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Abstract—Clustered federated learning (CFL) serves as a
promising framework to address the challenges of non-IID (non-
Independent and Identically Distributed) data and heterogeneity
in federated learning. It involves grouping clients into clusters
based on the similarity of their data distributions or model
updates. However, classic CFL frameworks pose severe threats
to clients’ privacy since the honest-but-curious server can easily
know the bias of clients’ data distributions (its preferences). In
this work, we propose a privacy-enhanced clustered federated
learning framework, MingledPie, aiming to resist against servers’
preference profiling capabilities by allowing clients to be grouped
into multiple clusters spontaneously. Specifically, within a given
cluster, we mingled two types of clients in which a major type of
clients share similar data distributions while a small portion of
them do not (false positive clients). Such that, the CFL server fails
to link clients’ data preferences based on their belonged cluster
categories. To achieve this, we design an indistinguishable cluster
identity generation approach to enable clients to form clusters
with a certain proportion of false positive members without the
assistance of a CFL server. Meanwhile, training with mingled
false positive clients will inevitably degrade the performances
of the cluster’s global model. To rebuild an accurate cluster
model, we represent the mingled cluster models as a system of
linear equations consisting of the accurate models and solve it.
Rigid theoretical analyses are conducted to evaluate the usability
and security of the proposed designs. In addition, extensive
evaluations of MingledPie on six open-sourced datasets show that
it defends against preference profiling attacks with an accuracy
of 69.4% on average. Besides, the model accuracy loss is limited
to between 0.02% and 3.00%.

I. INTRODUCTION

Federated Learning (FL) is a distributed machine learning
paradigm that enables multiple clients to collaboratively train a
machine learning model under the coordination of a server. In
each iteration, each client trains a local model using its private
dataset and shares only the local updates with the server. The
server aggregates all local model updates to update the global
model [1]. However, a major challenge of FL in practice is the
clients’ data statistical heterogeneity [2], [3], [4]. Since data
is generated by each client, the distribution varies depending
on the clients’ personal preferences. Localized training on
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heterogeneity data results in a local optimum bias, where
the client’s model updates drift further away from each other
[5]. Aggregating these model updates could counteract each
other and result in poor performances [6]. Clustered federated
learning (CFL) frameworks [7], [8], [9], [10], [11], [12] are
proposed to conquer the data heterogeneity in FL, in which
clients with similar data distributions are formed as one cluster
to perform the FL training within the cluster. Eventually, CFL
trains a global model for each cluster, separately.

However, CFL frameworks naturally enable the model ag-
gregation server to profile clients’ data distribution biases.
For example, in an image classification task, the CFL server
publishes a group of training clusters with specific training
purposes of recognizing images with different labels, i.e., cars,
buildings, foods, and etc. The clients whose data distribution is
biased to the car images are grouped and joined to one CFL
cluster. Thus, the honest-but-curious CFL server can easily
infer that all the clients within the same training cluster have
preferences for the cars.

Prior FL efforts have been made to protect clients’ data pref-
erences from the model aggregation server by leveraging the
anonymous communication systems [13], [14], homographic
encryption [15], [16], and trust executed environment [17],
[18]. However, these designs cannot be applied to the CFL
framework. In particular, some methods based on anonymous
communication systems [13], [14], [19] try to break the rela-
tionship between client identity and cluster. But iterative model
update communication makes client anonymity vulnerable to
traffic analysis attacks [20], [21], [22], [23]. Other defenses
are based on some secure aggregation techniques [24], [25]
to prevent the server from inferring clients’ data distribution
biases from their model parameters. However, the server can
bypass these defenses and analyze preferences based on client
cluster identity.

In this work, we propose MingledPie, a privacy-preserving
CFL framework that breaks the strong connections between
the clients and training clusters by allowing clients to join
multiple clusters spontaneously. As a result, clients uniquely
belonged to one specific cluster and are now all mingled
together, such that the CFL server cannot directly infer clients’
preferences based on their belonged clusters. Though the
core idea is straightforward, such a design leaves the CFL
malfunctioning as the mingled clients will significantly lower
the performances of the trained cluster models. Recall that,
the original CFL cluster only groups clients with similar
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data distributions and thus achieves high performances in a
specialized training task. To conquer this challenge, we assume
that every other cluster has a certain number of false positive
clients obfuscated into the given cluster. The mingled cluster
model is then treated as a composition of all accurate cluster
models weighted by the number of false positive clients. This
formulation leads to a solvable linear system of equations with
accurate cluster models as variables. We leverage homomor-
phic encryption to privately aggregate the actual count of false
positive clients, enabling clients to solve the linear system and
rebuild the accurate global cluster models. Furthermore, to
ensure privacy protection and usability of the model rebuilding
method, we aim to maintain the proportion of false positive
clients in each cluster close to a fixed ratio p. To achieve this
without assistance from the CFL server, we take inspiration
from public-key message detection designs [26]. Specifically,
by mapping the client’s target cluster address and the public
keys of the other clusters to binary bits bitwise and comparing
them, respectively, they should indicate a false-positive match
with a probability of approximately p. From the server side,
every client from other clusters has a probability p of joining
this cluster, resulting in a fixed ratio of false positive clients.

The contributions of this paper are summarized as follows.
• We propose a privacy-enhanced CFL framework, Min-

gledPie, which effectively protects client preference pri-
vacy while maintaining the accuracy of the CFL task.

• We propose an indistinguishable model update mingling
method without additional communication infrastructure,
to mingle the client’s cluster identity, and devise an
optimization method to rebuild cluster models.

• Theoretical analysis proves the correctness and secu-
rity of the framework. Extensive experiments show that
MingledPie can effectively protect privacy with almost
negligible accuracy loss 1.

II. RELATED WORK

In the following, we discuss the current CFL frameworks,
and review the privacy inference attacks and defenses in FL.
The differences between existing defenses and our approach
are highlighted in Table I.

A. Clustered Federated Learning

One of the main challenges in traditional FL is statisti-
cal heterogeneity, which causes it to fail to produce good
generalization models. Recently, CFL has been proposed to
circumvent this issue by clustering clients into clusters based
on the similarity of their data distributions or model updates,
and training personalized cluster models for each cluster.

Most CFL frameworks adopt the client clustering strategy.
Sattler et al. [28] presented the first CFL framework FedClus-
ter, which recursively separates the two groups of clients with
incongruent descent directions based on the cosine similarity
of gradients. In order to achieve better efficiency and usability,
some studies have optimized the clustering computation cost

1Code is available at: https://github.com/CHENGZ03/MingledPie.

and clustering indicators of CFL [29], [28], [30], [31]. For
instance, FedSEM [32] uses a l2 distance-based stochastic
expectation maximization instead of the distance-based neigh-
borhood methods to optimize the cluster assignments. Besides,
researchers in [33], [34], [35], [36] identified that efficient CFL
could be achieved by only one-shot clustering based on clients’
latest computed gradients when the global model stabilizes.
There are also CFL frameworks that use the client clustering
strategy, where the client estimates the closest cluster and joins
in [7], [37], [38], [39]. Ghosh et al. [7] proposed the Iterative
Federated Clustering Algorithm (IFCA), in which clients select
the one with the lowest loss on their dataset from all the cluster
models in each round and train the local model on it. On this
basis, Ruan et al. [38] and Li et al. [37] respectively proposed
soft clustering strategies on the client side, in which they made
full use of the diversity of client data in different clusters to
obtain higher model accuracy.

Nonetheless, the servers in all of the above CFL frameworks
are able to get the client’s cluster identity, because they rely
on the server clustering clients or aggregating cluster models.,
which may result in preference profiling attacks.

B. Privacy-Preserving Federated Learning

Privacy Attacks. Although clients in FL do not need to
share their private data, their private information can still
be leaked by inference attacks. Specifically, in a member
inference attack [40], [41], the attacker inferences whether a
particular data is in the client’s dataset. In a property inference
attack [42], [43], the attacker inferences whether the target
attribute is in the client’s data set. In a model inversion attack
[44], [45], the attacker attempts to get the data of the training
dataset from the model. In a preference profile attack [46],
[47], the attacker inferences the preferences of the client. The
above attacks are all based on the client’s local model parame-
ters. In this work, we expose a new preference inference attack
in CFL, which does not rely on model parameters and only
needs to know the cluster preferences and the cluster identity
of the client to infer the preferences of the client.

Preserving model privacy. The widely used techniques to
protect model parameters from inference in FL include homo-
morphic encryption [15], [16], [48], [49], TEE [17], [18], [50],
multi-party computation [51], [52], differential privacy [27],
[53], etc. For instance, Zhang et al. [16] proposed an efficient
homomorphic encryption-based FL framework BatchCrypt. By
encoding gradients into long integers and aggregating them in
the ciphertext domain, this method effectively prevents infer-
ence attacks on servers and saves up to 99% cost compared
with classical homomorphic encryption-based schemes. Rieger
et al. [18] proposed CrowdGuard, which protects the original
performance of the model while resisting privacy inference
attacks and adaptive attacks by deploying TEE on the client
and server and aggregating the global model within the TEE.
In addition, some studies [27], [53] introduced differential
privacy to protect clients from the privacy threats of gradient
exposure, but these schemes still sustain a certain degree of
potential privacy disclosure. Although these efforts effectively
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TABLE I: A comparison of different privacy-preserving FL schemes, for each represents a different privacy protection way.
Property: a brief description of the privacy protection basis, Dependency: techniques or parameters on which the scheme’s
privacy depends. Resist on traffic analysis only counts when the scheme satisfies the client identity privacy.

