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Abstract—Modern software often provides diverse APIs to
facilitate development. Certain APIs, when used, can affect
variables and require post-handling, such as error checks and
resource releases. Developers should adhere to their usage spec-
ifications when using these APIs. Failure to do so can cause
serious security threats, such as memory corruption and system
crashes. Detecting such misuse depends on comprehensive API
specifications, as violations of these specifications indicate API
misuse. Previous studies have proposed extracting API specifica-
tions from various artifacts, including API documentation, usage
patterns, and bug patches. However, these artifacts are frequently
incomplete or unavailable for many APIs. As a result, the lack
of specifications for uncovered APIs causes many false negatives
in bug detection.

In this paper, we introduce the idea of API Specification
Propagation, which suggests that API specifications propagate
through hierarchical API call chains. In particular, modern
software often adopts a hierarchical API design, where high-
level APIs build on low-level ones. When high-level APIs wrap
low-level ones, they may inherit the corresponding specifications.
Based on this idea, we present APISpecGen, which uses known
specifications as seeds and performs bidirectional propagation
analysis to generate specifications for new APIs. Specifically,
given the seed specifications, APISpecGen infers which APIs
the specifications might propagate to or originate from. To
further generate specifications for the inferred APIs, APISpecGen
combines API usage and validates them using data-flow analysis
based on the seed specifications. Besides, APISpecGen iteratively
uses the generated specifications as new seeds to cover more APIs.
For efficient and accurate analysis, APISpecGen focuses only on
code relevant to the specifications, ignoring irrelevant semantics.
We implemented APISpecGen and evaluated it for specification
generation and API misuse detection. With 6 specifications as
seeds, APISpecGen generated 7332 specifications. Most of the
generated specifications could not be covered by state-of-the-art
work due to the quality of their sources. With the generated
specifications, APISpecGen detected 186 new bugs in the Linux
kernel, 113 of them have been confirmed by the developers, with
8 CVEs assigned.
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I. INTRODUCTION

Modern software development offers a wide range of APIs,
and developers should adhere to security specifications when
using them. Violating these specifications can lead to API
misuse, threatening the system’s security [8], [15], [25]. Due
to the diversity of APIs, their usage specifications vary sig-
nificantly. One common type of specification is API post-
handling [17]. Specifically, after calling certain APIs, de-
velopers must perform corresponding post-operations, such
as checking return values or releasing resources. API post-
handling specifications can be represented as a triplet: <target
API, critical variable, post-operation>. This triplet indicates
that after calling the target API, the specified post-operation
should be used to handle the effects on the critical variable.

Improper API post-handling (e.g., error checks and causal
functions calls) accounts for 66% of API misuse [8], leading
to various bugs (e.g., memory corruption, reference count
imbalance, and error handling issues) and severe security
impacts (e.g., Use-After-Free, system crash) [6], [24], [29].
For example, Figure 1 shows a patch for an API misuse
involving get_device, which caused a reference count
leak [1]. Before the fix, the function called get_device at
Line 5, but directly returned after catching an error at Line 9,
without performing the required post-operation put_device
to release the reference count. The patch fixed this bug by
adding the missing put_device call. This API misuse
leads to reference count imbalance, which may cause security
impacts such as memory leaks and Use-After-Free [9], [29].

To detect API misuse, it is necessary to know API speci-
fications, which define correct API usage. Violations of these
specifications indicate misuse. For this purpose, various meth-
ods propose to extract API usage specifications from artifacts
such as documentation, API usage, and patches. Accordingly,
these methods can be categorized into documentation-based,
usage-based, and patch-based. Documentation-based methods
leverage natural language processing to extract specifications
from API documentation [23], [28], [40]. Usage-based meth-
ods mine frequent patterns from API usage code to infer
specifications [4], [12], [22], [13], [2]. Patch-based methods
extract specifications from historical patches [17].
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// linux/block/bsg-lib.c (d46fe2c)
01 static blk_status_t bsg_queue_rq(...)
02 {
03    struct device *dev = q->queuedata;
04    ...
05    if (!get_device(dev))
06       return BLK_STS_IOERR;
07 
08    if (!bsg_prepare_job(dev, req))
09 -     return BLK_STS_IOERR;
10 +     goto out;
11     ...
12 +  out:
13       put_device(dev);
14       return sts;
15 }

Post-operation:
put_device

Target API call:
get_device

Critical variable:
dev (arg1)

Fig. 1: A patch fixing misuse of get device in the Linux kernel

Although these methods successfully extract specifications
from corresponding API artifacts, they are inherently limited
by the quality and availability of these artifacts. Specifically,
documentation-based methods fail when documentation is in-
complete or missing. Usage-based methods struggle when API
calls are too rare to identify frequent patterns. Similarly, patch-
based methods can only extract specifications with relevant
patches. As a result, these methods only cover APIs with high-
quality artifacts, missing many specifications and leading to
false negatives in bug detection.

To address this gap, the goal of this paper is to generate API
specifications even in the absence of high-quality API artifacts.
Specifically, modern software systems often adopt a hierar-
chical API design, where high-level APIs build on low-level
ones to achieve complex functionality. As a result, high- and
low-level APIs tend to share similar specifications. Building
on this observation, we propose the idea of API Specification
Propagation, where specifications propagate through API call
chains. For instance, when a high-level API wraps a low-
level API, it may inherit the low-level API’s specifications.
Leveraging this idea, we can generate specifications for APIs
that are missed by artifact-based methods, using the known
specifications of related high- or low-level APIs.

To achieve this, we propose APISpecGen, a framework
designed to iteratively generate API specifications by analyz-
ing propagation relationships. Starting with seed API spec-
ifications, APISpecGen performs bidirectional propagation
analysis for specification generation and uses newly inferred
specifications as seeds for iteratively analysis. APISpecGen
consists of two main steps: Specification Propagation Analysis
and Specification Generation. In Specification Propagation
Analysis, APISpecGen analyzes how API specifications prop-
agate through call chains. Given a set of seed APIs and critical
variables, it identifies which APIs the specifications may prop-
agate to (successors) or originate from (predecessors). This
involves both caller and callee analysis, resulting in a set of

inferred APIs and their critical variables. In the Specification
Generation, for each inferred API, APISpecGen determines
the corresponding post-operation by analyzing its usage and
validating data flows. Using the post-operations from the seed
specifications, APISpecGen identifies and confirms the correct
post-operations to generate new specifications. To broaden
API coverage, APISpecGen employs a bidirectional iterative
process, where newly generated specifications serve as seeds
for further propagation and generation. This process continues
until no new specifications are generated or the iteration
limit is reached. Finally, APISpecGen applies these generated
specifications to detect API misuse.

We evaluated APISpecGen on the large-scale and widely-
used program, the Linux kernel. Starting with 6 seed spec-
ifications, APISpecGen generated 7332 new specifications.
Leveraging these specifications, APISpecGen identified 186
previously unknown bugs, including reference count leaks,
memory leaks, and null pointer dereferences. Among these,
113 bugs have been confirmed by developers, with 8 CVEs
assigned. To compare its performance, we also evaluated exist-
ing specification extraction methods, including Advance [23],
APHP [17], and SinkFinder [5]. These methods, which rely on
various API artifacts, covered at most 21% of the specifications
generated by APISpecGen. In addition, we used the generated
specifications to assess the quality of API artifacts, such as
documentation and usage patterns. We found that 66% of
API documents lack descriptions about specifications, and
we identified 3 errors in the API document. Furthermore,
94% of the generated specifications did not meet the oc-
currence thresholds required by existing usage-based mining
methods. These findings highlight the limitations of artifact-
based methods in extracting comprehensive specifications and
demonstrate the effectiveness of APISpecGen.
Contributions. We summarize our contributions below.
• New Idea: We introduce API Specification Propagation, a
idea where API specifications propagate through hierarchical
API call chains. To formalize this, we present the propagation
model and define the conditions for propagation.
• New Technique: We design APISpecGen, a framework that
generates new API specifications from seed specifications.
By incorporating bidirectional iterative propagation analysis,
APISpecGen effectively generates accurate specifications for
a wide range of APIs.
• New Discoveries: Given 6 seed specifications, APISpecGen
generated 7,332 new API specifications. Most of these are be-
yond the scope of state-of-the-art methods due to limitations in
API artifacts. Using these specifications, APISpecGen detected
186 new bugs in the Linux kernel, with 8 assigned CVEs.

II. BACKGROUND AND MOTIVATION

A. API Post-handling and Specification

As software systems grow increasingly complex, developers
design a wide variety of APIs to support diverse functionali-
ties. At the same time, to ensure system security and stability,
API users should adhere to usage specifications when using
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certain APIs. One critical aspect of this is API post-handling,
which involves managing the side effects of certain API calls.
These side effects often require developers to perform specific
operations, such as checking return values or pairing resource
requests with corresponding release functions.

