the data from
each user for training, while the remaining 25% is kept aside
for testing.
d) Purchase [39]: The purchase classification dataset is
imbalanced, containing 197,324 examples, each characterized
by 600 binary attributes distributed among 100 different cat-
egories. In our experiments, we randomly choose a subset
of 150,000 examples for training our models, reserving the
remaining 47,324 examples for testing purposes.

e) Large-scale CelebFaces Attributes (CelebA) [40]: This
dataset involves a binary classification task to determine
whether the person in an image is smiling or not. The CelebA
dataset includes 177,480 training examples and 22,808 testing
examples.

f) CIFAR-10 [41]: CIFAR-10 is a color image classification
dataset with 10 distinct classes. It includes a total of 60,000
images, with 50,000 used for training and the remaining
10,000 for testing.

2) Poisoning Attacks: By default, our experiments examine
six untargeted attacks (label flipping attack [11], Gaussian
attack [8], Trim attack [9], Krum attack [9], Min-Max at-
tack [10], Min-Sum attack [10]) and one targeted attack
(Scaling attack [5], [15]). Note that we also consider two
additional targeted attacks and three more sophisticated attacks
in Section VII. By evaluating our method with a total of 12
representative poisoning attacks, covering both untargeted and
targeted strategies, we ensure a comprehensive evaluation that
reflects real-world scenarios and challenges, rigorously testing
our method’s robustness across diverse attack models. These
attacks are selected because they are widely studied in the
literature [9], [10], [11], [15], [19], [25] and represent a range
of commonly observed methods posing substantial threats to
FL systems.

a) Label flipping (LF) attack [11]: In the LF attack, the
attacker modifies the labels of training data on malicious
clients. Specifically, for a training example originally labeled
as y, the attacker changes it to M−y−1, where M represents
the total number of labels.

b) Gaussian attack [8]: In this specific attack, each malicious
client sends a randomly generated vector to the server. These
vectors are sampled from a Gaussian distribution with a mean
of 0 and a variance of 200.

c) Trim attack [9]: The Trim attack is a strategy targeting
aggregation Trimmed-mean and Median aggregation rules. In
this attack, the attacker carefully designs the model updates on
malicious clients to ensure that the post-attack model update
diverges significantly from its pre-attack one.

d) Krum attack [9]: The Krum attack is an advanced strategy
aimed at exploiting the Krum aggregation rule. The attacker
strategically crafts the model updates on malicious clients to
influence the Krum rule into choosing the malicious update as
the final aggregated outcome.

e) Min-Max attack [10]: In the Min-Max attack, the attacker
tailors local model updates on malicious clients to achieve
their objectives, ensuring that these updates closely resemble
benign updates. Specifically, the maximum distance between
a malicious local model update and any benign local model
update is smaller than the maximum distance between any two
benign local model updates.

f) Min-Sum attack [10]: The Min-Sum attack is another
attack model that is agnostic to aggregation rules. Unlike the
Min-Max attack, in the Min-Sum attack, the attacker ensures
that the sum of distances between a malicious local model
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update and all benign local model updates does not exceed the
maximum sum of distances between any two benign updates.
g) Scaling attack [5], [15]: The Scaling attack is a type
of targeted attack where the attacker initially augments the
local training data of malicious clients by introducing back-
door triggers into duplicated data copies. Subsequently, these
malicious clients train their local models using the augmented
training data and further amplify their local model updates
before transmitting them to the server.

3) Compared Aggregation Rules: By default, we compare
our proposed FoundationFL with the following seven aggre-
gation rules.
a) FedAvg [1]: FedAvg is a non-robust aggregation method
where the server aggregates received local model updates by
computing the average of all updates.
b) Trimmed-mean (Trim-mean) [16]: Trimmed-mean is an
aggregation method applied per coordinate. For each dimen-
sion, the server removes the largest c and smallest c elements,
then computes the average of the remaining values. Here, c is
referred to as the trim parameter.
c) GAS + Trim-mean [42]: Upon receiving the local model
updates from all clients, the server splits each update into
multiple parts. The server then applies the Trimmed-mean [16]
aggregation rule to compute the aggregated result for each part.
Subsequently, the server calculates an identification score for
each client and selects the n − f local model updates with
the lowest identification scores for aggregation by taking the
average of these n − f updates, where f represents the total
number of malicious clients.
d) Gaussian + Trim-mean: Upon receiving n local model
updates from clients, the server creates m synthetic updates.
Each k-th dimension of these updates follows a Gaussian
distribution N (µ, σ2), where µ and σ are the mean and
standard deviation of {gt

i [k] : i ∈ [n]} with gt
i [k] representing

the k-th dimension of gt
i , and k ∈ [d]. Subsequently, the server

uses the Trimmed-mean [16] aggregation rule to merge these
m synthetic updates with the n received updates.
e) Median [16]: The Median is another aggregation rule that
is applied on a per-coordinate basis. For each dimension, the
server calculates the median value from all the received model
updates.
f) GAS + Median [42]: Similar to the GAS + Trim-mean
aggregation rule, the server in the GAS + Median rule also
divides each local model update into multiple parts. However,
in this method, the server applies the Median [16] aggregation
rule to each part. Then, the server calculates the final aggre-
gated update by averaging the n−f local model updates with
the lowest identification scores.
g) Gaussian + Median: For this method, the server follows
the same procedure as in the Gaussian + Trim-mean method
to produce the m synthetic updates. The only distinction lies
in the aggregation technique; here, the server employs the
Median [16] aggregation rule to aggregate the m synthetic
updates with the n local model updates from clients.

4) Evaluation Metrics: Two evaluation metrics are explored
in this paper.
a) Testing error rate: The testing error rate reflects the
percentage of test instances incorrectly classified by the global
model. A lower testing error rate signifies a stronger defense.
b) Attack success rate: The attack success rate is determined
by the proportion of targeted examples predicted as the labels
chosen by the attacker. A lower attack success rate indicates
more effective defense.

5) Non-IID Setting: In FL, a distinctive aspect is that
clients’ local training data are not independently and iden-
tically distributed (Non-IID). In our study, we adopt the
following method to simulate the Non-IID setting as described
in [9]. For a dataset with M classes, clients are initially
randomly grouped into M clusters. A training example labeled
y is then assigned to clients in cluster y with probability h,
and to other clusters with probability 1−h

M−1 . A higher value
of h indicates greater Non-IID characteristics in the clients’
training data. For the MNIST and Fashion-MNIST datasets, we
set h = 0.5. It is important to note that we do not simulate the
Non-IID setting for the HAR, Purchase, and CelebA datasets,
as these datasets inherently exhibit heterogeneity.