Scheme Property Dependency Model
Privacy

Client
Identity Privacy

Resist on
Traffic Analysis

Resist on Preference
Profiling Attack

BatchCrypto [16] Homomorphic Encryption Crypto Technique -

CrowdGuard [18] Trust Executed Environment Hardware -

DP-PFL [27] Differential Privacy DP Budget -

FedTor [13] Anonymous Communication Tor Network

Ours Mingling False Positive Rate

: do not have the attribute. : holds under weak attackers, but not under strong attackers such as traffic analysis. : have the attribute.

defend against existing inference attacks, they cannot defend
against preference profiling attacks in CFL because this attack
does not depend on model parameters.

Preserving client identity privacy. Some FL frameworks
protect privacy by breaking the link between the client’s
identity and its model update messages, making it impossible
for the server to associate inferred privacy information with
the client. Wang et al. [54] implements anonymity for cluster
membership based on ring signatures, but it does not protect
the communication metadata of model update messages. There
are also FL frameworks that use Mix-net-based anonymous
communication systems, such as FedTor [13] (use onion
encryption to forward model update messages), shuffle-based
FL [14], [55] (use third-party shuffling to mix model update
messages). However, these schemes rely on additional com-
munication infrastructure, and they can be insufficient against
determined adversaries capable of observing network traffic
[21], [23].

III. PROBLEM SETTING

In this section, we first describe the system model as well as
the adversary model in our clustered federated learning, next
clarify the design goals and challenges.

Fig. 1: Workflow of MingledPie

A. System Setting
For training the personalized cluster models, clients are

grouped into clusters according to the similarity of their data

distributions. Each client trains a local model comprising both
shared and personalized layers, which is then transmitted to
the server. The server uses FedAvg [1] to aggregate the shared
layers from all local models into the shared layers of the cluster
model, while also aggregating the personalized layers within
each cluster to construct the personalized layers of the cluster
model. To emphasize the key point, we omit the part where
the server aggregates the shared layers and primarily focus on
the training of the personalized part.

Specifically, the clients’ dataset D has k different data
distributions {Dj}kj=1. Accordingly, all clients {Ci}Ni=1 are
divided into k disjoint clusters {Gj

∗}kj=1, with clients in each
cluster having the similar data distributions. Since the data
distribution is private to the clients, the real cluster identity
of each client should not be disclosed to the server. Without
loss of generality, the server initializes the cluster model
for each cluster based on its prior knowledge and publishes
the cluster address to receive model update messages. We
define the meaningful description of the skew in the data
distribution Dj as the preference of cluster j. Let f(θ;x, y)
be the loss function associated with data point (x, y) in the
dataset. The objective of cluster j is to minimize the loss
function Fj(θ) = Ez∼Dj

[f(θ;x, y)], j ∈ [k]. To achieve this
in practice, the CFL system needs to find clusters {Ĝj}kj=1

that are close to {Gj
∗}kj=1, and then have the clients in the

{Ĝj}kj=1 cooperate to find the optimal cluster models {θ̂j}kj=1

that are close to argminFj(θ), j ∈ [k].
Workflow: As shown in Fig. 1, MingledPie follows the

common client-side clustering CFL workflow. In the initial-
ization phase, the server initializes the cluster model for each
cluster and sets the hyperparameters for training and client
mingling. In each round of iterative training, the client first
synchronizes all the cluster models (step ①). The client then
uses these cluster models to estimate the cluster identity (step
②) and trains the local model on the corresponding cluster
model (step ③). The client then sends its local model and
cluster identity to the server (step ④). Finally, the server
aggregates new cluster models through FedAvg [1] (step ⑤).

B. Adversary Model

We consider the adversary is the honest-but-curious CFL
server. It aims to infer the client’s preference. We define client
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local data preference as the characteristics of its data distri-
bution, manifested as an imbalance in categories or features.
For instance, in an image classification task, if a client’s local
dataset contains significantly more images labeled as cat and
dog compared to other labels, it indicates a preference for
these labels. Two types of preference profiling attacks could
be adopted by the server.
A1: Cluster Identity-based Inference Attack. The server
infers client preferences based on the preferences of the cluster
to which the client belongs. Consistent with the assumptions
of most classic CFL, the classic CFL server setup groups
of learning tasks and form different CFL clusters to admit
and join clients who having the corresponding data-preference
of the learning task for training the cluster model. In this
case, the server has a prior knowledge of the required data
distribution for each cluster and is aware of the cluster to
which each client’s local model belongs. As client’s data
distribution requirements, the server can naturally associate
clients with the preferences of their respective clusters, and
infer client preferences.
A2: Local Model-based Inference Attack. The server infers
preferences from clients’ submitted local models prapameters
during CFL model aggregation. It’s detail has been revealed
in several existing works [46], [56], [57]. For instance, an
adversary can infer client preferences by retraining local
models on auxiliary datasets with varying data distributions
and analyzing gradient shifts. This type of attack allows the
adversary to infer the distribution of the Top-k labels, or even
the full label distribution of the client.

C. Design Goals and Challenges

The design goal of this paper is to protect the client’s
preference privacy during the CFL training process, and the
security goals can be summarized as follows:
R1: Preference Privacy. The primary goal of MingledPie is
to defend against preference profiling attacks. Specifically, the
curious-but-honest server could not infer clients’ true cluster
identities, local model parameters, and its data preference.
R2: Cluster Model Accuracy. The proposed defense designs
should not break the usability of CFL. The aggregated models
should have similar accuracy performances to those models
trained without involving the MingledPie’s preference protec-
tion algorithms.
R3: Autonomous Deployment. The defense should be able
to run fully autonomous without any additional third parties
or infrastructures.

To the best of our knowledge, existing defense mechanisms,
which primarily focus on hiding client identities [13] or
protecting local models [16], [18], are designed for traditional
FL. However, these approaches are ineffective in CFL, as they
either fail to defend against attacks based on cluster identity
and local models simultaneously, or conflict with the clustering
algorithms used in CFL. Therefore, MingledPie addresses the
following challenges:
C1: How to conceal the cluster identity of clients? In particu-
lar, the server should be allowed to access the client’s cluster

identity or local model, as this would enable cluster-based or
model-based inference attacks.
C2: How to accurately aggregate cluster models without
knowing clients’ local model parameters and the cluster iden-
tities? To ensure the accuracy of the cluster models, the
server must precisely aggregate local models belonging to the
same cluster. However, existing CFL methods rely on cluster
identities or local models for clustering and aggregation, which
conflicts with our need to protect preference privacy.
C3: How to develop the privacy protection design that con-
quers C1 and C2 without the assistance of an additional third-
party?

IV. MINGLEDPIE

In the following, we outline the high-level idea and details
of MingledPie, and analyze the computation and communica-
tion overhead of each component.

A. High-level Overview

The high-level overview of MingledPie is shown in Fig. 2.
Our approach involves clients sending their model updates to
multiple clusters. From the server’s perspective, each cluster
contains correct models and false positive models belonging
to other clusters, making it impossible for the server to
accurately infer the client’s cluster identity. Meanwhile, we
use a secure aggregation method based on homomorphic
encryption to protect model parameters. These mingled model
updates within the clusters are aggregated indiscriminately
into mingled cluster models. By carefully controlling the
proportion of mingled models in each cluster, we propose an
algorithm to rebuild accurate cluster models from the mingled
cluster models, ensuring that the cluster models maintain
high accuracy performances. MingledPie includes three critical
components:

Indistinguishable cluster identity generation. The client
identifies its true cluster by selecting the model with the
lowest loss function, and then generates some mingled cluster
identities based on a predefined false positive rate. The average
number of cluster identities is proportional to the false positive
rate relative to the total number of clusters.

Mingled cluster model aggregation. The server constructs
mingled clusters based on the set of cluster identities provided
by each client. These mingled clusters include both the true
clients and false positive clients, and the server aggregates all
local models within the mingled clusters to form the mingled
cluster models. As a result, the mingled cluster model can be
viewed as a combination of the accurate cluster model and a
certain proportion of models from other clusters.

Cluster model rebuilding. The client synchronizes the
mingled cluster models and calculates the number of clients
from other clusters within each mingled cluster. This allows
the client to construct a non-homogeneous system of linear
equations composed of the accurate cluster models, the actual
false positive rate, and the mingled cluster models. By solving
this system, the client can rebuild the accurate cluster models.
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Fig. 2: Illustration of MingledPie in each iteration

B. Detail Design of MingledPie

We describe the algorithm used to implement our proposed
framework as follows.
(I) Indistinguishable Cluster Identity Generation. The key
to protecting client preferences in CFL is to break the link
between client identities and clusters. As shown in Algorithm
1, we mingle a client’s true cluster identity by generating
multiple cluster identities for its model updates. We also make
the false model updates in each cluster close to a false positive
rate p, which allows us to rebuild cluster models.

