
Secret Spilling Drive:
Leaking User Behavior through SSD Contention

Jonas Juffinger
Graz University of Technology

Fabian Rauscher
Graz University of Technology

Giuseppe La Manna
Amazon1

Daniel Gruss
Graz University of Technology

Abstract—Covert channels and side channels bypass architec-
tural security boundaries. Numerous works have studied covert
channels and side channels in software and hardware. Thus,
research on covert-channel and side-channel mitigations relies
on the discovery of leaky hardware and software components.

In this paper, we perform the first study of timing channels
inside modern commodity off-the-shelf SSDs. We systematically
analyze the behavior of NVMe PCIe SSDs with concurrent work-
loads. We observe that exceeding the maximum I/O operations of
the SSD leads to significant latency spikes. We narrow down the
number of I/O operations required to still induce latency spikes
on 12 different SSDs. Our results show that a victim process
needs to read at least 8 to 128 blocks to be still detectable by an
attacker. Based on these experiments, we show that an attacker
can build a covert channel, where the sender encodes secret bits
into read accesses to unrelated blocks, inaccessible to the receiver.
We demonstrate that this covert channel works across different
systems and different SSDs, even from processes running inside
a virtual machine. Our unprivileged SSD covert channel achieves
a true capacity of up to 1503 bit/s while it works across
virtual machines (cross-VM) and is agnostic to operating system
versions, as well as other hardware characteristics such as CPU
or DRAM. Given the coarse granularity of the SSD timing
channel, we evaluate it as a side channel in an open-world website
fingerprinting attack over the top 100 websites. We achieve an F1

score of up to 97.0%. This shows that the leakage goes beyond
covert communication and can leak highly sensitive information
from victim users. Finally, we discuss the root cause of the SSD
timing channel and how it can be mitigated.

I. INTRODUCTION

Covert channels and side channels can bypass architectural
security boundaries. The concept of covert channels in com-
puters was first described by Lampson [38] in 1973. Com-
puters have numerous shared resources of limited size and
the contention or occupancy of each of these resources can
potentially open up a channel for covert communication or
even as a side channel. The properties of the shared resource

1Part of the work was done while affiliated with the Polytechnic University
of Milan.

thereby dictate the properties of the resulting channel: Caches
have a fine spatial granularity and are fast, leading to a high
temporal precision [53], [88]. Other channels, e.g., memory
bus contention [83], [84], port contention [2], [6], and cache
occupancy [67], only have a binary contention state. Infor-
mation leakage through these channels is purely in the time
domain, e.g., frequency and significance of timing variations.
Still, these channels can leak substantial sensitive informa-
tion [2], [67], [6], necessitating research on mitigations.

As the research landscape around high-spatial high-temporal
precision channels has grown substantially over the past two
decades [36], [53], [88], [54], more recent works investigate
channels in other parts of the system, including random num-
ber generation logic [16], execution ports [2], [6], execution
schedulers [17], cache occupancy [67], the PCIe bus [74],
idle states [89], [58], operating system data structures [33],
software-based power measurements [41], [37], and frequency
scaling [79], [80], [42]. While some channels are not be suit-
able to attack cryptographic algorithms, others are not suitable
to attack user input, and others cannot extract secret kernel
information (e.g., KASLR offsets). While covert channels by
themselves may have limited impact, it is a best practice for
evaluating new side channels in an ideal scenario where the
attacker has full control over both sender and receiver.

Given the properties of the various side channels published
in the literature, fingerprinting applications, websites, and
videos has become part of the standard evaluation methodol-
ogy for side channels that primarily leak in a single domain,
e.g., time, power, size. For instance, sizes of encrypted network
packets can be used to fingerprint applications [75], [64],
websites [59], [5], or video streams [13]. Spreitzer et al.
[68] mounted a closed-world website fingerprinting attack
using data-usage statistics on Android. More recent work [58]
demonstrated a video fingerprinting attack based on the detec-
tion of network interrupts on the victim machine, indirectly
observing network traffic. Shepherd et al. [65] exploit sensor
multiplexing across applications to build a covert channel
and fingerprint applications. Matyunin et al. [45] exploit the
magnetometer as a side channel to fingerprint applications
and websites. Website fingerprinting is the most widely used
fingerprinting attack used for side-channel evaluation, applied
to e.g., memory usage [32], performance counters [21], power

Network and Distributed System Security (NDSS) Symposium 2025
24–28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230208
www.ndss-symposium.org

Covert Channel Sender

Victim Surfing the Web

Covert Channel Receiver

Attacker Spying on the Victim

SSD

Accesses the
SSD

 Times own
accesses to detect
SSD contention

Covert
Communication

(Section IV)

Website
Fingerprinting

(Section V)

Fig. 1. Overview of of our attack. SSD contention is detectable by measuring
the round-trip time of accesses. This makes it possible to build a covert
channel and to spy on user behavior by fingerprinting visited websites.

consumption [56], cache occupancy [67], interrupt detec-
tion [11], [89], [58].

