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Abstract—CCD cameras are critical in professional and scien-
tific applications where high-quality image data are required, and
the reliability of the captured images forms the basis for trustwor-
thy computer vision systems. Previous work shows the feasibility
of using intentional electromagnetic interference (IEMI) to inject
unnoticeable image changes into CCD cameras. In this work, we
design an attack of enhanced capability, GhostShot, that can
inject any grayscale or colored images into CCD cameras under
normal light conditions with IEMI. We conduct a schematic anal-
ysis of the causality of the IEMI effect on the shapes, brightness,
and colors of the injected images, and achieve effective control
of the injected pattern through amplitude-phase modulation. We
design an end-to-end attack workflow and successfully validate
the attack on 15 commercial CCD cameras. We demonstrate
the potential impact of GhostShot on medical diagnosis, fire
detection, QR code scanning and object detection and find that the
falsified images can successfully mislead computer vision systems
and even human eyes.

I. INTRODUCTION

CCD (charge-coupled device) is the earliest type of semi-
conductor device used in digital cameras. Compared with
CMOS (complementary metal-oxide semiconductor) sensors,
CCD image sensors are a major digital imaging technology
that outperforms CMOS by their excellent photometric perfor-
mance, lower noise, and better low-light sensitivity [61]. De-
spite the prevalence of CMOS in the consumer market due to
cost considerations, CCD image sensors are still widely used in
professional and scientific applications where high-quality im-
age data are required, including medical diagnostics [6], [19],
[45], security surveillance [25], [8], industrial inspection [16],
astronomical studies [47], etc., and their global market share
is predicted to grow steadily and reach 20.5 billion dollars
by 2030 [50]. As CCD cameras play a significant role across
various industries, what is less well-understood is how reliably
they behave under intentional attacks.

Previous work [26] has shown the feasibility of injecting
signals into CCD image sensors using intentional electro-
magnetic interference (IEMI), which can cause unnoticeable
changes in targeted pixels and disrupt barcode detection.
Nonetheless, noticeable image perturbations could only be
injected in a dark environment. Informed by earlier research,
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Fig. 1: Attackers can manipulate computer vision systems by
injecting monochrome or color images, leading to erroneous
decision-making.

this paper aims to explore the further capabilities and limits of
IEMI attacks on CCD cameras. Specifically, we wonder if it is
feasible to inject arbitrary patterns into the image captured
by a camera in any ambient light conditions. For example,
as illustrated in Fig. 1, can IEMI create a non-existing fire
pattern or textured QR code in a camera’s output? Moreover, is
it possible for the falsified images to mislead computer vision
systems or even human eyes?

The ability to inject arbitrary image patterns can serve as
a foundation enabling various creative adversarial scenarios.
Yet achieving such an attack, if feasible, is highly challenging
as it requires the injected image pattern to be as realistic as
possible in every aspect, including morphology, brightness,
and coloration. Otherwise, the counterfeit image may have
a limited adversarial impact and can be easily identified.
An ideal attack is required to achieve the following primary
capabilities. (a) Morphology Control: to create an accurate
pattern, the attacker should be able to inject arbitrary shapes
in desired image positions and avoid any image discontinuity
caused by unwanted noise. Although it has been proved that
IEMI can change the pixel values, the injected shapes still
have rough edges and are filled with noises, leading to a
low shape resolution and making the pattern less recogniz-
able. (b) Brightness Control: the injected pattern needs to be
recognizable under various light conditions, which requires
noticeably increasing or decreasing the value of the original
pixel in dark and bright image backgrounds. In most cases,
the injected pattern will also contain a variety of grey scales,
e.g., a QR code is made of black and white pixels, demanding
precise control of brightness over different areas of the injected
pattern. (c) Coloration Control: realistic patterns are mostly
colorful. Previous work has only demonstrated the injection
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of grayscale patterns. To the best of our knowledge, no work
has yet achieved the capability to inject colored patterns into
CCD cameras. In addition to the above challenges, the lack of
a theoretical understanding of the interference that causes the
structural patterns in CCD cameras hinders the achievement of
a more powerful attack.

In this work, we overcome these challenges and validate
the feasibility of injecting monochrome and colorful patterns of
arbitrary shape and brightness into CCD cameras under normal
light conditions. We first conducted a theoretical causality
analysis of image pattern injection from three aspects: mor-
phology, brightness, and coloration, and performed capability
investigation respectively. Our results indicate that by carefully
designing the amplitude and phase of the EMI signal, an
attacker can effectively control the shape, brightness, and color
of the injected patterns. To materialize such an attack, we
designed an end-to-end attack workflow, GhostShot, and
evaluated it on 15 commercial CCD cameras, all of which
confirmed the applicability of the attack. To demonstrate
potential real-world impacts, we conducted case studies on
medical diagnosis, fire detection, object detection and QR
code scanning. We found that GhostShot can successfully
mislead computer vision systems to detect non-existing road
objects, cancer patterns, and forest fires and to interpret fake
QR codes. We further demonstrated the potential of using
the injected images to deceive human eyes and validated the
feasibility of dynamic video injection.

Our contributions are summarized as follows:

• We analyze the causality of injecting monochrome and
colored patterns into the images of CCD cameras with
IEMI. We have experimentally examined the capability
and limits of arbitrary control over the pattern’s morphol-
ogy, brightness, and coloration.

• We design an end-to-end attack workflow and validate the
attack feasibility on 15 commercial-of-the-shelf (COTS)
CCD cameras. We demonstrate the potential real-world
impacts of GhostShot on computer vision systems with
four case studies and discuss the feasibility of deceiving
human eyes.

• We propose hardware and software methods for defending
against the attacks.

II. CCD IMAGING SYSTEM OVERVIEW

A typical CCD imaging system primarily comprises the
following three components: CCD image sensor, analog front
end (AFE) and digital back end (DBE).

A. CCD Image Sensor

The CCD image sensor is the central element of a CCD
imaging system, playing critical roles in photoelectric con-
version, the storage and transfer of signal charges, and the
measurement and amplification of charges.

Photoconversion and charge storage. The photodiode is
responsible for converting incident light into signal charge,
with the quantity dependent on the exposure time. Due to
the photoelectric effect, light exposure causes electrons to
escape atomic confines and become free charges. The basic
component of the CCD is the MOS capacitor, consisting of
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Fig. 2: Illustration of (a) the transfer and readout of signal
charge in the CCD sensor and (b) the Bayer filter array.

metal electrodes, oxide film, and semiconductors. By applying
a positive voltage to the metal electrode, carrier holes in the
p-type silicon are depleted, creating a register region at the
metal-oxide interface to collect free charge.

Signal charge transfer. When electrodes are positioned
closely and excited by a high voltage, their underlying po-
tential wells become interconnected, resulting in a shared
distribution of the initial signal charge from the first elec-
trode. Subsequently, a reduction in voltage applied to the first
electrode causes the charge to fully transfer to the second
electrode’s well. Within a pixel array, a systematic modification
of voltages enables an efficient transfer and read-out of signal
charges. The signal charges transfer sequentially in row order.
Fig. 2(a) illustrates the sequential transfer of signal charge,
exemplified by the ITCCD.

Signal charge measurement. All signal charges will
ultimately be conveyed to the output circuitry, where they
will be processed and amplified. Floating Diffusion Amplifier
(FDA) is commonly used in CCDs to measure signal charge,
comprising a charge node and two MOSFETs for reset (MOS1)
and conversion (MOS2). MOS2 converts the charge to voltage,
and MOS1 resets the node to the reference level for the next
signal.

B. Analog Front End

The analog front end (AFE) is a set of analog circuitry
that conditions and digitizes the analog signal from the im-
age sensor. AFE consists of the correlated double sampling
(CDS) circuitry, black level adjust circuitry, analog-to-digital
converter (ADC), etc.

Correlated Double Sampling. The raw output signal from
a CCD image sensor generally contains noise of multiple
forms, including thermal noise, reset noise, and dark current
noise. The CDS is the most commonly used circuit for noise
reduction in AFE. The CDS circuit samples the reset level
and the video level within the one-pixel period, amplifying the
difference to produce a cleaned signal, effectively deploying a
difference amplifier to eliminate the noise.

Black-Level Adjust. AFE also generates the reference
black level by using signals from optical black pixels in an
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image sensor. Optical black pixels are located at the periphery
of an imaging array, playing an essential role in tracking the
dark current variation across the operating temperature range
to determine the accurate black level. A signal from an optical
black pixel is typically stored on a capacitor, which is then
subtracted from a signal from a photosensitive pixel to reduce
noise.