Algorithm 1 Cluster Identity Generation

1: Input: cluster addresses {dskj}kj=1, cluster public keys
{dpkj}kj=1, privacy threshold T , cluster models {θtj}kj=1

2: Output: client i’s cluster identity set CIi, true cluster
identity ĵi, encrypted cluster identifiers {HE(σi,j)}kj=1

3: Client estimates cluster identity ĵi = argminj∈[k]Fi(θ
t
j)

4: while |CIi| < T do
5: CIi ← {}, r

$←− Zq , u← gr

6: for each cluster j do
7: if H((hl

ĵ
)r) ≡ H(uxl

j ),∀l ∈ [n] then
8: CIi ← CIi ∪ j
9: else

10: continue
11: end if
12: end for
13: end while
14: {HE(σi,j)}kj=1 ← σi,ĵ = 1, others 0
15: return CIi, ĵi, {HE(σi,j)}kj=1

Before the first round of training begins, the CFL server sets
some system parameters. Specifically, the server generates a
cluster public key dpkj and a cluster address dskj for each

cluster as follows:

dskj = {x1
j , ..., x

n
j }, dpkj = {g, h1

j , ..., h
n
j }, j ∈ [k] (1)

where g is a generator of a cyclic group G of prime order q,
xl ∈ Zq , and hl

j = gx
l
j for l ∈ [n]. The length of the cluster

public key and the cluster address is associated with a false
positive rate p = 2−n. In addition, the server sets a privacy
threshold T , which means that the client needs to generate at
least T cluster identities. The server then publishes the cluster
addresses {dskj}kj=1, the cluster public keys {dpkj}kj=1 and
the initialized cluster model {θ0j}kj=1 to all clients.

Algorithm 1 outlines the workflow of cluster identity gen-
eration for each client. In each round t, the client i estimates
its true cluster identity ĵi via finding the cluster model θt

ĵ
with

the lowest loss as follows:

ĵi = argminj∈[k]Fi(θ
t
j) (2)

If the client’s cluster identity has not changed from before,
it can use the previously generated cluster identity set. Other-
wise, the client then generates a private random number r and
computes u ← gr. The r and u are used to prevent clients
with the same ĵ from generating the same cluster identity set.
If H : G → {0, 1} is modeled as a random oracle, the client
then determines whether it belongs to cluster j according to
the following equation:

H((hl
ĵ
)
r
) ≡ H(uxl

j ),∀l ∈ [n] (3)

Once all clusters have been checked, the client starts check-
ing whether the cluster identities for the current round protect
its privacy. If the number of cluster identities in |CIi| does not
reach the privacy threshold T , the client will choose a new
random number to regenerate the cluster identities until the
privacy requirement is met.
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Subsequently, the client i trains its local model based on
the cluster model θt

ĵ
and encrypts its local model update as

HE(θti) using a homomorphic encryption algorithm. Addi-
tionally, client i also generates encrypted cluster identifiers
{HE(σi,j)}kj=1 based on its true cluster identity ĵ as follows:

{HE(σi,j)}kj=1 = {HE(σĵ = 1, σj ̸=ĵ = 0)}kj=1 (4)

where σĵ equals to 1 and others are 0. These cluster identifiers
will be used to count the number of clients from each cluster
within the mingled cluster for use in cluster model rebuilding.

Finally, the client sends the encrypted local model parame-
ters HE(θti), the encrypted cluster identifier{HE(σi,j)}kj=1,
and the cluster identity set CIi to the server. Without any
additional information, the cluster identities in CIi are indis-
tinguishable from the server, and the client’s local model is
assigned to the clusters in CIi.

During the training process, the false positive rate p is fixed,
which makes it easy for us to formalize the privacy-preserving
algorithm. In fact, p can be adjusted dynamically to fulfill
different privacy-utility considerations. The server can adjust
p at any time by generating different lengths of cluster public
keys and cluster addresses.
(II) Mingled Cluster Model Aggregation. Once all clients
have sent their model update messages to the server, the
server begins constructing mingled clusters based on the client
identity sets {CIi}Ni=1 and aggregates both the mingled cluster
models and their identifiers for each cluster.

Specifically, the server first assigns the clients’ model up-
dates to different clusters based on their cluster identities. After
mingling, each cluster contains all the local models that truly
belong to that cluster, along with some local models from
other clusters. We define the indicator function I(j ∈ CIi),
which is equal to 1 if the element j is present in the set
CIi, and 0 otherwise. For the j-th mingled cluster Gj , the
server aggregates the mingled cluster model θ̃t+1

j within the
homomorphic encryption domain as follows:

HE(|Gj | · θ̃t+1
j ) =

N∑
i=1

HE(θti) · I(j ∈ CIi), j ∈ [k] (5)

The server should also aggregate cluster identifiers for
each mingled cluster. Referring back to the cluster identity
generation, each client submits k encrypted cluster identifiers
to multiple clusters, with a value of 1 for the identifier
corresponding to its true cluster and 0 otherwise. Therefore, by
summing the k cluster identifiers within a mingled cluster, the
server can determine the number of true clients in that cluster,
as well as the number of false positive clients assigned to each
other cluster. The encrypted b-th cluster identifier for the a-th
mingled cluster is computed as follows:

HE(xa,b) =

N∑
i=1

HE(σi,b) · I(a ∈ CIi), a ∈ [k] (6)

These cluster identifiers form a mingling coefficient matrix
Hk×k = {xa,b}, (a, b = 1, 2, ..., k), where xa,b denotes the
number of clients from cluster G∗

b within mingled cluster Ga.

We represent the aggregation result of these cluster identifiers
as HE(Hk×k).

After finishing the mingled cluster model aggregation, the
server sends the encrypted mingled cluster models {HE(|Gj | ·
θ̃t+1
j )}kj=1, along with the sizes of the mingled clusters
{|Gj |}kj=1 and the encrypted mingling coefficient matrix
HE(Hk×k) to all clients.
(III) Cluster Model Rebuilding. Since mingled cluster mod-
els cannot be used directly, the client needs to rebuild the
accurate cluster model before the next round of training.
Algorithm 2 shows the cluster model rebuilding algorithm.

We assume that in the mingled cluster, local models from
other clusters are uniformly sampled. Therefore, the mingled
cluster model θ̃t+1

j can be expressed as follows:

|Gj | · θ̃t+1
j = |G∗

j | · θ∗
t+1
j +

k∑
c=1,c ̸=j

xj,c · θ∗t+1
c (7)

where {θ∗t+1
j }kj=1 are the accurate cluster models and

{xj,c}kc=1 are the number of local models in cluster G∗
c that

are mingled with cluster Gj .
Based on Eq. 7, we can combine the expressions of all

mingled cluster models to form a system of linear equations
with the accurate cluster models as the unknowns. This system
can be represented as follows:

Hk×kθ
∗
k×1 = θ̃k×1 (8)

where Hk×k is the mingling coefficient matrix computed
according to Eq. 6, θ̃k×1 = {θ̃1, ..., θ̃k} is the mingled cluster
model matrix and θ∗k×1 = {θ∗1, ..., θ∗k} is the accurate
cluster model matrix. The solution of this system of linear
equations can be easily obtained by Gaussian elimination, etc.

Algorithm 2 Cluster Model Rebuilding

1: Input: mingled cluster sizes {|Gj |}kj=1, encrypted min-
gling coefficient matrix HE(Hk×k), and encrypted aggre-
gation results {HE(|Gj |θ̃t+1

j )}Nj=1.
2: Output: rebuilt cluster models {θ̂t+1

j }kj=1

3: for each client i do
4: for each cluster j do
5: Decrypt HE(|Gj | · θ̃t+1

j ) and HE(Hk×k)

6: θ̃t+1
j ← |Gj | · θ̃t+1

j /|Gj |
7: end for
8: θk×1 ← {θ̃t+1

j }kj=1

9: {θ̂t+1
j }kj=1 ← solve Hk×kθ̃k×1 = θk×1

10: end for
11: return {θ̂t+1

j }kj=1

C. Complete MingledPie Algorithm

Algorithm 3 shows the complete MingledPie algorithm. In
each iteration, it mainly consists of the following five steps:
1) The server sends the encrypted mingled cluster model and
cluster identifiers to the client (line 7). 2) The client then
uses the cluster model rebuilding algorithm to compute the
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Algorithm 3 MingledPie Algorithm

1: Input: number of clusters k, number of clients N ,
learning rate γ, number of local gradient steps τ

2: Output: cluster models {θ̃j}kj=1

3: Server: Initialization
4: {θ0j}kj=1 ← Initialize cluster models.
5: for each training iteration t do
6: for each client i do
7: Synchronizing model updates from server.
8: if t ̸= 0 then
9: Clients: Cluster Model Rebuilding

10: {θ̂tj}kj=1 ← Algorithm 2
11: end if
12: Clients: Indistinguishable Cluster Identity Generation
13: CIi, ĵ, {HE(σi,j)}kj=1 ← Algorithm 1
14: θt+1

i ← LocalUpdate(θt
ĵ
, γ, τ)

15: Send CIi, HE(θt+1
i ) and {HE(σi,j)}kj=1 to server.