In this paper, we perform the first study of timing channels
in modern commodity off-the-shelf SSDs. We systematically
analyze the behavior of NVMe PCIe SSDs with concurrent
userspace workloads using the unprivileged io_uring inter-
face. We observe that exceeding the maximum I/O operations
leads to significant latency spikes that are visible to unpriv-
ileged userspace processes. In our analysis of 12 SSDs, we
narrowed down the number of I/O operations required to still
induce latency spikes. Our results show that a victim process
needs to read as little as 32 blocks or write as little as a single
block to be still detectable by an attacker. We analyze the
root cause of the timing differences by measuring the precise
time of I/O operations in the kernel. With timing differences
much larger than the overall time spent in the kernel, we
identify the SSD as the source of the timing channel. Using
this timing side-channel we show a covert channel and website
fingerprinting attack as shown in Figure 1.

We construct a covert channel, encoding bits into reads of
unrelated blocks, inducing latency spikes. Our covert channel
works across different systems and SSDs, even from processes
in a virtual machine. We achieve a true capacity of up
to 1 784 bit/s between processes, while also being agnostic
to virtual machines (cross-VM) with an capacity of up to
1 503 bit/s and operating system versions, as well as other
hardware characteristics such as processor and DRAM.

We evaluate the SSD side channel in an open-world website
fingerprinting attack over the top 100 websites and an “open”-
class with unknown websites. For previously visited websites,
the browser loads static files from its cache on the SSD, which
we measure through the contention channel. Based on the
website, the amount, size, and timing of these loads vary and
create a unique fingerprint.

We achieve an accuracy of up to 97.0%, which is on-par
with other state-of-the-art side channels that exploit signifi-
cantly faster channels inside the processor [11], [89], [58]. This
also shows that the leakage of the SSD timing channel goes
beyond covert communication and can leak highly sensitive
information from victim users.

We also evaluate the covert channel and website finger-
printing attack under various noise scenarios and show that
they can still work with other disk accesses present on the
system. Finally, we discuss the root cause of the SSD timing
channel and the challenges we identify to mitigate the attack
or eliminate the channel.

In summary, the contributions of our work are as follows:
• We present the first covert channel and side channel exploit-

ing internal timing differences in commodity SSDs.
• We perform a systematic analysis of the timing behavior of

SSDs from unprivileged userspace, using the io_uring
interface, and also from inside virtual machines.

• We present a cross-VM covert channel achieving up to
1 503 bit/s, which is 5 orders of magnitude faster than prior
covert channels on hard drive storage.

• We mount a website-fingerprinting attack with an accuracy
of up to 97.0%, which is on par with other side channels.
In Section II, we provide background information. In Sec-

tion III, we characterize the timing behavior of commodity
SSDs. In Section IV, we evaluate the SSD timing channel
in native and cross-VM covert channels. In Section V, we
evaluate the SSD timing channel in a website-fingerprinting
attack. We discuss the context of our work and mitigations in
Section VI. We conclude in Section VII.

II. BACKGROUND

In this section, we provide background information on covert
and side channels, SSDs, NVMe, and asynchronous I/O.

A. Covert Channels

Covert channels date back to Lampson [38] in 1973. Many
subsequent works studied covert channels [4], [71], initially
exploiting timing variations on multi-user systems [82], [27],
[28], and covert channels on inter-connected systems, e.g.,
using network packets, contention, and latency, later on [8],
[49], [76]. Subsequently, the move to virtual machines and
cloud computing motivated research on covert channels across
virtual machines [61], [51], [57]. Consequently, various covert
channels have been presented on modern CPUs, e.g., based
on CPU load [51], various CPU caches [81], [86], [88],
[46], [47], [48], [55], [25], [60], the memory bus [83], [84],
and 4K-aliasing [70]. On the software level, memory dedu-
plication [85], and on a broader system level scale, room
temperature [22]. Covert channels have also been studied on
GPUs [50], [14], [15], on mobile devices [44], [66], on cloud
FPGAs [18], [19], on power-performance measurement and
management features [34], [24].

