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Abstract—An increasing number of distributed platforms com-
bine Trusted Execution Environments (TEEs) with blockchains.
Indeed, many hail the combination of TEEs and blockchains
a good “marriage”: TEEs bring confidential computing to the
blockchain while the consensus layer could help defend TEEs
from forking attacks.

In this paper, we systemize how current blockchain solutions
integrate TEEs and to what extent they are secure against
forking attacks. To do so, we thoroughly analyze 29 proposals
for TEE-based blockchains, ranging from academic proposals
to production-ready platforms. We uncover a lack of consensus
in the community on how to combine TEEs and blockchains.
In particular, we identify four broad means to interconnect
TEEs with consensus, analyze their limitations, and discuss
possible remedies. Our analysis also reveals previously undoc-
umented forking attacks on three production-ready TEE-based
blockchains: Ten, Phala, and the Secret Network. We leverage
our analysis to propose effective countermeasures against those
vulnerabilities; we responsibly disclosed our findings to the
developers of each affected platform.

I. INTRODUCTION

Modern blockchains leverage smart contracts to run arbi-
trary business logic. Smart contracts instantiate state machine
replication where all miners are expected to execute the
contract code over common inputs and update their state. Here,
the (binary) code of the smart contract and the transaction data
must be available to all miners. In the case of applications
handling sensitive data, this can hardly be tolerated.

Researchers and practitioners tried to address this gap by
protecting the contract logic and the corresponding transaction
data/state. Available solutions rely on trusted third parties
to execute the contracts [1], [2], zk-rollups [3]–[5], secure
multi-party computation (MPC) [6], [7], or Trusted Execution
Environments (TEEs) [8]–[11]. TEE-based solutions emerge
as an attractive means to ensure the confidentiality of the
contract and the associated data. Namely, they are (1) more
efficient and more expressive compared to solutions based
on MPC and (2) require drastically lower deployment costs
compared to solutions that require trusted third parties. These
factors led to considerable adoption of TEEs within existing
decentralized platforms, such as Ten [12], Phala [9], and
the Secret Network [13]. Given the pervasiveness of TEEs

nowadays, the number of decentralized platforms supporting
TEEs is only expected to grow.

While TEEs bring several benefits to blockchains (e.g., con-
fidential computing for smart contracts), they can also leverage
the consistency layer of the underlying blockchain to miti-
gate one of their fundamental limitations: the lack of proper
countermeasures against so-called forking attacks [14]. Such
attacks can be mitigated if the TEE processes requests that
are properly serialized. Consensus protocols, in general, and
blockchains, in particular, are notorious for ensuring the total
ordering of events. Hence, TEE-based applications can natu-
rally rely on blockchains to counter forking attacks [15], [16].
On an abstract level, such a “marriage” between blockchains
and TEEs supports the confidential execution of contract logic
while mitigating forking attacks on TEEs.

In this paper, we provide a systematization of existing
solutions used by various TEE-based blockchains to counter
forking attacks against the enclave. We point out that a forking
attack against TEEs can be carried out either by rolling back its
state or by cloning the TEE instance [14]. Unfortunately, while
previous work [15], [16] investigated forking attacks based on
rollbacks, it did not consider practical forking threats that can
arise from cloning. In other words, a TEE-based blockchain
that includes anti-rollback mechanisms may still be susceptible
to forking attacks based on cloning. Towards this end, we
analyze 29 proposals for TEE-based blockchains, ranging from
academic proposals to production-ready platforms. We iden-
tify four broad categories of anti-forking techniques used in
TEE-based blockchains. Further, we analyze the trade-offs of
each technique—ranging from the expressiveness of the smart
contract that can be deployed in the TEE to the restriction on
the L1 layer that can be used. We then highlight pitfalls in
how these techniques are currently instantiated and discuss
workable mechanisms to practically address those pitfalls.
Our analysis shows that combining TEEs and blockchains to
provide forking-resistant confidential smart contracts presents
a number of practical challenges that are often overlooked by
researchers and practitioners. In particular, we show that (1)
stateless enclaves can be protected against forking attacks in
existing protocols by leveraging ephemeral enclave identities,
but (2) devising comprehensive solutions to protecting stateful
enclaves in existing TEE-based blockchains depends on sev-
eral factors, such as the type of consensus (final or eventual)
or the throughput of the consensus layer, among others.

Throughout our systematic analysis, we identify several
vulnerabilities that lead to forks in the TEE state. Among these
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vulnerabilities, we describe previously undocumented forking
attacks on three production-ready TEE-based blockchains,
namely: Ten [12], Phala [9], and the Secret Network [13].

In summary, we make the following contributions:

Systemization of knowledge: We provide a systemization
of existing solutions used to counter forking attacks
on TEE-based blockchains. We analyze, by means of
a thorough empirical analysis, 29 proposals for TEE-
based blockchains. We categorize existing anti-forking
mechanisms used by such platforms into four broad
categories and identify their gaps and limitations (cf.
Section IV).

Pitfalls in TEE-based blockchains: We explore the solu-
tion space to secure TEE-based blockchains against possi-
ble forking attacks. Namely, we discuss the various trade-
offs existing solutions exhibit and show significant pitfalls
in how these techniques are instantiated. For example, Li
et al. [16] note that FastKitten [8] cannot be forked by
rollback. However, we show a new cloning-based forking
attack against FastKitten (cf. Section IV-C). We discuss
workable mechanisms to address those pitfalls practically
and show that the underlying choice of the mitigation
technique depends mostly on the provisions of Layer 1.

Cloning vulnerabilities in production-ready networks:
We present and evaluate previously undocumented
cloning vulnerabilities in Ten, Phala, and the Secret
Network, three production-ready TEE-based blockchains
(cf. Section V). Our first attack against Phala enables
an adversary to operate two instances of the enclave
contract (with the same code and address) and freely
choose the instance to answer a request; given that the
two instances share the code and the address, a client
cannot distinguish which one answered its request.
This allows the adversary to reply with a stale state
and works despite defenses like transaction ordering
and other well-known measures used to prevent rogue
contract injections [17]. Similarly, in our second attack
against the Secret Network, the adversary uses another
instance of the same contract code to answer the query
incorrectly based on a different state. This new attack
works despite the anti-rollback measures proposed by
Jean-Louis et al. [15]. Our final novel attack against
Ten allows an adversary to spawn as many enclaves to
increase the chances that it is elected as the next rollup
proposer despite the anti-rollback solution used in Ten.

Practical countermeasures: By leveraging our systematic
analysis, we discuss and analyze practical and workable
solutions, based on our findings, to address the vulnera-
bilities identified in Ten, Phala, and the Secret Network.

Responsible disclosure: We responsibly disclosed our find-
ings and suggested countermeasures to the developers of these
production-ready TEE-based blockchains, respectively (see
https://cloning-tee-blockchains.github.io/).

II. BACKGROUND AND RELATED WORK

A. Hardware-based TEEs

Trusted Execution Environments leverage the hardware to
control access to runtime memory by software, thereby provid-
ing an isolated sandbox—known as “enclave”—to execute user
code. As such, the threat model for TEEs includes malicious
user (peer) processes and a malicious OS while the underlying
hardware is trusted. Commercial TEEs include Intel SGX [18],
AMD SEV [19], or ARM TrustZone [20]. While each of those
commercial TEEs has its own unique features, they all share
a common blueprint. In the following, we will only discuss
the TEE features that are relevant for this work and refer the
reader to [21] for a complete treatment of TEEs.

Attestation and Enclave Identity. Attestation allows (remote)
verifiers to check the code that is running within an enclave
and the configuration of the underlying platform. In a nutshell,
a trusted system component uses a private key to sign a hash
computed over the code deployed in the enclave and various
attributes of the machine (e.g., TEE version, security patches);
the verifier uses a public key, usually distributed by the TEE
manufacturer, to verify the signature.

The hash computed over the code and the machine attributes
is often referred to as the “identity” of the enclave and allows
to distinguish two enclaves running two different binaries on
the same machine or two enclaves running the same binary
but on two different machines. Note that TEEs provide no
support to distinguish enclaves with the same binary on the
same platform.

Sealing. Apart from secure runtime memory, TEEs also pro-
vide secure (disk) storage. This is achieved by means of
authenticated encryption and by leveraging so-called sealing
keys. A sealing key for a given enclave is derived from a
platform-specific master key and the identity of the enclave.
Hence, two enclaves running different binaries (or on different
platforms) cannot access the same sealing key; as a result,
data sealed by one enclave cannot be unsealed by the other.
Nevertheless, two enclaves on the same platform running the
same binary have access to the same sealing key. We point
out that access to the disk is mediated by a possibly malicious
OS; hence, sealing provides no freshness guarantees. That is,
when the enclave fetches a sealed state from the disk, it has
no means to distinguish whether the ciphertext provided by
the OS corresponds to (1) the latest sealed state or (2) to an
older ciphertext containing a stale state.

B. Forking Attacks on TEEs

Forking attacks are well-known threats to the consistency
of distributed applications [22]. In the context of TEEs, a
forking attack leverages the lack of freshness of the sealing
functionality or the lack of mechanisms to distinguish two
instances of the same enclave application. In other words, a
forking attack on a TEE can be mounted either by rolling back
the enclave state or cloning the enclave application.

In the following, we describe both strategies with a sample
TEE application denoted as E. Consider the case where E
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updates its state sj based on a function f , the previous state
sj−1, and an input i. Let s0 be the enclave starting state, and
assume that E seals its state to disk after every update to
recover it in case of crashes. Furthermore, let E receive two
inputs, i1 and i2, one after the other. In a benign setting, the
enclave will move through states s1 = f(s0, i1) and s2 =
f(s1, i2), each sealed to disk.