16: end for
17: Server: Mingled Cluster Model Aggregation
18: for each cluster j do
19: HE(|Gj |θ̃t+1

j ) ←
∑

j∈CIi
HE(θti)

20: HE(xj,b) =
∑N

i=1 HE(σi,b) · I(j ∈ CIi)
21: end for
22: HE(Hk×k)← HE(xab), a, b ∈ [k]
23: Send {HE(|Gj |θ̃t+1

j )}kj=1, HE(Hk×k) and {|Gj |}kj=1

to all clients.
24: end for
25:
26: procedure LOCALUPDATE(θt

ĵ
, γ, τ )

27: for each local epoch e in [τ ] do
28: θe+1

i ← θei − γ∇Fi(θ
e
i )

29: end for
30: end procedure

accurate cluster models (line 10), and uses the cluster identity
generation algorithm to estimate its true cluster identity and the
mingled cluster identity set (line 13). 3) The client trains the
local model based on its true cluster identity (line 14). 4) The
client sends the encrypted local model update and the cluster
identifier to the server (line 15). 5) The server aggregates the
encrypted local models and cluster identifiers for each mingled
cluster (line 17-22).

Here we analyze the computation and communication over-
head of MingledPie. Let pcorrect denote the actual false
positive rate under the privacy threshold, which may be higher
than p. It can be defined as follows:

pcorrect =

∑k−1
c=T cPrc

(k − 1)
∑k−1

c=T Prc
(9)

where Prc is the probability that Algorithm 1 generates c
cluster identities, it can be computed as follows:

Prc = Cc−1
k−1p

c−1(1− p)k−c (10)

Therefore, the computational complexity of cluster identity
generation is O(k/pcorrect), the model aggregation algorithm
has a complexity of O(kN(1+ pcorrect)), and model rebuild-
ing has a complexity of O(k3). The communication overhead
of MingledPie mainly stems from the transmission of en-
crypted models, where the client’s communication complexity
is O(k|HE(θ)|) and the server’s is O(N |HE(θ)|).

V. THEORETICAL ANALYSIS

In this section, we conduct a rigid theoretical analysis of
MingledPie from the perspectives of security, usability, and
algorithm convergence.

A. Security Analysis

Theorem 1 (Identity Indistinguishability). The mingled iden-
tities generated by MingledPie are indistinguishable for all
possible adversary A.

Proof. The information obtained by the attacker A from
the client includes CIi, HE(θi) andHE(σi,j), where HE(θi)
and HE(σi,j) are encrypted. If the chosen homomorphic
encryption scheme is CPA-secure, the two plaintexts are
indistinguishable based on their ciphertexts, and A cannot
extract any useful information fromHE(θi) andHE(σi,j). The
attacker can only attempt to infer the client’s identity from the
cluster identity set. According to Algorithm 1, upon receiving
a client’s cluster identity, A can know these cluster address
matches the public key of the client’s true cluster. However,
due to the one-way nature of the hash function in Eq. 3 and
the privacy of the random number r, A cannot deduce the true
cluster identity from the cluster identity set. Furthermore, the
server cannot analyze the client’s true cluster identity from
the variations in the identity set across multiple iterations, as
the client only generates a new identity set when there is a
change in the true cluster identity. This comparison is therefore
meaningless. Therefore, the client’s cluster identity remains
indistinguishable.

Theorem 2 (Bounds of the Preference Profiling Attacks). If
Theorem 1 holds, the probability Prattack of an adversary
A could infer users’ preferences is bounded as 1/k <
Prattack < 1/T .

Proof. According to Theorem 1, the optimal strategy for
an attacker attempting to infer a client’s identity based on
transmitted information is to guess randomly. The most effec-
tive guessing approach for the attacker is to select from the
client’s cluster identity set, yielding an accuracy of 1/|CIi|.
Since |CIi ∈ [T, k]|, the lower bound of the attack accuracy
Prattack is 1/k, and the upper bound is 1/T .

B. Usability Analysis

For the cluster model rebuilding algorithm, we obtain ac-
curate cluster models by solving a system of linear equations.
Here, we prove that this system of linear equations is solvable
and the solution is unique.
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Theorem 3 (Unique Solution in the Ideal Condition). Given
conditions that p ∈ (0, 1), {|G∗|j}kj=1 > 0 and |G∗

j | ≥ (N −
|G∗

j |)p, H∗
k×kθ

∗
k×1 = θ̃k×1 has a unique solution of θ∗k×1.

Proof. The condition for the system of linear equations to
have a unique solution is that H∗

k×k is invertible. In the ideal
condition, the composition of the clusters strictly follows the
false positive rate p with |G| = |G∗| + (N − |G∗|)p., where
the number of cluster identifiers from all clients is kp. The
ideal coefficient matrix H∗

k×k can be represented as follows:

H∗
k×k =


|G∗

1| p|G∗
2| · · · p|G∗

k|
p|G∗

1| |G∗
2| · · · p|G∗

k|
...

...
. . .

...
p|G∗

1| p|G∗
2| · · · |G∗

k|

 (11)

Given |G∗
j | ≥ (N − |G∗

j |)p for each cluster G∗
j , we can

further get that the diagonal elements of H∗
k×k, denote as

x∗
i,i, satisfy x∗

i,i ≥
∑k

j=1,j ̸=i xij . Therefore, H∗
k×k is a strictly

diagonally dominant matrix. Through the row transformation
for det(H∗

k×k), we can get:

det(H∗
k×k) = (1+p(k−1))(1−p)k−1|G∗

1||G∗
2| · · · |G∗

k| (12)

Since we require each cluster to be non-empty and the false
positive rate p ∈ (0, 1), we can get det(H∗

k×k) ̸= 0 and the
ideal coefficient matrix H∗

k×k is invertible.

Theorem 4 (Pertubation of Coefficient Matrix). If Theorem 3
holds, giving that min{|G∗

b |}kb=1 > (k − 1)2 + 105/16, the
perturbation of coefficient matrix Hδ = Hk×k − H∗

k×k is
considered negligible.

Proof. See Appendix A-A.

Theorem 5 (Unique solution of the Rebuilding Model). If
Theorem 3 and 4 holds, Hk×kθ

∗
k×1 = θ̃k×1 of the real

coefficient matrix Hk×k has a unique solution of θ∗k×1.

Proof. Hk×k is a matrix that fluctuates around H∗
k×k, which

can be viewed as composed of the ideal matrix H∗
k×k and a

perturbation matrix Hδ . Theorem 3 proves that the system
with H∗

k×k has a unique solution under certain conditions.
According to matrix perturbation theory, H∗

k×k remains invert-
ible after adding a small perturbation Hδ . Theorem 4 proves
that it is a small perturbation with high probability and is
negligible. Therefore, Hk×k is invertible, and the system of
linear equations has a unique solution.

C. Convergence Analysis

Following the prior works [7], [58], [59], we assume the
loss function Fj(·) is λ-strongly convex and L-smooth, the
variance of f (θ; z) is upper bounded by η2, and the variance of
∇f (θ; z) is upper bounded by v2. The maximum norm of the
theoretically optimal models is bounded: maxj∈[k] ∥θj∥ ≲ 1.
The initial model parameter estimates satisfy ∥θ̂0j − θj∥ ≤(
1
2 − α0

)√
λ
L∆ for all j ∈ [k]. The amount of data is such

that m ≳ kη2

α2
0λ

2∆4 .

Next, we introduce the following definitions: Let ξ denote
the proportion of the cluster’s size relative to that of the
mingled cluster, defined as ξ =

|G∗
j |

|Gj | . Define β as the pro-
portion of this cluster’s size relative to the mingled cluster for
a different cluster j′ (where j′ ̸= j), given by βj′ =

|G∗
j′∩Gj |
|Gj | .

Let ωj =
|G∗

j |
m represent the fraction of clients belonging to

the j-th cluster, and assume that ω = min{ω1, ω2, . . . , ωk}
satisfies ω ≳ log(mN)

N , where m denotes the amount of data
used. Define {θj}j∈[k] as the theoretically optimal model to
be obtained. Let ∆ represent the minimum distance between
different cluster models, defined as ∆ = minj ̸=j′ ∥θj − θj′∥,
and the signal-to-noise ratio is given by ρ = ∆2

σ2 . Additionally,
we require that

∆ ≥ Õ
(
max

{
α
−2/5
0 m−1/5, α

−1/3
0 N−1/6m−1/3

})
(13)

where the closeness parameter α0 satisfies 0 < α0 < 1
2 .

Theorem 6. (The convergence guarantee of the entire algo-
rithm). Given θ̂tj as the t-th iteration in the algorithm and
δ ∈ (0, 1), we have for any fixed j ∈ [k], with probability at
least 1− δ, we can obtain ∥θ̂tj − θj∥ ≤ ε,where

ε ≲
vkL log(mN)

ω5/2λ2δ
√
mN

+
η2L2k log(mN)

ω2λ4δ∆4m

+
L∆

ωλξ

∑
j′ ̸=j

βj′ + Õ
(

1

m
√
N

)
(14)

Proof. We first prove the convergence of the algorithm in a
single iteration, and then analyze the convergence of multiple
iterations on this basis.

