
CHAOS: Exploiting Station Time Synchronization
in 802.11 Networks

Sirus Shahini
University of Utah

sirus.shahini@utah.edu

Robert Ricci
University of Utah
ricci@cs.utah.edu

Abstract—Many locations, especially in urban areas, are quite
noisy with WiFi traffic. In addition to data traffic, WiFi stations
send management and control frames that can easily exceed
several hundred frames per second just in one small area. These
WiFi environments present the opportunity to transmit data
through hiding it within the noise components that can be normal
parts of benign transmissions. In this paper, we show how one
particular feature of WiFi, the Timing Synchronization Function
(TSF), can be exploited to create a fertile and robust channel
for embedding secret signals. We take advantage of the fact
that there is always some degree of imprecision reflected in time
synchronization of WiFi stations.

We present CHAOS, a new covert channel strategy to embed
data bits in WiFi beacon frames using unmodified standard WiFi
hardware. CHAOS makes use of the noise properties inherent in
WiFi in two ways: First, it encodes information in the ordering
of beacon frames, taking advantage of the fact that there is no
natural or required ordering of beacons. Second, it makes use of a
timing channel in the form of the TSF timestamp in management
headers, imitating the natural imprecision of timing in real base
stations to encode data in a way that is statistically similar to
unmodified frames. CHAOS’s parameters can be adjusted to
configure data rate, the covert channel stability and frame miss
rate; using our suggested settings, it is able to robustly broadcast
secret data at 520 bits/s. We also show that TSF has substantial
potential for further exploitation, sketching a correlation attack
that uses it to map clients to base stations.

I. INTRODUCTION

Advancement of wireless technologies, coupled with the
proliferation of Internet-based devices and the fast-growing
demand for a constant and seamless connection to the Internet,
has increased the global use of WiFi devices with an unprece-
dented speed. As of 2023, there were more than three times as
many devices connected to IP networks as the population of
the world [1]. There are an estimated 15 billion IoT devices
that use WiFi connections on a daily basis [2], and this number
is projected to at least double by 2030. The number of WiFi
devices increased drastically after the implementation of the
enhancements introduced in 802.11ac and 802.11ax standards
due to the faster connections and better coverage, which make
WiFi an appealing choice for data-intensive tasks and busy

environments [3]. Furthermore, WiFi is provided not only
through home access points (APs) but also it is normally
offered as a complementary service in public places in urban
areas, transit systems and modern private cars.

The magnitude of electronic devices that use wireless tech-
nologies, combined with their constant network usage, pro-
duces significant network traffic and consequently a tremen-
dous number of WiFi frames in the environment. The number
increases in dense urban areas where interference with other
radio transmitters (both WiFi and non-WiFi) and bandwidth
overlapping of multiple nearby networks cause frequent re-
transmissions of the frames. Notably, a considerable portion of
WiFi frames are not data frames but control and management
frames to control the physical medium and manage the basic
service set (BSS) respectively. In this paper, we specifically
focus on beacon frames, which are used for advertising access
points and their capabilities.

Beacon frames are generated by access points so that that
they can be discovered by other stations (STAs)1. Typically,
beacons contain a Service Set Identifier (SSID), though this
can be omitted to create “hidden” networks. 802.11 standard
specifies that APs should emit multiple beacons per second
so that they can be quickly discovered by stations passively
scanning across all channels. Given the number of active
access points in urban areas, the abundance of beacon frames
alone creates dense traffic in all WiFi channels. In Figure 1, we
have shown the average number of beacon frames per second
in multiple locations of two cities in the US.

Covert channels are unconventional forms of transmitting
data that are typically difficult to detect and interpret [40], [4],
[9], [12], [18], [23], [31]. Existing covert channels in wireless
technologies exploit either the physical layer characteristics of
the medium and the radio packets or employ traditional ways
of analyzing inter-packet-delays to exfiltrate covert data [8].
Multiple mitigation techniques have been proposed in litera-
ture to counter physical-level radio covert channels [29]. Both
the implementation and mitigation of these techniques require
special equipment.

In this work, we present a novel strategy, CHAOS, to
implement a WiFi-based covert channel that uses beacon
frames to encode and broadcast data. We do not modify the
operations of the physical layer, nor do we change the regular

1Any client that communicates through IEEE 802.11 is a station.

Network and Distributed System Security (NDSS) Symposium 2025
24–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230187
www.ndss-symposium.org

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Location number

0

100

200

300

400

500

600

700
Be

ac
on

s p
er

 se
co

nd

Fig. 1. Number of beacons in 15 distinct places in two US cities. Locations
range from less crowded to dense areas.

timings of WiFi frames. CHAOS targets subtle timings of a
noise component between beacon frames.

Our model establishes a reliable covert channel at the
software level without violating the structural properties of the
frames. We take advantage of the ambient noise that exists
in all WiFi networks, and use the natural delays between
management frames to encode and extract covert bits. CHAOS
exploits the Timing Synchronization Function (TSF) of the
individual STAs in beacon frames to encode timing data.
TSF is the backbone of 802.11 time synchronization and
controls many important tasks like signal scheduling and
power management. In other words, WiFi will not function
without TSF.

CHAOS broadcasts beacons for multiple virtual access
points. It uses natural microsecond-precision jitters in TSF,
which we refer to as Delay Levels (DLs), and are present
between normal intervals of beacon frames. The order of the
beacons coupled with the inter-frame noise that we deliber-
ately introduce between frames creates a set of permutations
that are mapped to covert bits by receivers. Beacon frames
used by CHAOS comprise only a small part of all management
frames (including other beacons) that exist in the air. CHAOS
is a broadcast protocol; a secret message can be read by all
in-range stations that are aware of the covert channel. The rest
of the stations will see the frames as normal benign beacons.
CHAOS is resistant to ambient noise. The timing patterns
that we use in our covert channel look like normal inter-
frame delay (IFD) timing drifts. Using CHAOS we can reliably
broadcast covert payloads to multiple stations without causing
any suspicion that any data transmission is taking place. From
the perspective of an adversary, nothing is observed other than
normal advertisement frames from already-ubiquitous access
points.

CHAOS makes use of the inclusion of high-precision
timestamps in WiFi management frames to create a timing
channel that is both precise and easily managable by the
receiving stations that are part of the covert communication.

MAC Header

Mandatory Parameters

Other Parameters

Timestamp:8 Interval:2 Capabilities:2 SSID:Variable

Fig. 2. Beacon frame format. Sizes are listed in bytes.

We also identified a previously-unknown opportunity to mount
a correlation attack through careful observation of TSF noise:
the jitter in TSF values from benign access points is affected
in predictable ways by the load on that access point.

In short, we make the following contributions:
• We identify a new way of exploiting two important side

effects of TSF counters: variable microsecond-precision
noise and the effect of load on this noise,

• We introduce a method for producing timer jitter that
follows statistical distributions seen in natural ambient
TSF noise,

• We show an effective strategy for taking advantage of
TSF noise while being resistant to noise at the same time,

• We implement and demonstrate a reliable covert channel
to broadcast hidden payloads in a WiFi environment, and

• We describe a novel correlation attack using analysis of
TSF noise patterns.

II. BACKGROUND AND OVERVIEW

In this section, we briefly explain the design and proper-
ties of TSF, protocol assumptions and requirements, and the
consequences that can lead to exploitation of TSF.

A. Time Synchronization in the 802.11 MAC Layer

Access points advertise their presence to surrounding sta-
tions using beacons sent at constant intervals. The interval is
usually set to a default universal value in all commercial access
points. The 802.11 MAC layer standard (Part 11) [17] defines
a time unit (TU) as 1024 microseconds. The interval between
two consecutive beacons is called Target Beacon Transmission
Time (TBTT). In most access points, TBTT is by default set
to 100TUs which is 102,400 microseconds. 100TUs has been
selected as a reasonable interval because longer durations can
increase connection delays for stations that are waiting for
a beacon and shorter durations will create extra frames and
unnecessary burden on the network.

Figure 2 shows the abstract structure of the frame. Gen-
erally, it is assumed that an access point transmits a beacon
frame approximately every 100 milliseconds. In this paper,
we specifically look at the micro-second TSF noise that is
reflected in the timestamp field the moment the TSF value is
written in a beacon frame.

The 16 bit Interval field that is filled by the access point
specifies the nominal delay between two consecutive beacons.

2

Crucially, the actual transmission interval is not necessarily
equal to the defined interval because the shared medium must
be free before a beacon can be transmitted. An access point
checks the current state of the medium using CSMA/CA
protocol. If the access point senses that the medium is busy
it sets a random back-off timer and then tries again. The 64-
bit Timestamp field of a beacon and probe response frame
shows the access point’s clock since it started (was turned
on by the user). The MAC layer standard[17] states that
“In an infrastructure BSS or in a PBSS2, the AP in the
infrastructure BSS or the PCP3 in the PBSS shall be the timing
master for the TSF.” The access point achieves the required
timing goal through a beacon transmission operation which is
described as “In a non-DMG4 and non-S1G BSS, the AP shall
periodically transmit frames called Beacon frames.” Similarly,
for 802.11ad we have “In a DMG infrastructure BSS, zero or
more DMG Beacon frames shall be generated for transmission
by the AP every dot11BeaconPeriod TUs.”

The timestamp field of a beacon frame is populated by
the value of the TSF timer. It is also stated in the standard
that “Each STA shall maintain a TSF timer with modulus 264

counting in increments of microseconds.” The important thing
about this value is that the TSF counter stored in the timestamp
field is always prone to noise. Technically, the timestamp in a
beacon or probe response frame is set to the value of the TSF
clock, the moment that “the first bit of the frame appears at the
transmit antenna connector”. This means that the timestamp
will change in each transmission, not only due to waiting
for a period of 100 TUs, but also because of the time that
is lost due to processing, hardware environmental noise and
waiting for the medium before the frame can be transmitted
through antenna sectors. Another reason is thread suspension
is usually not precise at microsecond level. For example,
standard suspension functions like sleep() and usleep()
guarantee that the calling thread is suspended for at least the
requested time. The actual receipt times that are seen by the
receivers always deviate significantly in microsecond or even
millisecond granularity due to radio interference, hardware
imperfections, distance and processing times at different levels
during the course of transmitting and receiving the signals.
All of these factors translate into random fluctuations in TSF-
based timestamps.

