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Abstract—In the digital age, device search engines such as
Censys and Shodan play crucial roles by scanning the internet to
catalog online devices, aiding in the understanding and mitigation
of network security risks. While previous research has used these
tools to detect devices and assess vulnerabilities, there remains
uncertainty regarding the assets they scan, the strategies they
employ, and whether they adhere to ethical guidelines.

This study presents the first comprehensive examination of
these engines’ operational and ethical dimensions. We developed
a novel framework to trace the IP addresses utilized by these
engines and collected 1,407 scanner IPs. By uncovering their
IPs, we gain deep insights into the actions of device search
engines for the first time and gain original findings. By employing
28 honeypots to monitor their scanning activities extensively in
one year, we demonstrate that users can hardly evade scans
by blocklisting scanner IPs or migrating service ports. Our
findings reveal significant ethical concerns, including a lack
of transparency, harmlessness, and anonymity. Notably, these
engines often fail to provide transparency and do not allow users
to opt out of scans. Further, the engines send malformed requests,
attempt to access excessive details without authorization, and even
publish personally identifiable information(PII) and screenshots
on search results. These practices compromise user privacy and
expose devices to further risks by potentially aiding malicious
entities. This paper emphasizes the urgent need for stricter ethical
standards and enhanced transparency in the operations of device
search engines, offering crucial insights into safeguarding against
invasive scanning practices and protecting digital infrastructures.

I. INTRODUCTION

Device search engines like Censys[1] and Shodan[2] scan
the entire Internet to catalog online devices, maintaining up-
to-date records of hosts and services within the public IPv4
address space. These engines are crucial for helping engineers
understand network security risks by offering comprehensive
and robust data support. Researchers frequently utilize device
search engines to build a data-driven view of device landscape
and surging vulnerabilities impact. For instance, prior studies
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employed these engines to collect data on resident IP ad-
dresses [3], electric vehicle charging management systems [4],
and insecure industrial control systems (ICS) [5].

Attackers can abuse the powerful scanning capabilities
of such engines to identify vulnerable devices and establish
zombie networks for malicious activities like cryptocurrency
mining [6]. It is estimated that the over-collection of data by
Shodan-like services led to a loss of approximately $3.86 mil-
lion in 2020 alone [7]. Moreover, it remains uncertain whether
these engines consider ethical implications while striving to
provide competitive network assessment reports. Users who
care about security and privacy have started to take action,
including reporting abusive scanning IPs to AbuseIPDB [8],
a public IP blocklist, and moving services from default ports
to other ports. To the best of our knowledge, there has been
limited effort to thoroughly examine the operational strategies,
and potential ethical violations associated with these engines.

To fill this gap, this paper presents the first measurement
study on the working strategies of device search engines and
reveals their potential aggressive behavior and privacy issues.
Our study is driven by the following research questions (RQs):

RQ1 Can users block the IPs of device search engines to
avoid being scanned?

RQ2 Can users migrate service ports to avoid being
scanned?

RQ3 Will the scanning of the device search engine intro-
duce any security or privacy concerns to the services
being scanned?

Challenges. Prior works [9, 10] used User-Agent (UA) headers
to identify traffic from search engines, as the Robots Exclusion
Protocol [11] is commonly adopted by these engines. However,
to profile the behavior of device search engines, the main
difficulty lies in differentiating device search engine scanning
activities from others, largely due to most device search en-
gines’ hesitance to disclose their IP lists and only web requests
containing UA as labels. Even getting their IPs, there was no
ready-made system available to comprehensively understand
scanning strategies and detect potential ethical violations.

Insights. To find the IPs of device search engines, we identified
a unique service, termed Mirror Service, where responses
contain the IP of the request sender, as shown in Figure 1.
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Fig. 1: IP Mirror Service. Interacting with a SIP server by
sipsak -v -s {IP} will reply with the sender’s IP. When
querying {"SIP" "received"} in Shodan, its ScanIP is
shown under the red mark.

Network services may include the visitor’s IP for debugging,
error prompting, or log metadata purposes. For example, when
communicating with SIP (Session Initiation Protocol) [12],
the visitor’s IP address is shown when a proxy receives the
request from a different address than the one specified in the
header. When device search engines scan those services, their
IP addresses (ScanIP) are inevitably logged.

Getting the ScanIPs helps to distill engines’ action. Specif-
ically, we use honeypots to capture in-depth behavior effec-
tively. While simulating every device type for monitoring scans
is impractical, we focused on IoT devices due to their ubiquity.
Device search engines are widely used for discovering IoT
devices, each offering complex services for identification. This
targeted approach allowed us to capture in-depth behaviors of
device search engines effectively.

Our work. We develop a systematic framework to retrieve
Mirror Services from engines’ search results and collect
ScanIPs based on the Mirror Service banners. We applied
our framework to four engines : Censys [13], Shodan [2],
FOFA [14], and ZoomEye [15]. We also deployed honeypots
to learn scan strategies and evaluate their ethical consideration
of scanning. Through our innovative methodology, we gained
deep insights into the actions of device search engines for the
first time, ensuring that our findings are original contributions
to the field, not mere reiterations of publicly available infor-
mation from the device search engines themselves.

Results. Using data records in device search engines collected
between March 2023 and March 2024, we collected 106,132
Mirror Services and 1,407 ScanIPs. FOFA has the most
ScanIPs (665), followed by ZoomEye (166), Censys (140),
and Shodan (91).

Scan Strategy. We deployed 28 honeypots across the different
countries and captured 7.4 million requests from 839 ScanIPs
from March 2023 to March 2024, totaling 4.6GB of raw
logs. We found that FOFA and ZoomEye did not use fixed
scanning IPs, with FOFA typically rotating its ScanIPs every

three months. As 665 IPs we found are reported abusive in
AbuseIPDB by users, the rotation may aim to avoid being
blocklisted by users (see Section V-A). The port preference
among the engines differs. ZoomEye primarily scanned high-
risk DDoS ports, while other engines focused on common
service ports like HTTPS, SSH, and Telnet (see Section V-B).

Protocol Identification. For identifying services on open
ports, we found that device search engines probe services
not only on default ports but also on neighbor ports (see
Section V-C), this indicates that users who migrate the ports
of services cannot conceal the service being indexed by device
search engine effectively. For example, RDP is probed on
ports 3388 to 3390. When engines fail to identify the default
protocol, they adopt fallback strategies: most prefer HTTP and
HTTPS, while FOFA switches to FTP and ZoomEye to RDP.

Ethical Scanning. Various countries have enacted cyberse-
curity laws [16, 17, 18] and personal information privacy
laws [19, 20, 21] to safeguard people’s rights. Guidelines
also exist to regulate scanning and crawling behaviors. How-
ever, scanning and indexing device and service information
may violate the principles of transparency, harmlessness, and
anonymity. To assess the potential violation (see Section VI),
we summarize the guidelines based on best practices from
popular scanning tools [1, 22, 23], crawler standards [24, 25],
and ethical principles [26].

As for transparent scanning, device search engines should
inform individuals about who is collecting their data, why it is
being collected, and how to opt-out. Notably, users cannot dis-
cern whether scans originate from FOFA or ZoomEye through
IP homepages, WHOIS, Reverse DNS, or public listings. Apart
from Censys, none of the engines provide opt-out options, and
most conceal their identity in the User-Agent. Additionally,
we observed that Censys does not adhere to its recommended
practice [1] of explaining the scanning purpose on every probe.

For harmless scanning, device search engines should only
send standard requests and access public resources. However,
we observed that they send malformed requests, attempt unau-
thorized data collection, and exploit vulnerabilities, risking
user privacy and security. In our investigation of 12 popular
services, all four engines excessively attempted anonymous
logins, retrieved system details, and enumerated database con-
tents, exposing 214,862 Redis hosts and 135,599 FTP services
that lack authentication and are vulnerable to arbitrary access.

For anonymity, we witness device search engines publish-
ing unanonymized sensitive data in search results, including
PII (name, email, avatar, screenshots, etc.) and database entries.
Specifically, Specifically, Shodan lists data entries for 68,543
Redis hosts, while FOFA and ZoomEye publish 145,310
database indices of Elasticsearch. Notably, 904,303 snapshots
of IP cameras and screenshots of remote desktops are displayed
in Shodan, as a paid service.

Contributions. This paper makes the following contributions:

• We proposed a semi-automated framework for discovering
services that can reflect ScanIPs of device search engines and
uncover 1,407 ScanIPs.

• We conduct the first comprehensive analysis of the scan
strategy of device search engines, demonstrating that users
cannot evade scans by blocklisting scanner IPs.
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• We unveil how device search engines identify protocol on
ports, offering insights into how users can hide their services.

• We conducted an ethical analysis of device search engine
scanning behaviors, uncovering instances where engines con-
ceal their identities, engage in unauthorized access, and expose
user camera interfaces.

II. BACKGROUND AND RELATED WORK

Facing the rising requirement of internet analysis, there
has been an increasing number of device search engines in
recent years, as listed in Table I. These engines are specialized
scanning tools that index information about internet-connected
devices. They provide Internet threat intelligence, consisting of
device types, running services, and potential vulnerabilities.
This data is utilized by security researchers, network adminis-
trators, and even cyber attackers to locate weaknesses.

These engines collect detailed asset records, including IP
addresses, ports, timestamps, geographical locations, and ban-
ner content. They also offer advanced features such as service
version labeling, protocol identification, honeypot detection,
certificate analysis, and vulnerability detection.