Specifically, return value checks are essential because many
APIs return error values to indicate failure states. Properly
handling these return values ensures that errors are caught
and addressed. Improper return value checks can confuse
the program’s logic, leading to system crashes or unintended
behaviors [11]. Similarly, APIs that allocate resources, such
as memory, reference counts, or file handles, must be paired
with corresponding release functions to avoid resource mis-
management. Failure to release these resources can lead to
issues such as memory leaks [20], [24], use-after-free [29],
or even deadlocks in the case of improperly managed file
access or lock APIs. Therefore, detecting API misuse is critical
for maintaining security. To detect such bugs, we first need
to obtain the corresponding API specifications. Violations of
these specifications indicate the presence of bugs.

Following previous work [17], we represent API post-
handling specifications using a triplet: <target API, critical
variable, post-operation>. This triplet specifies that after call-
ing the target API, the post-operation must be performed on the
critical variable. The critical variable is recorded based on its
position in the target API call. Here, we omit path conditions.
For return value checks, the check occurs immediately after
the API call, and requiring no additional path conditions. For
paired function calls, in most cases, after the target API is
successfully called, a resource is acquired and accessed using
the critical variable, which must be properly released after
use. For example, in Figure 1, the patch bug implies the
specification <get_device, arg1, put_device>, where
the critical variable is represented by its relative position to
the target API for generalization. This means that after calling
the get_device API, the put_device function should be
called on its first argument to properly release the reference
count once it is no longer needed.

B. Existing Work and Limitations

To detect API misuse, existing studies propose to extract
API specifications from various artifacts, including API docu-
mentation [23], [28], API usage code [12], [20], and historical
bug patches [17]. Specifically, documentation-based methods,
such as Advance [23], use natural language processing tech-
niques to extract specifications from API documentation. API
usage-based methods, like APP-Miner [12], rely on frequent
pattern mining. Patch-based methods, like APHP [17], extract
specifications from bug patches. Although these methods can
successfully extract specifications from their corresponding
API artifacts, they are inherently limited by the quality and
availability of those artifacts. If the artifacts for a given
API are incomplete or inadequate, the specification cannot be
extracted. For example, documentation-based methods are in-
effective when documentation is incomplete or inaccurate. API
usage-based methods depend on APIs being used frequently

and correctly in the code, so these methods fail if an API is
rarely used or often misused. Similarly, patch-based methods
rely on the availability of relevant patches, and without them,
specifications cannot be extracted. Due to the limitations of
artifact-based studies, many API specifications remain uncov-
ered, resulting in false negatives in bug detection.

C. Hierarchy in API Design

Different APIs in programs are often closely related. Specif-
ically, in software development, API designers often design
various APIs for different functions and scenarios. These
APIs are typically hierarchical, with upper-level APIs built
upon lower-level ones. This hierarchical design allows APIs
to serve a wide range of functionalities, each suited to specific
use cases. Beyond their functionalities, this hierarchy also
establishes relationships between API specifications. Specif-
ically, when upper-level APIs are built on lower-level APIs,
they may share similar usage specifications. For example, in
glibc [31], the API g_new requires calling g_free to release
the allocated memory. Similarly, g_strdup also requires
calling g_free to free the memory it allocates. In fact,
g_strdup is wrapped around g_new for string duplication,
and it inherits the specification from g_new. Inspired by
the hierarchical structure of API design and the relationships
between APIs, we aim to leverage known API specifications
as seeds to infer specifications for other APIs.

III. API SPECIFICATION PROPAGATION

We observe that API specifications can propagate between
APIs through API call chains, a process we refer to as API
Specification Propagation. During this process, we define the
two involved APIs as the predecessor and the successor, where
the successor inherits specifications from the predecessor. This
propagation is linked to the flow of critical variables through
the API call chain.

For example, Figure 2 shows an instance of specifi-
cation propagation: get_device is the predecessor, and
bus_find_device is the successor, with the critical vari-
able being dev. Specifically, in the bus_find_device,
the call to get_device affects the critical variable and
subsequently needs to call put_device. The critical vari-
able dev is the first argument of get_device and
is also returned as bus_find_device’s return value.
This return not only propagates the variable but also
its associated specification. Thus, the specification prop-
agates from <get_device, arg1, put_device> to
<bus_find_device, retval, put_device>. Con-
sequently, after calling class_put_device, the same
put_device operation must be performed on its return value
to release the reference count.

To determine if specifications propagate between two APIs,
we first define the conditions required for specification prop-
agation. While the successor must call the predecessor, not
all callers inherit its specifications. Specifically, specification
propagation should meet the following three conditions.
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Fig. 2: Example of API specification propagation

¬ Successor calls the predecessor: The successor must call
the predecessor. This call relationship forms the basis for spec-
ification propagation. For example, in Figure 2, the successor
bus_find_device calls the predecessor get_device.
 Propagation of the critical variable: Specification prop-
agation relies on variable propagation. The critical variable
from the predecessor must be passed to the successor, either
as an argument or a return value. For example, in Figure 2, the
critical variable dev in get_device call is also the return
value of bus_find_device, satisfying this condition.
® No operations affecting the critical variable: After
the predecessor’s call, no operations affect the critical vari-
able, as these would interrupt specification propagation. We
refer to such operations as kill operations. Kill operations
have two main types: assignment operations and API post-
operations. Specifically, assignment operations reassign the
critical variable, nullifying the predecessor API’s effects and
its specification. API post-operation handles the critical vari-
able according to the specification, preventing further propa-
gation. For example, in Figure 2, after bus_find_device
calls get_device, there are no further operations on dev,
allowing the specification to propagate.

With API specification propagation, we can use the given
seed specifications to perform propagation analysis and iden-
tify related predecessors or successors. This allows us to obtain
specifications for APIs not covered by existing studies due to
the limitations of API artifacts. The idea is shown in Figure 3.

Fig. 3: The application of API specification propagation

IV. OVERVIEW

Based on the above idea, we propose APISpecGen, which
performs specification propagate analysis to generate new
specifications from seed specifications. The workflow is shown
in Figure 4. APISpecGen includes two main phases: Specifi-
cation Propagate Analysis and Specification Generation.

In the Specification Propagate Analysis phase, APISpec-
Gen analyzes which APIs the seed API specification might
propagate to or from, obtaining a list of inferred APIs along
with their associated critical variables. This analysis involves
both caller and callee specification propagation analysis. In
caller analysis, APISpecGen examines the callers of the seed
API to determine if they meet the conditions for specification
propagation, identifying potential successor APIs, i.e., which
APIs the seed specifications might propagate to. In callee
analysis, APISpecGen inspects the seed API’s source code
to find API calls that influence critical variables, identifying
potential predecessor APIs. After this, APISpecGen obtains
the potential predecessors and successors for the given seed
specification, which are referred to as inferred APIs. APISpec-
Gen also records the relative positions of their critical variables
for subsequent specification generation.

After identifying a set of inferred APIs that may share
similar specifications with the seed APIs, APISpecGen deter-
mines the appropriate post-operations for these inferred APIs,
as they may differ from the seed post-operations. In particular,
APISpecGen utilizes actual API usage and data-flow validation
to identify the correct post-operations. Specifically, given an
inferred API, the critical variable, and the seed post-operation,
APISpecGen checks for code that adheres to the inferred
specification. If such code is found, the seed post-operation is
confirmed as the correct post-operation for the inferred API.
If no exact match is found, APISpecGen analyzes the usage
of the inferred API to identify candidate post-operations, it
then checks the relationship between these candidate post-
operations and the seed post-operation to identify the correct
post-operation. Finally, APISpecGen generates specifications
for the inferred APIs, which include three elements: the
inferred API, the post-operation, and the critical variable. If no
corresponding post-operation is identified, APISpecGen does
not generate a specification for that API. APISpecGen uses the
generated specifications as seed specifications to generate new
specifications for additional APIs iteratively. This continues
until no new specifications are generated or a preset iteration
limit is reached. Finally, APISpecGen utilizes the generated
API specifications for bug detection.

Figure 5 illustrates a working example of APISpecGen.
Starting with the seed specification <get_device, arg1,
put_device>, APISpecGen generates specifications for
class_find_device and nfc_get_device through it-
erative specification propagation analysis. First, as shown in
Figure 5 (a), APISpecGen analyzes the source code of the
caller class_find_device. After calling get_device
at Line 10, the code operates on the critical variable dev and
returns it. Since no subsequent operations affecting dev, spec-
ification propagation occurs, with dev passed as the return
value in Line 15. APISpecGen then verifies that the actual API
usage adheres to the specification <class_find_device,
retval, put_device> and generates the corresponding
specification. Next, APISpecGen uses this generated specifi-
cation as a seed for further propagation analysis, identifying
that it also propagates to nfc_get_device, where dev is
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Fig. 4: Overview of APISpecGen

again the return value. Further analysis determines that the
post-operation for this API is nfc_put_device, and the
generated specifications are shown in Figure 5 (b).

After this, APISpecGen uses the generated specifications
for bug detection. Figure 5 (c) shows the new bug de-
tected using the undocumented specification. This bug oc-
curs in the nfc_genl_vendor_cmd function within the
net/nfc/netlink.c file of the Linux kernel. Line 06
calls nfc_get_device increments the reference count of
the critical variable dev. However, after usage, the reference
count is not properly decremented before returning, leading
to a reference count leak (at Lines 08, 14, and 17). APISpec-
Gen detected the bug using the generated specifications. We
submitted a patch to fix this, which have been accepted.