On the other hand, this level of natural noise during synchro-
nization is actually expected: The standard does not require
that the inter-frame delays (IFDs) of beacons be precise. The
standard does not assume that the stations receive beacons
exactly at TBTT intervals and it does not mandate that the
difference between two consecutive timestamp values must be
precisely equal to “dot11BeaconPeriod TUs”. This level of
precision is not needed to implement the functionality that is
defined for beacons. It is just required that all stations in the
BSS be aware of the current TSF value of the AP at the time of

2A BSS is the short form of “Basic Service Set” which is a regular WiFi
network and PBSS means Personal BSS like an ad-hoc network.

3PBSS Control Point.
4DMG: Directional Multi Gigabit

0 25 50 75 100
0

200

400

600

800

1000

TS
F

no
ise

 (
s)

0 25 50 75 100
0

200

400

600

800

0 25 50 75 100
Sample#

0

200

400

600

800

1000

TS
F

no
ise

 (
s)

0 25 50 75 100
Sample#

0

200

400

600

800

1000

Fig. 3. TSF noise sampled 100 times for 4 different access points.

beacon transmission for the purpose of synchronization. The
reason that AP waits for a specific time before transmitting
another beacon is solely limiting the number of beacons to
a minimum so that other stations receive sufficient beacons
for scanning and time synchronization. As long as at least a
handful of beacons per second advertise the existence of an
access point along with the access point’s TSF timer, other
STAs can find the access point in a normal passive scan and
perform TSF synchronization. The existing TSF noise does
not cause any problem in this process but it does create side
effects that can be exploited.

The way TSF synchronization has been designed created—
inadvertently—an opportunity for us to build a reliable and
relatively fast timing-based covert channel which is extremely
hard to detect or stop.

B. TSF Noise and Noise Resistance

The natural noise that is observed in timestamps of beacon
frames is the basis of developing CHAOS. Since the founda-
tion of CHAOS is built upon ambient noise, our approach
is noise-resistant. We mimic the TSF noise that normally
exists. Increasing the noise does not affect the functionality
of CHAOS because it adapts to the new noise observed in the
environment.

In Figure 3 we have shown the TSF noise from four
access points made by different manufacturers. Basically all
access points in all channels behave quite similarly in terms
of showing this specific type of noise. We measure TSF
noise at the granularity of microseconds, and its value varies
significantly in different frames. However, it is usually bound
within the range of a few to about 1,000 microseconds.

Because the TSF counter is included directly in beacon
headers, placing and recovering this noise does not require
special hardware capable of high-precision time measurement:
any off-the-shelf WiFi chipset that provides raw access to
beacon frames (which is many of chips) can be used.

3

C. Hiding in the Crowd

Another thing that assists CHAOS to evade detection is the
high volume of benign frames in the air. The 2.4GHz band
is broken up to 14 channels, each of which is 25MHz wide.
Among them, three channels in the 2.4GHz band are non-
overlapping; 1, 6, 11. The majority of access points on this
band, choose one of these three channels by default. In the
5GHz band there are 24 non-overlapping 20MHz channels.
Like the 2.4GHz band, in most countries only a couple of
all the available channels are used for majority of WiFi
communication. In urban areas, collectively there are tens of
thousands of beacon frames per second in both bands. This
number increases significantly in crowded environments like a
city downtown or densely populated locations within an urban
area. CHAOS only uses a fraction of the existing advertisement
frames to transmit coded secret messages.

III. DESIGN

CHAOS comprises one broadcast transmitter and multi-
ple receivers. CHAOS creates a list, β, of m MAC ad-
dresses which represent m access points to advertise (β =
{AP1, AP2, ..., APm}) using normal beacon frames the way
regular access points are advertised. These are the access
points that are used to establish our covert communication.
We do not need a separate physical access point for each
access point defined in the system. All beacons are managed
by and transmitted from the same machine. In other words,
one physical transmitter is enough to run CHAOS. Note that,
to change the physical characteristics of the beacon frames
across different CHAOS APs, we can use a separate network
card for each AP or for a group of APs. For example, AP1

and AP2 can be assigned to two different USB NICs, iface1
and iface2, each of which employing a different WiFi chip.
While the USB cards can be placed in two different locations,
they will be connected to the same machine and governed by
the same instance of CHAOS.

The receiver and transmitter have the same β set. Then a
subset of n ≤ m access points, A, are chosen from β so
that A = {ap1, ap2, ..., apn} where api can be any of the
access points defined in β. These n access points defined in
A are used for secret communication in each burst. CHAOS
can dynamically change members in A at each burst, rotating
the access points to be placed in this subset.

burst: A burst is the transmission of m beacons to
advertise m APs defined in β.

We call an access point that is a member of A, a TXAP
(transmission access point), and an access point that is in β
and not in A is called a CAP (cover access point). Secret
bits are transmitted by TXAPs. CAPs are used to increase the
cost of statistical analysis of timing patterns to make it more
difficult for an adversary to locate a CHAOS transmitter. For
the most of the rest of this section, we use AP and STA for
an access point and a station respectively to save space.

sta1

sta2

sta 3

sta4
sta5

sta6

Fig. 4. TXAPs encode the secret message in the form of two permutation
components that are sent using the beacon frames. All STAs that are within
range can capture the frames (sta2, sta3 and sta4). CHAOS STAs will
decode the components and recover the secret message.

For each AP, we advertise its MAC address and capabilities
using standard beacons. Following the normal functionality of
regular APs, we send a beacon frame for an AP every 100TUs
or 102ms. We call each transmission cycle a burst.

In each burst, the transmitter and the receiver have the
option to change the APs defined in A by choosing a different
subset from β using a key known to both sides. The transmitter
and the receiver will always have the same members in A
and β at any given burst. The TSF noise of a CAP is not
used for covert transmission and its value is selected from a
normal distribution as we explain later. For TXAPs, however,
we follow a specific strategy to create the TSF noise.

In each burst, we define n slots specifically for the n APs in
A that are used to carry secret bits in the current burst. Each
slot is assigned to one AP and we transmit the beacons starting
from the first (s1) to the last slot (sn). The assignment of the
APs changes in each burst, and the order of the assignments in
each burst creates a unique sequence which constitutes the first
component of permutations that are mapped to secret bits. The
TXAP frames can be sent in the same 802.11 radio channel or
across multiple channels and as mentioned before, using the
same or different interfaces. Figure 4 shows a simple model of
CHAOS stations receiving the coded timing noise in a WiFi
network.

For each slot, we define a delay level which mimics the
natural ambient TSF noise. Assume that tsi and tsi+1 are the
timestamps of two consecutive beacons from a specific AP.
Normally the following equation relates these two values in
an 802.11 access point:

tsi+1 = tsi + 100TU + ε (1)

Where ε is the variable TSF noise that usually ranges from
a few microseconds to one millisecond. This is what we refer
to as TSF noise in this paper and this is the noise using which
we transmit covert data.

4

TSF Noise: The variable microsecond-level deviation
from TBTT in beacon intervals measured using the
timestamps of two consecutive beacon frames.

The delay level (dl) in CHAOS is mapped to the ε compo-
nent of the equation and in each burst it is defined as:

dl = l ×DS + εi (2)

Where DS is called Delay Step which is a constant value
and εi is a random value in the range [0, DL/2]. The most
important part of this equation is l which constitutes the second
component of our permutation mapping. The receiver reverses
the above operation to find l. This coefficient is an integer
that is chosen from the range of [0, DL NMAX) in which
DL NMAX is a constant that specifies the total number of
Delay Steps that l can be chosen from. We use the short form
of capital L to point to DL NMAX . This means that l is a
number from {0, 1, .., L−1} set. The magnitude of L directly
specifies the size of the permutation space. The values of DS
and L are chosen and defined for the system in a way that the
following inequality is satisfied:

DS × L < TSF MAX (3)

Where TSF MAX is the average maximum TSF noise
that we have observed in various APs. Basically, DL and L
have an inverse relation; if we choose a bigger value for L we
have to reduce DS.

After each dl is calculated, it is added to the base standard
TBTT (called BASE DELAY in CHAOS) and then is written
in the timestamp of the beacon of the current slot. The
sequence of the resulting dls will look exactly like natural
TSF noise. A normal station will perceive these beacons as
normal advertisement frames but the CHAOS receivers will
recover the set of dls and combine them with the order of
APs in the current burst to decode the secret payload.

A. The Permutation Space

The combination of the order of the TXAPs and the TSF
noise of each TXAP in each burst creates a unique sequence
that constitutes one permutation in our permutation space.
For n TXAPs in A we can make n! permutations and for
L possible values for each TSF noise, we will have Ln

permutations. This gives us T = n! × Ln total permutations.
Therefore, in each burst, we can transmit U bits where:

U = log2 T = log2 (n!× Ln) (4)

Numeric representations of these permutations are indexed
from 0 to T−1 to map each permutation to a unique sequence
of secret bits.

We have shown a simple example in Figure 5 where n = 5.
There are three bursts in this figure. In the first burst we have
the sequence of ap2, ap1, ap4, ap3, ap5 which is represented
as sequence (2, 1, 4, 3, 5). Only CHAOS stations know the
correct assignment of the order of access points to permutation
sequences as we define for the system what access point should

ap2 ap1 ap4 ap3 ap5

ap3 ap5 ap2 ap1 ap4

ap4 ap1 ap5 ap3 ap2

Second Component

First Component

0 1 0 0 2

1 3 0 2 0

3 5 2 1 4

4 1 5 3 2

3 5 2 1 4 0 1 0 0 2

4 1 5 3 2 1 3 0 2 0

p1
p2

dl1

dl1

Fig. 5. TXAPs are assigned to transmission slots and TSF noise is defined
for each slot independently. Delay levels and TXAP order create permutations
(p1, p2) that are mapped to secret bits. The burst is broadcasted and all
CHAOS receivers that see the frames recover the permutation components to
remap the burst to the covert payload. Each delay level is calculated between
two beacons of the same AP (For example, dl1 for ap1 in the figure.). TXAP
order assignment is only known to CHAOS stations.

be mapped to what number. For example, if MAC address mi

represents APj , only CHAOS stations can place APj in the
corresponding sequence when the source address of an RX
beacon is set to mi.

