
LLMPirate: LLMs for Black-box Hardware IP Piracy

Vasudev Gohil, Matthew DeLorenzo, Veera Vishwa Achuta Sai Venkat Nallam, Joey See, Jeyavijayan Rajendran
Texas A&M University

vgohil.research@gmail.com, {matthewdelorenzo, nallamsaiv, joeysee, jv.rajendran}@tamu.edu

Abstract—The rapid advancement of large language models
(LLMs) has enabled the ability to effectively analyze and gen-
erate code nearly instantaneously, resulting in their widespread
adoption in software development. Following this advancement,
researchers and companies have also begun integrating LLMs
across the hardware design and verification process. However,
these highly potent LLMs can also induce new attack scenarios
upon security vulnerabilities across the hardware development
process. One such attack vector that has not been explored so
far is intellectual property (IP) piracy. Given that this attack
can manifest as rewriting hardware designs to evade piracy
detection, it is essential to thoroughly evaluate LLM capabilities in
performing this task and assess the mitigation abilities of current
IP piracy detection tools.

Therefore, in this work, we propose LLMPirate, the first LLM-
based technique able to generate pirated variations of circuit
designs that successfully evade detection across multiple state-
of-the-art piracy detection tools. We devise three solutions to
overcome challenges related to integration of LLMs for hardware
circuit designs, scalability to large circuits, and effectiveness,
resulting in an end-to-end automated, efficient, and practical
formulation. We perform an extensive experimental evaluation
of LLMPirate using eight LLMs of varying sizes and capabilities
and assess their performance in pirating various circuit designs
against four state-of-the-art, widely-used piracy detection tools.
Our experiments demonstrate that LLMPirate is able to consis-
tently evade detection on 100% of tested circuits across every
detection tool. Additionally, we showcase the ramifications of
LLMPirate using case studies on IBEX and MOR1KX processors
and a GPS module, that we successfully pirate. We envision that
our work motivates and fosters the development of better IP
piracy detection tools.

I. INTRODUCTION

Recent advancements within artificial intelligence and com-
puting performance have greatly accelerated the development
of large language models (LLMs), with state-of-the-art models
(including OpenAI’s ChatGPT [60] and Google’s Bard [68])
achieving groundbreaking performance in natural language
processing and gaining mass popularity [38]. With the ability
to effectively interpret text prompts and generate human-
like responses [56], LLMs have proven effective across a
variety of tasks, such as language translation [44], text sum-
marization [67], and generating code [26]. This widespread
applicability has resulted in the rapid adoption of LLMs
across various industries, serving as chat-bots for customer
service [67], documentation aids in healthcare [48], and cod-

ing assistants for programmers [26]. These applications have
prompted companies and researchers to further explore the
most effective ways in which LLMs can be tailored and
utilized to automate specified tasks and processes, including
the software and hardware design workflow.

A. LLMs for Code Generation

Given the success of LLMs in natural language processing,
many models are also extensively trained on large datasets
of open-source code with the specific purpose of generating
functionally correct programs based upon a prompt descrip-
tion [49]. These programming-oriented LLMs are utilized in
a variety of applications within the software and hardware
development processes. Through Microsoft’s Github CoPilot,
the advantages of LLMs are applied directly to the software de-
velopment environment, providing context-aware code sugges-
tions and refactoring recommendations [28]. In fact, Microsoft
reported that the first versions of CoPilot tools substantially in-
crease productivity on common enterprise information worker
tasks [14]. Similarly, OpenAI’s widely utilized GPT-4 model
also has strong performance in software engineering tasks,
including the ability to generate programs from pseudocode
and explain its results in natural language [11].

Following advancements in the software domain, semi-
conductor companies have also begun utilizing generative
artificial intelligence (AI), specifically LLMs, within various
stages of hardware integrated circuit design process, including
the generation of register-transfer level (RTL) code. Semi-
conductor giant NVIDIA’s ChipNeMo explores fine-tuning
smaller LLMs for industrial chip-design, in which their 70-
billion parameter model was able to outperform OpenAI’s
GPT-4 in electronic design automation (EDA) tools’ script
generation [46]. ChipGPT from Cadence demonstrated the
first proof-of-concept LLM technology in chip design, able
to load architecture and design specifications to accelerate
test-bench creation and RTL code generation [10]. Cadence
has also developed the Cadence.AI generative AI platform
for applications in digital circuit design, analog circuit design,
debug and verification, and printed circuit board design [13].
Likewise, Synopsys, another EDA enterprise, has developed
Synopsys.ai Copilot that harnesses generative AI with LLMs
throughout their EDA suite, aiding in tedious workflow tasks
including test pattern generation, verification coverage, and
design space exploration [69]. RapidGPT from Rapid Silicon
provides similar auto-complete capabilities tailored to field-
programmable gate array design [20].

LLMs can also be offensively leveraged by threat actors
to execute attacks that exploit various software and hardware
security vulnerabilities. For instance, RatGPT utilizes GPT-4
as a proxy method to distribute malicious software through

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.242059
www.ndss-symposium.org

Original
Netlist

Pirated
NetlistLLM

Detection
Tool

"Not
Pirated"

Fig. 1: High-level overview of our proposed technique.

the use of openly accessible LLM plugins, enabling access
to the victim’s machine [6]. Additionally, GPThreats-3 [8]
explores how LLMs (GPT-3) can be utilized to generate
malware itself, demonstrating success through a building-block
prompting strategy. To attack hardware systems, LLMs can
enhance side-channel attacks, in which unintentional data is
extracted based upon the physical implementation of the circuit
design (e.g., the secret key from a cryptographic algorithm).
AgentSCA demonstrates that through fine-tuning LLMs with
human feedback upon side-channel datasets, the model can
effectively interpret side-channel statistics and provide correct
decisions based upon the test system [80]. However, a crucial
attack vector that can be orchestrated using LLMs that
has not been explored so far is the piracy of intellectual
property (IP) within the hardware domain.

B. Impact of IP Piracy

The theft of hardware design IP, or IP piracy, is a significant
concern within the system-on-chip design flow [16]. This can
be attributed to the globalization of the integrated circuits
supply chain, where semiconductor companies outsource their
IP design to (potentially untrusted) fabrication entities to
reduce the cost and time of chip production [37]. This has
caused an increased risk of theft of IP assets shared by ven-
dors (including RTL designs), causing significant security and
economic consequences. A recent instance is observed within
the dynamic random-access memory (DRAM) market. Micron,
who held 20-25% of the global DRAM market share, reported
estimated losses of $8.75 billion to IP piracy alone in 2018,
demonstrating significant economic impacts [58]. Additionally,
the semiconductor industry has been largely impacted, with the
U.S. Trade Representative reporting losses between $225 to
$600 billion as a result of Chinese theft of American IP [59],
[19], [53].

To address this threat across the hardware design process,
a number of hardware IP protection techniques [43] as well
as piracy detection tools such as GNN4IP are utilized [81].
However, piracy detection tools such as GNN4IP have not
been thoroughly tested. In this work, we show how LLMs
can be used to pirate IPs and successfully evade tools such as
GNN4IP.

C. Our Goals and Contributions

We propose an end-to-end automated LLM-based IP piracy
scheme, LLMPirate, using which we can rewrite circuits, i.e.,
Verilog netlists, such that they evade detection by various IP
piracy detection tools. Figure 1 illustrates the high-level idea.
This requires designing an appropriate task for a given LLM,
such that prompting it with a target netlist results in a design
that is functionally equivalent to the original circuit, but is also
different enough to not be flagged by piracy detection tools.

However, several challenges exist in designing such an
end-to-end automated IP piracy framework. First, LLMs are
trained on extremely limited hardware designs, i.e., circuits
described in hardware description languages such as Verilog
or VHDL, as opposed to software codes such as C, C++,
Java, or Python [77]. In fact, our experiments indicate that
even advanced LLMs such as OpenAI’s GPT-3.5 are unable
to understand and rewrite simple Verilog designs. Second,
these LLMs face scalability issues: they are unable to work
with larger Verilog designs. Another scalability issue also
stems from the limited context windows (i.e., the amount of
information that an LLM can take into account to generate
responses without losing context) of LLMs. This is especially
important since typical Verilog designs have hundreds of
thousands of characters, which is far more than the context
windows of all LLMs available today. Third, LLMs’ responses
are not deterministic, so often, simply prompting an LLM
to rewrite/pirate circuit designs, i.e., netlists, results in error-
prone/incorrect responses. This needs to be alleviated in order
to realize a practical IP piracy technique.

We overcome the challenge of limited Verilog data used to
train LLMs by devising Solution A : translating the syntax of
Verilog netlists to a more generic format of Boolean functions
before prompting the LLMs. Doing so makes it easier for
LLMs to understand the prompt details and respond accord-
ingly. To overcome the challenges related to scalability, we
devise Solution B , which characterizes large netlists to extract
all unique gate types and then using a divide-and-conquer
approach to not exceed the context window sizes of LLMs.
Finally, we overcome the challenge related to error-prone
responses, we devise Solution C , which combines the interac-
tive capabilities of LLMs with fine-grained feedback related to
syntactical and functional correctness of the circuit generated
by the LLM. Sec. IV-A contains more details about these
challenges and our solutions. By solving these challenges, we
develop an end-to-end automated technique, LLMPirate, for
successfully pirating hardware IPs. Our primary contributions
are:

• We present a first-of-its-kind LLM-based technique, LLM-
Pirate, that successfully pirates hardware IPs and evades
detection by state-of-the-art detection tools. This is also
the first work to provide a detailed comparative study of
the efficacy of four different piracy detection tools that use
different algorithms.

• We overcome unique challenges related to integration of
LLMs for Verilog netlists, scalability, and effectiveness by
designing custom solutions based on domain knowledge.

• We provide a comparative evaluation between various pop-
ular LLM models across various IP piracy detection tools,
with results indicating that overall, GPT-4 is the most
effective in successfully pirating Verilog netlists. Other large
closed-source LLMs such as CoPilot and GPT-3.5 also
perform very well.

• Our results also demonstrate that our feedback-guided in-
teractive formulation greatly improves the performance of
all LLMs, and most notably of smaller, open-source LLMs
such as the recently released Llama3.

• We demonstrate the practical ramifications of our LLM-
based IP piracy technique through case studies on modern,
real-world designs: IBEX and MOR1KX processors and

2

TABLE I: Overview of LLMPirate against piracy detection tools.

Detection Tool GNN4IP [81] MOSS [2] Jplag [41] SIM [35]

Algorithm Used Graph Neural Network Winnowing Greedy String Tiling Tokenization and
Longest Common Subsequence

Key Features High Accuracy,
Designed for Verilog

Widely-used,
Supports Verilog

Widely-used,
Robust Against Obfuscation

Widely-used,
Efficient

LLMPirate (This Work)’s
Evasion Rate 100% 100% 100% 81.25%1

a GPS module. We successfully pirate them and evade
multiple state-of-the-art detection tools.

D. Why LLMs?

A natural question here could be about the need of LLMs
for hardware IP piracy. LLMs have shown tremendous im-
provement over the past few years, and today’s LLMs are
proficient at a variety of tasks including programming [40].
However, as we demonstrate in Sec. IV-A, LLMs still struggle
with understanding simple Verilog netlists. Given this limi-
tation of LLMs, a potential approach for a malicious human
developer can be to manually rewrite netlists. However, such an
approach would not be scalable. Additionally, the limitations
of this manual approach are exacerbated by the fact that
different piracy detection techniques use different types of
algorithms (e.g., graph structural similarity, “fingerprints” of
hashed Verilog netlist structures, and text-based comparisons).
Another limitation of the manual approach is the requirement
of additional effort for every new piracy detection technique.
In contrast, LLMPirate offers an end-to-end automated flow
to easily and quickly pirate hardware circuit netlists, enabling
proper evaluation of existing and new piracy detection tech-
niques.

II. BACKGROUND

A. Large Language Models

In recent years, large language models (LLMs) have
emerged as powerful tools in natural language processing and
related fields. These models, often based on deep learning ar-
chitectures, exhibit remarkable capabilities in tasks such as text
generation, translation [44], and sentiment analysis [45]. LLMs
learn to represent language patterns and context by training
on massive amounts of text data. Notable examples include
GPT-3.5 (used in ChatGPT) [62], GPT-4 [61], Gemini [31],
and Llama [50], among others. The remarkable success of
LLMs can be attributed to their architectural innovation, in
which transformer architectures are leveraged to enable parallel
processing of sequential data, thereby efficiently capturing
complex linguistic patterns and dependencies within text [78].

B. Code Generation with Large Language Models

Among other avenues, LLMs have also brought a paradigm
shift in code generation [40]. LLMs have demonstrated re-
markable proficiency in generating code across different pro-
gramming languages [15]. By leveraging the vast knowledge

1LLMPirate does not have 100% evasion rate against SIM because SIM has
high false-positive rate as it does not support Verilog natively.

encoded in their pre-trained parameters, these models can
understand natural language prompts describing desired func-
tionalities or requirements and produce corresponding code
snippets with high fidelity. This capability has shown promise
for accelerating software development processes, facilitating
rapid prototyping, and reducing the burden on programmers
by automating routine coding tasks [75], [28]. Additionally,
fine-tuning these models on domain-specific codebases further
enhances their proficiency in generating contextually relevant
and syntactically correct code [71]. For instance, researchers
and corporations have devised custom LLMs for generating
codes in hardware description languages, such as Verilog and
VHDL, which are used to create digital integrated circuits [77],
[27], [22], [21].