6) Parameter Settings: We consider 100 clients each for the
MNIST, Fashion-MNIST, and CIFAR-10 datasets (n = 100),
40 clients for the Purchase dataset, 20 clients for the CelebA
dataset, and 30 clients in total for the HAR dataset, where each
real-world user is treated as a client. By default, we assume
20% of the clients are malicious. For the MNIST, Fashion-
MNIST, and CelebA datasets, we train a convolutional neural
network (CNN) whose architecture is detailed in Table IXa
in Appendix. The HAR dataset is trained using a logistic
regression classifier. The Purchase dataset employs a fully
connected neural network as the global model architecture
with one hidden layer consisting of 1,024 neurons and Tanh
activation function. We train a ResNet-18 [35] model for the
CIFAR-10 dataset. We conduct training for 2,000 rounds on
the MNIST dataset, 3,000 rounds on Fashion-MNIST, 1,000
rounds each on the HAR and Purchase datasets, 1,000 rounds
on CelebA, and 1,000 rounds on CIFAR-10. The batch sizes
are set to 32 for MNIST and Fashion-MNIST, 32 for HAR,
128 for Purchase, 20 for CelebA, and 40 for CIFAR-10. The
corresponding learning rates are 1/3,200 for MNIST, Fashion-
MNIST, and HAR, 1/1,280 for Purchase, 1/20,000 for CelebA,
and 0.005 for CIFAR-10 dataset. Following [8], [16], [42],
we set c = f by default. In the GAS approach, we use the
parameter as recommended in [42]. Unless stated otherwise,
we assume that all clients participate in the training process
in every round. In the FoundationFL framework we propose,
the server generates n

2 synthetic updates in each training round
by default for MNIST, Fashion-MNIST, HAR, Purchase, and
CelebA. The results are primarily reported using the MNIST
dataset by default.

B. Experimental Results

Our FoundationFL is effective: Table I displays the per-
formance of various FL methods under different poisoning
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TABLE I: Results of different FL methods on MNIST, Fashion-MNIST, HAR, and Purchase datasets. The results of Scaling
attack are shown as “testing error rate / attack success rate”.

(a) MNIST dataset.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.05 0.07 0.90 0.32 0.10 0.90 0.90 0.64 / 0.70
Trim-mean 0.06 0.06 0.06 0.27 0.08 0.19 0.13 0.13 / 0.02
GAS + Trim-mean 0.05 0.05 0.11 0.29 0.07 0.10 0.11 0.43 / 0.47
Gaussian + Trim-mean 0.05 0.11 0.91 0.91 0.05 0.08 0.06 0.91 / 1.00
FoundationFL + Trim-mean 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 / 0.02
Median 0.05 0.09 0.16 0.23 0.17 0.19 0.23 0.05 / 0.02
GAS + Median 0.05 0.05 0.12 0.26 0.06 0.10 0.10 0.59 / 0.65
Gaussian + Median 0.05 0.90 0.90 0.90 0.05 0.14 0.14 0.91 / 1.00
FoundationFL + Median 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.06 / 0.02

(b) Fashion-MNIST dataset.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.18 0.21 0.21 0.38 0.21 0.30 0.32 0.63 / 0.68
Trim-mean 0.21 0.29 0.26 0.47 0.32 0.24 0.23 0.26 / 0.01
GAS + Trim-mean 0.21 0.21 0.24 0.50 0.26 0.26 0.23 0.67 / 0.62
Gaussian + Trim-mean 0.18 0.90 0.90 0.90 0.20 0.32 0.90 0.90 / 1.00
FoundationFL + Trim-mean 0.18 0.18 0.18 0.19 0.20 0.19 0.18 0.22 / 0.03
Median 0.23 0.27 0.27 0.35 0.29 0.31 0.29 0.29 / 0.03
GAS + Median 0.20 0.20 0.24 0.44 0.25 0.26 0.23 0.60 / 0.64
Gaussian + Median 0.23 0.90 0.35 0.90 0.90 0.90 0.90 0.90 / 1.00
FoundationFL + Median 0.18 0.20 0.18 0.18 0.21 0.19 0.20 0.23 / 0.03

(c) HAR dataset.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.05 0.12 0.13 0.38 0.06 0.14 0.17 0.05 / 0.91
Trim-mean 0.07 0.07 0.07 0.26 0.09 0.16 0.16 0.07 / 0.02
GAS + Trim-mean 0.06 0.09 0.12 0.35 0.06 0.12 0.15 0.07 / 0.92
Gaussian + Trim-mean 0.05 0.12 0.41 0.24 0.06 0.17 0.17 0.62 / 0.01
FoundationFL + Trim-mean 0.05 0.08 0.05 0.08 0.06 0.09 0.09 0.05 / 0.01
Median 0.07 0.08 0.09 0.16 0.08 0.17 0.15 0.07 / 0.02
GAS + Median 0.07 0.10 0.11 0.41 0.06 0.16 0.17 0.07 / 0.88
Gaussian + Median 0.06 0.14 0.11 0.30 0.06 0.15 0.15 0.08 / 0.10
FoundationFL + Median 0.05 0.09 0.06 0.09 0.06 0.09 0.09 0.05 / 0.02

(d) Purchase Dataset.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.17 0.32 0.72 0.60 0.20 0.34 0.34 0.99 / 0.41
Trim-mean 0.21 0.28 0.21 0.47 0.26 0.40 0.40 0.25 / 0.02
GAS + Trim-mean 0.18 0.30 0.79 0.70 0.21 0.37 0.35 0.23 / 0.01
Gaussian + Trim-mean 0.17 0.20 0.96 0.58 0.17 0.38 0.38 0.99 / 1.00
FoundationFL + Trim-mean 0.17 0.20 0.17 0.21 0.19 0.21 0.22 0.18 / 0.02
Median 0.23 0.32 0.25 0.48 0.30 0.49 0.49 0.26 / 0.03
GAS + Median 0.17 0.30 0.70 0.72 0.21 0.37 0.37 0.20 / 0.02
Gaussian + Median 0.18 0.22 0.58 0.58 0.18 0.29 0.29 0.99 / 1.00
FoundationFL + Median 0.18 0.23 0.19 0.24 0.24 0.24 0.24 0.21 / 0.03

attacks on the MNIST, Fashion-MNIST, HAR, and Purchase
datasets. The results for the CelebA and CIFAR-10 datasets
are presented in Table X in Appendix. The term “No attack”
indicates that all client in the FL system are benign without any
malicious clients. The results of the Scaling attack are shown
in the form of “testing error rate / attack success rate”. The
terms “FoundationFL + Trim-mean” and “FoundationFL
+ Median” describe our method where the server combines
clients’ local model updates and synthetic updates using
Trimmed-mean and Median aggregation rules, respectively.
Notably, under benign conditions, our FoundationFL frame-
work mirrors the performance of FedAvg. For instance,
both “FoundationFL + Trim-mean” and “FoundationFL +
Median” achieve similar testing error rates as FedAvg on
the MNIST, Fashion-MNIST, and HAR datasets when no

malicious clients are present. However, in the presence of
malicious clients attempting to compromise the system, our
FoundationFL framework is uniquely capable of defending
against such attacks. For example, on the MNIST dataset,
our approach under attack performs comparably to FedAvg in
a non-attack scenario. Nonetheless, existing Byzantine-robust
foundational aggregation rules like Trim-mean and Median
show inherent weaknesses to poisoning attacks; for example,
the testing error rate for Trim-mean on the Fashion-MNIST
dataset escalates from 0.21 under no attack to 0.47 under
the Trim attack. Similarly, more complex aggregation schemes
such as “GAS + Trim-mean” and “GAS + Median” are also
susceptible. Even on a complex dataset and with a complicated
architecture like the ResNet-18 model for the CIFAR-10 image
classification task, our proposed FoundationFL can protect
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FL against poisoning attacks. In contrast, other aggregation
rules, such as Trim-mean and Median, show higher testing
error rates of 0.79 and 0.84, respectively, under the Trim
attack (see Table Xb in Appendix). Our framework not only
combats untargeted attacks but also protects effectively against
targeted threats like the Scaling attack, as evidenced in Table I
and Table X. Note that in our proposed FoundationFL, the
server produces synthetic updates after collecting local model
updates from clients. Using established Byzantine-robust ag-
gregation rules, the server then combines these augmented
model updates to reduce update variance. This is further
supported by our experimental findings. For instance, under
the Trim attack on the MNIST dataset, the mean variances for
the Median and “FoundationFL + Median” approaches are
3.39 and 0.41, respectively. This indicates that FoundationFL
effectively reduces the variance in updates.