In the second and third bursts we have (3, 5, 2, 1, 4) and
(4, 1, 5, 3, 2) respectively. The value of the dl component
is calculated relatively between two frames. For the tran-
sition between the first and second burst we have a de-
lay level sequence of (0, 1, 0, 0, 2) and for the next one
we have (1, 3, 0, 2, 0). This will yield two permutations of
(3, 5, 2, 1, 4, 0, 1, 0, 0, 2) and (4, 1, 5, 3, 2, 1, 3, 0, 2, 0) for the
receivers. These are broadcast covert messages. The receivers
do not need to associate with the APs or even transmit any
frame on any channel. Consequently, even the transmitter does
not know where the receivers are located or which stations
can read the messages. This means that even if an adversary
can detect a transmitter, they will not be able to identify
the receivers. We will present a comprehensive analysis of
detection possibilities of CHAOS APs in Section IV.

In Section III-D, we have included a step-by-step example
of the encoding strategy to convert data bits to CHAOS
permutation components.

B. The choice of CHAOS parameters; m and n

Selecting different values for m, n, DS and L affects the
covert communication speed and how difficult the detection of
the system will be. Choosing DS and L is relatively straight-
forward. Bigger values of L increase the covert bandwidth.
Mathematically, this also reduces the range of values that we
can use for DS. But apart from speed, it does not affect the
covert channel.

5

The selection of m and n, however, is significantly different
and requires careful analysis. n is the main number to change
U in Equation 4 and hence the main factor in determining
speed. That said, choosing a too big value for n increases
burst miss rate (explained later) and we need a limit on that.
m on the other hand, specifies the statistical properties of the
TSF noise that is generated by CHAOS. We want this noise to
look similar to the noise that we see from other (benign) access
points. The reason that m specifies the distribution of the TSF
noise, is that TXAPs will periodically change and the noise
that is seen for a specific access point does not purely depend
on the distribution of bits in the secret message. Remember
that as we mentioned at the beginning of this section, the
transmitter and the receiver have the option to rotate the APs
in A using a shared key.

We are not limited to any specific strategy of choosing
the members of A. The transmitter and the receiver can use
any selection algorithm as long as they end up with having
the same members in A in each burst. Note that the burst
number in the transmitter and all receivers is always the same
and synchronized through observing the difference between
two consecutive timestamps of any AP used in CHAOS. For
example, at the receiver side, if tsi+1 − tsi ≥ 2TBTT it
means that the transmitter is one burst ahead of the receiver
and the receiver increments its current burst number by
one and so on. To help the reader better understand the AP
rotation process, here we present a simple selection strategy
to choose APs for A in each burst.

A simple TXAP rotation example
In this example we assume m = 20 and n = 5. Access

points are numbered from 0 to 19 in β (or B in code snippet
1). When the code starts we use the shared SECRET to seed
the number generator which is used to shuffle B using Fisher
Yates algorithm. Whenever we increment the burst number we
shuffle B and take the first n integers out to fill A. The code
snippet of this rotator is written below.

If we set SECRET to an arbitrary number like 0xA0
(decimal 160), Listing 2 shows the first five sequences of A
that the transmitter and receiver will generate.

1 void init(int SECRET){
2 srand(SECRET);
3 }
4 int * build_A(int burst_increment_steps){
5 int i;
6 u8 *A=malloc(n);
7 for (i=0;i<burst_increment_steps;i++)
8 shuffle_fisher_yates(B);
9 for (i=0;i<n;i++){

10 append(A,B[i]);
11 }
12 return A;
13 }

Listing 1. Example code snippet of a simple TXAP rotator

These numbers that fill A specify the APs for the first five
bursts. For example, in the second burst, the transmitter will
use {ap0, ap5, ap7, ap8, ap13} as the set of TXAPs, and the

receiver will use the TSF noise of the same APs to decode the
permutation components.

1 5 13 16 4 15
2 0 5 8 7 13
3 11 16 10 0 12
4 7 2 8 4 10
5 18 1 7 8 12

Listing 2. The first 5 sequences generated with the given SECRET as integer
5.

C. The Problem of Missed Bursts

In radio communication, it is common for a receiver to
miss some of the transmitter’s signals. WiFi networks are no
exception. While frame miss rate, is different for different
chips and drivers, all network cards miss some frames. In
CHAOS, since the communication happens in a one-way
broadcast manner, the receivers cannot acknowledge frames.
An entire burst is missed, if at least one of the beacons of the
current TXAPs is not received at the receiver side.

We resolve this problem by repeating the transmission over
the covert data one cycle at a time with a known fixed size
instead of sending the payload only once. In each burst, we
send one unit of data which is equal to T bits, described
in Equation 4. Effectively the covert data is divided into
sequential units and the transmitter sends them in the order
they are in the payload. The size of the covert payload must
be known to both sides, and consequently the receiver and
the transmitter know how many units should be transferred
for the payload. Since CHAOS transmitter and receivers are
synchronized in terms of burst numbers, whenever a receiver
detects that a burst was missed, it moves to the next burst
and tries to fill the next data unit in the RX buffer. When
the transmitter hits the end of the payload buffer, it starts
retransmitting the payload from scratch by moving to the first
data unit and the receivers will fill the missed units in the next
cycles.

For example, if T = 16 and the covert payload is a 24-byte
secret message, we need 12 bursts to send the whole message.
Assume that, the receiver misses the third burst. This will be
detected immediately after the receiver captures a beacon from
one of the CHAOS APs after the third burst is completed at
the transmitter side. The receiver then proceeds to fill the next
parts of the secret message while the transmitter is sending the
remaining 9 units. Eventually after the transmitter gets back to
burst3 in the next cycle, the missed data unit will be retried
by the receiver. By repeating this process, it is guaranteed that
all missed bursts are recovered by all receiving STAs.

D. Encoding Example

We use a simple example in this section to show the
encoding strategy for converting secret bits to TSF noise and
vice versa. In this example, we assume there are six access
points (ap0 to ap5) in β and only three rotating access points
in A (n = 3 and m = 6). Furthermore, we assume there
are only nine delay levels for each access point (L = 9).
We also assume that the sample secret bytes that we want to

6

burst 0 burst 1 burst 2
TBTT BASE

+100TU +100TU

ap2 ap1 ap3 ap5 ap0 ap4

3l

6l

0

TBTT BASE

ap2 ap1ap3 ap5 ap0ap4

l

3l

TBTT BASE

ap2 ap1 ap3ap5 ap0 ap4

3l

6l

5l

0

Fig. 6. Arranging the beacons for the first three bursts to carry the sample payload. CAP APs can take arbitrary orders in each bursts.

02
C4
8F
7F
9C

0000 0010
1100 0100
1000 1111
0111 1111
1001 1100

0100 0000 0010

TX
burst burst payload

0

1000 1111 11001

1100 0111 11112

components

1,(360)
3,(135)
4,(344)

burst 0
burst 1
burst 2

Fig. 7. Breakdown of secret payload and grouping the bits to map permutation
components.

carry using CHAOS is 02 C4 8F 7F 9C with 02 being
the lowest address byte of the payload in memory.

For three access points and nine delay levels we will have
a sample space of 6 ∗ (9)3 = 4374 members. This number is
enough to transmit 12 bits per burst. The number is broken
down into two sample spaces for two permutation components:
6 for the first component and 93 = 729 for the second
component.

The secret payload is 40 bits, and in this example we discuss
the first three bursts which will map the right-most 36 bits
(starting with 0x02). In Figure 7 we have shown how the first
three groups of bits are broken down to map to the first three
bursts.

Access points in A are assigned to three slots s0, s1 and s2.
The order of the access points is interpreted based on the order
of the transmitted slots. The specific order-to-permutation
assignment strategy is defined arbitrarily and is part of the
secret shared between stations. In this example, we define
the first permutation of the possible orders as the order in
which the access points are assigned to the slots in ascending
indices from left to right, and then the next permutations will
follow the same pattern similar to generating an ascending
sequence of continuous natural numbers. For example, in
burstn if A = {ap2, ap3, ap5}, then the first permutation

is when s0 = ap2, s1 = ap3 and s2 = ap5. If these three
access points are transmitted in another order, say ap2ap5ap3
the receiver will interpret it as the second permutation of the
order component. The order of CAP APs can be arbitrarily
set in each burst.

The first twelve bits are 0100 0000 0010 which is equal
to decimal 1026. To get the first permutation component we
divide 1026 by the size of the second component and get
1026/729 = 1. This means that we will create the permutation
of the slots in a way that the first component in this burst will
map to second member in its sample space and the second
component which is the TSF noise will map to the element
1026%729 + 1 = 298 in the second component. Since the
assignment of access pints in A depends on the secret key, here
we assume an arbitrary assignment for the first three bursts that
is shown in listing 3:

1 2 4 5
2 0 3 5
3 1 2 4

Listing 3. The first three TX rotation orders.

For the first burst, A = ap2, ap4, ap5, and since we want the
second member of the order component, we set the order of the
access points as {2, 5, 4}. For the second component which is
the TSF delay levels, 297 modulus 9 is 360. So we will create
the sequence of {3l, 6l, 0} respectively for A = ap2, ap4, ap5.
This will result in the following TX sequence:

burst0 = {ap2 : 3l, ap5 : 6l, ap4 : 0}

.
More precisely, while it is not shown in Figure 6, a random

value is added to each resulting delay level so that the created
noise is not an integer multiple of l (refer to Equation). At
each new burst, TSF timestamp is incremented by 100TU
(theoretical part) plus the delay level (noise part). We assume
the theoretical base timestamp for the first burst is T0. We trace
discrete increments of timestamp/100TUs to track bursts.
For example, we will have T0+100TU as the base timestamp
for the second burst.

7

The delay levels of ap0, ap1 and ap3 at the first burst
are chosen from a random variable with normal distribution.
Remember l is chosen based on Equation 3.

Similarly we will have {ap3 : l, ap5 : 3l, ap0 : 5l} and
{ap4 : 3l, ap1 : 4l, ap2 : 4l} for the second and third bursts
respectively as shown in Figure 6. The receiver will reverse
these steps and recover the exact same sequences to form
the first three 12-bit groups of the payload. In the case of
missing a beacon frame, the corresponding burst is marked an
incomplete. The receiver will mark a burst as incomplete, if
the base timestamp exceeds the expected range of the current
burst. For example, if the receiver is waiting for the second
burst and it receives a beacon with a TSF timestamp in the
range of T0+200TU and T0+300TU , it moves to next buffer
cell which corresponds to the third and not second burst. The
second burst will be recovered at the next cycle of TX rotation.