C. IP Piracy Detection

Although there are many noteworthy works for measuring
similarity, we choose four techniques for our evaluation, as
explained next. Our selection of target similarity detection
techniques ranges from the earliest tools with high popularity,
MOSS [2], to the most recent, GNN4IP [81], which uses
machine learning. We also select other tools, SIM [35] and
Jplag [41], based on their high accuracy, impact, and popularity
(see Table I for an overview). MOSS is arguably the most
widely-used similarity measurement tool for codes. It has
been used globally for decades [74], [76], [9], [18], has over
300K active accounts [23], and is also used in (or for the
basis of) commercial tools for similarity detection, such as
Gradescope [57] and Codequiry [17]. GNN4IP is the most
powerful similarity measurement tool for Verilog, as it was
developed with the specific objective of detecting IP piracy
in Verilog code. Jplag, like MOSS, is also a widely-used
similarity measurement tool that is used in universities [18].
Overall, our selection represents a set of similarity detection
tools that use different frameworks, demonstrate excellent
performance, and have been used extensively.

GNN4IP is a piracy detection tool developed with the specific
purpose of detecting hardware IP piracy [81]. It converts
Verilog descriptions of hardware IP into graph representations
and performs graph convolutions on those graphs in order to
extract their node embeddings. By finding the cosine similarity
between the embeddings of different IPs, it then becomes
possible to determine if IP piracy has occurred.

MOSS is a piracy detection tool developed by Stanford
University [2], primarily utilized for detecting plagiarism in
code across students in college-level computer science courses.
MOSS uses the winnowing algorithm [72], which first breaks
down code into tokens and hashes them using a hash function,

3

then applies a sliding window over the hashes, and lastly
selects the minimum hash value from each window. These
values become the “fingerprint” of the code, which are then
utilized to evaluate the similarity percentage between two
target codes.

JPlag is a Java-based software similarity detection tool [41].
It utilizes the Greedy-String-Tiling algorithm on tokenized
entries to systemically break entries up into “tiles” of matching
token strings, prioritizing the longest strings first. The number
of tiles found are then compared to the overall length of entries
to assess similarities. Originally developed in 1996, it has
JPlag has received consistent updates and improvements by
universities and other community members who continue to
use it today [18].

SIM is another piracy detection tool, utilized to detect pla-
giarism in writing assignments and software projects across
college students [35]. SIM firstly breaks the given code/text
into 16-bit tokens using a hash function and normalizes them
in order to minimize superficial differences (such as comments,
white spaces, etc). Then the algorithm scans for overlapping
blocks of tokens that appear in both files. Finally, the similarity
percentage is found by dividing the number of matching tokens
by the total number of tokens [36].

III. THREAT MODEL

We consider a standard black-box attacker model applica-
ble to piracy detection or similarity measurement techniques
such as GNN4IP, MOSS, Jplag, and SIM. In this context, we
establish the following assumptions about the attacker:

Attacker’s Knowledge. We assume a black-box setting, where
the attacker lacks access to the detection tool’s internal pa-
rameters (e.g., ML model’s parameters or training labels, or
internal parameters used in algorithms of the detection tool).
The attacker can only make black-box queries to obtain output
similarity scores or predicted labels (in case of ML-based
techniques).

Attacker’s Capacity. The piracy attack occurs after the detec-
tion tool is finalized. Especially in case of machine learning
(ML)-based techniques, the attack occurs after the model has
undergone training. The detection tool remains fixed, and the
adversary lacks the ability to alter its parameters or structure.
For instance, the attacker cannot introduce model poisoning
(for ML-based techniques) or inject backdoors.

Attacker’s Abilities. The attacker can rewrite the netlist
arbitrarily, but not alter the netlist’s functionality. Additionally,
the attacker must adhere to circuit design rules.

Attacker’s Goal. The attacker’s objective is to generate netlists
that lead to misclassification by the target detection tool(s).
For instance, when the target detection tool is GNN4IP, the
attacker aims to create a pirated version of an original netlists
such that GNN4IP incorrectly classifies the pirated netlist as
“not pirated”. Or, when the target detection tool is MOSS, the
attacker aims to pirate an original netlist such that MOSS re-
turns a low enough similarity score (determined by a threshold,
explained in Sec. V).

1 // Can you refactor it so that functionality
remains the same, but the gates used and

their interconnections are different from
the original structure?

2 module top (input a, input b, output c);
3 or U1 (c, a, b);
4 endmodule

Listing 1: Prompt for rewriting Verilog netlist.

1 module top (input a, input b, output c);
2 nand n1 (w1, a, b);
3 nand n2 (c, w1, w1);
4 endmodule

Listing 2: GPT-3.5’s response to the prompt in Listing 1.

IV. METHODOLOGY

In this section, we first provide a preliminary formulation
to pirate firm hardware intellectual property (IP), i.e., gate-
level Verilog netlists, using LLMs. Then, we show that this
preliminary formulation only works to an extent and doesn’t
help us successfully pirate IPs. Then we delve into the details
of the limitations and describe the different challenges that
need to be overcome to achieve our goal. We also devise
solutions to address these challenges and build our framework,
which successfully pirates hardware IP and evades detection by
state-of-the-art piracy detection tools solely through black-box
LLM access.

A. LLMs for Pirating IPs - Formulation, Challenges, and
Solutions

Here, we devise a preliminary formulation using LLMs
to pirate IPs in the form of gate-level netlists. To that end,
consider the example prompt shown in Listing 1. Here, we
simply ask the LLM to rewrite a Verilog gate-level netlist
for an OR gate. Mathematically, this formulation can be
represented as follows: The response R is obtained from the
underlying distribution

p(R|Q, θ), (1)

where θ denotes the parameters of the LLM, Q denotes the
query, and p represents the probability (since LLMs’ responses
are not deterministic).

Listing 2 contains the code portion of an example response
from the LLM.2 The generated netlist is a valid gate-level
netlist, but it is not functionally equivalent to the original (as
it implements an AND gate, not an OR gate). Similar results
hold true for other simple netlists as well, which leads us to
the first challenge in pirating IPs.

Challenge 1 : Difficulty Understanding and Rewriting
Simple Hardware Circuit Netlists. Although LLMs under-
stand the syntax of gate-level netlists and generate syntactically
correct netlists that compile successfully, the generated netlists
do not maintain the same functionality even for extremely
small and simple modules. This is likely because most of
the Verilog codes available on GitHub and other sources for

2Although the listing shows GPT-3.5’s response, we also tested GPT-4 and
observed similar results.

4

1 Can you refactor this circuit so that
functionality remains the same but the
Boolean operators are different? Return the
circuit in the same format.

2 c = OR(a,b)

Listing 3: Updated prompt for rewriting Verilog netlist.

1 c = NAND(NOT(a), NOT(b))

Listing 4: GPT-3.5’s response to the prompt in Listing 3.

LLMs’ training data is at the RTL abstraction and not at the
gate-level netlist abstraction.

Solution A : Prompt Syntax Translation For Hardware
Netlists. To address this challenge, we revise the formulation
to (i) extract only the relevant parts (i.e., the gates and not the
module declarations, endmodule declaration, etc.) from the
Verilog netlist, and (ii) translate the syntax of the extracted
gates into a more generic format of Boolean functions (as
opposed to gate declarations in the standard Verilog syntax).
For instance, the standard Verilog syntax of “or U1 (c,
a, b);” would be translated into a generic Boolean function
format as “c = OR(a,b)”. Mathematically, in this updated
formulation, the response R is obtained from the underlying
distribution

p(R|T (Q), θ), (2)

where T (Q) denotes that the query, Q, is processed to ex-
tract the relevant parts (i.e., the gates). These gates are then
translated (denoted by T (·)) into a generic Boolean function
format, which assists the LLM in generating better responses.
Finally, note that the response R is also post-processed using
T −1, the inverse of T , to translate the generic Boolean
function syntax back to the standard Verilog syntax. We omit
this in the formulation for the sake of clarity. For additional
information regarding the translation process, see Sec. VII-F
of the Appendix.

Listings 3 and 4 show the translated prompt, T (Q), ac-
cording to this updated formulation and the corresponding
response, R, from GPT-3.5, respectively. As shown, the LLM
is not only able to understand the provided circuit in the
generic Boolean function format, but it actually rewrites the
circuit correctly using the NAND and NOT Boolean functions
while maintaining the overall functionality. Thus, theoretically,
LLMs can be used to modify gates with the objective of
evading evade piracy detection tools. However, in practice,
when we use the above formulation (i.e., the one in Eq. (2)), we
face challenges related to scalability and effectiveness. Next,
we describe these challenges and how we overcome them.

Challenge 2 : Lack of Scalability to Large Netlists. Al-
though the LLM successfully rewrites the netlist in the example
above, that example contains a toy netlist with just one gate.
Real-world netlists contain several thousands, if not hundreds
of thousands, of gates. To check the formulation’s capability
in scaling to larger netlists, we test for a small standard
benchmark circuit, c17, which contains 6 gates, as shown in
Listing 5. Following the formulation in Eq. (2), we query the
LLM with the prompt shown in Listing 6. The LLM’s response
in Listing 7 shows that although it follows the instruction
and uses different Boolean operators, the resulting circuit is

1 module c17 (N1,N2,N3,N6,N7,N22,N23);
2 input N1,N2,N3,N6,N7;
3 output N22,N23;
4 wire N10,N11,N16,N19;
5 nand U1 (N10, N1, N3);
6 nand U2 (N11, N3, N6);
7 nand U3 (N16, N2, N11);
8 nand U4 (N19, N11, N7);
9 nand U5 (N22, N10, N16);

10 nand U6 (N23, N16, N19);
11 endmodule

Listing 5: c17 benchmark Verilog netlist.
1 Can you refactor this circuit so that
functionality remains the same but the
Boolean operators are different? Return the
circuit in the same format.

2 N10 = NAND(N1, N3)
3 N11 = NAND(N3, N6)
4 N16 = NAND(N2, N11)
5 N19 = NAND(N11, N7)
6 N22 = NAND(N10, N16)
7 N23 = NAND(N16, N19)

Listing 6: Prompt corresponding to Listing 5.

not functionally equivalent to the original circuit (because
AND(NOT(a), NOT(b)) ̸= NAND(a, b)).

Challenge 3 : Limited Token Context Windows of LLMs.
Another limitation of the above formulation is that rewriting
netlists by simply providing all gates to the LLM is not
possible. This is because all LLMs have finite input token
context windows, meaning that the prompt size cannot be too
large. For example, OpenAI’s GPT-3.5 LLM (more specif-
ically, gpt-3.5-turbo-0125) has a context window of
16,385 tokens [63], which, assuming ≈4 characters per to-
ken [66], translates to ≈65,540 characters. However, practical
netlists containing thousands or more gates have hundreds of
thousands of characters. Thus, it is not possible to rewrite
realistic netlists by providing all gates to LLMs.

Solution B : Pre-characterization and Divide-and-conquer.
To address these challenges, we modify the formulation by
characterizing the given netlist, as explained next. Suppose we
wish to rewrite a given Verilog gate-level netlist. Instead of
simply extracting all the gates and translating them to create
one big prompt (as shown in Listings 5 and 6), we first analyze
the netlist and extract all the different gate types (e.g., 2-input
AND gates, 3-input AND gates, XOR gates, etc.). Then, for
each unique gate type, we create a representative circuit in a
generic Boolean function format, as explained in Solution A
above. Finally, for each representative circuit in the generic
Boolean function format, we independently prompt the LLM
to rewrite that circuit. Note that, for each representative circuit
(i.e., gate type), we devise lists of specific Boolean operators
(different from the gate in the original circuit) and instruct

1 N10 = AND(NOT(N1), NOT(N3))
2 N11 = AND(NOT(N3), NOT(N6))
3 N16 = AND(NOT(N2), NOT(N11))
4 N19 = AND(NOT(N11), NOT(N7))
5 N22 = AND(NOT(N10), NOT(N16))
6 N23 = AND(NOT(N16), NOT(N19))

Listing 7: GPT-3.5’s response to the prompt in Listing 6.

5

TABLE II: Allowed Boolean operators for different gates crafted to achieve structural differences.

Gate AND OR NAND NOR XOR XNOR

Allowed Operators
For Transformation [NAND]/[NOR]/[OR, NOT] [NAND]/[NOR]/[AND, NOT] [NOR]/[AND, NOT]/[OR, NOT] [NAND]/[AND, NOT]/[OR, NOT] [NAND]/[NOR] [NAND]/[NOR]

1 Can you refactor this circuit following
these instructions? 1) Use only OR and/or
NOT Boolean operators. 2) Ensure that the
final functionality remains the same. 3)
Just give me the new circuit and nothing
else. 4) Generate your response in the
following format: <output> = <gate type> (<
inputs>).

