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Abstract—Adversarial example techniques have been demon-
strated to be highly effective against Android malware detection
systems, enabling malware to evade detection with minimal code
modifications. However, existing adversarial example techniques
overlook the process of malware generation, thus restricting the
applicability of adversarial example techniques. In this paper, we
investigate piggybacked malware, a type of malware generated
in bulk by piggybacking malicious code into popular apps,
and combine it with adversarial example techniques. Given a
malicious code segment (i.e., a rider), we generate adversarial
perturbations tailored to it and insert them into various carriers,
enabling the resulting malware to evade detection. Through
exploring the mechanism by which adversarial perturbation
affects piggybacked malware code, we propose an adversarial
piggybacked malware generation method, which comprises three
modules: Malicious Rider Extraction, Adversarial Perturbation
Generation, and Benign Carrier Selection. Extensive experiments
have demonstrated that our method can efficiently generate a
large volume of malware in a short period, and significantly
increase the likelihood of evading detection. Our method achieves
an average attack success rate (ASR) of 88.3% on machine
learning-based detection models (e.g., DREBIN and MaMaDroid),
and an ASR of 71% and 67% on commercial engines Microsoft
and NANO Antivirus, respectively. Furthermore, we have ex-
plored potential defenses against our adversarial piggybacked
malware.

I. INTRODUCTION

Currently, machine learning-based Android malware de-
tection (AMD) algorithms have achieved excellent detection
performance. However, they have recently been found to be
vulnerable to adversarial example attacks [9], [26], [28], [38],
[48], [55], which meticulously perturb the underlying source
code of malware for detection evasion without compromising
its functionality [22], [29], [61], [42].

Leveraging adversarial example techniques to generate eva-
sive malware requires two critical steps: crafting the malware
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Fig. 1. Overview of Adversarial piggybacked malware.

and perturbing it. However, the existing perturbation design
does not take the malicious behavior-related code into account,
resulting in a loose coupling between them. A more effective
and efficient approach is to couple perturbation with malicious
functionality before producing the malware. Therefore, in this
paper, we first investigate popular means of malware genera-
tion, and realize that piggybacking (which is also called Tro-
janization or App Cloning) is currently a prevalent method for
bulk production of malware. The emergence of piggybacked
malware stems from the fact that Android app package ele-
ments can be readily altered by third parties [6], [46], resulting
in notable security vulnerabilities. For instance, adversaries can
extensively insert their crafted malicious code segments into
popular, well-known benign software, masquerading as benign
samples [32], [62]. Since a large-scale generation of malware
can be achieved by reusing the same malicious code segment
on various benign software, piggybacking has emerged as
one of the most significant methods for propagating malware
threats [53], [63]. A recent report shows that 77% of the
top 50 free apps on Google Play have been plagiarized and
distributed in alternative app stores [53]. Undoubtedly, piggy-
backing presents a promising tactic for malware developers
and accelerates the spread of malware. For the first time, we
investigate the coupling between piggybacked malware and ad-
versarial example techniques, and propose a more threatening
method for automated mass generation of evasive malware.
This adversarial piggybacked malware further underscores the
hazards of adversarial example technology, providing insights
for future research on defending against similar techniques.
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Through uniting piggybacked malware with adversarial ex-
amples, our method can produce approximately 3760 malware
within a day using only a single thread. These adversarial pig-
gybacked malware can successfully evade detection by well-
known academic detectors and commercial engines with a high
probability. The attack process is depicted in Fig. 1. For ease
of presentation, we define a segment of code implementing
malicious behavior as malicious rider, while the original
app being piggybacked is referred to as benign carrier. The
perturbation used for detection evasion is termed adversarial
perturbation. A malware author can generate an adversarial
perturbation based on the malicious rider. The malicious rider
and adversarial perturbation are combined into an evasive rider,
which can be hooked into any benign app, enabling it to evade
detection. Once such an adversarial piggybacked malware is
generated, the malicious behavior will be triggered thanks to
the hook code that is inserted by the malware author to connect
his rider code with the carrier code. Moreover, the generated
perturbation is rider-specific, remaining effective only for the
specific malicious rider and unusable to others. This design
helps reduce perturbation misuse and minimize the attack
footprint. The main challenges and our countermeasures are
briefly described as follows.

Malicious rider. The first challenge is to design an
appropriate malicious rider. We obtain it by analyzing the
existing pairs of benign app and piggybacked malware through
techniques like code similarity analysis. We will discuss this
issue in Section IV.

Adversarial perturbation. The second challenge is to
compute adversarial perturbations that satisfy universality and
targeting requirements besides the requirements of functional
consistency1 [42] and resilience to static analysis2[61]. The
universality requirement indicates the combination of pertur-
bation and malicious rider should be effective across various
benign carriers. The targeting requirement stems from the
consideration that a malicious rider author has limited incen-
tives to protect any other author’s malware but his own [54].
Meeting the targeting requirement helps to avoid the misuse of
perturbations and reduce the attack footprint, thus improving
stealthiness. In this study, we transform the above consid-
erations into a max-min problem and provide a solution to
achieve a good trade-off. Finally, we delve into the framework
of perturbation code generation with large language models
(LLMs).

Benign carriers. The third challenge is how to select
appropriate benign carriers for the malicious riders. In our
work, we consider two key factors: 1) the compatibility be-
tween different benign carriers and malicious riders, and 2) the
popularity of benign carriers, i.e., the dissemination potential
of piggybacked malware. We then propose a benign carrier
selection method, through delving into the interplay between
benign carriers and malicious riders.

Note that our adversarial piggybacked malware can mis-
lead both common AMD models and the detection models
specifically designed for piggybacked malware. Mainstream
detection methods for piggybacked malware are mainly based
on either code similarity comparison [12], [14], [52], [62] or

1The functionality of the perturbed malware remains unchanged.
2The perturbed code is undetectable by static analysis methods.

machine learning [18], [32], [34], [46], [49]. Given the millions
of Android apps available in the market3, the similarity-based
detection methods necessitate conducting similarity analyses
for each unknown app against existing benign apps, resulting
a complexity reaching quadratic levels. Li et al. [31] illus-
trated that detecting piggybacked malware from the Google
Play Store would take several months, even when employing
multiple threads and with each comparison consuming only
1ms. The machine learning-based detection methods [4], [31],
[37] have exhibited robust generalization capabilities. Existing
studies [18], [34], [49] demonstrate that with discriminative
features, the machine learning models can efficiently and accu-
rately detect piggybacked malware. Nevertheless, experiments
show that our adversarial piggybacked malware can effectively
evade these models.

The contributions of this paper are as follows:

1. Our research delves into a novel attack scenario, where
adversarial perturbing is united with piggybacking to mass
produce evasive Android malware.

2. We develop an efficient bulk production method of
adversarial piggybacked malware, containing three main com-
ponents: Malicious Rider Extraction, Adversarial Perturbation
Generation, and Benign Carrier Selection.

3. Extensive experiments demonstrate that our method
achieves an attack success rate (ASR) of 88.3% on six state-of-
the-art (SOTA) AMD systems, and generating a piggybacked
malware only requires 23 seconds on average. Furthermore,
our adversarial piggybacked malware significantly reduce the
detection probability of engines on VirusTotal.

II. PRELIMINARIES

A. Piggybacked malware

Piggybacked malware are built by grafting a malicious
rider r to various benign carriers (i.e., apps) xb. An adversary
connects the carrier and the malicious rider by constructing
a hook, and the generated malware is represented as xb + r.
The hook delineates the juncture at which the carrier context
transitions into the rider context within the execution flow.

Piggybacked malware typically modify the following rel-
evant files and folders contained in the corresponding APK
(Android Application Package).

META-INF/ : It contains the developer’s public certificate
and the app signature. The adversary re-signs this file in
piggybacked malware using tools like jarsigner after modifying
the APK source code.

Classes.dex: It contains the compiled Java/Kotlin code in
the form of bytecode that can be converted into smali code.
Smali code reflects the program’s execution logic (i.e., Func-
tion Call Graph, FCG). Adversaries typically add, modify or
delete function calls in smali files to accomplish the malicious
functionalities.

AndroidManifest.xml: It describes the structure and com-
ponents of an app. In this file, the developer defines app
permissions, entry points, intent filters, and so on. Piggybacked

3In 2024, the Google Play Store boasted an excess of 3 million applications
(i.e., 3,201,812) [1].
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malware typically adds permissions and component informa-
tion relevant to malicious functionalities. For example, in many
piggybacked malware, the adversaries may add WAKE LOCK
permission to keep executing malicious tasks even when the
user is not actually using his device.

Res/ : It contains binary resources, such as images or hybrid
app content. For example, some piggybacked malware may
add images and layout files in the res folder to increase
advertisements.

lib/ : It stores the native library files that the application
depends on, which are generally written in C/C++. In some
piggybacked malware, the adversaries employ piggybacking
with little sophistication, often automatically and via library
code.

B. Adversarial attack towards AMD

Given a malicious APK xm, an adversary customizes a
perturbation p and produces an adversarial example xm + p
through injecting the perturbation into the malicious app, with
the goal of misleading a classification model f .