In this work, we focus on covert channels at the outer layers
of the memory hierarchy, namely persistent drive storage,
i.e., SSDs in our case. Hence, most closely related to our
work are covert channels in the context of persistent drive
storage: Lipinski et al. [39] present a 0.1 bit/s covert channel
through hard-disk drive contention. Lui et al. [43] present a
covert channel on (now discontinued) Intel Optane persistent
memory. Tan et al. [74] exploit PCIe contention to leak
behavior of other PCIe devices connected to the same PCIe

2

link. This is only possible if PCIe switches or PCIe platform
controller hubs are used to share a link, which is not generally
the case for SSDs. Gruss et al. [20] present a 7 kB/s to 273 kB/s
covert channel on the OS page cache. Jiang et al. [33] present
a 20 kbit/s covert channel exploiting fsync operations on
the file system (and disk). Guri et al. [23] mounted an air-
gapped covert channel through audio signals emitted by hard
disk drives. They highlight that SSDs do not emit such noises
and, thus, mitigate this covert channel. Besides the early works
on HDD covert channels, no works have studied the timing
differences caused internally within commodity off-the-shelf
SSDs yet. Chen et al. [9] suggest that SSDs would mitigate
certain HDD timing covert channels.

Most closely related to our work are the works by
Trochatos et al. who studied covert channels using FPGAs
integrated into SmartSSDs [77] and achieved a bandwidth
of up to 0.066 bit/s at an error rate of 25%, as well as
temperature generated by the SmartSSD which can then be
sensed by the integrated FPGA [78], achieving a bandwidth
of up to 0.002 bit/s. Giechaskiel et al. [19] also use an FPGA
to mount a covert channel between AWS instances exploiting
SSD contention. They report a bandwidth of 0.125 bit/s. All of
these works rely on the use of FPGAs, which are not available
in most commodity systems, in particular not to unprivileged
workloads or inside virtual machines.

B. Website-Fingerprinting Side Channels

Building a side channel from a covert channel is not trivial: In
a covert channel, sender and receiver can adjust to noise with
error correction [48], coarse-grained contention, e.g., cache
occupancy [67], already suffices to transmit a signal. In a side
channel, the victim is a non-colluding sender that inadvertently
transmits information into the channel.

Website fingerprinting often serves as a benchmark for side
channels with low spatial resolution or no spatial component
at all, e.g., cache occupancy [67]. For a website fingerprinting
attack, the attack only needs to distinguish different patterns
in the e.g., frequency of interrupts [58], [11], [89], or energy
consumption [56], depending on website accesses. Many side
channels have been evaluated using website fingerprinting:
Spreitzer et al. [68] used data-usage statistics on Android
and achieved 89% accuracy over 100 websites (closed-world).
Jana et al. [32] used browser memory statistics and achieved
30% to 50% accuracy over 100 000 websites (closed-world).
Gulmezoglu et al. [21] used hardware performance counters
and achieved 86.3% accuracy over 40 websites. Qin and
Yue [56] achieved an accuracy of 55% using the power side
channel. Shusterman et al. [67] exploited the cache occupancy
channel and, in an open-world fingerprinting scenario across
100 websites, the detection accuracy of 77.3% to 94.8%.
Three works used monitored interrupts or interrupt timings and
achieved accuracies from 70% (top 100, closed-world) [89],
and 85.2% (top 100, open-world) [58], to 95.2% (top 100,
open-world) [11].

C. Solid-State Drives (SSDs)

Solid state drives are typically based on persistent flash mem-
ory. SSDs have no moving parts and can, therefore, achieve
significantly lower latencies. Flash memory operates in larger
blocks, e.g., 512B or 4 kB, written at once. Before overwriting
a block, the flash memory needs to be erased by setting
the block content to all 1s. As erasing is time-consuming,
SSDs only batch erasure of many blocks, typically to multiple
megabytes. How often flash memory can be written and erased
depends on how many bits are stored in a flash memory cell,
ranging from 100 000 for single-level cells to only 1 000 for
quad-level cells. To avoid disproportional wear on heavily
used locations, SSDs perform wear leveling, balancing writes
across all blocks. Hence, the SSD controller keeps track of
how often blocks where written and manages a block mapping
table, called the flash translation layer (FTL) to map logical to
physical block addresses [7]. Hence, different SSD controllers
can behave slightly differently, as we also show.