It is important to highlight that in our proposed frame-
work, the server employs robust, coordinate-wise aggregation
methods like Trimmed-mean or Median, aiming to minimize
outlier effects in each dimension. That is to say, the server
does not directly use the selected local model update (one
synthetic update) to update the global model. “Synthetic
only” in Table II illustrates the performance when the global
model is updated exclusively with the selected local model
update. This approach, as shown in Table II, is particularly
susceptible to Krum and Scaling attacks, with testing error
rates soaring from 0.08 under normal conditions to 0.91 during
these attacks. “FoundationFL + FedAvg” in Table II refers
to the method in which the server applies the FedAvg rule
to merge synthetic updates with clients’ model updates. We
observe that this method is susceptible to Gaussian attack,
as the synthetic updates can include extreme values in some
dimensions. Therefore, we require robust aggregation rules to
filter out these extreme values.

In recent years, a variety of new and sophisticated robust
aggregation rules have been introduced. Table III displays the
testing error rate and attack success rate for three complex
and representative Byzantine-robust aggregation rules on the
MNIST dataset: Krum [8], FoolsGold [43], and FLAME [19].
As observed in Table III, these advanced robust aggregation
rules remain susceptible to poisoning attacks. For example,
the Krum aggregation rule is fundamentally vulnerable to the
Krum attack, and the FLAME method is susceptible to the
Trim attack. Comparing Table I with Table III, it is evident that
our proposed FoundationFL framework demonstrates greater
robustness compared to these sophisticated aggregation rules.

Impact of fraction of malicious clients: Fig. 1 illustrates
the impact of poisoning attacks on the performance of various
FL aggregation methods within the MNIST dataset, where the
proportion of malicious clients increases from 0% to 50%,
with a total client base of 100. The fraction of malicious
clients is computed as f/n, with f representing the number
of malicious clients and n the total client count. Note that for
the Trim-mean and “GAS + Trim-mean” aggregation rules, the
fraction of malicious clients ranges only from 0 to 45%, as

these two methods require the number of malicious clients
to be less than half of the total clients. From Fig. 1, it’s
evident that our proposed methods, “FoundationFL + Trim-
mean” and “FoundationFL + Median”, remain robust against
poisoning attacks, even when up to 45% of the clients are ma-
licious. For example, the testing error rate for “FoundationFL
+ Trim-mean” only slightly increases from 0.05 with no attack
to 0.06 under the strong Trim attack when 30% of clients
are malicious. With 45% malicious clients, “FoundationFL
+ Trim-mean” and “FoundationFL + Median” maintain error
rates no higher than 0.12 across different attacks. Conversely,
with just 10% malicious clients, the testing error rate for
“Gaussian + Median” reaches 0.90 under the Trim attack.

Impact of degree of Non-IID: In FL, a distinct characteristic
is the Non-IID nature of clients’ local training data. When
this data is notably diverse, the attacker find it easier to
craft malicious model updates that appear benign yet can
significantly disrupt the targeted FL system. This is particu-
larly problematic when the system employs Byzantine-robust
foundational aggregation rules like Trimmed-mean or Median
to merge these updates. Our findings, depicted in Fig. 2,
investigates the influence of Non-IID data heterogeneity on the
efficacy of various FL methods. The degree of Non-IIDness
explored ranges from 0.1 to 0.7, with other parameters set to
default values. The findings illustrated in Fig. 2 demonstrate
that despite the high heterogeneity in clients’ training data, our
proposed FoundationFL framework effectively shields against
diverse poisoning attacks.

Impact of fraction of synthetic updates: In our framework,
once the server collects n local model updates from clients
during each global training round, it proceeds to generate m
synthetic updates. These n + m updates are then aggregated
using either the Trim-mean or Median method. This section
explores how the proportion of synthetic updates, calculated as
m/n, influences our proposed FoundationFL. The results are
displayed in Fig. 3. From these findings, it is evident that our
methods, “FoundationFL + Trim-mean” and “FoundationFL
+ Median”, exhibit robustness against variations in the pro-
portion of synthetic updates. It is important to note that when
the fraction of synthetic updates is 0%, our “FoundationFL
+ Trim-mean” and “FoundationFL + Median” methods are
equivalent to the “Trim-mean” and “Median” rules, respec-
tively. From Fig. 3, we observe that FoundationFL requires
between 10% and 60% synthetic updates to effectively defend
against various poisoning attacks. This is because too few
synthetic updates fail to mitigate the influence of malicious
clients, while too many could overshadow the benign updates
within the system.

Impact of total number of clients: Fig. 4 displays results
across a varying total number of clients from 50 to 300,
with a consistent fraction of 20% malicious clients and other
parameters at default settings, using the MNIST dataset. The
figure demonstrates that our methods, “FoundationFL + Trim-
mean” and “FoundationFL + Median”, consistently defend
against poisoning attacks effectively across all client scales.
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TABLE II: Results when the server uses either the synthetic update alone or FedAvg to merge the augmented model updates.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
Synthetic only 0.08 0.12 0.08 0.12 0.91 0.12 0.08 0.91 / 1.00
FoundationFL + FedAvg 0.05 0.14 0.87 0.12 0.06 0.07 0.08 0.46 / 0.59

TABLE III: Results of complex Byzantine-robust aggregation rules.
Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
Krum 0.10 0.10 0.10 0.10 0.90 0.11 0.11 0.10 / 0.01
FoolsGold 0.09 0.12 0.09 0.37 0.12 0.25 0.22 0.13 / 0.05
FLAME 0.07 0.08 0.08 0.17 0.08 0.07 0.07 0.08 / 0.02
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(b) Gaussian attack
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(c) Trim attack
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(d) Krum attack
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(e) Min-Max attack
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(f) Min-Sum attack
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(g) Scaling attack
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(h) Scaling attack

Fig. 1: Impact of fraction of malicious clients.
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(b) Gaussian attack
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(c) Trim attack
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(d) Krum attack
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(e) Min-Max attack
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(f) Min-Sum attack
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(g) Scaling attack
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(h) Scaling attack

Fig. 2: Impact of degree of Non-IID.