Existing adversarial example attacks against AMD can be
categorized into APK-specific or APK-agnostic. The APK-
specific attacks generate perturbations individually for each
APK[29], [42], [61], necessitating repeated modifications for
each APK independently and frequent querying with the target
model. Their attack process can be formulated as:

p∗x = argmin
px∈P

cost(px),

s.t. for malware xm, f (ϕ (xm + p∗x)) = 0,
(1)

where px represents the perturbation for xm, P denotes
the set of all feasible perturbations in the code space, and
cost() signifies the cost required for perturbation generation.
f(x) = 0 means an APK x being classified as benign, and
vice versa. Note that the classification model f() often takes
abstracted vector features from the code as its input. Hence
ϕ() is introduced to reflect the feature extraction process, i.e.,
the mapping from the code space to the feature space.

The APK-agnostic attacks typically design a universal
perturbation effective for various malware, aiding them in
evading detection [10], [23], [56]. The generation process of
such adversarial perturbations can be described as:

p∗u = argmin
pu∈P

cost(pu),

s.t. ∀xm ∈ M, f (ϕ (xm + p∗u)) = 0,
(2)

where pu represents the universal perturbation and M denotes
the malware set.

III. THREAT MODEL & ATTACK FORMULATION

Goal. In this work, we introduce a new attack scenario,
where the adversarial example technique and piggybacking
technique are combined to mass-produce evasive Android mal-
ware. Given a malicious rider, an adversary aims to generate
an adversarial perturbation specific to this rider, to assist
mass-producing adversarial piggybacked malware. As shown
in Fig. 2, these perturbations should satisfy the universality
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Fig. 2. The attack goal of the adversarial piggyback APKs.

requirement and targeting requirement. Let rt and p∗ denote
the malicious rider and the perturbation, respectively. The
university requirement indicates

p∗ = argmin
p∈P

cost(p),

s.t. ∀xb ∈ B, f (ϕ (xb + rt + p∗)) = 0,
(3)

where B is the set of benign APKs.

The targeting requirement helps the adversary to reduce
his attack footprint and improve stealthiness. Under this re-
quirement, the perturbation will take effectiveness only when
working with the malicious rider rt designed by the adversary
himself. That is, we have

∀xb ∈ B,∀r ̸= rt, f (ϕ (xb + r + p∗)) = 1 (4)

Knowledge. For the adversary, the level of his knowledge
about the target model can be strong, moderate, or weak. In the
case of strong knowledge, the adversary has complete informa-
tion about the classification model, including model parameters
and model structure. In the case of moderate knowledge, the
adversary only has the information about model structure. In
the case of weak knowledge, the adversary is unaware of
the aforementioned information and relies on transferability of
adversarial examples and the binary output results to attack
his target model.

Constraint. There are two constraints on the adversary.
First, the adversary should keep the number of his queries
to the target model below a certain threshold, to ensure the
attack stealthiness. Second, the adversary cannot delete smali
files, permissions, actions, resource files, etc., from the carriers
when inserting the rider, to ensure the automation of hooking
malicious riders onto benign carriers. It is also noted that our
work does not restrict the size of the rider. Our work only
requires the attackers to leverage smali code to implement the
functionality of malicious riders.

IV. ADVERSARIAL PIGGYBACKED MALWARE

Building adversarial piggybacked malware includes three
closely intertwined tasks, i.e., extracting malicious riders, gen-
erating adversarial perturbations and selecting benign carriers,
as depicted in Fig. 3. In this section, we separately discuss
these tasks, and through reverse engineering techniques, we
finally inject malicious riders and adversarial perturbations into
benign carriers in batches.
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A. Malicious Rider Extraction

Malicious riders usually involve intricate underlying code
logic. For instance, some piggybacked apps use reflection
and dynamic code loading to introduce the code of malicious
behaviors. Consequently, designing malicious riders is a time-
consuming and labor-intensive process. Fortunately, Li et al.
[32] extracted 1,497 app pairs from over 2 million apps,
where one app piggybacks another to integrate a malicious
rider. However, these malicious riders often involve carrier-
specific operations, such as replacing specific functions within
the carrier. This makes these malicious riders unable to be
automatically inserted into any carriers. To address this prob-
lem, we further filter these benign-malware pairs to extract
malicious rider candidates suitable for automation.

Consider the first block of Fig. 3. To begin with, we
conduct an analysis of the malicious rider. Androguard tool
[2] is utilized to perform a comparison of the smali code of
piggyback pairs. Then, a regular expression matching method
is employed to compare permissions and actions in the An-
droidmanifest.xml file of piggyback pairs. Finally, differences
in the directory structures of files under the res, assets, and
other folders in the decompiled files are compared to identify
discrepancies in resource files.

In Fig. 4, the analysis results of smali files are presented
on the left y-axis, while the analysis results of permissions, ac-
tions, asset files, resource files, and library files are illustrated
on the right y-axis. In this figure, ’A’ indicates Added, ’M’
signifies Modified, and ’D’ denotes Deleted. It can be seen
that malicious riders predominantly insert files, permissions,
actions, and resource files into the carrier, with minimal
deletions. Specifically, 42.3% of piggybacked malware only
modifies one existing smali file in a carrier and uses it as the
entry function for malicious riders. Additionally, our analysis
of these software yields the following Findings:

F1: Typically, the carrier employs a single function call
statement to link malicious code to benign code (this callee
function is named hook function in the following).

F2: The smali files with the hook function inserted are
usually located in the original launcher component of the
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carrier, ensuring that the malicious code segment will definitely
execute.

Based on the above findings, to ensure the execution of
malicious activities after inserting the malicious rider, we
propose the following Requirements for the malicious rider.

R1: The extracted rider is required to be called by only one
hook function.
R2: The hook function must be presented in the original
launcher component.

Furthermore, to enable batch automated insertion of the
malicious rider, we propose the following requirement.

R3: The extracted rider cannot delete smali files, permis-
sions, actions, resource files, etc., from the carrier.

According to the aforementioned requirements, our extrac-
tion process for the malicious payload consists of three steps:

Step 1: We utilize a script to pick out the riders from
existing malicious riders meeting R1-R3.

Step 2: To verify the functionality of the extracted riders,
we develop a minimal app (i.e., a test carrier), and insert the
extracted riders into it to generate piggybacked APKs. These

4



piggybacked APKs are then executed on an Android emulator
to test whether they can properly run.

Step 3: We debug those piggybacked APKs that fail to
run on the Android emulator. Then the missing permissions,
actions, etc are added 4, and the modified riders will undergo
the second step mentioned above.

In the end, we obtained 348 malicious riders, comprising
newly added resource files, additional smali code, hook func-
tions, as well as added actions and permissions. It is noted that
manual debugger operations are isolated from the subsequent
perturbation generation and perturbation insertion processes.
Once perturbations are generated, they can be automatically
inserted into a large number of different benign carriers. There-
fore, manual debugger operations do not affect the scalability
of the algorithm. What’s more, an adversary might develop
malicious riders by himself. This issue is beyond the scope of
this study, since our proposed method is independent of how
the malicious rider is obtained .

B. Adversarial Perturbation Generation

Here we discuss how to derive the desired adversarial
perturbation for a given malicious rider, following the steps
of problem formulation, solution method and algorithm devel-
opment. As shown in the second block of Fig. 3, our method
includes two phases: warm-up phase and fine-tune phase. In
the warm-up phase, we introduce a substitute model to derive
the desired perturbation. In the fine-tune phase, we use the
query-reply results to modify the perturbation, making the
resulting adversarial piggybacked malware evade the detection
of the target model. For practical consideration, we assume the
reply from the target model only provides the binary decision
outcome.

1) Problem Formulation: For convenience, we first review
the requirements for adversarial example generation discussed
in the Threat Model Section.

Universality requirement: The perturbation needs to make
all the carriers evade detection after being hooked with the
malicious rider.

Targeting requirement: The perturbation is designed only
for the adversary’s own malicious rider.

To meet the targeting requirement, an adversary needs to
know the malicious riders used by other adversaries, which is
almost impossible in practice. To address this issue, we trans-
form this requirement to the following implicit one without
accessing other riders:

∀xb ∈ B,∀n ̸= 0, f (ϕ (xb + (r + n) + p)) = 1. (5)

In the above equation, n is random noise that we deliberately
introduce into the training process. When n is continuously
randomly set, r + n can be used to simulate other riders and
hence helps to meet the targeting requirement. Unfortunately,
repeatedly randomly setting n may lead to difficulties in the

4Some permissions are utilized by both carries and malicious riders, making
it challenging to extract all the permissions solely required by the rider through
code similarity analysis.
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convergence of model training. Therefore, we reformulate the
above equation to a min-max optimization problem [40], [57].
Accordingly, we can meet the targeting requirement through
the following two steps.

In the minimization step, we optimize n and identify the
rider (r+n∗) that is most easily attacked. In the maximization
step, we optimize the perturbation p to ensure that it cannot
be successfully applied to the most vulnerable rider (r+ n∗).
The logic behind these two steps is as follows. We do not
validate the efficacy of the evasion detection on all riders
for the perturbation p. Instead, we attempt to find the rider
r + n∗ that is most susceptible to perturbation by p and is
more likely to evade detection. If p can’t be applied to the
most vulnerable rider, then we believe that p can cause other
riders to be recognized as malicious as well. Thus, p meets
the targeting requirement.

Based on the above analysis, we propose the following
design objective:

Objective =min
p

E1(p) + max
p

min
n

E2(n, p)

=min
p

Exb∈B(F (xb + r + p))

+ max
p

min
n

Exb∈B(F (xb + (r + n) + p)),

(6)

where the first term ensures the universality of the perturbation
across different benign carriers, and the second corresponds to
the min-max problem designed for the targeting requirement.
xb ∈ B represents the benign carrier selected from the benign
app set B, r denotes the target-customized malicious rider, n
represents the added noise, F represents f(ϕ()) and p signifies
the desired perturbation. E represents the expected value of
the classification model output, where 0 denotes benign and 1
represents malicious.