D. Asynchronous I/O

io_uring is a recent and modern feature of Linux enabling
asynchronous low-overhead file operations. The idea is to let
the kernel use user-space buffers to copy as little data as
possible. The user-space application fills a read queue with
requests and then informs the kernel about the new entries.
The kernel then processes the read queue, performing the file
operations on the I/O-device, and placing the responses in the
response queue where the user-space application can directly
read them.

III. SSD CHARACTERIZATION

In this section, we analyze SSDs with and without DRAM
caches for their behavior under certain contention scenarios.
First, we show how the round-trip time changes with an
increasing number of read requests. For SSDs with a DRAM
cache, there is conflicting information about how the DRAM
is used: for the FTL and as a write cache, or also to buffer
data reads. We use a timing side channel to show that our
set of SSDs with a DRAM cache do not use the DRAM to
cache recently read data. Accessing an SSD from user space
involves a large software stack from the PCIe NVMe driver
and the filesystem driver in the kernel to the userspace library.
However, we show that the overhead and timing variance
of these layers is negligible in comparison to the latency
and timing variations of the SSD. We measure the minimum
amount of data read or written by a victim program that we can
detect with our timing-based contention side channel. Finally,
we show that SSDs are subject to thermal throttling.

A. Setup

Hardware. For our initial experiments, we use two systems,
one with an AMD Ryzen 7 5800X and one with an Intel Core
i7-1260P. On each system, we test a subset of the SSDs listed
in Table I. All SSDs are connected to the CPU directly without
any PCIe switches and use all 4 supported PCIe lanes. We use
a selection of SSDs with different controllers, with and without

3

TABLE I. ALL SSDS USED FOR OUR EXPERIMENTS AND RESPECTIVE RESULTS.

SSD Model Name Size DRAM Cache PCIe Covert Channel Website
Process VM Fingerpr.

A Samsung 980 Pro 256GB 512MB LPDDR4 4.0 808 bit/s 258 bit/s 88.8%
B Samsung 980 1TB 64MB HMB 3.0 787 bit/s 615 bit/s 93.3%
C Samsung 970 Evo 1TB – 3.0 1 492 bit/s 303 bit/s 95.9%
D Samsung MZVL21T0HCLR-00BL7 1TB 1GB LPDDR4 4.0 1 784 bit/s 124 bit/s 95.3%
E Samsung 970 Evo Plus 2TB – 3.0 1 447 bit/s 1 503 bit/s 96.6%
F Crucial P5 1TB 512MB LPDDR4 4.0 660 bit/s 404 bit/s 97.0%
G Crucial P5 Plus 500GB 1GB LPDDR4 4.0 814 bit/s 605 bit/s 91.7%
H Kingston SA2000M81000G 1TB 1GB DDR3L 3.0 403 bit/s 493 bit/s 80.2%
I Toshiba KXG6AZNV1T02 1TB – 3.0 664 bit/s 258 bit/s 94.5%
J ADATA XPG Gammix S50 Lite 512GB 512MB DDR4 4.0 647 bit/s 592 bit/s 88.7%
K Gigabyte Aorus Gen4 500GB 512MB DDR4 4.0 755 bit/s 702 bit/s 97.0%
L Western Digital Blue SN550 1TB 64MB HMB 3.0 1 313 bit/s 429 bit/s 96.2%

Average 965 bit/s 524 bit/s 92.9%

The “Average” results show the average transmission rate of the covert channels and the geometric mean of the website fingerprinting
accuracies over all SSDs. The SSDs where tested in different machines, always with all four supported PCIe lanes directly connected
to the CPU. We will only refer the different SSDs by the letters A to L throughout the paper.

a DRAM cache and using PCIe 3.0 and PCIe 4.0. The higher
number of tested SSDs by Samsung does in no way indicate
a higher vulnerability but is due to Samsung being the market
share leader for many years [69] and the resulting abundance
of Samsung SSDs in our testing environment.

Software. The AMD system runs Ubuntu 20.04 LTS and
the Intel system Ubuntu 23.04. For the experiments, until and
including Section III-D, we minimize the software overhead
by performing the measurements as follows.

Measuring with Low Software Overhead. We modify
the Linux kernel to measure timing on the SSD with the
least amount of software overhead possible. We take the first
timestamp when the NVMe command is written in the memory
and the PCIe doorbell is rang in the NVMe driver of Linux and
the second timestamp in the NVMe command-complete
interrupt handler. The tested SSD is installed as an additional
drive and it does not contain the running OS nor any other
data used by the system. For the experiments in Section III-E
and III-F, we run the OS on the tested SSD.

