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Abstract—This paper introduces PQConnect, a post-quantum
end-to-end tunneling protocol that automatically protects all
packets between clients that have installed PQConnect and
servers that have installed and configured PQConnect.

Like VPNs, PQConnect does not require any changes to
higher-level protocols and application software. PQConnect adds
cryptographic protection to unencrypted applications, works in
concert with existing pre-quantum applications to add post-
quantum protection, and adds a second application-independent
layer of defense to any applications that have begun to incorpo-
rate application-specific post-quantum protection.

Unlike VPNs, PQConnect automatically creates end-to-end
tunnels to any number of servers using automatic peer discovery,
with no need for the client administrator to configure per-
server information. Each server carries out a client-independent
configuration step to publish an announcement that the server’s
name accepts PQConnect connections. Any PQConnect client
connecting to that name efficiently finds this announcement,
automatically establishes a post-quantum point-to-point IP tunnel
to the server, and routes traffic for that name through that tunnel.

The foundation of security in PQConnect is the server’s long-
term public key used to encrypt and authenticate all PQCon-
nect packets. PQConnect makes a conservative choice of post-
quantum KEM for this public key. PQConnect also uses a smaller
post-quantum KEM for forward secrecy, and elliptic curves to
ensure pre-quantum security even in case of security failures
in KEM design or KEM software. Security of the handshake
component of PQConnect has been symbolically proven using
Tamarin.

I. INTRODUCTION

CVEs mentioning TLS within the past 12 months include
CVE-2024-5261 (in “LibreOffice, when used in LibreOf-
ficeKit mode only, then curl’s TLS certification verification
was disabled”); CVE-2024-37309 (in CrateDB, a “high-risk
vulnerability has been identified in versions prior to 5.7.2
where the TLS endpoint (port 4200) permits client-initiated
renegotiation”); CVE-2024-37305 (“malformed input can lead
to crashes or information leakage” in oqs-provider for “TLS,
X.509, and S/MIME”); CVE-2024-32973 (in the Pluto lan-

guage, “an attacker with the ability to actively intercept
network traffic would be able to use a specifically-crafted cer-
tificate to fool Pluto into trusting it to be the intended remote
for the TLS session”); CVE-2024-30166 (in the Mbed TLS
library, “a malicious client can cause information disclosure
or a denial of service because of a stack buffer over-read
(of less than 256 bytes) in a TLS 1.3 server via a TLS 3.1
ClientHello”); CVE-2024-29963 (Brocade SANnav OVA has
“hardcoded TLS keys used by Docker”); CVE-2024-29733
(“Improper Certificate Validation vulnerability in Apache Air-
flow FTP Provider”); CVE-2024-29209 (Phish Alert Button
for Outlook “does not enforce strict SSL/TLS verification”;
this “could allow an attacker to remotely execute arbitrary
code on the host machine”); CVE-2024-28161 (“In Jenkins
Delphix Plugin 3.0.1, a global option for administrators to
enable or disable SSL/TLS certificate validation for Data
Control Tower (DCT) connections is disabled by default”);
CVE-2023-5554 (“lack of TLS certificate verification in log
transmission of a financial module within LINE Client for
iOS prior to 13.16.0”) for the popular LINE messaging
app; CVE-2023-5422 (“the functions to fetch e-mail via
POP3 or IMAP as well as sending e-mail via SMTP use
OpenSSL for static SSL or TLS based communication. As the
SSL_get_verify_result() function is not used . . . ”)
for the OTRS service-management suite; CVE-2023-4420,
regarding TLS not being used in the SICK LMS5xx laser
sensors; CVE-2023-4586, regarding a client for the Hot Rod
data-access protocol not enabling hostname validation; CVE-
2023-4331, saying that the Broadcom RAID Controller web
interface has an insecure default TLS configuration; and many
more.

As these CVEs illustrate, deploying TLS requires integrat-
ing TLS into a wide range of protocols and an even wider
range of applications. Similar comments apply to other options
for cryptography at the transport layer, such as DTLS and
QUIC. There have been heroic efforts to expand the use of
transport-layer cryptography and in particular of TLS, but
this is a very large programming project—as reflected by the
breadth of TLS-related security failures—and is still far from
complete.

According to Mozilla’s Firefox Telemetry [30], the percent
of all web-page loads using TLS has increased from around
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25% in 2014 to around 80% in 2020, where it has stayed
roughly since. One cannot tell from these numbers how many
of the remaining 20% are using web-server software that does
not support TLS at all (as in CVE-2023-4420), and how many
are devices where TLS is supported but, despite the availability
of Let’s Encrypt, still not configured. A more direct view of the
scale of the software problem is a GitHub search for “SSL”,
which currently finds 2.4 million pull requests; a skim of the
most recent 50 (as of 2024-07-08) found 44 that were clearly
referring to SSL rather than something else by the same name.

Everything then has to change again for post-quantum
cryptography, and this needs to happen as soon as possible.
Deployment speed matters. Large-scale attackers have been
recording Internet traffic for years in the hopes of decrypting it
later; see, e.g., [35]. Plenty of data encrypted today will still be
interesting to attackers armed with future quantum computers.

There have been efforts to develop and standardize post-
quantum cryptographic primitives, and to incorporate post-
quantum primitives into both new and existing cryptographic
protocols, including TLS; see, e.g., [61], [18], [37]. Various
popular browsers, starting with Chrome version 116 released
2023-08-15, automatically encrypt using an experimental post-
quantum X25519Kyber768 TLS option whenever the server
supports that option. Supporting post-quantum encryption on
web servers is then “simply” a matter of upgrading every
popular TLS library, checking all web-server software using
those libraries to fix any incompatibilities with the new post-
quantum options (such as overly narrow lists of TLS cipher
suites), and adding TLS support to web-server software that
does not have it already. Everything then has to be repeated
for clients and servers for SMTP, IMAP, Hot Rod, the Delphix
DCT protocol, RADIUS (see the new attack [34]), and a very
long list of further application-layer protocols. This is a clear
path, but also a slow, labor-intensive path.

A. End-to-End Post-Quantum Cryptography Without Touching
the Applications

To bypass the deployment bottleneck described above, this
paper’s PQConnect introduces end-to-end post-quantum cryp-
tography as an application-independent “bump in the wire” at
the network layer of the network stack, without modifying the
transport layer.

PQConnect automatically creates post-quantum network
tunnels that encrypt entire packets between each client device
and each server device. Packets generated by higher-level
protocols running on top of TCP/IP or UDP/IP are intercepted
by PQConnect, encrypted with post-quantum cryptography,
and delivered to the other end, where they are decrypted by
PQConnect and given back to the higher-level protocols.

From a software-engineering perspective, the critical feature
of PQConnect is that it does not touch the applications that
it is protecting. For example, PQConnect adds post-quantum
cryptography as a wrapper protecting an SMTP connection
with no changes to the SMTP client software, no changes
to the SMTP server software, and no changes to SMTP: the
SMTP packets, like all other packets between the client and the

server, and transparently routed through a PQConnect tunnel.
The packets are protected today against a future quantum
adversary, even if the packets originally had just pre-quantum
cryptography or no cryptography at all.

VPNs have the same software-engineering benefit. Typically
a VPN is configured on a client device to route all outgoing
traffic through an encrypted tunnel from the client device to
a proxy specified as part of the VPN configuration. More
complicated configurations are possible, such as routing traffic
via a corporate proxy if the traffic’s outgoing IP address is
within the corporate IP range. Some VPNs have been adding
support for post-quantum cryptography; notable examples in-
clude Mullvad [67], [68], the new Rosenpass [65], and VPNs
based on OpenSSH, which has been using Streamlined NTRU
Prime by default [52] since 2022.

The critical difference is that PQConnect automatically
creates an end-to-end tunnel from the client to any PQConnect
server that the client is connecting to. VPNs, with their
typical configurations, protect traffic from the client device
to a proxy but not all the way to the server; they do nothing
to protect against attackers controlling the proxy or controlling
the network between the proxy and the server.

Users sometimes add specific servers to VPN configurations
so that VPNs create tunnels all the way to those servers.
PQConnect automates the creation of post-quantum tunnels,
eliminating the need for any server-specific configuration on
the client. Configuring a PQConnect server means creating
a long-term post-quantum public key for that server and
publishing an announcement saying that the server name sup-
ports PQConnect. A client device running PQConnect notices
whenever it is connecting to a server name that has such
an announcement; it then creates a PQConnect tunnel to the
server, and routes subsequent traffic for that name through that
tunnel. See Section III for further explanation of PQConnect’s
automatic peer discovery and authentication options.

This paper focuses on the PQConnect design, but we have
also implemented PQConnect for GNU/Linux. See Section VII
for a short summary and Appendix A for more details.

B. Reasons to Pursue Two Paths

The current state of encryption on the Internet still contains
large holes, especially considering the threat of quantum
computers. Our PQConnect software is new, so obviously it
has done nothing yet to plug these holes—but it provides
another clear path to broad deployment of end-to-end post-
quantum cryptography, and an inherently easier path than TLS.

There are many different TLS libraries supporting the
integration of TLS into applications in different environments.
This profusion of software puts heavy weight on backwards
compatibility, slowing down the evolution of TLS. Broken
algorithms have remained in the TLS standards long after
attacks were published. Some of the first attacks against RC4,
for example, were published already in 2001 (see [31], [46]),
but RC4 was not completely removed from TLS until version
1.3 in 2018 [56], 17 years later.
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We emphasize that PQConnect is not in a race against
TLS; rather, PQConnect and TLS are jointly racing against
attackers. Application designers are taking important steps in
extending the use of TLS and other transport-layer cryptogra-
phy. PQConnect is not an alternative to TLS for that—it does
not plug into applications or into application-layer protocols.
PQConnect instead works at a different layer, as something
to be installed by host administrators. Pursuing two parallel
approaches to the deployment of post-quantum cryptography
means that each device is protected as soon as one of the
approaches has covered that device. The sooner this happens,
the less data is exposed to future quantum attacks.

TLS works transparently on top of PQConnect when both of
them are deployed on the same device. One should not think
of these two end-to-end security layers as redundant:

• The PQConnect approach of protecting all applications
at one stroke relies on not touching application software,
but some applications want to interact with the security
layer—for example, giving HTTPS special treatment not
given to HTTP—and already know how to interact with
TLS.

• There have been many security issues in TLS imple-
mentations, and sometimes in TLS itself. If new post-
quantum cryptography in TLS turns out to have security
problems, a second layer of defense could still stop at-
tacks, especially when the second layer is using different
cryptosystems.

• PQConnect makes a particularly conservative choice of
post-quantum cryptosystem, namely the 1978 McEliece
cryptosystem at a very high security level, for the server’s
long-term public key. This KEM is the foundation of
security for PQConnect’s packet encryption, packet au-
thentication, and server identification.