2) Solution Method: Now we consider how to solve the
above optimization problem. We primarily encounter three
challenges: 1) achieving a good trade-off between the two
terms in Eq. (6) (i.e., balancing universality and targeting re-
quirements), 2) solving the min-max problem, and 3) reducing
the number of queries with the target model.

To overcome the first challenge, drawing inspiration from
multi-objective optimization [21], we first optimize for the
universality requirement (i.e., E1) and then optimize for the
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targeting requirement (i.e., E2) while ensuring that E1 does
not increase. In this way, we can better control the interplay
between the two objectives during the optimization process, as
depicted by the green and blue boxes in Fig. 5.

As for the second challenge, we employ a single-loop
iterative algorithm [33] to solve the min-max problem. Specif-
ically, we first perform a loss minimization for the minimum
subproblem, followed by a loss maximization for the maximum
subproblem. The specific process is illustrated in the blue box
of Fig. 5. The convergence proof of the single-loop iterative
algorithm is in Appendix A.

Finally, we turn to the third challenge. As depicted in the
left and right dotted boxes of Fig. 5, we partition our attack
into two phases: warm-up phase and fine-tune phase. In the
warm-up phase, we locally train an ensemble model (i.e., a set
of substitute models) and pre-compute an initial perturbation
on this ensemble model. In the second phase, we fine-tune the
aforementioned perturbation based on the query-reply results
from the target model, obtaining the final perturbation p.

According to [60], the larger the margin of the classification
boundary of the locally trained model, the stronger the transfer-
ability of the perturbation. Therefore, in this work, we utilize
diverse APK samples to train our local substitute models,
aiming to maximize the dissimilarity of their classification
boundaries. As perturbations often experience a certain degree
of degradation in their attack effectiveness during the transfer
process, after the local warm-up phase ends, we conduct a final
universality optimization of the perturbation based on the query
results of the target model to ensure its attack effectiveness.

3) Algorithm Development: Our perturbation calculation
algorithm is described in Algorithm 1. When generating pertur-
bations for malicious rider r, we obtain the modifiable features
C to which we can apply the perturbation (including sensitive
functions, actions, permissions, etc.). In the warm-up phase,
we train four local substitute models Fi (i ∈ [1, 4]) on different
sub-datasets of the training data. Unlike traditional ensemble
learning algorithms, we do not optimize by averaging the
outputs of the four models. Instead, we aim to optimize the
universality on the model ip where the perturbation p performs
the worst. Therefore, we begin by selecting the model (Line 6
in Algorithm 1), given by

ip = argmax
i

Exb∈BFi(xb + r + p) (7)

where p represents perturbation and is initialized as p = {}.

Note that E1 in Eq. (6) signifies the probability of the
selected substitute model classifying the sample as malware.
It can be considered as a value function that is used to evaluate
each perturbation. Minimizing E1 reduces the likelihood of
the model classifying a sample as malware. To optimize
universality, among all available perturbations, we select the
perturbation that minimizes E1(p+ c). i.e.,

c∗ = argmin
c

E1 (p+ c)− E1 (p)

= argmin
c

Exb∈B(Fip+c (xb + r + (p+ c))− Fip (xb + r + p))
(8)

Subsequently, we will incorporate the selected c∗ into p,
obtaining p = p + c∗. Then, we iteratively optimize the

aforementioned process until E1 falls below the threshold T1

(Line 4-9 in Algorithm 1).

Algorithm 1: Perturbation Generation Algorithm
Input: The malicious rider m, the benign carrier

APKs set B, the substitute model
Fi, i ∈ [1, 4], modifiable features set C,
Threshold Tj , j ∈ [1, 4]

1 Initialize: Perturbation p = {}, Noise n = {},
Iteration for warm-up phase Iter1 = 0, Iteration for
targeted attack phase Iter2 = 0;

2 while Iter1 ≤ T3 do
3 // Warm-up Phase
4 Stage I: University requirement optimization
5 while E1 ≥ T1 do
6 Select the model i∗ according to Eq. (7).
7 Select the modification c∗ according to Eq. (8).
8 Add c∗ to perturbationp: p = p+ c∗

9 Iter1 = Iter1 + 1

10 Stage II: Targeting requirement optimization
11 while E2 ≥ T2 do
12 Select the modification c∗∗ according to Eq.

(9).
13 Add c∗∗ to perturbationn: n = n+ c∗∗

14 Iter1 = Iter1 + 1

15 Select the model i∗ according to Eq. (10).
16 Select the modification c∗∗∗ according to Eq. (11).
17 Add c∗∗∗ to perturbationp: p = p+ c∗∗∗

18 while Iter2 ≤ T4 do
19 // Fine-Tune Phase
20 Stage III: Targeted model optimization
21 Select the modification pk

∗ according to Eq. (12).
22 Delete pk

∗ from perturbationp: p = p− pk
∗

23 Iter2 = Iter2 + 1

Output: Perturbation p

To meet the targeting requirement, we employ a single-
loop iterative optimization algorithm (Line 10 to Line 17 in
Algorithm 1). The noise n is initialized as empty sets, i.e.,
n = {}. We first optimize the noise n before optimizing
the perturbation p. Subsequently, c∗∗ are selected to be in-
corporated into the noise n through solving the following
optimization problem (Line 12-13 in Algorithm 1).

c∗∗ =argmin
c

E2 (n+ c, p)− E2 (n, p)

=argmin
c

∑
i

Exb∈B(Fi(xb + (r + n+ c) + p))

− Exb∈B(Fi(xb + (r + n) + p))

(9)

It is worth noting that when optimizing n, we aim to
minimize the mean of E2 obtained on all models. We then
incorporate the selected c∗∗ into n and repeat the aforemen-
tioned optimization process until E2 falls below the threshold
T2. At this point, we expect the perturbation p to have no effect
on the obtained rider r+n. Therefore, we aim to optimize the
targeting requirement on the model ip where the perturbation
p performs the worst. This solving process can be represented
as follows (Line 15 in Algorithm 1):
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Fig. 6. The code space generation and injection process.

ip = argmin
i

Exb∈BFi(xb + r + p) (10)

Then, we recalculate c and incorporate it into the pertur-
bation p (Line 16-17 in Algorithm 1), given by

c∗∗∗ =argmax
c

E2 (n, p+ c)− E2 (n, p)

=argmax
c

Exb∈B(Fip+c (xb + (r + n) + (p+ c))

− Fip (xb + (r + n) + p))

(11)

In addition, when optimizing Eq. (11), it is essential to
ensure that the universality does not degrade. Therefore, we
only incorporate c∗∗∗ into the perturbation p when E1 does not
increase. We iterate the optimization of Eq. (9) and Eq. (11).
The warm-up phase terminates once the optimization iteration
exceeds the threshold T3.

When attacking the targeted model, the universality of
perturbations unavoidably diminishes due to the difference
between the substitute model and the target one. Therefore,
we iteratively query the target model, utilizing the binary
results obtained from the queries (i.e., benign or malicious),
to re-optimize universality (i.e., E1) (Line 18 to Line 23 in
Algorithm 1). Additionally, given the substantial size of set
C, computing Eq. (8) for each element in C would necessitate
a large number of queries. Thus, as an alternative approach,
rather than selecting perturbations from C to be added to
p, we recalibrate Eq. (9) to identify the poorest perturbation
pk within the existing set of perturbations p and remove
it. We establish the maximum optimization rounds T4 based
on the allowed maximum number of queries. Specifically,
we will iterate through all perturbations in p to identify the
poorest perturbation pk that, when removed, results in the best
universality of p:

pk
∗ = argmin

pk∈p
E1 (p− pk)− E1 (p) (12)

Then we delete pk
∗ from perturbation p: p = p− pk

∗. We
will repeat the above process until the maximum allowable
number of iterations is reached. We show a visualization of
the APK feature before and after perturbation in Appendix B.

4) Generation & Injection: After obtaining perturbation
in the feature space, it is necessary to map it back to the
code space and generate real code (i.e., the Generation phase).
The generated code is then piggybacked onto benign carriers
(i.e., the Hook phase). In the generation process, existing
approaches often 1) insert empty functions [13], 2) add NOP

functions [58], or 3) utilize program porting techniques to
extract benign code segments from benign carriers [42]. How-
ever, the first two methods often fail to generate naturally
formed code and leave noticeable modification traces, while
the last method lacks the flexibility to choose desired functions
to incorporate freely. To address the aforementioned issues, we
define four Requirements for this process:

R1: Program Normal Execution. After the insertion of
perturbations, it is crucial to ensure that the program can
be packaged and executed normally.

R2: Functional Consistency. The inserted code must not
affect the functionality of the original APK.

R3: Naturalness. There should be no noticeable traces of
manual modifications, ensuring the covertness of perturba-
tions.

R4: Flexibility. The adversary should be allowed to freely
choose the features to perturb and map them into the code
space.