For the experiments in Section III-B to III-C, we ac-
cess the SSDs directly through their block device file at
/dev/nvmeXn0. For all tests, we use the io_uring kernel
interface for fast asynchronous I/O and open the file with
O_DIRECT to bypass all caching of the OS. O_DIRECT
requires reading a multiple of the SSD block size. Hence,
we read 4 kB with every request. The modified kernel returns
the request’s round-trip time in the user_data field of the
completion queue entry struct (io_uring_cqe).

Measuring with Realistic Software Overhead. For the
experiments in Section III-D to III-F, we access the SSD
through a file on the ext4 partition on the SSD, which does
not require any elevated privileges. We again use io_uring
with O_DIRECT but we measure the time in user space
with an unmodified kernel. For our timing measurement, we
store a nanosecond-accurate timestamp (rdtsc) right before
submitting the SSD operation to the operating system with
io_uring_submit(&ring); and again when getting the

0

1

2

2
3

R
T

T
in

m
s

2
4

2
5

2
6

2
7

2
8

2
9
2
10

Random Accesses

2
11

2
12

2
13

2
14

2
15

2
16

2
17

0

1

2

2
3

R
T

T
in

m
s

2
4

2
5

2
6

2
7

2
8

2
9
2
10

Sequential Accesses

2
11

2
12

2
13

2
14

2
15

2
16

2
17

Read Burst Size in 4 kB
Fig. 2. Read access round-trip times with an increasing number of reads in
quick succession to SSD A. The x-axis time resolution is scaled so that each
burst has the same width. The dark bar shows the mean value and standard
deviation of each burst. The round trip time increases with an increasing
number of read accesses.

response from the operating system via io_uring_wait_-
cqe(&ring, &cqe);.

B. Round-Trip Time (RTT) Experiment

In the first experiment, we test how the round-trip time of
individual requests change with an increasing number of ac-
cesses in quick succession, hinting at a potentially exploitable
contention-based timing side channel. We read random and
sequential blocks on the SSDs while continuously increasing
the number of read requests we submit to the SSD, called one
burst. For small burst sizes the submission of the requests hap-
pens simultaneously, for larger burst sizes in quick succession
to always keep the SSD maximally busy. Our modified kernel
measures the round-trip time of each individual request.

Figure 2 shows the results of SSD A. The x-axis shows
the number of read requests of each burst. The x-axis time
resolution is scaled so that all burst have the same width in the
plot. The round-trip time increases with an increasing number

4

−1,000 −800 −600 −400 −200 0

−2

0

2

Index

R
T

T
D

iff
.i

n
µs

Fig. 3. The difference between the round-trip times in backward direction and
forward direction on SSD A averaged over 1 000 measurements. Index 0 is
the “turning point” where an address is accessed twice. If the SSD cached
recently accessed data, we would see a dip around index 0.

of read accesses on all SSDs. Similarly, the standard deviation
of the round-trip times also increase. With random accesses,
the round-trip time increase is approximately proportional
between read sizes of 2

7 and 2
13

4 kB blocks. Above read
sizes of 2

13
4 kB blocks the round-trip times of individual

accesses do not increase significantly anymore. The increase is
less continuous when accessing the SSD sequentially. Hence,
we can conclude that there is only negligible optimization for
sequential reads. The mean round-trip times of sequential as
well as random read accesses reach almost 1ms when reading
more than 2

11 blocks.

C. SSD Cache Behavior

For the SSDs with a DRAM cache, we investigate whether
it is used to cache recently accessed data. We build a set of
random block addresses and access all of them successively,
start to end, and then again in reverse order (e.g., . . . → 9 →

3 → 1 ⇒ 1 → 3 → 9 → . . .). If the SSD were to cache
data, some accesses after the “turning point” would be faster
as they can be served from the cache.

Figure 3 shows the difference between the RTT in the
backward direction and the RTT in the forward direction on
SSD A averaged over 1 000 measurements. If the SSD cached
recently accessed data, we would see a certain amount of
accesses after the “turning point” having a lower RTT, i.e.,
a dip in the graph around index 0. However, the access times
do not significantly change on any of our SSDs. This indicates
that the DRAM cache is not used to cache recently accessed
data but only to hold the FTL and possibly as a write cache.