• PQConnect provides a stronger notion of forward se-
crecy than TLS does: PQConnect uses time-based key
erasure within a session, ensuring that within minutes
it is unable to retroactively decrypt previous data—
although, for performance reasons, this relies on lattice-
based cryptography rather than the McEliece system.

• PQConnect also encrypts more information than TLS
does, such as IP packet headers, although attackers can
deduce some of that information via traffic analysis.

Given the low median age and high fatality rate (quantified
in [12]) of proposed post-quantum cryptosystems, there is
broad (although not universal) agreement that post-quantum
cryptography should be rolled out only as “hybrid cryptog-
raphy” on top of a conventional layer of security, typically
X25519 [10], a pre-quantum ECDH system. The McEliece
cryptosystem is older than ECDH, but, to avoid complicating a
simple recommendation of always using hybrid cryptography,
PQConnect uses X25519 here too. PQConnect tunnels thus
establish a shared key with a combination of X25519 and the
McEliece system for long-term security, and a combination of
X25519 and lattice-based cryptography for fast key erasure.

Most of our security analysis is manual, but symbolic

security analysis of one component of PQConnect, namely the
handshake, is within reach of existing automated tools and has
been carried out using an existing prover. See Section V.

C. Performance

The McEliece system has 1MB public keys at the high
security level we chose. Readers with concerns about the cost
of transmitting 1MB might wonder whether it is better to take
a less conservative post-quantum system, or, for environments
not worried about future quantum threats, just ECDH without a
post-quantum system. Either way would still add value beyond
TLS as explained above, creating a second layer of defense
with time-based key erasure and header encryption without
touching application software.

However, our performance analysis in Section VI indicates
that the McEliece system is already affordable. The critical
point here is that, after using this KEM to create a tunnel, a
PQConnect client automatically reuses the tunnel for any num-
ber of connections. The client also precomputes and caches
KEM ciphertexts—which are just 194 bytes for the McEliece
system—to efficiently build new tunnels if necessary. Either
way, a single transmission of the server’s long-term public key
to the client protects any amount of traffic between the client
and the server.

As an analogy, public-key cryptography is well known to be
a negligible fraction of the cost of traditional VPNs with man-
ually configured tunnels. The Mullvad and Rosenpass VPNs
mentioned above already use the McEliece system; see [68]
and [65]. A PQConnect client handles more public keys than
a VPN client does, since a PQConnect client automatically
retrieves long-term public keys from multiple servers, but
these are still long-lasting keys that protect arbitrarily large
volumes of user data. For TLS, applications are pressured to
keep sessions short (see, e.g., [33], [38], and [66]), incurring
frequent public-key operations for the sake of forward secrecy;
PQConnect uses time-based key erasure to eliminate this ten-
sion. These structural features of PQConnect allow the choice
of long-term KEM to skip performance-driven compromises
and jump directly to what is best for security.

II. THREAT MODEL

PQConnect aims to provide confidentiality and authenticity
of all packets between clients and servers against attackers
who have access to a large quantum computer, can store large
amounts of network traffic for future cryptanalysis, and can
insert, drop, and modify packets on the network.

Given that attackers are storing data today for decryption by
future quantum computers, what is most urgent today is adding
post-quantum encryption to this data; but PQConnect is also
designed so that its authentication will not need a subsequent
post-quantum upgrade.

We also assume that the attacker can compromise a peer
device in the future, for example by gaining physical access
to the device. We want to ensure that such an attacker cannot
use this access to decrypt traffic that was sent more than a few
minutes earlier.

3



We assume attackers can also alter the system clock of any
peer, for example by forging NTP packets. NTP is unencrypted
and unauthenticated by default; also, even if NTP is run over
PQConnect or an NTP-specific security protocol, we do not
want to assume security of NTP servers. An attacker-controlled
system clock should not affect the rapid erasure of private
decryption keys on any host.

We assume that the attacker is powerful enough not just to
compromise a device but to stay in control of the device, as in,
e.g., [29], [55], and [48]. Under this assumption, any claims
of “post-compromise security” are automatically broken. We
focus on security before the device is compromised.1

As a lower priority, we consider attackers who want to
compromise availability of services. It is important to note
that a powerful enough network attacker can always affect
availability of services.

III. DATA FLOW FOR PQCONNECT INTEGRATION

This section explains PQConnect’s application integration:
how a PQConnect client recognizes PQConnect servers and
arranges for applications on the same machine to send traffic
through the PQConnect tunnel, without changes to the appli-
cation software. We focus on GNU/Linux for concreteness.

The closest previous integration work that we are aware
of is MinimaLT [54], which automatically creates end-to-
end pre-quantum tunnels covering all application traffic. The
applications in [54] were written for a new network API
designed from the outset to use these tunnels, whereas in this
section the applications are unmodified GNU/Linux programs
unaware of PQConnect.

The high-level data flow is as follows. The administrator of
a PQConnect client device installs and runs the PQConnect
client software. This software automatically recognizes (see
Section III-A) when application software on that device—for
concreteness, imagine an XMPP client—is connecting to a
server that supports PQConnect. This software then creates a
PQConnect tunnel to that server (see Section IV for the pro-
tocol) if it does not have a recently used tunnel to that server.
This software then captures packets from the application (see
Section III-B), and routes those packets through that tunnel.
See Sections III-C and III-D for attack analysis.

A. Server Identification

A web browser that sees an https URL knows that it has
to use TLS for that URL. An SMTP client that sees an SMTP
server saying STARTTLS in response to EHLO knows that it
is allowed to issue a STARTTLS command to upgrade the
connection to TLS. PQConnect is in a different situation: it
does not have application-specific indicators such as https
or STARTTLS.

What a PQConnect client does see—without pestering non-
PQConnect servers with extra questions—is a DNS response

1Administrators and cryptographers considering weaker attack models, as
in [22], often decide to rotate long-term keys, for example switching to a new
long-term key every three months. PQConnect continues to work transparently
in this scenario: the client sees a new DNS record with a new key hash, and
all cryptographic operations are indexed by that key hash, as explained later.

with information configured by the server administrator, such
as www.google.com A 216.58.214.4 indicating that
www.google.com has IP address 216.58.214.4. Sometimes
there is a multi-part response: e.g., www.amazon.com
CNAME g4hukkh62yn.cloudfront.net indicating
that www.amazon.com has a canonical name of
g4hukkh62yn.cloudfront.net, followed by
g4hukkh62yn.cloudfront.net A 18.239.34.131
indicating the server’s address.

PQConnect reuses the idea from DNSCurve of
inserting cryptographic announcements into server
names that are naturally returned to clients.2 For
example, a client looking up the address for the
server www.pqconnect.net receives a CNAME
pointing to pq1u1hy1ujsuk258krx3ku6wd9rp9
6kfxm64mgct3s3j26udp57dbu1.pqconnect.net
and an A pointing this pq1...bu1.pqconnect.net
name to the actual server address.

A non-PQConnect client will connect as usual to the server.
A PQConnect client sees the name component consisting of
pq1 followed by 52 symbols from the DNSCurve alphabet
0123456789bcdfghjklmnpqrstuvwxyz, and treats this
as saying (1) that the server supports PQConnect and (2) that
those 52 symbols are the hash of the server’s long-term public
key. The DNSCurve alphabet is designed to minimize the risk
of accidental collisions, and PQConnect’s pq1 is separated3

from DNSCurve’s uz5.
Instead of, or as a supplement to, distributing the short name

www.pqconnect.net, server administrators can distribute
the name pq1u1h...bu1.pqconnect.net shown above.
This is harder to read and needs to be updated if the server’s
long-term public key changes, but provides stronger security;
see Section III-C below.

B. Capturing Application Traffic

The PQConnect client software goes beyond inspecting the
DNS packet: it also rewrites the packet, to replace the server’s
IP address with an address assigned by PQConnect within a
local address space.

Currently our software uses netfilter to capture and
rewrite packets. There are many other options here, such as
using /etc/resolv.conf to route DNS queries through a
PQConnect DNS proxy, or intercepting the systemd resolver.

2This is why we use CNAME; for simplicity, we focus on protecting names
not at DNS zone cuts. For comparison, RFC 4025 [57] specifies a format for
“IPSECKEY” records that are not naturally returned to clients: these records
require a separate DNS lookup beyond looking up the server’s IP address.
Trying to use this for automatic tunnels would mean accompanying essentially
every DNS lookup with an IPSECKEY lookup. This is not necessarily a
performance problem, but it raises tricky questions such as (1) how to define
“essentially” to avoid sometimes triggering combinatorial explosions and (2)
how to handle timeouts from servers that drop unusual record types. Passively
checking server names simplifies the engineering and lets PQConnect clients
follow a simple rule of zero extra packets for non-PQConnect servers.

3The 1 in pq1 is intended as a master version number, allowing for the
possibility of a structured PQConnect protocol upgrade in which clients are
first required to add multi-protocol support for pq1/pq2 by a specified date,
and then servers are allowed to switch to pq2 and are required to do so by
a specified date, and finally clients disable pq1.
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Firefox automatically uses DNS over HTTPS in some cases,
but a DNS proxy (or rewriting) can disable this by creating
an IP address for use-application-dns.net (and can
still pass DNS queries locally to a modular DNS-over-HTTPS
client if desired). A user manually configuring Firefox to use
DNS over HTTPS will prevent Firefox from using PQConnect.

Normally the application software ends up seeing the
PQConnect-assigned address rather than the server’s actual
IP address, and ends up sending packets to that address. The
PQConnect client receives those packets and—after a tunnel is
set up using the server’s long-term public key—tunnels those
packets to the server. It also receives packets back through the
tunnel, and delivers decrypted packets back to the application.

The PQConnect client software keeps track of a mapping of
server-key hashes to local IP addresses and tunnels. If the same
server-key hash shows up again (from the same application
or another application), the software replaces the server’s IP
address with the same local IP address, reusing the tunnel.

It would be possible to use the server’s IP address as a
further input for this mapping. Often DNS is configured to an-
nounce multiple IP addresses for a server name, sometimes to
spread load across multiple machines and sometimes because
the same machine is reachable through multiple networks.
This is compatible with PQConnect if all of the machines
are configured with the same public key (and know the
corresponding private key), but it is not clear that converting
each address into a separate tunnel is better than reusing a
single tunnel for the server name.

Rather than rewriting the server’s IP address as a local
IP address, we could capture all traffic to the server’s IP
address. One reason to use local IP addresses is to support the
following deployment possibility: multiple virtual machines
handle different server ports on a public IP address, and one
of the VMs starts supporting PQConnect for traffic to its ports,
with a key hash announced via a name dedicated to that VM,
while the others do not support PQConnect or have their own
PQConnect keys. On the other hand, it is not clear how useful
this possibility is compared to the host administrator setting
up PQConnect to cover the whole machine, with all of the
VMs free to announce the host’s key hash.