E. The Threat Model
A receiver and a transmitter:
• have the same values for the permutation parameters: m,
n, L, BD, DS, and

• have the same constant members in β and the same
variable members in A in each burst, and

• do not have mutual knowledge about each other.
Note that, the receivers capture the beacons that are used

for covert transmission but they do not know what station
is sending them5. Similarly, the transmitter does not have
any knowledge about who the receivers are. The permutation
parameters, shared key and β are not transmitted at any time.
They are defined for the system as a set of pre-selected
parameters. These parameters can arbitrary change between
different compiles if we need different groups of stations
use separate keys or configurations to establish independent
communication channels in those groups.

The adversary:
• can listen to and capture all WiFi frames in all WiFi

channels6, and
• does not know whether CHAOS is being used, and
• does not posses any knowledge about the location and

addresses of CHAOS STAs, and
• does not possess any knowledge about β, A and the

shared key between CHAOS STAs, and
• since it does not know the shared key, it will not be able

to reproduce the TXAP rotation sequences.
An adversary might try to achieve any of these goals:
• detection of whether CHAOS is being used,
• upon detection (or prior knowledge about usage of

CHAOS in the environment), trying to recover covert
data,

• stopping CHAOS or interrupting the covert communica-
toin.

We discuss all these possibilities in the next sections.

5The raw frames used by CHAOS do not contain any identifying informa-
tion of the transmitter.

6Usually, this is not possible due to environment noise and hardware
imperfection. But we assume a strong adversary with an ideal capture system
and zero percent frame miss rate.

F. Some notes on the choices of AP details

Normally, 802.11 access points have different MAC ad-
dresses and SSIDs. A simple scan on any WiFi channel
finds many access points and a significant number of them
are hidden. An access point is hidden if the beacons that it
transmits do not have an SSID. More precisely the length
of the SSID in the advertisement frame is zero. Users that
want to connect to a hidden station must provide the correct
SSID before they can complete the association stage. A WiFi
router can create multiple access points on 2.4GHz and 5Ghz
bands. Some of hidden access points we find in our scans, have
similar MAC addresses to a visible access point with only the 4
right-most bits being different. This suggests that the related
beacons are transmitted by the same device. Irrespective of
what the sources of hidden APs are, this type of access points
are quite prevalent.

CHAOS creates a MAC address for each access point that
it advertises. Similarly we need to decide what SSID should
be used for each access point. A reasonable strategy is to
make some of the APs hidden and some of them visible. This
has two benefits. First, we will have a combination of both
types of SSIDs (zero and non-zero lengths) like benign access
points in the environment, and second, we will need to come
up with fewer number of SSIDs to be used for advertising
the visible APs. Another strategy, is to remove SSID from
all CHAOS beacon frames which will effectively make them
hidden access points. Given the high number of hidden access
points in urban areas, this is a valid solution for small values
of n. For those APs that we want to have a valid non-zero
SSID, we choose SSIDs the same way people choose a WiFi
name for their home or business network. Note that SSIDs and
whether our APs are hidden or visible, do not have anything
to do with TSF and noise analysis and the functionality of
CHAOS. SSIDs only specify how APs show up when others
scan surrounding WiFi stations.

IV. EVALUATION

In this section we evaluate the system in terms of two main
aspects: Transmission speed and Detectability. In Sections
IV-C and V we will discuss some possible ways to mitigate this
type of covert channel. We have implemented CHAOS under
Linux. We used standard consumer on-board and USB WiFi
NICs as the physical interfaces for transmission and receipt
of WiFi frames. The software layer is implemented directly at
user-space through Linux raw sockets which manage the WiFi
interfaces on monitor mode.

A. Covert Transmission and CHAOS Data Rate

The two parameters that affect speed are n and L. L
increases the choices for each delay level. n has a more
significant overall effect mathematically. We have visualized in
Figure 8, the effect of both of these parameters on the nominal
speed that we get using Equation 4. However, there are some
important limitations in choosing both n and L.

While n has a bigger impact in Equation 4, practically,
increasing n will also increase the average number of TXAP

8

20 40 60 80 100
L

225

250

275

300

325

350

375

400
kb

/s

n=5

6 8 10 12 14
n

300

400

500

600

700

800

900

L=15

Fig. 8. Data rate of the covert channel in two examples when we fix one
of the parameters and change the other one. We have set n = 5 for the first
graph on the left and L = 15 for the other one.

missed frames per burst and consequently the number of retries
needed to fill a missed data unit. The reason is that the integrity
of a data unit in any burst depends on all of the TXAP beacons
in that burst. If we increase the number of these beacons in
each burst, there will be a higher chance that at least one of
the beacons is not captured by a receiver. Furthermore, we
want our beacon frames to be a small part of existing beacons
in the air. So we need to keep n relatively small. The other
problem with increasing n, is overflowing the permutation
space which causes various implementation issues. A similar
issue also exists with L but to a lesser degree. The important
thing about L is that increasing L implies smaller values for
DS. On the other hand, we want each delay level to be at least
a few microseconds. Anything less than one microsecond is
not acceptable. Overall, the transmission speed vary largely
based on the values of these parameters.

We have observed the result of many choices for (n,L)
tuple in hundreds of tests. Setting n and L to 6 and 216
respectively will create a good balance between speed, un-
detectability and cost, and yields acceptable results. With
these values we have around 73 trillion permutations which is
enough to transmit 56 bits in each burst. The average data rate
that we achieve using this setup is 520 b/s which is significant
for a timing covert channel. This speed is enough to transmit
a 2048-bit RSA private key out of an air-gapped local network
using a Raspberry Pie within 26 seconds. The channel stays
stable in environments with high radio noise and interference.

The reason we use average rates is that data rate normally
changes in different tests mainly because of radio interference
in the environment which affects the number of missed frames
at the receiver side. Also note that this is the bitrate that we
get when we use only 6 beacons for data transmission in each
burst.

The isolated TSF noise of a random TXAP, is shown
in Figure 10 when we transmit 4 different covert payloads.
Isolated noise or data-dependent noise is the noise that we see
when we do not change the set ”A” between bursts. Therefore,
all the noise values will be solely affected by the distribution of
bits in the secret data that we send. In other words, this noise
is observed when m = n. If m > n, we call the TSF noise
of a CHAOS STA, randomized or normalized noise. In the
following, we explain the effects of these noise types on the

0 250 500 750 1000
0

5

10

15

0 250 500 750 1000

0

20

40

0 250 500 750 1000
TSF noise (s)

0

5

10

15

0 250 500 750 1000
TSF noise (s)

0

5

10

15

20

25

Fig. 9. Histograms of TSF noise of transmitting 4 random files with 4 different
file formats using CHAOS. 100 samples with cubic curve visualization.
Formats were jpg, zip, elf, gif.

0 25 50 75 100
0

200

400

600

800

1000

TS
F

no
ise

 (
s)

0 25 50 75 100
0

200

400

600

800

1000

0 25 50 75 100
Sample#

0

200

400

600

800

1000

TS
F

no
ise

 (
s)

0 25 50 75 100
Sample#

0

200

400

600

800

1000

Fig. 10. Raw TSF noise of the same samples shown in Figure 9.

detectability of CHAOS. Note that in all figures in this section
wherever we report noise that was generated by CHAOS, the
noise belongs to a random AP apx ∈ β. All APs in CHAOS
can be equally used for noise assessment and we target one
of them randomly to analyze the noise patterns. An adversary
will have to do the same thing with all access points in the
area.

B. Detection

In an urban area with thousands of WiFi stations (including
many access points) at any location, continuously transmitting
frames, detecting the existence of any covert channel used by
an unknown station is quite challenging in general. In the case
of CHAOS, the challenges are even more significant because
the secret bits are sent using permutation components derived
from the order of a select set of benign advertisement frames
and the pattern of a timestamp noise that already exists in all
other advertisement frames.

9

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

0 250 500 750 1000
0

2

4

6

8

10

12

14

0 200 400 600 800 1000
TSF noise (s)

0
2
4
6
8

10
12
14

0 200 400 600 800 1000
TSF noise (s)

0
2
4
6
8

10
12
14

Fig. 11. TSF noise of the same files after adding a layer of encryption.

To detect the existence of CHAOS, an adversary will have
to identify the access points that are advertised by CHAOS
through analyzing the TSF noise of all access points in the
environment and then try to distinguish regular TSF noise
versus TSF noise used in CHAOS.

We discuss the topic of detection of the system in three
parts:

• The effect of TXAP rotation and m/n ratio,
• the relation between channel data rate and detectability,
• adversarial AP fingerprinting at the physical layer.
1) TXAP rotation and noise distribution: Looking back at

Figures 10 and 3, we can infer some visual and statistical
numeric differences between the isolated noise of a CHAOS
STA and the normal TSF noise from a regular access point.
We want to minimize these differences down to a point
that CHAOS STAs will be indistinguishable from regular
access points. To ensure that the noise that is generated by
CHAOS is similar to benign TSF noise in normal access
points, we carefully studied noise distribution and numerical
characteristics in various experiments. We present and discuss
the results in this section.

In Figure 9 we have shown the histograms of the noise
sets reported in Figure 10 to investigate the distribution of the
generated noise. Note that TSF noise in CHAOS is created
based on the covert payload and some random parameters,
while real TSF noise in other access points is generated only
due to natural factors that we discussed earlier. One way to
change the distribution of bits is encrypting the payload. We
have shown the generated noise for transmission of the same
four files after we encrypt them using AES in Figure 11.
However, encryption is not enough to foil adversarial statistical
analysis and achieve the undetectability that we need.

In Figure 12, we have shown the histograms of TSF noise
from 16 random normal access points. Interestingly, we can
see that the natural TSF noise observed in regular access
points, follows a distribution pattern in which most numbers
are clustered around one or two random peak values. While we

do not see a bell curve in these plots, our observations show
that TSF noise shares some important properties of a normal
distribution when the AP is not under a high load7. Most
notably, TSF noise of a regular access point did not present
a uniform (truly random) distribution in any of our tests.
Regardless, we need to make the generated noise in CHAOS
to follow similar patterns as natural TSF noise. Obviously,
encryption cannot provide the distributions that we want. This
is where our TXAP rotation technique, resolves the issue.