Analog to Digital Converter. ADC converts an input ana-
log signal to a proportional digital signal. The ADC’s bit depth
primarily determines the precision. CCD cameras designed for
general consumer use typically feature 10 to 12 bits, whereas
professional-grade cameras may offer 12 to 14 bits for even
finer detail capture. Another important ability of the ADC is
the sampling rate. For low-resolution imaging needs, a sample
rate of 20 MPixels/sec is sufficient, while high-resolution
cameras require sampling rates greater than 50 MPixels/sec.
To maintain excellent visual quality, high-definition television
(HDTV) requires more than 75 MPixels/sec.

C. Digital Back End

The digital back end (DBE) receives signals from the
AFE and conducts a sequence of processes, including image
processing, compression, and storage. Image processing aims
to achieve better output image quality, involving components
such as color interpolation, white balance, color correction, and
gamma correction, which are carried out in an image signal
processor (ISP).

Color interpolation. Color interpolation, also known as
demosaicing or debayering, is the process of reconstructing
a full-color image from raw monochrome data captured by
an image sensor. For most single-board color cameras, a
Color Filter Array (CFA) is overlaid on the surface of the
image sensor, enabling each pixel to capture light of only
one specific color. The missing colors at each pixel position
can be interpolated with values from adjacent pixels through
algorithms such as bilinear interpolation, bicubic interpolation,
and others. The Bayer filter array is the most common CFA,
composed of alternating RG pixels in odd rows and GB pixels
in even rows, as shown in Fig. 2(b). Other types of CFA include
CYGM, CMYW, etc.

Color balance. White balance is the adjustment of color
temperature settings to accurately reproduce colors under
varying lighting conditions, ensuring that the colors appear
more realistic. Color correction is used to improve color
accuracy by adjusting the raw color data captured by the
image sensor. Gamma correction is also employed to adjust the
brightness levels of an image, which helps to achieve balanced
illumination.

III. THREAT MODEL

A. Attacker’s Goal and Attack Categories

We consider an adversary that aims to contactlessly inject
an arbitrary image into the captured image of a CCD cam-
era through intentional electromagnetic interference (IEMI).
The injected image may spoof the computer vision system’s
behavior to result in accidents (e.g., inject a fire pattern to
result in a false fire alarm or inject a cancerous cell pattern
to cause medical malpractices), or spoof human behaviors for

malicious purposes (e.g., scan malicious QR codes or being
misled by malicious text). Compared with swapping the whole
camera or holding a fake image in front of camera which could
instantly expose the attacker’s malicious intent, the attacker
can manipulate a camera’s image or video stream in real-
time without physically touching the camera. Besides, the
attacker can inject ghost patterns seamlessly without affecting
the authentic image background, which can avoid abrupt image
changes that may alert the victim systems or users. We consider
two potential categories for the adversary:

• Creating attack to inject a targeted image with arbitrary
chromaticity and morphology into the captured image to
spoof computer vision systems and human eyes, where a
new object appears.

• Hiding attack to inject perturbations to spoof computer
vision systems, where an object in an original image
disappears under the attack.

B. Attacker Capabilities and Assumptions

We make the following assumptions for the attacker to
achieve the aforementioned attacks:

Prior Knowledge. We assume the adversary can obtain
the target camera’s model, which can acquire information
about the target CCD camera from publicly available sources
(e.g., manuals and datasheets), or may obtain a similar camera
for assessment beforehand. For example, she may learn the
design of the camera’s resolution and frame rate from public
documents or by reverse engineering.

IEMI Capability. We assume that it is feasible for the
adversary to have access to off-the-shelf devices such as
software-defined radios, amplifiers, and antennas to generate
malicious IEMI signals to inject a targeted image into the CCD
camera.

Attack Scenarios. The adversary can manipulate a cam-
era’s image or video stream in real-time without physically
touching the target camera, and the COTS camera is in its
original package during the attack, leaving no traces of the
attack. We envision two potential attack scenarios at different
distances: (1) Proximity attack: Similar to previous works [59],
[1], [21], the attacker may construct a camouflaged portable
EMI prototype and position it next to an unattended camera,
acting as an insider to carry out a remotely controlled attack.
(2) Attack at a distance: the attacker can increase the attack
distance using high-end equipment such as directional antennas
and high-gain power amplifiers to conduct attack at a distance.

IV. CAPABILITIES OF IEMI ON CCD CAMERAS

In this section, we present preliminary experiments to
perform a systematic analysis of the effects of IEMI on CCD
cameras. We first analyze the reasons IEMI can effectively
interfere with the CCD cameras. Then, we examine these
effects from three perspectives: morphology, brightness, and
color, and separately investigate the maximum capability of
the injection.

A. Preliminary Experiments on CCD Cameras

We use a similar experimental setup as the existing IEMI
attacks [21], [26], [42], [41]: an arbitrary signal generator
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(a) Ground Truth (b) fin = 48.0008MHz (c) fin = 48.0038MHz (d) fin = 54.0325MHz (e) fin = 54.0688MHz

Fig. 3: Periodic stripes with varying morphology and chromaticity can be injected into the captured images at different frequencies
during preliminary experiments.

(Keysight N5712b) to generate an IEMI source, a power
amplifier (Mini-Circuits ZHL-100W-GAN+) to amplify the
signal, and a rubber rod antenna to transmit the IEMI signal
to the victim CCD camera. The experiment setup is shown
in Fig. 11(a). We choose an analog output and a digital out-
put CCD camera (SHL-223 and MV-GED130C) respectively
for the preliminary analysis. The under-test CCD camera is
connected to the computer to display the captured image in
real time. The camera lens is covered with a lens cap, which
captures the picture in total black under normal conditions, as
shown in Fig. 3(a).

We conduct a frequency sweeping experiment from
20 MHz to 100 MHz with a step size of 0.1 MHz, and the
signal amplitude is -5 dB. The experiment results show that the
periodic stripes with different morphology and chromaticity
appear in the captured images during the test, as shown
in Fig. 3, indicating that although the COTS CCD cameras go
through thorough electromagnetic compatibility tests and anti-
interference design, they are susceptible to the IEMI signals
at different frequencies. Besides, we also observe that the
number of stripes changes when fine-tuning the successful
injection frequency. For example, we can inject monochrome
stripes and colored stripes at the frequency of 48.0008MHz
and 54.0325MHz respectively. Furthermore, we observed that
an excessive intensity of the injected signal may lead to
overexposure in the camera or result in communication errors.

Potential Coupling Interface. As described in Sec-
tion II-B, the output signal of the CCD requires an extensive
analog signal-processing pathway which includes CDS, black-
level calibration, and ADC. Due to the hardware structure of
the CCD camera in Fig. 2, we suppose the long analog signal
pathway unintentionally serves as the receiving antenna to be
interfered with by the IEMI signals, and the precise coupling
efficiency depends on the design and materials of the circuit
itself [35]. By conducting a preliminary frequency sweep on
the same model of the target camera, the optimal coupling
frequency can be determined.

After demonstrating the feasibility of falsifying the cap-
tured image of CCD with IEMI, we wonder if an attacker
can inject a targeted image into the CCD camera. If so,
the attacker should have the ability to manipulate the mor-
phology, brightness, and color. To investigate the possibility
of this hypothesis, we conducted a systematic analysis of
the capability and constraints of morphology manipulation
(Section IV-B), brightness manipulation (Section IV-C), and
color manipulation (Section IV-D), respectively.

B. Capability of Morphology Modulations

During the frequency sweeping experiment, we observed
black and white stripes of various morphology in some fre-
quency bands, as shown in Figs. 3(b) and 3(c). We analyzed
the root cause of stripes and investigated the potential for
implementing control over morphology.

1) Causality Analysis: As introduced in Section II-B, the
analog signal output from each R/G/B pixel is transmitted
to the ADC to be converted into a digital signal. According
to the Nyquist-Shannon sampling theorem, the sampling rate
should be at least twice the signal’s maximum frequency.
If the system samples data at an insufficient sampling rate,
the sampled signal fails to maintain the original spectrum
characteristics, generating a lower frequency signal due to
the aliasing effect [33]. Suppose the injected EMI signal is
a regular sinusoidal wave at a frequency fin as follows:

s(t) = Vinsin(2πfint+ φ0) (1)

Let fs denote the sampling rate of the ADC, and the sampled
signal after the aliasing effect can be written as follows:

P [n] = Vinsin(2πfalia ×
n

fs
+ φ0) (2)

Due to the aliasing effect, fin and fs determine the sampled
frequency falia as follows:

falia = |fin −N × fs| (3)

where 0 ≤ falia ≤ 0.5fs, and N ∈ N.