Let θ̂+j be the next iterate in the algorithm, and θ∗j be
the accurate cluster model matrix. According to the triangle
inequality, the error between the model of the next iteration
and the optimal model can be expressed as:

∥θ̂+j − θj∥ ≤ ∥θ̂+j − θ∗+j ∥+ ∥θ
∗+
j − θj∥ (15)

Here, we analyze the bound of ∥θ̂+j −θ∗+j ∥ and ∥θ∗+j −θj∥
separately.

a) Bound ∥θ̂+j −θ∗+j ∥: θ̃
+
j aggregate all local models within

the cluster and the local models from other clusters, that is,

θ̃+j = ξθ∗+j +
∑
j′ ̸=j

βj′θ
∗′
j′ (16)

where θ∗′j′ represents the aggregation of local models belonging
to G∗

j′ ∩Gj . In the cluster model rebuilding, we establish the
following expression for solving:

θ̃+j = ξθ̂+j +
∑
j′ ̸=j

βj′ θ̂
+
j′ (17)

We can get the following bound from Eq. 16 and Eq. 17:

∥θ̂+j − θ∗+j ∥ ≤
1

ξ

∑
j′ ̸=j

βj′∥θ̂+j′ − θ∗′j′∥ (18)

Since the cluster models between different clusters have
minimum separations ∆, the difference between the models
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aggregated from different clients within the same cluster must
be smaller than ∆, that is ∥θ̂+j′ − θ∗′j′∥ ≤ ∆. Therefore, we can
change Eq. 18 and get the bound of ∥θ̂+j − θ∗+j ∥ as follows:

∥θ̂+j − θ∗+j ∥ ≤
∆

ξ

∑
j′ ̸=j

βj′ (19)

b) Bound ∥θ∗+j −θj∥: Following the proof in prior works [7],
[60], we can obtain

∥θ∗+j − θj∥ ≤(1−
ωλ

8L
)∥θ̂j − θj∥+

c0v

δL
√
ωmN

+
c1η

2

δα2λ2∆4m
+

c2vηk
3/2

δ3/2αλL∆2
√
Nm

(20)

By substituting Eq. 19 and Eq. 20 into Eq. 21, given δ0 ∈
(0, 1), with probability at least 1− δ0, we can derive:

∥θ̂+j − θj∥ ≤ (1− ωλ

8L
)∥θ̂j − θj∥+ ε0 (21)

where

ε0 ≲
v

δ0L
√
ωmN

+
η2

δ0α2λ2∆4m

+
vηk3/2

δ
3/2
0 αλL∆2

√
Nm

+
∆

ξ

∑
j′ ̸=j

βj′ (22)

Following the proof in prior works [7], [60], we can
conclude that after t = 8L

ωλ log
(
2∆
ε

)
iterations. To ensure that

the cumulative failure probability for a single iteration is less
than the overall failure probability δ of the entire algorithm,
We set δ0 = ωλδ

ckL log(mN) . θ̂tj is closest to the theoretically
optimal model, that is,

∥θ̂tj − θj∥ ≤
16L

ωλ
ε0 (23)

Using Eq. 22 and Eq. 23, we can obtain Eq. 14, which
completes the proof.

VI. EVALUATION

In this section, we first present the experimental setting,
and then evaluate our MingledPie against the preference
profiling attack. Afterward, we evaluate the performance of
our approach.

A. Experimental Setup

Testbed and Baselines: We implement MingledPie in
Python 3.9 using the deep learning framework PyTorch 1.10.0.
We deploy it on a server with Intel Xeon Gold 6430 CPU,
NVIDIA GeForce RTX 4090 GPU, and 120GB RAM. To val-
idate the performance of MingledPie, we evaluate it with three
advanced FL methods: (a) IFCA [7] is a CFL method of client-
side clustering. (b) FedProx [61] is an FL method that deals
with statistical heterogeneity by regularization. (c) FedEM
[62] is an FL method that deals with statistical heterogeneity
by an expectation maximization algorithm. IFCA trains a
personalized cluster model for each cluster, and FedProx and
FedEM train a generalized global model for all clients.

Datasets: For our evaluation, we use the image datasets
MNIST [63], Fashion MNIST [64], CIFAR-10, CIFAR-100
[65], and the medical dataset Texas100 [40], as well as
the shopping records dataset Purchase100 [40]. MNIST and
Fashion MNIST both contain 10 classes, with 60k training
images and 10k test images. CIFAR-10 and CIFAR-100
contain 10 and 100 classes respectively, and both datasets
have 50k training images and 10k test images. Texas100 and
Purchase100 each contain 100 classes.

To simulate the setting of CFL, we divide all labels of the
dataset into several label sets, where each cluster corresponds
to a label set. To achieve non-IID scenarios, we randomly
assign training data from the same label set to clients, ensuring
that each client’s label preferences align with the respective
label set. Clients are then allocated to their corresponding
clusters. In the homogeneous clustering scenario, we evenly
distribute dataset labels so that each label set has the same
size, and each cluster has an equal number of clients. In
a heterogeneous clustering scenario, dataset labels can be
partitioned arbitrarily, and cluster membership allocation is
based on the proportion between the label sets.

Models: We use different model architectures for six
datasets. For the MNIST and the Fashion MNIST, we use a
fully connected neural network (FCNN) [66] with two fully
connected layers and a single hidden layer of size 200. For the
CIFAR-10, we adopt a convolutional neural network (CNN)
[67] with two convolutional layers, a max-pooling layer, and
three fully connected layers. For the CIFAR-100, we adopt the
ResNet-18 model [68]. For the Texas100 and Purchase100, we
use the multilayer perceptron model (MLP) [66].

Default Configurations: For all datasets, the number of
clusters is set to 5, the number of clients to 120, the number
of pre-training epochs to 1, the number of local iterations
to 5, the false positive rate is 0.5, and the threshold is 2.
For MNIST, Fashion MNIST, and CIFAR-100, the number of
training epochs is set to 100. For CIFAR-10, the number of
training epochs is set to 240. For Texas100 and Purchase100,
the number of training epochs is set to 300. The learning rate
is set to 0.01 for MNIST, Fashion MNIST, and Purchase100,
and to 0.1 for the other datasets.

B. Defense Against Preference Profiling Attack

1) Defense Effects under Different Parameters: In the de-
fense experiment of MingledPie, we assume that the adversary
can analyze each client’s traffic and obtain the cluster identity
results and model updates sent out by each client from the
analysis. For the model update results, the clients use HE
to encrypt the ciphertext for transmission, and the adversary
cannot decrypt the ciphertext to obtain the model information.
Since our work focuses on cluster identity protection, the
model information protection part can be replaced by any
efficient HE scheme or other types of schemes that can protect
model privacy. We focus on the attack that trying to obtain the
client’s cluster identity.

We conducted experiments under different parameters, i.e.,
the effect of the parameters of false positive rate, number
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Fig. 3: Adversary preference profiling accuracy with default parameters p = 0.5, k = 5 and T = 2

of clusters, and cluster privacy threshold on the probability
that an adversary will infer the true cluster identity of a
client, i.e., preference profiling. As shown in Fig. 3, three heat
maps demonstrate the impact of the above parameters on the
adversary’s preference profiling accuracy. Fig. 3 (a) fixes the
privacy threshold T = 2, and the result shows that a lower false
positive rate slowly increases the adversary’s attack accuracy
because the lower the false positive rate, the fewer additional
false positive cluster identities are generated. For example,
when we have 5 clusters and p = 0.5, the adversary has an
accuracy of 33.3% to obtain the true identity of the client with
an average of 3 mingled cluster identities. The result shows
that the accuracy is 30.6%, so the defense accuracy is 69.4%,
which is close to the ideal result. Fig. 3 (b) fixes the number of
clusters k = 5, and it comes out that p has little effect on the
results and T effects more on the results. The last experiment
in Fig. 3 shows the impact of k and T with a fixed p = 0.5.
There is a constraint that the threshold needs to be greater
than the number of clusters, so that explains the grey part
of the figure. The number of clusters significantly affects the
adversary’s attack accuracy because a larger number of clusters
means that the adversary has a greater range of speculation and
a greater impact following a larger threshold.

2) Compare with IFCA: MingledPie and IFCA use the
same clustering and training methods. Therefore, IFCA can be
considered as our approach without defense components. Here,
we compare the accuracy of Top-1 preference profiling attacks
on the server between IFCA and MingledPie. As shown in
Table II, the privacy-preserving results of MingledPie remain
stable at around 29% throughout multiple training rounds.
In contrast, the accuracy of preference profiling attacks in
IFCA increases rapidly with the number of training epochs.
For the MNIST, Fashion MNIST, CIFAR-10, CIFAR-100,
Texas100, and Purchase100 datasets, the attacker’s average
accuracy in the first five rounds of training on IFCA is 87.6%,
96.8%, 99.8%, 96.3%, 98.2%, and 95.8%, respectively. The
primary reason is that, initially, the clustering results for clients
may not be accurate, making the server’s cluster-identity-
based inference inaccurate. However, after a period of training,
IFCA’s clustering algorithm produces increasingly accurate

TABLE II: Comparison of preference profiling accuracy with
default parameters p = 0.5, T = 2, k = 5, and N = 120

Dataset Method Epoch

1 3 5

MNIST MingledPie 27.8% 27.8% 27.8%
IFCA 60.3% 97.2% 100.0%

Fashion MNIST MingledPie 28.8% 28.8% 28.8%
IFCA 86.7% 100.0% 100.0%

CIFAR-10 MingledPie 29.0% 29.0% 29.0%
IFCA 98.8% 100.0% 100.0%

CIFAR-100 MingledPie 28.9% 28.9% 28.9%
IFCA 81.7% 100.0% 100.0%

Texas100 MingledPie 30.1% 30.1% 30.1%
IFCA 90.8% 100.0% 100.0%

Purchase100 MingledPie 29.0% 29.0% 29.0%
IFCA 79.2% 100.0% 100.0%

clustering results, and cluster identity-based inference attacks
become more accurate.