V. DESIGN

Given a seed API specification, consisting of the seed
API, critical variable, and post-operation, APISpecGen con-
ducts analysis in two stages. It first performs specification
propagation analysis to obtain APIs that may share similar
specifications with the seed API, then infer their corresponding
post-operations to generate specifications for them.

A. Specification Propagation Analysis

To analyze specification propagation, APISpecGen identi-
fies both the APIs from which the seed specification may
originate (predecessors) and the APIs to which it may prop-
agate (successors). A straightforward approach to analyzing
the propagation of a seed API’s specification is identifying
API wrappers—functions that simplify API calls and often
inherit their specifications. Typically, this is done through
parameter matching, where the wrapper’s parameter list is
compared to the original API’s. However, this method is both
inefficient and prone to false positives and false negatives.
Firstly, many APIs that inherit a seed API’s specification are
not simple wrappers. They extend the seed API for different
scenarios, often with parameter lists that do not match the
seed API’s. Analyzing only API wrappers would lead to many
missed specifications. On the other hand, not all wrappers
inherit the specifications. Some are specifically designed to
handle API specifications internally for easier use and do not
propagate specifications. Therefore, relying solely on wrapper

detection can cause both false negatives and false positives for
specification generations.

To generate new specifications using the seed specification,
APISpecGen conducts a bidirectional specification propaga-
tion analysis. As mentioned earlier, the propagation of API
specifications occurs from one API as a predecessor to an-
other API as a successor. A given API can act as both a
predecessor and a successor in the specification propagation
chain. Therefore, APISpecGen traces specification propagation
in both directions: identifying successors by analyzing the
callers of the seed API and finding predecessors by analyzing
its callees. Next, we introduce these two analysis separately.
Caller Analysis to Get Successors. APISpecGen analyzes the
callers of the seed API to determine where the seed specifica-
tion propagates, i.e., its successors. Specifically, APISpecGen
examines each caller to verify if it satisfies the conditions for
specification propagation. The process begins by identifying
all the callers of the seed API. For each caller, APISpecGen
further checks if the Conditions  and ® are met for specifi-
cation propagation.

To check the Condition , which requires the critical vari-
able to propagate to the caller as either an argument or a return
value. APISpecGen locates the seed API call and identifies the
critical variable name based on its relative position to the seed
API. Using abstract syntax tree (AST) parsing, APISpecGen
retrieves the variable’s name in the caller’s code and verifies
whether it appears as a parameter or return value. If not, the
specification cannot propagate to this caller. The lightweight
name-based approach enables efficient analysis for large-scale
programs because developers typically use distinct names for
different variables within functions. To evaluate its accuracy,
we randomly selected 100 callers of a seed API and manually
analyzed whether the specifications propagated correctly. The
results showed only 7% false negatives and no false positives
for determining specification propagation.

Once the Condition  is satisfied, APISpecGen checks
the Condition ®, ensuring that no further operations affect
the critical variable after the seed API call. To do this, it
analyzes the caller’s Control Flow Graph (CFG) and performs
topological sorting to ensure the correct order of operations.
It then inspects nodes following the seed API call to detect
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01 struct device *class_find_device(... *class, ...,
02         const void *data, int (*match)(...))
03 {
04   struct subsys_private *sp = class_to_subsys(class);
05   struct class_dev_iter iter;
06   struct device *dev;
07   ...
08   while ((dev = class_dev_iter_next(&iter))) {
09     if (match(dev, data)) {
10       get_device(dev);
11       break;
12     }
13   }
14   ...
15   return dev;
16 }

01 struct nfc_dev *nfc_get_device(unsigned int idx)
02 {
03   struct device *d;
04 
05   d = class_find_device(&nfc_class, ...);
06   if (!d)
07     return NULL;
08 
09   return to_nfc_dev(d);
10 }

(a) Step 1:API specification propagation analysis 

(b) Step 2: API specification generation 

(c) New detected bug with the generated specification

01 static int nfc_genl_vendor_cmd(struct sk_buff *skb,
02            struct genl_info *info)
03 {
04   struct nfc_dev *dev;
05   ...
06   dev = nfc_get_device(dev_idx);
07   if (!dev || !dev->vendor_cmds || !dev->n_vendor_cmds)
08     return -ENODEV;
09 
10   if (info->attrs[NFC_ATTR_VENDOR_DATA]) {
11     ...
12     data_len = nla_len(info->attrs[NFC_ATTR_VENDOR_DATA]);
13     if (data_len == 0)
14       return -EINVAL;
15   } 
16   ...
17   return -EOPNOTSUPP;
18 }

missing nfc_put_device 

Generated spec

class_find_device

put_device
retval

Generated spec

nfc_put_device

nfc_get_device
retval

get_device

put_device
arg1

Seed API call

Critical Variable

Seed spec

Fig. 5: The working example of APISpecGen for specification generation and bug detection

any reassignments or post-operations on the critical variable.
Such operations would terminate the specification propagation.
In some functions, post-operations may only appear in some
paths. To address this, APISpecGen distinguishes between
normal and error paths in callers, as resource post-handling is
usually needed when API calls succeed. APISpecGen checks if
post-operations (e.g., put_device) are missing from all nor-
mal paths for propagation. Inconsistent post-handling between
normal paths usually indicates bugs [20], not specification
propagation. To evaluate the accuracy of this path-sensitive
analysis strategy, we conducted a pre-study by randomly
selecting 100 callers of seed APIs. Our study shows 100%
accuracy of this design in identifying successors. Additionally,
in some cases, the program may perform multiple operations
on different members of the same structure—such as allocating
resources to each member, where each operation requires
its own post-operation. APISpecGen performs field-sensitive
analysis for callers and can differentiate operations involving
different variables from the same structure.

Callers meeting both conditions are recorded as potential
successors, along with the positions of their critical variables.
In cases where functions contain multiple target APIs or post-
operations, these typically involve different critical variables or
follow distinct paths. APISpecGen analyzes each critical vari-
able and then checks each path separately, thus differentiating
these operations without impacting results.

For example, as shown in Figure 5, the function
class_find_device calls get_device. APISpecGen
inspects the source code of class_find_device to check
if it inherits the specifications of get_device. Since Con-
dition ¬ is already met (the successor calls the predecessor),

APISpecGen proceeds to check Conditions  and ®. To
satisfy the Condition , the critical variable must propagate
to the caller as its arguments or return value. APISpecGen
locates the call to the seed API get_device and identifies
the critical variable dev using its relative position (arg1).
Because dev is also returned by class_find_device,
Condition  is met. Next, APISpecGen checks Condition
® by analyzing the CFG of class_find_device. The
analysis confirms that after calling get_device, no further
operations affect dev, meaning Condition ® is also satisfied.
Thus, APISpecGen determines that class_find_device
inherits the specification from get_device. However, in
some cases, even when the critical variable propagates,
the specification may not. For instance, as shown in the
Figure 6, bus_find_class inherits the specification of
get_device, and usb_find_interface is the caller
of bus_find_class. Here, the critical variable dev is
returned, satisfying Condition . Further analysis, however,
shows that after calling bus_find_device, the caller per-
forms the post-operation put_device on dev at Line 7,
Condition ® is not met. In this case, although the variable
propagates, the specification does not propagate.
Callee Analysis to Get Predecessor. To identify the pre-
decessor for a given specification, APISpecGen analyzes the
seed API’s callees related to the critical variable. Typically,
a specification is propagated by a single API, so the goal
is to find a unique callee as the predecessor. To do this,
APISpecGen conducts callee analysis by tracing upward from
the function’s return point in the seed API’s source code.
During this process, APISpecGen employs a field-insensitive
analysis for structures. APISpecGen first looks for the last
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1 struct usb_interface *usb_find_interface(struct ...)
2 {
3   struct find_interface_arg argb;
4   struct device *dev;
5   ...
6   dev = bus_find_device(&usb_bus_type, NULL, &argb, ...);

7   put_device(dev);

8   return dev ? to_usb_interface(dev) : NULL;
9 }

Generate the specification

Kill the specification

Not propgate the specification

Fig. 6: Caller analysis for bus find device

assignment to the critical variable related to a function call.
If such an assignment is found, the associated function is
considered the predecessor. If no direct assignment is found,
APISpecGen examines functions that pass the critical variable
as an argument. Any function accepting the critical variable
as an argument could potentially modify it. If only one such
function exists, it is considered the predecessor.

To reduce noise during analysis, we pre-collected a set of
commonly used macros (e.g., kobj_to_dev) that do not
affect variables. They can be safely ignored when identifying
predecessors. If a unique predecessor cannot be determined
(e.g., multiple operations may affect the same variable), APIS-
pecGen focuses solely on successors, as seed specifications
may stem from multiple operations. To evaluate this design, we
conducted a pre-study with 100 randomly selected target APIs.
The results show that APISpecGen successfully identifies 91%
of predecessors with no false positive.