C. DNS Security Analysis

A name in DNS such as www.tiktok.com is controlled
not just by TikTok but also by the .com servers and the
root servers. Furthermore, because DNS traffic has no cryp-
tographic protection by default, the name is also controlled
by any attacker putting in the effort necessary to forge pack-
ets. Our threat model includes attackers controlling network
routers near the legitimate DNS servers. It also includes
attackers using NSA’s QUANTUMINSERT man-on-the-side
attack technique (no relation to quantum computing), which
injects fake responses to DNS queries before the real responses
arrive (see, e.g., [32]); the real responses are then ignored.

There has been some deployment of cryptographic add-ons
to DNS, such as DNSSEC, DNSCurve, DNS over TLS, and
DNS over HTTPS. Today these normally use pre-quantum

cryptography—e.g., DNSSEC keys are usually ECDSA or
RSA keys, both of which a quantum attacker can break in
advance to generate forged DNSSEC-signed responses on the
fly—and it is not clear that they will be upgraded before
attackers have quantum computers. A bigger problem today
is that these techniques are far from universally deployed.

The large gaps in DNS security pose problems for protocols
whose security relies on DNS. In particular, these gaps pose
security problems for TLS, at least the way that TLS is
normally deployed, trusting the usual X.509 PKI. Control
over DNS for a server name suffices to obtain a certificate
for that server name and man-in-the-middle control over TLS
connections to that name; this is true even if the long list of
certificate authorities is narrowed to just Let’s Encrypt. Let’s
Encrypt tries multiple DNS queries, but this obviously does
not achieve security in the threat model considered in this
paper. Let’s Encrypt also publicly logs all of the certificates
that it issues, making attacks more likely to be detected, but
detection is not the same as security.

For PQConnect, it is more obvious how security relies on
the security of DNS, since PQConnect simply looks up a server
name in DNS. An attacker forging DNS packets can man-
in-the-middle a PQConnect connection by returning a forged
CNAME/A record with a different PQConnect key hash and
a different A record, or simply stripping away PQConnect by
removing the CNAME in favor of a different A record, in both
cases pointing the client to an attacker-controlled machine.
This takes fewer forged packets than man-in-the-middling a
TLS connection.

PQConnect supports two techniques for improving security
here. The first technique is running DNS itself over PQCon-
nect, by deploying PQConnect on machines that run DNS
clients, DNS resolvers, and DNS servers, so as to protect all
applications of DNS (not just to protect PQConnect itself).
More deployment of DNS over PQConnect means fewer points
in the network that are available to an attacker to insert
malicious response packets. Deployment of PQConnect at
every level up to the root servers would eliminate network
substitution of DNS packets, even by future quantum attackers,
although www.tiktok.com would still be controlled by the
.com servers and the root servers.

The second technique is taking whatever previous chan-
nel is used to distribute a DNS-trusting name such as
www.pqconnect.net, such as a link on a web page, and
using the same channel to instead distribute a PQConnect
name such as pq1u1h...bu1.pqconnect.net. Attack-
ers subsequently forging DNS packets can still deny service
but cannot remove or modify the already-distributed key hash.
Of course, one also needs to make sure that the previous
channel is secure.

D. Rebinding Analysis

There are four basic layers in a PQConnect DNS response:
the original name such as www.pqconnect.net, the PQ-
Connect name such as pq1u1h...bu1.pqconnect.net,
the key hash inside that name, and the server’s IP address.
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The first layer disappears if the application is starting with the
PQConnect name.

To the extent that DNS is secure (see Section III-C), the
attacker cannot forge a DNS response that matches the original
name without matching all of the other data. However, the
attacker is still free to send a DNS response that, e.g., maps
another name to the same PQConnect name, or to a name
having the same key hash, or to a name having the same
address.

The case of none of these colliding (000) is uninteresting.
The PQConnect name colliding without the key hash colliding
(100, 101) is impossible since the PQConnect client computes
the key hash from the PQConnect name. The PQConnect
name colliding without the IP address colliding (110) would
be another DNS security failure. This leaves four interesting
possibilities.

We see two possibilities as typical deployment scenarios:
pointing another name to the same PQConnect name (111), or
to a different PQConnect name with the same key hash and
the same IP address (011). Both of these end up creating a
tunnel to the IP address; PQConnect does not care what the
original name was.

Having a different name and different key hash pointing to
the same IP address (001) is not obviously typical but is a
potential deployment possibility noted above. This does not
cause any confusion for PQConnect: tunnels are indexed by
key hash rather than by IP address.

This leaves one attack possibility (beyond DNS attacks):
pointing another name to a different PQConnect name with
the same key hash but a different IP address (010). In this
case, PQConnect will try setting up a tunnel to that IP address,
and will fail, since it checks the key exchange against the key
hash, as described later. PQConnect will still point clients to
the local IP address for the non-functional tunnel until the
tunnel times out, so there is a denial-of-service attack. If we
indexed tunnels by key hash and IP address then this denial-
of-service attack would disappear, although this interacts with
a usability question noted above.

IV. PROTOCOL SPECIFICATION

A. Cryptographic Notation

We use the following notation:
• a← b means assigning the value of b to the variable a.
• spkX

p , sskX
p , epkX

p , eskX
p are static public, static private,

ephemeral public, and ephemeral private keys for peer p
and public-key cryptosystem X.

• X.keygen() Generates a random (public, private) keypair
for the public-key cryptosystem X.

• X.Encap(pk) Generates a random 32-byte key k and its
encapsulation c under the public key pk.

• X.Decap(sk, c) Takes a private key sk and ciphertext c
and outputs the encapsulated key k if c is a valid encap-
sulation. Otherwise outputs a pseudorandom function of
the input (“implicit rejection”).

• AEAD.Enc(k, n, m, ad) Generates the ChaCha20-
Poly1305 authenticated encryption of message m and

associated data ad under key k and nonce n (as specified
in [50]). The output is c∗ = (c, t) for a ciphertext c and
16-byte authentication tag t.

• AEAD.Dec(k, n, c∗, ad) Decrypts and verifies an au-
thenticated ciphertext c∗ under key k, nonce n, and
with associated data ad. Successful decryption outputs
a message m of length |c∗| − 16. Failure outputs ⊥.

• Hash(m) Generates a 32-byte SHAKE256 digest of the
message m.

• KDFn(k, i) Generates n 32-byte keys from key k and
optional input i. The KDF uses ChaCha20 as the under-
lying pseudorandom function (PRF) and is described in
detail in Appendix D.

• Cp,Hp are “CipherState” and “HandshakeState” objects
(see below) for peer p. During the handshake each peer
p maintains these two state variables.

• Tp is the root sending key for peer p. Thus TC is the root
sending key for the client (and the root receiving key for
the server).

• tunnelID This is a 32-byte pseudo-random value that
uniquely identifies a tunnel.

B. Key Distribution

If a client has never seen a particular server before, it needs
to obtain the server’s long-term and ephemeral public keys.
PQConnect servers distribute their public keys via a keyserver.
When a client obtains a PQConnect server’s public key hash
from DNS, it needs two more pieces of information: 1) the IP
and port number of the keyserver, and 2) the PQConnect listen-
ing port number for the PQConnect server. Both of these pieces
of information are published in additional DNS TXT records,
which the client queries at the start of a connection with a new
server. For the example of pq1...u1.pqconnect.net,
there are public records pq1...u1.pqconnect.net TXT
"p=42424" and ks.pq1...u1.pqconnect.net TXT
"ip=131.155.69.126;p=42425" specifying the PQ-
Connect listening port and keyserver address.

A long-term PQConnect public key is a mceliece6960119
key (along with an X25519 key as explained in Section I). This
key is split into packet-sized chunks, each of which can be
requested individually. To allow for instant verification that a
key packet is authentic, the server’s public keys are distributed
as a Merkle tree, the root of which is the published key hash.
The process for requesting and verifying the server’s long-term
keys is described in Section IV-C.

Once the long-term key is verified, the client requests an
ephemeral key from the keyserver to compute a handshake
message. The ephemeral key is an sntrup761 key (along with
an X25519 key). Ephemeral keys have an issuing period of
30 seconds, and the private keys are erased after 120 seconds.
That is, an ephemeral key distributed to a client at time t0
might be issued again at t0 + 29, but it will not be issued at
time t0 +30, and any ciphertext created with that key will be
unrecoverable by the server at time t > t0 + 120.

The server uses its clock to rotate and erase keys. For
all its connections it defines an epoch of 30 seconds during
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which an sntrup761 key should be used. To deal with slow
networks, synchonization issues, and clock skew the server
will also accept connections using the keys for the previous
three epochs. The server erases the key 120 seconds after it
first started using it.

After a tunnel is established, PQConnect clients cache
servers’ long-term X25519 keys and cache precomputed ci-
phertexts against the mceliece6960119 key. This allows future
handshake messages to be sent quickly without having to
transmit or store a mceliece6960119 public key for each server.
However, once a client has used up its cache of McEliece
ciphertexts, it will need to re-request the public key from the
server.

C. Streaming Verification of Long-term Keys
To allow for instant key packet verification, PQConnect

constructs and transmits long-term keys as a Merkle tree, with
packet-sized chunks of the public keys stored in the leaves, and
the published hash of the long-term public keys in the root.
Each internal node is at most 1152 bytes, which is equal to
the length of 36 concatenated 32-byte hashes, and is small
enough to fit into a UDP packet without fragmentation.

Clients request key packets at increasing depths of the
Merkle tree and verify each packet’s correctness by comparing
its hash to the appropriate segment of its parent node. Any
packet whose hash does not match its parent can be immedi-
ately discarded and re-requested.

The mceliece6960119 public key is divided into 910 parts,
each 1152 bytes (except for the last one). The 32-byte long-
term X25519 public key is concatenated to the end of the last
part (which becomes 183 bytes in total). These parts form the
leaves of the tree (at depth 3). Each of the 910 leaf nodes
is hashed, and the hashes are concatenated and then again
divided into 26 depth-2 nodes, each of which is 1152 bytes
(except for the last one). The hashes of all 26 depth-2 nodes
are then concatenated to form a single depth-1 node of 832
bytes. The depth-1 node is then finally hashed to obtain the
32-byte public hash provided by DNS. The full tree is thus a
{36,26,1}-ary Merkle tree.

To obtain and verify the server’s long-term public keys, the
client first requests the root and depth-1 packets and checks
that the root equals the hash obtained from DNS and that the
depth-1 node hashes to the root. It then requests and hashes the
26 depth-2 packets, verifying them against the depth-1 node.
Finally it requests and verifies the 910 leaf packets.

Verifying a packet only requires that the parent packet
containing its hash has already been received and verified. This
allows for some level of parallelism when sending requests;
request packets for one level of the tree can be sent before
response packets for that level have been received. This creates
a lower bound of 3-RTT for the key request, one round trip
for each level. The client uses a congestion-control algorithm
based on [19] and [15] to select transmission speeds.

D. The PQConnect Handshake
Once the client has obtained and verified the server’s long-

term keys, it can proceed to establish a tunnel by sending a

handshake message to the server. The PQConnect handshake
protocol is performed in 0-RTT, meaning the client can send
encrypted, tunneled packets to the server immediately after
sending the handshake message. Of course, saying that the
handshake is 0-RTT does not mean that the pre-handshake
operations of receiving the server’s keys are 0-RTT.