TXAP rotation limits the number of times data-dependent
noise is used for an access point in β. In each burst, if an AP
is not chosen to be placed in A set, the TSF noise of the AP in
that burst is chosen from a normal random variable (a random
variable with Gaussian distribution). We can alternatively use
standard suspension functions like ‘usleep()‘ and measure
the amount of microsecond-level extra suspension when the
function returns to choose a random value for TSF noise. The
imprecision of these functions also have a normal distribution.
The combination of dependent and independent noise that
form the sequence of timestamp values for each CHAOS AP,
will create patterns that match benign TSF noise.

The ratio of n vs m, manages the frequency of choosing an
AP in A. This frequency on the other hand, affects the TSF
noise distribution. Clearly, when we increase the size of β,
the overall effect of data-dependent noise decreases because
each CHAOS AP is chosen less frequently to convey data-
dependent noise.

Here we investigate the effect of TXAP rotation in different
setups of n/m. In Figure 13 we have shown TSF noise of a
random AP in β, generated by CHAOS with multiple values
for (n,m) touple for two of the sample payloads used in the
previous test (to save space we did not add the similar results
for the other two file types). The ratio of n/m is written under
each plot.

The numeric representation of benign TSF noise shows
a semi-normal distribution with average statistical values as
written below in Table I. Therefore, we should aim to reach
the same statistical representation in CHAOS when we carry
out covert payload. Particularly, the standard deviation of the
noise must decrease. In Table II, we showed how the statistical
values shift when we gradually change the n/m ratio from 1
to 0.24.

The standard deviation of TSF noise on average decreases
38% and 57% when we change the ratio from 1 to 0.43 and
0.24 respectively.

The statistical comparison shows that for ratios smaller
than 0.43 (numerically, about 40% reduction in the standard
deviation) we get an excellent normalization and end up with
noise values that are quite similar to natural noise of regular
access points.

2) Data rate and detectability: The detection of the system
depends on the ratio of n to m. We showed that the system
achieves strong stealthiness with a a ratio of 0.4. Note that

7As we explain in Section A the distribution of TSF noise changes by
increasing traffic

10

0 500 1000

0

10

20

30

40

250 500 750 1000

0

20

40

60

80

0 250 500 750

0

20

40

60

80

0 500 1000
0

10

20

30

0 500 1000
0
5

10
15
20
25

0 500 1000
0

10

20

30

0 500

0

20

40

60

80

0 500

0

20

40

60

0 500 1000
TSF noise (s)

0

10

20

30

0 500 1000
TSF noise (s)

0

10

20

30

40

0 500 1000
TSF noise (s)

0

10

20

30

40

0 500 1000
TSF noise (s)

0

20

40

60

80

0 500 1000
TSF noise (s)

0

20

40

60

0 500 1000
TSF noise (s)

0
10
20
30
40
50

0 250 500 750
TSF noise (s)

0

20

40

0 500 1000
TSF noise (s)

0
10
20
30
40
50

Fig. 12. Histograms of TSF noise of sixteen random access points from different manufacturers. Most values are clustered around a few points resembling
a normal distribution.

TABLE I
NOISE AVERAGE AND STANDARD DEVIATION IN 10 RANDOM RUNS OF

NORMAL TSF NOISE FROM MULTIPLE ACCESS POINTS.

Sample Average Standard deviation
1 445.46 215
2 468.29 217
3 419.99 123
4 399.97 99
5 334.12 215
6 362.29 278
7 409.35 194
8 405.56 130
9 381.32 157
10 454.95 205

TABLE II
THE EFFECT OF CHANGING n/m RATIO ON STATISTICAL PROPERTIES OF

NOISE.

µ = 500 µ = 400
n/m Average Standard deviation Average Standard deviation
1.0 518.73 292 509.33 285
0.6 505.17 238 483.77 259
0.5 518.62 236 486.41 221
0.43 526.1 206 467.98 211
0.4 506.34 166 415.93 184
0.33 501.0 170 443.15 153
0.30 518.46 161 428.8 173
0.27 516.78 163 453.01 189
0.26 539.38 168 437.3 144
0.24 491.71 129 404.64 122

to adjust the ratio, we only changed the size of β not n.
Consequently, the transmission speed would not be affected.
As we explained before, the data rate is a function of n and
L, and it is independent from m. This has two important
implications:

• We can reduce the chances of detection of a CHAOS
transmitter by adjusting m alone and leaving other pa-
rameters unchanged.

• Increasing speed by choosing a bigger value for n
warrants a bigger value also for m to reach the same
undetectability levels.

Therefore, the purpose of TXAP rotation is two folds:
Spreading the covert bits over a variable list of access points
to make the process of decoding the covert bits impossible

without having the secret key even if an adversary knows
all members of β, and making CHAOS-generated TSF noise
similar to real TSF noise. Also note that, the adversary does
not know the correct assignment of the orders of access points
to the first permutation component. It means that in Figure 5,
the adversary would not know, for example, which access point
is considered ap1 by CHAOS. Therefore, even a compromised
TXAP key will not be enough for an adversary to be able to
recover covert data.

In Figure 14 we have shown the generated noise (both raw
and histograms) for transmission of a video frame from a
surveillance camera with the (n = 6,m = 20) setup. As we
mentioned earlier, we get an average of 520b/s data rate with
these parameters. Note that stealth communication is the main
goal of this design, and we keep n and m small to make
detection of TXAPs much more difficult. On the other hand,
achieving significantly higher speeds is possible if we increase
n to values greater than 10.

3) Physical layer fingerprinting: All properties of WiFi
frames at the software layer are directly controlled by CHAOS.
Hardware properties of frames, however, depend on the hard-
ware infrastructure. Adversarial analysis of physical character-
istics of beacons is one of the potential strategies to investigate
the existence of a covert channel. Signal power and other
low-level hardware-related signal properties can correlate a
set of beacons to one transmitter. Some of these radiometric
properties that have been studied in the past include frequency,
amplitude and phase [26], RF fingerprints, sync correlation
[5], [22], I/Q offset [5], magnitude and phase errors [22],
power amplifier and frame interval distribution fingerprints
[21]. Some physical properties can vary even between stations
with the same model, made by the same manufacturer and
running the same firmware [21]. If an adversary carefully
investigates physical characteristics of the carrier signals, he
can differentiate between beacons that have been transmitted
from multiple stations even if they carry the same bits at the
software layer. Ergo, an adversary would expect to be able
to associate beacons of two different access points to two
different physical transmitters.

We address this issue by implementing a flexible low-
level hardware assignment using which different APs can be
advertised by separate hardware. Radio frames in CHAOS can

11

0 500 1000
0

5

10

15

0 500 1000
0

5

10

15

20

0 500 1000
0

10

20

30

0 500 1000
0

10

20

30

0 500 1000
0

10

20

30

0 500 1000
0

10

20

30

40

50

0 500 1000
ratio= 1.00

0.0

2.5

5.0

7.5

10.0

12.5

0 500 1000
ratio= 0.60

0

5

10

15

20

0 500 1000
ratio= 0.43

0

10

20

30

0 500 1000
ratio= 0.38

0

10

20

30

40

0 500 1000
ratio= 0.33

0

10

20

30

40

500 1000
ratio= 0.24

0

10

20

30

40

Fig. 13. TSF noise of two covert payloads when we gradually decrease n/m ratio. Each row belongs to one sample file. The left-most plots are isolated
noise which means m = n. After we get to around 0.40 for the ratio, we start to see noise patterns that look sufficiently close to natural TSF noise of regular
access points.

0 200 400 600 800 1000
Sample#

0

200

400

600

800

1000

TS
F

no
ise

 (
s)

0 200 400 600 800 1000
ratio= 0.30

0

50

100

150

200

250

Fig. 14. TSF noise for transmission of a captured image by a surveillance
camera with 1000x1000 resolution. In this figure, 1000 samples have been
shown, each sample including one captured beacon of a random CHAOS
access point. CAP noise normalized using a normal distribution function with
µ = 500 and σ = 150.

be transmitted from one or multiple interfaces depending on
how we configure the system. As mentioned before, CHAOS
can use a separate physical NIC for each AP to ensure physical
isolation between the access points. This will effectively create
real separate stations which are centrally managed by the same
code. As a result, any physical layer audit would associate
CHAOS APs to different physical stations.

C. Mitigation

Here we discuss mitigation in terms of stopping or inter-
rupting the system and recovery of covert data.

1) Stopping CHAOS: There are two general ways to stop
CHAOS:

• Jamming: The first approach is jamming 802.11 radio
communication in the environment which effectively
makes WiFi communication impossible. We have stated
that CHAOS blends with the existing traffic. So we
assume that WiFi communication is allowed and already
exists in the area.

• Identifying stations: The other way is finding the stations
that take part in CHAOS covert communication. We

explained previously that finding the receivers is not
possible since they do not transmit any frames related
to this covert communication. To find the transmitter, an
adversary has to first find out which beacons are being
used by CHAOS and then try to identify the location of
the transmitter (for example, by triangulating) and then
if it is possible, physically shutdown the transmitter. We
explained in detail, that identification of even one CHAOS
AP is extremely challenging even with careful statistical
analysis.

2) Forging CHAOS frames: If an adversary can identify
some of CHAOS access points and then transmits beacons with
the MAC addresses of those access points, they might be able
to interrupt normal functionality of the system. However, the
adversary has to transmit timestamps that are consistent with
the permutation parameters and even then CHAOS receivers
are able to filter out duplicate forged frames based on the
signal power and other properties that make these frames
distinguishable from CHAOS frames that the receivers are
familiar with. Addressing all potential hurdles to successfully
forge CHAOS frames will be extremely challenging for an
adversary.

Also note that the beacons that CHAOS generates do not
have any identifying information. In other words, a beacon
generated by CHAOS looks exactly like a beacon sent by a
legitimate access point.

3) Recovery of covert payload: In a covert channel, only
the parties that take part in the communication should be aware
of the existence of the covert data in the first place. But here
we want to discuss the overall possibility of recovering the
covert data by other stations with the assumption that they are
aware that CHAOS is being used to transmit covert data.