To facilitate result querying, device search engines maintain
up-to-date snapshots of hosts and offer a user interface (UI)
and APIs. They typically index responses and develop engine-
specific search syntax, allowing users to filter and access
targeted assets effectively.

Previous device search engine research has primarily fo-
cused on developing scanning techniques and toolchains, as
well as analyzing internet behavior facilitated by these tools.

Scanning Tools. Internet-scale scanning tools like nmap [30]
and ZMap [22] are fundamental components of device search
engines, used to initiate host discovery within the address
space. Censys [1], which employs ZMap to conduct single-
packet host discovery scans across the IPv4 address space in 45
minutes, effectively mapping out reachable hosts. Other tools,
such as IRLscanner [31] and MASSCAN [32], can scan the
entire Internet in under five minutes, while Zippier ZMap [33]
dramatically improves scanning speed to 4.5 minutes by paral-
lelizing address generation and utilizing zero-copy NIC access.

Behavior Analysis with Device Search Engines. Researchers
have used the indexed results from device search engines to
detect potential vulnerabilities and assess their severity, partic-
ularly in IoT devices. For instance, prior works utilize device
search engines to collect resident proxy IPs [3], electric vehicle
charging management systems [4] and search for Mirai bots
from HTTPS, FTP, SSH, Telnet, and CWMP [34], determining
the types of infected devices [35]. Srinivasa et al. [36] unveiled
1.8 million misconfigured IoT devices without authority that
may be exploited to perform large-scale attacks, Sasaki et al.
[5] detected 890 insecure ICS devices in Japan via their WebUI
and discovered 13 0-day vulnerabilities. These works highlight
the significant risk of over-sharing device information.

Bot Analysis. The most relevant works of ours are [9], [10],
[37], and [38]. Sun et al. [9] first measured web crawler
ethicality and found most search engines respect robots.txt
but misinterpret certain rules, while Li et al. [10] uncovered
the behavior and features of bots, particularly exposing the

extensive activity of malicious bots. However, their reliance
on user agents can not tell the behavior of device search
engines. Bodenheim et al. [37] evaluated Shodan’s indexing
and querying capabilities on ICS, while Zhao et al. [38]
evaluated the vulnerability surface of IoT devices and utilized
60 days to learn the scanning period of engines. Both used
records from a few servers (four and seven) to analyze engine
scans on IP level. In contrast, our paper introduces a method
to discover mirror services reflecting ScanIPs, which hasn’t
been reported before. Armed with these unique viewpoints, we
are able to analyze previously unknown device search engine
assets for the first time, analyze scanning strategies using a
one-year dataset, and conduct an ethical analysis, revealing
unethical practices.

Even though the evolution of network-level scanning tech-
niques has accelerated the ability of device search engines to
index Internet assets, questions remain regarding the ethics of
their scanning practices. Can users blocklist their IPs or hide
the services to avoid their scanning? Do device search engines
conduct ethical scanning? Do they give users any ways to
originate their scanning? There is concern about whether their
scanning would harm devices or expose hidden vulnerabilities
and sensitive data, requiring further study.

III. PRELIMINARY STUDY

To understand the behaviors of device search engines,
the main challenge lies in differentiating the actions of these
engines from other bots or scanners, since most device search
engines did not publish their ScanIP lists nor announce in User-
Agent when accessing web services. This section introduces
the Mirror Service, a service that can contain the requester’s
IP address, and demonstrates how it provides us with an
opportunity to analyze device search engines.

A. Mirror Service

In network services, it’s common for responses to include
the IP information of the request sender, a phenomenon we
refer to as “Mirror Services”. These services may include the
visitor’s IP address in their responses for various reasons in
design, such as debugging, error message, or log metadata. For
example, MySQL [39] responds to illegal connection attempts
by notifying the attempting IP address that it does not have
permission to connect to the server, showing “Host {IP} is
not allowed to connect to this MySQL server”. Similarly, SIP
(Session Initiation Protocol) [12], a communication protocol
used to establish, modify, and terminate multimedia sessions
across networks, reveals the sender’s IP when a User Agent
(UA) or proxy receives a request from a different address than
the one specified in the top Via header field.

B. Mirror Service in Device Search Engine

Typically, Mirror Services do not compromise security
assumptions, as only the request receiver can log the sender’s
IP. However, the situation changes when device search engines
scan these Mirror Services and display the services’ responses.
This inevitably exposes ScanIP and also provides us with an
opportunity to analyze the behavior of device search engines.

To systematically survey the Mirror Services in device
search engines, we identified 13 device search engines by using

3



TABLE I: ScanIPs across different services of device search engines in the preliminary study. # represents the ScanIPs are hid,
 represents the ScanIPs are shown in a standard form, H# represents the ScanIPs are shown in a reverse form, G# represents the
ScanIPs are encoded in URL, and - represents we did not find records containing that attribute for the specified service.

Engine Country Year HTTP MySql SIP SMTP HTTP
X-Forward-For ERR HOST Received No Valid PTR Location

Shodan[2] USA 2009  # # H# G#
ZoomEye[15] China 2013    H# G#

Censys[13] USA 2015   - H# G#
FOFA[14] China 2015  # # H# G#

BinaryEdge[27] Switzerland 2015    H# G#
Netlas[28] Armenia 2021   - - -

Hunter [29] China 2021    H# -

keywords such as “cyber asset search engine” and “device
search engine” in search engines. We successfully registered
accounts and accessed device data from seven of them. We
manually inspected their search results concerning web ser-
vices, MySQL [40], SIP [12], and SMTP [41], checking
whether and how their ScanIP is presented.

Table I shows that Mirror Services are widely scanned and
logged by device search engines. By searching engine records
with specific Mirror Service traits (e.g., service:"SIP" +
banner:"received" for the SIP protocol in ZoomEye)
and employing regular expressions to match IPv4 formats, IP
addresses can be uncovered.

Formats of IPs. We found that IPs can be reflected in three
formats—standard, reverse, and encoded—based on different
service designs and requirements, as shown in Table I.

• Standard IP, an IPv4 address represented using
dotted-decimal notation, such as “1.2.3.4”.

• Reverse IP, i.e., “4.3.2.1.in-addr.arpa”, is utilized
in reverse DNS queries to find the domain name
associated with an IP. Besides, SMTP servers may
raise exceptions with the sender’s IP in reverse form
if no valid PTR (Pointer) record is found.

• URL encoding IP, ensures that special characters are
converted in URLs, preventing conflicts with URL
structure and syntax. For instance, the standard form
IP “1.2.3.4” becomes “1%2E2%2E3%2E4”. This en-
coding is often used when transmitting IPs as param-
eters, such as in the Location header for redirects.

Sanitized Mirror Services. Interestingly, device search en-
gines are aware that the Mirror Services can leak their scanning
assets, so they mask or replace their scanner IPs. Specifically,
ZoomEye and FOFA substituted the ScanIPs with placehold-
ers, i.e., “xxx.xxx.xxx.xxx” and “*.*.*.*”, respectively. Shodan
uses a more advanced method, mapping its ScanIPs one-to-
one to multicast addresses (224.0.0.0/4) [42]. Despite these
measures, IP addresses can still appear in various protocols and
forms, leaving many ScanIPs visible in search engine results.

IV. METHODOLOGY

A. Overview

Based on the preliminary study, we build a two-part frame-
work, including ScanIP collection and behavior monitoring
modules in this section. Figure 2 shows the overall architecture
of our framework.

Scanner IP Collecting. To find the scanner IP addresses
(ScanIP) of device search engines, our preliminary study
reveals that the Mirror Service leak visiting IP information in
their responses, which can inadvertently reflect the ScanIPs.
Thus, we leverage Mirror Services to systematically collect
ScanIPs (Section IV-B).

Search Engine Analyzing. To systematically understand scan-
ning strategies and capture potential ethical violations by
device search engines, no off-the-shelf system was available
to provide such functionality. Therefore, although it is nearly
impossible to simulate every type of device to monitor scan-
ning activities, we instead focused on a highly targeted target:
IoT devices, to analyze device search engines. The behavior
monitoring module utilizes honeypots to collect ScanIP behav-
iors, which trap and collect the behaviors of ScanIPs based on
IoT web honeypots and sniffer honeypots (Section IV-C).

B. Scanner IP Collecting

Figure 8 in the Appendix illustrates our scanner IP collect-
ing module, which consists of three components: 1) Mirror
Service finder for matching records by Mirror Service type
patterns; 2) ScanIP collector for collecting ScanIPs from
Mirror Service records; 3) Mirror type expansion module for
distill new types of mirror service from ScanIP records.

1) Mirror Service Finder: To discover and collect ser-
vices that can reflect IP (i.e.,Mirror Service), we propose a
methodology that relies on the Mirror Service type pattern.
By leveraging the collected Mirror Service type pattern, we
efficiently search for relevant records on the engine and
subsequently validate the authenticity of the Mirror Service,
ensuring accurate and reliable results.

Candidate Mirror Service Collection. We begin collecting
candidate Mirror Service instances based on known Mirror
Service type identified in Section III-B. As shown in Figure 1,
we first leverage service attributes (e.g., SIP) and invariable
keywords (e.g., received) within records to query and
retrieve relevant Mirror Service data. These keywords are
manually defined when a new kind of Mirror Service is found
and subsequently translated into engine-specific syntax, such as
protocol="sip" && banner="received" for FOFA
and service:"SIP"+banner:"received" for Zoom-
Eye. Getting the queries, we executed efficient searches
through APIs to gather matching host records on each engine.