C. Training Performance

1) Average Test Accuracy: In this section, we evaluate
performance using average test accuracy, primarily because
MingledPie and IFCA are personalized federated learning
approaches that produce personalized cluster models rather
than a global model. Therefore, using average test accuracy
allowed for a more straightforward comparison with the model
accuracy of FedProx and FedEM.

First, we conduct experiments under homogeneous cluster-
ing conditions, initializing each cluster with the same number
of clients. As shown in Fig. 4, we observe that the model
accuracy of MingledPie and IFCA are significantly higher
than those of FedProx and FedEM. The model accuracy of
MingledPie and IFCA are very close, and their convergence
processes are also very similar. According to TABLE III, with
identical default parameters, on the MNIST, Fashion MNIST,
CIFAR-10, CIFAR-100, Texas100, and Purchase100 datasets,
the average model accuracy of MingledPie and IFCA differs
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(a) MNIST (b) Fashion MNIST

(c) CIFAR-10 (d) CIFAR-100

(e) Texas100 (f) Purchase100

Fig. 4: Average cluster model convergence curve in homoge-
neous clustering setting

by only 0.02%, 0.34%, 0.51%, 3.00%, 0.74%, and 0.16%,
respectively, indicating minimal disparity between the two
approaches. From this, we can infer that the rebuilt model
is similar to the cluster model without mingled aggregation.
However, due to computational errors during model rebuilding,
there is a slight difference in model accuracy.

Next, we conduct experimental analysis under the scenario
of heterogeneous clustering. In the initialization phase, we
randomly divide the data labels. In the MNIST, Fashion
MNIST, and CIFAR-10 datasets, each containing 10 labels,
we divide the labels into five label sets ranging from 1 to 3.
In the CIFAR-100 dataset, which has 100 labels, we divide the
labels into five label sets ranging from 10 to 30 in size. In the
Texas100 and Purchase100 datasets, each with 100 labels, we
divide the labels into ten label sets ranging from 5 to 20 in size.
Then, we allocate clients based on the proportion between the
label sets. The results, as shown in TABLE III, indicate that
the model accuracy of MingledPie and IFCA is significantly
higher than that of FedProx and FedEM. Additionally, Min-
gledPie and IFCA have slight differences in model accuracy.
It is worth noting that even if some heterogeneous settings
do not satisfy the conditions in Theorem 5, our method can
still rebuild an accurate cluster model. Therefore, whether

TABLE III: Average cluster model accuracy with default
parameters p = 0.5, T = 2, k = 5, and N = 120

Dataset Method Accuracy

Homogeneous Heterogeneous

MNIST

MingledPie 97.51% 95.81%
IFCA 97.49% 95.86%

FedProx 81.11% 81.11%
FedEM 87.14% 87.14%

Fashion MNIST

MingledPie 98.14% 96.14%
IFCA 98.49% 96.15%

FedProx 67.53% 67.53%
FedEM 79.33% 79.33%

CIFAR-10

MingledPie 94.76% 87.30%
IFCA 95.27% 90.62%

FedProx 61.11% 61.11%
FedEM 83.10% 83.10%

CIFAR-100

MingledPie 59.20% 55.64%
IFCA 62.20% 60.92%

FedProx 48.22% 48.22%
FedEM 50.55% 50.55%

Texas100

MingledPie 81.14% 75.15%
IFCA 81.88% 76.39%

FedProx 61.22% 61.22%
FedEM 48.72% 48.72%

Purchase100

MingledPie 88.83% 77.72%
IFCA 88.99% 80.96%

FedProx 84.98% 84.98%
FedEM 67.36% 67.36%

under homogeneous or heterogeneous clustering conditions,
MingledPie can achieve privacy protection while maintaining
high model accuracy.

2) Parameter Influence: In this part, we analyze the impact
of parameter adjustments on the experimental results. We
adjust the number of clusters k, the number of clients N ,
the false positive rate p, and the privacy threshold T , then
test their experimental results under both homogeneous and
heterogeneous clustering conditions for comparison.

Impact of the number of clusters: In the homogeneous
clustering setting, we evaluate the impact of increasing the
number of clusters from 5 to 10 on model accuracy. Specif-
ically, for the MNIST and Fashion MNIST datasets, when
the number of clusters is 10, we adjusted the learning rate
due to insufficient samples in each cluster, and decreased it
on the epoch-specific to prevent overfitting. Fig. 5 (a) shows
the accuracy for each dataset under different cluster counts.
We observe that the average model accuracy with 10 clusters
is higher than with 5 clusters. For example, on the MNIST
dataset, the accuracy is 97.51% with 5 clusters and 99.40%
with 10 clusters. In the heterogeneous clustering setting, we
increase the number of clusters from 5 to 8. Fig. 5 (b)
shows the accuracy for each dataset with different numbers of
clusters under heterogeneous clustering. We observe that the
average model accuracy is higher with 8 clusters compared
to 5 clusters. This improvement can be attributed to the fact
that by increasing the number of clusters, clients can be
grouped in a more fine-grained manner, allowing for better
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(a) Homogeneous Clustering (b) Heterogeneous Clustering

Fig. 5: Impact of the number of clusters

(a) Homogeneous Clustering (b) Heterogeneous Clustering

Fig. 6: Impact of the total number of clients

(a) Homogeneous Clustering (b) Heterogeneous Clustering

Fig. 7: Impact of the false positive rate

(a) Homogeneous Clustering (b) Heterogeneous Clustering

Fig. 8: Impact of the privacy threshold

model personalization to match the data distribution within
each cluster. As a result, the model training process becomes
more effective, leading to an overall improvement in model
performance.

Impact of the total number of clients: To investigate the
impact of the number of clients on model accuracy, we in-
crease the number of clients from 120 to 240. Fig. 6 illustrates
the accuracy of each dataset under both homogeneous and
heterogeneous clustering conditions with different numbers
of clients. According to Fig. 6, we observe that increasing
the number of clients slightly affects model accuracy. For
example, in the homogeneous clustering setting, the MNIST
model accuracy differs by 0.07%, and the CIFAR-10 model
accuracy differs by 0.13%. In the heterogeneous clustering
setting, the MNIST model accuracy differs by 0.04%, and the
CIFAR-10 model accuracy differs by 0.53%. Therefore, the
number of clients does not significantly affect the experimental
results. During the model rebuild process, the establishment of
different coefficient matrices due to varying numbers of clients
does not affect the accuracy of the model rebuild. Therefore,
changes in the number of clients have little effect on model
accuracy, resulting in only slight fluctuations in precision.

Impact of false positive rate: In this study, we investigate
the impact of the false positive rate on model accuracy while
keeping other parameters constant. We reduce the false posi-
tive rate from 0.5 to 0.25 and conduct experimental analyses
and comparisons under both homogeneous and heterogeneous
clustering conditions. According to Fig. 7, we observe that
when the false positive rate changes, the model accuracy
does not significantly vary. In the homogeneous clustering
setting, the model accuracy for the MNIST, Fashion MNIST,
CIFAR-10, and Texas100 datasets differs by only 0.03%,
0.01%, 0.13%, and 0.43%, respectively. In the heterogeneous

clustering, with false positive rates of 0.25 and 0.5, the
model accuracy for MNIST, Fashion MNIST, CIFAR-10,
and Texas100 differs by 0.06%, 0.01%, 0.12%, and 0.81%,
respectively. Since changing the false positive rate alters the
coefficient matrix but does not affect the model rebuilding
results, we can conclude that changing the false positive rate
does not significantly affect the experimental results.

Impact of privacy threshold In this study, we analyze the
effect of varying the privacy threshold on model accuracy
while keeping other parameters constant. We increase the
privacy threshold from 2 to 3 and conduct a comparative exper-
imental analysis under both homogeneous and heterogeneous
clustering conditions. As observed in Fig. 8, varying the pri-
vacy threshold has minimal impact on model accuracy. In the
homogeneous clustering setup, the accuracy differences for the
MNIST, Fashion-MNIST, CIFAR-10, and Texas100 datasets
are only 0.06%, 0.01%, 0.13%, and 0.08%, respectively. In
the heterogeneous clustering scenario, the accuracy differences
are 0.06%, 0.01%, 0.12%, and 0.35%, respectively. Therefore,
changing the privacy threshold does not have a significant
impact on experimental outcomes.

D. Runtime Overhead of MingledPie

We measure the computation time of MingledPie on the
Texas100 dataset, with the results presented in Table IV.
The computation time of cluster identity generation is mainly
influenced by p, T , k, and N . As shown in Table IV, the
computation time for generating cluster identities is relatively
small. As the false positive rate p decreases, the length of
the cluster addresses that the client needs to match increases,
leading to longer computation time. Increasing T results in the
client needing to run the cluster identity generation algorithm
more times on average to generate a sufficient number of
cluster identities, which also adds to the computation time.
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TABLE IV: Computation time for different components with
default parameters p = 0.5, T = 2, k = 10, and N = 120

Process Identity
Generation

Model
Aggregation

Model
Rebuilding

p = 0.5 0.068s 18.014s 0.284s

p = 0.25 0.101s 11.763s 0.267s

p = 0.125 0.181s 8.211s 0.254s

T = 2 0.068s 18.014s 0.284s

T = 3 0.071s 23.047s 0.287s

T = 4 0.077s 29.523s 0.290s

k = 5 0.041s 10.137s 0.184s

k = 8 0.058s 14.521s 0.243s

k = 10 0.068s 18.014s 0.284s

N = 60 0.069s 9.154s 0.260s

N = 120 0.068s 18.014s 0.284s

N = 240 0.068s 39.138s 0.316s

Additionally, increasing k increases the number of cluster
addresses that need to be matched, further raising the computa-
tional overhead. The server’s model aggregation is performed
within the CKKS homomorphic encryption domain. The over-
head is primarily determined by the number of clusters k
and the size of the mingled clusters, with the latter being
influenced by p, T , and N . Although the model aggregation
time grows with the above parameters, the average aggregation
overhead per local model 0.03s appears to be acceptable for
the server. Finally, the computation time required for the
client to rebuild the cluster model primarily depends on the
number of clusters k. As the number of clusters increases, the
dimension of the linear system to be solved also increases,
with the computational complexity typically being O(k3).