2 c = AND(a,b)

Listing 8: Example prompt for instructing the LLM to use only
specific Boolean operators from Table II according to Solution
B .

the LLM to only use operators from that list in order to
achieve structural differences and result in successful piracy.
For instance, if the representative circuit is for an OR gate, the
list of Boolean operators the LLM is allowed to use is one
of the following: [NAND], [NOR], or [AND, NOT].3 Table II
shows the different Boolean operators we allow for each type
of gate. Also, Listing 8 shows an example prompt when we
want the LLM to rewrite a 2-input AND gate. From the three
available operator options for the AND gate, in this example,
we choose the [OR, NOT] operators. The last two instructions
in the prompt are provided for ease of parsing the generated
response.

In essence, we use a divide-and-conquer approach where
instead of asking the LLM to rewrite the entire netlist, we
analyze the netlist, extract different types of gates, and then
ask the LLM to individually rewrite the circuits corresponding
to the different types of gates. Doing so (i) allows us to suc-
cessfully scale to large netlists since we characterize them and
focus on different gate types individually, and (ii) overcomes
the issue of limited token context windows of LLMs since the
prompt for each unique gate type is independent of others.
Mathematically, the formulation is updated to obtain response
Ri for the ith unique gate type from the underlying distribution

p(Ri|T (Qi), θ), ∀i ∈ {1, 2, . . . , |G|}, (3)

where G is the set of unique gate types and T (Qi) denotes the
translated query (from Verilog gate format to generic Boolean
function format with instructions about allowed Boolean op-
erators) for the ith unique gate type.

Challenge 4 : Error-prone Single-shot Netlists. The final
issue with the formulation described so far is that it only allows
the LLMs one chance to generate a functionally equivalent
circuit that uses different Boolean operators. However, due
to randomness in the LLMs’ responses and differing training
processes (including number of parameters, size and quality
of training data, and training processes such as pre-training,
fine tuning, instruction tuning, reinforcement learning, etc.),

3We create these lists to ensure that operators in each list form a “complete
set”, i.e., it is possible to rewrite the given representative circuit gate using
only the operators in the list.

different LLMs have varying amounts of success in rewriting
circuits. This implies that, with this single-shot formulation, an
LLM’s response could be classified as a failure even though it
might only generate a slightly incorrect circuit.

Solution C : Feedback-guided Interactive Formulation. To
overcome this issue and ensure that LLMs are not penalized
for minor mistakes, we leverage the interactive capabilities
of LLMs by combining them with multi-level fine-grained
feedback. More specifically, we allow the target LLM M
attempts for each different gate type in G, the set of unique
gate types. For each attempt, we first check if the generated
response results in a valid circuit, i.e., the syntax adheres
to the generic format of Boolean functions in which the
input circuit is provided. If the response does not pass this
check, we provide the LLM feedback about its incorrect
format and ask it to try again. On the other hand, if the
response passes this check, we then check if the generated
circuit follows our instructions regarding the allowed set of
Boolean operators (i.e., the allowed operators specified in the
prompt instruction). If the circuit fails this second check, we
provide the LLM feedback about the use of operators that
are not allowed and ask it to try again. However, if the
circuit passes this second check, we move on to the third
check where we evaluate the functional equivalence of the
generated circuit to the original circuit. Again, if the generated
circuit is not functionally-equivalent to the original circuit, we
provide the LLM feedback about the non-equivalence and ask
it to try again. Whereas, if the generated circuit passes this
third check, we save the generated circuit (for later use in
pirating circuits) and move on to the next gate type. Note
that, for each gate type, if any of the three checks fails, we
count it as a failed attempt (and increment the counter for the
number of attempts), so each LLM has M attempts to pass
all three checks combined. As evidenced by our results, such
interactive feedback-guided approach significantly improves
LLMs performance (see Sec. V-H).

The updated mathematical representation for this formula-
tion is as follows: The final response (after potentially up to
M attempts) RM

i for the ith unique gate type is obtained from
the underlying distribution

p(Rj
i |C(R

j−1
i)⊕T (Qj

i), θ), j ∈ {1, 2, . . . ,M}, ∀i ∈ {1, 2, . . . , |G|},
(4)

where Rj
i denotes the LLM’s response in the jth attempt for the

ith unique gate type, and C(·) denotes a function that analyzes
the response for the three checks mentioned above (syntax,
allowed operators, and functionality) and produces a feedback
according to the result of the checks. Additionally, ⊕ denotes
concatenation, which combines the feedback with the original
circuit, creating the query for the next attempt. We use this final
formulation to generate functionally-equivalent but structurally
different circuits for all unique gate types in the target netlist.

Next, we describe our end-to-end flow of pirating Ver-

6

Characterization (Solution 🅑) Prompt

Table 2 &
Solution 🅐

LLMs

Response

Syntax Check

Operator Check

Functionality
Check

Feedback

Valid
Transformation

Transformations &
Mapping Strategies

Solution 🅒

...

... ...

Original
Netlist

Pirated
Netlist

Detection
Tools

Netlists Gate Types

Fig. 2: LLMPirate’s end-to-end automated flow. All steps, including characterization, prompt syntax translation, syntax, operator
and functionality checks, feedback, and the generation of pirated netlists using the LLM-generated transformations are end-to-end
automated, and no manual intervention is needed.

ilog netlists, which includes A prompt Syntax translation
For hardware netlists, B pre-characterization and divide-and-
conquer, and C a feedback-guided interactive approach.

B. Putting It All Together

Figure 2 illustrates the end-to-end flow. Given a netlist
(or a set of netlists) to be pirated, we first perform pre-
characterization (Solution B), which analyzes the netlist(s)
to extract the different gate types. Then, for each different gate
type, we use the list of allowed Boolean operators in Table II
to create prompts following the generic Boolean operator
syntax (Solution A). For instance, for each of the different
AND gate types in the target netlist(s) (e.g., 2-input AND gate,
3-input AND gate, etc.), we create three prompts, one for
each of the allowed Boolean operators: [NAND], [NOR], [OR,
NOT]. This way, we create prompts for all different gate types
for each of the corresponding allowed Boolean operators.
Then, we pick a target LLM and query it for responses to
these prompts, one after another. Additionally, as explained
in Solution C , after each response, we perform a series of
checks (for syntax, use of only allowed Boolean operators,
and functional equivalence). If any of these checks fail, we
provide appropriate feedback to the LLM using a follow-
up prompt. For instance, if the generated circuit fails the
functionality check, we provide the following feedback “This
is not correct because the functionality
is not the same as the original circuit.
Can you try again? Below is the original
circuit:”, followed by the original circuit in the generic
Boolean function format provided in the initial prompt. In
this way, we provide the LLM M attempts to generate a
circuit that passes all three checks. If, during any attempt, the
LLM is successful, we save the generated circuit as a valid
transformation of the original circuit so we can later use it for
pirating netlists. For example Boolean transformations, see
Sec. VII-H of the Appendix. On the other hand, even after
M attempts, if the LLM is unable to generate a a circuit that
passes all three checks, we exit the loop and move on to the
next allowed Boolean operator or to the next gate type. Thus,
at the end, we obtain a dictionary of functionally equivalent
transformations for all (or some, depending on the success
of the LLM) different gate types using all (or some) of the
different allowed Boolean operators for the corresponding
gate type. For further information regarding the contribution
of each solution within the framework, see the ablation study
in Sec. VII-D of the Appendix.

Next, we describe how to pirate a given netlist using this
dictionary of transformations. Recall that, for each different
gate type, we have multiple transformations in the dictionary.

In order to select the exact transformation to apply for a given
gate when pirating a netlist, we devise five mapping strategies:
AND NOT, NAND, NOR, OR NOT, and random. The NAND
mapping strategy only uses the [NAND] transformation, the
AND NOT mapping strategy only uses the [AND, NOT] trans-
formation, and so on.4 Finally, we pirate a given netlist using
each of the five mapping strategies (one by one) by replacing
the gates in the original netlist according to the transformation
determined by the mapping strategy. Additionally, to overcome
randomness, we repeat this process N times and evaluate each
of the N × 5 pirated versions using the piracy detection tools
to obtain the similarity scores.

Note that, to ensure ease-of-use and wide application, the
entire LLMPirate flow described above is automated end-to-
end, from characterizing netlists, to creating prompts, querying
LLMs, performing the three checks, providing feedback to
the LLMs, creating pirated versions of netlists, and finally
evaluating them using the detection tools. Additionally, we
ensure that the pirated netlists are functionally equivalent to the
original netlists through exhaustive simulation-based testing.
We further validate equivalence using Cadence Conformal
Equivalence Checker [12], an industry-standard commercial
formal equivalence checker. We describe this in more detail
in Sec. VII-C of the Appendix. Next, we demonstrate LLM-
Pirate’s efficacy in pirating netlists and evading a variety of
detection tools.

V. RESULTS

We conduct a detailed experimental investigation of the
capabilities of different LLMs to pirate hardware IPs. Next,
we detail our experimental setup.

A. Experimental Setup

We implement LLMPirate using Python. We set M , the
maximum number of attempts available to the LLMs, to
be 5. We set N , the number of pirated netlists created for
each mapping strategy to capture the effect of randomness
(Sec. IV-B), to be 5. We use a dataset of 31 different Verilog
netlists from the GNN4IP repository for our experiments [1].
We choose these netlists because of two reasons: (i) GNN4IP
is trained on them, making this a more difficult setting for our
attack than the typical setting where one pirates netlists that
the detection tool has not seen before, e.g., netlists from the
testing set of GNN4IP. We adhere to this challenging scenario
to highlight LLMPirate’s remarkable proficiency in effectively

4Since it is possible that some transformations might not exist for a given
gate type, in that case, we pick a random transformation available in the
dictionary for that gate type.

7

TABLE III: Details of detection tools used in our evaluation.

Detection Tool GNN4IP [81] MOSS [2] Jplag [41] SIM [35]

Source GNN4IP Repository [1] Internet Submission Method [2] Jplag Repository [41] Source Code [35]

Similarity Scores Range [-1,1] [0,1] [0,1] [0,1]

Detection Threshold 0 0.2 0.3 0.3

Notes
Designed for Verilog,

Most accurate tool
for our case

Supports Verilog,
Stricter threshold as it was primarily

designed for software code

Doesn’t support Verilog,
Relatively strict threshold
as we use it in text mode

Doesn’t support Verilog,
Relatively strict threshold
as we use it in text mode

1

0

1

GN
N4

IP Detection Threshold

0.0

0.5

1.0

M
OS

S

0.0

0.5

1.0

Jp
la

g

c4
32

-RN
64
0

c4
32

-SL
32
0

c4
32

-SL
64
0

c4
32

-CS
12
80

c4
32

-SL
12
80

c4
32

-CS
64
0

c4
32

-RN
12
80

c4
32

-CS
32
0

c4
32

-BE
28
0

c4
32

-RN
32
0

c4
99

-SL
12
80

c4
99

-SL
32
0

c4
99

-RN
64
0

c4
99

-SL
64
0

c4
99

-RN
32
0

c4
99

-RN
12
80

c4
99

-CS
12
80

c4
99

-CS
32
0

c4
99

-CS
64
0

c8
80

-SL
32
0

c8
80

-CS
64
0

c8
80

-RN
64
0

c8
80

-CS
12
80

c8
80

-CS
25
60

c8
80

-RN
25
60

c8
80

-RN
12
80

c8
80

-RN
32
0

c8
80

-SL
12
80

c8
80

-CS
32
0

c8
80

-SL
64
0

c8
80

-SL
25
60
IB
EX

0.0

0.5

1.0

SI
M

Si
m

ila
rit

y
Sc

or
es

Si
m

ila
rit

y
Sc

or
es

Si
m

ila
rit

y
Sc

or
es

Si
m

ila
rit

y
Sc

or
es

Fig. 3: LLMPirate’s best performance against GNN4IP [81], MOSS [2], Jplag [41], and SIM [35].

pirating netlists. (ii) Additionally, we are constrained by these
available netlists in GNN4IP to perform a fair evaluation
of GNN4IP. However, these netlists are small, and small
netlists are difficult to pirate since there is a limited set of
gates to work with and detection tools perform very well
on them. However, to showcase LLMPirate’s scalability and
ramifications, we also test it on large netlists, IBEX [47] and
MOR1KX [5] processors, and a GPS [55] module. We chose
these netlists because of their significant design complexity,
practical relevance, and widespread adoption across various
applications. Our target netlists range from a few hundred gates
to hundreds of thousands of gates. We provide the netlist size
metrics in Table IV in Sec. VII-A of the Appendix.

LLMs. For a thorough analysis, we select eight representative
LLMs for our evaluations:

• CoPilot from Microsoft uses the Prometheus model, and
iteratively generates search queries, to combine Bing search
results with OpenAI’s GPT-4 and GPT-4 Turbo LLMs
to produce responses [54]. We use CoPilot via http://
copilot.microsoft.com.

• GPT-3.5 models from OpenAI that can understand and
generate natural language or code and have been optimized
for chat and instruction based tasks [64]. We use the
gpt-3.5-turbo-16k model in our experiments.

• GPT-4 models improve on GPT-3.5 and can understand
as well as generate natural language or code with greater
accuracy than any of the previous GPT models [65]. Also,
GPT-4 is one of the most advanced general-purpose LLMs
available today. We use the gpt-4-turbo model, the most
advanced GPT-4 model, in our experiments.