Conversely, traditional robust aggregation methods like “GAS
+ Median” fail to adequately counteract the effects of these
attacks. Notably, as the total number of clients ranges from
50 to 300, the testing error rates for “GAS + Median” remain
significantly high under a Trim attack.
Results of various defense methods on an alternative CNN
architecture: In this part, we demonstrate the robustness of
various aggregation methods on an alternative CNN architec-
ture, with details of this architecture provided in Table IXb

in Appendix. Results for the different defense methods are
presented in Table XI in Appendix. From Table XI, we ob-
serve that our proposed FoundationFL can effectively defend
against various poisoning attacks, even with this CNN archi-
tecture. For instance, the test error rates of “FoundationFL +
Trim-mean” and “FoundationFL + Median” under different
attacks match those of FedAvg in the absence of any attacks. In
contrast, existing FL methods show vulnerability; for example,
the testing error rate of “GAS + Median” reaches 0.28 under
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(b) Gaussian attack
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(c) Trim attack
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(d) Krum attack
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(e) Min-Max attack
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(f) Min-Sum attack
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(g) Scaling attack

0 10 25 30 40 50 60 80100
Frac. of synthetic updates (%)

0.0
0.2
0.4
0.6
0.8
1.0

At
ta

ck
 su

cc
es

s r
at

e

(h) Scaling attack

Fig. 3: Impact of fraction of synthetic updates.
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(b) Gaussian attack
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(c) Trim attack
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(d) Krum attack
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(f) Min-Sum attack
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(g) Scaling attack
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Fig. 4: Impact of total number of clients.

the strong Trim attack.

Results of various defenses with subset client selection per
training round: By default, we assume full client participation
in each round of FL training. Here, we examine a setup where
only a subset of clients joins each round. Specifically, the
server randomly selects 30% of the clients each round to
receive the current global model. In this configuration, Foun-
dationFL still generates synthetic updates amounting to half of
the received local updates. For instance, if the server receives
30 model updates, it generates an additional 15 synthetic ones.
Table XII in Appendix shows defense results for this subset
selection scenario. We observe that FoundationFL remains
robust against various poisoning attacks, whereas existing FL
methods show vulnerabilities. For instance, under the Scaling
attack, the testing error rate and attack success rate for “GAS
+ Trim-mean” reach 0.36 and 0.41, respectively.

Transferability of FoundationFL: In this part, we demon-
strate that our proposed FoundationFL is transferable to
other aggregation rules. Specifically, after receiving clients’

model updates, the server generates synthetic updates as
outlined in Section IV. Rather than applying the Trimmed-
mean or Median aggregation rules, the server instead uses
the aggregation methods listed in Table III, such as Krum,
FoolsGold, or FLAME, to merge these updates. The results,
presented in Table XIII in Appendix, show that FoundationFL
effectively transfers to different aggregation protocols. For
example, with FLAME method, “FoundationFL + FLAME”
achieves a testing error rate of 0.10 under the Trim attack,
whereas FLAME alone results in a 0.17 error rate (refer to
Table III).

Scalability of FoundationFL: To illustrate the scalability of
our proposed FoundationFL method, we conducted experi-
ments on a production FL system [25], [44], [45]. Following
the setup in [25], we assume a total of 1,000 clients, with 20%
being malicious. In each training round, the server randomly
selects 30% of clients to participate in the training process. The
results, displayed in Table IV, show that both “FoundationFL
+ Trim-mean” and “FoundationFL + Median” under the Trim
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TABLE IV: Results of different defenses on a production FL system.
Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.05 0.08 0.06 0.30 0.08 0.75 0.75 0.71 / 0.69
Trim-mean 0.06 0.09 0.06 0.27 0.09 0.28 0.13 0.13 / 0.01
GAS + Trim-mean 0.06 0.07 0.07 0.32 0.07 0.10 0.10 0.32 / 0.28
Gaussian + Trim-mean 0.05 0.19 0.91 0.91 0.06 0.06 0.08 0.89 / 1.00
FoundationFL + Trim-mean 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 / 0.01
Median 0.06 0.08 0.06 0.38 0.11 0.21 0.16 0.06 / 0.02
GAS + Median 0.05 0.05 0.07 0.47 0.17 0.08 0.08 0.55 / 0.53
Gaussian + Median 0.05 0.91 0.91 0.91 0.05 0.08 0.07 0.91 / 1.00
FoundationFL + Median 0.05 0.06 0.05 0.05 0.07 0.05 0.05 0.05 / 0.02

TABLE V: Results of “FoundationFL + Trim-mean” in scenarios where the server lacks knowledge of the number of malicious
clients f , the trim parameter is set to c = 30 for f = 10 and f = 20.

f No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
f = 10 0.05 0.07 0.06 0.07 0.06 0.06 0.06 0.05 / 0.02
f = 20 0.05 0.06 0.05 0.07 0.06 0.05 0.05 0.05 / 0.02
Estimate 0.05 0.08 0.06 0.08 0.06 0.06 0.05 0.06 / 0.02

attack achieve testing error rates that align with FedAvg’s
performance in the absence of an attack, confirming the
scalability of FoundationFL.

Performance of “FoundationFL + Trim-mean” when the
number of malicious clients is unknown: Note that in the
Trim-mean aggregation method, the server initially excludes
the largest c and smallest c values for each dimension before
calculating the average of the remaining values. Following
previous studies [8], [16], [42], we assume that the trim
parameter c equals the total number of malicious clients f .
However, in practical scenarios, the server may not have exact
knowledge of the number of malicious clients, and the attacker
only knows that f is bounded by c, i.e., c > f . Table V
presents the results of our proposed “FoundationFL + Trim-
mean” approach when the server lacks precise information
about the number of malicious clients. Specifically, the trim
parameter is set to c = 30, meaning the server excludes the
largest 30 and smallest 30 values per dimension and averages
the remaining 40 values (out of 100 clients in total). “f = 10”
indicates that there are actually 10 malicious clients. Note
that in both cases where “f = 10” and “f = 20”, the
server still generates n

2 = 50 synthetic updates. “Estimate”
refers to the approach in which the server approximates the
number of malicious clients in the system. Specifically, in
each round, the server calculates the pairwise cosine distances
between each pair of client model updates, then applies the
K-means [46] clustering algorithm to divide all client model
updates into two clusters. Based on the assumption that the
majority of clients are benign, the cluster with fewer clients is
considered malicious, and the trim parameter, representing the
estimated number of malicious clients, is set to the size of this
cluster. The results in Table V demonstrate that our proposed
“FoundationFL + Trim-mean” remains effective even when
the actual number of malicious clients is within the bounds
defined by the trim parameter or the server approximates the
count of malicious clients.