Mirror Service Verification. However, not all hosts that meet
the pattern requirements are Mirror Services, as some servers
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Fig. 2: Methodology Overview

may counterfeit their response (e.g.,, honeypots). To address
this, we propose verifying the records through both static and
dynamic methods. Static filtering is based on two observations:
(1) a valid ScanIP must be a legitimate public IPv4 address,
rather than a private, multicast, or reserved address, and (2) a
server typically does not crawl itself using its own IP, meaning
the ScanIP should differ from the host IP. Dynamic verification
involves actively probing the host of the candidate Mirror
Service. If the response contains the sender’s IP, the server is
confirmed as a valid Mirror Service, and the IP in the response
record represents the engine’s scanner IP, i.e., ScanIP.

2) ScanIP Collector: As device search engines periodically
scan the same host to identify new services and update
records, we can acquire ScanIPs by monitoring the results of
Mirror Services on different device search engines periodically.
Leveraging the search API provided by device search engines,
we daily query all Mirror Services from each device search
engine and extract ScanIPs.

3) Mirror Service Type Expansion: As device search en-
gines may use the same ScanIPs to probe different services,
the same ScanIP can appear in the records of multiple Mirror
Services. By analyzing records containing these ScanIPs and
filtering out known Mirror Services, we group similar records
based on their context and semantics. Through manual inspec-
tion of these groups, we identify new types of Mirror Services
and establish their service queries for further exploration and
discovery. This approach enables us to expand the scope of
Mirror Service from known seeds to new types based on
observed patterns in collected data.

C. Behavioral Monitoring

To understand potential attack vectors and study behavioral
patterns in network security, researchers frequently deploy
honeypots [43]. These controlled environments allow for the
observation and analysis of device search engines, bots, and
potential attackers’ actions. By monitoring interactions with
these honeypots, valuable insights into their behaviors and
strategies can be obtained.

To comprehensively understand device search engine be-
haviors from multiple perspectives, we enhanced our honeypot
infrastructure with two tailored designs. This included a full-
port closed honeypot and a popular-port open honeypot to
unveil port scanning and protocol identification techniques.
Further enhancing a web honeypot with IoT device emulation
and comprehensive files, we aimed to attract more in-depth

scanning sessions to thoroughly evaluate ethical behavior and
real-world impact assessments.

1) Strategy monitoring: To gain insights into the scanning
strategies employed by device search engines, we utilized the
following two honeypots.

To understand the port scanning strategies, we use a full-
port closed honeypot to capture the port scanning activities.
Interactions between services on different ports can introduce
biases in data packet counts. To ensure equal scanning across
all ports, we closed them on the honeypot, allowing each port
to receive only one data packet per scan.

To delve into how device search engines discern protocols
on open ports, we established a honeypot with commonly used
ports open. Due to resource constraints, we concentrated on the
top 100 high-traffic ports based on the results from our full-
port closed honeypot. Our honeypot passively acknowledged
packets without other active responses at the application layer.

Additionally, we implemented a traffic monitoring function
in the honeypots to capture and analyze incoming data packets
comprehensively. This enables detailed analysis of scanning
patterns and behaviors exhibited by device search engines.

2) Ethical behavior monitoring: As unethical behavior
could potentially exist across various services, the exhaustive
simulation of all services to capture such behavior is impracti-
cal. Thus, we leverage web honeypots as they offer heightened
customization and facilitate the emulation of a broad array
of web-based services, making them an efficient choice for
capturing engines’ ethical behavior.

Customized default pages for IoT devices. In the countless
web services, we opted to focus on IoT devices, which are
abundant in number and often riddled with vulnerabilities.
Targeting IoT devices increases the likelihood of capturing
anomalous scanning behavior by device search engines. IoT
devices come in various types with significant differences
in functionality. Therefore, we embedded the fingerprints of
the IoT device management page into the default homepages
of our web honeypots to simulate these devices. To ensure
consistent data collection, we configured it to respond to all
unknown path access requests uniformly.

Decoy paths. To gain insights into whether engines attempt to
access sensitive data from hosts without proper authentication
and their handling of such content, we constructed a series
of decoy paths. Specifically, given that IP cameras represent
another common type of IoT device with web services, we
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TABLE II: Overview of Mirror Services and ScanIPs detected
across four device search engines, with data collection from
March 2023 to March 2024. The total number of Mirrors is
the union of Mirrors from four engines.

Engine # of Mirror Services # of ScanIPs # of ScanIPs
in Honeypot

Censys [13] 45,580 481 140
Shodan [2] 611 91 81
FOFA [14] 58,671 668 579

ZoomEye [15] 3,197 167 39

Total 106,132 1,407 839

referred to various generic configurations of IP cameras and
selected 21 typical paths for simulation. These paths can
return sensitive information such as camera snapshots and
device configuration files. To enhance the authenticity of the
simulation, the camera snapshot paths also include dynamic
timestamps to simulate real-time monitoring scenarios.

Dynamic trackable links. To delve deeper into the scanning
behavior boundaries of ScanIPs, we implemented a dynamic
linking strategy within our honeypot. Specifically, we encoded
information such as client IP, port, honeypot IP, timestamp, and
others for each access and embedded them as clickable links
within the page body. This approach introduces variability to
the links displayed with each page load, thereby increasing the
complexity and uncertainty of the scanning process.

D. Implementation and Result

Based on our preliminary study of the seven successfully
accessed engines, we selected all of those that offer suffi-
cient queries and batch-automatable search API capabilities
to collect the Scanner IP. As a result, we focused on four
engines: Censys, Shodan, FOFA, and ZoomEye. While our
findings may not apply to all engines, our study provides
valuable insights into these four search engines, which are
widely used in academic research such as [4, 5, 38], and are
likely representative of broader industry trends. The details of
implementation can be found in Appendix A.

Dataset. We deploy our honeypots in 4 cities, including Tokyo,
Singapore, Beijing, and Shenzhen. In each city, we deploy five
web honeypots, one closed honeypot and one open honeypot,
with the same settings, to gain further insights into variations
across different regions. Our data was collected from 28
honeypots deployed across 3 different countries from March
2023 to March 2024.

In the one-year dataset, in addition to the five seed mirror
types in the preliminary study, 74 new mirror types were
discovered after mirror type expansion, such as illegal visitor
warnings in Redis and the welcome banner of ZXFS FTP. This
helped us discover 1183 new ScanIPs. As shown in Table II,
we found 106,132 Mirror Services and 1,407 ScanIPs in the
four device search engines. FOFA boasts a significant number
of ScanIPs, totaling up to 665, and maintains the largest
number of Mirror Services. In contrast, the remaining three
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device search engines only possess 91 to 481 ScanIPs1.

Our honeypots captured 7,362,701 requests, with 32,035
in full-port closed honeypots, 347,784 in popular-port open
honeypots, and 6,982,882 in web honeypots, from 839 unique
ScanIPs totaling 4.6GB in size. Here we define a request as
a transport-layer TCP/UDP packet. Once we have identified
these ScanIPs, we employ the earliest and latest timestamps
of their records on device search engines to establish their
active duration. We then filter and retain only the behaviors
exhibited by these ScanIPs within our honeypot during this
designated period, ensuring that the data we collect indeed
originates from device search engines activities. Due to the
different scan strategies across various engines, our honeypot
can hardly capture behaviors from all ScanIPs. Consequently,
all subsequent behavioral analysis will be based solely on the
subset of ScanIPs observable within our honeypot.

E. Discussion

Currently, device search engines are unable to handle
special IP formats in responses that they are not aware of
when attempting to mask their IPs. We admit that our paper
will remind the engines with mirror service in the three IP
formats in Section III-B, but our methodology remains robust.
Mirror service can always generate new and diverse methods
to encode IPs into the response, such as 1.2.3.4 to 4-3-2-1 or
4%3%2%1, making engines hard/fail to sanitize scanner IPs.
This will lead to an ongoing iterative battle between device
search engines and mirror services.

V. SCAN STRATEGY

In this section, we report the scan strategy of device search
engines according to the dataset acquired from 28 honeypots
from March 2023 to March 2024.

A. Landscape

1) Geographic distribution: Figure 3 shows the regions of
ScanIPs used by each device search engine. Overall, device
search engines prefer to use their own country’s IPs. For
example, 67% and 72% of ZoomEye and FOFA ScanIPs are
in China, with FOFA relying on cloud ISPs and ZoomEye
using multiple consumer ISPs. In the case of Shodan, 46.91%

1While Censys publishes its IP ranges [44], these ranges lack specificity
and may introduce false positives in traffic analysis. Therefore, we collected
Censys IPs using our own methodology.
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of its ScanIPs are from the US, utilizing a combination of
both enterprise and cloud ISPs for broader coverage. Censys
uses enterprise ISP, brings all its ScanIPs come from the
US. Additionally, we observed that IPs from Finland and
the Netherlands are highly preferred. Specifically, 19.17% of
FOFA IPs and 5.13% of ZoomEye IPs originate from Finland,
while 15.38% of ZoomEye IPs and 24.69% of Shodan IPs
come from the Netherlands. This may arise from their minimal
restrictions, competitive prices, and hosting facilities offering
high-speed large-bandwidth Internet access [45].

2) Server rotation strategy: The ScanIPs usage duration
in device search engines reveals insights into their operational
strategies. We introduce ScanIPs lifespan as a metric, capturing
the time between their first and last appearance in honeypots.
Figure 4 shows the lifespan of ScanIPs. We observed the
lifespan of different scanners overlapping targeting the same
mirror service, which indicates that one mirror service is
scanned by IPs randomly selected from the ScanIPs pool.