D. Timing Measurement Software Overhead

For the previous experiments, we used a modified kernel to
perform the measurements with as little software overhead as
possible. However, our goal is to perform measurements on
an unmodified system without root privileges. Consequently,
we now investigate the overhead and variance an unprivileged
software-based attacker can expect to experience. We show
that the software overhead is small and adds only little noise.
Implementation. We run this experiment on SSD F with the
operating system installed and running on it. To estimate the
software overhead in a realistic unprivileged attack scenario,
we compare three different RTT measurement methods: First,
our modified kernel, second, accessing the block device and
measuring the delay in user space, and third, accessing a file

1 2 5 10 20 50 100 200 500

0

100

200

300

Read Delay in µs

R
T

T
in

µs

Kernel Block Device File

Fig. 4. Comparison of RTT measurements in the kernel and in user space in
SSD F . The software overhead is minimal and it does not increase the jitter.

and measuring the delay in user space. Accessing the block
device adds software overhead from the block device driver.
Accessing a file on the SSD adds additional overhead from
the ext4 file system driver that may also access the SSD for
file system meta-data.

We compare the different measurements by their average
access time as well as the standard deviation of multiple
measurements. An increase in the average access time shows
the constant software overhead but does not influence measure-
ment accuracy. An increase in the standard deviation, on the
other hand, shows the unpredictable random jitter that reduces
the measurement accuracy. We perform 250 measurements,
each with 10 different read delays causing different utilizations
of the SSD. The read delay defines the sleep duration between
two subsequent read requests. The file we access is 1GB large.
Results. Figure 4 shows the measured RTTs and their standard
deviations. There is a large difference between read delays
≥ 5 µs and < 5 µs. We analyze these two cases separately.

If the read delay is ≥ 5 µs, measuring in the kernel or the
block device access leads very similar results, showing that
the software overhead of the block device driver is negligible.
On average, the kernel measurement is 70.1 µs (n = 250, σ =

40.3) and the block device measurement 71.8 µs (n = 250, σ =

40.3)). When accessing the SSD through a file, the average
access time is higher, with 92.9 µs (n = 250, σ = 28.3). The
relative standard deviation is very similar, meaning that the
file system does not add additional jitter to the measurement.

If the read delay is < 5 µs, measuring in the kernel or the
block device access, still leads very similar results (kernel:
129 µs (n = 250, σ = 124), block device: 132 µs (n = 250,
σ = 124)). However, when accessing a file, the measurement
shows a higher file system overhead and standard deviation
191 µs (n = 250, σ = 137). This increase indicates a higher
jitter, making individual measurements less exact.

We conclude that our SSD timing side channel can indeed
be observed by an unprivileged process. For measurements
with low jitter the read delay should be at least 5 µs.

E. Minimal Detectable Read Size

The number of read operations influences the contention and,
therefore, the round-trip times. Thus, we profile what the
smallest detectable number of read operations is, considering
two dimensions: First, the victim read size, the number of bytes
the victim reads in a short succession. Second, the observer
read delay, the read delay between two read requests submitted

5

0 2,000 4,000 6,000

200

400

600

Measurement Index

R
T

T
in

µs

(a) The plot shows a small section of the round-trip times measured by the
observer program. The dark gray line shows the ground-truth signal when the
victim program was submitting read burst to the SSD.

−3 −2 −1 0 1 2 3

⋅105

2

4

6

8

Lag

C
or

re
la

tio
n

(b) The plot shows the cross-correlation between round-trip times measured
by the observer program and the ground-truth signal. There is a clear peak.

Fig. 5. Measured round-trip time by the observer program and cross-
correlation between this measurement and the ground-truth signal on SSD
G with an observer read delay of 10 µs and a victim read size of 27 blocks.

by the observer. We sweep both variables and compute the
cross correlation between the sent and received signal.

The observer read delay has an impact on the detectable
read size as the observer reads itself utilize the SSD. If
the observer utilizes the SSD too much, it causes a higher
variation in RTTs making it difficult to detect a victim signal,
see Section III-B. If the observer utilization is too low, the
measurement can miss smaller reads.

Implementation. In this experiment we access two files on
the SSD. The “victim” program reads from a file with an in-
creasing number read bursts (victim read size). The timestamps
of the read bursts are stored. The observer program reads from
another file and varies the delays between consecutive reads
(observer read delay) and measures the RTTs. We assume a
threat model where the observer cannot access the victim’s
file, e.g., no permissions.

For each victim read size and observer read delay, we
compute the cross-correlation between the sent signal and the
measured round-trip times by the observer. Figure 5a shows
the raw signal measured by the observer program and an
overlay in red with the ground-truth signal where the victim
program read from the disk. Figure 5b shows the cross-
correlation between these two signals. The significant peak at
the center shows a clear correlation. Finally, we compute the
ratio between the correlation peak and the maximum value
of the surrounding noise. Combining the sweeps of the n
victim read sizes and m observer read delays gives us n ⋅m
correlations. A higher value means that more information was
transferred, i.e., the signal was better detectable.