Since all pixel signals are output sequentially in row-
major order, aliased sinusoidal signals cause the emergence of
alternating stripes in the captured image. The morphology of
the stripes primarily depends on the envelope of the aliased sig-
nal, which is represented differently across various frequency
bands:

fenve =

{
|falia|, when|falia − 0.5fs| ≥ 0.25fs
|falia − 0.5fs|, when|falia − 0.5fs| < 0.25fs

(4)
For a camera with a row transmission frequency of frow,
when fenve ≥ frow, multiple contiguous sine waves are dis-
tributed across a single row, thus forming vertical and oblique
stripes. When fenve < frow, a single sine wave is distributed
across multiple consecutive lines, which consequently causes
the formation of horizontal stripes, as illustrated in Fig. 4.
Specifically, when fin = N × fs, fenve = 0, the attack signal
becomes a constant signal after sampling, at which point the
stripes disappear, translating into the uniform monochrome
area across the entire image.
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(a) When fenve ≥ frow , the stripes remain vertical

Signal Sampled by Pixels
Original Signal

(b) When fenve < frow , the stripes remain horizontal

Fig. 4: The mechanism for the formation of stripes. The
relationship between fenve and frow determines the number
and direction of the stripes.

2) Ability Investigation: For a CCD camera to capture
frames at a frame rate of ffps, the number of alternating
horizontal stripes can be calculated by the following equation:

Stripe Number =
fenve
ffps

(5)

The spacing of the oblique stripes can be calculated by the
following equation:

Stripe Angle = arctan
|fenve −N × frow|
frow ×Ncolumns

(6)

The angle of the oblique stripes can be calculated by the
following equation:

Stripe Spacing =
frow ×Ncolumns

ffps
(7)

Insight 1: The direction and number of stripes can be
controlled by fine-tuning the frequency of the injected
signal.

In addition to the stripes induced by the sinusoidal part
of the injected signal, morphology manipulation can also
be achieved through amplitude modulation. Inspired by the
mechanism of the CCD sensor introduced in Section II-A, all
pixels are read out in a serialized sequence for digitization and
we can inject signals that affect the pixels of specific positions.
In particular, for a pixel P [n] at the position (x,y), we can
modulate the injection signal as follows through amplitude
modulation [28], [26]:

P [n] = Vin(x, y)× sin(2πfinn+ φ0), (8)

where Vin(x, y) is the amplitude sequence generated by the
target image. It can be ascertained from Eq. (8) that the injected

(a) Striped NDSS (b) Clear NDSS

Fig. 5: The injected image is influenced by both carrier and
amplitude modulation concurrently. By appropriately adjusting
the carrier frequency, a clear image without stripes can be
injected.

image exhibits the result of the combined influence of the sine
carrier signal and the modulation amplitude. When an attacker
modulates a specific pattern on the carrier frequency that fails
to meet fin = N

2 ×fs, the injected pattern is striped, as shown
in Fig. 5(a). By adjusting the frequency of the carrier signal to
satisfy fin = N

2 ×fs, a clean pattern without stripes (Fig. 5(b))
can be injected.

C. Capability of Brightness Modulations

Previous work implemented an injection attack for bright-
ness enhancement in dark environments[26]. In this section,
we theoretically analyze the possibility of reducing brightness
and provide experimental validation.

1) Causality Analysis: When |falia − 0.5fs| ≥ 0.25fs, all
the pixels in the alternated G/B and R/G pixels are stimulated
consecutively by the injection signal, resulting in black-white
stripes, as shown in Fig. 7(a). For alternating black-white
stripes, we observe that the brightness of light sections exceeds
the base level when unattacked, whereas dark sections fall
below, which indicates the possibility of brightness reduction.
This phenomenon occurs because the sampled sine wave signal
is superimposed on the original signal, with the positive
half-cycle increasing brightness and the negative half-cycle
decreasing brightness.

2) Ability Investigation: When fin = N × fs, falia = 0,
the unmodulated attack signal becomes a constant signal after
sampling. The attack signal superimposed on the original
normal readout signal results in the formation of a uniform
monochrome area across the entire image. The sampled signal
after the aliasing effect of Eq. (2) can be written as follows:

P [n] = Vinsin(φ0) (9)

At this time, the image’s brightness is determined by the input
amplitude Vin and phase φ0. When φ0 > 0, there is an
increase in image brightness due to the positive aliased signal.
Conversely, when φ0 < 0, the negative aliased signal causes
a decrease in brightness. Combined with the morphological
control methods mentioned in Section IV-B, it is possible to
independently control the brightness of individual pixels, as
shown in Fig. 6.

Insight 2: The brightness of the image could be increased
or decreased by controlling the phase of the injected signal.
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(a) NDSS with decreased brightness. (b) NDSS with brightness control.

Fig. 6: The injected NDSS with brightness control. The
average brightness of the background is 181, whereas the
NDSS section shows an average brightness of 120, illustrating
a reduction in brightness.

It is worth noting that due to the range limitations of
the ADC sampling output, if the camera’s original signal has
already reached saturation, the superimposed attack signal will
not be able to make it brighter. Conversely, if the camera’s
original signal is too weak, the superimposed attack signal
will not be able to make it darker.

D. Capability of Coloration Modulations

During the preliminary experiments, we found that in
addition to the black and white stripes, there are also colored
stripes, as shown in Figs. 3(d) and 3(e), which are regularly
distributed in some frequency intervals. We provide an ana-
lytical and theoretical explanation for this phenomenon and
propose an arbitrary color control method.

1) Causality Analysis: As introduced in Section II-C, the
Bayer filter array overlaid on the CCD sensor is arranged in
a line alternating fashion of green-blue (G/B) and red-green
(R/G), so that each pixel measures only one color. Though the
rows are physically adjacent, the pixel signals are transmitted
sequentially, with only one row transmitted at any given time.
Therefore, at specific design frequencies, the injection could
locate the target pixel without interfering with adjacent pixels
or rows. When |falia − 0.5fs| < 0.25fs, the sampled signal
after the aliasing effect of Eq. (2) can be written as follows:

P [n] = (−1)n × Vinsin(2πfenve ×
n

fs
+ φ0) (10)

At this time, only one type of pixel in each G/B or R/G line
is stimulated. Taking the R/G line as an example, the position
index of the red and green pixels is n = 2m and n = 2m+1
respectively, where m ∈ N. The stimulation of the red and
green pixels by the injected signal can be written as follows:

P [n]R = Vinsin(2πfenve ×
2m

fs
+ φ0) (11)

P [n]G = −Vinsin(2πfenve ×
2m+ 1

fs
+ φ0) (12)

We can observe from Eqs. (11) and (12) that the signals
injected into the red and green pixels are periodic sinusoidal
signals that have identical amplitudes in opposing directions.
The situation is similar for G/B lines. Thus, there will be an
alternation of color stripes, as shown in Fig. 7(b).

Signal Sampled by RGB pixels

Original Signal

Signal Sampled by RGB pixels

Original Signal

(a) Causality of monochrome stripes.

Signal Sampled by RGB pixels

Original Signal

Signal Sampled by RGB pixels

Original Signal

(b) Causality of colored stripes.

Fig. 7: Illustrations of the causality of (a) monochrome stripes
and (b) color stripes. Due to the different relationships between
the input signal frequency and the sampling frequency, the
signal sampled by RGB pixels yields varied results, resulting
in both monochrome and colored stripes.

2) Ability Investigation: When fin = (N + 0.5)× fs, i.e.,
falia = 0.5fs, fenve = 0, the sampled signal after the aliasing
effect of Eq. (2) can be written as follows:

P [n] = (−1)n × Vin × sinφ0 (13)

At this time, the unmodulated attack signal becomes a periodic
oscillating signal with fixed amplitude after sampling and the
captured image becomes a uniform single color. We can change
the phase of the injection signal to control the R/G and B/G
lines separately, which can be written as follows:

P [n]RG = (−1)n × VinRG × sin(φRG0) (14)

P [n]GB = (−1)n × VinGB × sin(φGB0), (15)

where φRG0,φGB0 is set to π/2 or –π/2 to select the
required color channel while maximizing signal amplitude. We
can change phases to choose whether to interfere with R pixels
or G pixels in the RG lines and B pixels or G pixels in the
BG lines. Thus, we can manipulate the color of the injected
image by adjusting the amplitude of RG and GB lines, i.e.,
VinRG and VinGB .