All device search engines engage in the bulk activation of
ScanIPs. For instance, Censys activated 7, 9, and 16 scanners
on July 28th, August 24th, and October 24th, 2023, respec-
tively. Similarly, we observed Shodan activate 18 ScanIPs
across 11 network segments on October 20th.

Both ZoomEye and FOFA demonstrate patterns of IP aban-
donment and rotation. In FOFA, a consistent pattern emerges,
characterized by four instances of mass ScanIP activation:
occurring in mid-May, mid-August, and mid-November 2023,
as well as early January 2024, followed by their abandonment
around the same periods. In contrast, ZoomEye’s IP changes
lack periodicity, as shown in Figure 4d. Notably, in our
communications, ZoomEye informed us that their IPs are
dynamically assigned by ISPs, indicating that their ScanIPs are
not fixed and may change at any moment, which aligns with
the lack of periodicity. In our one-year monitoring, we did not
observe Censys and Shodan significantly retiring ScanIPs.

We further checked AbuseIPDB [8], a blocklist where users
report malicious IPs, and found 665 ScanIPs have been labeled
with “Port Scan”, “Hacking” and “Brute-Force” tags. Rotating
ScanIPs makes scanning activities more resilient against being
blocklisted by IPs.

Finding I: FOFA and ZoomEye do not use fixed scanning
assets, with FOFA typically rotating its IPs every three
months, making it hard for users to avoid being scanned
by blocklisting device search engine IPs.

B. Port Scanning Strategy

Port scanning is a crucial function of device search engines,
allowing users to identify open ports and their associated
services. Although modern scanning tools can efficiently scan
IPv4 addresses, due to resource constraints, we find that device
search engines do not scan all ports of the entire IPv4 space
once a day, and make trade-offs between different ports. Based
on our port-closing honeypot, we can analyze the scanning
preferences of different device search engines.

We first examined the packet setting of their port scan-
ning. The device search engines use different TCP settings

TABLE III: Top 10 ports scanned by each device search
engines and all visitors except device search engines.

Rank
Device Search Engine

Others
Censys Shodan FOFA ZoomEye

1 443 443 443 443 23
2 3306 2222 22 2222 3389
3 22 22 23 500 445
4 23 23 3306 53 22
5 2222 3306 2222 161 80
6 139 3389 123 5683 6379
7 32080 53 53 9001 443
8 43080 19 21 587 8088
9 21 161 8443 5060 8080
10 2323 2087 5060 123 1433

when scanning. TTL (Time to Live) indicates the packet’s
lifespan in the network. ZoomEye stood out with SYN pack-
ets having TTL values approaching 240, significantly higher
than Shodan(110), Censys(50), and FOFA(50), which is also
higher than the default TTL values of Linux/MacOS (64) and
Windows (128). While a higher TTL increased the probability
of packets reaching their destination, it also burdened routers,
potentially leading to waste in scenarios with poor network
conditions or faults, especially when there are routing loops
in the network. As for TCP window size, Shodan dynami-
cally adjusts its size between 1,024 and 65,535, while oth-
ers use fixed sizes, including FOFA(1,400), Censys(42,340),
and ZoomEye(63,540). A large window can facilitate faster
data transmission in unstable network environments. However,
considering that engines need to continuously send scanning
packets, a large window may increase network load.

Scanning range. Despite device search engines scanning all
65,536 ports extensively, only the frequently scanned ports
represent their interest. We found significant variation in the
number of ports targeted by different engines. For exam-
ple, 20% of Shodan and ZoomEye’s traffic targets 29 ports,
whereas Censys scans 49 ports, and FOFA targets seven ports.

We compare the top 10 ports they scanned and all other
visitors (excluding the device search engines) in Table III and
found that device search engines have unique preferences com-
pared to the nature, usually real attackers. Ports like 445(SMB),
80/8088/8080(HTTP), 6379(Redis) and 1433(SQL server) are
commonly targeted outside the device search engines. Notably,
port 443 attracts the most attention from all four engines, as
it is the standard port for HTTPS, which has the most possi-
bility to catch web services. Among common HTTP/HTTPS
ports, aside from 443, ZoomEye considers port 9001, FOFA
and Censys consider port 8443, and Shodan includes ports
10001 and 8009. As for the other protocols, Shodan, Censys,
and FOFA focus on the common services exposed to the
public network. The prioritized scanning ports include SSH
(22/2222), Telnet (23/2323), MySQL (3306), and NTP (123).
However, ZoomEye’s scanning focuses on high-risk targets.
When looking at a wide range of scanning ports, 14 of the ports
frequently scanned by ZoomEye ports are not preferred as the
top 30 by other engines, such as CoAP (5683), game server
(27015), and BitTorrent (6881). These services are frequently
abused for reflective amplification DDoS attack [46, 47],
highlighting ZoomEye’s unique scanning behavior. This focus
on less commonly monitored ports provides valuable insights
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Fig. 4: The lifespan of ScanIPs in Censys and FOFA. Each line represents the lifespan of one ScanIP, and ScanIPs in the same
network segment (with a /16 subnet mask) are marked with the same color.

into potential vulnerabilities and emerging DDoS threats.

Finding II: ZoomEye prefers to scan ports with a high
risk of DDoS attack, while other engines focus on the most
common ports on the internet.

C. Protocol Identification Strategy

Details of running protocols on network assets are critical
threat intelligence, as they help pinpoint potential vulnerabil-
ities and targets for attacks. However, the methods employed
by device search engines to effectively identify these protocols
remain unclear. This study examines how device search engine
identifies protocol services on the host. To solve this problem,
we first developed a two-step method to identify the probes
used by device search engines and subsequently conducted an
analysis of their probing strategies.

1) Methodology: Identifying protocol-specific probes is not
straightforward due to two challenges: (1) the probes sent by
device search engines are intended to identify a wide range of
protocols, leading to diverse probes with different payloads in
the traffic, and (2) even within the same protocol, variations
occur due to different versions or configurations, resulting in
inconsistent probes of one protocol.

Rule generation. We developed a comprehensive set of rules
that can encompass a broader range of protocols by using the
existing common rule list and manually adding more rules.

Firstly, we utilized the rule list from nmap-service-
probes[48], which contains probes for querying various ser-
vices and matching expressions to recognize and parse re-
sponses. Figure 5 shows an example of “GetRequest” probe
identifying an HTTP service. Besides, we employ existing
network package parsers to identify other services, such as
the Scapy library [49] for the TLS protocol.

Fuzzy matching. To handle the various probe variants,
we refined the matching method using domain-specific pro-
tocol knowledge, enhancing the generality of the match-
ing process. We first calculate the edit distance between
unmatched probes and the acquired rule list. Then, we
select the rule with the smallest distance and determine
if the corresponding protocol is related to the variant.
For instance, the probe for Oracle TNS in nmap rule
list is “\x00Z\x00\x00\x01\x00\x00\x00...”. How-
ever, according to the design of Oracle TNS[50], the first

Probe

Match Ports

Parse Response

Fig. 5: A typical probe rule in nmap-service-probe [48],
including service probe, match ports, and the response to parse.
We utilize the probes in this list to identify part of the payloads
from device search engines.

TABLE IV: The number of protocols and ports of the identified
probes in different device search engines.

Engine # of
TCP Protocol

# of
TCP Port

# of
UDP Protocol

# of
UDP Port

Censys 20 72 23 372
Shodan 21 80 34 51
FOFA 26 72 6 6

ZoomEye 16 52 32 118

two bytes (i.e., \x00Z) indicate the packet length, which
is a dynamic value across packets. We improved it by
“\x00*\x00\x00\x01\x00\x00\x00...”, where * rep-
resents a wildcard.

Since off-the-shelf rule lists cannot cover all probes, we
also manually survey the remaining unmatched probes. Specif-
ically, we searched for unmatched payloads in the form of
hexadecimal escape characters on Google, then inferred the
purpose of the probe based on the query results.

2) Results: Analyzing the traffic captured by our popular-
port open honeypots, we identified 60 types of TCP probes
and 67 types of UDP probes targeting 42 protocols, covering
94.8% of the packets, as illustrated in Table IV. We summarize
three different strategies as shown in Figure 7.

Probe Types. The probes we collected can be classified into
two categories based on their corresponding protocol: Specific
Probe and Generic Probe.

Specific Probes are effective for a specific protocol, gen-
erally the handshake messages of a particular protocol, such
as “\x6C\x00\x0B\x00\x00\x00...”, which is a hello
message of X11 [51]. These probes are primarily used to detect
default port numbers associated with specific protocols.
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On the other hand, we found three Generic Probes that are
designed to be effective across multiple protocols, which share
the same command or handshake method. For instance, the
probe “help\r\n” is applicable to various services, including
ident[52], SMTP[41], NNTP[53] and so on.

Neighbor strategy. Table X in the Appendix shows the
identified protocol payloads alongside their corresponding
port numbers. There is no doubt that device search engines
prioritize utilizing Specific Probe to identify port services
associated with default services, such as requesting DNS[54]
probes on port 53. Additionally, beyond default service ports,
device search engines also attempt to probe services on certain
neighbor ports. For instance, although the default port for
the X11 protocol [51] is 6000, we observed X11 probes
being received on ports ranging from 6000 to 6002. Similarly,
we observe RDP [55] being probed on ports 3388 to 3390,
despite 3389 being the default port. Neighbor ports also
include jumping ones, such as 5673 VS 5683(CoAP), and
6666/7000 VS 6379(Redis). Service deployers who wish to
avoid identification should refrain from using default ports of
protocols, as well as neighbor ports we listed in Table X.

Finding III: Users cannot evade scans by migrating the
ports of services they wish to hide because device search
engines probe protocols not only on default ports but also
on neighbor ports.