Rollback-based forking. Forking can be achieved by termi-
nating the enclave after it has sealed s1. Next, E is restarted;
when the enclave fetches state from disk, the adversary pro-
vides s0 instead of s1, thereby rolling back the state of the
enclave. If the enclave then processes i2, it moves to state
s′2 = f(s0, i2).

Cloning-based forking. Here, the adversary launches another
enclave instance running the same code—denoted as E′—on
the same machine. Note that, as discussed above, it is not
possible to distinguish the two instances apart. Hence, the
adversary feeds i1 to E that advances to state s1 = f(s0, i1)
and feeds i2 to E′ that advances to state s′1 = f(s0, i2).

C. Layer One, Layer Two, and Blockchain Applications

A blockchain is a decentralized system that ensures state
consistency among the system’s nodes. Consistency is main-
tained through a “Layer One” (L1) consensus protocol, which
ensures that the majority of (honest) nodes agree on a common
state. Transactions are used to update the state, and nodes
typically use the consensus protocol to agree on the order of
transactions, organized in batches called blocks. For instance,
Nakamoto-style blockchains (such as Bitcoin and Ethereum
Classic) use a randomized leader election protocol (leveraging
Proof of Work or Proof of Stake) to elect the next block
proposer but rely on the longest chain rule to reach consensus
on transactions and blocks. Such protocols scale well to a high
number of nodes but only achieve modest throughput.

Layer Two (L2) solutions overcome the performance and
functionality limitations of L1. For example, payment chan-
nels [23] and roll-ups [24] enable the bulk processing of
transactions, thereby decreasing the transaction processing
load on L1. Similarly, cross-chain bridges [25] and atomic
swap protocols [26] enable interaction between independent
blockchains. These solutions, however, still rely on the un-
derlying L1 blockchain for final confirmation and validation.
For example, L2 solutions that process batches of transactions
off-chain must periodically commit state updates to the L1
blockchain, which provides final confirmation for those off-
chain transactions.

Some blockchain applications interface L1 blockchains with
L2 solutions. For example, lightweight clients [27] monitor the
blockchain by storing only block headers, querying transac-
tions from full nodes, and verifying the responses using these
headers. Other applications like wallets [28] securely manage
user accounts and the keys necessary to authorize transactions.

D. Related Work

To the best of our knowledge, no previous work has focused
on forking attacks against TEE-based blockchains. We now
discuss the most relevant related papers.

Li et al. [16] systematize TEE-assisted confidential smart
contracts with respect to “Privacy-Preserving Properties” (e.g.,
I/O privacy) and “Blockchain Intrinsic Benefits” (e.g., high
availability). The authors of [16] briefly mention “state con-
sistency” and the problem of state freshness for TEEs. Nev-
ertheless, Li et al. [16] do not provide a systematic study
on forking vulnerabilities of TEE-based blockchains. Jean-
Louis et al. [15] investigate privacy flaws in four production-
ready blockchains, namely Phala, Ten, Oasis, and the Secret
Network. The authors discuss the privacy leaks due to a
potentially malicious OS that sees enclave accesses to an
external (encrypted) database or the enclave page faults. The
authors of [15] also show a rollback attack on the Secret
Network that allows the adversary to learn private information
about transactions (e.g., transaction amounts, balances, etc.).
However, Jean-Louis et al. [15] provide no attacks on the other
platforms they consider, nor do they take into account attacks
based on cloning the enclave.

III. SYSTEMIZATION METHODOLOGY

In what follows, we explain our classification criteria and
outline our systemization methodology. Figure 1 provides an
overview of our approach.

A. Selection Criteria

To the best of our knowledge, the majority of TEE-based
blockchains rely on Intel SGX, with two notable exceptions:
CCF [29], which supports both Intel SGX and AMD SEV,
and TZ4Fabric [30], which is based on ARM TrustZone.
Consequently, our systematic evaluation focused solely on
SGX-based blockchains. However, we believe our findings are
applicable to other TEEs, as they share similar limitations.

The selected platforms were taken from a curated list of
SGX-based blockchains [31, Sec. Blockchains/Session 4] and
an SoK on TEE-assisted confidential smart contracts [16],
totaling 41 platforms. We discarded platforms without an
enclave instantiation, platforms that were archived, or that had
no English documentation, ending up with 28 platforms. We
considered an additional production-ready platform, Ten [12],
that was studied by [15]—one of the closest related works.

B. System Classification

We systemize the platforms in our analysis based on how
they leverage functionality from TEEs. We identify four main
categories:
Category 1—TEE-based Smart Contracts: Blockchains
in this category use the TEE to achieve confidentiality in
the execution of the smart contract. That is, the TEE fetches
encrypted inputs from L1, processes the transactions, and
pushes encrypted outputs to L1. Some blockchains [29], [32]
employ state-machine replication, where the smart contract
state is replicated across multiple enclaves, whereas others [9]
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assign a single enclave per contract and verify its integrity via
attestation. The contract’s state may be stored locally within
the enclave [13], [29], [32], or on the blockchain itself [11].
To prevent a malicious smart contract from accessing the
state of another (a scenario known as rogue smart contract
code injection [17]), the enclave typically binds the contract
address (derived from the code hash) with the state. Note that
the blockchain may allow clients to issue contract queries,
i.e., direct read requests to the smart contract that bypass
the ledger and allow the client to obtain information on the
contract state [9], [13].

Category 2—TEE-based Consensus Protocols:
Blockchains in this category use the TEE to speed up
or scale consensus. Some blockchains [33]–[35] leverage the
TEE for secure leader election. For example, the “Proof of
Luck” [34] consensus protocol uses the TEE as a source
of unbiased randomness to select the next block proposer.
Other systems [29], [36] execute the consensus mechanism
directly within the TEE to improve scalability. Since the code
inside the TEE is assumed to be trusted after attestation, this
approach dramatically reduces communication complexity in
the presence of malicious nodes.

Category 3—TEE-based L2 Solutions: Blockchains in this
category leverage the TEE to implement confidential L2
solutions. Some blockchains [8], [10], [37], [38] use the TEE
to instantiate confidential smart contracts for L1 blockchains
that lack native support for such features. Other L2 solutions
focus on supporting confidential operations over transactions,
including mixers [39], payment channels [40]–[42], and cross-
chain bridges [43].

Category 4—TEE-based Blockchain Applications: Last
but not least, some applications leverage TEEs to enable secure
access to the blockchain. This includes the secure storage of
key material required for blockchain interaction [44], [45],
secure fetching and validation of blocks [1], and secure data
retrieval for blockchain-based applications [46].

C. Methodology

We analyze the selected platforms to identify the various
techniques used to prevent forking attacks. We detect four
broad techniques. Some platforms use stateless enclaves that
cannot be rolled back “by design” but may be vulnerable to
cloning. Other platforms rely on ephemeral enclave IDs to
distinguish clones. Another technique is to rely on a fixed set
of clients that monitors the enclave to detect forks. Finally, a
common alternative anti-forking technique is to serialize the
enclave state by using the ledger.

These techniques, however, incur several trade-offs in terms
of functionality, robustness, and performance. For example,
stateless enclaves cannot run stateful applications, thereby
restricting the functionality offered by the smart contract.
Similarly, using ephemeral IDs or a fixed set of clients hinders
identity management and complicates the addition/removal of
nodes. Finally, using the ledger to serialize the enclave state

bounds the enclave throughput to the throughput of the ledger,
thereby reducing performance.

In the following sections, we systematize the selected 29
platforms based on the anti-forking mechanisms they use,
assess their resistance to forking attacks, and analyze their
robustness, performance, and functionality trade-offs.

IV. PITFALLS IN TEE-BASED BLOCKCHAINS

We assume the typical threat model for SGX applications,
where the hardware is part of the trusted computing base
(TCB), but any privileged software, such as the operating
system (OS), is considered potentially malicious. In this
model, the adversary fully controls system resources, including
memory, storage, and network communication, but cannot
compromise the hardware. Our analysis focuses explicitly on
forking attacks within the context of TEE-based blockchains.
As such, we assume that the enclave remains uncompromised
and that side-channel and denial-of-service (DoS) attacks are
out of scope. Whenever applicable, we assume that the adver-
sary controls a node running the enclave. Since the adversary
controls the communication between the enclave and the rest
of the system, they can drop or modify all inputs and outputs
of the enclave. For instance, the adversary can provide the
enclave with a stale state whenever the enclave fetches the
state from the disk or the blockchain. Further, the adversary
can clone the enclave by launching an arbitrary number of
instances of the same TEE binary. As mentioned in Section II,
SGX provides no means to distinguish two enclaves running
the same binary on the same platform, and the two binaries
can access the same sealed state.

A. Stateless Enclaves

Overview. A stateless enclave produces output depending only
on the current input and does not need to maintain the state of
previous computations. Hence, if restarted, the enclave fetches
no state from persistent storage [9], [13], [33]–[35], [38],
[39], [41]–[44], [46]–[50]. At times, the enclave may use an
immutable state, such as a signing key, fetched from persistent
storage upon every restart. However, the state (i.e., the signing
key) never changes. Prominent examples of stateless enclaves
are transaction mixers [39] that output a permutation of the set
of transactions received as input. Differently, an enclave that
implements a standard database is typically not stateless—
since previous queries may determine the result of the current
query—and the database is periodically sealed to disk to be
fetched upon restarts.

Vulnerability to Forking Attacks: Stateless enclaves are
resistant to rollback attacks by design. If the enclave fetches
no state from persistent storage or fetches an immutable state,
then the adversary has no means to roll back the enclave.
Nevertheless, cloning attacks remain viable in this setting. For
example, if the computation is randomized, the adversary can
launch multiple clones and select the more favorable output.