Computation cost of different FL methods: Fig. 5 illustrates
the computational costs of various FL methods during 2,000

0 20 40 60
Time (s)

FedAvg
Trim

GAS+Trim
Gaussian+Trim

Found+Trim
Median

GAS+Median
Gaussian+Median

Found+Median

Fig. 5: Computation cost of different FL methods.

rounds of training on the MNIST dataset. The computation
cost represents the time required by the server to aggregate
model updates over these rounds. It is important to note
that for our proposed method, the computation cost also
includes the time taken to generate synthetic updates. In Fig. 5,
“Trim”, “GAS+Trim”, “Gaussian+Trim”, “Found+Trim”, and
“Found+Median” refer to the methods “Trim-mean”, “GAS
+ Trim-mean”, “Gaussian + Trim-mean”, “FoundationFL +
Trim-mean”, and “FoundationFL + Median”, respectively.
The additional computational overhead introduced by Foun-
dationFL primarily stems from the generation of synthetic
updates, which are designed to enhance robustness. Although
this process requires extra computations compared to standard
FL approaches, the overhead remains manageable and does
not compromise system robustness or accuracy. The synthetic
update generation process has been fine-tuned to operate
efficiently within each round, ensuring that the overall latency
does not diverge significantly from baseline methods. Addi-
tionally, as shown in Fig. 5, the method incorporating Foun-
dationFL with a robust aggregator (Trim-mean or Median)
exhibits slightly higher computational overhead compared to
FedAvg, underscoring the effectiveness of our approach in
balancing robustness and efficiency.
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TABLE VI: Results of different FL methods, with each client possessing only four labels.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.06 0.27 0.09 0.13 0.06 0.11 0.09 0.07 / 0.15
Trim-mean 0.08 0.31 0.08 0.42 0.19 0.12 0.12 0.08 / 0.05
GAS + Trim-mean 0.06 0.06 0.09 0.31 0.12 0.11 0.11 0.09 / 0.29
Gaussian + Trim-mean 0.06 0.26 0.91 0.91 0.06 0.08 0.08 0.91 / 1.00
FoundationFL + Trim-mean 0.06 0.08 0.06 0.09 0.07 0.07 0.06 0.06 / 0.03
Median 0.07 0.32 0.33 0.58 0.25 0.19 0.20 0.09 / 0.05
GAS + Median 0.07 0.07 0.11 0.35 0.12 0.11 0.11 0.15 / 0.23
Gaussian + Median 0.06 0.90 0.89 0.89 0.07 0.17 0.18 0.91 / 1.00
FoundationFL + Median 0.06 0.10 0.06 0.11 0.11 0.07 0.08 0.06 / 0.02

TABLE VII: Results of various defenses against DBA and Neurotoxin attacks.

(a) MNIST dataset.

Aggregation rule DBA Neurotoxin
FedAvg 0.48 / 0.65 0.76 / 0.73
Trim-mean 0.06 / 0.02 0.09 / 0.02
GAS + Trim-mean 0.27 / 0.19 0.43 / 0.54
Gaussian + Trim-mean 0.91 / 1.00 0.91 / 1.00
FoundationFL + Trim-mean 0.05 / 0.02 0.05 / 0.01
Median 0.05 / 0.02 0.05 / 0.02
GAS + Median 0.43 / 0.51 0.76 / 0.82
Gaussian + Median 0.91 / 1.00 0.91 / 1.00
FoundationFL + Median 0.05 / 0.02 0.06 / 0.02

(b) Fashion-MNIST dataset.

Aggregation rule DBA Neurotoxin
FedAvg 0.76 / 0.72 0.71 / 0.79
Trim-mean 0.29 / 0.06 0.30 / 0.05
GAS + Trim-mean 0.53 / 0.62 0.60 / 0.71
Gaussian + Trim-mean 0.90 / 1.00 0.90 / 1.00
FoundationFL + Trim-mean 0.22 / 0.02 0.22 / 0.02
Median 0.27 / 0.03 0.31 / 0.03
GAS + Median 0.60 / 0.61 0.78 / 0.83
Gaussian + Median 0.90 / 1.00 0.90 / 1.00
FoundationFL + Median 0.23 / 0.03 0.22 / 0.02

(c) HAR dataset.

Aggregation rule DBA Neurotoxin
FedAvg 0.05 / 0.91 0.05 / 0.89
Trim-mean 0.07 / 0.02 0.07 / 0.02
GAS + Trim-mean 0.14 / 0.68 0.07 / 0.84
Gaussian + Trim-mean 0.59 / 0.02 0.75 / 0.16
FoundationFL + Trim-mean 0.05 / 0.01 0.05 / 0.01
Median 0.07 / 0.02 0.07 / 0.02
GAS + Median 0.07 / 0.75 0.11 / 0.82
Gaussian + Median 0.07 / 0.03 0.08 / 0.10
FoundationFL + Median 0.05 / 0.01 0.05 / 0.01

(d) Purchase dataset.

Aggregation rule DBA Neurotoxin
FedAvg 0.99 / 0.31 0.99 / 0.35
Trim-mean 0.21 / 0.04 0.24 / 0.02
GAS + Trim-mean 0.25 / 0.09 0.33 / 0.06
Gaussian + Trim-mean 0.99 / 1.00 0.99 / 1.00
FoundationFL + Trim-mean 0.20 / 0.02 0.18 / 0.01
Median 0.23 / 0.01 0.26 / 0.03
GAS + Median 0.22 / 0.02 0.29 / 0.18
Gaussian + Median 0.99 / 1.00 0.99 / 1.00
FoundationFL + Median 0.21 / 0.03 0.23 / 0.03

(e) CelebA dataset.

Aggregation rule DBA Neurotoxin
FedAvg 0.41 / 0.05 0.46 / 0.05
Trim-mean 0.49 / 0.11 0.35 / 0.03
GAS + Trim-mean 0.36 / 0.04 0.36 / 0.03
Gaussian + Trim-mean 0.52 / 0.17 0.64 / 0.20
FoundationFL + Trim-mean 0.24 / 0.02 0.24 / 0.02
Median 0.28 / 0.08 0.39 / 0.12
GAS + Median 0.32 / 0.05 0.31 / 0.09
Gaussian + Median 0.43 / 0.02 0.49 / 0.04
FoundationFL + Median 0.24 / 0.01 0.25 / 0.02

(f) CIFAR-10 dataset.

Aggregation rule DBA Neurotoxin
FedAvg 0.90 / 1.00 0.90 / 1.00
Trim-mean 0.28 / 0.96 0.26 / 0.99
GAS + Trim-mean 0.25 / 0.80 0.31 / 0.92
Gaussian + Trim-mean 0.99 / 1.00 0.98 / 1.00
FoundationFL + Trim-mean 0.22 / 0.01 0.23 / 0.02
Median 0.31 / 0.84 0.37 / 0.91
GAS + Median 0.45 / 0.96 0.32 / 0.99
Gaussian + Median 0.99 / 1.00 0.99 / 1.00
FoundationFL + Median 0.24 / 0.02 0.26 / 0.03

VII. DISCUSSION AND LIMITATIONS

More extreme Non-IID distribution: In the previous section,
we demonstrated the effectiveness of our proposed method in
safeguarding FL systems against highly heterogeneous local
training data among clients. Here, we explore a more extreme
scenario where each client possesses only a few distinct labels.
Specifically, we consider a situation where each client has only
four different labels in their training data. For instance, one
client may have data labeled from one to four, while another
client may have data labeled from five to eight. The results of
various FL methods under different attack conditions in this
extreme setting are presented in Table VI. From Table VI, it is
evident that FoundationFL can effectively mitigate poisoning
attacks in FL systems even under such challenging conditions.