Shared strategy. Some ports are used by multiple protocols,
instead of one specific protocol, leading to potential collisions.
Therefore, multiple probes from various potential protocols
are sent to the same port. For example, probes for both the
adb [56](Android Debug Bridge) and socks5 [57] protocols
were received on TCP port 5555.

Fallback strategy. When device search engines fail to identify
the protocol on specific ports, they employ a fallback strategy
to explore alternative protocols, as shown in Figure 7. Con-
sequently, multiple probes are observed across a majority of
ports. All four device search engines employ a combination of
GET HTTP and TLS handshake to enhance web service detec-
tion. Moreover, FOFA and ZoomEye have incorporated FTP
and RDP probes into their fallback strategies, respectively.

Protocol preference. According to the probe’s aim to proto-
col, we can learn the different preferences of device search
engines in identifying protocols. Figure 6 shows the top 10
protocols/services that have the highest proportions across
the four engines. Although 443 is the favorite port of all
engines, Shodan is trying to find more HTTP(62.6%) services,
compared to HTTPS(23.8%). FTP for FOFA(20.3%) and RDP
for ZoomEye(17.4%) stand out, matching the specific generic
fallback strategy unique to each engine while having a much
smaller presence in the other engines.

VI. ETHICAL SCANNING

In this section, we critically evaluate the ethical practices
of device search engines from three aspects: transparency,
harmlessness, and anonymity.

The operations of these engines involve accessing com-
puter systems and collecting sensitive data, raising important

ethical considerations. To safeguard citizens’ computers and
data, various countries have enacted robust cybersecurity and
personal information privacy laws, such as the European
Union’s GDPR [19] and NIS2 [16], the USA’s CFAA [20]
and CCPA [17], as well as regulations in China [18, 21, 58],
Japan [59, 60], and Singapore [61, 62]. They apply to the
countries2 where the device search engine companies are
registered and where our honeypots are deployed.

Although there are currently no specific legal interpre-
tations or industry standards explicitly applicable to device
search engines, we propose a set of ethical principles aimed at
safeguarding users’ rights. These principles draw from best
practices established by notable tools and engines such as
ZMap, Censys, and Onyphe [1, 22, 23], guidelines for search
engine crawlers [24, 25], and foundational ethical frameworks
like the Menlo Report[26]. Key practices include transparency,
harmlessness, and anonymity. Our evaluation results in these
three areas are summarized in Table V.

A. Transparency

In search engine crawler standards, transparency about
crawler identity is crucial, since crawlers are required to clearly
inform users about data collection practices and purposes,
meanwhile, users can protect opt-out rights by robots.txt.
As device search engines cover a broader scope than search
engines, they also bear responsibility for clear disclosure to
signal benign scanning intent. We summarized the five best
actions for transparency. In total, Censys and Shodan have
made conscious efforts to make their identities and activities
transparent to users, while FOFA and ZoomEye are not.

Explain the purpose of every probe. Network administrators
may be wary of unauthorized scans, but if they understand
the purpose is to identify vulnerabilities and offer security
recommendations, they are more likely to permit such ac-
tivities. The best practice involves hosting a website on port
80 of each ScanIP to describe the purpose and nature of the
scan, recommended by three tools/engines that proposed best
practices. As an alternative approach, declaring identity in the
User-Agent header during HTTP scans can also signal intent,
however, only HTTP scanning can be informed.

Unfortunately, testing revealed that none of the ScanIPs
from the four engines provided such information, even Censys
said it in its paper [1]. Specifically, we found that 83 FOFA IPs
and 9 ZoomEye IPs had port 80 open, but the content varied
significantly, ranging from nginx test pages and device login
pages to WordPress websites, indicating that these IPs may be
resold and used by others.

Finding IV: Although Censys proposed the best practice of
hosting a website on port 80 of each ScanIP to describe the
scan’s purpose and nature, no engines, including Censys
itself, fully follow it in implementation.

2The inclusion of European Union regulations is essential due to the
international nature of data flow and the stringent requirements of GDPR.
Article 3, paragraph 2(b) of the GDPR [19] stipulates that the regulation
applies to any entity processing and monitoring the data of EU citizens,
regardless of the entity’s location.
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Fig. 6: Top 10 protocol/services that have the highest proportions across the four engines.

TABLE V: Ethical violation of device search engines.

Type Action Censys Shodan FOFA ZoomEye

Explain the purpose on every probe.
Publish probes IP address list for opt-out.

Transparency1 Use fixed IP addresses instead of trashable ones.
Set whois records with organization and abuse email.
Reverse DNS pointing to the company.

Malformed requests

Unauthorized Access Service Minimized Probe

FTP Null Probe
Redis Command: ping
ZooKeeper Command: ruok
ElasticSearch Path: /

Harmlessness2 MongoDB Command: mongo
RDP RDP Handshake
LDAP LDAP Handshake
Memcached Command: stats
CouchDB Path: /
IP Camera(Web Service) Path: /
OpenWrt Router(Web Service) Path: /
Prometheus(Web Service) Path: /

FTP
Redis
ZooKeeper
ElasticSearch

Anonymity3 MongoDB
RDP
LDAP
Memcached
CouchDB
IP Camera

1 indicates scanners obey guidance, indicates scanners obey the guidance partially, and indicates all scanner
violate transparency principle.

2 indicates that the engine only sends standard and minimized probes, and indicates the use of malformed or infiltrated
requests.

3 indicates that PII has been fully anonymized, indicates only the assist software version, which may facilitate
attacker infiltration, and indicates sensitive PII has not been anonymized and leaked.

Only Censys identifies itself as “Mozilla/5.0 (compatible;
CensysInspect/1.1; +https://about.Censys.io/)” in User-Agent,
with 31% of scans targeting the root directory lack a UA. Other
engines claim to be users of Chrome or Firefox on Windows,
Linux, or macOS, as shown in Table IX.

Publish scanner IP address list for opt-out. To respect users’
privacy and information security, an opt-out option should be
provided, as required by major privacy regulations [17, 19, 60].
Unfortunately, only Censys offers explicit instructions for opt-
ing out of scanning activities. We observed that FOFA responds
aggressively to users who do not want to be scanned, advising
them not to place their devices on the external network [63].

Censys takes a proactive approach by publishing IP ranges
and suggesting users block their access via firewalls. They also
inform users about filtering scans using the User-Agent. This
transparency reflects Censys’ commitment to ethical scanning
practices and respect for user privacy.

Use fixed IP addresses instead of tractable ones. As we
discovered in Section V-A2, both FOFA and ZoomEye rotated
their ScanIPs in one year, with FOFA specifically replacing its
IP pool every three months. This practice poses a challenge for
users attempting to evade scans by configuring their firewalls.

Set whois records with organization and abuse email.
This helps users to easily identify and contact the engines
in case of any abuse or issues related to their IP addresses.
Among the four engines, Censys is the only one that set its
ScanIPs with its own abuse email and organization. In contrast,
FOFA and ZoomEye both utilize the whois information of
their cloud service providers, rather than maintaining their own
information. Shodan, similarly, only has an IP segment with
11 ScanIPs with whois information associated directly with
Shodan, while 81.7% of its ScanIPs use the Whois details
provided by its cloud service providers.

Reverse DNS pointing to the company. Among the four
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Fig. 7: Three probe strategies across the four engines. The
order of fallback probes is sorted according to the sequence
of probes.

engines, only Shodan and Censys have reverse DNS records
associated with their scanning IPs. Shodan’s reverse DNS
records point to scanf.shodan.io or census.shodan.io, while
Censys’ records point to censys-scanner.com. Notably, there
are 23 ScanIPs from Shodan and 24 ScanIPs from Censys
without corresponding reverse DNS records. Interestingly, the
IPs lacking RDNS records from Censys are within their
publicly announced IP ranges. Regarding Shodan, the ScanIPs
come from the same subnet, suggesting their association with
Shodan. In contrast, neither ZoomEye nor FOFA assigns
reverse DNS records to their ScanIPs.

Finding V: Through the analysis of 1,407 ScanIPs, users
cannot identify whether the scans originate from FOFA or
ZoomEye. This makes users hard to identify and evade
scanning.

B. Harmlessness

Cybersecurity-related laws protect computers attacks, in-
cluding intentionally accessing a computer without authoriza-
tion or exceeding authorized access to obtain information or
recklessly causing damage. Device search engines ensure that
their scanning activities are harmless, such as only sending
standard requests and accessing permitted resources. How-
ever, we observed harmful scanning in our honeypots, from
all device search engines, including malformed requests and
attempts at unauthorized access, which may lead to system
error, data breaches, or vulnerability exposure.

We first investigate the default scanning paths of them,
as shown in Table VII. All engines commonly request the
root path (/) and the icon (/favicon.ico), which indicate the
web server’s existence and functionality. Additionally, Shodan
and ZoomEye access robots.txt, security.txt, and sitemap.xml
files, providing supplementary website information. Notably,
security.txt files provide pathways for reporting security is-
sues, facilitating communication between researchers and ad-
ministrators, and highlighting the engines’ proactive role in
enhancing cybersecurity practices.

1) Malformed requests: Sending malformed data packets
or protocol requests can potentially lead to abnormal behaviors

in target systems or network devices. We found that ZoomEye,
by default, employs a malformed probe in the form of “GET
/nice%20ports%2C/Tri%6Eity.txt%2ebak HTTP/1.0\r\n\r\n”
for all web services, which we can decode to a more friendly
“/nice ports,/Trinity.txt.bak”. This probe comes from Nmap’s
service detection [64], uses ASCII escaped characters in an
attempt to generate an HTTP 404 error message to probe a
web server, which is one of the top four web services exploits
in 2019 [65]. A successful scan can reveal crucial details
about the web server’s codebase and potentially even expose
vulnerabilities through response headers and error messages.
As a result, this technique is often exploited by attackers.