Insight 3: The coloration of the image could be manipu-
lated by controlling the amplitude and phase of the injected
signal.
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(a) Color space

RG Row
GB Row

(b) Orange NDSS

RG Row
GB Row

(c) Blue NDSS

RG Row
GB Row

(d) Purple NDSS (e) The injected rainbow

Fig. 8: Illustrations of (a) the feasible color space, (b) to (d) NDSS with different colors, and (e) a rainbow containing seven
colors.

Fig. 8(a) illustrates the color space we can manipulate. The
positive half-axis region of the X and Y axes corresponds to
φRG0, φGB0 = π/2, while the negative half-axis represents
φRG0, φGB0 = −π/2. The values of the X and Y axes
represent distinct values of VinRG and VinGB . Figs. 8(b)
to 8(d) shows three examples of the colored NDSS captured
by the camera under different amplitudes and phases. Fig. 8(e)
shows an injected rainbow image featuring seven distinct
colors, demonstrating our ability to inject multiple colors into
a single image.

It is worth noting that the proposed chromaticity ma-
nipulation method is a linear combination of two types of
three R/G/B pixels, i.e., we can manipulate the chromaticity
on a color plane rather than on a three-dimensional color
space. From the HSV color space perspective, chroma can
be controlled arbitrarily, brightness is limited to the injection
amplitude, and the saturation component is uncontrollable.
However, it is only necessary to achieve synchronization at
the level of row signals, and there are no high demands on the
modulation speed. To realize a complete color space, precise
pixel-level modulation is required. However, this requires the
modulation speed capability of the equipment to reach the level
of matching the camera’s sampling rate, which is usually above
10 MHz.

V. ATTACK DESIGN

As introduced in Section IV, the brightness and coloration
of the image could be manipulated through the amplitude
and phase of the injecting signal. Motivated by this, we pro-
pose the use of amplitude-phase modulation for the injection
of arbitrary monochrome (black-and-white) or color images.
The end-to-end attack workflow is shown in Fig. 9, which
consists of four modules: image preprocessing (Section V-A),
image signal generation (Section V-B), signal modulation
(Section V-C) and signal transmission (Section V-D).

To initiate an attack, the attacker first formulates a strategy
based on the scenario, including the selection of the target
image, color or monochrome injection, and the requirement
for the injection position. Based on various scenarios, attacks
can be categorized into two types: creating attack and hiding
attack. For creating attack, attackers need to select injection
images based on the actual scenario, whereas for hiding
attack, attackers can employ stripe-based perturbations for
concealment.

A. Target Image Prepossessing

Upon acquiring the image to be injected, the initial step in-
volves preprocessing, which encompasses scaling and padding,
brightness normalization, color and contrast adjustment, and
noise reduction.

Scaling and Padding: To ensure that the injected image
appears in its entirety and at an appropriate size within the
target camera’s field of view, the target image should be
suitably scaled to be slightly smaller than the resolution of
the target image sensor. The specific scaling ratio must be
determined further based on the attack scenario and the target
of the attack.

Color and Contrast Adjustment. Once the image is
injected in the form of an electromagnetic signal, it will
undergo a series of digital processing procedures, such as
white balance and gamma correction. Direct modulating and
injecting the original image will inevitably cause color devia-
tion and contrast shift. Therefore, to faithfully reconstruct the
targeted image, we pre-adjust its color and contrast, which can
be determined by pre-testing in a camera of the same type as
the target.

Noise Reduction. The noise contained in the original target
image can degrade the image quality, thereby affecting the
visual effects of injection and the recognition performance
of the injected image. By applying the denoising method, it
is possible to enhance image quality, improve visual effects,
and increase recognition accuracy. We applied K-SVD as the
denoising algorithm, which could efficiently remove image
noise while preserving important structural details based on
sparse coding.

Brightness Normalization. As the image data is modu-
lated onto the carrier for transmission during the subsequent
signaling modulation process, it is necessary to normalize the
value of all pixels, facilitating the generation of image signal
data. Normalization can be carried out by dividing the pixel
value at each position in the original image by the maximum
value for each pixel.

B. Image Signal Generation

After preprocessing the target image, we next generate the
amplitude and phase sequences required for modulation from
the processed image. In particular, we calculate the amplitude
and phase corresponding to each pixel based on its RGB values
and then arrange them sequentially according to the signal
readout order of the CCD (row by row). Based on the different
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Fig. 9: The attack workflow. The attacker first selects the input image according to the attack scenario. Based on the choice
between monochrome or color injection, the attack then derives the amplitude and phase data from the preprocessed image.
Finally, the attacker performs the modulation and transmission of the generated signal.

effects of attacks, we divide the attacks into two paradigms,
monochrome injection and color injection.

1) Monochrome Injection: To achieve optimal injection
with maximum contrast, we divide all pixels based on the
average value of the converted grayscale image and implement
injections that either increase or decrease brightness accord-
ingly. The amplitude and phase of the injection signal can be
obtained by the following equations:

Amono(x, y) = |Y (x, y)− Yavg| (16)

φmono(x, y) =
π

2
× sign(Y (x, y)− Yavg) (17)

where Y(x,y) represents the brightness of the pixels at the
corresponding location in the target image, which can be
calculated by the following equation [57]:

Y (x, y) = 0.299 ∗R(x, y)+ 0.587 ∗G(x, y)+ 0.114 ∗B(x, y)
(18)

where R(x,y), G(x,y), and B(x,y) represent the red, green,
and blue components of the corresponding pixel location,
respectively. Yavg represents the average brightness of all the
pixels in the target image. The function sign(x) returns 1
for positive x and -1 for negative x. In addition, the attacker
can flexibly adjust Yavg to enhance either the bright part or
the dark part of the injection, depending on the situation.
As discussed in Section IV-C, the upper and lower limits of
increasing and decreasing brightness are influenced by ambient
light. Therefore, when the ambient brightness is too high, it is
appropriate to increase Yavg to enhance the details of the dark
areas; conversely, when the ambient brightness is low, Yavg

can be reduced to emphasize the bright areas.

2) Color Injection: The analysis in Section IV-D identifies
the essence of the generation of different colors as the result
of injected signals with distinct phases and amplitudes into
the RG and GB rows. Since we can only select one color
respectively from the RG row and the GB row each by
altering the signal phase, we choose to interfere with two
color channels with higher values out of the R, G, and B
channels of the target pixel. According to the RGB value of
the target pixel and the row where the target pixel is located,
the amplitude and phase required for color injection are shown
in Table I. R(x, y), G(x, y), B(x, y) represent the R, G, and

TABLE I: The requirements of the amplitude and phase of
attack signals for color injection.

Cmin(x, y)
RG rows GB rows

V ϕ V ϕ

R(x, y) G(x,y)−R(x,y)
255

−π
2

B(x,y)−R(x,y)
255

−π
2

G(x, y) R(x,y)−G(x,y)
255

π
2

B(x,y)−G(x,y)
255

−π
2

B(x, y) R(x,y)−B(x,y)
255

π
2

G(x,y)−B(x,y)
255

π
2

B color channels of the target pixel, while Cmin(x, y) denotes
the minimum value among them. According to Eq. (14) and
Eq. (15), altering the phase will concurrently result in a change
in the overall amplitude of the signal. Therefore, we select the
signal’s phase to be π

2 or −π
2 to ensure interference with the

correct color channel, and independently adjust the amplitude
through Vin to simplify the modulation.

C. Image Signal Modulation

After generating the amplitude and phase sequences from
the preprocessed image, we perform amplitude and phase
modulation to generate the attack signal as follows:

P [n](x, y) = Vin(x, y)× sin(2πfinn+ φ(x, y)), (19)

where Vin(x, y) and φ(x, y) are the amplitude and phase of
the pixel P [n] at the position (x, y) on the targeted image
respectively, as shown in Fig. 10. The following section
details the design of the carrier frequency and sample rate
in modulation.