We further analyze the trade-off between privacy protection
and computational overhead. As shown in Table IV, reducing
the privacy threshold T leads to a corresponding decrease
in computational overhead for both the client and the server.
Therefore, selecting the minimum T that satisfies the required
privacy guarantees is recommended. Additionally, as the false
positive rate p increases, the computational burden on the
server grows, while the client’s overhead diminishes. Thus,
the value of p should be chosen to balance the computational
resources of the server and client.

E. Ablation Study

We conduct detailed ablation experiments to determine
the effectiveness of cluster model rebuilding. The specific
experimental results are shown in TABLE V. We can see
that the client-side clustering method without defense achieves
high training and testing model accuracy. When only mingled
aggregation is used without model rebuilding, both training
and testing accuracy significantly decreased. When model
rebuilding was attempted using mingled cluster models based
on the ideal coefficient matrix, the accuracy did not improve

TABLE V: Ablation study of MingledPie with default param-
eters p = 0.5, T = 2, k = 5, and N = 120

Dataset Method Train Accuracy Test Accuracy

MNIST
① 97.38% 97.47%

① + ② 52.07% 52.13%
① + ② + ③ 39.63% 37.94%
① + ② + ④ 97.38% 97.46%

Fashion MNIST
① 98.52% 98.49%

① + ② 66.12% 65.82%
① + ② + ③ 70.46% 70.16%
① + ② + ④ 98.46% 98.18%

CIFAR-10
① 97.64% 95.27%

① + ② 65.90% 66.11%
① + ② + ③ 51.39% 51.45%
① + ② + ④ 96.84% 94.13%

Texas100
① 83.67% 78.95%

① + ② 27.78% 28.00%
① + ② + ③ 18.42% 18.39%
① + ② + ④ 82.60% 78.13%

① Client-side clustering method without defense. ② Perform cluster
mingling. ③ Perform model rebuilding based on ideal coefficient matrix.
④ Perform model rebuilding based on the number of mingled clients.

significantly and even decreased. This outcome is due to a
discrepancy between the actual number of clients participating
in mingled aggregation and the number estimated through the
false positive rate, resulting in errors during model rebuilding
and reduced accuracy due to cumulative errors.

Therefore, in our approach, using the actual number of
mingled clients for model rebuilding results in model accuracy
comparable to that of the client-side clustering method without
defense. For instance, in the Texas-100 dataset, the client-side
clustering method without defense achieves an accuracy of
only 0.82% higher than our approach. This demonstrates that
using the actual number of mingled clients for model rebuild-
ing effectively improves accuracy, validating the effectiveness
of the model rebuilding strategy.

VII. CONCLUSION

In this work, we propose a privacy-preserving clustered
federated learning framework called MingledPie to mitigate
the issue of preference profiling attacks. MingledPie miti-
gates this privacy limitation by treating model updates from
other clusters as obfuscations. It mingles client model up-
date messages with different preferences into mingled cluster
models, protecting client privacy. MingledPie preserves model
performance by rebuilding cluster models based on the false
positive rate of the obfuscations. It employs a cluster identity
generation method to mingled aggregate and model rebuilding
to ensure privacy protection while maintaining usability. The
experimental results show that we can effectively enhance
the privacy protection of client preferences with negligible
accuracy loss compared to baselines.
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APPENDIX A
APPENDIX

A. Proof of Theorem 4

We first calculate the probability distribution of the number
of false positive clients, and then based on the properties of
the matrix H∗

k×k, we derive the constraints on the perturbation.
Finally, by combining the probability distribution of the pertur-
bation and the constraints, we conclude that Hδ is negligible
and thus Hk×k is invertible.

According to Algorithm 1, if a client is mingled into a
cluster, their true cluster identity’s public key must match
the cluster’s address in n bits. Assuming within cluster b, the
number of clients that satisfy the condition of matching the
first position of the cluster address of cluster a, denoted as
x1
a,b, is a random variable, the probability distribution of x1

a,b

is given as:
PR1(xa,b) = C

xa,b

|G∗
b |
(1/2)|G

∗
b | (24)

On this basis, we iteratively compute the probability distri-
bution of n-bit matches using the following equation:

PRn(xa,b) =

|G∗
b |∑

y=xa,b

PRn−1(y) · Cxa,b
y (1/2)y (25)

Then, for a strictly diagonally dominant matrix H∗
k×k, we

have |x∗
ii| >

∑
j ̸=i |x∗

ij |. For the perturbation matrix Hδ , its
diagonal elements are zero, and we assume that the remaining
elements do not exceed C, i.e., |xσij

| < C for i ̸= j. We
need to find the value of C to ensure that Hk×k is invertible.
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According to the Gerschgorin circle theorem, the eigenvalues
λH of the matrix Hk×k lie within the following constraint:

|λH − x∗
ii| ≤

∑
j ̸=i

|xσij
| (26)

Since |xσij | < C, we can express this as:

|λH − x∗
ii| ≤ (k − 1)C (27)

To ensure that the eigenvalues of H are non-zero, we
require: |x∗

ii| > (k − 1)C, which implies:

C <
1

k − 1
min |x∗

ii| (28)

For n = 1, we have the probability distribution PR1
xa,b

,
which is a binomial distribution. When |G∗

b | is sufficiently
large, according to the central limit theorem, if a sufficiently
large number of samples are drawn from a population with any
distribution having a finite variance, these samples, which fol-
low the same distribution, will have a mean that asymptotically
approaches a normal distribution. Therefore, this binomial
distribution can be approximated by a normal distribution
X ∼ N ((1/2)|G∗

b |, (
√
|G∗

b |/2).
In a normal distribution, 99.73% of the data falls within

three standard deviations of the mean, i.e., within the interval
[(1/2)|G∗

b |−3(
√
|G∗

b |/2), (1/2)|G∗
b |+3(

√
|G∗

b |/2)]. The max-
imum value of the fluctuation C is three standard deviations,
3(
√
|G∗

b |/2, which is:

3(
√
|G∗

b |/2 < |G∗
b |/(k − 1) (29)

If the smallest cluster |G∗
b | satisfies Eq. 29, then it will be

satisfied for all clusters:

min{|G∗
b |}kb=1 > (k − 1)2 + 105/16 (30)

For the case where n > 1, the interval in which C falls
will be within the range determined by the case n = 1.
Consequently, it will also satisfy the required conditions. Thus,
when |G∗

b | satisfies this condition, C has a 99.73% probability
of falling within the three standard deviation interval and Hδ

is considered negligible, ensuring that Hk×k is invertible.

B. Datasets used in Evaluation

1) MNIST: contains images of handwritten digits ranging
from 0 to 9 [63], totaling 10 categories. It includes 60k training
images and 10k test images, all of which are 28x28 grayscale
images.

2) Fashion MNIST: is a dataset of fashion item images
across 10 categories [64]. Similar to MNIST, it includes 60k
training images and 10k test images, all of which are 28x28
grayscale images.

3) CIFAR-10: is a dataset for recognizing general objects
[65], containing 10 categories of colored images, such as
airplanes, cats, and dogs. It consists of 50k training images
and 10k test images, each sized at 32x32 pixels.

4) CIFAR-100: is a dataset used for image classification
tasks [65], containing 100 categories. It includes 50k training
images and 10k test images.

5) Texas100: This dataset records patient discharge data
from various medical institutions, released by the Texas De-
partment of Health Services. It includes information such
as causes of injury, diagnoses, treatment procedures, and
patient details. Texas100 is a processed version of this data
[40], containing 67,330 records and 6,169 binary features,
divided into 100 categories, each representing different types
of patients.

6) Purchase100: Purchaes is a dataset provided by Kaggle,
consisting of shopping records of thousands of people over
nearly a year, including product names, stores, dates, and
more. Purchase100 is a simplified version of this dataset [40],
comprising 100 categories with a total of 197,324 records.
Each record is represented by 600 binary bits, where each bit
indicates whether a specific product was purchased.

C. Extra Experimental Result

1) Different models: We examine the performance of the
approach on different models within the same dataset. Taking
the CIFAR-100 dataset as an example, we test it on both CNN
and ResNet models. As shown in TABLE VI, we observe
that the model accuracy reaches 42.57% with the CNN model
and 63.24% with the ResNet model. Additionally, as shown
in Fig. 9, we also test the accuracy of all cluster models
on the CNN and ResNet models. According to TABLE VI,
we can see that in the ResNet model, the highest cluster
model accuracy is 65.20%, and the lowest is 61.30%, resulting
in a difference of 3.90%. In the CNN model, the highest
cluster model accuracy is 45.10%, while the lowest is 36.45%,
with a difference of 8.65%. The experimental results indicate
significant differences in clustering performance between dif-
ferent models on the same dataset. The ResNet model shows
higher overall accuracy compared to the CNN model and
exhibits smaller accuracy differences across different cluster
models, suggesting greater robustness in handling complex
data features.