Results. Figure 6 shows the heat maps for the SSDs A, D, H
and J . Brighter values show a higher correlation between sent

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
5
7

10
20
50

100
200
500

victim read size (2x pages)

ob
se

rv
er

re
ad

de
la

y
(µ

s)

Minimal Detectable Read Size

0

2

4

6

8

10

(a) SSD A

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
5
7

10
20
50

100
200
500

victim read size (2x pages)

ob
se

rv
er

re
ad

de
la

y
(µ

s)

Minimal Detectable Read Size

0

2

4

6

8

10

(b) SSD D

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
5
7

10
20
50

100
200
500

victim read size (2x pages)

ob
se

rv
er

re
ad

de
la

y
(µ

s)

Minimal Detectable Read Size

0

2

4

6

8

10

(c) SSD H

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
5
7

10
20
50

100
200
500

victim read size (2x pages)

ob
se

rv
er

re
ad

de
la

y
(µ

s)

Minimal Detectable Read Size

0

2

4

6

8

10

(d) SSD J

Fig. 6. These heat maps show how many 4 kB blocks a victim program must
read from the SSD for the read to be detectable through our SSD timing side
channel. Whether a read is detectable by an observer, additionally depends on
the observer read delay, i.e., the delay between two timed reads. The value of
the heat map is the value of the correlation peak, divided by the maximum
value of the surrounding noise, as shown in Figure 5b.

and received signal. SSD H is a PCIe 3.0 SSD, whereas the
others use PCIe 4.0. We see different behavior of the SSDs.

On SSD H, the lowest detectable victim read size is 2
3

blocks or 32 kB with an observer read delay of 7 µs. From an
observer read delay of 7 µs upwards the side channel shows
clear correlation for a higher number of victim read sizes.
Below an observer read delay of 7 µs the SSD only a small
number of specific victim read sizes are detectable. A possible
explanation would be that these faster accesses cause too much
SSD utilization on the slower PCIe 3.0 SSD.

The PCIe 4.0 SSDs A, D, and J , all have a maximum ob-
server read delay where no contention is detectable anymore.
On SSD A, it is at 10 µs, on SSD D at 5 µs, and on SSD
J at 20 µs. We suspect that the multiple command queues
and the faster PCIe 4.0 interface allow for efficient scheduling
that allows the SSD to respond quickly to the infrequent read
requests of the observer process. SSDs A and J show a similar
pattern, where a small range of observer read delays work
significantly better than all others. On SSD A, victim reads
down to a size of 26 are detectable with observer read delays
from 5 µs to 10 µs; on SSD J , victim reads down to a size of
2
5 are detectable with observer read delays from 10 µs to 20 µs.

We observe the lowest effect of contention on the observer’s
timings on SSD D. With an observer read delay above 5 µs
almost no reads are detectable. Even with the best observer
read delay, the victim has to read at least 28 blocks, i.e., 1MB.

These results show that SSDs behave very differently and
that there is no observer read delay that works on all SSDs.
We will show that we are still able to build a covert channel
by dynamically adjusting to the underlying SSD in Section IV.

6

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
5
7

10
20
50

100
200
500

victim read size (2x pages)

ob
se

rv
er

re
ad

de
la

y
(µ

s)
Minimal Detectable Write Size

0

2

4

6

8

10

(a) SSD A

0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
5
7

10
20
50

100
200
500

victim read size (2x pages)

ob
se

rv
er

re
ad

de
la

y
(µ

s)

Minimal Detectable Write Size

0

2

4

6

8

10

(b) SSD H

Fig. 7. These heat maps show how many 4 kB blocks a victim program must
write to the SSD for the write to be detectable through the side channel.
Whether a write is detectable by an observer, additionally depends on the
observer read delay, the delay between two timed reads by the observer
program. The value of the heat map is the peak of the correlation, divided
by the surrounding noise as shown in Figure 5b. Compared to the minimal
detectable read size in Figure 6, smaller writes are detectable.

F. Minimal Detectable Write Size

In Section III-E, we examined the minimal detectable read
size. In this section, we perform the same experiment but
with a victim that performs writes to the SSD. The observer
program still issues reads to measure the round-trip time.