1) Carrier Frequency: The selection of the carrier fre-
quency involves considerations of the coupling efficiency,
whether the injection is monochrome or colored, and the
influence on the morphology. The coupling efficiency of the
attack signal dictates the maximum amplitude of the signal
that can be injected. As mentioned in Section IV-A, the
effective injection frequency range depends on the coupling
frequency of the structure of the circuit itself. We can obtain
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Fig. 10: Illustration of the generation of attack signal. First,
extract the amplitude and phase data from the preprocessed
image. Then implement amplitude-phase modulation.

the optimal frequency band with the utmost coupling efficiency
by conducting a preliminary frequency sweep. It should be
noted that, due to the potential existence of multiple injection
points in the specific camera circuit, there may be multiple
discontinuous electromagnetic sensitive frequency ranges. The
frequency specifically used for injection should be chosen
from the range with the highest injection efficiency and the
lowest signal-to-noise ratio. Furthermore, based on the analysis
in Sections IV-C and IV-D, different frequency bands are
associated with monochrome and color injections respectively.
Therefore, one needs to identify the more accurate frequency
bands corresponding to the monochrome or color injection
among all feasible options. Finally, according to the analysis
in Section IV-B, the morphology injected is affected by fine-
tuning of the frequency. When the frequency precisely meets
the condition fin = N

2 × fs, patterns without stripes can
be injected. Therefore, it is necessary to continue fine-tuning
the frequency within the frequency band with the optimal
coupling efficiency to find the precise frequency that satisfies
the above equation, which is utilized as the carrier frequency
in modulation.

2) Sample Rate: The sample rate is a critical parameter
in signal modulation which represents the number of samples
per second that are modulated onto the carrier. In order to
inject a pattern without distortion, it is essential to ensure that
the time to transmit a row of data from the modulated image
aligns with the time to transmit a row of pixel signals when the
image sensor is operating normally. This can be accomplished
by appropriately adjusting the sample rate, which is determined
by the following equation:

Sample Rate =
Image Width

Trow
(20)

where Image Width represents the width of the preprocessed
image, i.e. the total number of pixels in a row. Trow denotes the
time required by the camera to normally transmit a row of pixel
signals, which can be calculated by the following equation:

Trow =
1

F ×Nrows
(21)

where F represents the frame rate of the camera, and Nrows

donates the total number of rows in the camera’s image sensor.
If the sample rate does not satisfy Eq. (20), it would lead

to drift in the position and color of the injected image in
consecutive frames.

D. Signal Transmission

After the signal has been modulated, it is transmitted from
the signal generation device to an amplifier for amplification
and then conveyed through an antenna. Throughout this pro-
cess, our primary considerations are focused on two aspects:
gain and synchronization.

1) Gain: The changes in power during the signal transmis-
sion process can be calculated from the simplified version of
the Friis transmission equation [28]:

Pr = PtGtGr(
λ

4πd
)2 (22)

where λ is the signal wavelength, and d represents the attack
distance. Pr and Pt respectively represent received power
and transmitted power. Gt and Gr represent the gain of the
transmitting antenna and the gain of the receiving antenna,
which has taken the effects of the radiation angle into account.
Assuming that the attacker has performed the injection at a
distance of d0 with a transmit power of Pt0 beforehand, she
can set the transmit power to achieve the same attack effect at
a distance of d by using the following equation:

Pt = (
d

d0
)2Pt0 (23)

2) Synchronization and Position: In certain attack scenar-
ios, the injection pattern needs to occur at a specific location,
requiring the injected signal to be time-synchronized with the
camera’s original signal. We refer to the method in previous
work [21], demonstrating the feasibility to synchronize the sig-
nals by detecting electromagnetic leakage of the target camera.
The electromagnetic signals leaked from the target camera and
synchronization methods are detailed in Appendix A.

VI. EVALUATION

We first evaluate the GhostShot attack on 15 commercial-
off-the-shelf cameras and quantify the impact of the attack
distance and angle. Then, we evaluate the impact of at-
tacks in four computer vision scenarios, including medical
diagnosis (Section VI-C), fire detection (Section VI-D), code
scanning (Section VI-E), and night vision object detection
(Section VI-F). Furthermore, we show the effects of GhostShot
attacks on misleading human vision in Section VI-G.

A. Experimental Setup

We conduct all experiments in a shielded chamber fol-
lowing regulations and also wear electromagnetic shielding
clothing, and the experiment setup is shown in Fig. 11(b).
When testing the cameras outside the lab, we did not observe
similar interference from other electronic devices, as the attack
is effective only with intentional signals of specific frequencies
and waveforms. The attack devices used in the laboratory
setting include an Ettus USRP X310 with two UBX-160 RF
daughter boards (which support a maximum signal bandwidth
of 160 MHz) for signal generation, a Mini-Circuits ZHL-
100W-GAN+ amplifier for EMI signal amplifying, and an
antenna for EMI signal transmission. It is worth noting that
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TABLE II: Feasibility of attack on 15 COTS cameras.

CCD Camera System and Sensor Configureation Freq.Mono.(MHz) Freq.Color(MHz) Brightness
[-255,255]

Hue
[0°,360°]Type Vendor Model Sensor Model Res. FPS Range Opt. Range Opt.

A
na

lo
g

C
C

T
V

MingChuangDa \

Sony

ICX811 976×582 50 53.2-57.6 55.6 67.6-71.1 69.2 -105∼133 360°

ShunHuaLi
SHL-223 ICX811 976×582 50 44.7-51.7 48.1 43.1-44.6 43.5 -138∼156 360°

SHL-019-1 ICX873 720×576 50 70.5-74.7 72.6 64.8-70.4 67.5 -124∼139 360°

Szrs \ Unknown 640×480 60 85.2-89.2 87.3 51.3-53.5 52.6 -110∼148 360°

LantTian TD-813 ICX663 976x582 60 47.4-48.7 47.9 57.3-59.8 58.0 -137∼145 360°

Mintron
MTV-37S10P ICX405 798×548 50 94.4-98.2 96.0 60.8-64.9 62.4 -116∼128 360°

MTV-73X11HP ICX409 798×548 50 97.2-99.1 98.2 67.2-69.1 68.4 -92∼117 360°

KangShi \ ICX811 976×582 60 56.5-57.2 56.7 57.3-63.4 60.9 -108∼131 360°

Hayear \ Unknown 1280×1024 60 81.5-86.0 83.7 74.3-77.1 75.6 -87∼114 360°

D
ig

ita
l

E
th

er
ne

t Basler ACA1300-30GC ICX445 1296×966 60 \ \ 59.5-67.2 63.6 -59∼64 360°

MindVison

MV-UBD130C

Sharp

Unknown 1280×960 35 \ \ 41.3-66.5 53.9 -46∼62 360°

MV-GED130C Unknown 1280×960 43 \ \ 63.7-68.2 66.0 -55∼69 360°

MV-UBD32C Unknown 640×480 140 \ \ 58.8-69.4 64.2 -88∼103 360°

DaHeng MER-032-120GC RJ33B 656×492 120 48.3-76.6 62.3 81.7-100 92.8 -34∼41 360°

Hikivision MV-CE013-50GC RJ33B4A 640×480 30 \ \ 64.4-68.0 66.2 -37∼59 360°
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Fig. 11: Illustration of the experiment setup used in (a)
preliminary studies and (b) evaluation experiments.

the signal generator needs to have a high capability of data
modulation to achieve the capability of arbitrary injection
mentioned in Section V. The under-test CCD cameras are
positioned in front of an LCD monitor that displays images
simulating various visual scenarios. During the evaluations, all
commercial cameras are tested in their original packages and
default settings without modification. To validate the potential
impact on image applications, we conduct the following case
studies with a 7cm attack distance shown in Fig. 11(b).

B. Attack on Various Cameras

1) Impact of Camera Models: We evaluate the attacks on
15 cameras, including 9 analog CCTV cameras and 6 digital
cameras, as shown in Table II in the Appendix. The image
sensors used in these cameras are mainly from Sony and Sharp
with specific models. We perform a frequency sweeping test
on each camera within 20-100MHz in steps of 0.1MHz and
record the ranges where the monochrome bands and color
bands appear with high coupling coefficients and low signal-
to-noise ratios. We also locate and find the frequency where
fenve = 0 according to Section IV-B, which will serve as the
carrier frequency in subsequent modulations. We record the
absolute value of brightness variation caused by injection in
the same area, and conduct the amplitude-phase modulation
for each color frequency band to verify the achievable chroma
range.