Obviously, the covert payload can be encrypted before
transmission. So data recovery by an adversary is not a big
concern in CHAOS. That said, even in the case of plain
(unencrypted) covert data, we want to make sure that other
stations cannot decode it. Normally, only CHAOS receivers

12

are able to decode and recover covert data sent by a CHAOS
transmitter for three reasons:

• It is not clear for an adversary which access points are
transmitting covert data using TSF noise.

• The adversary does not know the permutation parameters
used by a CHAOS transmitter.

• Also, the adversary does not have the TXAP rotation key
which is only shared between CHAOS stations.

Note that, even if an adversary can figure out all the
access points that are advertised by CHAOS and even if they
figure out the correct permutation parameters and the correct
order-to-permutation assignments, without knowing the TXAP
rotation key, it is not feasible to recover the covert data. For
example, if the covert payload is only 6 data units long, there
are 6(

m
n) different possible combinations for the covert payload

to try. For (m = 20, n = 6) there will be 627907200. If the
size of covert payload increases to 100 units, to reconstruct
the whole payload8 we will have 10027907200 combinations to
try if TXAP key is not known. It is worth noting that, the
adversary cannot even calculate all the combinations at once,
but they have to wait one TBTT interval to the get next burst
of beacons. Given the cost and the requirements, it is safe to
assume that for an adversary, or basically any other station
that is not a CHAOS transmitter or receiver, data recovery is
not possible within a reasonable time and resources.

D. CHAOS Noise Resistance

A straightforward idea to make exploiting TSF harder is
trying to make CHAOS frames distinguishable from other
frames by increasing noise in TSF-based timestamps in regular
access points. For example, by changing the implementation
of the standard at firmware level. However, this will not help
stop this type of covert communication.

CHAOS imitates the existing noise in the environment. The
timestamp values in beacon frames generated by the same
device using the same timer, relate to each other not an external
timer. We do not compare them against a reference clock. It
means that the accuracy of the TSF counter in access points
does not affect CHAOS. Remember Equation 1. Both tsi
and tsi+1 are from the same access point. If we reduce the
accuracy of the counter by increasing the clock drift, beacons
should still be sent in TBTT intervals and the interval is
measured through timestamp value which is written in beacon
and probe response frames. The same equation still holds true.
In other words, it does not matter the number that we see in
the timestamp is accurate or not in terms of the real time
that has passed during the interval. The reason that TSF noise
exists is not TSF counter inaccuracy.

The other important point is that the TSF noise itself is a
variable and random value. Whatever distribution this noise
follows, we can make our CAP normalized noise to adapt to
it the same way we did in the tests that we discussed in this
section. While TSF noise is normally less than a millisecond,

8An adversary might try to reconstruct only a small part of the covert data
to figure out the rotation key, but there will still be too many combinations
to consider.

CHAOS can easily adapt to other levels of noise thresholds.
Neither, changing the TBTT nor the maximum TSF noise can
interfere with the functionality of CHAOS.

E. Adversarial Signal Power Measurement

In the previous sections, we mentioned that an adversary
might attempt to compare the signal power of beacons in
the environment to find a pattern to identify what beacons
might be generated by the same source. However, as discussed
earlier, this can be mitigated in CHAOS if we use different
network cards to transmit CHAOS beacons. Each AP can
be assigned to a different NIC (for example, a USB WiFi
NIC) placed in a different location. This effectively creates
unpredictable variances between the radio frames used in
CHAOS. As a result, the frames will not show similar radio
characteristics in any location that could be observed by an
adversarial monitor.

V. DISCUSSION

TSF, what is special about it?
While timestamp fields in different network layers can be

used for covert data transmission, TSF specifically has two
interesting characteristics that make it unique and the reason
that we chose it to build CHAOS. First, beacons have to be sent
periodically within relatively short intervals. This means that
whenever a transmitter wants to send covert data using TSF
noise, there is a plausible reason in the first place to transmit
a standard frame which has this type of noise to exploit. In
other words, all access points are required by the standard to
transmit beacon frames, many times per second, under any
circumstances.

Second, TSF timestamp consists of two mathematical com-
ponents: TBTT+ε. The first component is a predictable value
and therefore the second component can be easily recovered
at the receiver side. Also, the second component is a naturally
variable value (noise) that changes in each transmission. This
situation creates an excellent opportunity to encode and decode
covert data in a manner that the standard’s requirement is
fulfilled while secret data is hidden in the noise at the same
time without diverging from normal AP behavior. Note that
the resolutions of the first and the second component match
which makes the noise measurable in the timestamp field itself
and makes exploitation more straightforward.

These characteristics do not exist in other types of times-
tamps (e.g., TCP timestamps). Also, remember that TSF
timestamp is a mandatory part of beacons as stated in 802.11
standard. They cannot be disabled by users unlike some other
types of timestamps in other protocols. As we explain in the
following, even doing so is not a reasonable solution.

The unique nature of TSF timestamps, coupled with the
density of access points (and their advertisement frames) in
urban areas, makes TSF an outstanding target for stealth
communication.

What can be done to prevent TSF exploitation?
The most straightforward strategy to prevent this is disabling

or removing timestamps from beacons and probes. This is of

13

course not possible in the current design of 802.11 standard
as doing so will disable station-level time synchronization
which is crucial for low-level radio and frame scheduling
and consequently WiFi communication will entirely fall apart.
Actually, not only TSF is not going to disappear, but also new
applications are introduced for it [7]. Interestingly, even if this
solution was implemented and timestamp field was removed,
we could make a similar covert channel by using similar
timing patterns in the IFDs themselves instead of a timestamp
field. Because the beacons would be still transmitted in short
intervals and the constant flow of a timing pattern that can be
used for covert communication is guaranteed. The order of the
beacons and the sequence of IFDs can create the permutations
we need to encode secret bits. Having the timestamp field
makes the covert communication easier and more reliable but
the same goal can be theoretically achieved without it.

The other solution will be adding some randomness to
TBTT to make the first component above, less predictable.
Again, this will not help to resolve the issue. We can trivially
measure an average minimum TBTT and substitute it with
TBTT in Equation 1, and then increase the TSF noise by
either increasing L or DS. The same results will be achieved.
Note that in Equation 1, we can use negative values for ε
and calculate the absolute value of the difference between two
consecutive timestamps to get the deviation from the nominal
value as the noise level. In other words, the generated noise
can be subtracted from the timestamp value instead of being
added to it.

Interestingly, currently in normal access points the observed
TBTT (the nominal interval without the TSF noise) is not
necessarily equal 100TUs between every two beacons. The
actual interval can be a little shorter or longer based on the
exact situation of medium and scheduling at the moment that
beacons are transmitted. It means that there is already some
level of unpredictable randomness. But even increasing this
randomness will not stop CHAOS.

At the time being, probably the only effective solution is
changing the design of time synchronization in the protocol
so that the synchronization process does not have the side
effects that we exploited in this paper. This might come
at the cost of reduced WiFi throughput depending on how
the synchronization takes place. Specially if the periodic and
frequent transmission of beacons that is currently mandated
in the standard is disabled. On the other hand, it is possible
to define new synchronization strategies only for sensitive use
cases and network environments that require exceptional levels
of security and privacy to limit issues like reduced bandwidth
and throughput to these specific use cases.

Legitimate Uses
While at the surface, a covert channel might have an

adversarial nature, it can be used for the same purposes
that non-covert communication is used for. A covert channel
can add an extra layer of privacy and protection in cases
that standard communication protocols are not sufficient to
transmit important information in situations that high levels of

secrecy are required. Covert channels can improve privacy of
communication. The stealthiness that a covert channel provides
can have vital advantages for some specific use cases.

In Section IV we demonstrated the robustness of CHAOS
to reliably exchange covert data without being exposed to
an adversary. We believe the strategy that we presented in
this paper can help provide safer communication of sensitive
information in cases that normal communication does not meet
the privacy expectations of the user or the data.

VI. RELATED WORK

Many covert channels have been designed for different
protocols at different layers [34], [40], [4], [42], [9], [12],
[18], [23], [31], [15], [14], [41]. Most previous works discuss
covert communication in technologies other than WiFi.

Covert channels in 802.11 networks have been addressed in
two generic topics: physical layer and MAC layer.

Physical layer covert channels in wireless technologies
usually use phase, amplitude and frequency manipulation [11],
[36], [13] or use IFDs to encode covert data as timing patterns
[16], [30], [20], [10]. [29] explains that most physical layer
covert channels can be detected through careful statistical
analysis of different aspects of carrier signals at physical layer.

[33] creates a single access point on a Zynq board and uses
two timing thresholds for mapping a beacon frame to either
a zero or a one symbol. Specific sequences of the recorded
symbols are then translated to a data bit of one or zero. The
proposed approach is substantially limited and ends up with
a data rate of a few bits per second at best. The problem of
missed frames is not fully addressed in the paper and there
is not any discussion about adversarial noise injection and the
effect of changing TBTT on their channel. More importantly,
some of the given beacon statistical reports (which establishes
the basis of their covert model) do not match with our real
world observations.

[32] uses the order of the medium access of two stations
to transmit covert bits; if station A transmits before station
B it means zero and otherwise one. They also discuss using
frame orders in general as a means for covert transmission.
[37] makes a covert channel using the supported rates field of
probe request frames. [38] uses the transmitter MAC address
of probe request frames to send covert payloads. Multiple other
works have used other different aspects of 802.11 frames to
implement covert channels [6], [19], [27]. The subject of TSF
noise has not been addressed before, on top the fact that most
prior work have limited uses and there is usually no sufficient
discussion of mitigation techniques.

The subject of correlation attack has been covered using
timing and flow analysis of packets as well as application layer
exploitation [24], [28], [25], [39], [35]. Mitigating correlation
attacks depends on the specific attack techniques and threat
models in use. Techniques like introducing some random delay
and increasing noise through inserting extra packets in the
network have been studied before. Unfortunately there is no
generic solution to prevent these attacks against low-latency
anonymity networks. For the first time, we investigated the

14

side effects and uses of TSF in 802.11 networks for mounting
correlation attacks.

CHAOS, to the best of our knowledge, is the first work that
discusses in-depth exploitation of TSF counters.