Limitation 1—Expressiveness. A stateless enclave clearly
limits the type of applications that can be deployed in the
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Fig. 1. Overview of our systemization methodology: We classify SGX-based blockchains into four distinct categories and analyze their tradeoffs with respect
to robustness, functionality, and performance.

smart contract. For example, a database application requires
enclaves to keep a persistent state and cannot be deployed in
a smart contract running within a stateless enclave.

Example: PoUW. Zhang et al. [33] propose a leader election
protocol based on Proof-of-Useful-Work (PoUW). PoUW is
an alternative to well-known Proof-of-Work protocols where
miners “waste” resources to solve a cryptographic puzzle. In
PoUW, mining resources are used to carry out useful tasks
submitted by clients. A miner can propose a new block only
if it produces “proof” that it has completed a specific task.
In particular, after completion of a task, the miner draws a
random number r ∈ [0, 1] and proposes a new block only if
r is greater than a threshold t set to 1 − (1 − diff)n, where
diff is a tuneable difficulty parameter, and n is the number of
instructions required to complete the task—so that tasks with
more instructions increase the chances of the miner to propose
a block. The proof is, essentially, the task output out and the
random number r. PoUW leverages TEEs to ensure that the
miner faithfully completes the task and draws an unbiased
random r. In particular, the task is executed within an enclave;
upon completing the task, the enclave draws r and signs the
proof with its signing key. Other nodes can verify the proof
using the corresponding public key. Remote attestation allows
nodes to check that the miner indeed runs a legitimate PoUW
enclave. Note that enclave signatures also include the current
block’s hash so that a PoUW has limited validity. This measure
prevents rollback attacks: a malicious host may feed (the hash
of) a stale block to its PoUW enclave, but the proof that the
enclave outputs will not be accepted by other nodes—since it
is not tied to the current block.

Despite being secure against rollback attacks, a cloning
attack on PoUW is still possible, as shown in Figure 2. Assume
a malicious miner that receives a task from a client (step 1 ).
The miner starts two PoUW enclaves EPoUW and E′

PoUW and
provides them with the received task, the current block, and
difficulty (step 2 ). The enclaves execute the task, yielding
the same out and n, so they compute the same threshold
t. EPoUW and E′

PoUW now draw random numbers r and
r′, respectively. Assume that r′ > t while r ≤ t (step 3 ).

Malicious Miner

EPoUW

exec(task), r ≤ t3

E′
PoUW

exec(task), r′ > t3

Client1 task2 task, diff, hash

4 out,PoUW 5 out

4 out,⊥
6 block(PoUW)

Fig. 2. Example of a cloning attack on PoUW [33]. A malicious miner starts
two PoUW enclaves to increase its chances that one of its enclaves produces
proof of useful work.

Consequently, E′
PoUW returns a PoUW, while EPoUW does

not (step 4 ). The adversary returns the output to the client
(step 5 ) and proposes a new block with the PoUW generated
by E′

PoUW (step 6 ). The adversary effectively increased its
chances of proposing the next block by running two clones
of the PoUW enclave. The adversary may run > 2 PoUW
enclaves to increase its chances of proposing the next block
further.

Takeaway 1 – Stateless Enclaves. Using enclaves that do
not keep a persistent state protects against rollback attacks
by design. However, stateless enclaves limit the expres-
siveness of the TEE application and do not deter cloning
attacks when the TEE application is non-deterministic.

B. Ephemeral Identities

Overview. Most TEE-based blockchains use enclaves with
long-lasting identities [12], [35], [37], [40], [46], [49]. For
example, one can identify an enclave with its public key, and
the key pair is sealed to disk to recover from crashes. However,
some blockchains assign ephemeral IDs to enclaves [35], [39],
[41]–[43], [45], [51]. That is, the enclave generates a fresh key
pair at runtime, and the public key is used as an identifier. The
key pair is not sealed to the disk. Hence, if the enclave crashes
and is restarted, it obtains a new identity.
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Vulnerability to Forking Attacks: This simple technique
prevents cloning attacks since ephemeral public keys allow
external parties to distinguish two enclave instances, even if
they run the same binary on the same platform—since they
will likely generate two different key pairs. Hence, messages
encrypted under the ephemeral public key of one enclave
instance cannot be decrypted by any other instance. Note that if
the enclave seals the state to disk, this solution does not protect
against rollback attacks. We note that all the applications we
analyzed and used ephemeral keys have stateless enclaves.

Limitation 2—Key management. Ephemeral keys as an anti-
cloning mechanism may require proper key management. That
is, the consensus protocol must keep track of participating
enclaves and their (ephemeral) public keys. For example, in
the case of PoUW [33], an ephemeral key per enclave would
prevent the adversary from using several instances of the
PoUW enclave as long as there is a consistent layer that keeps
track of all registered ephemeral public keys. This requires
a dedicated registration process. Further, when an enclave
crashes, a mechanism is needed to remove the old ephemeral
key from the list of participating enclaves and add the new
one (created by the enclave upon restart).

In case the application logic can tolerate multiple clones of
an enclave without causing harm, there is no need to rely
on a dedicated key management mechanism. For instance,
Tesseract [43] allows clients to send time-locked deposits
by encrypting coins under the ephemeral public key of the
Tesseract enclave. The enclave does not seal state, and, in
case of a crash, coins are automatically reverted to the original
client account after the time-lock expires. Thus, the Tesseract
enclave logic is inherently robust to cloning attacks; that is, an
adversary gains no advantage by cloning the Tesseract enclave.

Example: Twilight. Dotan et al. [41] propose Twilight,
a differentially private payment channel network. Payment
channels are established between two relays, and assets can
be transferred between them, bypassing the blockchain. Two
parties that are not connected via a payment channel can
transfer coins using a sequence of hops between relays. At
startup, the Twilight enclave generates an ephemeral key pair.
Other relays use the public key of a relay to send encrypted
payment information. Note that Twilight enclaves do not store
state on disk. Thus, even if they cannot tolerate crashes, they
resist rollback attacks by design (cf. Section IV-A).

Figure 3 shows how Twilight leverages ephemeral keys
to prevent cloning attacks. Assume an honest relay RH and
a malicious relay RM . RH operates Twilight enclave EH ,
whereas RM operates two enclaves EM and E′

M . Each enclave
generates a key pair. EH and EM exchanged public keys
to establish a payment channel. A dedicated smart contract
binds the payment channel to the ephemeral keys of EH and
EM (addressing Limitation 2). Assume that EH wants to
send payment p over this channel and encrypts it with pkEM

,
resulting in ciphertext c (step 1 ). EH outputs c to RH which
sends it to RM (step 2 ). RM tries to claim the payment twice,
sending it to both enclave instances (step 3 ). EM decrypts

Honest Relay RH

EH

c = encpkEM
(p)1

Malicious Relay RM

EM

p = decskEM
(c)4a

E′
M

⊥ = decskE′
M

(c)4b

2 c
3 c

3 c

Fig. 3. Example of a (failed) cloning attack on Twilight [41]. A malicious
relay forwards an encrypted payment to two instances of the Twilight enclave.
Ephemeral keys prevent enclave E′

M from decrypting the ciphertext.

c and retrieves p because it has the secret key corresponding
to pkEM

(step 4a ). However, E′
M has a different secret key;

hence decryption of c fails (step 4b ).

Takeaway 2 – Ephemeral Identities. Identifying each
enclave by means of an ephemeral ID (i.e., renewed at
restart) can prevent cloning attacks. In settings where the
state needs to persist, one should additionally rely on anti-
rollback mechanisms.

C. Fixed Set of Clients

Overview: Some TEE-based blockchains only allow a fixed
set of clients to interact with the smart contract [8], [40]. For
example, FastKitten [8] implements a smart-contract solution
on top of Bitcoin. Time is divided into rounds; at each round,
all clients send their inputs and views of the (latest) contract
state to the contract. The contract processes the inputs and
moves to the next round only if its local state matches the
views received by all clients. A similar approach is used in
Lightweight Collective Memory (LCM) [14] where a set of
mutually trusted clients interacts with a TEE application and
exchange their view of the system to detect inconsistencies.

Vulnerability to Forking Attacks: A fixed set of clients
may help prevent forking attacks based on rollbacks. For
example, a FastKitten smart contract can detect a rollback if
the clients’ state information does not match the local state.
Similarly, in LCM, clients can detect if any response from
the smart contract does not match the client’s global view.
We note, however, that a solution with a fixed set of clients
does not prevent cloning attacks: the adversary may still have
an advantage in running multiple clones of the enclave. For
example, when the computation is randomized, the adversary
can launch multiple clones and forward the more favorable
output to the clients.

Limitation 3—Fault tolerance. This approach requires
clients to be online and to trust each other. Hence, the
application does not tolerate client crashes or byzantine faults.

Limitation 4—Reconfiguration. Reconfiguration operations,
i.e., allowing clients to join or leave the set of participating
clients, are costly operations that require re-negotiations of all
established cryptographic keys in the system.

6



Malicious Host

EQ

E′
Q

C1

σ1 = sig(sj , I1,j+1)1

C2

σ2 = sig(sj , I2,j+1)1

2 σ1

3 sj+1

4 s′j+1

2 σ23 s′j+1

Fig. 4. Example of a cloning attack against a non-deterministic smart contract
in FastKitten [8]. A malicious host starts two enclaves and selects the preferred
output.