To meet the above requirements, we propose a perturbation
generation and injection algorithm, as illustrated in Fig. 6. With
the advancement of large language models (LLM) [8], [36], an
increasing number of studies have uncovered the capability
of these models in code generation. Some works [8] have
found that LLMs struggle to generate entire malware samples
from complete descriptions. Adversaries can divide the task
of generating the entire malware into several subtasks and
utilize LLMs to complete each subtask. Then, the adversaries
assemble the malicious code generated from these subtasks
to form the final malware. Inspired by this, we utilize LLMs
to accomplish the generation of perturbations with different
blocks. Our perturbation generation and injection process is
described below:

1) As shown in the red block of Fig. 6, we partition
the feature-space perturbations into blocks, performing code-
space perturbation generation for each block separately5. To be
specific, for newly added permissions, we analyze them block
by block. For new actions and APIs, we group at least one
action and API into each block. The purpose of this step is
twofold. First, it enhances the quality of code produced by
the LLM. Second, it improves the readability of the code.
Moreover, feeding all feature-space perturbations at once to
LLMs will result in a significant decrease in the readability
and quality of the generated code-space perturbations.

2) Based on the partitioned feature-space characteristics,
we construct prompts and utilize the LLM to generate natural
code segment, as shown in the yellow block of Fig. 6. This
operation satisfies R3 and R4.

3) It is crucial that these perturbation codes cannot alter
the original functionality of the rider and benign carrier.

5In our work, we did not consider cases where features are embedded
vectors. For such cases, gradient propagation or optimization algorithms would
be needed to calculate the necessary perturbations for APIs, actions, or
permissions.
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Therefore, we utilize techniques such as Try-Catch Trap[29]
or opaque predicates [42] to insert perturbation and prevent
the perturbation from being detected by static analysis. This
process satisfies R2 and is shown in the green block of Fig. 6.

4) Subsequently, we hook all perturbed code and riders
onto the carrier and perform repackaging. This process may
result in errors; if so, we rely on error messages and utilize a
pre-designed script file to assist in constructing new feedback
and prompt the model to output the corresponding code
segment again. The script file contains some potential error
correction solutions to aid in the construction of prompts. The
detailed description about the script file is in Appendix C. This
process satisfies R1 and is shown in the orange block of Fig.
6. We repeat the above steps until the program is successfully
repackaged.

In addition, our prompt generation uses a template-based
approach. In our method, LLM employs gpt-3.5-turbo, with
max tokens set to 1024 and temperature set to 0.8, without any
special stop symbols. LLM only generates a single response
for one query. Our templates and an example of the code-space
perturbation are given in Appendixes D and E, respectively.

C. Benign Carrier Selection

As shown in STEP 3 in Fig. 3, we have two factors
for selecting benign carriers. These factors are motivated by
two considerations: 1)Different benign samples have varying
concealment capabilities for malicious riders. Selecting benign
carriers can increase the success rate of generating adversarial
piggybacked malware. 2) Different adversaries have different
target audiences for different riders. For example, adversaries
are more inclined to insert riders into game software. This is
because game software has a wider audience and is more likely
to facilitate the spread of malicious code.

In regards to the first point, we rank the comprehensive
performance of adversarial piggybacked malware generated
from various benign sources on substitute model, selecting
them in descending order of performance scores, defined by

Score(xb) =
∑
i

−Fi(xb + r + p) (13)

Regarding the second point, we collect the labels of
different benign carriers in the dataset using Google Mar-
ket [43], and classify the benign software based on these
labels. In this study, we consider the following categories:
GAME, EDUCATION, TOOLS, BUSINESS, MUSIC, FI-
NANCE, LIFESTYLE, and more. In the experiment section,
we validate the effectiveness of the algorithms for these
different categories of benign carriers.

D. Adversarial Piggybacked Malware Construction

Upon obtaining the adversarial perturbation and the mali-
cious rider, we need to insert them into benign carriers. Specif-
ically, it is necessary to unpack and decompile the benign apps
using tools such as APKTOOL [3] and AXMLPrinter2 [5] to
obtain the underlying code.

Subsequently, we hook the evasive rider composed of the
malicious rider and the adversarial perturbation with benign
carriers. Specifically, this operation involves: 1) inserting new

resource files 6 into the assets, lib, and res folders of the carrier,
2) adding new smali files into the smali folder, 3) incorporating
new permissions into the AndroidManifest.xml file, 4) adding
new actions into the AndroidManifest.xml file, and 5) hooking
new methods into the smali startup file to ensure the execution
of malicious behaviors.

Finally, we utilize tools such as APKTOOL and jarsigner
[25] to repackage and resign the modified APK file.

V. EXPERIMENTS

In this section, we conduct experiments to evaluate adver-
sarial piggybacked malware on the existing academic AMD
models and commercial engines. Additionally, we validate and
analyze the functionality of each module in our algorithm.

A. Experimental Setup

Target Model. We select seven state-of-the-art machine
learning-based AMD methods for malware detection, encom-
passing five syntax feature based classifiers and two semantic
feature based classifiers. The syntax feature based classifiers
use two prominent features: DREBIN features [4] and FD-
VAE features [30]. DREBIN features consist of 8 feature
classes, namely hardware components, requested permissions,
app components, filtered intents, restricted API calls, used
permissions, suspicious API calls, and network addresses.
Notably, when DREBIN features are employed, each APK
generates over 1000,000 features. The excessive sparsity of
feature vectors may degrade the performance of AMD models.
Following the recommendation proposed by [54], [24], we
utilize the L2 regularized Linear Support Vector Machine (Lin-
earSVM) to select the top 1,000 features crucial for identifying
malware. FD-VAE features comprise 379 features, including
147 permissions, 126 intent-action pairs, and 106 sensitive
APIs. Based on two significant characteristics of piggybacked
APKs, we expand the FD-VAE features.

1) [31] analyzed common sensitive functions and permis-
sions in piggybacked APK files, which we incorporated into
the classification features, expanding the FD-VAE features to
176 permissions, 155 actions, and 130 sensitive APIs, termed
as FD-VAE-E1.

2) [31] discovered adversaries often repeatedly add benign
carrier’s existing permissions or actions when constructing
piggybacked APKs. This operation results in some permissions
being declared redundantly. Therefore, we transform the binary
values of permissions and actions in FD-VAE-E1 to their actual
occurrence counts, and for ease of training convergence, we
perform max normalization on the permission/action section.
This feature is referred to as FD-VAE-E2.

What’s more, we choose another targeted clone app detec-
tion tool MALPACK [45], which also uses a syntax feature.
Different from the above methods, MALPACK doesn’t use
piggybacked malware during its training process. Due to this
specific setup, we discuss our attack performance on this
method in Appendix F.

Furthermore, we select two semantic features: MaMaDroid
features [37] and APIGraph features [59]. MaMaDroid extracts

6Malicious riders in advertising often contain resources such as advertise-
ment images.
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TABLE I. THE ATTACK PERFORMANCE ON DIFFERENT ANDROID MALWARE DETECTION METHODS. (↓) INDICATES THAT A LOWER VALUE IS
PREFERRED, AND VICE VERSA.

Scenarios
DREBIN FD-VAE FD-VAE-E1 FD-VAE-E2 MaMaDroid APIGraph

U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓)

ER

W 1.000 0.480 1.000 0.518 1.000 0.301 1.000 0.400 0.979 0.358 0.996 0.508
G 0.879 0.348 0.803 0.315 0.825 0.270 0.769 0.454 0.859 0.299 0.843 0.458

B S 0.876 0.407 0.787 0.337 0.889 0.389 0.730 0.397 0.832 0.338 0.776 0.414
B D 0.773 0.384 0.821 0.351 0.865 0.334 0.835 0.419 0.853 0.297 0.849 0.426

UR

W 1.000 0.374 1.000 0.429 1.000 0.267 1.000 0.360 0.991 0.384 1.000 0.485
G 0.842 0.338 0.890 0.288 0.921 0.272 0.879 0.424 0.853 0.330 0.865 0.427

B S 0.888 0.372 0.821 0.245 0.922 0.318 0.848 0.379 0.852 0.368 0.820 0.396
B D 0.896 0.382 0.792 0.241 0.883 0.319 0.867 0.371 0.880 0.337 0.815 0.392

API call graphs from smali files and employs Markov metrics
to transform the call graph into a vector. APIGraph is designed
to unveil semantic similarities between Android APIs by con-
structing a relational graph of Android APIs based on official
documents. In addition, we choose DNN as the classification
model. These AMD detectors’ construction and performance
are shown in Appendixes G and H.

Datasets. The first dataset used in our experiments is
derived from [31]. This dataset encompasses over 2 million
apps collected from various sources, including Google Play,
appchina, anzhi and open-source repositories such as F-Droid,
and research datasets like the MalGenome dataset. The data
was analyzed and processed, resulting in the extraction of
1,497 pairs of original APKs and piggybacked APKs.

Another dataset we utilize is a well-known dataset used
for Android adversarial examples validation [42]. This dataset
comprises 134,759 samples (including 135,859 benign appli-
cations and 14,775 malware samples), and it has already been
processed by Pierazzi et al. [42], following the labeling criteria
outlined in Tesseract [41].

In our experiments, the first dataset is used to extract
malicious riders, while the second dataset is utilized to train the
target model, substitute models and validate the effectiveness
of our attack algorithm. After applying the Malicious Rider
Extraction presented in Section IV-A, the first dataset yielded
348 malicious riders. Through comparative analysis and rigor-
ous screening, we identify 65 malicious riders, whose function
can be guaranteed to be correct. In Appendix I, we evaluate
our algorithm’s performance on much more potential riders.

For the second dataset, to ensure differentiation between
the samples used by the local and target models in gray-box
and black-box attacks, we allocate 45% of the samples for
training the local model, 45% for training the target model,
and reserve 10% of the samples for testing the target model’s
effectiveness. As the second dataset is not specifically col-
lected for piggybacked data, in order to enhance its detection
capabilities for piggybacked apps, we augment the malicious
data. For the collected riders, we use 60% of the riders for
training and 40% for testing. Each rider is randomly inserted
into 500 benign carriers, to enhance the detectors’ accuracy in
identifying piggybacked apps.