The 0-RTT handshake means that clients who already have
a server’s public keys can send tunneled packets immediately
with the handshake message, reducing latency. On the other
hand, all per-connection randomness comes from the client.
We discuss protection against replay attacks in Section IV-I.

PQConnect’s handshake protocol involves four public keys:
the server’s long-term and ephemeral KEM keys, plus long-
term and ephemeral X25519 keys as explained in Section I.
These keys are used in a “nested” manner: public key
operations are performed sequentially, and each subsequent
(inner) operation is cryptographically protected by a secret key
derived from all previous (outer) operations. See Appendix C.

E. The 0-RTT Handshake Protocol

In this section we describe the handshake in detail. Some
inspiration for the handshake comes from the Noise Protocol
Framework by Perrin [53], such as the use of CipherState and
HandshakeState variables.

During the handshake, a secret is created using each of
the server’s four public keys, and these are incorporated into
the CipherState variable as they are derived, with the original
secrets being immediately erased. Every publicly transmitted
value is also incorporated into the HandshakeState variable
after it is created. In the following description, updates to the
state variables are omitted but are shown in detail in Figure 1.

The client C first generates a random 32-byte ephemeral
X25519 key and its corresponding 32-byte public key. Then
C encapsulates a random key k0 to the server’s long term
mceliece6960119 public key as c0. Then C encrypts its
ephemeral X25519 public key epkx25519c under Cc = k0, nonce
0, and associated data Hc, producing c∗1 . Next, it computes
shared ECDH keys k1 and k2 using the server’s static and
ephemeral X25519 public keys, respectively. Finally, the client
encapsulates k3 under the server’s sntrup761 public key, gen-
erating c2, and then encrypts this under the updated Cc and Hc
values and nonce 0 to produce c∗3 . The tunnelID, Tc and Ts
shared secrets are then computed using the CipherState and
HandshakeState variables as inputs to the KDF. The client
sends a 2-byte “initiation msg” prefix 0x1 0x0, c0, c∗1 , and
c∗3 to the server. The total length of this message is 1299
bytes: the 2-byte prefix, 194 bytes for the mceliece6960119
ciphertext c0, 48 bytes for c∗1 (32 bytes for the key and 16
bytes for the authentication tag), and 1055 bytes for c∗3 (1039-
byte sntrup761 ciphertext + 16 byte authentication tag).

Upon receipt of C’s message, the server S checks the
message type, decapsulates c0 to obtain k0, decrypts c∗1 to
obtain epkx25519c , computes the two ECDH keys k1 and k2,
and finally decrypts c∗3 and decapsulates c2 to obtain k3. Then
S obtains the same shared values tunnelID, Tc, and Ts.
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Client Server
Knows {spkMcElieces , spkx25519s , epkSNTRUPs , epkx25519s } Knows {sskMcElieces , sskx25519s , eskSNTRUPs , eskx25519s }

(epkx25519c , eskx25519c )← x25519.keygen()

msg.type← 1

(c0, k0)← McEliece.Encap(spkMcElieces )

Hc ← c0; Cc ← k0; k0 ← ϵ

c∗1 ← AEAD.Enc(Cc, 0, epkx25519c , Hc)

Hc ← Hash(Hc, c∗1)
k1 ← DH(eskx25519c , spkx25519s )

Cc ← KDF1(Cc, k1); k1 ← ϵ

k2 ← DH(eskx25519c , epkx25519s )

Cc ← KDF1(Cc, k2); k2 ← ϵ

(c2, k3)← SNTRUP.Encap(epkSNTRUPs )

c∗3 ← AEAD.Enc(Cc, 0, c2, Hc)
Cc ← KDF1(Cc, k3); Hc ← Hash(Hc, c∗3); k3 ← ϵ

tunnelID, Tc, Ts ← KDF3(Cc, Hc)

init← (msg.type, c0, c
∗
1 , c

∗
3) init (msg.type, c0, c

∗
1 , c

∗
3)← init

k0 ← McEliece.Decap(c0, ssk
McEliece
s )

Cs ← k0; Hs ← c0; k0 ← ϵ

epkx25519c ← AEAD.Dec(Cs, 0, c∗1 , Hs)
Hs ← Hash(Hs, c∗1)

k1 ← DH(sskx25519s , epkx25519c )

Cs ← KDF1(Cs, k1); k1 ← ϵ

k2 ← DH(eskx25519s , epkx25519c )

Cs ← KDF1(Cs, k2); k2 ← ϵ

c2 ← AEAD.Dec(Cs, 0, c∗3 , Hs)
k3 ← SNTRUP.Decap(c2, esk

SNTRUP
s )

Cs ← KDF1(Cs, k3); Hs ← Hash(Hs, c∗3); k3 ← ϵ

tunnelID, Tc, Ts ← KDF3(Cs, Hs)

{eskx25519c , Cc} ← ϵ Cs ← ϵ

Fig. 1. The handshake component of PQConnect. Red text denotes that the variable is secret. The assignment v ← ϵ denotes erasure of variable v.

For each AEAD operation, the HandshakeState variable
is used as authenticated data, ensuring that the handshake
succeeds only if both participants have an identical view of the
handshake transcript. Except for the first encapsulated secret
key, all message fields containing data are authenticated and
encrypted using ChaCha20-Poly1305. At the conclusion of the
handshake, both parties erase all remaining non-public values
aside from the tunnelID, Tc, and Ts.

F. The PQConnect Key Ratchet

PQConnect tunnels encrypt each packet with a one-time key
that the sender erases immediately after using it. The more
subtle question is how long a receiver keeps a packet key.
Packets are delayed in the network and can arrive out of order,
or not at all.

Our threat model includes an attacker that can prevent
a recipient from receiving packets. If decryption keys were
to remain on the recipient’s device until their corresponding
packets arrive, this would also have the effect of preventing
their erasure. Our model also includes an attacker that later
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compromises the recipient’s machine, obtaining whatever keys
have not been erased yet.

To limit the potential damage of long-term key storage,
PQConnect sets a built-in time limit of two minutes for erasing
each one-time key. The sender stops using the key after just
30 seconds, so that packets encrypted under the key are still
decrypted correctly by the receiver even if there are network
delays as long as 90 seconds.

To obtain many one-time keys from an initial shared secret,
PQConnect uses the standard idea of re-keying encrypted com-
munication using a KDF (see, e.g. [4]). PQConnect’s ratchet,
depicted in Figure 2, is designed to be able to handle large
packet volumes including out-of-order and delayed packets;
compared to Signal’s symmetric-key ratchet [47], there is an
extra dimension in Figure 2.

The starting point for the ratchet is as follows. Once both
peers have completed the handshake, they are left with three
shared 32-byte-long values: tunnelID, Tc, and Ts. To limit
the coordination required between the two sides of the tunnel,
packets are encrypted using two chains of keys, one for
client encryption (and server decryption), and one for server
encryption (and client decryption). Tc is the root of the client’s
sending chain, and Ts is the root of the server’s sending chain.

Figure 2 depicts one of these two chains. The main vertical
dimension shows 30-second epochs; the diagonal dimension
shows a chain of keys within each epoch. We use the following
notation for keys: ex is the root epoch key for epoch x, cy,i
is the ith chain key from epoch y, and py,i is the actual
encryption key for the ith packet sent in epoch y. Upper case
Py,i denotes the packet encrypted with py,i.

The sending ratchet computes the two keys e1, c0,0 ←
KDF2(Tc) and immediately erases Tc (assuming this is the
client; the server does the same operation but starting with Ts).
e1 is the root key for epoch 1, and c0,0 is the 0th chain key for
epoch 0. The sender then computes c0,1, p0,0 ← KDF2(c0,0)
to obtain the 0th packet key p0,0 and the next chain key c0,1.
For the next 30 seconds, for each new outgoing packet P0,i,
the sender computes c0,i+1, p0,i = KDF2(c0,i).

Once 30 seconds have elapsed, the sender stops using keys
derived from the c0,i chain keys and ratchets to a new chain.
The sender initializes this new chain by computing e2, c1,0 ←
KDF2(e1). The same pattern continues through all epochs.

On the receiver side, if the receiver initially has keys p0,0
and c0,1 (c0,0 is erased after being used as input by the KDF),
and the first packet P0,0 arrives, the receiver decrypts it with
p0,0 and ratchets the chain forward, overwriting c0,1 with
c0,2 (and generating p0,1). If P0,1 instead arrives first, then
the receiver computes c0,2 and p0,1 from c0,1, decrypts P0,1,
and keeps p0,0 to be able to subsequently decrypt P0,0 if
that appears. After two minutes all keys stemming from e0
are deleted. Similar comments apply to subsequent packets
throughout the lifetime of the tunnel.

Note that each packet is labeled with its position. The usage
of epochs means that this shows only short-term information
about the volume of tunnel traffic. The same information is
available through traffic analysis in any case.

e0

''

��

c0,0

''��
e1

''

��

p0,0 c0,1

''��
c1,0

''��

p0,1 c0,2

''��
e2

''

��

p1,0 c1,1

''��

p0,2
. . .

c2,0

''��

p1,1 c1,2

''��... p2,0 c2,1

''��

p1,2
. . .

p2,1 c2,2

''��
p2,2

. . .

Fig. 2. The PQConnect key ratchet. Keys are erased as soon as they are used,
and in any case within two minutes. Key p0,i is used for the ith client packet
between time 0 and time 30, and is erased by the server as soon as it is used,
or at the latest at time 120. Key p1,i is used for the ith client packet between
time 30 and time 60, and is erased by the server as soon as it is used, or at
the latest at time 150.

1) Synchronizing local clocks: Key erasure is based on a
monotonic clock so that changes to system time (e.g., from
NTP) cannot cause delays in key erasure. Still, it is possible
that because of local clock variation, two peers will not be
completely in sync for the duration of a tunnel. If one peer
receives a packet from epoch n at time t < 30n, they move
their clock forward, setting the start time for epoch n to t (and
the start time for n + 1 to t + 30, etc.). The expiration time
for previous epochs is not affected.

However, if packets from epoch n arrive later than 30n, the
peer does not slow down their clock. Instead, they continue
sending packets from the current epoch and let the other party
advance their clock as above.

These rules together mean that the clock can be adjusted
forward but never backward. This prevents an attacker from
delaying the erasure of keys by delaying the arrival of packets.

Additionally, a peer’s view of time should be consistent for
both sending and receiving packets. If a peer makes a forward
adjustment to a new epoch on their receiving ratchet, they also
make the same adjustment on their sending ratchet. This way
a peer is never sending a message in an older epoch than the
most recent one in which they have received a packet.