Example: FastKitten. Das et al. [8] propose a TEE-based
solution to deploy smart contracts on Bitcoin. FastKitten
consists of an enclave EQ that executes a smart contract
with a fixed set of clients. During setup, all clients deposit
coins to EQ’s address, which are then redistributed during
the contract execution. The execution of the smart contract is
split into computation rounds. The enclave redistributes the
coins in each round j, advancing from state sj−1 to sj . The
enclave regularly seals the state to provide fault tolerance. At
the beginning of a round, each client i signs the previous state
sj−1 and its input Ii,j for the current round. If the enclave state
is rolled back, the local state will not match the state sent by
clients. Note, however, that [8] does not address Limitation 4.

Despite being secure against rollback attacks, a cloning
attack here is still possible if the enclave executes a prob-
abilistic smart contract (e.g., a lottery contract as suggested
in [8]). Assume a malicious host that runs an enclave EQ that
has already completed the setup phase with two clients, as
shown in Figure 4. Let the enclave state be sj and assume
it is sealed to disk. The malicious host now starts a clone
E′

Q and provides it with sj . In the next round, each client i
binds sj to its input Ii,j+1 by means of a signature (step 1 ).
The clients submit their signatures to the host that feeds it
to both EQ and E′

Q (step 2 ). Both enclaves successfully
verify the signatures and treat sj as the current valid state.
At this stage, each enclave computes a different output since
the lottery contract is randomized (step 3 ). The adversary
selects the most favorable output (e.g., the output that favors
a specific client) and forwards it to the clients (step 4 ).

Takeaway 3 – Fixed Set of Clients. Relying on a
fixed and mutually trusted set of smart contract clients
can prevent rollback attacks; however, it cannot prevent
cloning attacks if the enclave is non-deterministic.

D. Serializing State

Overview. Most platforms use the blockchain’s ordering layer
to persist and serialize the enclave state. Across the platforms
we analyzed, we witnessed three variants of this technique.

Option 1—Transaction replay from the ledger. Some plat-
forms do not use the local sealing functionality for the enclave
to recover the state after a crash. Instead, the enclave recovers

state by fetching all blocks from the blockchain and processing
one block after another [9], [13], [43], [47], [48]. This option
can prevent rollback attacks if the enclave obtains the complete
set of blocks up to the current one. It can also protect against
cloning if the blockchain cannot be forked.

Option 2—Timestamping. Other platforms use sealing to per-
sist state locally (e.g., on disk) but include block metadata—
such as its height and hash—in their state as an anchor to
ensure state freshness [1], [9], [32], [43], [45]–[48], [52]–[54].
For instance, the block height—i.e., the number of blocks from
the genesis block until the current block—can be used as a
logical clock to track which transactions were committed to
the ledger and which were processed by the enclave. Here, it is
paramount that an enclave includes its current timestamp (e.g.,
the height of the last block it has processed) in its responses to
contract queries. This burdens the requesting client to compare
the timestamp in the ledger (i.e., the current block height) with
the one included in the response from the enclave to detect
forking attacks. Some platforms, such as TERNOA [45], allow
clients to specify a range of block heights for their contract
queries (to cater to partial-synchronous deployments). Here, a
query includes a minimum block height m and a maximum
block height M . The enclave serves the query only if the
height of the latest processed block falls within [m,M ]. This
design choice requires clients to keep track of the current
block height and only ensures loose synchronization between
the ledger and the TEE. In particular, an adversary could roll
back the enclave to a state where the latest block has not
been processed yet to ensure that the TEE’s answer does not
take a recent transaction into account. In other platforms, such
as IntegriTEE [10], the enclave regularly sends a heartbeat
transaction to the blockchain, including the current block
height. The enclave only answers contract queries if it receives
the corresponding acknowledgment.

Option 3—Storing state in the blockchain. Another variant
that we witnessed involves enclaves that seal their state (repre-
sentation) on the ledger [10]–[12], [33]–[35], [37], [38], [51],
[54]. For example, the enclave can write the hashes of the input
and output states to the blockchain. Hence, the consistent layer
can check that the new state naturally evolves from the latest
stored state [12]. This strategy can protect against rollback
attacks if the enclave can always access the latest state in
the consistent layer. It can also prevent cloning attacks since
state updates are tied to the previous state and the hash of the
enclave code.

In what follows, we discuss several limitations that affect
the three options mentioned above.

Limitation 5—Low throughput. Most permissionless L1
layers exhibit low throughput to ensure safety; for instance,
Ethereum has an average block interval of 12 seconds1, while
Bitcoin has an average block interval of 10 minutes2, severely

1https://ycharts.com/indicators/ethereum_average_block_time, accessed
27.06.2024

2https://studio.glassnode.com/metrics?a=BTC&category=&m=blockchain.
BlockIntervalMean, accessed 27.06.2024
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limiting the number of state updates that can be performed
in a certain time interval (when the state is stored in the
blockchain) or the granularity of state updates (when the
blockchain is used to timestamp responses).

Limitation 6—Existential honesty. The only means for
enclaves to receive all blockchain history (and keep track
of the actual block height or hash) is to (1) either directly
participate in consensus [47] or (2) connect to at least one
honest blockchain node (this is often referred to as the exis-
tential honesty assumption [55]). Running the entire consensus
within an enclave [47] is usually discouraged as it increases the
TCB size and code complexity, thereby increasing the attack
surface [56]. Without direct participation in the consensus
protocols, enclaves need to connect to multiple blockchain
nodes (e.g., lightweight Bitcoin clients are recommended to
connect to at least four nodes) to ensure that at least one of
their connections is honest and faithfully reports the current
block. However, this limitation can be mitigated if (1) enclaves
tie their response to their local timestamp (e.g., block height,
hash), and (2) clients check whether their timestamp matches
the one in the enclave’s response. In this sense, one can
effectively outsource the existential honesty limitation from
the enclaves to the clients, who now have to be connected to
at least one honest blockchain node to track the current state.

Limitation 7—Blockchain forks. Permissionless systems
like Ethereum and Bitcoin only offer eventual consistency;
forks (i.e., blocks with the same height) can naturally occur,
which, in turn, would weaken the security provisions of this
approach to protect TEE states from forking. For example,
BITE [1] uses enclaves that scan Bitcoin blocks and answer
client requests. Since Bitcoin only provides eventual consen-
sus, assume that a fork occurs in Bitcoin at height h and a
light-client LC submitted a transaction t that is only included
in one of the forks. Next, LC queries the enclave to determine
its balance. A malicious operator can create two clones of
the BITE enclave, providing each instance with one of the
blockchain forks. LC will receive different balances depending
on which clone serves the request. Similarly, Narrator [57] is
a TEE-based anti-forking solution for TEE applications; here,
a set of Narrator enclaves provide an anti-forking mechanism
for enclaves running arbitrary applications. The security of
Narrator holds as long as (1) the set of Narrator enclaves is
not forked, and (2) each platform runs at most one Narrator
enclave. Towards this end, at start time, a Narrator enclave
writes a platform-bound ID to a blockchain; this makes it
possible to distinguish if two Narrator enclaves are running
on the same machine. Clearly, a fork on the blockchain would
allow a malicious operator to run two Narrator enclaves on
the same machine. An effective countermeasure to address this
problem would be to couple enclave responses with the block
height and the block hash. This allows clients to determine
that this state was computed from a fork.

Limitation 8—Randomized computations. There exists
another attack avenue on enclaves that execute randomized
contracts. In particular, the adversary can run the enclave
multiple times—by re-running a single instance repeatedly
or by running multiple instances at once—to obtain different
outputs, each dependent on the randomness drawn by the
enclave instance during the computation. Obtaining different
outputs could provide an unfair advantage for the adversary.
For example, consider the case where the smart contract
outputs a winning lottery ticket. In that case, the adversary
can obtain multiple tickets—each output by one of the enclave
instances—and decide which one to broadcast as the winning
one. Examples of randomized smart contracts that are vulner-
able to such attacks include PoUW [33] (cf. Section IV-A),
Proof of Luck [34], lottery contracts [8] (cf. Section IV-C),
and Ten [12] (cf. Section V-C). An effective solution is to
use ephemeral IDs. In particular, if each enclave creates an
ephemeral key pair sk, pk at startup and uses sk to sign its
output, the adversary cannot obtain multiple outputs that verify
with respect to pk. This solution works as long as ephemeral
enclave IDs (i.e., their public keys) are appropriately managed.
For example, in the lottery application described above, clients
must agree on the enclave instance (and its public key) that is
entitled to draw the winning ticket.

A note on timestamping and monotonic counters. The idea
of using the current block height to tell if the TEE state
is fresh is reminiscent of “monotonic counters”. Monotonic
counters have been proposed (and used) in the context of
TEEs to prevent rollback attacks. That is, an enclave can
use a monotonic counter to prevent its local state from
being rolled back—e.g., once the enclave has processed a
transaction tx, the adversary cannot roll back the enclave
to a previous state where tx had not been processed. For
instance, Milutinovic et al. [34] propose monotonic counters to
prevent cloning attacks on TEE-based leader elections. Here,
an enclave sleeps for a random period and generates a signed
Proof of Luck (PoL) afterward, which the miner includes in a
block proposal. The PoL protocol increments the monotonic
counters on a platform before drawing a random number.
The enclave validates that the monotonic counters have the
expected value before generating the PoL in the last step of
the protocol. If an adversary runs multiple PoL enclaves, each
enclave will increase the monotonic counter at the beginning
of the protocol, and all but one enclave will see a counter
mismatch at the end of the protocol. However, a monotonic
counter does not help the enclave distinguish whether it
has processed all transactions committed to the blockchain.
Furthermore, monotonic counters are usually implemented via
TPM registers. As such, they represent a single point of failure
and tend to wear out [2]. In practice, we note that monotonic
counters are not viable solutions against rollback attacks since
most platforms no longer support them [58], [59].