Metric. We use attack success rate (ASR), and the number
of query (Noq) for performance evaluation. ASR corresponds
to the ratio of the number of successfully generated AEs
(denoted by Nsuccess) to the number of malicious examples

used for AE generation (denoted by Ntotal ), i.e., ASR =
Nsuccess/Ntotal. Noq is defined as the number of interactions
between our attack model and the target model.

Experimental Environment. All experiments are con-
ducted using 64GB of RAM, an i7-12700KF CPU, and an
NVIDIA RTX 3090 GPU.

B. Overall Attack Performance

Attack Effectiveness: We first validate the proposed al-
gorithm for its effectiveness in attacking various academic
Android malware detection systems, namely DREBIN, FD-
VAE, FD-VAE-E1, FD-VAE-E2, Ma-MaDroid, and APIGraph.
We consider three attack scenarios. The first scenario is the
white-box attack (W), where the adversary has access to the
structure, parameters and training data of the target model.
The second scenario is the gray-box attack (G), where the
adversary has access to the structure of the target model but
has no knowledge of its parameters and training data. The
third scenario is the black-box attack (B), where the adversary
has no knowledge of the structure, parameters, and training
data of the target model. In a black-box scenario, if the target
model uses a deeper architecture compared to the local model,
it is referred to as B D. In the opposite case where the
target model uses a shallower architecture, it is termed B S.
B D and B S are introduced to demonstrate that adversarial
perturbations generated on a local substitute model can transfer
to classification models with different structures.

During the training of the detection models, we utilized a
subset of malicious riders. We refer to the riders present in the
training dataset of the target model as ER (Existing Riders) and
the riders not included in the training dataset as UR (Unknown
Riders). In both ER and UR scenarios, we only select correctly
detected piggybacked apps for testing. To validate the univer-
sality requirement, we perturb the aforementioned riders and
hook them onto 200 benign hosts to test if our algorithm could
deceive the detection models. The success rate of these attacks
is termed as ASRU . To validate the targeting requirement,
we inserted the perturbations into mismatched riders and then
randomly hooked them onto 200 benign hosts. The success rate
of these attacks on the aforementioned samples is referred to
as ASRT .

The experimental results are shown in Table I. The first
column in the table indicates whether the rider is included
in the training set collected by AMD developer, the second
column refers to different attack scenarios, and columns three
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Fig. 7. The query counts toward different AMD systems.

to eight represent different features used by the malware
detection model. In all scenarios, we can observe that when the
perturbation matches the rider, the attack success rate of our
algorithm reaches 88.3%. Conversely, when the perturbation
does not match the rider, the attack success rate is only 36.9%,
a decrease of 51.4%. Furthermore, in the white-box scenario,
the perturbation tends to overfit to different riders, leading to
an increase in ASRU while ASRT also rises. In contrast, in
gray-box and black-box scenarios, the overfitting problem is
mitigated due to differences among the models.

Number of queries: In the proposed algorithm, we need to
query the target model and fine-tune perturbation based on the
results. Therefore, we evaluate the number of queries required
by our algorithm. We refer to the riders matched with the
perturbations as matched riders and those not matched with
the perturbations as mismatched riders.

We gradually increase the number of queries during the
fine-tuning process to observe the changes in the ASR on the
matched and mismatched riders. Since white-box attacks do
not involve the fine-tuning process, we only demonstrate the
changes in the gray-box and black-box scenarios. The exper-
imental results are shown in Fig. 7, where B S U, B D U
and G U represent the ASR on the matched rider in the B S,
B D and G scenarios. B S T, B D T and G T indicate the
ASR on the mismatched rider. The red line represents the
selected query times in our experiments. It is worth noting
that the increase in the ASR by perturbation on matched riders
is greater than that on mismatched riders. This demonstrates
the effectiveness of the fine-tuning step in our algorithm.
Moreover, as the number of queries increases, the impact
of perturbation on matched and mismatched riders gradually
saturates, allowing for the selection of a smaller number of
queries to meet the attack requirements. In our experiment,
under six Android malware detection models, the selected
query frequencies are 152.8, 190.1, 171.5, 184.2, 144.0, and
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144.0. These query frequencies are deemed acceptable, and
the perturbation can be reused continuously to generate tens
of thousands of adversarial piggybacked malware.

Perturbation Generation Time: We analyze the time
consumption of our algorithm in perturbation generation. We
present the average results using DREBIN features in Fig. 8.
The horizontal axis denotes the four steps of our algorithm,
while the vertical axis represents time consumption in seconds
(s). It is evident that for a rider, the most time-consuming
steps occur in the LLM generation and warm-up phase, taking
approximately 23s and 21s, respectively. During the LLM
generation phase, it requires approximately 6.6 rounds of
trial and error. The time consumption of our algorithm is
acceptable.

C. Comparison with SOTA Methods

TABLE II. COMPARISON OF ATTACK PERFORMANCE WITH
STATE-OF-THE-ART METHODS

Methods
W B S G B D

U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓)
RN 0.044 0.019 0.041 0.029 0.026 0.019 0.040 0.030

HIV-JSMA 0.456 0.381 0.197 0.259 0.191 0.261 0.170 0.224
HIV-CW 0.599 0.525 0.156 0.265 0.269 0.321 0.126 0.216

Pierazzi et.al. 0.603 0.481 0.760 0.635 0.662 0.567 0.605 0.514
EvadeDroid 0.468 0.480 0.360 0.420 0.525 0.521 0.386 0.430

Malpatch 0.891 0.629 0.144 0.159 0.242 0.239 0.103 0.114
Ours 1.000 0.439 0.880 0.393 0.862 0.344 0.821 0.383

Here we introduce six attack algorithms for comparative
analysis. First, to validate the effectiveness of our adversarial
perturbations, we design a Random-Noise (i.e., RN) attack
algorithm. This approach randomly generates an adversarial
perturbation of the same size as the original input. Then, we
select two attack algorithms (i.e., HIV-CW and HIV-JSMA)
proposed in the Android HIV framework [13] and two attack
algorithms proposed in the works of [42] and [7] (termed
as Pierazzi et.al. and EvadeDroid). These algorithms generate
adversarial perturbations for individual APKs, while we focus
on the adversarial perturbation for various APKs generated by
a particular malicious rider. We apply the perturbation of an
individual APK to other piggybacked malware generated by
the same malicious rider to verify the universality requirement.
Furthermore, we test the targeting requirement by applying the
perturbation to piggybacked malware produced by different
malicious riders. Finally, we select a universal attack method,
MalPatch [56], which generates a universal perturbation for a
specific instance of piggybacked malware.
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Fig. 9. The ablation experiment.

The experimental results are presented in TABLE II, which
indicate that existing attack methods often fail to simultane-
ously satisfy the universality requirement and the targeting
requirement (i.e., achieving a high U value and a low T value).
In contrast, our method effectively meets both requirements,
resulting in superior attack performance.

D. Ablation Experiment

In this section, we investigate the roles played by different
modules, thus we conduct ablation experiments to validate
each step in the experiment. Adversarial perturbation gener-
ation consists of two phases: the Warm-up phase, and the
Fine-tuning phase. Besides, there is a carrier selection phase
that can improve the attack success rate. Based on the varying
numbers of benign carriers selected, we decompose the process
of benign carrier selection into three phases: selecting 50%,
20%, and 10%. Then we get five phases that are respec-
tively represented as: WARM UP, FINE TUNING, SELEC-
TION(50%), SELECTION(20%), and SELECTION(10%). In
this experiment, we will demonstrate the changes in ASRU in
each of the aforementioned phases7.

The experimental results are presented in Fig. 9. The six
subplots represent the attack performance against different
Android malware detection systems. Each subplot contains
three attack scenarios: white-box (W), gray-box (G), and
black-box (B S and B D). Within each scenario, the success
rates of attacks are shown for our algorithm across five
phases. The orange, blue, green, red, and pink bars respectively
represent the WARM UP, FINE TUNING, SELECTION(50%),
SELECTION(20%), and SELECTION(10%) phases. During
the white-box attack phase, the target model is already known,
eliminating the need for a warm-up phase. The experimental
results indicate that each of our phases progressively increases
the perturbation’s generality, enabling malicious riders to evade
detection. It can be observed that across all scenarios, we

7ASRT is not shown because the benign carrier selection does not affect
this value, and the changes in ASRT during the fine-tuning phase have already
been shown in Fig. 7.
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Fig. 10. The attack effectiveness on different categories of APPs.

achieve an attack success rate of 57.3% through the warm-
up phase. The fine-tuning phase enhances the success rate by
approximately 12%. When selecting 50% benign carriers, there
is a 21% increase in the attack success rate.

E. Performance on Different Categories of Carriers

Attack Effectiveness: During attacks, adversaries may
leverage popular benign apps as carriers for hooking. There-
fore, in this section, we validate the effectiveness of our
algorithm on different categories of benign carriers. Specif-
ically, following the work of Li et al. [31], which analyzed
the five most common types of benign carriers as GAME,
TOOLS, PRODUCTIVITY, ENTERTAINMENT, and PER-
SONALIZATION. We also examine the seven most preva-
lent types of benign software in our dataset: GAME, ED-
UCATION, TOOLS, BUSINESS, MUSIC, FINANCE, and
LIFESTYLE. Consequently, we select ten benign apps for
analysis: GAME, EDUCATION, TOOLS, BUSINESS, MU-
SIC, FINANCE, LIFESTYLE, PRODUCTIVITY, ENTER-
TAINMENT, and PERSONALIZATION, denoted as G, EDU,
T, B, M, F, L, PRO, ENT, PER. These benign carriers are
uploaded to the Google Play Store to retrieve their specific
classification labels. Due to space limitation, we only present
the results for FD-VAE-E1.