Results: We observe similar striping phenomena in both
analog CCTV cameras and digital cameras across 15 dif-
ferent models in their original packages (all metal cases),

(a) (b)

Fig. 12: The impact of (a) attack angle and (b) attack distance
on the attack.

and the corresponding results are recorded in Table II. Given
that digital cameras typically have a higher resolution and
ADC sampling rate, it follows that each individual color or
monochrome stripe should have a broader range as suggested
by Eq. (4), which is validated in the experiment. The actual
measured attack frequency range follows the rules stated in
Sections IV-C and IV-D. However, due to the camera circuit’s
variable coupling efficiency at different frequencies, the actual
measured attack frequency range is a subset of the theoretical
frequency range. Finally, the absolute value of the injected
brightness variation suggests that analog output cameras are
more susceptible to EMI than digital cameras.

2) Impact of Attack Angle: We select a representative
camera (SHL-223) as the subject for evaluation in the impact
of attack distance and angle and the following case study
experiments. We maintain a constant attack distance and the
transmission power and fix the position of the target camera.
The angle of attack is adjusted by altering the position of the
attack antenna within the same horizontal plane as the target
camera, varying from -180° to 180°, in steps of 30°. For each
position, we perform monochrome injections separately for
increasing and decreasing brightness to measure the resulting
changes in average brightness. Additionally, we conduct color
injections to measure the average hue of the injected images.
The results are recorded in Fig. 12(a).

According to the results, when the antenna is located on the
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(a)

(b)

Fig. 13: Illustration of (a) attack under various light conditions
and (b) evaluation of the impact of ambient brightness

starting axis, i.e., parallel to the plane of the camera lens, the
changes in average brightness are maximal. As the antenna
shifts towards both sides, the injection amplitude gradually
decreases, reaching minimized injection when the angle hits
90 degrees. However, the hue of the injected images shows
minimal variations with angle. Furthermore, the attack results
show that within the ranges of -180°-0° and 0-180°, the impact
of the angle on the attack is symmetrical. This is due to the
symmetrical geometric structure of the antenna and camera.

3) Impact of Attack Distance: We position the antenna
parallel to the lens, keep the attack angle and the transmis-
sion power constant, and change the distance between the
antenna and the camera in increments of 5 cm. We perform
similar monochrome and color injections as mentioned in
Section VI-B2 to measure the changes in average brightness
and hue. We test the absolute value of the brightness change
caused by the injection in the range of 0 to 60 cm and
recorded the results in Fig. 12(b). According to the results, the
brightness of the injection reaches its maximum at 0 cm and
gradually decreases as the distance increases. This is due to
power attenuation during the propagation of electromagnetic
waves. Also, the hue of the injected image does not show
significant variation with changes in distance.

4) Impact of Ambient Brightness: We vary the background
brightness level from 0 to 250 in a step of 50 and perform
color injection and greyscale injection respectively, as shown in
Fig. 13(a). For greyscale injection, we injected squares of black
and white and assessed the values of increased and decreased
brightness. For color injection, we injected squares of red,
green, and blue, and evaluated the increased and decreased
brightness values as well as the hue of the injected color. We
snapped 10 images at each brightness setting and computed
the average scores. The results indicated the capability of the
attack shows overall resilience at different brightness levels, as
illustrated in Fig. 13(b). At a background brightness of 0, the
attack cannot further decrease the brightness but can achieve
the optimum increase of 127. Conversely, at a brightness
of 250, the optimum decrease of -123 is achieved, while

TABLE III: Attack performance in medical diagnosis.

Dataset Model Status Metrics
Precision Recall Accuracy F1-Score

Camelyon16 DSMIL
Benign 0.68 0.59 0.66 0.63
Attack 0.37 0.33 0.40 0.34

TABLE IV: Attack performance in fire detection.

Dataset Model Status Metrics
Precision Recall Accuracy F1-Score

NASA
2018

Yolov5
Benign 0.91 0.63 0.79 0.75
Attack 0.09 0.08 0.15 0.09

FireNet
Benign 0.94 0.58 0.77 0.72
Attack 0.11 0.09 0.18 0.10

D-Fire
Yolov5

Benign 0.96 0.68 0.83 0.80
Attack 0.14 0.11 0.21 0.12

FireNet
Benign 0.93 0.65 0.80 0.76
Attack 0.05 0.04 0.17 0.05

no further increase is possible. At intermediate levels, the
attack demonstrates the ability to both increase and decrease
brightness, with the sum of absolute changes peaking at the
brightness of 100.

C. Case Study 1: Medical Diagnosis

CCD cameras are widely used in medical microscopy due
to their lower noise and higher sensitivity [6], [45], [19]. We
evaluate the impact of attacks on automated diagnostic systems
in intelligent healthcare. We evaluated CA (Creating Attack)
and HA (Hiding Attack) on the cancer diagnosis model
based on DSMIL (Dual-Stream Multiple Instance Learning
Network) [30]. We randomly select a Whole Slide Image
(high-resolution images obtained through scanning) from the
Camelyon16 dataset, divide it into patches of the correspond-
ing model entry size, and select 100 cancer-negative samples
for CA and 100 cancer-positive samples for HA. For CA, we
pre-process and extract features detected as cancer from the
positive samples and use them as input images to generate the
attack signal. For HA, we conceal the original features of the
images with stripes, as shown in Fig. 14(a). We evaluated the
model’s accuracy, precision, recall, and F1 score before and
after the attack, with the results presented in Table III. The
results show that the attack significantly degraded the model’s
performance. In addition, we implemented the attack on two
types of microscopes to demonstrate the practical threats of the
attack in a real-world scenario, as detailed in the Appendix D.

D. Case Study 2: Fire Detection

CCD cameras possess an exceptional dynamic range, mak-
ing them ideal for a variety of security surveillance ap-
plications [8], including fire monitoring [49] and security
surveillance [25], etc. Many CCD cameras [14], [40] are used
in commercial intelligent fire detection systems [18], [17],
enabling automatic fire detection and alarm activation. We
assess the attacks on two fire detection models, YOLOv5 [12]
and FireNet [32], across two fire datasets, NASA 2018 [37]
and D-Fire [7]. We randomly selected 100 non-fire images
and 100 fire images from each dataset and conducted CA and
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Fig. 14: Case studies on medical diagnosis, fire detection and QR code scanning.

(a) The injected cars (b) The injected persons

Fig. 15: The injection of cars and persons under low-light
environment.

HA respectively. Subsequently, the post-attack images were
identified with two detection models. The results are presented
in Table IV, indicating that the attack could considerably im-
pact the effectiveness of fire detection systems across different
models and datasets.

E. Case Study 3: QR Code Scanning

CCD barcode scanners provide several benefits compared
to other types of barcode scanners, including enhanced re-
liability, greater durability, and cost-effectiveness [39], [48].
Injecting a fake QR code may lead to unintentional purchases
or purchases at the lowest illegal price. Moreover, the injection
of malicious QR codes could result in the execution of unau-
thenticated commands [58], causing operating system crashes,
or executing harmful instructions. We implement attacks on
QR code recognition systems in the context of industrial lo-
gistics. We utilize QR codes for a short text “you’re hacked!”,
a malicious picture and a malicious script to produce the
corresponding attack signals, as shown in Fig. 14(c). We test
the decoding of these QR codes with more than 10 scanning
systems, and all systems could correctly decode the intended
results. In real-life attacks, the QR code could correspond to
malicious website links, malicious file downloads, malicious
payment codes, etc., causing potentially widespread damage.

F. Case Study 4: Night Vision Object Detection

Due to the excellent imaging performance in low light
conditions, CCD cameras are utilized for night vision ob-
ject detection [15], [44]. We utilize three models based on
YOLOv4, YOLOv7, and Mask R-CNN for object detection

(a) A notice (b) A “FAKE” pattern (c) A McDonald’s logo

Fig. 16: Case study to deceit to the human.

and simulated the operation of CCD cameras in low-light
night vision environments. We successfully inject two different
types of objects, car and person, into 60 distinct low-light
backgrounds, as shown in Fig. 15. The confidence threshold for
all models is uniformly set to the default value of 0.5, which
means that objects with a confidence level exceeding 0.5 can be
successfully detected. For YOLOv4, YOLOv7, and Mask R-
CNN, the average success rates of detecting the injected cars
are 98.3%, 96.67%, and 100% respectively, and the average
success rates of detecting the injected persons are all 100%.