VII. CONCLUSION

Time Synchronization Function within 802.11 networks
presents a unique opportunity for covert communication. The
variable noise in TSF-based timestamps can be exploited to
encode secret messages between WiFi stations. This type
of noise is also influenced by frame load, opening up a
potential for fingerprinting users by correlating the induced
load with fluctuations observed in the TSF noise pattern. In
this paper, we delved deep into the unintended consequences
of TSF design and the exploitation of these side effects. We
demonstrated that it is possible to use TSF timestamps to
reliably broadcast covert messages. Additionally, we showed
that we can directly manipulate the noise patterns by altering
the traffic that an access point must manage.

REFERENCES

[1] “Cisco annual internet report,” https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual-internet-report/white-paper-
c11-741490.html.

[2] “Current iot forecast highlights,” https://transformainsights.com/
research/forecast/highlights.

[3] “Wi-fi certified 6,” https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-
6.

[4] C. Abad, “Ip checksum covert channels and selected hash collision,”
USA, University of California, 2001.

[5] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identi-
fication with radiometric signatures,” in Proceedings of the 14th ACM
International Conference on Mobile Computing and Networking, ser.
MobiCom ’08. New York, NY, USA: Association for Computing
Machinery, 2008, p. 116–127.

[6] T. E. Calhoun, X. Cao, Y. Li, and R. Beyah, “An 802.11 mac layer
covert channel,” 2012.

[7] P. Chen and Z. Yang, “Understanding precision time protocol in today’s
Wi-Fi networks: A measurement study,” in 2021 USENIX Annual
Technical Conference (USENIX ATC 21). USENIX Association, Jul.
2021.

[8] J. Classen, M. Schulz, and M. Hollick, “Practical covert channels for wifi
systems,” in 2015 IEEE Conference on Communications and Network
Security (CNS), 2015.

[9] D. M. Dakhane and P. R. Deshmukh, “Active warden for tcp sequence
number base covert channel,” in 2015 International Conference on
Pervasive Computing (ICPC).

[10] A. Dutta, D. Saha, D. Grunwald, and D. Sicker, “Secret agent radio:
Covert communication through dirty constellations,” 2013.

[11] S. D’Oro, F. Restuccia, and T. Melodia, “Hiding data in plain sight: Un-
detectable wireless communications through pseudo-noise asymmetric
shift keying,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019.

[12] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts, “Covert messaging
through tcp timestamps.” Springer-Verlag, 2002.

[13] S. Grabski and K. Szczypiorski, “Steganography in ofdm symbols of fast
ieee 802.11n networks,” in 2013 IEEE Security and Privacy Workshops,
2013.

[14] M. Guri, A. Kachlon, O. Hasson, G. Kedma, Y. Mirsky, and Y. Elovici,
“GSMem: Data exfiltration from Air-Gapped computers over GSM
frequencies,” in 24th USENIX Security Symposium (USENIX Security
15), 2015.

[15] J.-W. Ho, “Covert channel establishment through the dynamic adaptation
of the sequential probability ratio test to sensor data in iot,” IEEE Access,
2019.

[16] R. Holloway and R. Beyah, “Covert dcf: A dcf-based covert timing chan-
nel in 802.11 networks,” in 2011 IEEE Eighth International Conference
on Mobile Ad-Hoc and Sensor Systems, 2011.

[17] IEEE, “Ieee standard for information technology–telecommunications
and information exchange between systems - local and metropolitan
area networks–specific requirements - part 11,” https://standards.ieee.
org/ieee/802.11-2020 Cor 1/10836/.

[18] E. Jones, O. Le Moigne, and J.-M. Robert, “Ip traceback solutions
based on time to live covert channel,” in Proceedings. 2004 12th
IEEE International Conference on Networks (ICON 2004) (IEEE Cat.
No.04EX955), 2004.

[19] T. Kim and W. Lee, “Channel independent wi-fi backscatter networks,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations, 2019.

[20] N. Kiyavash, F. Koushanfar, T. P. Coleman, and M. Rodrigues, “A
timing channel spyware for the csma/ca protocol,” IEEE Transactions
on Information Forensics and Security, 2013.

[21] Y. Lin, Y. Gao, B. Li, and W. Dong, “Accurate and robust rogue
access point detection with client-agnostic wireless fingerprinting,” in
2020 IEEE International Conference on Pervasive Computing and
Communications (PerCom), 2020.

[22] P. Liu, P. Yang, W.-Z. Song, Y. Yan, and X.-Y. Li, “Real-time identifica-
tion of rogue wifi connections using environment-independent physical
features,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019.

[23] X. Luo, P. Zhou, E. W. W. Chan, R. K. C. Chang, and W. Lee, “A
combinatorial approach to network covert communications with appli-
cations in web leaks,” in 2011 IEEE/IFIP 41st International Conference
on Dependable Systems Networks (DSN), 2011.

[24] S. J. Murdoch, “Hot or not: Revealing hidden services by their clock
skew.” Association for Computing Machinery, 2006.

[25] M. Nasr, A. Bahramali, and A. Houmansadr, “Deepcorr: Strong flow
correlation attacks on tor using deep learning,” 2018.

[26] N. T. Nguyen, G. Zheng, Z. Han, and R. Zheng, “Device fingerprinting
to enhance wireless security using nonparametric bayesian method,” in
2011 Proceedings IEEE INFOCOM, 2011, pp. 1404–1412.

[27] R. Ogen, K. Zvi, O. Shwartz, and Y. Oren, “Sensorless, permissionless
information exfiltration with Wi-Fi Micro-Jamming,” in 12th USENIX
Workshop on Offensive Technologies (WOOT 18), 2018.

[28] S. E. Oh, T. Yang, N. Mathews, J. K. Holland, M. S. Rahman, N. Hopper,
and M. Wright, “Deepcoffea: Improved flow correlation attacks on tor
via metric learning and amplification,” in 2022 IEEE Symposium on
Security and Privacy (SP), 2022.

[29] H. Park, W. Jang, J. Sung, H. Roh, and W. Lee, “Combating adversarial
covert channels in wi-fi networks,” IEEE Access, vol. 10, 2022.

[30] S. V. Radhakrishnan, A. Selcuk Uluagac, and R. Beyah, “Realizing an
802.11-based covert timing channel using off-the-shelf wireless cards,”
in 2013 IEEE Global Communications Conference (GLOBECOM),
2013.

[31] C. H. Rowland, “Covert channels in the tcp/ip protocol suite,” First
Monday, 1997.

[32] K. Sawicki, G. Bieszczad, and Z. Piotrowski, “Stegoframeorder—mac
layer covert network channel for wireless ieee 802.11 networks,” Sen-
sors, vol. 21, 2021.

[33] H. Seong, I. Kim, Y. Jeon, M.-K. Oh, S. Lee, and D. Choi, “Practical
covert wireless unidirectional communication in ieee 802.11 environ-
ment,” IEEE Internet of Things Journal, 2023.

[34] G. Shah and A. Molina, “Keyboards and covert channels,” in 15th
USENIX Security Symposium (USENIX Security 06). Vancouver, B.C.
Canada: USENIX Association, 2006.

[35] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” ser.
CCS ’18. Association for Computing Machinery, 2018.

[36] K. S. Subramani, N. Helal, A. Antonopoulos, A. Nosratinia, and
Y. Makris, “Amplitude-modulating analog/rf hardware trojans in wireless
networks: Risks and remedies,” IEEE Transactions on Information
Forensics and Security, 2020.

[37] G. Teca and M. Natkaniec, “An ieee 802.11 mac layer covert channel
based on supported rates,” International Journal of Electronics and
Telecommunications, 2023.

[38] ——, “A novel covert channel for ieee 802.11 networks utilizing mac
address randomization,” Applied Sciences, vol. 13, 2023.

[39] R. Wails, Y. Sun, A. Johnson, M. Chiang, and P. Mittal, “Tempest:
Temporal dynamics in anonymity systems,” Proceedings on Privacy
Enhancing Technologies, vol. 2018, 2018.

15

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://transformainsights.com/research/forecast/highlights
https://transformainsights.com/research/forecast/highlights
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6
https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-6
https://standards.ieee.org/ieee/802.11-2020_Cor_1/10836/
https://standards.ieee.org/ieee/802.11-2020_Cor_1/10836/

[40] X. Wang and D. S. Reeves, “Robust correlation of encrypted attack
traffic through stepping stones by manipulation of interpacket delays.”
New York, NY, USA: Association for Computing Machinery, 2003.

[41] Z. Yang, Q. Huang, and Q. Zhang, “Nicscatter: Backscatter as a covert
channel in mobile devices.” Association for Computing Machinery,
2017.

[42] X. Zhang, Y.-A. Tan, C. Liang, Y. Li, and J. Li, “A covert channel over
volte via adjusting silence periods,” IEEE Access, 2018.

APPENDIX

A. Beyond Covert Communication

A Correlation Attack
During the course of our tests, we observed that the distribu-

tion of TSF noise significantly changes when the WiFi router is
under heavy load. When we increased the number of frames
that the access point has to manage, the distribution of the
noise, surprisingly, tended to get close to a uniform distribution
instead of a semi-normal distribution. While the exact reason
of why this happens is not completely clear, we suspect two
potential factors that might cause this behavior. First, when
the number of TX/RX frames increases, the medium gets
busier and the router has to queue the beacon frames more
often compared to when the medium is less frequently used
for frame transmission. This will change the amount of time
that the access point pauses before sending out a beacon and
consequently intervals between beacons change to both shorter
and longer values. Second, the load increase can temporarily
change the temperature of the chipset and result in more
unpredictable environmental noise.

Note that the increased load of one WAN Wi can affect TSF
noise of other access points from other WANs on the same
channel if they are close enough to receive the signals from Wi

with sufficient power. The effect of induced load from other
WANs depends on their distances. Usually, TSF noise is not
affected significantly by the frames transmitted from stations
belonging to other WANs. The CSMA/CA implementation
in WiFi chips ignores many frames coming from unrelated
stations with weak signals.

We have tested multiple access points made by different
manufacturers and all of them show a similar behavior in
response to changing load in both 2.4GHz, and 5GHz bands.

This will have an important side effect: an attacker can affect
the access point’s traffic at one side through forcing one of
the stations in the BSS to increase its load, and then confirm
that the changes are reflected on the TSF noise at the other
side to find which physical access point the targeted client is
connected to. In other words, we can reliably implement an
end-to-end confirmation attack.