More targeted attacks: Here, we demonstrate the robustness
of various defense mechanisms against two more targeted
attacks: the DBA attack [12] and the Neurotoxin attack [47].
Table VII presents the results across six datasets, where
“DBA” and “Neurotoxin” represent the respective attacks.
Our FoundationFL method shows low testing error rates and
attack success rates under these attacks. In contrast, existing
aggregation rules remain vulnerable to poisoning attacks; for
example, the attack success rate of Trim-mean reaches 0.96
on the CIFAR-10 dataset under the DBA attack.

More sophisticated and adaptive attacks: In Section VI, we
show the capability of our proposed FoundationFL framework
to effectively mitigate seven distinct poisoning attacks. In
this section, we further examine three additional sophisticated
attacks, which include two adaptive attack strategies.

a) MPAF attack [48]: MPAF is an untargeted attack where the
attacker steers the current global model towards an attacker-
chosen model during each training round.

b) Adaptive attack I [6]: In this untargeted attack, the attacker
introduces small perturbations to benign local model updates
to hinder the convergence of the global model. As shown
in [6], this method allows the attacker to effectively compro-
mise the final learnt global model while evading detection.

c) Adaptive attack II [6]: This attack is both targeted and
adaptive, involving the insertion of backdoor triggers into local
training data by the attacker on a malicious client. However,
unlike scaling malicious local model updates with a fixed
factor, the attacker dynamically determines the scaling factor
through an optimization process.

Table VIII presents the results of various FL methods
under sophisticated attack scenarios. “MPAF”, “Adaptive I”,
and “Adaptive II” represent the “MPAF attack”, “Adaptive
attack I”, and “Adaptive attack II” respectively. From the
table, it is evident that despite the attacker’s efforts to evade
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TABLE VIII: Results of different FL methods under more
sophisticated and adaptive attacks.

Aggregation rule MPAF Adaptive I Adaptive II
FedAvg 0.90 0.90 0.90 / 1.00
Trim-mean 0.23 0.21 0.19 / 0.06
GAS + Trim-mean 0.13 0.28 0.60 / 0.62
Gaussian + Trim-mean 0.90 0.90 0.91 / 1.00
FoundationFL + Trim-mean 0.05 0.06 0.06 / 0.02
Median 0.29 0.17 0.13 / 0.02
GAS + Median 0.06 0.19 0.71 / 0.54
Gaussian + Median 0.91 0.91 0.91 / 1.00
FoundationFL + Median 0.06 0.06 0.06 / 0.03

detection, our proposed FoundationFL method effectively
mitigates these sophisticated attacks.

Further discussion on the threat model for the ratio of
malicious clients: From Fig. 1, we observe that our proposed
FoundationFL framework can tolerate up to 45% of malicious
clients. However, when 50% of clients are malicious, the test-
ing error rates of FoundationFL become significantly higher;
for example, under the Krum attack, error rates rise to 0.64 for
“FoundationFL + Trim-mean” and 0.27 for “FoundationFL +
Median”. Nonetheless, compromising such a large fraction of
malicious clients is impractical, as demonstrated in [25]. This
is because achieving such high numbers of malicious clients
in a real-world FL setup is unlikely due to the distributed and
decentralized nature of the system, making it challenging to
mobilize or control such a large fraction of participants for
malicious purposes.

Potential challenges introduced by FoundationFL: Our
proposed methodology incorporates synthetic updates to mit-
igate the influence of potentially malicious updates within
the system. By employing techniques such as Trimmed-Mean
or Median aggregation, we effectively reduce the weight of
outlier contributions, thereby minimizing their impact and
preventing the model from overfitting. Through extensive ex-
periments, we demonstrate that this approach does not degrade
performance metrics, such as testing accuracy, serving as
evidence that our method is not prone to overfitting. Although
bias is not the focus of this paper, we can pair our Founda-
tionFL with bias reduction techniques, such as regularization
and fairness-constrained optimization methods [49], [50], [51].
By combining our synthetic update strategy with these bias
reduction techniques, we can create a more robust and fair
model that not only performs well but also addresses potential
biases.

Limitations of FoundationFL: In this study, we show that
creating entirely new robust aggregation protocols may not
be necessary to secure FL systems effectively. Rather, by
strengthening the robustness of existing Byzantine-resistant
foundational aggregation methods, such as Trimmed-mean or
Median, we can achieve substantial resilience against poi-
soning attacks. Nevertheless, our proposed FoundationFL
framework has certain limitations. Firstly, it is restricted to
coordinate-wise aggregation rules, limiting its compatibility
with other aggregation approaches. Secondly, FoundationFL

introduces a slightly higher computational overhead compared
to the commonly used FedAvg approach.

VIII. CONCLUSION

In this work, we introduced a new approach, referred to as
FoundationFL, aimed at countering poisoning attacks in FL
systems. Rather than designing intricate new Byzantine-robust
aggregation protocols, our goal is to bolster the resilience of
FL systems using established Byzantine-robust foundational
aggregation protocols. In our proposed framework, the server
takes a proactive stance by generating synthetic updates upon
receiving local model updates from clients. Subsequently, the
server employs existing Byzantine-robust foundational aggre-
gation protocols like Trimmed-mean or Median to merge the
local model updates from clients with the generated synthetic
updates. We demonstrated the convergence performance of our
framework under poisoning attacks and conducted extensive
experiments across diverse scenarios to validate the effective-
ness of our proposed techniques. In the future, we intend to
expand our approach to incorporate other non-coordinate wise
aggregation protocols such as Krum.
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H. Yalame, H. Möllering, H. Fereidooni, S. Marchal, M. Miettinen et al.,
“Flame: Taming backdoors in federated learning,” in USENIX Security
Symposium, 2022.

[20] X. Pan, M. Zhang, D. Wu, Q. Xiao, S. Ji, and M. Yang, “Justinian’s
gaavernor: Robust distributed learning with gradient aggregation agent,”
in USENIX Security Symposium, 2020.

[21] J. Park, D.-J. Han, M. Choi, and J. Moon, “Sageflow: Robust federated
learning against both stragglers and adversaries,” in NeurIPS, 2021.

[22] P. Rieger, T. D. Nguyen, M. Miettinen, and A.-R. Sadeghi, “Deepsight:
Mitigating backdoor attacks in federated learning through deep model
inspection,” in NDSS, 2022.

[23] N. Wang, Y. Xiao, Y. Chen, Y. Hu, W. Lou, and Y. T. Hou, “Flare:
defending federated learning against model poisoning attacks via latent
space representations,” in ASIACCS, 2022.

[24] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in ICML, 2019.

[25] V. Shejwalkar, A. Houmansadr, P. Kairouz, and D. Ramage, “Back to the
drawing board: A critical evaluation of poisoning attacks on production
federated learning,” in IEEE Symposium on Security and Privacy, 2022.

[26] Y. Xie, M. Fang, and N. Z. Gong, “Model poisoning attacks to federated
learning via multi-round consistency,” arXiv preprint arXiv:2404.15611,
2024.