G. Case Study 5: Deceit to the human

We conduct the attack in real-world settings and observed
that it not only deceives computer vision systems but also can
mislead humans to some extent. For example, in Fig. 16(a),
a notice message injected onto a piece of paper could mis-
lead people into sending important emails. In Fig. 16(b),
the injected “FAKE” pattern can lead people to question the
authenticity of the captured image. The injected McDonald’s
logo in Fig. 16(c) presents people with misleading visual
information. In addition, we conducted a user study to evaluate
the difficulty of noticing the injected changes for people and
the attribute factors affecting the noticeability of the attack, as
detailed in Appendix E.

H. Dynamic Injection

During the experiment, we discover the possibility of
achieving stable injection across multiple consecutive frames.
Since the attack signal is injected only in each current frame,
continuous signal injection is required to persist the injected
images. By controlling the sampling frequency in signal mod-
ulation, the attack signal could align with the frame rate,
enabling injection at the same location across consecutive
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frames. Additionally, animated injection can be achieved by
injecting different images across consecutive frames. Video
demos can be found on [13].

VII. DISCUSSION

A. Countermeasures

Shielding. Though we have achieved successful attacks on
15 commercial CCD cameras in their original metal cases,
specialized electromagnetic shielding design can be employed
as a critical defense against the attack. We investigate the im-
pact of various common electromagnetic shielding materials,
including metal plates, fibers, sponges, and tin foil, on the
attack, and the results are shown in Fig. 24 in Appendix F.

Image forgery detection. We implemented two image
forgery detection methods, Noiseprint [3] and ManTraNet [52],
as defense models to evaluate their effectiveness in detecting
forged patterns injected by the attack. Noiseprint performs
deepfake detection by extracting fingerprints of cameras while
ManTraNet utilizes end-to-end deep neural network architec-
ture to extract anomaly features. As shown in Appendix G,
the results indicate that the attack can circumvent Noiseprint
with high probability, while ManTraNet serves as an effective
countermeasure.

Low-Pass Filters. A low-pass filter permits the passage of
low-frequency signals compared to the cutoff frequency and
attenuates signals with higher frequencies. Many camera man-
ufacturers already equipped optical low-pass filters placed over
image sensors, reducing the occurrence of undesired moiré
patterns and false colors. Nevertheless, low-pass filter circuits
are rarely utilized in practice. Since the coupling frequency
of attack signals typically exceeds the pixel frequency of
the image sensor, the low-pass filter circuit before ADC can
effectively filter out the attack signals.

Redundancy Pixels. As introduced in Section II-B, the
AFE module utilizes redundant optical black pixels to elim-
inate noise. A straightforward approach entails detecting
anomalous signals from these redundant pixels. Since these
pixels are not optically exposed, detecting abnormal signals
from their outputs could effectively diagnose attacks.

B. Limitations and Future Work

The attack still has the following limitations at present. (1)
There is insufficient regulation of saturation in color injection.
Based on the analysis in Section IV-D, we are restricted to
injecting colors with high saturation considering the current
capabilities of our devices. The injection of fully saturated
images can be achieved by precise modulation at the pixel
level, which typically requires highly advanced modulation
capabilities from the device. (2) Due to the separate fre-
quency bands needed for monochrome and color injection,
presently only one type of injection can be conducted simulta-
neously using a single carrier frequency. The combination of
monochrome injection and color injection can be achieved by
utilizing multi-carrier modulation, which enriches the diversity
of scenarios for the attack. (3) Our attack specifically targeted
CCD cameras, and no similar phenomena have been observed
in CMOS cameras. Further investigation is needed to determine
the feasibility of conducting attacks on CMOS cameras.

VIII. RELATED WORK

Compare to previous works. Compared to previous
work [26], we present the first IEMI attack that can inject
arbitrary grayscale and colored images into off-the-shelf CCD
cameras under normal light conditions. Compared to grayscale
injection, color injection presents challenges in the following
aspects: (1) Stimulating specific color channel: In color filter
arrays, attack signals often induce common effects across
adjacent color channels, resulting in grayscale injection. We
design the signal frequency and leverage aliasing in the
camera’s sampling process to ensure that the sampled result
predominantly affects a single color channel, allowing for
the injection of color patterns. (2) Stimulating various color
channels: Injections in the RG or GB rows lead to simultaneous
changes in multiple color channels, making it difficult to
balance injection ratios across the RGB channels. We introduce
a phase-based injection method to control the proportion of
color components for the first time and achieve the injection
of various colors. (3) Achieving accurate color injection: The
injected EMI signal causes a nonlinear increase in the injected
color values, complicating the attacker’s ability to predict the
final result accurately. Unlike greyscale injection, even minor
deviations across different color channels can result in color
distortions. We implement pre-injection feedback and fine-
tuning of the injected color image to reduce color deviation,
ensuring that the final injected colors are accurate and aligned
with the intended values.

IEMI attacks on sensors. EMI signals have been widely
studied in the security research community to destroy the
integrity and reliability of analog and digital sensor outputs in
recent years. In 2013, Kune et al. [28] first described the IEMI
attacks on sensors and examined two types of cardiac devices
and microphones. Since then, IEMI attacks to manipulate the
sensor’s measurement have been reported on microphone [28],
[53], [54], [10], [5], touchscreen [31], [11], [43], [51], [23],
[60], temperature sensor [29], [46], [34], [24], [9], LiDAR [2],
keyboard [22], image sensor [4], [26], [21] and so on. The
consequences of these attacks range from denial-of-service to
injecting malicious data or even completely manipulating the
operations of sensor-based cyber-physical systems. This paper
conducts a systematic security analysis of the IEMI attacks
on CCD cameras and characterizes the limitations of injecting
targeted images into CCD cameras with IEMI.

Attacks on cameras using physical signals. Researchers
have already found that attackers can use light and laser [36],
[55], [56], [38], [27], acoustic [20], and EMI [21], [26] signals
to interfere with the captured image and thus spoof the camera-
based computer vision systems. Compared with light, laser,
and acoustic signals, attacks with EMI signals are stealthier
and do not require line-of-sight. The recent work [21] has
uncovered the vulnerabilities of image signal transmission with
IEMI, and attackers can inject row-level color stripes into
images. Another recent work [26] has shown the feasibility
of injecting signals into CCD image sensors using IEMI,
which can only inject grey-scale image perturbations in a dark
environment. Informed by these works, this paper aims to
explore the further capabilities and limits of IEMI attacks on
CCD cameras and proposes the first attack to inject an arbitrary
colored image with targeted chromaticity and morphology into
the CCD camera under normal ambient light conditions.
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IX. CONCLUSION

In this paper, we design the attack against CCD cameras
that can inject arbitrary monochrome or color images through
IEMI. We confirm the feasibility of the attack with 15 CCD
cameras and demonstrated the threat of the attack to computer
vision systems, as well as its ability to mislead humans through
case studies. We propose hardware and software methods to
defend against the attack.
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APPENDIX

A. Electromagnetic leakage and synchronization signal

We captured the electromagnetic signals leaking from the
target camera through an antenna and displayed the captured
signals on an oscilloscope as shown in Fig. 17. Fig. 17(a)
shows the signal presented at 10ms per cell, where the start
and end of frame transmission by the camera can be observed.
Fig. 17(b) shows a magnified view of the signal with a scale
of 16 µs per cell, where the start and end of a single-row
transmission can be clearly observed. The synchronization
signal can be generated from the electromagnetic signals
through simple signal processing methods such as threshold
detection, as illustrated in Fig. 18.

Furthermore, to inject at the target position, a specific delay
of attack signal is required. Assuming that the attacker needs
to inject the target image at coordinates (x, y), with the origin
at the upper left corner, the required delay can be determined
by the following equation:

∆T =

(
y +

x

Ncolumn

)
∗ Trow +N ∗ Tframe − Tdelay (24)

where Trow and Tframe represents the row and frame trans-
mission time respectively, Tdelay represents the hardware delay
in receiving and transmitting signals. Adding the duration of
N frames ensures that the total delay remains positive after
subtracting the hardware delay. Once synchronized with the
transmission signal, signals transmitted with a delay of ∆ T
would inject patterns at the target position.

(a) (b)

Fig. 17: The electromagnetic leakage of target camera recorded
at (a) 10ms and (b) 16us per cell.

B. Relation between distance and power

We conduct experiments to investigate the relationship
between power and distance at achieving the same injection
brightness, as shown in Fig. 19. The results show that within
a certain margin of error, the relationship between power and
distance conforms to the results of Eq. (23).
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Fig. 18: The synchronization signal can be generated from the
electromagnetic leakage of the target camera.