For example, as shown in Figure 7, APISpecGen analyzes
the source code of get_device and finds that no func-
tion directly assigns the critical variable. Instead, it iden-
tifies kobject_get, which takes the critical variable as
an argument. During the analysis, APISpecGen recognizes
kobj_to_dev as a pre-collected macro which does not
affect the variable. Based on this, APISpecGen determines
that kobject_get is the predecessor for the get_device
specification and records arg1 as the critical variable.

struct device *get_device(struct device *dev)
{
   return dev ? kobj_to_dev(kobject_get(&dev->kobj)): NULL;
}

Fig. 7: Callee analysis for get device

B. Specification Generation

In the previous step, APISpecGen identifies a set of inferred
APIs and their corresponding critical variables. Next, APIS-
pecGen determines the post-operations for these APIs, as they
may differ from the seed post-operations. Similar to the caller-
callee relationships between seed and inferred APIs, the post-
operations also follow similar patterns and may propagate the
critical variable.

To determine the correct post-operation, APISpecGen com-
bines the usage of the inferred APIs with data-flow validation.
Specifically, for each inferred API, its critical variable, and
the seed post-operation, APISpecGen first checks if the seed
post-operation is applicable by querying the API usage in
the program. If the usage matches the specification, the seed
post-operation is validated as the correct post-operation for
the inferred API. APISpecGen performs a deeper analysis
to identify the correct post-operation for the inferred API. It
examines the API usage to collect candidate post-operations
and validates them through data-flow analysis with the seed
to determine the correct one.

To identify candidate post-operations for an inferred API,
APISpecGen first examines the callers of the API and locates
the points where the inferred API is invoked. It then collects
the operations that affect the critical variables after these in-
vocations, which are considered as candidate post-operations.
Next, APISpecGen analyzes the relationship between these
candidate post-operations and the seed post-operation to iden-
tify the correct post-operation. The two should follow similar
caller-callee relationships and propagate the critical variable.
Specifically, if the inferred API calls the seed API, its cor-
responding post-operation should also call the seed post-
operation. APISpecGen then checks inside the candidate post-
operation to see if it propagates the critical variable to the
seed post-operation. If it does, the operation is confirmed
as the post-operation for the inferred API. Similarly, if the
inferred API is called by the seed API, APISpecGen inspects
the seed post-operation to check if it propagates the critical
variable to any candidate post-operation. If so, that operation
is determined as the post-operation for the inferred API. If no
corresponding post-operation is found, APISpecGen does not
generate a specification for the inferred API. By combining
API usage analysis with data-flow validation, APISpecGen
ensures the accuracy of the generated specifications.

As shown in Figure 5, during the specification propagation
analysis, APISpecGen identifies class_find_device as
the successor of get_device, with put_device as the
seed post-operation. By analyzing its usage, APISpecGen
confirms that the post-operation of class_find_device
is indeed put_device, thus generating the corresponding
specification. Next, APISpecGen uses this post-operation
to generate the specification for nfc_get_device. It
begins by analyzing the usage of nfc_get_device
and identifying candidate post-operations, including
nfc_put_device. Since nfc_get_device calls
class_find_device, APISpecGen checks whether the
relationship between nfc_put_device and put_device
mirrors the caller-callee relationship of the critical variable
transfer. Upon finding that nfc_put_device passes the
critical variable dev to put_device, APISpecGen infers
that nfc_put_device is the correct post-operation for
nfc_get_device, thereby generating its specification.

Similarly, in the specification generation for the prede-
cessor, APISpecGen first identifies the API kobject_get
and its critical variable arg1. During the usage analysis
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of kobject_get, APISpecGen identifies candidate post-
operations, including kobject_put. Since kobject_get
is called by get_device, APISpecGen further analyzes
kobject_put and observes that the critical variable dev
is passed to it. This establishes a connection between the
candidate post-operation kobject_put and the seed post-
operation put_device. Based on this, APISpecGen infers
kobject_put as the post-operation for kobject_get and
generates the corresponding specification.

(a) Generate API specification for the successor nfc_get_device

1 static inline void nfc_put_device(...)
2 {
3   put_device(&dev->dev);
4 }

1 void put_device(struct device *dev)
2 {
3     if (dev)
4         kobject_put(&dev->kobj);
5 }

Successor : nfc_get_device

Predecessor: kobject_get

Generated spec

retval
nfc_get_device

nfc_put_device

Generated spec

arg1
kobject_get

kobject_put

(b) Generate API specification for the predecessor kobject_put

Fig. 8: Specification generation for the inferred APIs

C. Iterative Specification Propagation Analysis

Through specification generation, APISpecGen generates
specifications for APIs that are either callers or callees of
the seed API. To maximize the coverage of APIs and effec-
tively utilize the seed specifications, APISpecGen employs a
iterative propagation analysis. It treats each newly generated
specification as a seed for further analysis, thus can explore a
broader range of APIs. Specifically, in the caller propagation
analysis, APISpecGen investigates not only the direct callers of
the seed API but also the indirect callers along the call chain.
On the other hand, in callee analysis, APISpecGen digs deeper
into lower-level APIs, these APIs are then used to generate
specifications for higher-level APIs that may have been missed
initially. By iterating through this process, APISpecGen can
uncover new predecessors and successors, extending beyond
the callers and callees of the initial seed API.

For example, Figure 9 illustrates the API specification prop-
agation graph generated by iteratively using get_device as
the initial seed. Through callee analysis of get_device,
APISpecGen generates the specification for the lower-level
API kobject_get. This specification is then used as a new
seed for further propagation. As a result, APISpecGen iden-
tifies that the kobject_get specification also propagates
to of_node_get. Further iterations lead to the generated
specification for of_irq_find_parent as shown in Fig-
ure 9. Figure 10 illustrates a bug detected using these gener-
ated specifications. Specifically, in the mvebu_gicp_probe
function, after calling of_irq_find_parent at Line 06,

a node with an incremented reference count is returned. Ac-
cording to the generated specification, the function should call
of_node_put to release the reference count of the critical
variable irq_parent_dn once the node is no longer needed.
However, the function does not release the reference, leading
to a reference count leak. Although of_irq_find_parent
has no caller-callee relationship with the get_device API,
APISpecGen can generate the specification for it through
iterative propagation. This specification is also undocumented.
As a result, APISpecGen successfully identified the bug that
existing tools had missed. We have submitted a patch to fix
this bug, which has been accepted by the developers.

Fig. 9: API specification propagation graph of get device

01 static int mvebu_gicp_probe(struct platform_device *pdev)
02 {
03  ...
04  struct device_node *irq_parent_dn;
05 
06  irq_parent_dn = of_irq_find_parent(node);
07  ...
08  parent_domain = irq_find_host(irq_parent_dn);
09  if (!parent_domain) {
10      dev_err(&pdev->dev, "...");
11      return -ENODEV;
12  }
13  ...
14  return 0;
15 }

missing of_node_put

Fig. 10: Detected misuse of the of irq find parent API

VI. IMPLEMENTATION

We implement APISpecGen in Python. It includes two
main modules: specification generation and bug detection. For
code analysis, we utilize three tools: Joern [37], Weggli [35],
and tree-sitter [32]. Specifically, Joern generates Program
Dependence Graphs, enabling analysis of data flow and control
flow within functions. Weggli allows rapid code querying
based on Abstract Syntax Trees (ASTs), and tree-sitter parses
ASTs to identify specific statements or variables. Additionally,
we’ve tried LLVM for static analysis. However, it’s difficult
to cover architecture-specific and hardware-dependent code
in operating system such as the Linux kernel. Even with
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allyesconfig, it covers only 60%–70% of the code [30].
In contrast, our implementation does not require compiling
the entire codebase, allowing us to analyze all source files
comprehensively. To simplify loop handling, we replace loops
with if statements and unroll them once.

For bug detection, we integrate APHP’s bug detector by con-
figuring path conditions for generated specifications. Specifi-
cally, return value checks are performed immediately after the
API returns, thus no need for additional path conditions. For
paired function calls, we assume that the API calls succeed.
In such cases, once the target API successfully allocates
resources, post-operations are applied to the critical variable
when it is no longer needed. To reduce false positives, we
perform variable escape analysis: if variables are returned via
return values or parameters, they are not reported as bugs.

VII. EVALUATION

In experiments, we first evaluated the effectiveness of
APISpecGen in generating specifications and its ability to
detect unknown bugs. Additionally, we evaluated how well
existing methods cover the specifications and bugs identified
by APISpecGen. Based on the generated specifications, we
further analyzed the quality of API artifacts, including API
documentation, API usage, and API names, highlighting their
limitations when used for extracting API specifications.
Dataset and Seeds. We evaluated APISpecGen on the Linux
kernel (version v5.16), a widely-used open-source project with
over 20 million lines of code and diverse APIs. This large-scale
and complex program provides an ideal benchmark for testing
APISpecGen. Besides, APISpecGen works without requiring
pre-compilation or additional configuration.

APISpecGen is fully automated and uses APHP to extract
seed specifications from bug patches. Each specification is
represented as a triplet, including the target API, critical
variable, and post-operation. For evaluations, we collected
six specifications from Linux kernel patches, as shown in
Table I. These specifications represent different API types,
including five related to paired function calls and one related to
return value checks. Specifically, APIs such as get_device,
device_initialize, and try_module_get handle
reference counting, while kmalloc and kstrdup focus on
memory allocation. The remaining specification, ERR_PTR, is
related to return value checks. This API converts error numbers
into error pointers, requiring the corresponding post-operation
IS_ERR to validate the return value.
Platform. The experiments were conducted on a 64-bit Ubuntu
22.04 system with 503GB of memory and 5TB of storage
space, powered by an Intel(R) Xeon(R) Gold 5218R CPU @
2.10GHz with 79 processors.