(a) ResNet (b) CNN

Fig. 9: Convergence curve of the cluster model for each cluster

2) IID Rate: In Theorem 6, we analyze that the accu-
racy loss in MingledPie primarily arises from equating the
aggregation results of some clients within a cluster to the
aggregation results of all clients in that cluster during model
rebuilding. This error is significantly influenced by the IID rate
of the clusters containing false-positive clients. Therefore, we
conduct experiments by setting different IID rates for the data
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TABLE VI: Cluster model accuracy for each cluster

Cluster ResNet CNN

Cluster0 61.30% 36.45%
Cluster1 64.60% 45.05%
Cluster2 63.75% 41.45%
Cluster3 61.35% 44.80%
Cluster4 65.20% 45.10%

Average Test Accuracy 63.24% 42.57%

distribution of the clients. According to TABLE VII, we find
that when the IID rate is 0%, the difference in model accuracy
is at its lowest, and as the IID rate increases, the difference
in model accuracy also increases. Thus, when the aggregated
model from these false-positive clients more closely aligns
with the true cluster model, the resulting accuracy loss is
minimized. To further reduce accuracy loss, we can adopt more
precise clustering algorithms or client selection strategies to
increase the IID rate within clusters.

TABLE VII: Model accuracy with different IID rates with
default parameter p = 0.5, T = 2, k = 5 and N = 120

Parameter MingledPie IFCA

IID rate=0% 98.14% 98.49%
IID rate=20% 83.98% 88.52%
IID rate=40% 76.77% 82.46%
IID rate=60% 72.29% 77.71%

3) Dynamic joining of clients: During the training pro-
cess, we allow for the dynamic joining of other clients and
conduct training. Taking the MNIST dataset as an example,
we introduce 10 new clients every 10 training rounds. These
clients are assigned to appropriate clusters based on their data
distribution. We set the data distribution of the new clients
using different IID rates and study their impact on model
accuracy. As shown in Table VIII, we observe a significant
decrease in training accuracy and a downward trend in testing
accuracy with the increase in IID rate. Specifically, when the
IID rates are 0%, 20%, 40%, and 60%, the training accuracies
are 97.35%, 88.92%, 80.54% and 72.14%, respectively. The
decrease in model accuracy is attributed to the increased
diversity of the training data; higher IID rates make the
learning process more challenging.

TABLE VIII: Dynamic joining of clients every 10 rounds with
default parameters newcomers = 10

Parameter Train Accuracy Test Accuracy

IID rate=0% 97.35% 97.47%
IID rate=20% 88.92% 97.40%
IID rate=40% 80.54% 97.37%
IID rate=60% 72.14% 97.22%

4) Computation cost of HE: CKKS homomorphic encryp-
tion is used in the evaluation as a secure model update
and aggregation method. We compute the overhead of model
encryption and decryption under different model structures.
TABLE IX shows that the overhead of model encryption is

correlated with the amount of parameter data in the model,
with model encryption and decryption time significantly in-
creasing in Resnet models with a high number of parameters
and decreasing in FCCN models with a reduced number of
parameters. It is worth noting that we did not set up parallel
computation when testing the encryption and decryption pro-
cess and we did not use the homomorphic encryption scheme
of SOTA like BatchCrypt [16] which improves computational
performance with less loss of precision. Because the focus of
this scheme is not homomorphic encryption, this part can be
replaced to achieve better performance.

TABLE IX: Computation Time of HE

Train Model FCNN CNN ResNet-18

Weight Encryption Time 3.32s 7.22s 22.08s
Weight Decryption Time 0.36s 0.73s 2.78s

APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact is available under open-
source license at https://github.com/CHENGZ03/MingledPie
and https://doi.org/10.5281/zenodo.14135448.

2) Hardware dependencies: Commodity GPUs (e.g., we
used NVIDIA GeForce RTX 4090 in our evaluation).

3) Software dependencies: PyTorch, torchvision, argparse,
ecpy, numpy, torch, seaborn, copy, sklearn, random, pandas
and matplotlib.

4) Benchmarks: (1) Dataset: MNIST [63], Fashion MNIST
[64], CIFAR-10 [65], CIFAR-100 [65], Texas100 [40], and
Purchase100 [40]. (2) Models: For MNIST and Fashion
MNIST, we use a fully connected neural network (FCNN)
[66] with two fully connected layers and a single hidden layer
of size 200. For CIFAR-10, we adopt a convolutional neural
network (CNN) [67] with two convolutional layers, a max-
pooling layer, and three fully connected layers. For CIFAR-
100, we adopt the ResNet-18 model [68]. For Texas100 and
Purchase100, we use the multilayer perceptron model (MLP)
[66].

We provide all datasets, and models used in our evaluation.
The links to download these data are available in the artifact

B. Artifact Installation & Configuration

Our experiments are run on Python. Please go to the
README file in the artifact to install the software depen-
dencies listed in A-3 above, and download the dataset and
models listed in A-4 above.

C. Experiment Workflow

Please see the Evaluation section.
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D. Major Claims

• (C1): The approach can withstand preference attacks and
protect client privacy. This is proven by the experiment
(E1) whose results are illustrated/reported in Fig. 3.

• (C2): The approach can achieve the reconstruction of the
cluster model to ensure the performance of the cluster
model. This is proven by experiment (E2), with the results
explained in Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, TABLE
III, TABLE V.

E. Evaluation

Considering the time limit of the artifact evaluation, we
recommend focusing on evaluating the defense against prefer-
ence profiling attacks and the accuracy of cluster models on 4
datasets. We designed two scaled-down experiments located in
the E1 and E2 folders. The code in E1 includes the generation
of cluster identities, but omits the model training part to
verify the effectiveness of the defense method. The code in
E2 focuses on evaluating the performance of cluster model
rebuilding under ideal conditions. This evaluation can still
conclusively demonstrate that the proposed method effectively
defends against preference profiling attacks while maintaining
model accuracy.

For anyone interested in a comprehensive evaluation, we
have provided the complete experimental code in the ”Com-
plete experimental procedure” folder.

1) Experiment (E1): [Defense against preference profiling
attacks] [5 human-minutes + 5 compute-hour]: This experi-
ment is conducted to explore the adversary preference profiling
accuracy under different parameters such as mingled ratio p,
number of clusters k, privacy threshold T . The experiment first
simulates the cluster identity generation algorithm (Algorithm
1) to generate both real and fake cluster identities for a
client. Next, it calculates the probability that an adversary
successfully guesses the real cluster identity, which is used
as the success probability of the preference analysis.

Execution. The program is stored in the folder ”E1.” You
can directly run the ’run privacy eval.sh’ file to test the
accuracy of preference profiling analysis under different false
positive rates, cluster numbers, and privacy thresholds.

Results. As shown in Fig. 10, the program outputs three
heatmaps illustrating the preference profiling analysis under
different false positive rates, cluster numbers, and privacy
thresholds (corresponding to Fig. 3 in the paper).

Fig. 10: Example output showing adversary preference profil-
ing accuracy

2) Experiment (E2): [Accuracy of cluster models] [30
human-minutes + 5 compute-hour]: This experiment evaluates
the performance of the cluster model rebuilding algorithm (Al-
gorithm 2) under ideal conditions, and evaluates the influence
of different parameters. We first set up clients with different
data distributions to participate in the training. Then, in each
training round, we run the cluster identity generation algorithm
for each client and train the local models. Next, we run the
cluster model rebuilding algorithm to compute the accurate
cluster models from the mingled ones and output the accuracy
of the rebuilt cluster models.

Execution. The program is stored in the ”E2” folder. Each
subfolder corresponds to experiments on a specific dataset.
The Python programs in each subfolder test various aspects
of the cluster model rebuilding algorithm. For instance, in the
E2/mnist folder:

• mnist.py tests the model accuracy under homogeneous
clustering,

• non-mnist.py tests model accuracy under heterogeneous
clustering,

• mnist-k=10.py tests model accuracy with 10 clusters,
• mnist-m=240.py tests model accuracy with 240 clients,
• mnist-p=0.25.py tests model accuracy with a false posi-

tive rate of 0.25,
• mnist-T=3.py tests model accuracy with a privacy thresh-

old of 3, and
• mnist-ifca.py tests the model accuracy using the IFCA

method for comparison.
Results. Each Python program outputs model accuracy in

the command line and generates two plots: one for the average
model accuracy and another for the accuracy of all cluster
models (Fig. 11 ). Using mnist as an example, the results from
mnist.py verify Fig. 4 and TABLE III. The results from non-
mnist.py verify TABLE III. The results from mnist-k=10.py
validate Fig. 5, the results from mnist-m=240.py validate Fig.
6, the results from mnist-p=0.25.py validate Fig. 7, the results
from mnist-T=3.py validate Fig. 8, and the results from mnist-
ifca.py validate TABLE V.

Fig. 11: Example output showing cluster model convergence
curve

F. Notes

The Artifact Evaluation Committee (AEC) has evaluated a
prior version of this artifact.
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