G. Message Format

When C wishes to send packet j in epoch i of a PQConnect
tunnel, they encrypt the packet using key pi,j , then prepend
the 32-byte tunnelID, 2-byte epoch number i, and 4-byte
packet number j, and authenticate the encrypted data along
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IP-Header UDP-Header tunnelID Epoch No. Packet No. Encrypted Packet Auth Tag

Fig. 3. Structure of a PQConnect packet: Light gray areas are authenticated but not encrypted. Dark gray is authenticated and encrypted

with these fields. The epoch and index values are little-endian.
This is then encapsulated as the payload of a UDP datagram
and sent to the remote host. The packet arrives on the receiver’s
PQConnect UDP port. The receiver identifies that this packet
is for tunnel tunnelID and then retrieves or computes pi,j
from their receiving ratchet to decrypt and verify the packet.
The decrypted inner packet is then routed to the specified IP
and port, and pi,j is deleted. The structure of a PQConnect
message is shown in Figure 3.

H. Session Cookies and Resumption

PQConnect servers can set a limit MAX_CONNS on the
number of tunnel connections to maintain simultaneously. If
the maximum number of active tunnels is reached and a new
handshake message arrives, the server exports the state of its
least recently active session as an encrypted session cookie to
that client and replaces it with the new tunnel from the fresh
handshake.

Session cookies are encrypted under a rotating secret key
that updates every epoch, and only the four most recent keys
are held at any given time. This gives session cookies the same
lifetime as the tunnel itself.

A client who receives a session cookie simply stores it until
the next time they wish to send a packet to the server. They
prepend their packet with the cookie. If it is sufficiently fresh,
the server decrypts the cookie and uses it to reconstruct the
tunnel. Otherwise, the client must establish a new tunnel with
a fresh handshake message.

I. Replay Protection

By virtue of being 0-RTT, client handshake messages are
replayable, since the server does not contribute randomness.
Processing the same handshake message twice will result
in the same tunnelID and session keys. This raises two
concerns. The first is at the protocol level. Replaying a
handshake message that the server has already seen must not
affect an existing tunnel with a client. The second is at the
cryptographic level and relates to AEAD security problems
under nonce reuse. Replaying a handshake must not give the
attacker the ability to forge ciphertexts or break confidentiality.

PQConnect handles replays as follows. Recall that, for
forward secrecy, each handshake is bound to an sntrup761
key that is erased after 120 seconds. The server keeps a
list of McEliece ciphertexts used in successful handshake
messages for each of the four currently valid ephemeral keys
(simply indexed 0, 1, 2, 3 and used round robin). The server
checks each received ciphertext against the list, discarding any
replay without performing a cryptographic operation. When
an ephemeral key is erased, the corresponding list of used
ciphertexts is also erased; those ciphertexts are invalid, making
replays ineffective.

Replay of the symmetrically encrypted messages of the
PQConnect tunnel will have no effect as each party erases
keys as soon as they are used, hence, the replayed message
cannot be decrypted and will be dropped.

J. Denial-of-Service Mitigation

Attackers with the powers considered in our threat model
(see Section II) can trivially deny service for all network proto-
cols by simply dropping all packets. Less powerful attackers
can deny service at low cost by flooding the network. Any
claims of protection against denial of service are necessarily
against weak attackers and should be accompanied by speci-
fication of the costs for breaking the protection. We make a
few comments in this section on specific attack avenues, but
a full analysis of denial-of-service attacks is outside the scope
of this paper.

Given the damage of amplification attacks (see, e.g., [58]
and [28]) and the evidence of 1MB long-term public keys
being affordable in context (see Section VI-B), we choose
to spend another 1MB to have the server require the client’s
key-request packets to be as large as the server’s responses,
eliminating amplification. Clients simply zero-pad key-request
packets to the required length.4

It is not as easy to prevent attackers from flooding a server
with bogus handshake messages. In PQConnect, unlike a
closed network such as a traditional VPN, servers’ public
keys are actually public, so a Wireguard-like MAC proving
knowledge of the server’s public key is a bar that everyone
with an Internet connection can clear. PQConnect is also
UDP-based, making it easy for attackers to spoof source IP
addresses.

Each handshake message triggers computation for four
public-key operations: mceliece6960119 decapsulation,
sntrup761 decapsulation, and two X25519 operations. Overall
these take about 219 cycles on a typical CPU core (see
Section VI-C). There can be many more cycles for non-
cryptographic operations (depending on software details), and
each tunnel consumes RAM on the server.

We have a preliminary implementation of a hashcash-based
challenge mechanism that servers can use if they are under
load. This mechanism avoids keeping state on the server
relating to who has been issued a challenge, and avoids
amplifying client requests. The mechanism works as follows.

The server can respond to a handshake by sending a
challenge message to the client instead of setting up a tunnel.
The challenge consists of an authentication tag under a secret
key held by the server. The authenticated data includes a
timestamp value (indicating freshness), the client’s IP address

4We could reduce the risk of network-layer compression by having the
server require padding that is more expensive for networks to recognize, such
as a ChaCha20 key followed by output from that key.
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and port (to bind the challenge to the client), and a difficulty
level hardness_bits selected by the server. The server
sends hardness_bits, the timestamp, and the challenge
to the client.

When the client receives the challenge, if it accepts the
difficulty level, it computes a byte string that, when hashed
together with the constant string PQConnectChallenge
and the challenge, produces a hash with a leading number
of zero bits at least as large as the difficulty level. The client
then resends its handshake message along with the original
timestamp, hardness, original authentication tag, and solution.

When the server receives the solution, it checks that the
timestamp is fresh, that the hash begins with enough zero
bits, and that the original authentication tag matches. If these
tests pass, the server processes the accompanying handshake
message.

V. FORMAL VERIFICATION OF THE PQCONNECT
HANDSHAKE

The security analysis throughout this paper was generally
carried out by hand, as noted in Section I. Computer-checked
analyses reduce the risk of error to the extent that they can be
carried out, and they turn out to be feasible for the handshake
inside PQConnect. This section explains how we generated
symbolic proofs for the handshake using Tamarin.

For a short introduction to Tamarin, see Appendix E. For
more extensive background on Tamarin we direct the reader
to [49]. See [2] for our full model and lemmas. It would also
be possible to build a more complex model that accounts for
further structure of elliptic curves as in [24]; as in [10], we are
using plain ECDH and choosing private keys as multiples of 8,
which is called “ClearPoint” in [24] and stops small-subgroup
attacks. The structure of X25519 stops invalid-curve attacks;
see [10].

In this section, we abstract slightly away from a client-server
model and speak of an Initiator, the one who sends the hand-
shake, and Responder, who receives it. The derived secrets TI,
and TR are synonymous with Tc and Ts, respectively.

A. Security Properties
This section enumerates the security properties that the

PQConnect handshake achieves.
1) Executability and correctness: Two parties are able to

complete the handshake, and as a result derive the same
tunnelID, TI, and TR values.

2) Key confidentiality: In the absence of a break in the
underlying cryptographic primitives, two parties who perform
the handshake derive transport keys TI and TR, and these keys
are unknown to any third party.

3) Quantum confidentiality: An attacker who only obtains
the long-term and ephemeral X25519 private keys of the
Responder cannot recover the keys.

4) Forward secrecy: If the long-term private keys of the
server are compromised after two parties perform the hand-
shake, the transport keys remain confidential. We denote an
attacker who later gains access to these keys a forward secrecy
(FS) attacker.

5) Quantum forward secrecy: A FS attacker who obtains
the Responder’s long-term private keys and ephemeral X25519
private key, but not the sntrup761 private key, does not break
the confidentiality of the transport keys.

6) Responder to initiator authentication: The only party
capable of decrypting I’s messages is R. If I and R complete
the handshake with matching secrets, then I is communicating
with R.

B. Verified Lemmas in Tamarin

In this section we present and discuss the lemmas that
we used to prove the security properties from the previous
section. We discuss the validity of the lemmas and point out
noteworthy actions to clarify what the lemma states. See [2]
for the full model.

1) Protocol executability and correctness: First we check
that the modeled protocol executes as expected. If the model
(or the protocol itself) contains errors that prevent it from
successfully completing, then other properties about the hand-
shake may trivially be true.

For both handshakes we prove the following lemmas, which
Tamarin verifies:

lemma 0_RTT_executable:

/* There exists a trace, such that */

exists-trace

/* There exists a responder R, tunnelID id, transport keys ti */

/* and tr, and times #i and #j*/

"

Ex R id ti tr #i #j.

/* Such that the 0-RTT handshake finished for id at time #i */

Zero_RTT(id) @ #i

/* The initiator established a tunnel with R at time #i*/

& InitiatorTunnel(R,id,ti,tr) @ #i

/* and the R established a tunnel with the same */

/* tunnelID ad transport keys at time #j*/

& ResponderTunnel(R,id,tr,ti) @ #j

"

2) Key confidentiality and forward secrecy: Any quantum
FS attacker trying to break the confidentiality of the PQ-
Connect handshake is of course free to perform pre-quantum
attacks as well. Thus, showing quantum forward secrecy
implies “classical” forward secrecy, quantum confidentiality,
and “classical” confidentiality. We therefore prove a single
lemma that satisfies all four confidentiality properties.

The Responder’s ephemeral public keys for the PQConnect
handshake are already public, so a quantum FS attacker is an
attacker who can later learn the long-term private keys and the
ephemeral X25519 private key of the Responder. We therefore
simply require that the private sntrup761 key is never known
to anyone besides R:
lemma 0_RTT_FS_confidential:

/* For all handshakes occuring at time i */

"

All S id ti tr #i #j #k.

(

InitiatorTunnel(S,id,ti,tr) @ #i

/* if long term key compromise occurs after time i */

& NpqSskReveal(S) @ #j

& (i < j)

& PqSskReveal(S) @ #k

& (i < k)
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/* and there is never also a compromise of

the server’s Post-Quantum ephemeral keys */

& not(Ex #l. PqEskReveal(S) @ #l )

)

==>

/* then at no time does an adversary learn ti or tr */

(

not(Ex #r. K(ti) @ #r)

&not(Ex #s. K(tr) @ #s)

)

"

3) Responder to initiator authentication: Finally we show
that, if an initiator has created a tunnel and a Responder has
created the same tunnel, then the initiator must have created
the tunnel with that particular Responder.
lemma responder_client_auth:
/* For all Servers R and S and shared values tid,ti,tr,

If a client has created a tunnel with R,
and S has created a tunnel with the same values,
then S must be R*/

"
All R S id ti tr #i #j.

InitiatorTunnel(R,id,ti,tr) @ i
& ResponderTunnel(S,id,tr,ti) @ j

==> S = R
"

VI. COST ANALYSIS

There is a long history of concerns being raised about the
bandwidth and/or CPU time consumed by cryptography. Often
these concerns delay deployment of safer cryptography.