Example: CCF. Howard et al. [29], [47] propose a frame-
work for permissioned confidential blockchains (CCF). CCF
runs PBFT or RAFT within the enclaves as the underlying
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Fig. 5. Example of a (failed) cloning attack on CCF [47]. A malicious primary
runs two enclaves, EP and E′

P , where E′
P keeps an outdated state. CB

detects a view mismatch and terminates the connection.

consensus protocols (permissioned consensus protocols). CCF
services are based on a replicated key-value store (KVS).
To ensure consistency of the KVS, CCF divides time into a
series of views v. In each view, one of the nodes is elected
as primary while the other nodes serve as backups. Only
the primary enclave EP processes client transactions tx and
appends them to the ledger. The current state of the ledger, i.e.,
all committed transactions, is represented by a Merkle tree.
EP appends every executed transaction to the Merkle tree,
regularly signs the Merkle root of the ledger, and appends it
to the ledger as a signature transaction. A transaction tx is
only considered committed if a signature transaction, including
tx, is replicated on most nodes. When the enclave restarts, it
recovers the global state by replaying all transactions from
the ledger. When a client connects to CCF, it receives the
current view vi, which denotes the current progress in the
ledger. Here, vi serves as a logical timestamp associated with
the enclave state, which the client can check before submitting
a transaction to the service.

Figure 5 shows how CCF leverages the vi to prevent cloning
attacks. Assume a malicious primary who runs two enclaves
EP and E′

P . It provisions EP and E′
P with all transactions up

to the views vi and vi−1, respectively. When a client connects
to the enclave (step 1 ), it first returns its current view (step
2 ). The client checks the provided view against the view

it knows. Client CB , who is connected to E′
P , will detect

a mismatch in the views and terminate the connection. Only
client CA, connected to EP , sends the transaction tx as the
views match (step 3 ). The enclave executes the transaction,
computing the result (step 4 ), and finally returns it to the
client (step 5 ). Note that a rollback attack would result in an
outdated view, so the client would not provide its transaction
to the enclave.

Note that CCF overcomes Limitations 5-8 as follows. First,
CCF’s consensus algorithm is based on PBFT and RAFT,
which provide high throughput and overcome Limitation 5.
These consensus protocols also guarantee finality, alleviating
Limitation 7. CCF executes the whole consensus algorithm in
an enclave. Enclaves have a direct view of the block height
(i.e., view) and do not need to rely on the honesty of other
nodes, thus bypassing Limitation 6. We note, however, that
implementing consensus inside the enclave significantly in-
creases the TCB and is not a recommended design choice [56].
Finally, since clients directly connect to the CCF enclave
through an encrypted TLS session, a malicious primary cannot

inspect different outcomes of a randomized contract execution,
alleviating Limitation 8.

Takeaway 4 – Serializing State. Serializing the enclave
output using a consistent layer (e.g., the consensus layer
of blockchains) can prevent rollback and cloning attacks.
However, it needs to be combined with ephemeral IDs to
prevent cloning attacks when the TEE computations are
non-deterministic.

E. Summary of Findings

Table I presents the results of our study, while Figure 14 in
Appendix A offers an additional overview of the distribution
of countermeasures. We summarize our findings below.

• Out of the 29 TEE-based blockchain platforms we analyzed,
five are vulnerable to forking attacks. In particular, four
platforms are vulnerable to cloning attacks, while one is
vulnerable to rollback and cloning attacks. In Section V,
we focus on three of those five platforms—those that are
either fully deployed or offer at least a testnet—and describe
the attacks in detail. We stress that none of the attacks we
present were known before.

• 16 of the platforms that we considered use stateless enclaves
(cf. Section IV-A). 11 of those platforms rely on the un-
trusted host to provide state information to the enclave [9],
[13], [33]–[35], [38], [43], [46]–[48], [50].

• Seven of the analyzed platforms leverage Ephemeral IDs
(cf. Section IV-B). Five of these platforms are stateless and
secure against forking attacks. Among those platforms, only
three platforms [35], [42], [51] require proper key man-
agement (cf. Limitation 2). The remaining four platforms
do not require key management as the application logic
is inherently robust to cloning [39], [41], [43], [45]. For
example, [39] runs a mixer in the enclave, and the adversary
has no advantage in running multiple clones.

• Two platforms rely on a fixed set of clients or nodes
(cf. Section IV-C). As both applications are subject to
Limitations 3 and 4, none supports reconfigurations—hence,
the set of participating parties is determined at setup time
and remains fixed throughout the contract lifetime [8], [40].

• 21 platforms serialize state with one of the three techniques
we discussed in Section IV-D.
– Five applications replay transactions at enclave restart

to recover the state (cf. Option 1). Four out of these
applications additionally timestamp enclave responses to
queries [9], [29], [43], [48]. The Secret Network [13]
also replays transactions but does not rely on additional
serialization mechanisms, allowing forking attacks.

– 11 enclaves timestamp their responses to queries (cf.
Option 2). BITE [1] and Tesseract [43] use the latest block
hash whereas the other nine applications [9], [29], [45],
[46], [48], [52]–[54] timestamp by means of the block
height.
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TABLE I
SUMMARY OF OUR ANALYSIS OF 24 TEE-BASED BLOCKCHAIN APPLICATIONS FROM [16], [31]. WE REPORT FOR EACH APPLICATION WHICH FORKING

MITIGATION(S) ARE USED AND WHETHER THEY OVERCOME THE CORRESPONDING LIMITATIONS. WE DENOTE THAT A COUNTERMEASURE IS USED WITH
✓. FURTHER, WE WRITE ✗ (RESP. ✓) IF THE APPLICATION OVERCOMES A LIMITATION AND LEAVE THE FIELD EMPTY IF A LIMITATION IS NOT

APPLICABLE BECAUSE THE APPLICATION DOES NOT DEPLOY THE CORRESPONDING COUNTERMEASURE. ⋆ MEANS THAT THE UNDERLYING BLOCKCHAIN
IS NOT SPECIFIED IN ENOUGH DETAIL TO REASON ABOUT LIMITATIONS 5-8, RESPECTIVELY.

Project
Forking Mitigations Limitations

Stateless Ephemeral Fixed set Transaction Time- State on Functionality Robustness Performance
enclaves identities of clients replay stamping the ledger L1 L4 L8 L2 L3 L6 L7 L5

TEE-based Smart Contracts
Azure CCF [47] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
CONFIDE [32] ✓ ✗ ✗ ✗ ✗
CreDB [52] ✓ ⋆ ⋆ ⋆ ⋆
Ekiden [11] ✓ ✗ ✗ ✗ ✗
Phala [9] ✓ ✓ ✓ ✗ ✗ ✗ ✓ ✗
Secret Network [13] ✓ ✓ ✗ ✗ ✓ ✗ ✗

TEE-based Consensus Protocols
Crust sWorker [53] ✓ ✗ ✗ ✗ ✗
ENGRAFT [35] ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗
MobileCoin [49] ✓ ✗
Proof of Luck [34] ✓ ✓ ✗ ✓ ✗ ✗ ✗
REM [33] ✓ ✓ ✗ ✓ ✗ ✗ ✗

TEE-based Layer 2 Solutions
COMMITEE [42] ✓ ✓ ✗ ✓
FastKitten [8] ✓ ✓ ✓
Hybridchain [51] ✓ ✓ ✗ ✓ ✗ ✗ ✗
IntegriTEE [60] ✓ ✓ ✗ ✓ ✗
Obscuro Mixer [39] ✓ ✓ ✗ ✗
PrivacyGuard [50] ✓ ✗
Private Chaincode [37] ✓ ✓ ✗ ✗ ✗
Private Data Objects [38] ✓ ✓ ✗ ✗ ✗ ✗ ✗
ShadowEth [54] ✓ ✓ ✗ ✗ ✗ ✗
Teechain [40] ✓ ✓ ✓
Ten [12] ✓ ✓ ✗ ✗ ✗
Tesseract [43] ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Twilight [41] ✓ ✓ ✗ ✗

TEE-based Blockchain Applications
BITE [1] ✓ ✗ ✗ ✗ ✗
LSKV [48] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
sgxwallet [44] ✓ ✗
Ternoa Network [45] ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Town Crier [46] ✓ ✓ ✗ ✗ ✗ ✗ ✗

– Finally, ten applications store state on the blockchain
(cf Option 3). Three platforms leverage the enclave to
generate new blocks [12], [33], [34]. The consensus layer
only accepts the block if the included hash is the latest
block hash. Similarly, ENGRAFT [35] requires replicas
to approve that a state update evolves from the latest
state. Six applications directly store their state on the
blockchain; the consensus layer ensures linearizability
of the state (i.e., that a state can only evolve from the
previous state [10], [11], [37], [38], [51], [54]). Only
ShadowEth [54] deploys Options 2 and 3 in parallel.

– All 21 applications leverage a high-throughput L1 or
batch state updates for on-chain storage (cf. Limitation 5).
For example, Tesseract [43] updates client balances in
memory and only sends settlement transactions to the L1
once per day. Note that CreDB [52] does not provide
enough details about the underlying blockchain to deter-
mine if it is subject to any limitation.

– Only one application requires existential honesty (cf.
Limitation 6): the Secret Network [13] does not validate
the order of transactions the host provides. In CCF [29],
the enclaves also actively participate in consensus.