• Claude models from Anthropic can perform complex anal-
ysis, tasks with multiple steps, and higher-order math and
coding tasks [4]. Also, they have low hallucination rates [4].
We use the claude-3-opus-20240229 model, the
most advanced Claude model, in our experiments.

• Gemini models from Google are built for reasoning across
text, images, audio, video, and code [33]. Gemini 1.0 was
the first model to outperform human experts on the Massive
Multitask Language Understanding benchmark. [32]. We use
the gemini-1.0-pro model in our experiments.

• Llama2 is a set of open-source LLMs developed by
Meta. At the time of release, Llama 2 outperformed the
other open-source models across all benchmarks [52].
CodeLlama is a code-specialized version of Llama2 that
was created by further training Llama2 on its code-
specific datasets [49]. In our experiments we use two
variants of CodeLlama: CodeLlama-7b-Instruct-hf
and CodeLlama-13b-Instruct-hf (denoted as CL-
7B and CL-13B in our evaluations) from HuggingFace [39].

8

http://copilot.microsoft.com
http://copilot.microsoft.com

1
0
1

Co
Pi

lo
t

Detection Threshold

1
0
1

GP
T3

.5

1
0
1

GP
T4

1
0
1

Cl
au

de

1
0
1

Ge
m

in
i

1
0
1

Lla
m

a3
8B

1
0
1

CL 7B

c4
32

-RN
64
0

c4
32

-SL
32
0

c4
32

-SL
64
0

c4
32

-CS
12
80

c4
32

-SL
12
80

c4
32

-CS
64
0

c4
32

-RN
12
80

c4
32

-CS
32
0

c4
32

-BE
28
0

c4
32

-RN
32
0

c4
99

-SL
12
80

c4
99

-SL
32
0

c4
99

-RN
64
0

c4
99

-SL
64
0

c4
99

-RN
32
0

c4
99

-RN
12
80

c4
99

-CS
12
80

c4
99

-CS
32
0

c4
99

-CS
64
0

c8
80

-SL
32
0

c8
80

-CS
64
0

c8
80

-RN
64
0

c8
80

-CS
12
80

c8
80

-CS
25
60

c8
80

-RN
25
60

c8
80

-RN
12
80

c8
80

-RN
32
0

c8
80

-SL
12
80

c8
80

-CS
32
0

c8
80

-SL
64
0

c8
80

-SL
25
60
IB
EX

1
0
1

CL 13
B

GN
N4

IP
 S

im
ila

rit
y

Sc
or

es

Fig. 4: Distribution of GNN4IP [81] similarity scores for different LLMs in LLMPirate’s framework.

• Llama3 is a recently released and highly capable
openly available set of LLMs [50]. These models
have greatly improved capabilities like reasoning,
code generation, and instruction following. We use
the Meta-Llama-3-8B-Instruct (denoted as
Llama3-8B) model in our experiments.

Our selection of LLMs represents some of the most advanced
LLMs available today from a variety of organizations, as
well as current state-of-the-art and recently released publicly
available LLMs capable of performing code-related tasks.

Detection Tools. To evaluate the success of these LLMs in
pirating Verilog netlists, we use the piracy/similarity measure-
ment tools described in Table III. As explained in Sec. II-C, our
selection consists of highly accurate, widely-used, and popular
techniques ranging over multiple decades. The remainder of
the section is organized as follows: First, we provide the main
piracy results against these detection tools (Sec. V-B). Then,
we provide further results and analysis of the performance of
the LLMs against each detection tool separately (Secs. V-C-
V-F). We also perform more analyses of the different mapping
strategies and the number of attempts available to the LLMs
(Secs. V-G, V-H). Then, we demonstrate the ramifications of
LLMPirate through case studies on practical netlists, IBEX
and MOR1KX processors and a GPS module (Secs. V-I, V-J).
Finally, we summarize the key characteristics of LLMs in an
effort to understand their performances in Sec. V-K.

B. Main Piracy Results

Figure 3 shows the distribution of best (i.e., the lowest)
similarity scores from the four detection tools for the 32
netlists in our dataset.5 It is clear that using LLMPirate, we
are successfully able to pirate all 32 netlists against all four
detection tools with very limited variance in performance. Note
that since MOSS limits use to 100 queries per day per user [2],
we randomly picked one of the N = 5 pirated netlists for each
mapping strategy and queried MOSS for similarity. Hence, the
plots for MOSS are bar plots showing the single similarity
scores instead of box plots for the distribution of similarity
scores. Also note that the Jplag and SIM similarity scores are
higher (compared to MOSS) because Verilog netlists have key-
words (e.g., and, nand, etc.) that are repeated frequently, and
since these detection tools are used in text mode, such repeated
keywords contribute to high similarity scores. Nonetheless,
LLMPirate successfully pirates all netlists. Additionally, due
to our divide-and-conquer approach and saving of generated
transformations, the runtime of LLMPirate for any given LLM
is in the order of a few minutes. Furthermore, the performance
overheads of our pirated netlists are also reasonable (see
Sec. VII-E in the Appendix).

5Note that, to showcase the best results achieved using LLMPirate, the
similarity scores plotted are the best (i.e., the lowest) scores over all mapping
strategies and LLMs. We provide more fine-grained results of the performance
of different LLMs and mapping strategies in the subsequent subsections.

9

0

1

Co
Pi

lo
t

Detection Threshold

0

1

GP
T3

.5

0

1

GP
T4

0

1

Cl
au

de

0

1

Ge
m

in
i

0

1

Lla
m

a3
8B

0

1

CL 7B

c4
32

-RN
64
0

c4
32

-SL
32
0

c4
32

-SL
64
0

c4
32

-CS
12
80

c4
32

-SL
12
80

c4
32

-CS
64
0

c4
32

-RN
12
80

c4
32

-CS
32
0

c4
32

-BE
28
0

c4
32

-RN
32
0

c4
99

-SL
12
80

c4
99

-SL
32
0

c4
99

-RN
64
0

c4
99

-SL
64
0

c4
99

-RN
32
0

c4
99

-RN
12
80

c4
99

-CS
12
80

c4
99

-CS
32
0

c4
99

-CS
64
0

c8
80

-SL
32
0

c8
80

-CS
64
0

c8
80

-RN
64
0

c8
80

-CS
12
80

c8
80

-CS
25
60

c8
80

-RN
25
60

c8
80

-RN
12
80

c8
80

-RN
32
0

c8
80

-SL
12
80

c8
80

-CS
32
0

c8
80

-SL
64
0

c8
80

-SL
25
60
IB
EX

0

1

CL 13
B

M
OS

S
Si

m
ila

rit
y

Sc
or

es

Fig. 5: MOSS [2] similarity scores for different LLMs in LLMPirate’s framework.

C. LLMs Against GNN4IP

To evaluate the LLMs’ ability to pirate Verilog netlists, we
first analyze GNN4IP’s similarity scores between each of the
pirated netlists and the original netlists. Figure 4, summarizes
these values across all 32 netlists for each LLM. Note that
the distribution of similarity scores plotted for each netlist for
each LLM are for the best mapping strategies for that netlist
and LLM.

Here are the key takeaways from the figure: (i) Most
LLMs (CoPilot, GPT-3.5, GPT-4, Claude, and CL-13B, i.e.,
CodeLlama-13B) are successfully able to evade GNN4IP de-
tection for the majority of the netlists. (ii) Some LLMs (Gem-
ini, Llama3-8B, and CL-7B) are unable to pirate the majority
of netlists (the reason behind this in explained in Sec. V-H).
The worst performing LLMs are CL-7B and Llama3-8B, only
evading detection on 10 and 11 of the 32 netlists, respectively.
(iii) CL-13B performed significantly better (23 successes) than
its smaller version, CL-7B (10 successful netlists). (iv) Overall,
GPT-4 and CoPilot (which uses GPT-4 internally) achieve the
best performance, i.e., lowest GNN4IP similarity scores.

D. LLMs Against MOSS

Here, we repeat the evaluation process using MOSS as
the piracy detection tool. As explained in Sec. V-B, due to
restrictions on the number of queries, the plots for MOSS
in Figure 5 are bar plots showing the single similarity score
instead of box plots showing the distribution of similarity

scores. Note that these single similarity scores still provide
enough information to analyze the performance of LLMs
against MOSS. Also, as in Sec. V-C, the similarity score
plotted for each netlist for each LLM is for the best mapping
strategy for that netlist and LLM.

Here are the key takeaways: (i) All LLMs except CL-7B
evade MOSS for all netlists. (ii) As with GNN4IP, CL-13B
performs better than the smaller CL-7B. (iii) Notably, Llama3-
8B is at par with larger models (e.g., GPT-3.5 and GPT-4).

E. LLMs Against JPlag

Here, we use the same evaluation procedure using Jplag
as the piracy detection tool. To adhere to the page limit,
we only provide key takeaways here and refer the reader to
the Appendix of the extended version of this work in [29]
for comprehensive results and analyses. These key takeaways
are as follows: (i) Most closed-source LLMs (CoPilot, GPT-
3.5, GPT-4, Claude) successfully evade detection across all 32
netlists. (ii) As seen before, CL-13B performs better than the
smaller CL-7B. (iii) As with MOSS, the open-source Llama3-
8B performs almost as well as the larger models, successfully
bypassing JPlag for all but one netlists.

F. LLMs Against SIM

The evaluation is again repeated using SIM as the piracy
detector. Similar to Sec. V-E, key takeaways are described
as follows, with additional results included in the extended

10

AND_NOT NAND NOR OR_NOT random
0

200

400

Su

cc
es

sf
ul

 E
va

sio
ns

Ag
ai

ns
t G

NN
4I

P

0.0

0.2

0.4

Av
er

ag
e

GN
N4

IP
Si

m
ila

rit
y

Sc
or

es
 o

f
Su

cc
es

sf
ul

 E
va

sio
ns

 (×
-1

)

Evasions
Sim. Scores

Fig. 6: Performance of mapping strategies against GNN4IP.

work’s [29] Appendix: (i) Due to the lack of compatibility
with Verilog and the text mode of operation of SIM, it results
in unusually high similarity scores because Verilog keywords
(e.g., nand, and, etc.) are repeated frequently in the netlists.
(ii) Nonetheless, GPT-3.5 and GPT-4 still evade SIM for 25
netlists. (iii) Llama3-8B, with 11 successes, performs the best
among open-source models.

Finding 1. Overall, GPT-4 and CoPilot achieve the best
performance in successfully pirating netlists against all
four detection tools.

Finding 2. Overall, CodeLlama-13B performs signifi-
cantly better than the smaller CodeLlama-7B. More often
than not, Llama3-8B performs better (for our task) than
the CodeLlama models (which are based on Llama2).

G. Analysis of Mapping Strategies

So far, we analyzed the main piracy results against four
detection tools, and the performance of different LLMs against
different tools. Now, we take a closer look at the performance
of the five mapping strategies, AND NOT, NAND, NOR,
OR NOT, and random. More specifically, to understand the
relative performance of these mapping strategies, we analyze
them in terms of the number of successful instances of evasions
(over all netlists and all LLMs) and the average similarity
scores of those instances against GNN4IP (Figure 6). It is
evident that the random strategy yields the largest number of
successful evasions. This makes intuitive sense because, with
the random strategy, a given gate can be replaced with any
of its transformations, leading to different structures in the
pirated netlist, whereas, with other strategies, the pirated netlist
is likely to have similar structures due to the possibility of
more deterministic replacements. This is also reflected in the
low (note that the second y-axis is inverted, i.e., multiplied by
-1) average GNN4IP similarity scores compared to most other
strategies. We observe similar results against MOSS, Jplag,
and SIM (see Sec. VII-B in the Appendix).

Finding 3. All five mapping strategies result in success-
ful pirated netlists against all detection tools, with the
random mapping strategy showing the best performance
in terms of the similarity scores.

H. LLMs’ Performance Comparison

Next, we compare the performance of the LLMs in gen-
erating successful transformations according to the allowed
Boolean operators in Table II (e.g., AND gate using NOR
operators, etc.). Recall that we allow each LLM a maximum of

1 2 3 4 5
Attempts

0

10

20

30

Su

cc
es

sf
ul

Tr
an

sf
or

m
at

io
ns

CoPilot
GPT3.5

GPT4
Claude

Gemini
Llama3-8B

CL7B
CL13B

Fig. 7: Comparison of number of attempts for successful
transformations using different LLMs.

CoPilot GPT3.5 GPT4 Claude GeminiLlama3
8B

CL7B CL13B
0

3

6

9

Ab
s.

Im
pr

ov
em

en
t

0

200

400

600

%
 Im

pr
ov

em
en

tAbs.
%

Fig. 8: Absolute and percentage improvements (attempt 5 vs.
attempt 1) in successful transformations.