A. Effectiveness of Specification Generation

For specification generation, we considered all functions in
the program as APIs and limited the iterative specification gen-
eration process to a maximum of 10 iterations. APISpecGen
is fully automated, and does not require manual effort in the

TABLE I: Seed specifications and their original commits

Target API Post-Operation Var Commit

get device put device arg1 d46fe2cb2dc
device initialize put device arg1 a5808add9a6
try module get module put arg1 44f8baaf230
kmalloc kfree retval 493ff661d43
kstrdup kfree retval e629e7b525a
PTR ERR IS ERR arg1 59715cffce1

TABLE II: Results of generated specifications and new bugs

Seed API #Spec #New Bug Bug Type

get device 760 137 refcount leak
device initialize 91 6 refcount leak
try module get 58 1 refcount leak
kmalloc 1202 30 memory leak
kstrdup 14 1 memory leak
ERR PTR 5207 11 NULL-pointer-deref

Total 7332 186 -

process. Using the six seed specifications, APISpecGen suc-
cessfully generated 7332 new specifications, as summarized
in Table II. We manually checked whether the specifications
are correct by examining the function names, semantics and
usage through the available code and documentation. As
verifying each specification is time-consuming, we randomly
selected 200 specifications for each seed that generated more
than 200 specifications. In total, we spent about 13 person-
hours verifying 763 sampled specifications, all of which were
correct, averaging about one minute per check. We believe
that this is manageable as a one-time effort. In particular,
most function names provide valuable semantic clues for
verification—about 87% of function pairs have informative
keywords (e.g., get/put) and follow similar structures. For
uncertain cases, we analyze operations on critical variables
to verify the propagation. This typically involves only a few
lines of code and requires minimal effort.

The evaluation results confirm the correctness of the gen-
erated specifications. Although propagation analysis might
introduce inaccuracies due to imprecise data flow analysis, the
specification generation step filters out these inaccuracies. In
this step, APISpecGen correlates the actual API usage and the
data flow between generated post-operations and seed post-
operations to ensure that specifications are only generated
for APIs with successful post-operation identification. We
manually analyzed the generated specifications and found that
they cover a wide range of APIs. Based on these specifications,
we have the following two observations.
1) The inferred API can differ significantly from the original
seed API. For example, Figure 11 illustrates the propagation
analysis path starting from the seed API get_device to
a totally different API, rdma_user_mmap_entry_get.
Specifically, start with get_device, APISpecGen identifies
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the predecessor API refcount_inc_not_zero via
iterative callee analysis. Further caller analysis reveals the
successor API rdma_user_mmap_entry_get, with
its post-operation rdma_user_mmap_entry_put,
which differs from put_device. In this case,
APISpecGen successfully generates specifications for
rdma_user_mmap_entry_get based on the seed API
get_device, despite the lack of any direct or indirect
call relationship between the two APIs. This is possible
because APISpecGen focuses solely on code involving the
critical variables in the specification, ignoring irrelevant
semantics. Its bidirectional iterative generation enables it to
trace lower-level APIs from seed APIs and discover related
higher-level APIs. In this way, APISpecGen can generate
specifications for diverse APIs, regardless of their similarity
to the seed.

get_devicekobject_getkref_getrefcount_inc
refcount_inc_not_zero

kref_get_
unless_zero

rdma_user_mmap_
entry_get_pgoff

rdma_user_mmap_
entry_get

pre

succ succsucc

preprepre

Fig. 11: From get device to rdma user mmap entry get

2) The inferred APIs may inherit and integrate specifications
from multiple APIs. For example, Figure 12 shows the
seed specification of kmalloc and the generated specifica-
tion. In the source code of mlx4_alloc_cmd_mailbox,
this API integrates specifications from both kmalloc and
dma_pool_zalloc. Specifically, it calls kmalloc at Line
5, assigning the return value to the critical variable mailbox,
thus inheriting kmalloc’s specification. At Line 9, it calls
dma_pool_zalloc to allocate memory for its buf field.
Thus also inheriting dma_pool_zalloc’s specifications.
By analyzing the API usage and validating the data flow,
APISpecGen identifies mlx4_free_cmd_mailbox as the
post-operation. This function integrates the post-operations
of both lower-level APIs by calling dma_pool_free to
release the memory allocated by dma_pool_zalloc and
kfree for the memory allocated by kmalloc. This exam-
ple demonstrates APISpecGen’s ability to discover integrated
specifications that span multiple lower-level APIs.
Scalability and Generalizability. APISpecGen demonstrates
great scalability in generating API specifications for large-
scale programs. Specifically, when applied to the Linux ker-
nel, a codebase with 23 million lines of code, APISpecGen
generated 7332 specifications in just 2 hours, averaging only
one second per specification, with memory usage remaining
under 2 GB throughout the process. APISpecGen focuses on
analyzing critical code while ignoring irrelevant parts and
uses multithreading to enable parallel processing for efficiency.
The results show APISpecGen’s ability to handle large-scale
programs efficiently.

APISpecGen is applicable to general software, as APIs are
typically designed hierarchically for systematic management,
allowing API specification propagation. APISpecGen is fully
automated using APHP to extract seeds. It can be applied

01 struct mlx4_cmd_mailbox *mlx4_alloc_cmd_mailbox(struct ...)
02 {
03  struct mlx4_cmd_mailbox *mailbox;
04 
05  mailbox = kmalloc(sizeof(*mailbox), GFP_KERNEL);
06  if (!mailbox)
07      return ERR_PTR(-ENOMEM);
08 
09  mailbox->buf = dma_pool_zalloc(...,
10                     &mailbox->dma);
11  ...
12  return mailbox;
13 }

1 void mlx4_free_cmd_mailbox(struct mlx4_dev *dev,
2              struct mlx4_cmd_mailbox *mailbox)
3 {
4   ...
5   dma_pool_free(mlx4_priv(dev)->cmd.pool, mailbox->buf, ...);
6   kfree(mailbox);
7 }

Seed spec: <kmalloc, retval, kfree>  
Generated spec: <mlx4_alloc_cmd_mailbox, retval,mlx4_free_cmd_mailbox>  

Fig. 12: Case: generated specification with kmalloc as seed

to other software using their patches. To evaluate its gen-
eralizability, we applied APISpecGen to OpenSSL [26] and
FFmpeg [7], using one seed for each application: <BIO_new,
retval, BIO_free> for OpenSSL and <av_malloc,
retval, av_free> for FFmpeg. APISpecGen generated
39 specifications for OpenSSL and 76 for FFmpeg, includ-
ing specifications such as <bio_from_file, retval,
BIO_free> in OpenSSL and <ff_urldecode, retval,
av_free> in FFmpeg. These results show APISpecGen’s ca-
pability to generate API specifications across diverse software.

B. Effectiveness of Bug Detection

We used the specifications generated by APISpecGen to
detect violations for bug detection. Through APISpecGen, we
identified 186 new bugs. We confirmed the true bugs from 325
bug reports in 6 person hours, with each report taking less
than one minute. The verification process is straightforward
and manageable. Specifically, the generated bug reports in-
clude information about buggy functions and the violated API
specifications, and since most API misuses occur within single
functions, we can simply compare the functions’ API usages
with the specifications to confirm violations. The detected
bugs correspond to 90 API usage specifications. Table VII
shows 60 of these bugs. These bugs are caused by improper
API post-handling, such as missing reference count release,
missing memory release, and incorrect return value checks.
APISpecGen generates specifications for diverse APIs not
covered by previous studies, and thus can detect previously
undetected bugs.

The security impacts of detected bugs are typically related to
the types of API specification violated. Table II categorizes the
types of detected bugs based on the specifications generated
from different seed APIs. For example, misuse of reference
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count APIs like get_device can result in reference count
leaks. Misusing memory allocation APIs such as kmalloc
may cause memory leaks. Additionally, incorrect handling of
return values, such as PTR_ERR, can lead to invalid (NULL)
pointer dereferences, causing system crashes or instability.

For responsible disclosure, we reported detected bugs to
developers. Specifically, we carefully analyzed the bugs and
submitted the corresponding patches to assist developers in
fixing them. So far, 113 bugs have been confirmed or fixed
by developers. We manually analyzed the modules where
these bugs are located and evaluate their potential impacts.
Bugs with severe impacts were prioritized for CVE requests.
Table III shows the assigned CVEs, all of which have been
fixed in the latest versions with the submitted patches.

TABLE III: The assigned CVEs for found bugs.