– 18 platforms can tolerate blockchain forks (cf. Limi-
tation 7). Nine applications rely on a fully consistent
consensus layer [13], [32], [35], [37], [38], [47], [48],
[51], [54] to serialize events. Five additional applications
cryptographically bind the output (including the block
hash) on chain [11], [12], [33], [34], [45], and two
applications make the current block available to their
clients [1], [43]. Additional two applications are not
subject to blockchain forks due of their logic [46], [53].

– A total of 15 platforms do not allow the exploitation
of randomized computations (cf. Limitation 8). Eight
of these platforms run deterministic contracts [1], [11],
[32], [43], [45], [46], [48], [53]. Another seven platforms
encrypt the enclave response for the client so a malicious
host cannot read it [9], [13], [29], [35], [38], [51], [54].

• An analysis of the adoption of the mitigation strategies
across different system classes is provided in Appendix A.

Summary: We conclude that mitigations for forking attacks
introduce trade-offs in terms of (1) types of applications that
can be deployed, (2) tolerance to peers joining/leaving the
network, and (3) overall complexity of the platform. For
example, stateless enclaves can prevent rollback attacks but
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limit the type of contracts that can be deployed. For contracts
that require a local state, rollback attacks can be mitigated
if the state is serialized on L1. The latter can be achieved
in several ways. However, the choice of the L1 layer is very
important as it determines the effectiveness of the serialization
technique. For instance, a low-throughput L1 will result in
a coarse-grained timestamping mechanism. We note that ten
platforms that serialize enclave state using the L1 layer use
permissioned blockchains to achieve high throughput and
finality.

With respect to cloning attacks, deterministic smart con-
tracts are safe as long as the platform guarantees that all
smart contracts process the same events and in the same order
(e.g., by serializing state on L1). If the smart contract is
randomized, ephemeral IDs allow to distinguish clones of the
same contract but may require proper key management and
means to determine, at any time, the set of enclaves that are
part of the platform (and their IDs).

V. CASE STUDIES

In this section, we discuss in detail three new cloning attacks
on three prominent production-ready TEE-based blockchains:
Ten, Phala, and the Secret Network. These case studies serve to
exemplify the pitfalls and mitigations discussed in Section IV.

Case Study 1 uses−−→Serialization (IV-D), has−−→ Limitations 6,7,8

Case Study 2 uses−−→Stateless Enc. (IV-A), has−−→Limitations 2,5-7

Case Study 3 uses−−→Serialization (IV-D), has−−→ Limitation 2

We note that all of these blockchains share some design
principles. Namely, they all rely on a global secret—shared
among all enclaves—to derive cryptographic material, such as
encryption keys. For example, enclaves of the Secret Network
share a so-called “consensus seed” used to derive, e.g., the
public key used by a user to send encrypted requests to the
enclave and the corresponding secret key used by enclaves
to decrypt those requests. Another common design principle
is the reliance on contract queries to save gas and improve
latency. Phala and the Secret Network allow users to send
contract queries to the enclaves via an HTTP endpoint. Such
queries are encrypted using a public key derived from the
network-wide secret. Our analysis considers rollback attacks
on the sealed global secret out of scope.

We responsibly disclosed our findings and recommendations
to the Secret Network, Ten, and Phala, respectively, and shared
our suggested countermeasures with their teams.

A. Case Study 1: Phala

Overview: Phala [9] is a Layer 1 (L1) blockchain that is built
using the Substrate framework [61]. It acts as a para-chain
that plugs into Polkadot [62]. At the time of writing, Phala
has an active mainnet with a market cap of $90M [63], 157
deployed contracts, and 150 Worker nodes serving over 800k
off-chain queries per day [64]. Phala leverages TEEs to enable
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pruntime
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pruntime

pherry relayer

1 block
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Fig. 6. Overview of the components in Phala [9]. Worker pruntimes regularly
issue heartbeat transactions to the ledger, which are checked by Gatekeeper
pruntimes.

off-chain confidential smart contract execution. Figure 6 shows
the components of the Phala Network and how they inter-
act. There are two types of nodes in the Phala Network:
Gatekeepers and Workers. Both nodes operate a pruntime
enclave connected to the network through a pherry relayer.
Gatekeepers additionally run a collator, which participates in
the consensus. Phala uses Authority-round (Aura) consensus,
a Proof-of-Authority (PoA) leader election algorithm that
elects the next leader to create the next block. At the time
of writing, the developers control all leaders in the system.
Workers are responsible for smart contract execution. They
are assigned specific smart contracts—typically, a contract is
run by a single Worker, but multiple Workers for the same
contract can be used. Phala derives an asymmetric contractKey
for each smart contract using a global masterKey accessible
only to Gatekeeper enclaves. The Worker enclave queries the
contractKey from the Gatekeeper, seals it, and checkpoints
its contract state to disk to provide fault tolerance. When a
Worker receives a new block, it parses out all transactions for
its contract, decrypts them, and processes them. Further, each
Worker has an HTTP endpoint, which clients can use to issue
contract queries. Phala incentivizes these contract queries, as
they do not cost gas fees and result in fast responses.

As each smart contract is only executed by one enclave,
Phala implements heartbeats as a keep-alive mechanism,
shown in Figure 6. In particular, the Worker’s pherry relayer
regularly fetches new blocks from the blockchain (step 1 )
and forwards them to the pruntime (step 2 ). The pruntime
computes a function of blockchain meta-data and its public
key hash to determine whether or not to send a heartbeat. The
function is designed so that approximately 20 Workers send
a heartbeat in each block. In other words, a Worker pruntime
issues a heartbeat roughly every 45 seconds. A heartbeat is
sent to the pherry relayer as a transaction containing the
current block height (step 3 ). The pherry relayer submits
the heartbeat transaction to a Gatekeeper’s collator (miner)
(step 4 ) who verifies the transaction and includes it in the
next block (step 5 ). The Gatekeeper’s pherry relayer fetches
the block and forwards it to the Gatekeeper pruntime (step 6 ),
which extracts, validates, and logs the heartbeat.

11



Malicious Worker

pruntime

contract a: True

pherry relayer

pruntime’

contract a: False

proxy
Client1 query(c)

2 c
4 Enck(n,False)

Fig. 7. Sketch of the cloning attack on Phala [9]. A malicious Worker clones
the pruntime running the smart contract. It then prevents the clone from
receiving state updates and answers contract queries with an outdated state.

1 #[pink::contract(env=PinkEnvironment)]
2 mod phat_important_data {
3 use super::pink;
4 use pink::{PinkEnvironment};
5

6 #[ink(storage)] //persistent storage
7 pub struct ImportantData {
8 data: bool,
9 }

10

11 impl ImportantData {
12 #[ink(constructor)]
13 pub fn new() -> Self {
14 Self { data: true }
15 }
16

17 #[ink(message)] //on-chain command
18 pub fn toggle(&mut self) {
19 self.data = !self.data;
20 }
21

22 #[ink(message)] //contract query
23 pub fn get_data(&self) -> bool {
24 self.data
25 }}}

Fig. 8. Example of a smart contract in Phala [9] that persists storage. Clients
can change the stored boolean value via on-chain transactions or read the
contract state through a contract query.

Cloning Attack on Contract Queries: As shown in Figure 6,
Phala enclaves directly receive blocks from the pherry relayers
(who fetch them from the ledger). Note that the pherry relayers
do not run within the TEEs and, hence, could easily perform
rollback attacks on the enclaves by providing a stale state from
the ledger. Thus, Phala enclaves issue heartbeat transactions
every 45 seconds (cf. Figure 9 for the exact format of the
heartbeat messages). While heartbeats contain the block height
(and, as such, could be used for timestamping), enclaves
do not check whether they receive regular heartbeats (or
acknowledgments) from others. This check is performed only
by the Gatekeeper (cf. Figure 6) and does not reside within the
Worker enclave. This allows enclaves to be cloned and even
isolated from the rest of the network.

We note that contract queries are encrypted with a symmet-
ric key k derived from a key exchange that uses an ephemeral
key of the client and the contractPubKey of the smart contract.
In particular, the client computes k as follows:

k = ECDHKE(clientPrivKey, contractPubKey))

= ECDHKE(clientPubKey, contractPrivKey))

where ECDHKE is an Elliptic-curve Diffie–Hellman key ex-
change and clientPrivKey is the ephemeral private key of the
client. The client then computes an encrypted query:

payload = AEAD_IV||clientPubKey||
AESGCM

k (contractAddress||n||rawQuery)

query = payload||clientIdentityPubKey||
signclientIdentityPrivKey(payload)

where AEAD_IV is an IV for the AES encryption, con-
tractAddress is the address of the queried smart contract,
clientIdentityPubKey is a persistent client identity for access
control, n is a random nonce reflected in the response, and
rawQuery is the actual query.

Given the above setting, an adversary can operate two
instances of the pruntime and freely choose the instance to
answer a request. The attack is depicted in Figure 7. We
assume a simple contract with address a using a single boolean
variable as state, initialized to False. At a certain point, a
transaction tx causes the boolean variable to be set to True.
From this moment, clients issuing contract queries to the
contract at address a should receive True as a response.
However, assume that the adversary creates a clone of the
pruntime. The adversary does not start a pherry relayer for
the clone, effectively isolating it from the network. The first
instance is still connected to the network and issues regular
heartbeats. As the cloned pruntime did not receive tx (it is
isolated from the network), its internal state remains False. At
this stage, a client issues a contract query (step 1 ) to the smart
contract at address a. The adversary forwards the request to
the isolated pruntime instance (step 2 ), which decrypts the
query and provides False as a response to the client (step 3 ).