2) Unauthorized access: Unauthorized access involves by-
passing security measures, exploiting vulnerabilities, and lever-
aging weak authentication. An ethical device search engine
should adhere to data minimization principles during scanning,
avoiding unauthorized access to sensitive paths on a user’s
host to prevent potential privacy breaches. Specifically, these
engines attempt to access paths requiring authentication but are
often left insecure. This behavior indicates that some engines
may view user data as a key component of their commercial
value, without users’ knowledge or consent.

Minimized scanning. To clarify whether engines acquire
data unethically when finding a service, we first define the
minimized actions and the infiltration actions in scanning.

Given that device search engines provide service tags as
part of their functionality, we define the minimized action as
probing to confirm a service on a port and ceasing further
scanning, aligning with data minimization principles. In con-
trast, infiltration probes aim to get more detailed and private
service information once a service has been identified.

For instance, a minimized probe, i.e., “GET /” request is
enough to verify ElasticSearch web server. However, using
“/ cat/indices” will over-collect database indices. Besides,
some services, such as MongoDB, connecting successfully
with specific tools can confirm the existence of the MongoDB
service. Any subsequent interaction probes are considered
infiltration. Similarly, fetching the FTP welcome banner after
the handshake can know an FTP server, just like opening a
webpage. Attempting anonymous FTP login is like infiltrating
the webpage’s login system, exposing weakly protected hosts
and aiding attackers in identifying potential victims.

We selected ten common services vulnerable to unautho-
rized access and deployed them as response templates. We
used interaction tools to probe and understand the requisite
actions needed to elicit various responses and then defined
the minimized probe for each service. We found that some
services even do not require specific clients for confirmation,
for example, the PING command is sufficient to determine
the presence of Redis on a host, evidenced by the response
“PONG”. Also, send ruok to ZooKeeper will receive imok.

We use engine records and traffic captured by our honey-
pots to determine whether the engines attempt unauthorized
access to infiltrate services. Specifically, we searched the host
records containing these services in each device search engine
and manually inspected the first 100 entries to check for poten-
tial excessive data acquisition, based on our defined minimized
probe. For web services, we learn from our honeypots.
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Infiltration of device search engines. The result in Table V
shows that unauthorized access is widely attempted among
the device search engines. Six services are infiltrated by at
least three engines. Engines connect and then send additional
commands. This includes anonymously logging in to FTP,
getting system details of ZooKeeper(stat) and RDP, and enu-
merating the databases of ElasticSearch(/_cat/indices),
MongoDB(show dbs), and Redis(keys *).

The probe, leveraging by three engines (except for Censys),
used for RDP is exploiting a vulnerability with a CVSS3 score
of 9.8 [66]. The script rdp-ntlm-info in Nmap sends an
incomplete CredSSP (NTLM) authentication request with null
credentials, which causes the remote service to respond with
an NTLMSSP message of CredSSP (NTLM).

Successful infiltrations exposed weakly protected hosts
lacking authentication. For instance, the non-error re-
sponse of the INFO command on Redis hosts granted
unauthorized access to Redis information, revealing that
74.97%(59,725/79,664) of Redis hosts listed on Shodan and
182,137 hosts on Fofa are vulnerable to arbitrary access. Sim-
ilarly, the success in logging into FTP service exposes 135,599
FTP hosts listed in ZoomEye do not need authentication. Only
Censys, who does not infiltrate FTP host, will not tell the
authentication information. The issue surrounding ZooKeeper
is even more critical. While a ruok request or client hand-
shake can confirm the service’s existence, the status response
to the “stat” command reveals 99.91% (369,552/369,881) of
the recorded hosts are vulnerable to unauthenticated access,
with only 0.09% of the hosts resisting these probes.

Shodan is the most serious among the four engines, almost
infiltrating all services. Memcached [67], and IP Cameras
are only infiltrated by Shodan. For Memcached, Shodan sent
a “stats” command followed by “stats settings” to retrieve
additional configuration information. Our honeypots detected
that Shodan attempted to access and retain 25 sensitive paths
for IP camera configuration details and real-time feeds, vio-
lating user privacy as outlined in Table VIII. Notably, some
hosts provided by Shodan did not offer real-time images in
their root directories, suggesting Shodan probed deeper paths,
confirming our honeypot findings. Also, this helps the attackers
locate and exploit IP cameras that are accessible without
authentication, who can abuse it for illicit camera spying and
exacerbating the sale of voyeuristic content. Evidence of this
trend lies in Shodan’s Explore module, where seven of the top
10 voted queries focus on seeking live webcam feeds, with
one even titled “live sex cam”.

Although Censys claims that they never try to log into
any service, read any database, or gain authenticated access to
any system, we still find Censys infiltrated six services, such
as getting server detail of ElasticSearch(/_nodes) and Mon-
goDB(isMaster and Buildinfo). Also, Censys extracts
the user’s information including email, company, department
and telephone in the Lightweight Directory Access Protocol
(LDAP) [68] service. As for web services, Censys scanned nine
paths of the Prometheus server, which facilitates monitoring
system metrics and alerting. However, Censys stated that it
introduced granular recognition for Prometheus in 2019 [69],
allowing users to search for exposed Prometheus endpoints.

Besides, Zoomeye enumerates files using LIST command

after logging in FTP, and accesses the sensitive path “/cgi-
bin/luci/” of OpenWrt routers, a web interface that allows users
to configure and manage the router through the browser. FOFA
exhibits a preference for enumerating indices and extracting
database information within database-like services, such as
ElasticSearch [70] and CouchDB [71]. We also witness FOFA
acquiring “/ cat/indices” for ElasticSearch in our honeypots.

Interestingly, in our communications with these device
search engines, they all claimed to have only scanned the
root directory or paths like robots.txt, explicitly denying any
scanning of sensitive paths. However, when asked about dis-
crepancies between their behavior and claims, they refused to
answer and ended communication.

Finding VI: The device search engines send malformed
requests, attempt to access excessive details without autho-
rization, and even exploit vulnerabilities, posing risks to user
privacy and security.

C. Anonymity

Anonymity refers to hiding personal information when dis-
playing search results. The privacy laws require that published
data cannot identify specific natural persons and cannot be
reversed or reconstructed, to prevent user data from leakage.
Even when engines use minimized probes in Section VI-B,
certain responses can still contain private information. Failure
to anonymize the privacy before displaying on search results
can lead to privacy leakage risks.

Privacy data in device search engine result. Due to the va-
riety of types of private data and their different definitions, we
specifically focus on privacy data in the ten services’ responses,
includes host names, user names, avatars, emails, geographical
location, screenshots, etc. Such information might be abused
by network attackers, such as launching social engineering. In
addition, the leakage of database information may lead to theft
of valuable user information.

Leaking software versions has caused huge risks. The
OWASP top 10: 2021 [72] highlights “Vulnerable and out-
dated components”, indicating that many hosts have not been
updated to the latest version and remain susceptible to security
threats. What’s more, security companies [73, 74, 75] treat
version disclosure as a vulnerability, as attackers can exploit
known vulnerabilities associated with disclosed versions.

Privacy leakage. Here we use the same assessment method
with Section VI-B, and manually inspect the first 100 search
records of 10 services. Considering that engines may not
categorize software versions as privacy and widely publish
this information, we isolated it in our experiments to avoid
influencing the results of other privacy leaks, using a yellow
face in Table V. The result shows that Shodan exposed
database or PII for 7 out of 10 services. Furthermore, version
information is widely exposed in the records.

Database services’ data indices are being exposed and
displayed, as intentionally customized features tailored for
these services. We found 145,310 database indices of Elas-
ticsearch, 178,879 indices of MongoDB, and 2,306 databases
of CouchDB are showing on Shodan and FOFA. What’s more,
Shodan lists 68,543 Redis hosts with their keys.
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What’s worse, Shodan provides an image display platform
on https://images.shodan.io/, displaying images of IP cam-
eras they discovered and log-in screenshots of RDP services
with the avatars and usernames. 65,042 camera snapshots
and 791,333 remote desktop screenshots are displayed upon
submission of this paper.

In contrast, Censys strives to mitigate privacy risks by dis-
playing only relevant fields from responses, successfully avoid-
ing leaking any private information on RDP and ZooKeeper.
However, they still inadvertently leaked 230 LDAP user data
(including name, email, company, address, and phone), along
with Elasticsearch node and MongoDB device configurations.

ZooKeeper [76] typically reveals all connected clients by
default. Notably, FOFA masks all client IP addresses when
displaying ZooKeeper results, while ZoomEye only masks
its own IP. This highlights the different approaches various
engines take in handling sensitive information.

Finding VII: The device search engines fail to anonymize
asset sensitive data, including PII (735 phone numbers,
65,042 cameras, 791,333 remote desktop screenshots, etc.),
326,495 database index and entries, before publishing on
their search results.

VII. DISCUSSION

A. Suggestions

By uncovering the scanner IPs of device search engines,
our original findings expose significant ethical considerations
in the engines’ scanning activities, i.e., lack of transparency,
harmlessness, and anonymity. Our findings underscore the
pressing need for stringent ethical standards and regulatory
oversight in the use of these engines. Therefore, based on the
behavior of device search engines, we propose the following
suggestions for both users and engines.