The experimental results depicted in Fig. 10 show the
attack success rates ASRU and ASRT in scenarios W, G, B S,
and B D. The experiments reveal that in the white-box attack
scenario (W), we achieve nearly perfect attack effectiveness
(i.e., ASRU of 1.000 and ASRT of 0.313). However, in gray-
box and black-box scenarios, there is a certain decline in attack
effectiveness (with ASRU of 0.913 and ASRT of 0.349).
Furthermore, our algorithm demonstrates very high attack
success rates across different types of popular benign carriers.
Regarding ASRU , we attain the highest average attack success
rate on the PERSONALIZATION type of benign carriers in all
scenarios, reaching 96%. Even on the least favorable GAME
type of benign carriers, we achieve an average attack success
rate of 89%.

Attack Efficiency: One of the perils of piggybacked
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malware lies in the rapid and mass production of malware.
Hence, in this section, we validate the generation time of
adversarial piggybacked malware across different categories of
rider apps. The time consumption of our algorithm is divided
into three parts: 1) the unpacking time of benign payloads, 2)
the hooking time of malicious riders, and 3) the repackaging
time of adversarial piggybacked apps.

Fig. 11 shows the unpacking time represented by red bars,
hooking time by green bars, and repackaging time by orange
bars. The results indicate that the average time to generate
an adversarial piggybacked app across all types of benign
riders is 23.4 seconds, with average times for unpacking,
hooking, and repackaging being 12.6 seconds, 0.08 seconds,
and 10.6 seconds, respectively. The short duration of the
hooking process may not be clearly discernible in the graph.
Furthermore, we observe that the average time required for
game-type riders is the longest at 27.5 seconds, possibly due
to the complexity of game apps, which typically contain a
large number of resource files and intricate file structures. In
contrast, simpler rider categories like PERSONALIZATION
only require 20.7 seconds on average.

F. Real-World Experiments
In this section, we validate our algorithm’s ASR on real-

world engines. Each malicious rider is paired with its corre-
sponding perturbation and injected into twenty benign carriers,
which are then uploaded to VirusTotal [51] to assess the
impact of perturbations on commercial engines. VirusTotal is a
renowned industry platform for malware detection, integrating
over 90 commercial malware detection models. Upon upload-
ing malware, these commercial detection systems evaluate it
and output the number of engines that classify it as malicious.
We refer to this count as VirusTotal positives (VTP).

The experimental results, as depicted in Fig. 12, illustrate
the impact of perturbations on VirusTotal detection. The left
graph compares the VTP before and after perturbation inser-
tion. Prior to perturbation, the average VTP stands at 18.6,
decreasing to an average of 14.9 post-perturbation. Further-
more, the right graph showcases the attack success rates on
prominent engines. For instance, the adversarial piggybacked
apps generated achieved an ASR of 71% on Microsoft and an
ASR of 67% on NANO Antivirus.

VI. RELATED WORK

A. Piggybacked APP Detection

Piggybacked apps represent a highly detrimental form
of malware generation. Existing research on the detection
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Fig. 12. The attack performance on VirusTotal.

of such apps can generally be categorized into two main
approaches. 1) Similarity Analysis Methods: These methods
involve comparing the software to be tested with all software
in a local database one by one. 2) Machine Learning Methods:
These methods directly detect piggybacked apps. For instance,
DNADroid [14] extracts the Program Dependence Graph as
a fingerprint and utilizes the VF2 algorithm for similarity
comparison to identify these apps. DroidSim [47] uses the
component-based control flow graph as the fingerprint. Pig-
gyAPP [62] extracts Android APIs and permissions as a feature
vector, organizes these vectors into a metric space (Vantage
Point Tree), and employs KNN to find similar feature vectors.
However, these methods require comparing APK files, which
can be time-consuming. With the advancement of machine
learning, an increasing number of methods are starting to uti-
lize machine learning techniques to detect piggybacked apps.
For example, Li et al. [32] analyze numerous piggybacked
app cases, identify some unique features of piggybacked
apps based on prior knowledge, and use these features for
classification. DAPASA [18] utilizes the sensitive subgraph
(SSG) to profile the most suspicious behavior of an app
and then employs machine learning algorithms to determine
whether the app is piggybacked. As the number of Android
apps continues to grow, comparison-based methods often incur
significant time costs, while machine learning-based methods
are susceptible to adversarial example attack methods.

B. Adversarial Examples Attack toward AMD

Existing adversarial attacks against AMD include feature
space attacks [15], [16], [23], [35] and code space attacks
[20], [22], [29], [61]. The former involves modifying the
features inputted into machine learning models, while the latter
alters the code in the code space. In feature space attacks,
adversaries manipulate various features extracted from APKs,
encompassing diverse data domains such as graph data, binary
vector data, image data, and more. In code space attack,
adversaries accomplish perturbations with low-level language
code. For instance, Chen et al. [13] propose inserting empty
or no-op functions to implement perturbations at the smali
level. Li et al. [29] introduce perturbation code into smali
code by using Try-Catch Traps when attacking function call
graphs. Pierazzi et al [42] present opaque predicate to modify
function call graphs. Zhao et al. [61] propose a structured ad-
versarial example generation method, outline four smali code
modification approaches, and employed deep reinforcement
learning to find optimal operational methods. However, the
aforementioned attack algorithms all introduce perturbations
to existing malware and do not take into account the unique
formation of piggybacked apps, a specific type of malware.
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C. The Attack Constraints in AMD

Pierazzi et al. [42] propose constraints for problem-space
attacks for AMD. Our attack constraints build upon and modify
their framework. Specifically, Pierazzi et al. introduce four
attack constraints:

Available transformations: The perturbations must meet
practical requirements. We specify this constraint to ensure
the normal operation of the program (i.e., Program Normal
Execution Constraint). Preserved semantics: The semantics
of the samples must remain unchanged before and after
perturbation. We abstract this point in our work to mean
that the functionality of the malicious code segment does
not change before and after perturbation (i.e., Functional
Consistency Constraint). Plausibility: The perturbations must
appear realistic upon manual inspection. In our work, we
address this requirement based on the concept of Naturalness
of the language (i.e., Naturalness Constraint). Robustness to
preprocessing: Perturbations cannot be easily removed by
analysis tools, such as being treated as dead code and deleted.
Our method inherently meets this requirement by integrating
both malicious and perturbation codes with benign carriers.
Therefore, we did not explicitly address this in our manuscript.
Finally, we introduce an additional constraint, the flexibility
constraint, which ensures that the adversary can freely select
perturbations from the feature space.

VII. DISCUSSION

A. Potential Defense

To defend against adversarial piggybacked malware, we
offer two methods for the developers of AMD models. First,
Raff et al. [44] suggest segmenting software into different
chunks using moving windows, and then detecting malware
by assessing the maliciousness of these chunks. This method
can mitigate the impact of perturbations, potentially thwarting
attacks. Second, adversarial retraining has been widely consid-
ered as one of the most effective defenses against adversarial
attacks. This method assumes that the app market can use
similarity analysis to identify a limited number of adversarial
piggybacked malware, thereby enhancing the AMD model’s
performance by adversarial retraining.

To verify the second method, we consider an extreme
scenario where users acquire 100 instances of adversarial
piggybacked malware for each malicious rider and incorporate
them into the training set for model retraining. The attack
success rates ASRU on matched riders are illustrated in Fig.

13. Red bars indicate the results of the original model, whereas
blue bars represent the results of the adversarially retrained
model. The bars with a green background denote the attack
results on existing riders, and those with a gray background
reflect the results on unknown riders. The experimental results
demonstrate that adversarial retraining can mitigate the attack
effectiveness of adversarial piggybacked malware, reducing
their ASR from 85.9% to 10.5%. However, this defense
has two significant drawbacks. The first is the difficulty of
obtaining a substantial amount of adversarial piggybacked
malware for training in real-world scenarios. The second is
that the model, strengthened by adversarial retraining, tends
to overfit the adversarial piggybacked malware present in the
training set. As shown in the figure, the defense effectiveness
of the model against adversarial piggybacked malware gener-
ated from Unknown Riders is 17.6% lower than that against
malware derived from existing riders. In the future, we will
explore more robust malware detection models.

B. Functional Consistency Verification

To verify the functional consistency, we need to compare
the functional differences among three types of software:
benign carrier, piggybacked malware, and adversarial piggy-
backed malware. We first verify the piggybacked malware
preserves the functionality of the benign carrier. This has been
confirmed in the Malicious Rider Extraction step. We then
verify that the functionality of the malicious rider remains
unaffected. However, some malicious functionalities are deeply
hidden and challenging to uncover and dynamically validate.
To verify that our perturbations do not impact the malicious
behavior’s functionality, we use a typical malicious rider (i.e.,
DroidDream) as an example. DroidDream injects malicious
code segments into existing benign carriers. It collects partial
information from the phone and sends it to specific servers
during the night. It also downloads additional malicious in-
stallation packages, posing a severe security threat to the
user’s device. We conducted the dynamic analysis to deter-
mine whether this type of piggybacked malware can execute
malicious functions after injecting perturbations. The specific
experiments are detailed in Appendix J, and the results indicate
that all adversarial piggybacked malware can run normally and
exhibit malicious behavior.