[27] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” in POMACS, 2017.

[28] M. Fang, J. Liu, N. Z. Gong, and E. S. Bentley, “Aflguard: Byzantine-
robust asynchronous federated learning,” in ACSAC, 2022.

[29] M. Fang, Z. Zhang, P. Khanduri, J. Liu, S. Lu, Y. Liu, N. Gong et al.,
“Byzantine-robust decentralized federated learning,” in CCS, 2024.

[30] K. Kumari, P. Rieger, H. Fereidooni, M. Jadliwala, and A.-R. Sadeghi,
“Baybfed: Bayesian backdoor defense for federated learning,” in IEEE
Symposium on Security and Privacy, 2023.

[31] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnera-
bility of distributed learning in byzantium,” in ICML, 2018.

[32] Y. Xu, M. Yin, M. Fang, and N. Z. Gong, “Robust federated learning
mitigates client-side training data distribution inference attacks,” in The
Web Conference, 2024.

[33] T. Chu, A. Garcia-Recuero, C. Iordanou, G. Smaragdakis, and
N. Laoutaris, “Securing federated sensitive topic classification against
poisoning attacks,” in NDSS, 2023.

[34] S. P. Karimireddy, L. He, and M. Jaggi, “Byzantine-robust learning on
heterogeneous datasets via bucketing,” in ICLR, 2022.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[36] Y. LeCun, C. Cortes, and C. Burges, “Mnist handwritten digit database,”
Available: http://yann. lecun. com/exdb/mnist, 1998.

[37] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[38] D. Anguita, A. Ghio, L. Oneto, X. Parra Perez, and J. L. Reyes Ortiz,
“A public domain dataset for human activity recognition using smart-
phones,” in ESANN, 2013.

[39] Acquire Valued Shoppers Challenge. [Online]. Available: https:
//www.kaggle.com/c/acquire-valued-shoppers-challenge/data

[40] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in ICCV, 2015.

[41] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[42] Y. Liu, C. Chen, L. Lyu, F. Wu, S. Wu, and G. Chen, “Byzantine-robust
learning on heterogeneous data via gradient splitting,” in ICML, 2023.

[43] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in federated
learning poisoning,” arXiv preprint arXiv:1808.04866, 2018.

[44] K. Bonawitz, “Towards federated learning at scale: System design,” in
MLSys, 2019.

[45] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and
M. Chowdhury, “Fedscale: Benchmarking model and system perfor-
mance of federated learning at scale,” in ICML, 2022.

[46] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means
clustering algorithm,” in Journal of the royal statistical society. series c
(applied statistics), 1979.

[47] Z. Zhang, A. Panda, L. Song, Y. Yang, M. Mahoney, P. Mittal, R. Kan-
nan, and J. Gonzalez, “Neurotoxin: Durable backdoors in federated
learning,” in ICML, 2022.

[48] X. Cao and N. Z. Gong, “Mpaf: Model poisoning attacks to federated
learning based on fake clients,” in CVPR Workshops, 2022.

[49] A. Abay, Y. Zhou, N. Baracaldo, S. Rajamoni, E. Chuba, and
H. Ludwig, “Mitigating bias in federated learning,” arXiv preprint
arXiv:2012.02447, 2020.

[50] S. Cui, W. Pan, J. Liang, C. Zhang, and F. Wang, “Addressing algorith-
mic disparity and performance inconsistency in federated learning,” in
NeurIPS, 2021.

[51] Y. Guo, X. Tang, and T. Lin, “Fedbr: Improving federated learning on
heterogeneous data via local learning bias reduction,” in ICML, 2023.

[52] S. Bubeck et al., “Convex optimization: Algorithms and complexity,” in
Foundations and Trends in Machine Learning, 2015.

APPENDIX

A. Proof of Theorem 1

Following [15], we adopt a slight notation abuse in our
proof, using gt

i to denote the gradient of client i in training
round t. Prior to proving our main theoretical results, we first
present several helpful lemmas.

Lemma 1. Suppose that Assumptions 1-3 and Assumption 5
are satisfied, and the server employs the Trimmed-mean ag-
gregation rule to merge the synthetic model updates and
model updates from clients. At training round t, there exists
a probability of at least 1 − 4d

(1+(n+m)λϖQ)d
such that the

following holds: ⃦⃦
g(θt)−∇L(θt)

⃦⃦
≤ B1, (8)

where g(θt) is the global model update, B1 =
O(( ρcd

υ(n+m)
√
Q
+ ρd

υ
√

(n+m)Q
)
√︁
log((n+m)λϖQ)).

Proof. The proof proceeds similarly to Theorem 11 in [16],
and we omit it here for conciseness.

Lemma 2. Suppose Assumptions 1-2 hold. If the learning rate
α used by the clients satisfies α = 1

λ , then in training round
t, we have:⃦⃦

θt − α∇L(θt)− θ∗⃦⃦ ≤
(︃
1− µ

µ+ λ

)︃ ⃦⃦
θt − θ∗⃦⃦ ,

where θ∗ is the optimal model under no attack.

Proof. We start by analyzing the squared norm:⃦⃦
θt − α∇L(θt)− θ∗⃦⃦2 =

⃦⃦
θt − θ∗⃦⃦2 + α2

⃦⃦
∇L(θt)

⃦⃦2
− 2α

⟨︁
θt − θ∗,∇L(θt)

⟩︁
. (9)

According to [52], for any θ1,θ2 ∈ Θ, we have:

µλ

µ+ λ
∥θ1 − θ2∥2 +

1

µ+ λ
∥∇L(θ1)−∇L(θ2)∥2

≤ ⟨∇L(θ1)−∇L(θ2),θ1 − θ2⟩ . (10)
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Setting θ1 = θt and θ2 = θ∗, and noting ∇L(θ∗) = 0, we
obtain:

µλ

µ+ λ

⃦⃦
θt − θ∗⃦⃦2 + 1

µ+ λ

⃦⃦
∇L(θt)

⃦⃦2
≤

⟨︁
θt − θ∗,∇L(θt)

⟩︁
. (11)

Furthermore, with α = 1
λ , we derive:⃦⃦

θt − α∇L(θt)− θ∗⃦⃦2 ≤
(︃
1− 2µ

µ+ λ

)︃ ⃦⃦
θt − θ∗⃦⃦2 . (12)

Given µ ≤ λ, it follows that:⃦⃦
θt − α∇L(θt)− θ∗⃦⃦ ≤

(︃
1− µ

µ+ λ

)︃ ⃦⃦
θt − θ∗⃦⃦ , (13)

completing the proof.