M = 5 attempts for each different gate type. Additionally, if
an attempt fails, we also provide fine-grained feedback about
syntax, use of correct Boolean operators, or functionality in
allow the LLM to fix its mistakes. To that end, Figure 7 shows
the total number of successful transformations generate by
different LLMs as a function of the number of attempts. It
is evident that, after 5 attempts, there are two classes of LLM
in terms of number of successful transformations. The first
class consists of GPT-4, CoPilot, Claude, and GPT-3.5, with
33, 28, 23, and 21 successful transformations, respectively. The
second class consists of CL-13B, Gemini, Llama3-8B, and CL-
7B, with significantly fewer successful transformations. This
explains why the LLMs from the second class are sometimes
unable to evade some detection tools. A surprising observation
is that Gemini (one of the closed-source LLM that performs
similar to the GPT models on other common tasks) struggles
with our task of rewriting circuits. The exact reason behind this
is difficult to know, however, a possible reason could be a lack
of enough Verilog/circuit training data. Another observation
from the figure is that all LLMs improve with more attempts
and feedback. This validates our Solution C of devising a
feedback-guided interactive formulation for our task.

We also analyze the impact of multiple attempts through
the absolute and percentage improvements (attempt 5 vs.
attempt 1) in the number of successful transformations in
Figure 8. Overall, all LLMs benefit from the multiple attempts,
with larger and more capable LLMs (CoPilot, GPT-3.5, GPT-4,
and Claude) showing the most absolute improvement, i.e., most
improvement in number of successful mappings at attempt
5 compared to attempt 1. However, smaller LLMs (such as
Llama3-8B, CL-7B, and CL-13B), especially Llama3-8B, re-
ally leverage the multiple attempts with feedback and improve
drastically (e.g., 700% improvement in Llama3-8B) over their
poor performance in the first attempt.

11

CoPilot GPT3.5 GPT4 Claude Gemini Llama3
8B

CL7B CL13B
1

0

1
GN

N4
IP

Si
m

ila
rit

y
Sc

or
es Detection Threshold

Fig. 9: Comparison of GNN4IP similarity scores for IBEX
processor pirated using different LLMs.

Finding 4. We find two classes of LLMs in terms of the
number of successful transformations they generate, ex-
plaining why LLMs from the second class are sometimes
unable to evade detection.

Finding 5. Our interactive formulation with multiple
attempts and fine-grained feedback improves the per-
formance of all LLMs, especially smaller, less capable
LLMs, such as Llama3-8B.

I. Case Study on the IBEX Processor: Ramifications of
LLMPirate

In this subsection, we demonstrate and discuss the per-
formance of LLMPirate on a real-world netlist, the IBEX
processor [47] in more detail. Specifically, we run our end-to-
end automated flow of LLMPirate to pirate the processor using
our mapping strategies and the corresponding transformations
obtained from the eight LLMs. Then, we query GNN4IP
to get the similarity scores between our pirated netlists and
the original netlist. Note that, similar to related works, we
assume full-scan access to ensure compatibility of the netlists
with GNN4IP [30]. Figure 9 compares the distribution of the
GNN4IP similarity scores for the eight LLMs. Note that, as
earlier, the distributions are for the best-performing strategy.
We observe that seven out of the eight LLMs (all except
CL-7B) successfully evade GNN4IP. Thus, LLMPirate easily
fools GNN4IP into classifying pirated versions of IBEX as not
pirated. Moreover, the distribution of the GNN4IP similarity
scores is extremely low for CoPilot and Claude, meaning that
not only is GNN4IP evaded, the magnitude of the incorrect
detection is extremely high. This case study demonstrates the
capabilities of LLMPirate, which can lead to piracy of practical
netlists, and failure of the state-of-the-art piracy detection tool
in catching it.

J. Case Study on Larger Netlists: Scalability of LLMPirate

Recall that LLMPirate first generates and caches (i.e.,
saves) valid gate transformations. Then, for any given target
netlist, it creates a pirated netlist gate-by-gate. So, working
with a larger netlist will only increase the runtime linearly with
the number of gates, and thus will be easily manageable. We
validate this scalability of LLMPirate by further experimenting
with even larger netlists, containing hundreds of thousands of
gates. More specifically, we target two open-source netlists: a
GPS module from Common Evaluation Platform [55], contain-
ing ≈ 193K gates, and an MOR1KX processor [5], containing
≈ 158K gates. We observed that LLMPirate generates pirated
netlists within seconds. Additionally, these netlists successfully

evade MOSS [2], Jplag [41], and SIM [35], but surprisingly,
GNN4IP [81] always classifies these LLMPirate-generated
netlists as pirated. This unusual result might lead one to
believe that GNN4IP thwarts LLMPirate for larger netlists.
However, a closer evaluation reveals a surprising observation.
To validate the efficacy of GNN4IP for these large netlists, we
query GNN4IP to predict the similarity between the original
GPS and MOR1KX netlists, and observe that GNN4IP yields
an extremely high similarity score of 0.97. This means that
GNN4IP has a high bias towards classifying large netlists
as pirated, which explains why LLMPirate-generated netlists
are unable to evade GNN4IP. This bias of GNN4IP makes it
unsuitable for evaluating such netlists.

Finding 6. GNN4IP, the current state-of-the-art hardware
IP piracy detector, struggles against LLMPirate for large
netlists.

K. LLMs’ Characteristics

In the previous sections, we evaluated the performance of
LLMPirate in evading detection tools. Here, we delve deeper
and provide some insights about the characteristics of LLMs
that make some LLMs perform better than others in the context
of hardware IP piracy.

• Model Size Matters: Large LLMs, with potentially trillions
of parameters, perform best.

• Training Data Size Matters: Latest version of Llama
(Llama3-8B) outperforms the older Llama2 models, again,
potentially due to its > 7× training data size [51], [52].

• Open vs. Closed Source LLMs: Closed source LLMs still
have a fairly decent margin compared to open source LLMs
for our task.

• Potential of Smaller LLMs: With proper feedback and
multiple attempts, smaller LLMs correct their mistakes.

Summary of Results. LLMPirate successfully pirates
all given netlists (including the IBEX and MOR1KX
processors and the GPS module) and evades all detection
tools with only minutes of runtime cost.

VI. RELATED WORK AND DISCUSSION

Here, we first discuss the need for LLMPirate over simply
using Verilog-fine-tuned LLMs. Then we discuss related works
on hardware and software intellectual property (IP) piracy
and how our work is different from them. We also discuss
applicability to other detection tools and potential countermea-
sures against LLMPirate. We also discuss the impact of netlist
obfuscation in Sec. VII-G of the Appendix.

A. Evaluating Verilog-fine-tuned LLMs

As observed in Challenge 1 in Sec. IV-A, various general-
purpose open-source and closed-source LLMs struggle in
understanding and rewriting simple netlist written in Verilog
hardware description language. So, a natural question could
be about the possibility of using LLMs fine-tuned on Verilog
data instead of using the solutions we described. To address
this, first, note that fine-tuning LLMs is computationally much
more expensive than our current approach. Nonetheless, we
tested VeriGen (an LLM fine-tuned on a large corpus of

12

Verilog dataset) [77] by asking it to rewrite the simple gate-
level netlist shown in Listing 1. To account for the LLMs’
non-deterministic responses, we repeated the experiment 10
times, but VeriGen was unsuccessful in either generating a
syntactically correct code, i.e., a valid gate-level netlist, or a
functionally-equivalent netlist even once out of the 10 times.
This demonstrates that even fine-tuned LLMs struggle in the
context of our task of rewriting gate-level netlists and empha-
size the need for LLMPirate to successfully pirate netlists.

B. Evading Hardware IP Piracy Detection

Various works have demonstrated strategies to evade hard-
ware IP detection tools, primarily targeting GNN4IP [30], [3].
PoisonedGNN, exploits the susceptibility of graph neural
networks (GNNs) to data poisoning attacks by injecting back-
door triggers at the register and gate-level of circuit designs
within GNN4IP’s training dataset [3]. The resulting accuracy
of the target GNN model is then reduced, enabling pirated
circuits to successfully evade GNN4IP detection. However,
unlike PoisonedGNN, our work (i) does not require access
to the GNN’s training procedure, (ii) evades detection without
changing the GNN’s parameters or training dataset, (iii) as-
sumes only black-box access to the target GNN, and (iv) does
not design backdoors specific to target detection tools, but
evades multiple types of detection tools, including GNN4IP.

AttackGNN, another recent technique, is perhaps the closest
to our work in terms of evading GNN4IP [30]. By training
a reinforcement learning agent, AttackGNN learns to perturb
netlists that evade GNN4IP detection. However, there are
critical differences in terms of methods, results, and impact.
Unlike AttackGNN, LLMPirate (i) lowers the technical exper-
tise barrier: our work does not need detailed understanding
of reinforcement learning methods; rather, it simply requires
prompting off-the-shelf LLMs, (ii) does not require time-
consuming training procedure, and generates pirated netlists
directly using LLMs assisted with a quick feedback-guided for-
mulation, and (iii) is not tailored to only generating adversarial
examples that evade machine-learning-based detectors such as
GNN4IP; rather, LLMPirate evades a variety of detection tools.

C. Evading Software IP Piracy Detection

Previous works have investigated strategies in which soft-
ware IP piracy detection tools can be successfully evaded.
In particular, MOSSAD [23] details an automated program
transformation algorithm that is able to successfully evade
MOSS and JPlag. Through combining genetic programming
techniques and domain-specific knowledge, MOSSAD is able
to effectively generate multiple semantically equivalent vari-
ants of a given program which are evaluated as no more
suspicious than a non-plagiarized counterpart [23]. However, a
key component in MOSSAD is adding code lines that do not
affect the final output. Using such an approach for hardware
IPs is not feasible since unused gates are trivially optimized
out in Verilog netlists. In fact, MOSSAD highlights this as a
weakness in its approach since when working with compiled
and optimized assembly code, MOSSAD fails.

LLMs have also been evaluated in their ability to generate
software that bypasses plagiarism detection tools. Researchers
determined that when utilized by students on programming

assignments, GPT-J (a 6-billion parameter LLM) is able to
generate functional code that evades MOSS detection [7].
However, such techniques focus on simply generating new
software programs (not pirating existing programs) using an
LLM, which is clearly not feasible for hardware codes because
of LLMs’ terrible performance in understanding and generat-
ing netlists (as evidenced in Sec. IV).

D. Other Detection Tools and Potential Countermeasures

Other Detection Tools. Since a detection tool (other than the
ones we evaluated) can be built on different principles, it is
difficult to guarantee LLMPirate’s success against new tools.
However, since LLMPirate evades detection tools based on
a wide variety of principles (e.g., GNN, winnowing, greedy
string tiling, etc.), we are hopeful that similar results would
hold for new detection tools too. Moreover, although the actual
evasion performance could vary, the techniques we developed,
i.e., prompt syntax translation, pre-characterization and divide-
and-conquer, and different kinds of feedback, would still likely
be helpful in improving piracy performance.

Potential Countermeasures. There can be a few different
potential countermeasures against our work. (i) Re-training
models like GNN4IP with our pirated netlists included in
the training set to increase the robustness of detection. How-
ever, research has shown limitations of such approaches for
GNNs [34]. (ii) Another potential countermeasure could be
watermarking to identify LLM-generated text [42], however,
since we don’t directly use LLMs to generate pirated netlists,
but process the output from LLMs to aid the piracy process,
the applicability of watermarking as a countermeasure against
our attack is unclear and needs further investigation.

VII. CONCLUSION

Large language models have become increasingly capable
of understanding and generating code, leading to their adoption
into the hardware design industry. However, we observe that
these models also can be maliciously employed to attack
vulnerabilities within this design process, particularly resulting
in additional security concerns regarding hardware IP piracy.

To demonstrate this, we devised LLMPirate, a first-of-its-
kind end-to-end automated, efficient, and practical framework
that leverages the logical capabilities of LLMs to successfully
pirate circuit designs in the form of Verilog netlists. Since
LLMs are trained on very limited Verilog data, their off-the-
shelf performance in pirating netlists is poor, so we formulate
various solutions to achieve successful piracy. In particular,
we perform syntax translation from netlists to generic Boolean
function format, allowing the LLMs to better understand the
circuit design. We use pre-characterization and divide-and-
conquer techniques to overcome context window limitations
and ensure scalability to large netlists. We also incorporate a
fine-grained feedback-guided iterative flow to mitigate error-
prone responses, ensuring reliability.

Our experimental results confirm that LLMPirate is able
to evade detection against four state-of-the-art piracy detec-
tion tools across every tested netlist. We test on the netlists
from the GNN4IP repository as those netlists are seen by
GNN4IP during training and are relatively small in size, both
factors making them difficult to pirate successfully. Despite

13

this, overall, GPT-3.5 and GPT-4 demonstrate the best abil-
ity to pirate the netlists. We also observe that the smaller
LLMs (Llama3-8B, CodeLlama-7B, CodeLlama-13B) derive
the most relative improvement from our feedback-guided flow.
Finally, we highlight the ramifications of our work through
case studies on IBEX and MOR1KX processors and a GPS
module, demonstrating both, the capabilities of LLMPirate and
the limitations of current piracy detectors.

ACKNOWLEDGMENT

The authors acknowledge the support from the Purdue Cen-
ter for Secure Microelectronics Ecosystem – CSME#210205.
This work was also partially supported by the National Science
Foundation (NSF CNS–1822848 and NSF DGE–2039610).