Implementation: We implemented and evaluated the attack
on a local Phala Testnet version v2.1.0 [65] using the official
Phala docker images. We stress that no real contract was
affected while we were validating our attack and that it
had no impact whatsoever on the real Phala Network. The
adversary operates a machine equipped with an Intel Xeon
E-2286G CPU, 128GB of memory, and Ubuntu 22.04.4 LTS.
We configure a single node with a Gatekeeper and a Worker
pruntime, each connected to a pherry relayer providing new
blocks from the blockchain to the enclave. As for the victim
contract, we used a simplified version of the official Phala
demo flip contract [66], which holds a boolean variable that
can be toggled (cf. Figure 8). After initializing the contract to
False, we start a second Worker pruntime (providing it with the
sealed data from the first Worker) and a corresponding pherry
relayer. We then terminate the pherry relayer of the second
instance, effectively isolating it from the network. We instruct
our client to call the deployed smart contract a, toggling its
state to True. The transaction is only processed by the enclave
with a connected pherry relayer, such that the isolated enclave
remains in state False. We then instruct our client to query a.
At this stage, our proxy intercepts the request and forwards it
to the isolated enclave, which returns False. Figure 7 shows
that the client cannot distinguish which enclave answered the
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Heartbeat = {
session_id,
challenge_block,
challenge_time,
iterations,
n_clusters,
n_contracts}

Fig. 9. Structure of a heartbeat in Phala [9]. The block height is in blue.

request as the reply only contains the state itself and the
reflected nonce.

Suggested Countermeasure: Heartbeats in Phala offer a
good opportunity to integrate a timestamping mechanism that
allows enclaves to self-detect forking attacks: (1) they are
authenticated by the enclaves, (2) they contain the block
height, and (3) they are sent regularly every 45 seconds. We
suggest leveraging those heartbeat messages to ensure that all
enclaves are aware of the current block height (and hence the
current state). To this end, we suggest that enclaves exchange
heartbeats via a separate P2P network and check that they
regularly receive heartbeat messages from others (i.e., they
are not eclipsed). A major challenge with this approach lies in
Limitation 6 (existential honesty): enclaves need to ensure they
are connected to at least one honest node to get the latest state
from the network (and reflect it in their heartbeat messages).

This, alone, however, is not sufficient to deter forking
attacks. Here, we suggest that the enclaves include the latest
block height as a timestamp in responses to all contract
queries (as suggested in the whitepaper [9]). This burdens the
requesting client to determine whether the output corresponds
to a fresh state and is, therefore, valid. In case Phala opts
to support randomized contract execution, we suggest the
reliance on ephemeral IDs (cf. Limitation 8) as well.

B. Case Study 2: The Secret Network

Overview: The Secret Network [13] (SN) is an L1 blockchain
that is built using the Cosmos SDK [67]. At the time of
writing, it has a market cap of $110M [68] and features 1105
smart contracts uploaded from 197 different accounts.

Each SN node uses a TEE to execute smart contracts.
All cryptographic material used in SN is derived from a
consensus seed shared among all SN enclaves. To obtain the
consensus seed, an enrolling enclave must prove—via remote
attestation—to one of the SN enclaves that it is running the
genuine SN enclave binary. The consensus seed is sealed to
disk to avoid re-enrollment in case an SN enclave is restarted.

Transactions to invoke a contract are encrypted with a
network-wide public key (called consensusIoPubKey) and can
be decrypted by any SN enclave. Once a transaction is chosen
to be included in the next block, it is decrypted and executed
inside the enclave; the contract output is encrypted (e.g., with
the sender’s public key) and included in the block as well. SN
allows contract queries to read the state of the smart contract.
Enclaves, in particular, have an HTTP endpoint that the client

can use to request the contract state. This design was chosen
to avoid gas fees and reduce delays for contract queries.

Cloning Attack on Contract Queries: Previous work [15] has
shown that the SN did not feature protection against rollback
attacks and that an adversary could learn private data of a
transaction (e.g., sender, receiver, amount) by rolling-back the
enclave and replaying transactions. In what follows, we present
a new forking attack on the Secret Network based on cloning.

We note that contract queries are encrypted with a sym-
metric key k derived from a key exchange that uses an
ephemeral key of the client and the consensusIoPubKey of the
SN enclave. In particular, the client computes k as follows:

k′ = ECDHKE(clientPrivKey, consensusIoPubKey)

= ECDHKE(clientPubKey, consensusIoPrivKey)

k = HKDF(n, k′)

where ECDHKE is an Elliptic-curve Diffie–Hellman key
exchange, HKDF is a key derivation function, clientPrivKey
is the ephemeral private key of the client, and n is a nonce
chosen by the client. Note that n and clientPubKey (i.e.,
the client’s ephemeral public key) are sent in cleartext in the
transaction to enable the SN enclave to derive the same sym-
metric key k. We point out that other fields of a transaction are
not encrypted—e.g.,the contract address (contractAddress) is
sent as cleartext. Hence, a query has the following format:

query = contractAddress||n||clientPubKey||
AESSIV

k (codeHash||rawQuery)

where codeHash is the hash of the contract that should handle
the query, and rawQuery is the actual query.

Given the above format, an adversary can simply change the
contractAddress field of a query and use another instance of
the same contract (matching the codeHash in the query) on
any network node to answer the query. The attack is depicted
in Figure 10. We assume a simple contract with address a
that uses a single counter variable as state, initialized to x.
At a certain point, a transaction tx causes the variable to
be incremented to x + 1. From this moment, clients issuing
contract queries to the contract at address a should receive
x + 1 as a response. However, assume that the adversary
creates a clone of the contract and assigns it to address a’. As
the contract at address a’ did not receive tx (it is a different
contract instance), its internal state remains x. Note that the
contract enclaves at address a and at address a’ share the same
codeHash. At this stage, a client issues a contract query (step
1 ) for the enclave at address a. The adversary intercepts the

HTTP request (step 2 ) and changes the contract address in
the requested URL to a’ (step 3 ). Hence, the contract enclave
at address a’ decrypts the query and provides x as a response
to the client (step 4 ).

Implementation: We implemented and evaluated the attack
on a Secret Network Testnet version v1.13.1 [69]. We stress
that no real contract was affected while we were validating

13



SN Node

Enclave

contract a
x

contract a’
x+ 1

PM C

secret.js

Browser

1 query(a, c)2
3 c

4 Enck(x + 1)

Fig. 10. Sketch of the cloning attack on the Secret Network [13]. A malicious
Proxy PM in the network changes the contract address in the client’s query
to return the state of a different instance with the same code.

our attack and that it had no impact whatsoever on the real
Secret Network. The adversary operates a machine equipped
with an Intel Xeon E-2286G CPU, 128GB of memory, and
Ubuntu 22.04.4 LTS. The victim uses the Firefox browser
version 127.0.2. We configure the Secret Network lightweight
client secretcli [70] to interact with the testnet. As for the
victim contract, we used the official Secret Network contract
template [71], which implements a simple counter (cf. Figure
11). We uploaded the contract to the testnet and launched two
clone instances of the contract. During the setup, we specified
an initial value 1 for the counter on each clone, respectively.
We now have two clones of the same smart contract: a contract
Ca at address a and another Ca′ at address a′, both with
counter value 1. Both contracts are executed by every SN node.
We issued a transaction that increments the value of Ca to 2.
Note that the transaction includes a (as it targets Ca), so the
counter of Ca′ stays in state 1 although both contracts run in
the same enclave. We then built a simple website that uses the
official SN lightweight client library secret.js [72] to query the
state of Ca. Queries are handled via HTTP, so we instantiate
a malicious HTTP proxy between our client and the testnet.
We let a first query to Ca reach the intended contract so that
it returns 2. We then instruct our client to query Ca again.
At this stage, the proxy PM intercepts the HTTP request and
replaces address a with a′ before feeding it to the enclave,
which now returns 1. Figure 10 shows that the client cannot
distinguish if the query was answered by Ca or Ca′ as the
reply only contains the state itself.

Suggested Countermeasures: We note that an SN contract is
assigned an ID (contract address), but the ID is not bound to
the messages exchanged with clients. We note that SN IDs are
instance-specific; in other words, two contract clones (same
binary, same machine) will get different IDs (similar to the
ephemeral IDs we describe in Section IV-B). A straightforward
fix to deter cloning attacks would be to cryptographically bind
the contract ID to the client request by including it in the
encrypted request payload so that the contract instance can
tell if it is the intended receiver.

However, the solution just described does not mitigate
rollback attacks. Jean-Louis et al. [15] suggest implementing
a proof-of-publication to ensure that transactions have been
committed and ordered on-chain before executing them. This
effectively serializes transactions (cf. Takeaway 4). The Secret

1 pub struct InstantiateMsg { pub count: i32,}
2 pub enum ExecuteMsg { Increment {}, }
3 pub enum QueryMsg { GetCount {}, }
4 pub struct CountResponse { pub count: i32, }
5

6 #[entry_point] // constructor
7 pub fn instantiate(deps: DepsMut, _env: Env,
8 info: MessageInfo, msg: InstantiateMsg,
9 )->StdResult<Response> {

10 let state = State {
11 count: msg.count,
12 owner: info.sender.clone(),};
13 config(deps.storage).save(&state)?;
14 Ok(Response::default())
15 }
16

17 #[entry_point] // on-chain transaction
18 pub fn execute(deps: DepsMut, env: Env,
19 info: MessageInfo, msg: ExecuteMsg
20 )->StdResult<Response> {
21 match msg { ExecuteMsg::Increment {} =>
22 try_increment(deps, env), }
23 }
24

25 pub fn try_increment(deps: DepsMut, _env: Env
26 )->StdResult<Response> {
27 config(deps.storage).update(|mut state| ->
28 Result<_,StdError>{state.count+= 1;Ok(state)})?;
29 Ok(Response::default())
30 }
31

32 #[entry_point] // contract query
33 pub fn query(deps: Deps, _env: Env, msg: QueryMsg
34 )->StdResult<Binary> {
35 match msg { QueryMsg::GetCount {} =>
36 to_binary(&query_count(deps)?), }
37 }
38

39 fn query_count(deps: Deps)->StdResult<CountResponse> {
40 let state = config_read(deps.storage).load()?;
41 Ok(CountResponse { count: state.count })
42 }

Fig. 11. Vulnerable smart contract in the Secret Network [71] that persists
storage. Clients can increase the stored integer value via on-chain transactions
or read the contract state through a contract query.