Subsystem CVE ID Security Impact Status

gpu/drm CVE-2023-22998 System Crash Fixed
drivers/usb CVE-2023-22999 System Crash Fixed
drivers/phy CVE-2023-23000 System Crash Fixed
drivers/scsi CVE-2023-23001 System Crash Fixed
drivers/bluetooth CVE-2023-23002 System Crash Fixed
tools/perf CVE-2023-23003 System Crash Fixed
drivers/gpu CVE-2023-23004 System Crash Fixed
drivers/gpu CVE-2023-23006 System Crash Fixed

False Positives. Despite the correctness of the specifications,
the intra-function analysis in bug detection can still produce
false positives. In our evaluation, the false positive rate for bug
detection is 42%, which is reasonable for static analysis-based
detection in complex programs [20], [17]. There are two main
causes for false positives. First, false positives occur when
critical variables are post-handled by an operation different
from the one specified in the API specifications, even though
the operations are essentially equivalent for post-handling.
For example, the post-operation may indirectly call the one
specified in the specifications. In such cases, intra-function
analysis incorrectly reports a missing post-operation. For more
accurate detection, the specifications generated by APISpec-
Gen could be integrated with more advanced, inter-procedural
bug detectors to reduce false positives. Second, false positives
also arise from inaccurate alias analysis. Specifically, if critical
variables are aliased by other variables, and the subsequent
post-operations are performed on the alias, the incorrect alias
analysis leads to false positives.
False Negatives. To evaluate false negatives in bug detection,
we constructed a bug dataset, following prior work [17].
Specifically, we randomly selected 100 generated specifica-
tions and used them to create 100 corresponding bugs. For
each specification, we injected bugs by removing the correct
post-operation from a randomly chosen target function, caus-
ing it to violate the API specifications. The results show that
the false negative rate of bug detection is 11%. The main cause
of false negatives is the escape analysis used to reduce false
positives. While escape analysis helps avoid reporting false
positives, it can also lead to missed bugs. Specifically, when a

variable is propagated as an argument or return value, and it
lacks a corresponding post-operation in the current function,
the violation is not detected. However, in some cases, even
after the variable is propagated, it may still lack the required
post-operations, leading to false negatives during detection.

C. Compared with Related Work

We compared APISpecGen with four methods for API
misuse detection, each leveraging different types of artifacts:
Advance [23] (documentation-based), IPPO [20] and Sink-
Finder [3] (API usage-based), and APHP [17] (patch-based).
APISpecGen aims to complement these methods by generating
specifications for APIs they cannot cover. In this way, we used
the bugs detected by APISpecGen and their corresponding
specifications as ground truth for comparisons. Specifically,
we analyzed how many of these bugs and specifications could
be covered by existing methods. If a method could extract
a relevant specification, we assumed it could also detect the
corresponding bug. The results are shown in Table IV.

TABLE IV: The SOTA’s results for the specification and bugs

Method Coverage of Spec Coverage of Bugs

Advance [23] 14% (13/90) 10% (19/186)
IPPO [20] - 0% (0/186)
SinkFinder [3] 11% (9/(90-11)) 10% (17/(186-11))
APHP [17] 21% (19/90) 17% (32/186)

Note: IPPO directly employs inconsistency check for bug detection without
specification extraction phase.

Compared with Advance. Advance [23] extracts specifica-
tions from API documentation to detect API misuse. It utilizes
sentiment analysis to locate sentences with strong sentiment,
which are assumed to describe API usage specifications. To
evaluate Advance, we collected all function comments in the
Linux kernel, which are also used to generate its official
documentation. We checked whether Advance could extract
the specification-related sentences from these comments. If
Advance identified such sentences, we considered the spec-
ification could be covered by Advance. We also analyzed how
many bugs could be detected using the specifications extracted
by Advance. The results show that Advance could only extract
14% of the specifications generated by APISpecGen. There
are two main reasons for this: (1) Incomplete documentation:
The API documentation does not include information about
post-operations, so Advance misses these specifications. (2)
Strong sentiment requirement: Advance relies on strong senti-
ment analysis to locate sentences describing the specifications.
However, API documentation may use neutral language to
describe API usage, and Advance ignores these sentences.
Compared with IPPO. IPPO uses inconsistency checking
to detect bugs by comparing operations along different paths
within the same function. Although it does not extract API
specifications, most of the bugs it detects are due to missed
API post-handling, such as missed reference decrements and
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memory releases. These bug types overlap with those detected
by APISpecGen. Therefore, we included IPPO in our compar-
ison. We evaluated how many bugs detected by APISpecGen
could also be identified by IPPO. The results show that IPPO
failed to detect any of these bugs, mainly for two reasons:
(1) Lack target APIs Information: IPPO requires predefined
security operations, such as reference count operations and
resource operations, which correspond to the target APIs in
API specifications. However, identifying these target APIs
is challenging because it is not always clear which APIs
require post-operations. Without this information, IPPO cannot
perform inconsistency checks and fails to detect related API
misuses. (2) Lack comparable path for post-operation: IPPO
requires two comparable paths within a function—one with
the post-operation and one without—for inconsistency checks
to detect bugs. However, many API misuse scenarios do not
meet this condition. For example, the bugs shown in Figure 5
and Figure 10 lack post-operations on all paths, and IPPO
cannot detect these bugs through inconsistency checks.

Compared with SinkFinder. SinkFinder [3] discovers func-
tion pairs based on seed pairs by applying frequent pattern
mining to identify suspicious API pairs. It then filters these
pairs, retaining only those with semantics similar to the seed
pairs. In evaluations, we focused on the specifications and bugs
related to function pairs, excluding 11 specifications and 11
bugs that do not involve such pairs. Based on the seed specifi-
cations, APISpecGen generates pairs involving alloc/free
and get/put, which are both considered by SinkFinder. The
results show that SinkFinder covers 11% pairs, and detects
10% bugs. SinkFinder fails to generate most function pairs
due to two main limitations: (1) Frequent correct usage
requirement: SinkFinder relies on frequent pattern mining,
requiring a function pair to appear at least 10 times in the code.
We found that most of the generated specifications do not meet
this threshold. Further details are provided in Section VII-D.
(2) Semantic similarity requirement: SinkFinder generates new
pairs using seed pairs, relying on semantic similarity between
them. This similarity is calculated based on function names
and control flow graph embeddings. However, many pairs gen-
erated by APISpecGen have function names and semantics that
differ significantly from those of the seed pairs, making them
difficult for SinkFinder to identify. In contrast, APISpecGen
does not rely on function pair frequency or semantic similarity
to seed pairs, thus identify pairs that missed by SinkFinder.

Compared with APHP. APHP extracts API specifications
from bug patches. As it is infeasible to collect all patches
related to API misuse, we used APHP’s patch dataset to
evaluate its coverage of APISpecGen’s specifications. We
also evaluated the false negatives in bug detection caused by
APHP’s limited specification coverage. The results show that
APHP covers only 21% of the specifications generated by
APISpecGen, leading to the detection of just 17% of the bugs.
APHP can only extract specifications from patches that ex-
plicitly fix API misuses. However, bug patches are inherently
incomplete, leaving many API specifications uncovered.

D. The Utilizability of API Artifacts

Existing studies extract API specifications from various arti-
facts. In particular, function pairs cannot be directly obtained
by analyzing a single API’s source code. The relationships
between function pairs are determined during API design, and
analyzing only the target API’s source code does not reveal
the associated post-operations. To infer these pairs, existing
methods use alternative artifacts. API documentation is a
direct source of specifications [23]. Frequent usage patterns
are considered correct API usage and serve as a basis for
extracting specifications [38], [3], [12], [4]. API names can
also offer semantics about the API’s function, helping identify
certain types of operations [24], [33]. To assess the limitations
of these methods, we focus on the function pairs generated
by APISpecGen and examine the associated artifacts of the
corresponding target APIs to determine whether these artifacts
can be used to extract the generated pairs.
The Quality of API Documentation. We checked whether
the generated API specifications were mentioned in the API
documentation. The results show that 87% of the specifications
were not included in the API documentation. Considering
that we treated all functions as APIs, which might include
some internal functions not needing documentation, we further
analyzed only those APIs with documentation. For these APIs,
66% of the specifications were still not mentioned. The results
show the inherent limitation of documentation-based methods
due to incomplete documents.