Fig. 19: The relationship between attack distance and power
to achieve the same brightness.

(a) Experiment setup (b) Attack at a distance

Fig. 20: Experiments to conduct an attack at a distance.
The maximum attack distance reaches 1 meter by using a
directional antenna.

C. Conduct attack at a distance

The attacker can increase the attack distance using high-end
equipment such as directional antennas and high-gain power
amplifiers. We have extended the maximum attack distance to 1
meter using a directional antenna, as shown in Fig. 20, which
surpasses the distance of previous EMI attacks on cameras
(0.5m in [26], 0.3m in [21]). Demos can be found on [13].

D. Test on real medical devices

We performed the attack on two types of microscopes
to demonstrate the practical feasibility of the attack in real-
world scenarios. Specifically, we implemented the attack on
two microscopes with different magnification levels, SHL-10A
and SN-BP30, both of which are applicable in real-life medical
research. SHL-10A offers a maximum magnification of 135x,

(a) (b)

Fig. 21: Illustrations of SHL-10A (a) before attack and (b)
after attack.

(a) (b)

Fig. 22: Illustrations of SN-BP30 (a) before attack and (b) after
attack.

making it suitable for tissue-level observations, while SN-
BP30 provides a magnification of 1600x, enabling cellular-
level observations. Both microscopes were equipped with
manufacturer-provided CCD cameras as electronic eyepieces
used for recording during routine operation. To provide a
clear view of the image captured by the camera in real-time,
the camera was connected to a host computer that collected
the images and displayed them through an LCD monitor. We
successfully carried out the attack on both microscopes. As
shown in Fig. 21 and Fig. 22, we successfully injected the
cancer pattern designed in the medical case study into an
observed kidney tissue sample.

E. User study on the noticeability of attack

To evaluate the difficulty for people to notice the attack-
injected changes and to investigate the factors affecting the
noticeability of the attack, we conducted a user study, which
was approved by the Institutional Review Board (IRB) of our
institute.

Setup: We recruited 40 participants, aged 21 to 45 years
and comprised 20 males and 20 females with diverse tech-
nical backgrounds. The user study was conducted through
questionnaires including images of 6 categories covered in
our case studies: text, logo, cell, fire, QR code, and traffic.
Each category included 2 real images and 2 images falsified
by our attack. All images were displayed on the LCD monitor
and photographed for fairness, where the real images were
captured directly and the injected images were captured under
attack. To simulate the best chances of the attacker, the injected
pattern was carefully designed to match the image background
and injected at a reasonable location of the image. The image
orders were randomized for presentation and an attention-
check question was included.

Tasks: Participants were informed that falsified images
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TABLE V: The false positive rate, false negative rate, and
accuracy across different cases in user study.

Cases Metrics
False Positive Rate False Negative Rate Accuracy

Text 0.17 0.55 0.64
Logo 0.28 0.46 0.63
Cell 0.10 0.85 0.53
Fire 0.38 0.51 0.56
QR Code 0.56 0.39 0.53
Traffic 0.29 0.55 0.58

Average 0.30 0.54 0.58

were present without knowing their total numbers and were
asked to complete the following tasks: (1) Falsification Identi-
fication: for each image, participants were asked if they could
identify whether the image had been falsified or manipulated.
(2) Concealment Assessment: If participants identified a falsi-
fied image, they need to rate the concealment of the injected
pattern on a scale of 1–10 (1 being very easy to spot, 10 being
extremely difficult). (3) Reasoning Selection: After questions
for all images were completed, participants were asked to
select the primary clues for identifying falsified images.

Results: The results are presented in Table V and Fig. 23.
The findings indicate that the injected cell images in the
medical diagnosis scenario received the highest false negative
rate of 0.85 and are the most difficult for our participants
to identify. On the contrary, the injected QR codes have the
lowest false negative rate of 0.39 and are the easiest to identify,
though there is a high chance (0.56) that genuine QR codes
can be confused with forged ones. In addition, we analyzed
the reported concealment scores for the injected images across
different image categories. The results in Fig. 23(a) show
that participants reported the highest average concealment
score of 5.42 for the injected cell images, while the reported
concealment was lowest in the traffic scenario, with an average
score of 2.83.

The average identification accuracy of the six image classes
is 0.58, indicating that human participants can identify our
injected images better than random guesses. To investigate
the clues of identification, we compiled the users’ votes on
the reasons for identifying the falsifications. The first reason
received three votes, the second received two votes, and the
third received one vote. The results shown in Fig. 23(b)
indicate that abnormal shadows, color, and contrast are the
main reasons contributing to the identification of the injected
images, where the attack could be further improved in future
work.

F. Impact of shielding

We investigate the impact of various common electro-
magnetic shielding materials, including metal plates, fibers,
sponges, and tin foil, on the attack, as illustrated in Fig. 24. The
extra shielding is performed based on the intact package of the
cameras. The results indicate that shielding can only mitigate
rather than completely eliminate the effects of the attack. The
injected brightness experiences varying degrees of attenuation
due to the influence of shielding materials, while the hue

(a) (b)

Fig. 23: The result of (a) difficulty scores in recognizing
the injected images and (b) the reasons for identifying the
falsifications.

Fig. 24: Results of the impact of different shielding materials
on the attack.

remains largely unaffected. Among the different materials,
sponge shows the least impact on the attacks, whereas metal
plates exhibit the greatest impact. While the results indicate
that shielding attenuates electromagnetic signals, a complete
shielding camera is challenging in practical work scenarios
because CCD sensors, the target of attacks, need to be exposed
to sense light properly.

G. Image forgery detection

We implemented Noiseprint and ManTraNet as defense
models to detect the injected images. Noiseprint is a CNN-
based deepfake detection method that leverages camera fin-
gerprints, and ManTraNet is a unified deep neural network
architecture that performs end-to-end detection and localiza-
tion of image forgeries. The results are presented in Fig. 25.
In Ghostshot 1 and 2, while the noiseprint and heatmap reveal
distinct forged areas, the model’s identified forged regions do
not exactly align with the actual injected locations, leading to
false detections elsewhere in images. In Ghostshot 3 and 4, the
noiseprint completely failed to detect the forged areas under
attack. The results of ManTraNet indicate that the attack can
be detected in most cases. We also conducted a comparative
experiment that applied the copy-move forgery on ground truth
images in QR code scanning scenarios, which can be readily
detected by both models. For ManTraNet, we observed that
images injected with EMI signal not only revealed detectable
areas at the injection sites but also introduced scattered detec-
tion spots throughout the rest of the image, which may result
from subtle interference induced by the harmonic frequencies
of the electromagnetic signals.
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Noiseprint ManTraNetInput Image

Fig. 25: The detection results of post-attack images from Noiseprint and ManTraNet. The results indicate that the attack can
circumvent Noiseprint while ManTraNet could detect the attack in most cases.

18


	Introduction
	CCD Imaging System Overview
	CCD Image Sensor
	Analog Front End
	Digital Back End

	Threat Model
	Attacker’s Goal and Attack Categories
	Attacker Capabilities and Assumptions

	Capabilities of IEMI on CCD Cameras
	Preliminary Experiments on CCD Cameras
	Capability of Morphology Modulations
	Causality Analysis
	Ability Investigation

	Capability of Brightness Modulations
	Causality Analysis
	Ability Investigation

	Capability of Coloration Modulations
	Causality Analysis
	Ability Investigation


	Attack Design
	Target Image Prepossessing
	Image Signal Generation
	Monochrome Injection
	Color Injection

	Image Signal Modulation
	Carrier Frequency
	Sample Rate

	Signal Transmission
	Gain
	Synchronization and Position


	Evaluation
	Experimental Setup
	Attack on Various Cameras
	Impact of Camera Models
	Impact of Attack Angle
	Impact of Attack Distance
	Impact of Ambient Brightness

	Case Study 1: Medical Diagnosis
	Case Study 2: Fire Detection
	Case Study 3: QR Code Scanning
	Case Study 4: Night Vision Object Detection
	Case Study 5: Deceit to the human
	Dynamic Injection

	Discussion
	Countermeasures
	Limitations and Future Work

	Related Work
	Conclusion
	References
	Appendix
	Electromagnetic leakage and synchronization signal
	Relation between distance and power
	Conduct attack at a distance
	Test on real medical devices
	User study on the noticeability of attack
	Impact of shielding
	Image forgery detection