To avoid being scanned, users can use WHOIS and reverse
DNS records to find and block IPs from transparent engines.
For those engines that do not use fixed IPs, users can leverage
public blocklists such as AbuseIPDB, as 47.26%(665/1,407)
scanner IPs we found have been reported and labeled. Users
can also report suspicious scanning IPs to help others. If users
have to expose services on the public network, we recommend
concealing them by migrating default ports to random ports,
rather than neighbor ports or the ports we show in Table X.

Our research reveals a substantial number of unauthenti-
cated services exposed to attackers due to excessive infiltration
by the device search engines. Users should check if their
services are left unauthenticated, as we have found that at least
48 CVEs associated with 10 services require unauthenticated
access as an entry point, leading to potential risks such as
arbitrary code execution and denial-of-service attacks.

We suggest that device search engines enhance their ethi-
cal scanning practices. To improve transparency, they should
clearly explain the purpose of each scan and provide users
with an opt-out option by publishing a list of scanner IP
addresses. Additionally, using fixed IP addresses instead of
disposable ones can further improve trust. Moreover, device
search engines should minimize potential harm to hosts by

sending only standard, minimal probes and should refrain from
exploiting any vulnerabilities or unauthorized services. They
must also avoid excessive probing of user devices to enhance
functionality, particularly when it involves accessing private
data. Finally, to protect user privacy when displaying data, en-
gines should anonymize any potentially sensitive information.
We recommend that engines report vulnerabilities and privacy
leaks to the appropriate stakeholders rather than disclosing
them publicly in search results or other open channels.

B. Limitations

Although our work has uncovered 1,407 ScanIPs and their
strategies, we have some limitations. First, since our ScanIPs
are collected based on TCP services, any device search engine
that differentiates between TCP and UDP scanning may miss
ScanIPs dedicated solely to UDP services and their corre-
sponding behaviors. Also, our method only captures exposed
ScanIPs; many scanner IPs may remain undiscovered if they
have not scanned easily exposed services.

Secondly, the artificial nature of honeypots may bring
potential bias. Honeypots are commonly used in cybersecurity
research, such as [5], [36], [35]), reflecting real-world attack
patterns and offering valuable insights into network threats.
To minimize potential bias, our honeypots are deployed and
configured to closely mimic real system behavior, reducing
discrepancies with real-world environments. For example, we
decoy camera snapshots with dynamic timestamps to simu-
late real-time monitoring scenarios. Additionally, we deployed
honeypots across multiple countries and collected data over a
year to ensure diversity and representativeness.

However, given our honeypot number and monitoring pe-
riod, certain aspects may lack statistical conclusions, such
as scanning preferences across geographical regions and the
periodicity of full-port scans. We believe that deploying more
honeypots over an extended duration may give the conclusions.

Due to limitations in computing resources and manpower,
our understanding of device search engines’ behavior is pri-
marily focused on web services representative of IoT devices.
Expanding the services simulated on our honeypots could
provide insights into a broader range of engines’ behaviors.
For services beyond the web, we also manually examined their
privacy leakage behaviors in Section VI-C.

C. Ethics and Disclosure

Ethic concerns. In our research, we adhere to ethical guide-
lines by utilizing publicly available data provided by device
search engines to locate their ScanIPs, without engaging in
any database attacks against these engines. Additionally, during
our periodic searches for IP Mirror Services, we strictly abide
by the limitations of our purchased membership account,
responsibly using their query API.

Disclosure. During the process of collecting traffic in our
honeypots, we actively engage with device search engines.
Each engine responded positively when we reported suspi-
cious scanning IPs. For example, upon discovering 14 IPs
using Censys’ user agent but not listed in Censys’ public IP
range, we promptly reported this to Censys and confirmed
that they were indeed fake. Additionally, we encountered
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instances where attackers exploited discarded ScanIPs from
FOFA and ZoomEye to conduct malicious scans against us.
After reporting these incidents, both FOFA and ZoomEye
confirmed that the IPs in question had been abandoned.

VIII. CONCLUSION

This study presents the first comprehensive assessment of
the assets, operational strategies, and ethical concerns of device
search engines, providing original findings rather than reiter-
ating existing information. Through innovative methodologies,
we collected 1,407 scanner IPs and demonstrated that users
could hardly evade scans by blocklisting scanner IPs or mi-
grating service ports. Our research exposes significant ethical
breaches—primarily the lack of transparency, harmlessness,
and anonymity in their scanning activities. These findings
underscore the pressing need for stringent ethical standards
and regulatory oversight in the use of these engines, which are
pivotal in network security but also pose risks to user privacy.

Given these issues, we advocate for the formulation of clear
ethical guidelines and the establishment of robust regulatory
frameworks to govern the operations of device search engines.
In conclusion, while device search engines are invaluable
for network security, their responsible use is paramount. Our
study calls for a balanced approach that aligns the powerful
capabilities of these tools with stringent ethical practices, thus
protecting users and strengthening the security landscape.
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APPENDIX

TABLE VI: Search syntax for search host 1.1.1.1:443 in
different device search engines.

Engine Syntax

Censys (ip=”1.1.1.1”) and services.port=‘443‘
Shodan ip:1.1.1.1 port:443
FOFA ip=”1.1.1.1” && port=”443”

ZoomEye ip:”1.1.1.1”+port:443
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Fig. 8: Overview of ScanIP collection module.

A. ScanIP and Mirror Service Collection

Based on our preliminary study, we selected four engines
that offer sufficient queries and batch-automatable search API
capabilities: Censys, Shodan, FOFA, and ZoomEye. To miti-
gate the impact of ScanIP ownership changes and potential
Mirror Service downtime, we limited our analysis to data
records in device search engines collected between March
2023 and March 2024.

Candidate Mirror Service Collection. We initiated our
approach by extracting search patterns for Mirror Service
identified in the preliminary study (Section III-B). We used
the text in the records which are unrelative with the variable
factors (IP and environment variables) and the protocol type as
its pattern, denoted as MirrorPattern. For instance, the pattern
for Mirror Service reflecting ScanIP via the SIP protocol is
defined as “protocol:sip && banner:received=”. Meanwhile,
we designated the patterns that match the candidate ScanIP
in the responses as IPPattern. For example, the IPPattern
corresponding to the SIP protocol is “received=${ipv4}”. Then
we defined the tuple <MirrorPattern, IPPattern> as a pattern
capable of detecting Mirror Services and mining ScanIPs. We
then converted MirrorPattern into the corresponding syntax of
the device search engine and obtained matching host records
by search APIs.

Mirror Service Verification. After filtering invalid IPs and
those that were the same as the host’s IP, we used tools such
as Nmap, Netcat, telnet, and sipsak[77], to probe the host and
check if its response including our testing IP. If it does, we
confirm it as a valid Mirror Service.

Mirror Service Type Expansion. We took the ScanIPs
we have collected as seeds and queried the records of
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the three types of scanned IPs on device search en-
gine. For instance, on ZoomEye, the query statement re-
trieving records whose responses contain the three vari-
ations of 1.2.3.4 is banner: ‘‘1.2.3.4’’ banner:
‘‘1%2E2%2E3%2E4’’ banner: ‘‘4.3.2.1’’.

Then, considering the records may come from various
services, including those known Mirror Service types, we
filtered out matching patterns of known Mirror Service types.
For the remaining records, we utilized a clustering approach
to extract new patterns for Mirror Service. Specifically, given
that the device search engine records provide service tags,
we initially categorized the records according to their ser-
vices. Then we recognized that these records could contain
variable information in digital formats, such as timestamps
or service versions. This information could notably influence
the clustering process, leading us to remove all numeric data
from the response records. Subsequently, we computed the
text similarity among the remaining records based on cosine
distance and categorized those with a similarity score above
0.9 within the same service as responses originating from the
same reason. In the end, we manually reviewed each category
to identify potential new Mirror Service types. Leveraging
domain knowledge, these are subsequently transformed into
query statements compatible with various device search en-
gines. Additionally, regular expressions to match ScanIPs were
formulated and integrated into our pattern database.

B. Behavior monitoring

Using Flask [78], we developed an HTTP service in
our web honeypot and integrated incorporated fingerprints of
router device configuration pages, creating a low-interaction
IoT honeypot. We extracted 443 fingerprints from devices
identified by device search engines, and encompassed major
router manufacturers such as TPLINK, DLINK, and Tenda. We
also embedded our dynamic links in the default page, which
is encoded by a unique visit record as ID, including visiting
IP, port, honeypot IP, and timestamp.

In terms of paths, we set common web files including
robots.txt, sitemap.xml, and security.txt. Within robots.txt, we
defined paths of varying depths that are allowed for crawler
access, deliberately including some forbidden paths related to
known web vulnerabilities to observe whether device search
engines would intentionally conduct scans. sitemap.xml pro-
vides directory paths of different depths to test the scanning
depth and breadth of crawlers. In security.txt, we deliberately
included a path in the contact section to observe whether
crawlers would read this information. We also embed the
unique IDs in the dir of the paths.

Our full-port closed honeypot and popular-port open hon-
eypot are both sniffer honeypots, with the only difference being
whether ports are open or not. It utilizes the tcpdump [79]
to monitor traffic across all ports and combines Berkeley
Packet Filter (BPF) syntax for precise packet filtering, enabling
effective capture of specific types of traffic. To eliminate
potential interference, we migrated the SSH port to a less
commonly used service port and blocked traffic on it. This
prevented unnecessary data interactions that could skew re-
sults. To passively acknowledge TCP packets without actively
responding at the application layer, we use nc -lk and nc
-luk to listen on TCP and UDP ports, respectively.