Additionally, we used the generated specifications to check
the API documentation and found issues within the documen-
tation itself, which can mislead developers and cause serious
security impacts. Specifically, we identified three types of
issues in the documentation: (1) Outdated document: The
API documentation was not updated after the API code
was modified, leading to outdated information. For exam-
ple, the API backlight_device_get_by_name docu-
ment mentioned the post-operation backlight_put, which
has been deprecated. The correct post-operation should be
put_device. (2) Typo in document: The API documentation
contained typo errors for post-operation. For instance, the
enclosure_find API should use put_device for re-
lease, but the documentation incorrectly stated device_put.
(3) Error due to copy-paste: Developers may reference sim-
ilar APIs while writing the documentation but fail to no-
tice differences in post-operations, leading to errors in the
API specifications described. For example, phy_put corre-
sponds to phy_get, but of_phy_get does not correspond
to phy_put. Figure 13 shows the documentation for the
of_phy_get API, which incorrectly states that the caller
should use phy_put to release the count. However, the
correct function is of_phy_put. Unlike of_phy_put,
phy_put also calls the device_link_remove function
to delete a stateless link between two devices. If developers
follow the documentation and mistakenly use phy_put to
release the count obtained by of_phy_get, it may result
in the device being unregistered while still in use, leading to
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Fig. 13: Error in the document of of phy get

Use-After-Free or other unexpected behaviors. APISpecGen
successfully generated the correct post-operations for the APIs,
thus helping to identify the documentation errors. We have
submitted patches to fix these documentation errors, which
have been merged into the Linux kernel’s main branch.
The Frequency of Correct API Usage. We analyzed the
frequency of correct API usage for the generated specifications
to determine whether they meet the occurrence thresholds set
by existing methods. Following previous work [3], [38], we
performed intra-function analysis to count how many API
callers adhere to each API specification. Typically, previous
studies [12], [3] set a threshold of 10 for frequent pattern
mining, meaning that at least 10 callers must follow the API
usage specification for mining. However, the results show that
over 93% of API pairs occur less than 10 times. Additionally,
84% of API pairs appear less than 5 times. This indicates
that frequent pattern mining methods overlook the majority
of APIs specifications due to insufficient correct usage. As
API design becomes more specialized and involves multiple
layers of abstraction, the number of calls to an API can
be very small. APISpecGen does not rely on the frequent
occurrence of correct API usage. It generates specifications
through specification propagation analysis, thus covering APIs
that are not frequently used.
The Characteristic of API Name. API names often
contain semantic clues, and several existing methods
use them to identify specific API types, such as those
related to memory operations. In particular, for paired
function specifications, API names often include subwords
like “alloc”, “new”, or “request”, indicating resource
allocation. These APIs, therefore, typically require post-
operations to release the allocated resources. We analyzed
the function pairs in the generated specifications and
identified subwords that frequently appear in API names,
like “get”,“find”,“alloc”,“lookup”,“request”, and “new”.
However, we also observed that 12.71% of APIs do not
contain these informative subwords, meaning their names
do not explicitly suggest resource allocation, even though
they may still require post-operations. In general, lower-
level APIs often have names that clearly indicate resource
management, such as get_device and put_device.
However, as APIs evolve to handle more complex or
varied use cases, their names may no longer directly
indicate resource management. For instance, the API

of_path_to_platform_device does not suggest any
resource management, but in reality, it acquires a reference and
requires the platform_device_put function to release
it. Using get_device as a seed, APISpecGen, traces
the specification propagation path from get_device
to more specific APIs like bus_find_device,
bus_find_device_by_of_node, and finally to
of_path_to_platform_device. The results show
that some APIs’ names lack obvious semantics to indicate the
need for post-operations. Relying on API names may miss
these APIs’ specifications. APISpecGen does not rely on API
name and can generate specifications for these APIs.

E. Findings

Based on the results, we share our findings about the API
design and their specifications.
(1) APIs often evolve from primitive APIs and share similar
specifications. Our results reveal that many APIs share similar
specifications, a relationship that is typically established during
the design phase. Specifically, some APIs are derived from
basic APIs. As APIs evolve, they adapt to different scenarios,
and their corresponding post-operations adapt accordingly. De-
spite these variations, the underlying relationships between the
APIs and their post-operations remain similar. For example, as
shown in Table V, function pairs like scsi_host_get and
scsi_host_put follow a pattern similar to that of primitive
APIs get_device and put_device. These function pairs
can be traced back to primitive APIs.

TABLE V: Specification derived from get device

Target API Post-Operation

zfcp unit find put device
scsi host get scsi host put

rproc get by phandle rproc put
cxl afu get cxl afu put

regulator get regulator put
pci p2pmem find pci dev put

wpan phy find wpan phy put

(2) APIs are designed at different levels for conve-
nience, and they require consistent specifications. When
developing software, developers often work with APIs that
span multiple levels and serve various use cases. For in-
stance, in the Linux kernel’s device driver infrastructure,
the get_device API is utilized across different layers,
with multiple variations that offer different ways of obtaining
devices. These APIs are designed for diverse use cases, and
they still require consistent specifications to ensure correct
usage. Table VI illustrates some of these variations and their
hierarchical relationships. At the first level, we have func-
tions like bus_find_device, driver_find_device,
and class_find_device. While all of these functions
are based on get_device to obtain devices, each is
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designed for a specific use case—such as working with
buses, drivers, or specific device types. At the second
level, APIs like driver_find_device_by_name and
driver_find_device_by_fwnode offer more specific
ways to obtain devices. These variations give developers
flexibility in obtaining device references at different levels of
abstraction. They are widely used across various drivers and
often misused because developers overlook the specifications.

TABLE VI: Two API layers in kernel device infrastructure

Level-1 API Level-2 API

driver find device
driver find device by name

driver find device by fwnode

chsc get next subchannel

bus find device
bus find device by acpi dev

bus find device by fwnode

wmi find device by guid

class find device
fpga region class find

class find device by name

regulator lookup by name

VIII. DISCUSSION

The Scope and Extension. In this paper, we focus on
improper API post-handling, which accounts for 66% of
API misuse [8], leading to various bug types (e.g., memory
corruption, refcount imbalance, and error handling issues)
and severe security impacts (e.g., Use-After-Free, system
crash) [6], [24], [29], [36]. APISpecGen can be extended
to other patterns of API specifications (e.g., checking API
parameters) with minimal effort [39], [21]. Most API spec-
ifications share common elements—APIs, critical variables,
and security operations—that differ mainly in their order or
operation type. To extend APISpecGen, we only need to
simply adjust propagation models (as shown in Figure 2) and
analysis. Our critical variable-based propagation flow analysis
can easily adapt to other patterns.

Similar to other static analysis-based studies [20], [17],
APISpecGen has inherent limitations. Static analysis often
struggles with indirect calls and inter-procedural analysis, and
its accuracy can be difficult to guarantee [18]. Despite this,
static analysis is efficient for large-scale code analysis, and
APISpecGen performs well in generating specifications and
detecting bugs. To address the limitations of static analysis, ad-
vanced techniques like indirect call analysis can be integrated
to achieve more accurate inter-procedural analysis [19].
Object Propagation Analysis in Bug Detection. Some bug
detectors use object propagation analysis to track objects
allocated by low-level APIs like kmalloc and identify nec-
essary release points [6]. However, starting from primitive
APIs is inefficient. Program complexity often causes data flow
explosions, limiting analysis to low-level calls and making it

difficult to trace higher-level APIs. Additionally, some bug
detectors use escape analysis to reduce false positives by
identifying whether a variable escapes a function [29]. But
this approach cannot confirm if escaped objects are properly
managed. In contrast, APISpecGen uses specification propa-
gation analysis to generate API specifications, bypassing the
need for bottom-up tracing in bug detection. In this way, we
can focus only on the specific API usage, and improves the
effectiveness of bug detection.

IX. RELATED WORK

API Misuse Detection. API misuse detection on focus on
extracting API specifications and identifying their violations
to detect misuse. Existing methods propose to extract API
specifications from various artifacts, including API documen-
tation [23], [40], [27], API usage code [12], [20], [14], [16],
and bug patches [17]. For example, Advance [23] extracts
specifications by identifying strong sentiment sentences in the
documentation. APP-Miner [12], APISan [38], and Crix [22]
infer specifications by analyzing frequent API usage patterns.
APHP [17] derives specifications from patched code and patch
descriptions. APICAD [34] and AURC [10] combine multiple
sources, including documentation, API usage code, and API
source code. Unlike methods that rely on external artifacts for
specification extraction, APISpecGen leverages the inherent
relationships between APIs for new specification generation,
thus can detect a wider range of API misuses.
Specialized Bug Detection. Some studies focus on detecting
specific types of bugs caused by API misuse, such as memory
corruption, and reference count imbalance [6], [24], [29], [36].
These methods define key API characteristics for particular
bug types and identify APIs that match these characteristics
to detect misuse. For example, CID [29] focuses on reference
count leaks by identifying APIs that increment reference
counters and checking for corresponding decrement operations
through consistency analysis. HERO [36] focuses on error-
handling bugs and extracts function pairs related to error
handling. K-Meld [6] detects memory leaks by identifying
memory allocation APIs and analyzing their usage patterns.
Similarly, Goshark [24] uses natural language processing
(NLP) and data flow analysis to identify memory-related
functions. Unlike methods that focus on specific bug types,
APISpecGen generates specifications for diverse APIs, thus
can detect diverse misuses across various bug types.

X. CONCLUSION

In this paper, we introduce API specification propagation
and present APISpecGen, a framework that generates new API
specifications from existing ones. Using seed specifications,
APISpecGen iteratively performs bidirectional propagation
analysis and combines API usage with data-flow validation to
ensure accurate specification generation. Experimental results
show that using 6 seed specifications, APISpecGen generated
7332 new API specifications. Using the generated by APIS-
pecGen, we detected 186 unknown bugs in the Linux kernel,
with 8 CVEs assigned.
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TABLE VII: List of 60 bugs in Linux kernel detected with the specifications generated by APISpecGen. Each row displays
the buggy function, target API, post-operation, and seed API for specification generation and security impact.