REFERENCES

[1] AICPS, “HW2VEC: A Graph Learning Tool for Automating Hard-
ware Security,” https://github.com/AICPS/hw2vec, 2021, [Online; last
accessed 9-Jul-2024].

[2] A. Aiken, “A System for Detecting Software Similarity,” https://
theory.stanford.edu/∼aiken/moss/, [Online; last accessed 9-Jul-2024].

[3] L. Alrahis, S. Patnaik, M. A. Hanif, M. Shafique, and O. Sinanoglu,
“Poisonedgnn: Backdoor attack on graph neural networks-based hard-
ware security systems,” IEEE Transactions on Computers, 2023.

[4] Anthropic, “Meet Claude,” https://www.anthropic.com/claude, 2024,
[Online; last accessed 9-Jul-2024].

[5] Baxter, Julius and Kristiansson, Stefan, “mor1kx - an OpenRISC
processor IP core,” https://github.com/openrisc/mor1kx, 2022, [Online;
last accessed 27-Oct-2024].

[6] M. Beckerich, L. Plein, and S. Coronado, “Ratgpt: Turning online llms
into proxies for malware attacks,” arXiv preprint arXiv:2308.09183,
2023.

[7] S. Biderman and E. Raff, “Fooling moss detection with pretrained
language models,” in Proceedings of the 31st ACM international
conference on information & knowledge management, 2022, pp. 2933–
2943.

[8] M. Botacin, “Gpthreats-3: Is automatic malware generation a threat?” in
2023 IEEE Security and Privacy Workshops (SPW), 2023, pp. 238–254.

[9] K. W. Bowyer and L. O. Hall, “Experience using ”MOSS” to detect
cheating on programming assignments,” in FIE’99 Frontiers in Edu-
cation. 29th Annual Frontiers in Education Conference. Designing the
Future of Science and Engineering Education. Conference Proceedings
(IEEE Cat. No. 99CH37011, vol. 3. IEEE, 1999, pp. 13B3–18.

[10] S. Brown, “Cadence creates industry’s first LLM Technology for Chip
Design,” https://community.cadence.com/cadence blogs 8/b/corporate/
posts/cadence-creates-industry-s-first-llm-technology-for-chip-design,
2023, [Online; last accessed 9-Jul-2024].

[11] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-
mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with gpt-4,” arXiv preprint
arXiv:2303.12712, 2023.

[12] Cadence, “Cadence - Logic Equivalence Checking,” https:
//www.cadence.com/en US/home/tools/digital-design-and-signoff/
logic-equivalence-checking.html, [Online; last accessed 27-Oct-2024].

[13] ——, “Cadence.AI Generative AI Platform,” https://www.cadence.com/
en US/home/solutions/cadence-ai-platform.html, 2024, [Online; last
accessed 9-Jul-2024].

[14] A. Cambon, B. Hecht, B. Edelman, D. Ngwe, S. Jaffe,
A. Heger, M. Vorvoreanu, S. Peng, J. Hofman, A. Farach,
M. Bermejo-Cano, E. Knudsen, J. Bono, H. Sanghavi, S. Spatharioti,
D. Rothschild, D. G. Goldstein, E. Kalliamvakou, P. Cihon,
M. Demirer, M. Schwarz, and J. Teevan, “Early llm-based tools
for enterprise information workers likely provide meaningful boosts
to productivity,” Microsoft, Tech. Rep. MSR-TR-2023-43, December
2023. [Online]. Available: https://www.microsoft.com/en-us/research/
publication/early-llm-based-tools-for-enterprise-information-workers-
likely-provide-meaningful-boosts-to-productivity/

[15] F. Cassano, J. Gouwar, D. Nguyen, S. Nguyen, L. Phipps-Costin,
D. Pinckney, M.-H. Yee, Y. Zi, C. J. Anderson, M. Q. Feldman et al.,
“Multipl-e: a scalable and polyglot approach to benchmarking neural
code generation,” IEEE Transactions on Software Engineering, vol. 49,
no. 7, pp. 3675–3691, 2023.

[16] R. S. Chakraborty and S. Bhunia, “Rtl hardware ip protection using key-
based control and data flow obfuscation,” in 2010 23rd International
Conference on VLSI Design, 2010, pp. 405–410.

[17] codequiry, “How to detect plagiarism in source code,” https:
//codequiry.com/resources/how-to-detect-code-plagiairsm, 2021, [On-
line; last accessed 9-Jul-2024].

[18] ——, “Related technologies,” https://www.monash.edu/learning-
teaching/teachhq/Assessment/academic-integrity/related-technologies,
2024, [Online; last accessed 9-Jul-2024].

[19] M. Cohen, “The 600 Billion Dollar China IP echo cham-
ber,” https://chinaipr.com/2019/05/12/the-600-billion-dollar-china-ip-
echo-chamber/, 2019, [Online; last accessed 9-Jul-2024].

[20] CorporateTeam, “Rapid silicon announces RapidGPT’s official
availability,” https://rapidsilicon.com/rapid-silicon-announces-
rapidgpts-official-availability/, 2023, [Online; last accessed 9-Jul-
2024].

[21] M. DeLorenzo, A. B. Chowdhury, V. Gohil, S. Thakur, R. Karri,
S. Garg, and J. Rajendran, “Make every move count: Llm-
based high-quality rtl code generation using mcts,” arXiv preprint
arXiv:2402.03289, 2024.

[22] M. DeLorenzo, V. Gohil, and J. Rajendran, “CreativEval: Evaluating
Creativity of LLM-Based Hardware Code Generation,” arXiv preprint
arXiv:2404.08806, 2024.

[23] B. Devore-McDonald and E. D. Berger, “Mossad: defeating software
plagiarism detection,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA,
nov 2020. [Online]. Available: https://doi.org/10.1145/3428206

[24] DfX-NYUAD, “Breaking CAS-Lock,” https://github.com/DfX-
NYUAD/Breaking CAS-Lock/tree/main, 2021, [Online; last accessed
15-Nov-2024].

[25] S. Engels, M. Hoffmann, and C. Paar, “The end of logic locking?
a critical view on the security of logic locking,” Cryptology ePrint
Archive, 2019.

[26] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, S. Yoo,
and J. M. Zhang, “Large language models for software engineering:
Survey and open problems,” arXiv preprint arXiv:2310.03533, 2023.

[27] W. Fu, S. Li, Y. Zhao, H. Ma, R. Dutta, X. Zhang, K. Yang, Y. Jin, and
X. Guo, “Hardware Phi-1.5 B: A Large Language Model Encodes Hard-
ware Domain Specific Knowledge,” arXiv preprint arXiv:2402.01728,
2024.

[28] GitHub, “GitHub CoPilot,” https://github.com/features/copilot, 2024,
[Online; last accessed 9-Jul-2024].

[29] V. Gohil, M. DeLorenzo, V. V. A. S. V. Nallam, J. See, and J. Rajendran,
“LLMPirate: LLMs for Black-box Hardware IP Piracy,” arXiv preprint
arXiv:2411.16111, 2024.

[30] V. Gohil, S. Patnaik, D. Kalathil, and J. Rajendran, “AttackGNN: Red-
Teaming GNNs in Hardware Security Using Reinforcement Learning,”
arXiv preprint arXiv:2402.13946, 2024.

[31] Google, “Supercharge your creativity and productivity,” https://
gemini.google.com/, 2024, [Online; last accessed 9-Jul-2024].

[32] Google DeepMind, “Meet the first version of Gemini — our most capa-
ble AI model.” https://deepmind.google/technologies/gemini/#gemini-
1.0, 2024, [Online; last accessed 9-Jul-2024].

[33] ——, “Welcome to the Gemini era,” https://deepmind.google/
technologies/gemini/#introduction, 2024, [Online; last accessed 9-Jul-
2024].

[34] L. Gosch, S. Geisler, D. Sturm, B. Charpentier, D. Zügner, and
S. Günnemann, “Adversarial Training for Graph Neural Networks,”
arXiv preprint arXiv:2306.15427, 2023.

[35] D. Grune, “The software and text similarity tester SIM,” https://
dickgrune.com/Programs/similarity tester/, [Online; last accessed 9-Jul-
2024].

[36] ——, “SIM Manual,” https://dickgrune.com/Programs/similarity tester/
sim.pdf, 2017, [Online; last accessed 9-Jul-2024].

14

https://github.com/AICPS/hw2vec
https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/
https://www.anthropic.com/claude
https://github.com/openrisc/mor1kx
https://community.cadence.com/cadence_blogs_8/b/corporate/posts/cadence-creates-industry-s-first-llm-technology-for-chip-design
https://community.cadence.com/cadence_blogs_8/b/corporate/posts/cadence-creates-industry-s-first-llm-technology-for-chip-design
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/logic-equivalence-checking.html
https://www.cadence.com/en_US/home/solutions/cadence-ai-platform.html
https://www.cadence.com/en_US/home/solutions/cadence-ai-platform.html
https://www.microsoft.com/en-us/research/publication/early-llm-based-tools-for-enterprise-information-workers-likely-provide-meaningful-boosts-to-productivity/
https://www.microsoft.com/en-us/research/publication/early-llm-based-tools-for-enterprise-information-workers-likely-provide-meaningful-boosts-to-productivity/
https://www.microsoft.com/en-us/research/publication/early-llm-based-tools-for-enterprise-information-workers-likely-provide-meaningful-boosts-to-productivity/
https://codequiry.com/resources/how-to-detect-code-plagiairsm
https://codequiry.com/resources/how-to-detect-code-plagiairsm
https://www.monash.edu/learning-teaching/teachhq/Assessment/academic-integrity/related-technologies
https://www.monash.edu/learning-teaching/teachhq/Assessment/academic-integrity/related-technologies
https://chinaipr.com/2019/05/12/the-600-billion-dollar-china-ip-echo-chamber/
https://chinaipr.com/2019/05/12/the-600-billion-dollar-china-ip-echo-chamber/
https://rapidsilicon.com/rapid-silicon-announces-rapidgpts-official-availability/
https://rapidsilicon.com/rapid-silicon-announces-rapidgpts-official-availability/
https://doi.org/10.1145/3428206
https://github.com/DfX-NYUAD/Breaking_CAS-Lock/tree/main
https://github.com/DfX-NYUAD/Breaking_CAS-Lock/tree/main
https://github.com/features/copilot
https://gemini.google.com/
https://gemini.google.com/
https://deepmind.google/technologies/gemini/##gemini-1.0
https://deepmind.google/technologies/gemini/##gemini-1.0
https://deepmind.google/technologies/gemini/##introduction
https://deepmind.google/technologies/gemini/##introduction
https://dickgrune.com/Programs/similarity_tester/
https://dickgrune.com/Programs/similarity_tester/
https://dickgrune.com/Programs/similarity_tester/sim.pdf
https://dickgrune.com/Programs/similarity_tester/sim.pdf

[37] V. Hassija, V. Chamola, V. Gupta, S. Jain, and N. Guizani, “A survey on
supply chain security: Application areas, security threats, and solution
architectures,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 6222–
6246, 2020.

[38] K. Hu, “CHATGPT sets record for fastest-growing user base - analyst
note,” https://www.reuters.com/technology/chatgpt-sets-record-fastest-
growing-user-base-analyst-note-2023-02-01/, 2022, [Online; last ac-
cessed 9-Jul-2024].

[39] Hugging Face, “Code Llama,” https://huggingface.co/codellama, 2024,
[Online; last accessed 9-Jul-2024].

[40] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A survey on large lan-
guage models for code generation,” arXiv preprint arXiv:2406.00515,
2024.

[41] Jplag, “JPlag - Detecting Software Plagiarism,” https://github.com/
jplag/JPlag, [Online; last accessed 9-Jul-2024].

[42] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein,
“A watermark for large language models,” in International Conference
on Machine Learning. PMLR, 2023, pp. 17 061–17 084.

[43] J. Knechtel, S. Patnaik, and O. Sinanoglu, “Protect your chip design
intellectual property: An overview,” in Proceedings of the International
Conference on Omni-Layer Intelligent Systems, ser. COINS ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p.
211–216. [Online]. Available: https://doi.org/10.1145/3312614.3312657

[44] T. Kocmi and C. Federmann, “Large language models are state-of-the-
art evaluators of translation quality,” arXiv preprint arXiv:2302.14520,
2023.

[45] J. O. Krugmann and J. Hartmann, “Sentiment analysis in the age of
generative ai,” Customer Needs and Solutions, vol. 11, no. 1, p. 3,
2024.

[46] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben,
H. Anand, S. Banerjee, I. Bayraktaroglu et al., “Chipnemo: Domain-
adapted llms for chip design,” arXiv preprint arXiv:2311.00176, 2023.

[47] lowRISC, “Ibex RISC-V Core,” https://github.com/lowRISC/ibex, 2024,
[Online; last accessed 9-Jul-2024].

[48] B. Meskó and E. J. Topol, “The imperative for regulatory oversight
of large language models (or generative ai) in healthcare,” NPJ digital
medicine, vol. 6, no. 1, p. 120, 2023.

[49] Meta, “Introducing Code Llama, a state-of-the-art large lan-
guage model for coding,” https://ai.meta.com/blog/code-llama-large-
language-model-coding/, 2023, [Online; last accessed 9-Jul-2024].