Consider, for example, RSA-512, RSA-1024, and RSA-
2048, which are typically estimated to have (pre-quantum)
security levels around 264, 280, and 2112 respectively; see [8,
Section 6.2] for a survey covering these estimates and smaller
estimates. The first public report of an RSA-512 factoriza-
tion [21], at the turn of the century, noted that “512–bit RSA
keys protect 95% of today’s E-commerce on the Internet”. A
2007 study [44] found 88% of TLS servers using RSA-1024,
and a 2011 study [36, Figure 11] found 50% of TLS servers
still using RSA-1024; unlike the usage of RSA-512, the usage
of RSA-1024 cannot be explained by export controls.

Today the dollar cost of cryptography is much lower:
networks send much more data per dollar, CPUs carry out
much more computation per dollar, and cryptography has been
streamlined. For example, X25519—which is used for the
“vast majority” of TLS connections monitored in [45]; see
also [64], [69], [5] for confirming measurements—accounts
for just 1/2000 of Meta’s total CPU cycles, according to [70].
A recent estimate [11] is that the costs of a server CPU cycle
and of sending a byte through the Internet have dropped to
about 2−51 dollars and about 2−40 dollars respectively; the
low costs have enabled continuing increases in video traffic,
which according to [59] is now the bulk of all Internet traffic.
Meanwhile there is more awareness of the damage caused by
security failures, and there are correspondingly large budgets
available for security; see, e.g., [40] and [6]. But users might
still be concerned about the deployability of a 1MB public key
as part of a network-security mechanism.

This section analyzes from first principles the bandwidth
and CPU time used by PQConnect—including, but not lim-

ited to, the McEliece costs. Section VI-A analyzes the pre-
handshake cost of clients retrieving public keys from a server;
this is where the McEliece public-key size appears. Sec-
tion VI-B puts this cost in context, considering the cost of
transmitting user data. Section VI-C analyzes the handshake
cost, the cost of clients setting up tunnels to the server. Sec-
tion VI-D analyzes the PQConnect costs per byte of user data.
Section VI-E analyzes the costs that PQConnect incurs for
non-PQConnect devices. Appendix B describes measurements
of total costs of our implementation in end-to-end experiments.

A. Pre-Handshake Cost

The following paragraphs investigate the costs incurred
for N PQConnect clients to retrieve public keys from a
PQConnect server. Of course, the network-wide costs multiply
this by the number of servers, with N averaged appropriately.

We begin by reviewing relevant microbenchmarks for
public-key cryptography. Public keys are 1047319 bytes for
mceliece6960119; 1158 bytes for sntrup761; and 32 bytes
for X25519. For speeds, we consider CPU cycles on In-
tel’s Skylake microarchitecture; this microarchitecture was
introduced in 2015, is shared by Kaby Lake, Coffee Lake,
Comet Lake, etc., and was not superseded until Ice Lake. The
cryptographic libraries that we use report the following cycles
for key generation on Skylake, specifically on a 3GHz Intel
Xeon E3-1220 v5 with Turbo Boost disabled: 344836760 for
mceliece6960119; 831462 for sntrup761; 29692 for X25519.
Full digits of the numbers here are provided to support spot-
checks against [14] and [17], not to suggest that the cycle
counts are stable down to the last digit.

We next review what these microbenchmarks say about
PQConnect. Key generation for mceliece6960119 takes a user-
perceptible amount of time, for example 0.1 seconds on a
3GHz Skylake core, but is used in PQConnect only to compute
the server’s long-term key. Even if the administrator decides
to generate a new long-term key every three months (rather
than just once when PQConnect is installed on the server), the
CPU time investment here is negligible. Similarly, the server
generates a new sntrup761 key (and X25519 key) every 30
seconds, but this consumes only 1 out of every 100000 CPU
cycles on a single 3GHz Skylake core.

What is repeated across all N clients is the network traffic
to retrieve these keys from the server. Transmitting the server’s
key means transmitting a 1MB mceliece6960119 public key,
plus negligible costs for the sntrup761 public key, the X25519
keys, and miscellaneous overhead. Recall from Section IV-J
that we also send 1MB from the client to the server to
eliminate amplification of key-request packets.

B. Cost in Context

It is important to note that the cost of transmitting the
server’s 1MB key, plus 1MB of defense against amplification,
is a per-client cost, not a per-connection cost. This difference
is critical for a cost analysis.

Consider the measurements from [45] of the TLS traffic
generated by the most popular Android apps, specifically the
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45 most popular general-purpose apps and the 45 most popular
games. An average app in just five minutes of usage generated
13.6MB of traffic to 45 servers using 144 TLS handshakes
with 36 TLS resumptions.

Seeing multiple TLS handshakes per server is not surprising.
TLS software is organized around application-layer connec-
tions; sharing handshakes across connections takes extra work.
TLS applications are also encouraged to start new sessions
frequently for forward secrecy; see the references in Section I.

PQConnect is different. Tunnels to each server are handled
centrally by the PQConnect software on the client device,
and PQConnect’s time-based key erasure achieves forward
secrecy without new handshakes. Consequently, 45 servers
(with separate PQConnect keys) will produce exactly 45
PQConnect tunnels.

Splitting 13.6MB across 45 PQConnect tunnels produces
0.3MB of data in an average tunnel, which is still below the
2MB cost of setting up the tunnel—but, again, the 0.3MB is
for just five minutes of usage, whereas PQConnect tunnels
can continue handling much more than five minutes of traffic.
In just two hours of usage of the app (spread over whatever
amount of real time) one expects 24 times as much traffic,
presumably to the same set5 of servers, at which point the
2MB cost of setting up each tunnel has to be compared to
7.2MB of traffic sent through each tunnel. The 7.2MB keeps
growing with usage while the 2MB does not.

As another data point, [7, “Total Kilobytes” and “TCP
Connections Per Page”] shows that the average web page has
grown beyond 2MB and that the number of connections per
web page has dropped to 10. Clickstream studies such as [51]
show that, for most users, the majority of web-page visits are
to the user’s top 10 sites, and the number of servers visited is
12× smaller than the number of visits.

A different way to understand the affordability of 2MB is
to consider the estimate cited above of about 2−40 dollars to
send a byte of data through the Internet, implying that sending
2MB costs about 2−19 dollars. For a user to spend a dollar
on this would require the user to contact about 219 servers.
Of course, a smartphone is sometimes on a more expensive
mobile network; if the mobile data plan has a 10GB-per-
month data cap, then it is not possible for the phone to start
PQConnect tunnels to more than 10000 different servers in a
month without getting on WiFi.

C. Handshake Cost

After N PQConnect clients retrieve public keys from a
PQConnect server, they carry out N handshakes to set up N
tunnels to the server. The following paragraphs investigate the
costs of these handshakes.

As in Section VI-A, we begin by reviewing rel-
evant microbenchmarks. Ciphertexts are 194 bytes for
mceliece6960119 and 1039 bytes for sntrup761, as mentioned

5Often it is useful to generate many names for the same server, but if they
are sharing the same PQConnect public key then the public key does not
need to be transmitted repeatedly. Note that [45] says “The Servers column
indicates the number of unique server names”.

in Section IV-E. (The reversal is not a typo: mceliece6960119
has a larger public key than sntrup761 but has smaller cipher-
texts.) Regarding speeds on the same CPU described above,
encapsulation takes 116636 cycles for mceliece6960119 and
41784 cycles for sntrup761; decapsulation takes 272042 cycles
for mceliece6960119 and 61793 cycles for sntrup761; comput-
ing an X25519 shared secret takes 87876 cycles.

Each handshake involves, for the client, encapsulation for
both mceliece6960119 and sntrup761, generating an X25519
key, and computing two X25519 shared secrets; the total of
microbenchmarks is 334172 cycles. Each handshake also in-
volves, for the server, decapsulation for both mceliece6960119
and sntrup761, and computing two X25519 shared secrets; the
total of microbenchmarks is 509587 cycles. The ciphertext
data communicated is 1039 + 194 + 32 = 1265 bytes. (The
full packet size is 1299 bytes; see Section IV-E for details.)

The dollar-cost estimates mentioned above imply that the
handshake costs are, for each side, about 2−32 dollars for
computation and about 2−30 dollars for communication.

Clients also precompute more mceliece6960119 ciphertexts
in case they want to regenerate tunnels; caching some cipher-
texts is less space than caching the public key. This increases
the initial computation costs in the obvious way, depending
on how many ciphertexts are computed.

D. Cost per Byte of User Data

Once a tunnel has been established, PQConnect uses au-
thenticated encryption to protect the packets sent through the
tunnel. This involves purely symmetric cryptography; there are
no public-key operations here.

Regarding traffic, each packet expands by 56 bytes: a 2-
byte message type, a 32-byte tunnel identifier, 6 bytes for
the position within the tunnel, and a 16-byte authenticator.
Average Internet packet sizes have been growing towards a
kilobyte (for example, [41, Table 5] reported 870 bytes in
2021, while [39, Figure 1] showed less in 2007), so this 56-
byte packet expansion adds only about 7% to traffic.

Regarding speed, [16] reports ChaCha20 running at, e.g.,
1.23 cycles/byte on Skylake for 1536-byte packets and 1.71 cy-
cles/byte for 576-byte packets; i.e., roughly 2−50 dollars/byte
with the server hardware described in [11]. This is negligible
cost on an absolute scale and compared to communicating the
encrypted data. The same comment applies to Poly1305 and
per-packet cryptographic operations such as ratcheting.

E. Costs for Non-PQConnect Devices

We close by considering the question of what costs are
imposed on devices that do not support the protocol. Note
that, when a protocol is new, there are many more devices not
supporting the protocol than supporting the protocol.

PQConnect is designed to add zero costs for non-
PQConnect servers. A PQConnect client does not incur or
modify traffic to non-PQConnect servers. In particular, a client
passively detects PQConnect support, rather than sending out
probes to check for PQConnect support.
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There is, however, a tiny part of the PQConnect cost visible
to non-PQConnect clients. Specifically, announcing a server’s
PQConnect support adds bytes in DNS responses to supply
a CNAME to a server name that includes a 56-byte pq1
announcement. (The number of added bytes will vary; in some
cases the announcement will replace, rather than supplement,
an existing server name and possibly a CNAME.) This sends
extra bytes of data to each non-PQConnect client looking up
that DNS record. It would not be surprising if this occasionally
incurs extra packets, for example because of a DNS response
having to be split across packets or because of higher packet-
loss rates for larger packets.

VII. PQCONNECT SOFTWARE

Our PQConnect software is available from [1]. The software
package contains code for setting up and running PQConnect
servers, keyservers, and clients. See Appendix A for further
software considerations, Appendix B for measurements of
network traffic and CPU time for end-to-end experiments with
PQConnect, and Appendix F for instructions to reproduce this
paper’s main software claims.
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APPENDIX A
PQCONNECT SOFTWARE – LANGUAGE CONSIDERATIONS

Our software is several thousand lines of Python. This
language choice imposes performance costs. One experiment
showed that the software (running on one core of the Skylake
CPU described in Section VI) was able to handle slightly
above 20Mbps, which is acceptable for some environments
but not others. We already call C libraries for all of the cryp-
tographic computations (libmceliece for mceliece6960119, lib-
ntruprime for sntrup761, lib25519 for X25519, and libsodium
for symmetric cryptography) but moving more of the packet
processing into C will be beneficial.