Buggy Function Target API Post-Operation Seed API Security Impact

omapdss init of omapdss find dss of node of node put get device refcount leak
ti sci intr irq domain probe of irq find parent of node put get device refcount leak
msc313 gpio probe of irq find parent of node put get device refcount leak
mvebu gicp probe of irq find parent of node put get device refcount leak
alpine msix init domains of irq find parent of node put get device refcount leak
sifive gpio probe of irq find parent of node put get device refcount leak
stm32 pctrl get irq domain of irq find parent of node put get device refcount leak
ixp4xx gpio probe of irq find parent of node put get device refcount leak
ti sci intr alloc parent irq of irq find parent of node put get device refcount leak
platform irqchip probe of irq find parent of node put get device refcount leak
ti sci inta irq domain probe of irq find parent of node put get device refcount leak
rpi ts probe rpi firmware get rpi firmware put get device refcount leak
vc4 hvs bind rpi firmware get rpi firmware put get device refcount leak
hns roce mmap rdma user mmap entry get pgoff rdma user mmap entry put get device refcount leak
erdma mmap rdma user mmap entry get rdma user mmap entry put get device refcount leak
bwmon probe dev pm opp find bw ceil dev pm opp put get device refcount leak

dtpm cpu setup cpufreq cpu get cpufreq cpu put get device refcount leak
hns mac register phy hns dsaf find platform device put device get device refcount leak
x86 instantiate serdev device find child by name put device get device refcount leak
dpaa2 mac connect of phy get of phy put get device refcount leak
fme bridge enable set dfl fpga cdev find port put device get device refcount leak
fdp1 probe rcar fcp get rcar fcp put get device refcount leak
of led get class find device by of node put device get device refcount leak
nfc genl vendor cmd nfc get device put device get device refcount leak
nfc genl se io nfc get device put device get device refcount leak
bcm sf2 mdio register of mdio find bus put device get device refcount leak
usb otg start usb get phy usb put phy get device refcount leak
pxa udc probe usb get phy usb put phy get device refcount leak
xgmiitorgmii probe of phy find device put device get device refcount leak
amd8132 probe pci dev get pci dev put get device refcount leak
ubi detach mtd dev ubi get device put device get device refcount leak
am33xx pm probe wkup m3 ipc get wkup m3 ipc put get device refcount leak
bebob probe fw unit get fw unit put get device refcount leak
motu probe fw unit get fw unit put get device refcount leak
efw probe fw unit get fw unit put get device refcount leak
oxfw probe fw unit get fw unit put get device refcount leak
snd ff probe fw unit get fw unit put get device refcount leak
dice probe fw unit get fw unit put get device refcount leak
snd dg00x probe fw unit get fw unit put get device refcount leak
snd tscm probe fw unit get fw unit put get device refcount leak
nvram init get mtd device nm put mtd device get device refcount leak
kfr2r09 usb0 gadget i2c setup i2c get adapter i2c put adapter get device refcount leak
vpif probe i2c get adapter i2c put adapter get device refcount leak
rockchip init usb uart of find matching node and match of node put get device refcount leak
mvebu mbus dt init of find matching node and match of node put get device refcount leak
psci dt init of find matching node and match of node put get device refcount leak
bq25890 fw probe power supply get by name power supply put get device refcount leak
iscsi set host param scsi host lookup scsi host put get device refcount leak
spm cpuidle register of cpu device node get of node put get device refcount leak
parse perf domain of cpu device node get of node put get device refcount leak
sii8620 init rcp input dev rc allocate device rc free device device initialize refcount leak
highbank mc probe edac mc alloc edac mc free device initialize refcount leak
mmc omap new slot mmc alloc host mmc free host device initialize refcount leak
fme bridge enable set dfl fpga port ops get dfl fpga port ops put try module get refcount leak
cs35l41 hda read acpi acpi get subsystem id kfree kstrdup memory leak

tegra channel try format v4l2 subdev state alloc v4l2 subdev state free kmalloc memory leak
btmtksdio probe hci alloc dev hci free dev kmalloc memory leak
davinci mdio probe alloc mdio bitbang free mdio bitbang kmalloc memory leak
xen pcibk xenbus probe alloc pdev free pdev kmalloc memory leak
efx tc flower handle lhs actions efx tc get recirc id efx tc put recirc id kmalloc memory leak
highbank l2 err probe edac device alloc ctl info edac device free ctl info kmalloc memory leak
mt798x phy calibration nvmem cell get nvmem cell put kmalloc memory leak
virtio gpu object shmem init drm gem shmem get sg table IS ERR ERR PTR null-ptr-deference
malidp check pages threshold get sg table IS ERR ERR PTR null-ptr-deference
q6apm graph open gpr alloc port IS ERR ERR PTR null-ptr-deference
ufs mtk init va09 pwr ctrl regulator get IS ERR ERR PTR null-ptr-deference
imx8mq soc revision of clk get by name IS ERR ERR PTR null-ptr-deference
expr ctx new hashmap new IS ERR ERR PTR null-ptr-deference
dr domain init resources mlx5 get uars page IS ERR ERR PTR null-ptr-deference
memory tier init alloc memory type IS ERR ERR PTR null-ptr-deference
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: We provide public access to our code
and experiment setups through the following Zenodo link:

https://doi.org/10.5281/zenodo.14244150
You can also access it in Github:
https://github.com/Yuuoniy/APISpecGen
The artifact is licensed under Apache License 2.0.
2) Hardware dependencies: In our evaluation, we used a

64-bit Ubuntu 22.04 system with 503GB of memory and 5TB
of storage, powered by an Intel(R) Xeon(R) Gold 5218R CPU
@ 2.10GHz with 79 processors.

APISpecGen works on standard machines. It is implemented
in a multithreaded manner, and we recommend using a mul-
tithreaded computer to speed up the evaluation process.

3) Software dependencies: APISpecGen is implemented in
Python and leverages existing code analysis tools, including
Joern, Tree-sitter, and Weggli. We provide a Dockerfile to au-
tomate the setup and creation of the Docker environment. This
Dockerfile includes everything needed to configure the runtime
environment, install third-party tools and dependencies, set up
Python libraries.

4) Benchmarks: Source code of the Linux kernel (e.g.,
linux-5.16).

B. Artifact Installation & Configuration

This section should include all the high-level installation
and configuration steps required to prepare the environment
to be used for the evaluation of your artifact.

C. Experiment Workflow

The main workflow involves using given specification seeds
to generate new API specifications, and using these generated
specifications to detect new bugs. Therefore, the experiemts
include two main stage: specifications generation and bug
detection.

1) Installation: We provide Dockerfile to simplify the
installation. Users can build the docker for APISpecGen using
the Dockerfile and download the program for testing using
the commands below.
$ wget https://github.com/Yuuoniy/
APISpecGen/raw/refs/heads/main/Dockerfile
$ docker build -t apispecgen:latest .
$ docker run -it --name "apispecgen"
"apispecgen:latest"

2) Basic Test: we provide a minimal running example
for quick test. This can reproduce the working example we
introduced in the paper (Figure 5). Please run the com-
mand as follows. This test generates the specification for
API nfc_get_device and detects the buggy function
nfc_genl_vendor_cmd.
1. [5-minutes] Basic test for specification generation.
$./script/0.quick_spec_generate.sh

2. [2-minutes] Basic test for bug detection.
$./script/0.1.quick_bug_detection.sh

D. Major Claims

• (C1): APISpecGen extracts thousands API specifications
using given six seeds. This is proven by the experiments
(E1) in the Section VII.A, whose results are illustrated in
Table II.

• (C2): Using the generated specifications, APISpecGen
detects numerous new bugs in the Linux Kernel, This
is proven by the experiments (E2) in the Section VII.B.

• (C3) Most of the generated specifications cannot be
extract with the API artifacts. This is proven by the
experiments (E3) in the Section VII.D.

E. Evaluation
1) (E1): [Specification Generation] [5 compute-hour]:
Generate specifications use the given six seed specifications

in the Linux Kernel.
[Preparation] Follow the previously instructions for in-

stallation and downloads the source code of linux kernel.
Run the basic test to check the environment. Make sure the
config.cfg correctly setup the path for source code.

[Execution] Please run:
$./script/1.specification_generation.sh
[Results] Generated specifications are saved in DIR

SpecGeneration/Data/GeneratedSpec. The default
max depth is 10. The specifications follow the defined
three-tuple format and including the propagation information.

2) (E2): [Bug Detection] [5 compute-hour]:
Use generated specifications to detect new bugs in the

Linux kernel. To facilitates evaluation, we provided a set of
specifications that related to detected bugs for validation. All
the used specifications are previously generated.

[Preparation] Run the basic test for bug detection to check
the environment.

[Execution] Please run
$./script/2.bug_detection.sh
[Results] Using the specifications, APISpecGen detects

hundreds of new bugs in the Linux kernel. The bugs reports is
saved to file BugDetection/data/bug_report.csv.

3) (E3): [API Artifacts Evaluation] [5 minutes]:
Use the generated specifications to evaluate the usability of

API artifacts (including API documentation, API names, and
API usage) for specification extraction.

[Preparation] In the evaluation, we provide the
previously generated specifications for analysis.
Alternatively, users can specify the spec_file in
APIAritifactEval/APIAritifactEval.py.

[Execution] Please run:
$./script/3.API_aritifact_analysis.sh
[Results] This prints out the statistical data which reveals

that API artifacts have significant limitations in specification
extraction.
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