[50] ——, “Build the future of AI with Meta Llama 3,” https://
llama.meta.com/llama3/, 2024, [Online; last accessed 9-Jul-2024].

[51] Meta, “Introducing Meta Llama 3: The most capable openly available
LLM to date,” https://ai.meta.com/blog/meta-llama-3/, 2024, [Online;
last accessed 27-Oct-2024].

[52] ——, “Llama 2,” https://llama.meta.com/llama2/, 2024, [Online; last
accessed 9-Jul-2024].

[53] Microsoft, “Addressing Global Software Piracy ,” https:
//news.microsoft.com/download/archived/presskits/antipiracy/docs/
addressingpiracy.pdf, [Online; last accessed 9-Jul-2024].

[54] Microsoft, “How Copilot works, technically speaking,”
https://www.microsoft.com/en-us/bing/do-more-with-ai/how-bing-
chat-works?form=MA13KP, 2023, [Online; last accessed 9-Jul-2024].

[55] MIT Lincoln Laboratory, “GPS code generator,” https:
//github.com/CommonEvaluationPlatform/CEP/tree/master/generators/
mitll-blocks/src/main/resources/vsrc/gps, 2024, [Online; last accessed
27-Oct-2024].

[56] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Akhtar, N. Barnes, and A. Mian, “A comprehensive overview of
large language models,” arXiv preprint arXiv:2307.06435, 2023.

[57] P. G. A. S. of Computer Science & Engineering University of Washing-
ton, “Gradescope Info & Resources,” https://www.cs.washington.edu/
lab/course-resources/gradescope, 2021, [Online; last accessed 9-Jul-
2024].

[58] D. of Justice, “Attorney General Jeff Sessions Announces
New Initiative to Combat Chinese Economic Espionage,”
https://www.justice.gov/opa/speech/attorney-general-jeff-sessions-
announces-new-initiative-combat-chinese-economic-espionage, 2018,
[Online; last accessed 9-Jul-2024].

[59] E. O. o. t. P. OFFICE of the UNITED STATES TRADE REPRE-
SENTATIVE, “Findings of the investigation into china’s acts, policies,
and practices related to technology transfer, intellectual property, and
innovation under section 301 of the trade act of 1974,” https://ustr.gov/
sites/default/files/Section%20301%20FINAL.PDF, 2018, [Online; last
accessed 9-Jul-2024].

[60] OpenAI, https://openai.com/blog/chatgpt, 2022, [Online; last accessed
9-Jul-2024].

[61] ——, “GPT-4 is OpenAI’s most advanced system, producing safer and
more useful responses,” https://openai.com/gpt-4, 2023, [Online; last
accessed 9-Jul-2024].

[62] ——, “ChatGPT,” https://chat.openai.com/, 2024, [Online; last accessed
9-Jul-2024].

[63] ——, “Models,” https://platform.openai.com/docs/models/gpt-3-5-
turbo, 2024, [Online; last accessed 9-Jul-2024].

[64] OpenAI, “Models - GPT-3.5 Turbo,” https://platform.openai.com/docs/
models/gpt-3-5-turbo, 2024, [Online; last accessed 9-Jul-2024].

[65] OpenAI, “Models - GPT-4 Turbo and GPT-4,” https:
//platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4, 2024,
[Online; last accessed 9-Jul-2024].

[66] ——, “What are tokens and how to count them?”
https://help.openai.com/en/articles/4936856-what-are-tokens-and-
how-to-count-them, 2024, [Online; last accessed 9-Jul-2024].

[67] K. Pandya and M. Holia, “Automating customer service using
langchain: Building custom open-source gpt chatbot for organizations,”
arXiv preprint arXiv:2310.05421, 2023.

[68] S. Pichai, “An important next step on our AI journey,”
https://blog.google/intl/en-africa/products/explore-get-answers/an-
important-next-step-on-our-ai-journey/, 2023, [Online; last accessed
9-Jul-2024].

[69] G. Rangarajan, “Introducing generative AI for Chip Design:
Synopsys blog,” https://www.synopsys.com/blogs/chip-design/copilot-
generative-ai-chip-design.html, 2023, [Online; last accessed 9-Jul-
2024].

[70] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy
of integrated circuits,” in Proceedings of the conference on Design,
automation and test in Europe, 2008, pp. 1069–1074.

[71] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, R. Sauvestre, T. Remez et al., “Code llama: Open foundation
models for code,” arXiv preprint arXiv:2308.12950, 2023.

[72] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, 2003,
pp. 76–85.

[73] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly stripping functionality for logic locking: A fault-based per-
spective,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 12, pp. 4439–4452, 2020.

[74] D. Sheahen and D. Joyner, “TAPS: A MOSS extension for detecting
software plagiarism at scale,” in Proceedings of the Third (2016) ACM
Conference on Learning@ Scale, 2016, pp. 285–288.

[75] A. Siedsma, “Will AI Replace Programmers? Navigating the Future of
Coding,” https://extendedstudies.ucsd.edu/news-and-events/division-
of-extended-studies-blog/will-ai-replace-programmers-the-future-of-
coding, 2024, [Online; last accessed 9-Jul-2024].

[76] Simon, O. Karnalim, J. Sheard, I. Dema, A. Karkare, J. Leinonen,
M. Liut, and R. McCauley, “Choosing code segments to exclude from
code similarity detection,” in Proceedings of the Working Group Reports
on Innovation and Technology in Computer Science Education, 2020,
pp. 1–19.

[77] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and
S. Garg, “Verigen: A large language model for verilog code generation,”
ACM Transactions on Design Automation of Electronic Systems, 2023.

[78] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[79] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2018.

15

https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://huggingface.co/codellama
https://github.com/jplag/JPlag
https://github.com/jplag/JPlag
https://doi.org/10.1145/3312614.3312657
https://github.com/lowRISC/ibex
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://ai.meta.com/blog/code-llama-large-language-model-coding/
https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://ai.meta.com/blog/meta-llama-3/
https://llama.meta.com/llama2/
https://news.microsoft.com/download/archived/presskits/antipiracy/docs/addressingpiracy.pdf
https://news.microsoft.com/download/archived/presskits/antipiracy/docs/addressingpiracy.pdf
https://news.microsoft.com/download/archived/presskits/antipiracy/docs/addressingpiracy.pdf
https://www.microsoft.com/en-us/bing/do-more-with-ai/how-bing-chat-works?form=MA13KP
https://www.microsoft.com/en-us/bing/do-more-with-ai/how-bing-chat-works?form=MA13KP
https://github.com/CommonEvaluationPlatform/CEP/tree/master/generators/mitll-blocks/src/main/resources/vsrc/gps
https://github.com/CommonEvaluationPlatform/CEP/tree/master/generators/mitll-blocks/src/main/resources/vsrc/gps
https://github.com/CommonEvaluationPlatform/CEP/tree/master/generators/mitll-blocks/src/main/resources/vsrc/gps
https://www.cs.washington.edu/lab/course-resources/gradescope
https://www.cs.washington.edu/lab/course-resources/gradescope
https://www.justice.gov/opa/speech/attorney-general-jeff-sessions-announces-new-initiative-combat-chinese-economic-espionage
https://www.justice.gov/opa/speech/attorney-general-jeff-sessions-announces-new-initiative-combat-chinese-economic-espionage
https://ustr.gov/sites/default/files/Section%20301%20FINAL.PDF
https://ustr.gov/sites/default/files/Section%20301%20FINAL.PDF
https://openai.com/blog/chatgpt
https://openai.com/gpt-4
https://chat.openai.com/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://help.openai.com/en/articles/4936856-what-are-tokens-and-how-to-count-them
https://blog.google/intl/en-africa/products/explore-get-answers/an-important-next-step-on-our-ai-journey/
https://blog.google/intl/en-africa/products/explore-get-answers/an-important-next-step-on-our-ai-journey/
https://www.synopsys.com/blogs/chip-design/copilot-generative-ai-chip-design.html
https://www.synopsys.com/blogs/chip-design/copilot-generative-ai-chip-design.html
https://extendedstudies.ucsd.edu/news-and-events/division-of-extended-studies-blog/will-ai-replace-programmers-the-future-of-coding
https://extendedstudies.ucsd.edu/news-and-events/division-of-extended-studies-blog/will-ai-replace-programmers-the-future-of-coding
https://extendedstudies.ucsd.edu/news-and-events/division-of-extended-studies-blog/will-ai-replace-programmers-the-future-of-coding

AND_NOT NAND NOR OR_NOT random
0

100

200

Su

cc
es

sf
ul

 E
va

sio
ns

Ag
ai

ns
t M

OS
S

Evasions Sim. Scores

0.00

0.02

0.04

0.06

Av
er

ag
e

M
OS

S
Si

m
ila

rit
y

Sc
or

es
 o

f
Su

cc
es

sf
ul

 E
va

sio
ns

Fig. 10: Performance of mapping strategies against MOSS.

AND_NOT NAND NOR OR_NOT random
0

250

500

750

Su

cc
es

sf
ul

 E
va

sio
ns

Ag
ai

ns
t J

pl
ag

Evasions Sim. Scores

0.0

0.1

0.2

Av
er

ag
e

Jp
la

g
Si

m
ila

rit
y

Sc
or

es
 o

f
Su

cc
es

sf
ul

 E
va

sio
ns

Fig. 11: Performance of mapping strategies against Jplag.

[80] F. Yaman, “Agent sca: Advanced physical side channel analysis agent
with llms,” Ph.D. dissertation, 2023, copyright - Database copyright
ProQuest LLC; ProQuest does not claim copyright in the individual
underlying works; Last updated - 2024-01-19.

[81] R. Yasaei, S.-Y. Yu, E. K. Naeini, and M. A. A. Faruque, “GNN4IP:
Graph Neural Network for Hardware Intellectual Property Piracy Detec-
tion,” in 2021 58th ACM/IEEE Design Automation Conference (DAC),
2021, pp. 217–222.

[82] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Security
analysis of anti-sat,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 342–347.

APPENDIX

A. Sizes of Target Netlists

Table IV shows the sizes of the netlists we target. They
range from a few hundred gates to a couple hundred thousand
gates, showcasing that LLMPirate works well across this wide
spectrum of netlists.

B. Analysis of MOSS, JPlag, and SIM Mapping Strategies

Additional comparative evaluations between each mapping
strategy used by LLMPirate are shown in Figures 10, 11,
and 12 against the MOSS, JPlag, and SIM piracy detection
tools, respectively. For each mapping strategy (AND NOT,
NAND, NOR, OR NOT, and random), these figures compare

AND_NOT NAND NOR OR_NOT random
0

100

200

300

Su

cc
es

sf
ul

 E
va

sio
ns

Ag
ai

ns
t S

IM

Evasions Sim. Scores

0.0

0.1

0.2

Av
er

ag
e

SI
M

Si
m

ila
rit

y
Sc

or
es

 o
f

Su
cc

es
sf

ul
 E

va
sio

ns

Fig. 12: Performance of mapping strategies against SIM.

the number of total number of successful evasions (from all
LLMs and netlists) and the average similarity scores of those
evasions.

It is evident across all figures that (similar to the results
against GNN4IP in Sec. V-G) the random mapping strategy
results in the highest number of successful evasions. This
finding is supported by the random strategy demonstrating the
lowest average similarity scores across most other strategies.
For additional analysis of the superior performance of the
random strategy, see Sec. V-G, in which the GNN4IP detection
tool is utilized.

C. Equivalence of Pirated Netlists

In addition to successfully pirating netlists that evade
detection, LLMPirate also guarantees functional equivalence
of the pirated netlists. In order to guarantee equivalence, we
incorporate exhaustive testing in the LLM-generated transfor-
mations. More specifically, we compare the original gate’s
output and the LLM-generated transformation’s (i.e., gate/gates
that would replace the original gate) output for all possible 2n

input vectors (assuming n inputs), and consider a transfor-
mation successful only if the two outputs match for all input
vectors. Since the pirated netlist is created from the original
netlist by replacing only the original gate with a guaranteed
equivalent transformation, the pirated netlist is guaranteed to
be functionally equivalent to the original netlist.

Furthermore, we double-check the equivalence of the pi-
rated netlists through formal verification. For each of the 31
netlists from the GNN4IP repository, we check the equiv-
alence of a successfully pirated netlist against each of the
four detection tools.6 Then, we use the Cadence Conformal
Equivalence Checker [12] to formally verify the equivalence
of the pirated netlists with their original counterparts. Our
results show that all sampled pirated netlists are classified as
functionally equivalent to the corresponding original netlists.

D. Ablation Study

Here, we perform an ablation study to understand the con-
tribution of the component to our overall LLMPirate technique.
Specifically, we evaluate the number of successfully pirated
netlists without different solutions (Solution A , Solution B ,
and Solution C). Recall that Solution B can only be applied
if Solution A has been applied, because the former relies on
the latter. Hence, removing Solution A has to be accompanied
with removal of Solution B . In other words, during ablation
study, removal of Solution A means removal of Solution A
as well as Solution B . Table V shows the results, which
demonstrate that while Solution C is helpful in improving the
performance of LLMPirate (note the improvement in evading
SIM and the average similarity scores for all detection tools
in LLMPirate), Solutions A and B are absolutely essential
to achieve any success in pirating the netlists. This is because
without Solutions A or B , several netlists exceed the context

6We only verify the equivalence using the formal verification tool for the
netlists from the GNN4IP repository because other netlists are too large to
formally verify. However, LLMPirate still guarantees equivalence of those
larger netlists because of the exhaustive simulation-based testing explained
above.