Using high-level languages also raises security concerns.
Avoiding timing attacks is already tricky in C (see, e.g., [13])
and becomes more difficult in higher-level languages. The
same comment applies to securely erasing keys for forward
secrecy. Responses include rewriting software that handles
secrets in assembly language (see, e.g., [42]) and teaching
higher-level languages about secrets (see, e.g., [20] and [63]).

What drove our choice of Python was that Python allows
rapid development of software with performance that often
suffices. Recall from Section I that the goal here is to expand
the usage of post-quantum cryptography as rapidly as possible;
having Python software already available for the situations
where it suffices is better than having all users wait for higher-
performance software.

APPENDIX B
EXPERIMENTS

We considered, for various values of x, the total cost of
creating a tunnel and using the tunnel to transmit x bytes of
user data from our www.pqconnect.net server in Europe
to a client in the US using our Python implementation of
PQConnect. Speeds of other connections will vary depending
on the latency and bandwidth between clients and servers.
Note that PQConnect tunnels, like VPN tunnels, can last any
amount of time, so very large values of x are of interest.

To ensure that all PQConnect costs are included, we
restarted the PQConnect client software, forcing new down-
loads of the server keys along with creation of a new tunnel.
We then ran curl on the client (an Intel Core i7-1370P) to
download an x-byte file via HTTPS from the server (see, e.g.,
https://www.pqconnect.net/bytes/16777216). We monitored
network traffic using tcpdump. We ran one experiment at
each size. The network was not idle, so slight variations are
unsurprising.

The resulting measurements are graphed in [3]. As expected,
the number of bytes sent from the server to the client for
x = 230 is slightly above 230 (because of TCP packet overhead
and PQConnect packet overhead), while the number of bytes
sent from the client to the server is a fraction of this for TCP
acknowledgments. The left side of the graph in [3] shows,
independently of x, the expected initial 2MB of traffic.

APPENDIX C
NESTING OF CRYPTOGRAPHIC PRIMITIVES

Nesting offers the benefit that an attacker must work se-
quentially rather than in parallel to recover the final handshake
key. Nesting also provides a small mitigation against wasted
CPU cycles from invalid handshake messages: Servers do not
need to perform public key operations for inner layers once
an operation in the outer layer fails.

There are several options one has for this ordering, each
with its own benefits and costs. For example, using X25519
keys in the outermost layer may be attractive if the protocol
is trying to extend an existing pre-quantum handshake that
uses X25519 ECDH key agreement and needs to match its
specification. Additionally, computing a shared X25519 secret
is more than twice as fast as decapsulating a mceliece6960119
ciphertext; compare, e.g., [17] and [16]. Using X25519 as
the first layer may therefore waste fewer cycles if an invalid
handshake packet is received. On the other hand, it also would
potentially expose a pre-quantum algorithm to an attacker with
a quantum computer, giving away the outermost layer for free.

As another example, consider the scenario of pre-quantum
attackers passing 2128 operations before quantum computers
are built. Breaking the long-term X25519 keys for t servers
is only about

√
t times as much work as breaking a single

key [43]: for example, only about 100 times as much work
for t = 10000. Putting X25519 in the outer layer would allow
such attackers to peel back this layer on all handshakes at once
for many servers.
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By contrast, the best attacks against Classic McEliece
recover an encapsulated secret key from a ciphertext, not the
private key corresponding to the public key under which the
ciphertext was generated. This means attackers are attack-
ing individual sessions, not long-term keys. The “DOOM”
(decoding one out of many) attacks from [62] reduce the
cost of attacking many ciphertexts, but they do not recover
all plaintexts encapsulated to the same public key for free.
Furthermore, mceliece6960119 is far beyond a 2128 security
level to start with.

Taking the above considerations into account, the nesting
order for PQConnect, from outermost to innermost, is Classic
McEliece (long-term) → Curve25519 (long-term–ephemeral)
→ X25519 (ephemeral–ephemeral) → Streamlined NTRU
prime (ephemeral). This places the oldest and most confidently
quantum-resistant primitive as the first line of defense. ECDH
comprises the middle two layers for robust pre-quantum se-
curity. The newest KEM forms the last line of defense in
the handshake. As an example of how this nesting reduces
the attack surface, a bug in the client’s X25519 software
that leaks secret client memory through X25519 public keys
is not a problem here: the attacker cannot see the client’s
ephemeral X25519 public key without first recovering the
secret McEliece key.

APPENDIX D
CHACHA20-BASED KDF

PQConnect uses a deterministic Key Derivation Function
(KDF) for the following purposes: during the handshake,
deriving a 32-byte session key from two 32-byte session
keys (such as a mceliece6960119 session key and an X25519
session key); later in the handshake, deriving three 32-byte
quantities tunnelID, Tc, Ts from a 32-byte session key and
a ciphertext hash; in the key ratchet, deriving a 32-byte next-
epoch key and a 32-byte chain key from a 32-byte root key;
also in the key ratchet, deriving many 32-byte packet keys
and a new 32-byte chain key from a 32-byte chain key; and
deriving a new 32-byte cookie key from a previous cookie key
and a random input.

Recall from Section IV-F that there is a new packet key
for each packet sent or received. A slow KDF might raise
concerns regarding per-packet costs in the key ratchet. To
address such concerns, PQConnect reduces the CPU cost
of key derivation in two ways. First, PQConnect makes an
efficient choice of KDF; the KDF is defined below. Second,
PQConnect batches packet-key derivation (the word “many”
in the previous paragraph) to amortize the number of cycles
used per byte of KDF output.

The KDF is based on ChaCha20. ChaCha20 maps a 32-byte
key and a 16-byte input to a 64-byte output block. Typically
the 16-byte input is viewed as a concatenation of a nonce and
a counter, so ChaCha20 is a stream cipher producing many
output blocks from each nonce.

The KDF works as follows. It takes as input (1) an integer
n, (2) a secret key k, and (3) optionally an additional 32-byte
value i, which may or may not be secret. It outputs n 32-byte

keys derived from k (and from i when i is present). KDF
usage follows three restrictions: first, the value n is always
small; second, if i is provided and n > 2 then i is obtained
as a hash; third, each key k is used in the KDF in only one
way, and in particular if it is used with i absent then it is not
reused with i present.

If i is absent (this is the situation for the key ratchet), then
the KDF is simply the ChaCha20 stream cipher on nonce 0
and counter 0, used to produce 32n bytes of output (which
are then viewed as n separate 32-byte keys). If ChaCha20
meets its PRF goal then these 32n bytes are indistinguishable
from random. This also implies infeasibility of recovering the
original key from these 32n bytes.

If the 32-byte input i is present, the KDF first divides i
into two 16-byte chunks, i0 and i1, and derives a subkey k′

from the first 32 bytes output when ChaCha20 is initialized
with key k and input i0. It then re-initializes the ChaCha20
stream cipher with key k′ and counter/nonce i1, and returns
32n bytes of output. The use of subkeying is similar to the
way XChaCha20 uses a 192-bit nonce, but for simplicity uses
ChaCha20 rather than HChaCha20 for the subkey computa-
tion.

The security analysis when i is present relies on more than
the PRF property of ChaCha20. For n > 2, there are multiple
ChaCha20 output blocks under key k′ using inputs i1, i1 +
1, . . .; the KDF results for (k, i0, i1+1) thus overlap the KDF
results for (k, i0, i1). Recall that i is required to be generated
as a hash in this case; hash inputs producing small-difference
outputs would be an example of “near-collisions”, a standard
topic of hash-function cryptanalysis.

A separate issue is that, inside a forward-secrecy analysis,
one wants to know that a key derived from a secret i is secret
even when the first key k is not secret. Here a PRF assumption
at a 256-bit security level does appear sufficient, as long as k is
approximately uniformly distributed. The point is that if such a
key k has a noticeable probability of mapping 32-byte inputs
i to, e.g., only 2200 possible 32-byte outputs, then a secret
key k would also have approximately that probability, which
would allow a time-2200 PRF attack that looks for colliding
values of i.

APPENDIX E
THE TAMARIN PROVER

We give a brief introduction to Tamarin and its semantics.
The Tamarin prover is a formal-verification tool for proving

properties of cryptographic protocols, such as confidentiality,
peer-to-peer authentication, and forward secrecy [60]. It has
been used to analyze security properties of widely deployed
cryptographic network protocols, such as TLS 1.3 [23] and
the WireGuard protocol handshake [26]. Protocol properties in
Tamarin are proven (or disproven) in the Dolev–Yao model;
the adversary has full power to eavesdrop, intercept, modify,
and insert messages into the channel [25]. Additionally, the
adversary may be given additional capabilities such as reveal-
ing the long term private keys of honest protocol participants,

17



which can be useful for reasoning about properties such as
forward secrecy.

A. Functions and equations

Tamarin has built-in support for public-key and symmetric
cryptographic functions, hashes, and Diffie–Hellman opera-
tions. Additionally, users can define their own functions and
equational theories. A function in Tamarin is simply a name
and an arity, for example aenc/2, which represents public
key (asymmetric) encryption. By default, functions are one-
way unless an equational theory is also defined. For example,
the functions aenc/2, adec/2, and pk/1 can be com-
bined in the equation adec(aenc(m,pk(sk)),sk) = m.
This equation tells Tamarin that, given variables m and sk,
the public key decryption of the public key encryption of a
message m is m. By contrast, if the user wishes to define three
hash functions h1/1, h2/1, and h3/1, Tamarin will treat
these functions as one-way functions with complete domain
separation, without the user having to further specify any
information.

B. Facts and rules

Tamarin models are constructed from a multi-set of facts and
rewriting rules for those facts. A fact is a unit of information
about the state, which consists of a name and fixed arity.
For example, the fact !PQ_Ssk(A,sk) is a binary fact on
the variables A and sk. Rewriting rules are named triples
consisting of a premise, an optional labeled action, and a
result. The rule

rule Reveal_PQ_Ssk:
[ !PQ_Ssk(A, sk) ] // ! says persists

--[ PqSskReveal(A)]->
[ Out(sk) ]

is a labeled transition that consumes fact !PQ_Ssk(A,sk)
and replaces it with the special fact Out(sk), which in
Tamarin signifies sending sk onto the public channel. A state
transition in Tamarin can occur if the facts of a rule’s premise
are in the current state. When that rule is applied, the facts
in its premise are consumed and replaced by the facts in the
result.

Facts can be labeled as persistent using the bang symbol !,
meaning that they can be consumed indefinitely without being
removed from the state. This is useful for facts that remain
public throughout the duration of the protocol, such as the
facts binding an actor’s identity to their long-term keys.

Tamarin provides a set of special facts that help in modeling
fresh values and network operations. The Fr(x) fact creates
a fresh random value x. To model some untrusted value x
arriving from the network, the In(x) fact is used, and, as
already shown in the example rule above, the Out(x) sends
x onto the network.