C. LLM for Perturbation Generation

We believe that the ability of large language models
(LLMs) to generate code for specific tasks [11], [27], [19],
especially for low-level language like smali, still needs im-
provement due to the lack of relevant corpus in the LLM’s
dataset, which affects its effectiveness. However, utilizing
LLM make perturbing code closely resemble human-written
code shows promise. This is due to techniques like Try-Catch
traps, which reduce the need for strict syntax correctness.

VIII. ETHICS STATEMENT

Our work falls within the realm of offensive research. Our
main goal is to make academic and industrial communities pay
more attention to adversarial example attacks against Android
malware detection systems. In the section of Potential Defense,
we have deliberated on potential defense mechanisms against
our attack method. We ensure that the relevant technology will
only be utilized for academic research purposes.
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IX. CONCLUSION

In this paper, we introduce an automated mass evasive mal-
ware generation approach that combines adversarial example
technique with piggybacking. The malware generated through
this method is referred to as adversarial piggybacked malware.
By extracting malicious riders, generating perturbations, and
selecting benign carriers, we achieve the automated generation
of a significant volume of adversarial piggybacked malware.
We validate the effectiveness of our method on six academic
detection models and the commercial engine integration plat-
form VirusTotal. Finally, we discuss potential defense methods
and future directions.
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APPENDIX

A. Formal Proofs

The convergence proof of the algorithm for solving the
min-max problem has been extensively discussed in several
studies [57], [33], [39].

For the sake of convenience, we denote the loss as L, i.e.,
L = −Exb∈B(F (xb + (r + n) + p)). Our goal is to solve the

following saddle point problem:

min
p

max
n

L(p, n), (14)

If r and p are continuous values, we can solve the afore-
mentioned problem using the following gradient descent ascent
(GDA) algorithm.

pk+1 = Pp [pk − αLr (pk, nk)] , for k = 0, 1, . . .
nk+1 = Pn [nk + αLn (pk, nk)] , for k = 0, 1, . . .

(15)

where PP and PN denote the projections onto the sets P and
N , respectively. The vectors p0 ∈ P and n0 ∈ N are the
initial iterates, and the scalar α > 0 is a constant step size. The
vectors Lp(pk, nk) and Ln(pk, nk) represent the subgradients
of L at (pk, nk) with respect to p and n, respectively.

However, in our work, r and p are discrete. Therefore,
we use E2(n+c,p)−E2(n,p)

len(c) and E2(n,p+c)−E2(n,p)
len(c) to replace

Lp(pk, nk) and Ln(pk, nk), respectively. For convenience,
we will only analyze the convergence properties under the
condition of continuous variables.

Under general assumptions, we consider L to be a convex-
concave function. Specifically, L(·, n) is convex for every n ∈
N. L(·, n) is concave for every p ∈ P.

And we assume:

Assumption 1. The Lp (pk, nk) and Ln (pk, nk) used in the
method defined by Eq. (15) are uniformly bounded, i.e., there
is a constant L > 0 such that

∥Lp (pk, nk)∥ ≤ L, ∥Ln (pk, nk)∥ ≤ L, for all k ≥ 0.
(16)

Following the above assumptions and Eq. (15), we can get
two Lemmas and one conclusion:

Lemma 1. Let the sequences pk and nk be generated by
the subgradient Eq. (15). We then have:

(a). For any p ∈ P and for all k ≥ 0,

∥pk+1 − p∥2 ≤ ∥pk − p∥2 − 2α (L (pk, nk)

−L (p, nk) + α2 ∥Lp (pk, nk)∥2
(17)

(b). For any n ∈ N and for all k ≥ 0,

∥nk+1 − n∥2 ≤ ∥nk − n∥2 + 2α (L (pk, nk)

−L (pk, n) + α2 ∥Ln (pk, nk)∥2
(18)

Lemma 2. Let the sequences pk and xk be generated by
the Eq. (15). p̂k and n̂k are the iterate averages given by:

p̂k =
1

k

k−1∑
i=0

pi, n̂k =
1

k

k−1∑
i=0

ni (19)

We then have, for all k ≥ 1,
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1

k

k−1∑
i=0

L (pi, ni)− L (p, n̂k) ≤
∥p0 − p∥2

2αk
+

αL2

2
, for any p ∈ P

(20)

−∥n0 − n∥2

2αk
− αL2

2
≤ 1

k

k−1∑
i=0

L (pi, ni)−

L (p̂k, n) , for any n ∈ N .

(21)

According to the above analyses, we can have following
conclusion.

Conclusion 1. Let (p∗, n∗) ∈ P ×N be a saddle point of
L(p, n). We have:

−∥n0 − n∗∥2

2αk
− αL2

2
≤ 1

k

k−1∑
i=0

L (pi, ni)− L (p∗, n∗)

≤ ∥p0 − p∗∥2

2αk
+

αL2

2

(22)

These results show that averaged function values
1
k

∑k−1
i=0 L (pi, ni) converges to the saddle point value within

an error level of αL2

2 .

B. Comparison of APK Features Before and After Perturba-
tion

To visually show benign samples, malicious samples, ad-
versarial examples generated by matched riders (Adversarial-
M), and adversarial examples generated by mismatched riders
(Adversarial-MM), we extract the results of these samples
from the layer preceding the model’s output layer and reduce
their dimensionality using the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) algorithm [50]. The dimensionality-
reduced results are displayed in Fig. 14. The figure illustrates
the distribution of different samples in the latent space of var-
ious detection models. Green and red points represent benign
samples and malicious samples, while blue and purple points
denote Adversarial-M and Adversarial-MM, respectively. The
black dashed line represents the potential classification bound-
ary. The results indicate that most Adversarial-M are closer to
benign samples, whereas most Adversarial-MM are closer to
malicious samples. This observation validates that our method
satisfies the universality and targeting requirements.

C. Correcting the Errors Output by LLMs

When generating smali functions based on API blocks,
the LLM may encounter the following errors: 1) failure to
adhere to instruction requirements, and 2) syntax errors in the
generated code. Facing the first error, the script will prompt
the LLM to regenerate the code until it meets the specified
instructions. The second error can lead to APK repackaging
failures. To address this problem, we compile a repository
of prompts for correcting errors based on past experiences.
These prompts are integrated into a script that generates code
correction suggestions derived from error messages encoun-
tered during failed APK repackaging attempts. This approach

(1) DREBIN (3) FD-VAE-E1(2) FD-VAE

(4) FD-VAE-E2 (5) MAMADROID (6) APIGRAPH

Benign Malicious Adversarial-M Adversarial-MM

Fig. 14. Visualization of the results using t-SNE.

guides the LLM in refining its code-generation process based
on previous iterations.

D. Template-based Code Generation Utilizing LLMs

We divide the process of code generation into blocks,
ensuring that each output generates a single Permission or a
single smali file along with its corresponding component. The
templates we use are given below:

Prompts for permission: “Please write the statement to
add permission X in the AndroidManifest.xml file. Only output
the content of this permission, without comment.”

Here, “Only output the content of this permission, without
comment.” directs LLM to generate only the permission con-
tent, minimizing LLM’s query costs and enhancing efficiency.
X represents the permission to be added.

Prompts for action: “Please create an Android ac-
tivity, service, receiver, or provider component named
com.api.ae.num with action X, and set its android:enabled
to true, with no permission. Only output the content of this
component, without headers, comments, or ending marks.”

In this case, “com.api.ae.num” corresponds to the smali
file for action X, “android:enabled” set to true indicates it
is not dead code, “with no permission” avoids introducing
negative impact features, and “Only output the content of
this component, without headers, comment, or ending marks”
instructs LLM to generate only the action content, optimizing
query costs. X denotes the action to be created.

Prompts for API: “Please create a smali file named
Lcom/api/ae/num with only one function, and the function
only calls the API X. Add the libraries required for the file to
run, only output the content of the file, do not write any test
statements, headers, comment, or ending marks.”

Here, “com/api/ae/num” specifies the smali file location
for the new API, “Add the libraries required for the file to
run” ensures syntax errors are avoided due to missing libraries,
and “do not write any test statements, headers, comment, or
ending marks” directs LLM to generate only the API content,
reducing query costs. X represents the API to be implemented.

E. Perturbation Generation in Code Space

In our algorithm, we employ an LLM to generate pertur-
bations in code space. Compared to operations like inserting
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.class public Lcom/adjust/mb/selfDefined;

.super Ljava/lang/Object;

.method public static DebugUtility()V

    .locals 3

    const-string v0, "MySmaliClass"

    const-string v1, "This is a debug log."

    invoke-static {v0, v1}, Landroid/util/Log;->d(Ljava/lang/String;Ljava/lang/String;)I

    sget-object v0, Landroid/app/Application;->currentApplication:Landroid/app/Application;

    const-string v1, "Hello, World!"

    const/4 v2, 1

    invoke-static {v0, v1, v2}, Landroid/widget/Toast;->makeText(Landroid/content/

Context;Ljava/lang/CharSequence;I)Landroid/widget/Toast;

    move-result-object v0

    invoke-virtual {v0}, Landroid/widget/Toast;->show()V

    invoke-static {}, Landroid/os/SystemClock;->elapsedRealtime()J

    move-result-wide v0

    new-instance v2, Landroid/os/Handler;

    invoke-direct {v2}, Landroid/os/Handler;-><init>()V

    invoke-virtual {v2}, Landroid/os/Handler;->getLooper()Landroid/os/Looper;

    return-void

.end method
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Fig. 15. The comparison of different problem space perturbation generation
methods.