16

TABLE IV: Sizes of target netlists in terms of number of gates.

c
4
3
2
-
R
N
6
4
0

c
4
3
2
-
S
L
3
2
0

c
4
3
2
-
S
L
6
4
0

c
4
3
2
-
C
S
1
2
8
0

c
4
3
2
-
S
L
1
2
8
0

c
4
3
2
-
C
S
6
4
0

c
4
3
2
-
R
N
1
2
8
0

c
4
3
2
-
C
S
3
2
0

c
4
3
2
-
B
E
2
8
0

c
4
3
2
-
R
N
3
2
0

c
4
3
2
-
S
L
1
2
8
0

c
4
9
9
-
S
L
3
2
0

c
4
9
9
-
R
N
6
4
0

c
4
9
9
-
S
L
6
4
0

c
4
9
9
-
R
N
3
2
0

c
4
9
9
-
R
N
1
2
8
0

c
4
9
9
-
C
S
1
2
8
0

c
4
9
9
-
C
S
3
2
0

c
4
9
9
-
C
S
6
4
0

c
8
8
0
-
S
L
3
2
0

c
8
8
0
-
C
S
6
4
0

c
8
8
0
-
R
N
6
4
0

c
8
8
0
-
C
S
1
2
8
0

c
8
8
0
-
C
S
2
5
6
0

c
8
8
0
-
R
N
2
5
6
0

c
8
8
0
-
R
N
1
2
8
0

c
8
8
0
-
R
N
3
2
0

c
8
8
0
-
S
L
1
2
8
0

c
8
8
0
-
C
S
3
2
0

c
8
8
0
-
S
L
6
4
0

c
8
8
0
-
S
L
2
5
6
0

I
B
E
X

M
O
R
1
K
X

G
P
S

261 209 251 357 345 252 345 212 2370 211 398 252 296 297 256 390 404 249 301 430 480 483 575 779 765 579 435 566 430 473 765 17K 158K 193K

c4
32

-RN
64
0

c4
32

-SL
32
0

c4
32

-SL
64
0

c4
32

-CS
12
80

c4
32

-SL
12
80

c4
32

-CS
64
0

c4
32

-RN
12
80

c4
32

-CS
32
0

c4
32

-BE
28
0

c4
32

-RN
32
0

c4
99

-SL
12
80

c4
99

-SL
32
0

c4
99

-RN
64
0

c4
99

-SL
64
0

c4
99

-RN
32
0

c4
99

-RN
12
80

c4
99

-CS
12
80

c4
99

-CS
32
0

c4
99

-CS
64
0

c8
80

-SL
32
0

c8
80

-CS
64
0

c8
80

-RN
64
0

c8
80

-CS
12
80

c8
80

-CS
25
60

c8
80

-RN
25
60

c8
80

-RN
12
80

c8
80

-RN
32
0

c8
80

-SL
12
80

c8
80

-CS
32
0

c8
80

-SL
64
0

c8
80

-SL
25
60
IB
EX

weig
hte

d a
vg

.
0

200

Ga
te

 C
ou

nt
 O

ve
rh

ea
d

(%
)

Fig. 13: Gate count overheads of successfully pirated netlists against GNN4IP [81].

c4
32

-RN
64
0

c4
32

-SL
32
0

c4
32

-SL
64
0

c4
32

-CS
12
80

c4
32

-SL
12
80

c4
32

-CS
64
0

c4
32

-RN
12
80

c4
32

-CS
32
0

c4
32

-BE
28
0

c4
32

-RN
32
0

c4
99

-SL
12
80

c4
99

-SL
32
0

c4
99

-RN
64
0

c4
99

-SL
64
0

c4
99

-RN
32
0

c4
99

-RN
12
80

c4
99

-CS
12
80

c4
99

-CS
32
0

c4
99

-CS
64
0

c8
80

-SL
32
0

c8
80

-CS
64
0

c8
80

-RN
64
0

c8
80

-CS
12
80

c8
80

-CS
25
60

c8
80

-RN
25
60

c8
80

-RN
12
80

c8
80

-RN
32
0

c8
80

-SL
12
80

c8
80

-CS
32
0

c8
80

-SL
64
0

c8
80

-SL
25
60
IB
EX

weig
hte

d a
vg

.
0

100

Pe
rfo

rm
an

ce
 O

ve
rh

ea
d

(%
)

Fig. 14: Performance overheads in terms of critical paths of successfully pirated netlists against GNN4IP [81].

TABLE V: Number of successfully pirated netlists (out of 32)
and average similarity scores (in brackets) against different
detection tools.

Detection Tool GNN4IP [81] MOSS [2] Jplag [41] SIM [35]

LLMPirate\Solution A 0 (NA) 0 (NA) 0 (NA) 0 (NA)
LLMPirate\Solution B 0 (NA) 0 (NA) 0 (NA) 0 (NA)
LLMPirate\Solution C 32 (-0.75) 32 (0.01) 32 (0.20) 7 (0.32)

LLMPirate 32 (-0.88) 32 (0.01) 32 (0.13) 26 (0.27)

windows of the LLMs, and those that do not are still too
complicated for LLMs to understand. Thus, overall, the relative
importance of the different solutions for successfully pirating
netlists is: Solution A > Solution B >>> Solution C .

E. Performance Overheads

In this section, we analyze the overheads incurred due to
the modifications made by LLMPirate that lead to successful
piracy. Note that, since our threat model assumes piracy of
pre-synthesized netlists, we don’t assume access to a synthesis
library, and instead estimate the performance of a given netlist
based on two metrics: (i) the gate count, and (ii) the critical
path of the netlist, i.e., the longest (measured by the number
of gates) path from an input to an output.

Figure 13 shows the gate count overheads of the success-
fully pirated netlists against GNN4IP. Note that the gate count
overheads for most netlists and the weighted (by the number
of gates) average overhead are ≈ 50%. Such overheads are
reasonable and a small price to pay for an attacker that can

1 nand U1 (n3, n1, n2);

Listing 9: Example gate in original Verilog netlist.

quickly and easily pirate valuable IPs. Moreover, although
analyzing the overheads in terms of gate counts is helpful,
analyzing the overheads in terms of the critical paths is more
important since the critical paths determine the operating fre-
quency of the netlist. Figure 14 shows this overhead in terms of
critical paths of successfully pirated netlists against GNN4IP.
Note that these overheads for most netlists, including IBEX

as well as the weighted average overhead, are even lower, i.e.,
≈ 20%, thereby highlighting the small price an attacker has to
pay for pirating valuable IPs. Another interesting observation
from Figures 13 and 14 is that the c499-* netlists have the
highest percentage overheads. This trend aligns with the trend
in Figure 4 where c499-* netlists have the highest similarity
scores across all LLMs, meaning these netlists are very difficult
to pirate. This observation prompted us to investigate these
netlists in more detail, leading to the discovery that, unlike
other netlists, the c499-* netlists contain an unusually large
number of XOR/XNOR gates, and rewriting these gates using
NAND/NOR operators requires at least 5 gates, leading to large
overheads. Thus, due to the large number of XOR/XNOR gates
in them, successfully pirating c499-* netlists results in larger
overheads.

17

TABLE VI: Success rate in de-obfuscating AntiSAT [79]-protected netlists using the Signal Probability Skew (SPS) [82] attack.

c
4
3
2
-
R
N
6
4
0

c
4
3
2
-
S
L
3
2
0

c
4
3
2
-
S
L
6
4
0

c
4
3
2
-
C
S
1
2
8
0

c
4
3
2
-
S
L
1
2
8
0

c
4
3
2
-
C
S
6
4
0

c
4
3
2
-
R
N
1
2
8
0

c
4
3
2
-
C
S
3
2
0

c
4
3
2
-
B
E
2
8
0

c
4
3
2
-
R
N
3
2
0

c
4
3
2
-
S
L
1
2
8
0

c
4
9
9
-
S
L
3
2
0

c
4
9
9
-
R
N
6
4
0

c
4
9
9
-
S
L
6
4
0

c
4
9
9
-
R
N
3
2
0

c
4
9
9
-
R
N
1
2
8
0

c
4
9
9
-
C
S
1
2
8
0

c
4
9
9
-
C
S
3
2
0

c
4
9
9
-
C
S
6
4
0

c
8
8
0
-
S
L
3
2
0

c
8
8
0
-
C
S
6
4
0

c
8
8
0
-
R
N
6
4
0

c
8
8
0
-
C
S
1
2
8
0

c
8
8
0
-
C
S
2
5
6
0

c
8
8
0
-
R
N
2
5
6
0

c
8
8
0
-
R
N
1
2
8
0

c
8
8
0
-
R
N
3
2
0

c
8
8
0
-
S
L
1
2
8
0

c
8
8
0
-
C
S
3
2
0

c
8
8
0
-
S
L
6
4
0

c
8
8
0
-
S
L
2
5
6
0

Key Size 64

Success Rate (%) 100

Runtime (s) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

1 N1 = AND(A1, A2)
2 Y = NOT(N1)

Listing 10: Example transformation from an LLM for the gate
type in Listing 9.

1 and U1 (tmp1, n1, n2);
2 not U2 (n3, tmp1);

Listing 11: Gates in our pirated netlist corresponding to the
original gate shown in Listing 9.

F. Details About Conversions form Boolean Formulas to Gate-
level Netlists

Once the transformations are generated using the LLMs
(see Figure 2), we employ a custom Python script to actually
pirate a given original netlist. Our script iterates over the gates
in the given original netlist and replaces the gates with a netlist
format of the LLMs’ transformation in Boolean formulas
format. Listing 9 shows an example gate in the original netlist,
Listing 10 shows an example transformation obtained from
an LLM in a Boolean formula format (with template input
names A1 and A2, template output name Y, and intermediate
variable N1), and Listing 11 shows the corresponding gate for
our pirated netlist.

Also, as explained in Sec. VII-C, to ensure functional
correctness of the pirated netlist, we exhaustively test (by
simulation of all possible 2n input values for a gate with n
inputs) the LLM-generated Boolean formula for each unique
original gate type, and compare the outputs. If all outputs
match, the generated Boolean formula, and hence the gates
in the pirated netlist, are guaranteed to be equivalent to the
original gate(s).

G. Discussion on Netlists Protected by Obfuscation

Researchers have proposed hardware obfuscation tech-
niques that involve “locking” circuits using key-controlled
gates [70], [73]. However, many of these techniques have
been successfully compromised by previous research, raising
significant doubts about the security of hardware obfuscation
as a whole (see [25]). Given the vulnerabilities demonstrated
in numerous hardware obfuscation techniques and the overar-
ching concerns about their effectiveness, we do not consider
them in our work since pirating such obfuscated netlists
would only require an additional trivial step of un-obfuscating
the netlist before using LLMPirate to pirate it. To validate
this claim, we obfuscated all 31 netlists from the GNN4IP
repository [1] using the popular AntiSAT [79] obfuscation
technique implemented in [24]. We then tested the security of

the obfuscated netlists using a custom Python implementation
of the Signal Probability Skew (SPS) attack [82]. Table VI
shows the results of the attack. It is evident that the attack
successfully removes all obfuscated parts and recovers all
original netlists.

H. Example Transformations

To illustrate some example valid gate-transformations gen-
erated by the eight LLMs, we include a visualization in the ex-
tended version of this work [29]. This illustration demonstrates
that LLMs are able to generate a variety of transformations,
including simple ones, such as NAND gate using [AND, NOT]
Boolean operators) and complicated ones, such as XOR gate
using [NOR] Boolean operator.

18

	Introduction
	LLMs for Code Generation
	Impact of IP Piracy
	Our Goals and Contributions
	Why LLMs?

	Background
	Large Language Models
	Code Generation with Large Language Models
	IP Piracy Detection

	Threat Model
	Methodology
	LLMs for Pirating IPs - Formulation, Challenges, and Solutions
	Putting It All Together

	Results
	Experimental Setup
	Main Piracy Results
	LLMs Against GNN4IP
	LLMs Against MOSS
	LLMs Against JPlag
	LLMs Against SIM
	Analysis of Mapping Strategies
	LLMs' Performance Comparison
	Case Study on the IBEX Processor: Ramifications of LLMPirate
	Case Study on Larger Netlists: Scalability of LLMPirate
	LLMs' Characteristics

	Related Work and Discussion
	Evaluating Verilog-fine-tuned LLMs
	Evading Hardware IP Piracy Detection
	Evading Software IP Piracy Detection
	Other Detection Tools and Potential Countermeasures

	Conclusion
	References
	Sizes of Target Netlists
	Analysis of MOSS, JPlag, and SIM Mapping Strategies
	Equivalence of Pirated Netlists
	Ablation Study
	Performance Overheads
	Details About Conversions form Boolean Formulas to Gate-level Netlists
	Discussion on Netlists Protected by Obfuscation
	Example Transformations