Network leverages Tendermint, a BFT version of delegated
Proof-of-Stake providing some form of finality (cf. Limita-
tion 7) and relatively short block generation times with a
throughput of 10000 transactions per second [73] (cf. Lim-
itation 5). However, such an approach would still be limited
by the existential honesty assumption (cf. Limitation 6) as the
enclave needs to be connected to at least one honest consensus
node to ensure access to the latest transactions to be up to
date. This is particularly worrisome as Tendermint does not
offer strong protection against so-called long-range attacks,
where the ledger’s history can be rewritten from a past point
in time (somewhat analogously to rollback attacks) [22]. A
more elegant alternative to deal with rollback attacks against
the SN would be to rely on the TEEs to track the set of
TEEs (and their ephemeral IDs) that are members of the
network (cf. Takeaway 2). This countermeasure, combined
with proper reliance on ephemeral IDs as we suggest, would
offer a comprehensive solution for the Secret Network against
forking attacks.
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C. Case Study 3: Ten

Overview: Ten [12] (formerly Obscuro) is an L2 solution
built on top of Ethereum [74]. At the time of writing, Ten
has a public testnet; the mainnet is expected to go live in Q3
2024. Each Ten node uses a TEE to execute transactions in a
privacy-preserving manner. By running the Ethereum Virtual
Machine (EVM) inside the TEE, any Ethereum smart contract
can be ported to Ten. As mentioned earlier, all cryptographic
material in Ten is derived from a master seed shared among all
Ten enclaves. At enrollment, an enclave can obtain the master
seed by providing its attestation report. Any Ten enclave
can verify this attestation and, when successful, can encrypt
the master seed with the enrolling enclave’s public key for
provisioning. The enclave seals cryptographic key material and
smart contract state to avoid re-enrollment when the enclave is
restarted. The enclave stores its data, including the master seed
in EdgelessDB [75], a TEE-based SQL database that seals all
its data to disk to provide fault tolerance.

Transactions are encrypted with a network-wide public key
(called networkKey) and can be decrypted by any Ten enclave.
Transactions are ordered in the context of rollups through a
custom Proof-of-Block-Inclusion (POBI) consensus protocol.
In particular, the enclave extracts the previous rollup from the
latest L1 block and generates the next rollup on top of it,
including a random nonce. The rollup with the lowest nonce
is committed to the L1 layer via a dedicated Ethereum smart
contract. Rollup generation uses a throttling mechanism based
on proof-of-work to ensure that any Ten enclave can output at
most one rollup with its corresponding nonce per block. Ten
enclaves are not vulnerable to rollback attacks. This is because
rollups are bound to the current L1 block. If the Ten enclave is
rolled back, it will output a rollup bound to a stale L1 block;
then, L1 will treat the rollup as invalid and discard it.

Cloning Attack on Block Generation: Despite being
rollback-resistant, we show that Ten enclaves are vulnerable to
cloning attacks that target the POBI consensus protocol. In a
nutshell, POBI uses Ten enclaves to draw a random nonce, and
the enclave with the lowest nonce is allowed to propose the
next rollup. By cloning the enclave, an adversary can increase
the chances that one of its enclaves is allowed to propose
the next rollup. Ten attempts to combat cloning attacks by
requiring a registration fee for parties to enroll their enclaves.
In principle, this requires clients to pay the enrollment fee
n times when enrolling n enclaves to increase their chances
of proposing the next rollup. However, an adversary can
circumvent this measure and clone the Ten enclave after
enrollment. That is, the adversary can create n clones of the
Ten enclave while paying the enrollment fee only for one.
Note also that this attack is effective, despite the throttling
mechanism used by Ten (enclaves must do some variant of
proof of work by computing a large number of hashes at
restart time) to ensure that each enclave proposes at most
one rollup per round. Our attack is depicted in Figure 12
and works as follows. The adversary starts a Ten enclave
that completes enrollment, obtains the master seed, and seals

Malicious L2 Miner

Enclave ET

mine new rollup
nonce N

DB EE

Enclave E′
T

mine new rollup
nonce N ′

cloned

DB E′
E

P

L1 Node

1 b
2 b

3 R

3 R′

4 R

Fig. 12. Sketch of the cloning attack on Ten [12]. An adversary increases
the chances of proposing the next block by running two enclave clones and
choosing the output with the lowest nonce.

cryptographic keys to disk. Hence, the adversary creates a
clone of the enclave on the same machine. At this time, both
enclave instances have access to the state sealed by the first
enclave. Next, the adversary receives a new block from an
L1 node (step 1 ) and feeds it to both clones (step 2 ). The
enclaves generate random nonces N and N ′, respectively, and
include them in the proposed rollup (step 3 ). The adversary
selects the rollup with the lowest nonce and submits it to the
L1 layer (step 4 ).

Implementation: We implemented and evaluated our attack
on a local Ten Testnet version v0.24.7 [76]. In our setup, the
adversary operates a machine equipped with an Intel Pentium
Silver J5040 CPU, 32GB of memory, and Ubuntu 22.04.03
LTS. Here, we had to register a Ten node and instantiate an
EdgelessDB instance [75] (each running in a docker container)
to interact with the testnet. We then cloned the Ten enclave and
connected each enclave to a cloned instance of the EdgelessDB
to recover the state. We now have two operational Ten enclaves
ET and E′

T on the same node. We then use a simple proxy P
that handles incoming L1 blocks and feeds them to both Ten
enclaves. The enclaves generate the random nonces N and N ′

and include them in the rollups R and R′, respectively. The
proxy P retrieves R and R′ from the enclaves and sends the
more favorable rollup back to the L1 layer.3

Suggested Countermeasures: Ten implements stateful en-
claves (to seal the state of the rollups in an Edgeless DB
backend). It incorporates a rollback detection mechanism by
serializing state. Here, the state is serialized with the block
hash seen by the enclave. If the block hash is stale, the L1
layer will not accept the commit request from the enclave.
However, as discussed in Section IV-A, such stateful solutions
should also incorporate mechanisms to prevent cloning. An
effective anti-cloning mechanism in this particular case would
be to rely on ephemeral IDs (cf. Takeaway 2) specific to each
enclave. In particular, the L1 contract handling rollups can
be easily modified to keep track of the (ephemeral) identities
of the TEE enclaves. For instance, the rollup header can
include a new field AggregatorEphemeralID. Figure 13 shows
the rollup header of the current Ten implementation and our

3Note that the current implementation of the Ten enclaves is incomplete
and does not return the nonces.
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RollupHeader = {
L1BlockHeader,
CrossChainMessages,
PayloadHash,
PayloadHashSignature,
BatchSeqNum,
AggregatorNonce,
AggregatorL2Address,
AggregatorEphemeralID}

Fig. 13. Rollup header of Ten [12]. Additional fields based on [77] are shown
in blue; our recommendation to incorporate ephemeral IDs is shown in red.

suggested modification to deter cloning attacks. As we discuss
in Section IV-B, this would deter cloning attacks.

VI. CONCLUSION

In this work, we provided a systemization of how current
TEE-based blockchains resist forking attacks. To this end, we
analyzed 29 TEE-based blockchains and showed an apparent
lack of consensus in the community on how to leverage
properties from distributed protocols to prevent forking attacks
against TEE-based smart contracts. More precisely, we showed
that currently used mitigations for forking attacks introduce
trade-offs in types of applications that can be deployed,
tolerance to peers joining/leaving the network, and overall
complexity of the platform.

Our study also revealed new forking vulnerabilities in three
production-ready TEE-based blockchains: Phala, the Secret
Network, and Ten. We proposed effective countermeasures for
each of those vulnerabilities, leveraging the results from our
aforementioned analysis. We also responsibly disclosed our
findings to the developers of each affected platform.
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APPENDIX

A. Distribution of Mitigation Strategies

We now analyze the adoption of the mitigation strategies
discussed in Section IV across the different system categories
identified in Section III-B. Figure 14 depicts the distribution
of these mitigations across the different system categories. The
following key observations can be made based on our results:

• Stateless enclaves are employed by platforms in all four
categories.

• Ephemeral identities are primarily used by platforms
in Category 3 (TEE-based Layer 2 solutions) to counter
cloning attacks. Specifically, five out of 13 platforms
in Category 3 utilize ephemeral IDs. In contrast, no
platform in Category 1 (TEE-based smart contracts) uses
ephemeral identities.

• A fixed set of clients is a technique exclusively employed
by platforms in Category 3.

• State serialization techniques are utilized across all four
system categories. Platforms in Category 1 mostly rely on
transaction replay and timestamping, whereas Category 2
and 3 more commonly store their states on the ledger.
Many platforms in Category 4 (TEE-based blockchain
applications) use timestamping. Lastly, no platform in
Category 2 replays transactions to recover state informa-
tion, and no enclave in a blockchain application stores its
state on the ledger.
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Fig. 14. Distribution of the mitigation strategies used by the platforms in
Table I. Note that platforms may use more than one strategy to prevent forking.
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