Finally, Tamarin allows the user to specify detailed protocol
information for rules using the let-in keywords. This is
easiest to explain by example, so consider the following rule:

rule example:

let
a = h(˜nonce)
b = kdf(a)
c = kdf(<a,b>)

in
[ Fr(˜nonce) ]

-->
[ Out(h(c)]

This rule generates a fresh nonce ˜nonce in its premise.
It then computes values a, b, and c as described in the
let clause. The result of the rule is to put h(c) onto the
public channel (the rule contains no actions). The let-in
construction makes it easy to implement rules that exactly
match the computations performed during individual steps of
the protocol.

C. Lemmas

In Tamarin, properties about models are analyzed by writing
and proving/disproving lemmas. Lemmas are guarded first-
order logical statements about labeled actions over all possible
rule executions. These sequences of actions are called traces.
In the example rule above, the action PqSskReveal(A)
is produced when the rule Reveal_PQ_Ssk is exe-
cuted for some entity A. A trace where the predicate
PqSskReveal(A) holds is one where a rule that produced
this action fact was executed. Actions can be used to both
reason about and restrict the executions of rules in a lemma.

Quantifiers and logical connectives, such as ∀,∃,¬,∧,∨,
and ⇒ are expressed in Tamarin as text or ASCII symbols
such as "All", "Ex", "not", &, |, and ==>. The
notion of time and ordering of actions can also be reasoned
about with time variables. Time variables can be declared
using the # symbol, and predicates can be bound to times
using the @ symbol. For instance, to say there exists a trace
where actions P(x) and Q(x) both occur for some x, and P(x)
occurs before Q(x), you could use the following formula:

Ex x,#i,#j. P(x) @ #i & Q(x) @ #j & (#i < #j)

In addition to user-defined actions, Tamarin internally de-
fines actions that model the behavior of a Dolev–Yao adver-
sary. For purposes of this work, the most important one of
these rules is the special action fact K(x), which indicates
that the adversary knows the value x. Thus, to check that some
value x is secret, you check whether there is any protocol trace
where K(x) is true.

The Tamarin prover uses a constraint solving algorithm to
find counterexamples to the provided lemmas [60]. When a
lemma is intended to prove a universally quantified statement
∀xP (x) for some predicate P , Tamarin converts this to the
equivalent existentially quantified statement ¬∃x(¬P (x)), and
then tries to find a contradiction. Statements in first-order logic
are undecidable in general, so there exist lemmas for which
the algorithm will not terminate. However, when the prover
does terminate, it either proves the statement to be true over
unbounded executions or derives a contradiction.
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APPENDIX F
ARTIFACT APPENDIX

This appendix explains in detail how to use our PQConnect
software to check the main software-related claims in this
paper. The primary goal is to see the PQConnect client
software transparently protecting connections to an existing
PQConnect server while continuing to allow connections to
non-PQConnect servers. A stretch goal (which has also been
tested by reviewers) is to similarly see the PQConnect server
software in operation.

This appendix also explains how to verify the security
proofs from Section 5 of the paper using Tamarin.

A. Description & Requirements

Here is what you need to recreate a setup suitable for
carrying out the experiments below.

1) How to access: https://doi.org/10.5281/zenodo.142
53085 is a permanently archived version of the PQConnect
software, pqconnect-20241202.tar.gz.

2) Hardware dependencies: We expect that approximately
100% of laptops, desktops, and servers are capable of running
the PQConnect software. Example: we rechecked all steps
below on a computer named jasper3, which has a 4-core
2GHz Intel Celeron N5105 CPU with 8GB of RAM.

3) Software dependencies: Our PQConnect installation
scripts currently support Arch, Debian (including variants such
as Raspberry Pi OS and Ubuntu), and Gentoo. Example:
jasper3 runs Debian 11. Adjusting the scripts for another
GNU/Linux distribution should be straightforward.

The stretch goal of trying the server software (not just
the client software) requires you to have a second computer
already working as a server (as a baseline for comparison to
what happens when PQConnect is installed), and requires the
ability to modify DNS entries for the server.

4) Benchmarks: The scope of this artifact appendix does
not include experimental cost measurements. The cost analysis
in the main body of this paper (as opposed to Appendix B) is
a manual analysis of bottlenecks from first principles.

B. Artifact Installation & Configuration

As root, in bash, in the /root directory, download
pqconnect-20241202.tar.gz.

Unpack into /root/pqconnect-20241202 and switch
to that directory:

tar -xf pqconnect-20241202.tar.gz
cd pqconnect-20241202

Install (this uses under 3GB of disk space for some
OS packages, some further libraries, /home/linuxbrew,
/home/tamarin, and /etc/pqconnect):

./install-pqconnect # jasper3: 390 seconds

./install-tamarin # jasper3: 492 seconds

Optionally, install a network-packet sniffer such as
tcpdump. (Checking cryptographic security is outside the
scope of this appendix, but a sniffer shows the difference

between a readable HTTP connection outside PQConnect
and a not-obviously-readable HTTP connection protected by
PQConnect.)

For the stretch goal of trying the server software, repeat the
above steps on your existing server. Then create a PQConnect
key for the server:

cd /root/pqconnect-20241202
./create-first-server-key

This also prints out instructions for announcing the server
key in DNS. Follow those instructions.

C. Major Claims

The paper’s major software-related claims are as follows,
demonstrated by the experiments below with the same num-
bers:

• (C0): The lemmas in handshake.spthy pass verifi-
cation by Tamarin.

• (C1): The client software recognizes PQConnect servers
and creates end-to-end tunnels to those servers, with no
per-server configuration on the client.

• (C2): The client software works with a wide range of
existing applications, with no changes to the application
software.

• (C3): The client software continues to allow connections
to non-PQConnect servers.

• (C4): The server software accepts end-to-end tunnels
from PQConnect clients, with no per-client configuration
on the server.

• (C5): The server software works with a wide range of
existing applications, with no changes to the application
software.

• (C6): The server software continues to accept connections
from non-PQConnect clients.

D. Evaluation

This section explains how to carry out experiments with the
PQConnect software.

1) Experiment (E0) for Claim (C0): running Tamarin-
Prover with the included PQConnect model and lemmas.

[Preparation] None.
[Execution] Load and verify the proofs using Tamarin:

cd /root/pqconnect-20241202
./run-tamarin # jasper3: 7 seconds

[Results] Tamarin will prove the three lemmas. The final
section of output will show that all three lemmas have indeed
been verified:

0_RTT_executable (exists-trace):
verified (13 steps)

0_RTT_FS_confidential (all-traces):
verified (24 steps)

responder_client_auth (all-traces):
verified (7 steps)
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2) Experiment (E1) for Claim (C1): seeing the client soft-
ware creating an end-to-end tunnel to a PQConnect server.

[Preparation] Start the PQConnect client software:

cd /root/pqconnect-20241202
./run-client-verbose &

This continues to run, while saving (initially) 6 lines in a
new file pqconnect-log, the last line ending Listening
on port 42423. This also creates a pqccli0 network
interface.

Optionally, run tail -f pconnect-log in another ter-
minal. You can also look later at pqconnect-log.

Optionally, start a sniffer for packets involving IP address
131.155.69.126 (our pqconnect.net server), saving results
in a file to peruse later. For example, if your external network
interface is named enp3s0:

tcpdump -Xlnei enp3s0 host 131.155.69.126 \
> tcpdump-log &

Later, when the experiment is done, stop the client software
by killing the run-client-verbose job, and stop the
sniffer if you started it.

[Execution] While PQConnect is running, look up the
address of www.pqconnect.net:

dig www.pqconnect.net

[Results] The dig command will show a 10.* address
instead of 131.155.69.126. The pqconnect-log file will
show various lines for a key exchange.

3) Experiment (E2) for Claim (C2): seeing the client soft-
ware protecting unmodified application software.

[Preparation] Start (and later stop) the PQConnect client
software as above.

[Execution] While PQConnect is running, use wget to
retrieve a web page via HTTP:

wget -O test.html \
http://www.pqconnect.net/test.html

HTTPS also works here, but HTTP is more interesting if
you’re sniffing the network.

[Results] The pqconnect-log file will show various
“Message sent” and “Message received” lines for incom-
ing and outgoing PQConnect packets. The test.html file
will include “Looks like you’re connecting with PQConnect.
Congratulations!” If you’re sniffing the network: the sniffer
output will show UDP packets to and from port 42424 of
131.155.69.126 instead of unencrypted HTTP packets over
TCP to and from port 80.

4) Experiment (E3) for Claim (C3): seeing the client
software continuing to allow connections to non-PQConnect
servers.

[Preparation] Start (and later stop) the PQConnect client
software as above.

[Execution] While PQConnect is running, use
wget to retrieve a web page via HTTP from
testwithout.pqconnect.net:

wget -O test.html \
http://testwithout.pqconnect.net/test.html

Optionally, try your favorite tests of normal network oper-
ation with other servers.

[Results] The pqconnect-log file will not show any PQ-
Connect packets for the wget run. The test.html file will
include “Looks like you aren’t connecting with PQConnect.”
If you’re sniffing the network: the sniffer output will show
unencrypted HTTP to and from port 80 of 131.155.69.126,
including a server-name indication from the client (“Host:
testwithout.pqconnect.net”) and the web page from the server.

5) Experiment (E4) for Claim (C4): seeing the server
software accepting an end-to-end tunnel from a PQConnect
client.

[Preparation] On your client computer, start the PQConnect
client software as above. On your server computer, start the
PQConnect server software:

cd /root/pqconnect-20241202
./run-server-verbose &

Later stop the PQConnect client software as above, and
similarly stop the PQConnect server software by killing the
run-server-verbose job.

[Execution] On your client computer, use dig to look up
the address of your server, while PQConnect is running on
both computers.

[Results] The dig command will show a 10.* address
instead of the actual server address. The pqconnect-log
files on both computers will show various lines for a key
exchange.

6) Experiment (E5) for Claim (C5): seeing the server
software protecting unmodified application software.

[Preparation] Start (and later stop) the PQConnect client
software and server software as above.

[Execution] On your client computer, use whatever tools
you would normally use to contact your server, while PQCon-
nect is running on both computers.

[Results] The client-server connection will function nor-
mally. The pqconnect-log files (and sniffer results if you
are running a sniffer) will show that the connection is being
tunneled via PQConnect.

PQConnect is not able to intercept all applications; if you
are trying an application that dodges PQConnect, just try
another application (and please let us know what didn’t work).

7) Experiment (E6) for Claim (C6): seeing the server soft-
ware continuing to allow connections from non-PQConnect
clients.

[Preparation] Start (and later stop) the PQConnect server
software as above.

[Execution] From any client machine not running PQCon-
nect, connect to the server as usual, while PQConnect is
running on the server.

[Results] The client-server connection will function nor-
mally, and the server’s pqconnect-log file will remain
idle.
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