When load increases, TSF values tend to deviate more
aggressively from their mean. In Appendix III-D, we have
reported a detailed analysis of the impact of changing traffic
on TSF distribution in multiple WiFi routers from different
brands. Since changing the access point load immediately
affects the TSF noise, sampling the beacon frames for a
short time, like ten seconds, is enough for mathematical
confirmation of the correlated changes of the TSF deviation
with a high success chance.

The Attack Scenario
Assume that an attacker wants to find out which physical

access point a targeted WiFi user is connected to. The attacker
is able to see WiFi frames of a set of access points like S =
{AP1, ..., APp} and knows that the victim is connected to one
of these access points (like APi) but does not know which one.
In this situation, the attacker can follow these steps to identify
APi with high confidence within minutes:

• The attacker increases the load of the victim’s network
by having the victim download a file (or an online
content) which is large enough to take at least a couple
of seconds9.

• The attacker first confirms that the file is being down-
loaded, at the server side, by the victim.

• Immediately after the download starts, the attacker ob-
serves the deviation of TSF values of beacon frames
transmitted by all the access points in S.

• The attacker notices that TSF values of APi show the
expected deviation precisely during the download time.

• The attacker can choose to repeat the download stage a
couple of times to rule out possible false positives.

• Eventually, the access point that the victim is connected
to (APi) and his approximate physical location is com-
promised.

Executing all these steps can take a couple of minutes. Note
that the user does not even have to voluntarily download the
file. It can happen indirectly through a webpage that the user
visits.

If none of the access points in S shows the expected
changes in its TSF values, the attacker can confidently rule
out the current members of S and switch to another set. This
is the main limitation for the attacker, that eventually the
correct access point must be one of the access points in S to
be correlated with the traffic manipulation and complete the
identification process. This attack can be used to find a user
that the adversary knows resides in a specific neighborhood
but does not know in which house. Or in the case of a much
more resourceful adversary, the same technique can be applied
to a larger geographical area like a city.

Here we describe a real-world example of how it is possible
for an adversary to exploit the dependence of noise distribution
on the AP load and use TSF noise to distinguish between the
access points that users are associated with. In this section
we use an experiment to execute a confirmation attack to
deanonymize one of our systems when it is connected to TOR.
The setup is as follows.

We target 5 access points and fingerprint TSF noise through-
out the test. S = {AP1, .., AP5}. One or more stations are
connected to each access point. The stations are either on
separate channels, or they are far enough from each other
that transmitted frames from one AP do not cause significant
signal collision on the others10. One of the stations connects
to TOR network using TOR-Browser-Bundle and its default

9We have run this attack with a 10-second download window.
10A distance of 20 meters is enough. Access points are normally further

away from each other in residential areas.

16

1 2 3 4 5 6 7 8 9 10

Sample#

50

100

150

200

250

300

S
ta

n
d

ar
d

d
ev

ia
ti

on

AP1

AP2

AP3

AP4

AP5

Fig. 15. The plot of standard deviation of TSF noise for the tested access
points. The download task happened at sample numbers 3, 6 and 9. The only
access point that shows abnormal changes at these sample points is AP3.

configuration. Any external entity that makes the user of the
station to change his network activity, can induce changes on
the TSF noise pattern. For example, we instruct the user of
this station to visit a specific address through TOR browser.
The webpage contains a piece of js code in the website that
periodically downloads a set of large images which takes
around 10 seconds to complete.

At the same time we record the beacon frames from the
access points in S and observe the TSF noise patterns of
each access point. We sample TSF noise 10 times during the
test. In each sample, we captured 100 frames. Three of the
samples belong to the time that the TOR user is performing
the download task. As Figure 15 shows, the induced traffic by
the remote server is correlated to AP3 as its noise distribution
alters exactly based on the periodic download task. Similar
steps can be carried out to identify the correct access point
with a larger set S.

The test successfully confirms that the user that visited the
remote webpage is connected to AP3.

B. The Effect of Frame Load on TSF

We investigated how TSF noise patterns alter when we
change traffic of an access point. In this section we have added
the results of three of the access points that we have tested. A
single band access point made by TP-LINK and two dual band
access points made by NETGEAR and Xfinitiy. In Figures
16 through 20, in each figure, the first eight plots show TSF
noise when the access point is in a semi-idle state in which
the connected clients do not perform any network-intensive
task and the second eight plots show noise distribution when
exactly one of the clients uses all its available bandwidth to
download a file (top and bottom rows respectively in Figures
17 to 20). We have taken 100 samples of beacons of these
access points in each test. The standard deviation of each
distribution is written in the corresponding graph.

In summary, the standard deviation in these access points
changes the way it is numerically explained in Table III.
We see more than 100% increase in the average deviation

TABLE III
AVERAGE VALUES OF STANDARD DEVIATION OF NOISE DISTRIBUTION OF

THE ABOVE ACCESS POINTS.

Access Point Band Idle Under Load Growth
TP-LINK 2.4GHz 116 280 141%

NETGEAR 2.4GHz 193 293 52%
NETGEAR 5GHz 66 279 323%

xFi 2.4GHz 118 283 140%
xFi 5GHz 178 267 50%

Average 134 280 141%

0 500 1000
0

25

50
=160

0 500 1000
0

20

40 =174

500 1000

0

20

40

60
=168

0 500 1000

0

50

=91

250 500 750

0

50
=72

250 500
0

20

40

60 =79

500 1000

0

50

100
=76

0 500

0

25

50
=106

0 500 1000
0

5

10

15 =278

0 500 1000
0

5

10

15 =280

0 500 1000
0

10

20 =272

0 500 1000
0

5

10

15 =284

0 500 1000
TSF noise (s)

0

5

10

15 =302

0 500 1000
0

5

10

15 =277

0 500 1000
TSF noise (s)

0

5

10
=288

0 500 1000
TSF noise (s)

0

5

10

15 =258

Fig. 16. TP-LINK (2.4GHz)

when only one client in the WAN starts using up its available
bandwidth. This shows a strong dependence on load. This also
makes it easier for CHAOS to create a plausible TSF pattern
if we reduce m and use less normalized noise for CHAOS
access points. Ergo, fewer beacons can potentially be used in
each burst while we maintain undetectability of the system in
most normal WiFi environments.

17

0 500 1000
0

5

10

15

20

25

30 =198

0 500 1000
0

5

10

15

20

25

30

35
=243

0 500 1000

0

10

20

30

40

50

60 =185

0 500 1000
0

5

10

15

20

25

30

35
=190

0 500 1000
0

5

10

15

20

25

30

35 =200

0 500 1000

0

10

20

30

40 =203

0 500 1000

0

20

40

60 =181

0 500

0

20

40

60
=144

0 500 1000
TSF noise (s)

0
2
4
6
8

10
12
14 =295

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12

14 =295

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0 =288

0 500 1000
TSF noise (s)

0
2
4
6
8

10
12
14 =312

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
=267

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 =276

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
=289

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0 =319

Fig. 17. NETGEAR (2.4GHz)

300 400 500
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 =58

300 400 500

0

5

10

15
=54

300 400 500 600
0

5

10

15

20

25 =58

0 250 500 750
0

10

20

30

40 =77

200 400 600

0

5

10

15

20

25 =70

400 600 800

0

10

20

30
=92

300 400 500
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 =60

300 400 500

0

5

10

15

20 =59

0 500 1000
TSF noise (s)

0

5

10

15

20

25 =238

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0 =293

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12

14
=300

0 500 1000
TSF noise (s)

0

5

10

15

20
=260

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0 =267

0 500 1000
TSF noise (s)

0
2
4
6
8

10
12
14 =286

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0 =294

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12

14 =293

Fig. 18. NETGEAR (5GHz)

0 500 1000

0

20

40

60
=133

250 500 750 1000
40

20

0

20

40

60

80 =119

0 250 500 750

0

10

20

30

40

50

60
=90

0 500 1000

0

10

20

30

40

50

60 =149

0 500 1000

0

20

40

60
=154

200 400 600

0

10

20

30

40

50

60
=61

0 250 500 750

0

10

20

30

40

50
=73

0 500 1000
0

10

20

30

40 =163

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12

14 =274

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12

14 =280

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 =287

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
=285

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12

14 =284

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 =295

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 =285

0 500 1000
TSF noise (s)

0

2

4

6

8

10

12 =277

Fig. 19. Xfinity xFi Gateway (2.4GHz)

0 500 1000

0

10

20

30

40

50

60
=184

0 500 1000

0

10

20

30

40
=173

0 500 1000

0

10

20

30

40

50
=187

0 500 1000
0

10

20

30

40
=164

0 500 1000
0

10

20

30

40 =191

0 500 1000

0

20

40

60
=144

0 500 1000

0

10

20

30

40

50 =178

0 500 1000
0

10

20

30

40

50 =202

0 500 1000
TSF noise (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0
=274

0 500 1000
TSF noise (s)

0

5

10

15

20
=272

0 500 1000
TSF noise (s)

0

5

10

15

20

25 =269

0 500 1000
TSF noise (s)

0

5

10

15

20 =268

0 500 1000
TSF noise (s)

0

5

10

15

20 =273

0 500 1000
TSF noise (s)

0

5

10

15

20

25
=248

0 500 1000
TSF noise (s)

0

5

10

15

20 =262

0 500 1000
TSF noise (s)

0

5

10

15

20 =271

Fig. 20. Xfinity xFi Gateway (5GHz)
18

	Introduction
	Background and Overview
	Time Synchronization in the 802.11 MAC Layer
	TSF Noise and Noise Resistance
	Hiding in the Crowd

	Design
	The Permutation Space
	The choice of CHAOS parameters; m and n
	The Problem of Missed Bursts
	Encoding Example
	The Threat Model
	Some notes on the choices of AP details

	Evaluation
	Covert Transmission and CHAOS Data Rate
	Detection
	TXAP rotation and noise distribution
	Data rate and detectability
	Physical layer fingerprinting

	Mitigation
	Stopping CHAOS
	Forging CHAOS frames
	Recovery of covert payload

	CHAOS Noise Resistance
	Adversarial Signal Power Measurement

	Discussion
	Related Work
	Conclusion
	References
	Appendix
	Beyond Covert Communication
	The Effect of Frame Load on TSF