TABLE VII: Default scanning path of device search engines
in web service scanning.

Path Censys Shodan FOFA ZoomEye

/ ✓ ✓ ✓ ✓
/robots.txt ✗ ✓ ✗ ✓

/favicon.ico ✓ ✓ ✓ ✓
/.well-known/security.txt ✗ ✓ ✗ ✓

/sitemap.xml ✗ ✓ ✗ ✗
/nice ports,/Trinity.txt.bak ✗ ✗ ✓ ✗

TABLE VIII: Sensitive paths scanned by each device search
engine. “Ratio” refers to the percentage of total scanning traffic
conducted by the engine that targets the path.

Engine Type Path Request Times Ratio

Censys Web(Prometheus)

/api/v1/label/goversion/values 26,242 1.45%
/api/v1/label/goversion/values 26,242 1.45%

/api/v1/query 26,195 1.45%
/api/v1/labels 26,141 1.44%

/api/v1/label/ name /values 26,118 1.44%
/api/v1/targets 25,648 1.42%

/api/v1/label/version/values 25,619 1.42%
/api/v1/status/config 13,015 0.72%

/tr064dev.xml 4,927 0.27%
/api/json 287 0.02%

Shodan IoT(IP Camera)

/cgi-bin/authLogin.cgi 5,459 1.31%
/filestation/wfm2Login.cgi 5,099 1.22%

/photo 4,933 1.18%
/video 4,878 1.17%

/snapshot.cgi 750 0.18%
/cgi-bin/viewer/video.jpg 528 0.13%

/cgi-bin/snapshot.cgi 519 0.12%
/snapshot.jpg 485 0.12%

/tmpfs/auto.jpg 465 0.11%
/cgi-bin/view/image 276 0.07%

/axis-cgi/jpg/image.cgi 273 0.07%
/ipcam/jpeg.cgi 272 0.07%

/ISAPI/Streaming/channels/101/picture 268 0.06%
/jpg/image.jpg 266 0.06%

/Streaming/channels/1/picture 265 0.06%
/Streaming/channels/101 261 0.06%

/image/jpeg.cgi 258 0.06%
/img/snapshot.cgi 253 0.06%

/-wvhttp-01-/GetLiveImage 251 0.06%
/-wvhttp-01-/GetOneShot 250 0.06%

/videostream.cgi 223 0.05%
/get status.cgi 219 0.05%

/videostream.asf 218 0.05%
/cgi-bin/video snapshot.cgi 217 0.05%

/snap.jpg 212 0.05%

FOFA Web(Elasticsearch) / cat/indices 199 0.23%

ZoomEye IoT(OpenWrt Router) /cgi-bin/luci/ 3,059 4.89%
/studio/index.html 895 1.43%

C. Web Scanning Strategy

From 2,503,761 requests our web honeypot captured, we
observed that on average, Shodan sent 17.69 requests, Censys
sent 60.25 requests, Fofa made 5.87 requests, and Zoom-
Eye sent 3.07 requests per day to each honeypot, revealing
distinct patterns. Their path access strategies also differed
significantly. ZoomEye’s ScanIPs occasionally appended an
extra slash (’/’) to paths, such as scanning both ’/favicon.ico’
and ’/favicon.ico/’, suggesting a URL normalization strategy
to handle trailing slashes across different web servers.

We also observed that device search engines perform
scanning in multiple phases. Shodan, for example, begins
with a broad scan using the User-Agent “Mozilla/5.0 ... Sa-
fari/537.36” for default paths. Once it discovers information of
interest, it launches a focused scan, switches to Python-based
User-Agents (such as ‘‘python-requests/2.27.1’’
and ‘‘python-requests/2.23.0’’) and scans multiple
specific paths. This change in User-Agent suggests that Shodan
potentially employs diverse strategies and techniques during
the scanning process.
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TABLE IX: The main User-Agents used by device search engines.

Engine Path User-Agent Ratio

Censys all Mozilla/5.0 (compatible; CensysInspect/1.1; +https://about.Censys.io/) 69%
- 31%

Shodan

/ Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36 31%

/favicon.ico
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.5005.63 Safari/537.36

31%Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/98.0.4758.102 Safari/537.36
Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:80.0) Gecko/20100101 Firefox/80.0

camera python-requests 15%
other - 36%

FOFA /favicon.ico Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.112 Safari/537.36 17%
other - 81%

ZoomEye all Mozilla/5.0 (X11; Linux x86 64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4 240.111 Safari/537.36 29%
- 55%

TABLE X: The Multi-port identified protocols and their corresponding number of probe types and the list of ports. Since the
number of ports corresponding to fallback probes is vast, their results are not displayed here.

Service # of Types Target Ports

Secure Shell 2 [22, 2222]
Network Basic Input/Output System 7 [25, 137, 139, 7587, 11382, 23915, 29844, 31530, 34125, 34303, 40013, 44893, 47415]
OpenVPN 2 [443, 500, 1194]
Socket Secure 4 [1080, 5555, 5678, 7777, 7788, 7890, 8888]

Microsoft SQL Server 5 [427,1433,1434,7025,10001,16592,20748,21429,22637,28864,31980,41372,51668,55010,
61870]

Mikrotik Router 7 [111,2000,4478,7215,8728,10151,23810,24285,27527,32400,38676,40454,41787,49122]

Session Initiation Protocol 6 [4871,5060,5061,6060,6788,8320,10325,10326,14396,16319,19867,25841,27650,31492,
34182,35042,37997,39510,39849,46321,46837,49699,50929,54023,58038]

NAT Port Mapping Protocol 6

[69,80,520,1812,1877,2869,3389,3600,3786,5351,5432,6340,6604,6969,
7001,7320,7398,8000,8290,8835,8945,9999,10690,11211,12205,16397,17180,23205,
23209,23627,24046,24588,24921,28348,30718,32626,34425,34664,35494,37834,40257,40891,
41145,41216,41407,45127,45567,46062,47868,51168,51261,53413,53878,54232,57385,58682,
59478,64738,64940,65501]

X Window System 4 [6000, 6001, 6002]
Redis 5 [6379, 6666, 7000]

Ubiquiti Discovery Protocol 4 [19,382,3745,4095,5094,9185,10001,11977,18798,19132,20004,22153,22834,24669,
27464,32157,32521,32889,34344,36712,38130,39396,39509,42481,44045,47395,51887]

Domain Name System 7 [53,69,174,1967,2967,5353,9646,10001,20104,21301,28159,29997,30855,32276,
37165,47268,48409]

Network Time Protocol 8 [123,1632,2112,9577,14983,23708,33270,36503,42507,51759,52315,53075,61172,65037]

X Display Manager Control Protocol 2 [69,177,1910,12816,13495,13636,14694,15330,15742,17790,25622,30397,32888,36997,
38792,40538,45197,47122,50647,59675]

Negotiation of NAT-Traversal in the IKE 1
[500,1194,1891,3997,4304,4500,6154,7928,8209,12390,12429,14973,16160,20969,
22993,24512,25270,26680,28200,31788,33172,34949,34956,38381,38538,40126,40224,40727,
42850,42910,44568,44806,45708,46061,49109,49147,51822,54015,59491,63038,63284,64367]

Routing Information Protocol 6 [520, 2222, 4301, 17948, 23103, 27305, 35315, 35405, 36333, 38527, 64648]
Universal Plug and Play 3 [1474, 1900, 16435, 21721, 24695, 32410, 32414, 37215, 38412, 38599, 45913, 56721]
Citrix MetaFrame application 2 [1604, 23168, 23261, 33352, 38205, 38890, 41912, 46508, 58206, 58344, 58686]
RADIUS 2 [1645, 1812, 6574, 16531, 20899, 26701, 29322, 48794, 52452, 54347]
Simple Object Access Protocol 3 [370, 2191, 3702, 8446, 21229, 35830, 56006]
Apple Remote Desktop 4 [3283, 9334, 13853, 14434, 17847, 43041, 47851, 52327, 55123, 56498, 62279, 63176]
A2S Query protocol 3 [4131,8626,12893,18745,21025,22767,24018,27015,27016,27105,28015,32165,41700,57896]

VxWorks Wind DeBug agents 3 [4210,12819,14567,14771,17185,18265,20379,26764,28940,31339,48717,49530,49661,51202,
57125,57175,57381,57609,62151,63735]

Datagram Transport Layer Security 2 [5061,5257,5684,5738,6625,7243,11920,19604,20374,20720,21406,28845,31436,31966,
33703,38765,39434,39783,50338,52540,52668,52685,53405,59168,63340]

DNS-Based Service Discovery 2 [5353, 18235, 18529, 24173, 24626, 25301, 26081, 29939, 45293, 62663, 65337]
Building Automation and Control Networks 2 [5407, 6833, 7642, 9140, 18427, 25337, 31513, 33728, 42168, 47808]
PC Anywhere 4 [5001, 5632, 10522, 31348, 39939, 41650, 42730, 50388, 57664]
Distributed hash table 3 [6881, 13001, 24530, 29579, 29899, 44629, 44633, 47199, 48097, 48688]
Simple Mail Transfer Protocol 2 [25, 587]
GPRS Tunneling Protocol 2 [2123, 2152, 3386]
Session Traversal Utilities for NAT 3 [3478, 8088, 37833]
Constrained Application Protocol 2 [5673, 5683]
Android Debug Bridge 2 [5555, 9001]
Java Remote Method Invocation 1 [6000, 10001]
Java Debug Wire Protocol 1 [8000, 9000]
All-Seeing Eye 1 [8000, 11211]
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