Proof of Theorem 1: Given the lemmas presented earlier,
we proceed to establish Theorem 1. In the t-th global training
round, the following holds:

∥θt+1 − θ∗∥ = ∥θt − α∇g(θt)− θ∗∥. (14)

Applying the triangle inequality to the gradient terms, the
right-hand side of Eq. (14) satisfies:

≤ ∥θt − α∇L(θt)− θ∗∥+ α∥∇g(θt)−∇L(θt)∥. (15)

Based on the above Lemmas 1-2, this can be simplified to:

≤ (1− µ

µ+ λ
)∥θt − θ∗∥+ B1

λ
, (16)

where B1 is defined as:

B1 = O((
ρcd

υ(n+m)
√
Q

+
ρd

υ
√︁
(n+m)Q

)
√︁
log((n+m)λϖQ)). (17)

Applying the condition α = 1
λ , and since µ ≤ λ, then after

T global training rounds, one can further have the following:⃦⃦
θT − θ∗⃦⃦ ≤ (1− µ

µ+ λ
)T

⃦⃦
θ0 − θ∗⃦⃦+

2B1

µ
. (18)

This concludes the convergence proof of the global model
under attack to the optimal point under the given conditions
and assumptions.

Lemma 3. Assuming Assumptions 1 to 4 hold, our proposed
framework, FoundationFL, employs the Median aggregation
rule to integrate synthetic updates and client-contributed up-
dates. Given υ > 0, if β = f

n+m satisfies β + ϵ ≤ 1
2 − υ,

then after T rounds of global training, the probability of
achieving the following outcome is guaranteed to be at least
1− 4d

(1+(n+m)λϖQ)d
:⃦⃦
g(θt)−∇L(θt)

⃦⃦
≤ B2, (19)

where g(θt) is the global model update, ϵ is defined as
ϵ = 0.4748ζ√

Q
+

√︂
d log(1+(n+m)λϖQ)

(n+m)(1−β) , B2 = 2
√
2

(n+m)Q +
2
√
πσ(β+ϵ) exp( 1

2 (Φ
−1(1−υ))2)√

Q
.

Proof. The proof follows a similar approach to Theorem 8
in [16], and we omit it here for brevity.

B. Proof of Theorem 2

The proof of Theorem 2 follow the same procedure as that
of Theorem 1. The only difference is that we simplify Eq. (15)
using Lemma 2 and Lemma 3 rather than Lemmas 1-2. For
brevity, we omit the full proof.

TABLE IX: CNN architectures.

(a) The default CNN architecture.

Layer Size
Input 28× 28× 1

Convolution + ReLU 3× 3× 30
Max Pooling 2× 2

Convolution + ReLU 3× 3× 50
Max Pooling 2× 2

Fully Connected + ReLU 100
Softmax 10

(b) An alternative CNN architecture.

Layer Size
Input 28× 28× 1

Convolution + ReLU 3× 3× 30
Fully Connected + ReLU 100

Softmax 10

16



TABLE X: Results of different FL methods on CelebA and CIFAR-10 datasets. The results of Scaling attack are shown as
“testing error rate / attack success rate”.

(a) CelebA dataset.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.23 0.33 0.37 0.44 0.56 0.56 0.57 0.45 / 0.02
Trim-mean 0.31 0.33 0.30 0.48 0.36 0.56 0.52 0.34 / 0.07
GAS + Trim-mean 0.33 0.34 0.34 0.48 0.53 0.48 0.51 0.36 / 0.03
Gaussian + Trim-mean 0.23 0.30 0.53 0.32 0.42 0.54 0.52 0.48 / 0.05
FoundationFL + Trim-mean 0.23 0.23 0.23 0.23 0.25 0.23 0.23 0.24 / 0.02
Median 0.31 0.32 0.31 0.46 0.35 0.47 0.47 0.33 / 0.05
GAS + Median 0.32 0.35 0.35 0.48 0.53 0.48 0.51 0.35 / 0.03
Gaussian + Median 0.25 0.25 0.53 0.41 0.44 0.56 0.57 0.49 / 0.04
FoundationFL + Median 0.24 0.25 0.25 0.26 0.24 0.25 0.24 0.26 / 0.02

(b) CIFAR-10 dataset.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.22 0.30 0.72 0.83 0.23 0.23 0.23 0.90 / 1.00
Trim-mean 0.25 0.32 0.26 0.79 0.26 0.25 0.25 0.28 / 0.96
GAS + Trim-mean 0.25 0.29 0.80 0.90 0.25 0.25 0.26 0.37 / 0.93
Gaussian + Trim-mean 0.28 0.38 0.90 0.71 0.33 0.28 0.32 0.99 / 1.00
FoundationFL + Trim-mean 0.22 0.23 0.22 0.25 0.22 0.23 0.23 0.22 / 0.02
Median 0.25 0.30 0.25 0.84 0.30 0.27 0.26 0.28 / 0.96
GAS + Median 0.25 0.26 0.78 0.90 0.28 0.25 0.25 0.27 / 0.89
Gaussian + Median 0.32 0.72 0.85 0.76 0.80 0.67 0.75 0.90 / 1.00
FoundationFL + Median 0.23 0.25 0.23 0.24 0.23 0.23 0.23 0.24 / 0.02

TABLE XI: Results of different defense approaches on a distinct CNN architecture.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.08 0.08 0.12 0.23 0.09 0.17 0.18 0.47 / 0.66
Trim-mean 0.10 0.11 0.10 0.24 0.10 0.20 0.25 0.12 / 0.02
GAS + Trim-mean 0.08 0.08 0.11 0.22 0.09 0.13 0.13 0.39 / 0.42
Gaussian + Trim-mean 0.08 0.91 0.91 0.91 0.08 0.13 0.12 0.91 / 1.00
FoundationFL + Trim-mean 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 / 0.01
Median 0.09 0.19 0.20 0.25 0.09 0.15 0.14 0.15 / 0.02
GAS + Median 0.08 0.08 0.13 0.28 0.08 0.13 0.13 0.55 / 0.61
Gaussian + Median 0.08 0.16 0.31 0.75 0.08 0.11 0.10 0.89 / 1.00
FoundationFL + Median 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 / 0.01

TABLE XII: Results of different defenses when only a subset of clients are selected in each training round.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FedAvg 0.06 0.08 0.12 0.13 0.06 0.75 0.75 0.68 / 0.81
Trim-mean 0.06 0.07 0.07 0.26 0.08 0.11 0.15 0.13 / 0.02
GAS + Trim-mean 0.06 0.06 0.12 0.22 0.06 0.09 0.09 0.36 / 0.41
Gaussian + Trim-mean 0.06 0.12 0.91 0.91 0.06 0.07 0.06 0.89 / 0.92
FoundationFL + Trim-mean 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 / 0.02
Median 0.06 0.08 0.07 0.28 0.29 0.11 0.13 0.06 / 0.02
GAS + Median 0.06 0.06 0.12 0.25 0.07 0.09 0.10 0.55 / 0.65
Gaussian + Median 0.06 0.90 0.90 0.90 0.06 0.09 0.09 0.91 / 1.00
FoundationFL + Median 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 / 0.02

TABLE XIII: Transferability of FoundationFL.

Aggregation rule No attack LF attack Gaussian attack Trim attack Krum attack Min-Max attack Min-Sum attack Scaling attack
FoundationFL + Krum 0.07 0.07 0.07 0.07 0.85 0.08 0.08 0.08 / 0.01
FoundationFL + FoolsGold 0.06 0.09 0.08 0.13 0.06 0.08 0.08 0.09 / 0.02
FoundationFL + FLAME 0.07 0.08 0.08 0.10 0.07 0.07 0.07 0.07 / 0.02
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