NOPs and empty functions, the LLM can generate code that
is semantically closer to human-written code. An example is
shown in Fig. 15

TABLE III. THE ATTACK EFFECTIVENESS ON MALPACK

Scenarios
ER UR

U(↑) T(↓) U(↑) T(↓)
W 1.000 0.441 0.989 0.410

B S 0.920 0.466 0.816 0.418
G 0.948 0.333 0.872 0.358

B D 0.942 0.429 0.890 0.440

F. The Attack Effectiveness on MALPACK

In this section, we consider a specific targeted clone app
detection tool Malpack [45]. As shown in Table III, the exper-
imental results indicate the performance of the new detection
model (i.e., MALPACK). Experimental results demonstrate
that our algorithm also achieves a strong attack performance
on MALPACK.

G. The Detection Models Used in Experiments

In our study, both the target model and the local substitute
models are Deep Neural Network (DNN) models. In the
training phase, we utilize four substitute models (Model 1 -
Model 4). In the attack phase, we employ three target models
(G, B S, B D). To ensure adequate diversity in our local
ensemble models, we train substitute models using different
subsets of the training data. Specifically,the details of models
are in TABLE IV. The table is divided into two sub-tables.
The first six rows represent the structure and training data of
substitute models, while the second six rows pertain to the
target model’s structure and training data. In each sub-table,
the second row indicates the index of the ensemble model,
the third row specifies the number of neurons in each layer
(NN), the fourth row describes the activation functions used
in the hidden layers (AF H), and the fifth row denotes the

activation function used in the output layer (AF O). The final
row illustrates the percentage of traditional training samples
and piggybacked malware samples used in the training data
(TD). Importantly, the training datasets for target models and
substitute models are completely isolated to avoid any risk of
data leakage.

TABLE IV. THE DETAIL OF THE DETECTION MODEL USED IN OUR
EXPERIMENTS FOR FD-VAE-E1 FEATURE

Substitute model

Model 1 Model 2 Model 3 Model 4

NN
[461,1200,

1200,1200,1]

[461,1200,

1200,1200,1]

[461,1200,

1200,1200,1]

[461,1200,

1200,1200,1]

AF H Relu Relu Relu Relu

AF O Sigmoid Sigmoid Sigmoid Sigmoid

TD [100%,100%] [33.3%,33.3%] [33.3%,33.3%] [33.3%,33.3%]

Target model

G B S B D -

NN
[461,1200,

1200,1200,1]

[461,1200,

1200,1]

[461,1200,

1200,1200,1200,1]
-

AF H Relu Relu Relu -

AF O Sigmoid Sigmoid Sigmoid -

TD [100%,100%] [100%,100%] [100%,100%] -

H. Performance of the Target Model

In this subsection, we demonstrate the detection perfor-
mance of the 6 detectors used by our experiments in Section
V. For the convenience of experiment reproducibility, we
provide the hyperparameters of target detectors at the end of
this subsection. The first row of Table V represents different
classification models, with the first column denoting various
test datasets. ’ER’ signifies benign samples in the test set
to which an Existed-Rider from the training set is added,
while ’UR’ indicates benign samples in the test set to which
an Unknown-Rider from the training set is added. ’Benign’
denotes benign software, and ’Malware’ represents the orig-
inal malware in the dataset. The second column represents
different attack scenarios, i.e., gray-box target models, black-
box shallow target models, and black-box deep target models.
We use the 10-fold cross-validation to evaluate the detection
performance of target detectors and provide the results in
Table V. It can be seen that the target detectors perform well
on our dataset, and are qualified for evaluating adversarial
piggybacked malware.

I. The Attack Effectiveness on Additional Malicious Riders

We explore the effectiveness of our attack algorithm on a
broader range of potential malicious riders, which are obtained
with two approaches:

TABLE V. TARGET MODELS’ PERFORMANCE

Scenarios DREBIN FD-VAE FD-VAE-E1 FD-VAE-E2 MaMaDroid APIGraph

ER
G 0.984 0.973 0.979 0.990 0.717 0.689

B S 0.984 0.971 0.978 0.987 0.753 0.673
B D 0.984 0.972 0.979 0.988 0.730 0.668

UR
G 0.839 0.855 0.886 0.896 0.601 0.594

B S 0.817 0.855 0.886 0.892 0.661 0.592
B D 0.832 0.855 0.895 0.901 0.613 0.581

Benign
G 0.985 0.897 0.889 0.914 0.944 0.924

B S 0.984 0.930 0.896 0.909 0.929 0.930
B D 0.983 0.871 0.873 0.902 0.938 0.930

Malware
G 0.842 0.841 0.863 0.839 0.768 0.783

B S 0.863 0.782 0.859 0.854 0.790 0.720
B D 0.849 0.855 0.874 0.866 0.789 0.762
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TABLE VI. THE ATTACK EFFECTIVENESS ON ADDITIONAL MALICIOUS RIDERS

Multi-Hook Riders Merge Riders

Scenarios
DREBIN FD-VAE FD-VAE-E1

Scenarios
DREBIN FD-VAE FD-VAE-E1

U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓)
W 0.908 0.154 1.000 0.273 1.000 0.135 W 0.791 0.366 1.000 0.456 0.970 0.210

B S 0.759 0.168 0.798 0.170 0.811 0.190 B S 0.631 0.299 0.709 0.266 0.758 0.282
G 0.734 0.132 0.820 0.171 0.882 0.188 G 0.663 0.318 0.672 0.258 0.785 0.234

B D 0.732 0.151 0.834 0.178 0.905 0.171 B D 0.584 0.283 0.686 0.255 0.787 0.246

Scenarios
FD-VAE-E2 MaMaDroid APIGraph

Scenarios
FD-VAE-E2 MaMaDroid APIGraph

U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓) U(↑) T(↓)
W 0.998 0.128 0.966 0.345 0.997 0.530 W 0.994 0.425 0.980 0.351 0.997 0.505

B S 0.788 0.142 0.867 0.279 0.853 0.423 B S 0.689 0.411 0.773 0.288 0.698 0.394
G 0.810 0.149 0.799 0.276 0.861 0.455 G 0.793 0.512 0.804 0.304 0.794 0.430

B D 0.870 0.172 0.863 0.280 0.887 0.421 B D 0.678 0.400 0.794 0.307 0.760 0.404

1. We merge existing malicious riders in pairs. We dis-
cover scenarios where two malicious riders coexist within
one piggybacked malware. Inspired by this observation, we
aim to expand the dataset by combining existing malicious
riders in pairs. To ensure that the paired riders could coexist,
we first select 26 non-overlapping malicious riders (if two
riders share the same file name, merging them would result in
the overwriting of critical code). Subsequently, we construct
26×25

2 = 325 new malicious riders. Finally, we filter out riders
with identical features using a feature comparison method,
resulting in 168 new distinct malicious riders. We refer to these
riders as MR (merge riders).

2. We relax the extraction criteria for malicious riders and
allow for the presence of multiple HOOK functions, resulting
in the identification of 83 malicious payloads. Subsequently,
we apply a feature filtering method, which yielded 32 distinct
malicious riders. We refer to these riders as MHR (multi-hook
riders).

The experimental results are presented in TABLE VI,
which includes two sub-tables for multi-hook riders and merge
riders. In each sub-table, the first column indicates four dif-
ferent attack scenarios, while columns 2 to 4 represent six
different features. The results demonstrate that our algorithm
performs effectively against the new malicious riders.

J. A Specific Example

In our analysis of existing piggybacked malware and the
original benign software instances (1D239AC5886F9A6C321F
0CD520E5CF507D7BD97B72AEEC0A3A93F2CE1AF19F66
and 8BB2570E5FE9CBA3021C04DB6334558A49FDC55885
C4A32E92C2369F9ACC697B), we have identified a promi-
nent malicious payload known as DroidDream. DroidDream
[17] is a highly recognized piggybacked Android malware that
inserts malicious code into benign software. The malicious
payload’s function involves automatically downloading new
malware during nighttime to evade detection by dynamic
analysis and other detection systems.

Due to this malicious rider’s overt behavior, we use it to
validate the consistency of adversarial piggybacked malware
functionality. We load this malicious rider onto 100 benign
APKs, creating 100 instances of piggybacked malware. Ad-
ditionally, we load the evasive rider (a combination of rider
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Fig. 16. The detection results on VirusTotal of adversarial piggybacked
malware with DroidDream rider.

and perturbation) onto 100 benign APKs, forming adversarial
piggybacked malware. Subsequently, we execute the original
benign software, piggybacked malware, and adversarial pig-
gybacked malware concurrently on an Android emulator for
dynamic analysis. Initially, we adjust the Android emulator’s
time to the early hours of the morning. The experiment
reveals that the original benign software operated normally,
whereas all instances of piggybacked malware and adversarial
piggybacked malware automatically initiated the download of
new malware.

After validating the functionality of adversarial piggy-
backed malware, we upload these 100 instances of piggy-
backed malware and 100 instances of adversarial piggybacked
malware to VirusTotal for testing. The experimental results,
as shown in Fig. 16, depict the number of detection results
flagged as malicious by various scanning engines on the y-
axis, with different scanning engines represented on the x-axis.
The orange bars represent the results for piggybacked malware,
while the green bars represent the detection outcomes for ad-
versarial piggybacked malware. The results of the experiment
indicate that our approach significantly reduces the probability
of detection by various scanning engines.
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