Results. Figure 7 shows the results for SSDs A and D. On
SSD A (Figure 6a), a very faint signal is detectable down to a
single written block of 4 kB, with observer read delays of 5 µs
and 10 µs. As this is the smallest unit that can be accessed on
this SSD, we want to emphasize that also a write of only a
single byte is detectable. Comparing this result to the minimal
detectable read size of 25 blocks (Figure 6a) shows that writes
cause a significantly higher SSD utilization, e.g., contention in
the SSD controller. However, it is interesting to note that the
impact of the observer read delay on the detectability does not
change. The best observer read delay is in the range 5 µs to
10 µs, with some observability in range 0 µs to 3 µs and no
signal with a read delay above 10 µs.

The comparison of read and write detectability is similar
on SSD H, smaller writes are detectable than reads and the
impact of the observer read delay stays the same. The observer
read delay must be at least 7 µs to properly detect writes.

SSD Write Caching. Typical modern SSDs store most of
their data in triple- or quad-level cells (TLC & QLC). These
cells can store multiple bits but are considerably slower to
modify than single-level cells (SLC). The write time (tPROG)
of QLCs is higher than 1ms [72], resulting in write throughput
rates of QLCs in modern SSDs in the range of 10MB/s [35].
The solution is to run a fraction of the cells as an SLC cache
for fast writing. When idling, the SSD controller moves data
from the SLC cache into the QLC memory. If the SLC cache
is full, the write performance degrades significantly, down to
the QLC write throughput rate. While this effect itself could be
used to build a covert-channel we expect the transmission rate
would be very slow and did not further investigate. Therefore,
we only use read operations to measure and cause contention
in the remainder of this paper.

100 200 300 400 500 600

1.5
2.0
2.5
3.0
3.5

⋅108

Time in s

IO
PS

55

60

65

70

Te
m

pe
ra

tu
re

in
°C

IOPS Temp

Fig. 8. SSD I throttling when exceeding 72 °C as observed by the halving
IOPS. After cooling down below 70 °C the throttling is reversed.

G. Thermal Throttling

Modern SSDs have a maximum power consumptions of
multiple watts [62], [73]. Therefore, to control temperature,
SSDs throttle when becoming too hot, which typically does
not happen under regular load. Samsung calls this feature
“Dynamic Thermal Guard” [62]. To analyze thermal throttling
and confirm that it is reliably reversed, we fully utilize SSDs
while measuring their temperature and IOPS. As shown in
Figure 8, SSD I throttles when exceeding 72 °C as observed
by the halving IOPS. Halving the IOPS leads to a quick
decrease in temperature, meaning that only IOPS very close to
the maximum actually cause throttling on our systems. After
cooling down below 70 °C the throttling is reversed. Because
throttling chances the SSD’s characteristics we ensured during
all following experiments that the SSDs do not throttle by not
exceeding certain transmission rates and properly cooling the
SSDs. Only for the experiments with 100% noise that fully
utilizes the SSDs, throttling is allowed to happen.

IV. COVERT CHANNEL

We show that NVMe SSD read contention can be used to build
a covert channel between two parties that are isolated from
each other and have no legitimate communication channel.
We run our experiments mainly on an AMD Ryzen 7 5800X
and Intel Core i7-1260P. The detailed system configuration for
each SSD is shown in Table III.

We demonstrate our covert channel in two threat models:
first, between isolated processes (Section IV-C) with a channel
capacity of up to 1 763 bit/s, and second, between separate
virtual machines (Section IV-D) with up to 1 503 bit/s. Ad-
ditionally, we investigate the impact of noise on the covert
channel and show little impact at moderate noise levels. The
communication protocol and implementation is the same for
both variants. Table II overviews the results.

A. Implementation

We implemented a time-sliced covert channel, with a fixed
length transmission window for each bit. The raw transmission
rate is the inverse of the bit transmission window length. The
receiver periodically reads from the SSD and measures the
round-trip time of the reads. The sender sleeps to send a 0-bit
and sends a burst of read requests to send a 1-bit.

7

To rule out the influence of software caches like the page
cache of the OS, both processes open the file with the O_-
DIRECT flag. This does not require any special privileges.

The two processes synchronize their time slices with the
help of a shared clock. We investigated two clocks discussed
in prior work [40], [52]. First, on x86, reading the time stamp
counter (TSC) is possible without privileges with the rdtsc
instruction, returning a timestamp that is shared across all
cores but could be manipulated by a hypervisor. Second, the
POSIX clock_gettime function also returns time with
nanosecond resolution, providing another shared clock.

To adjust for the different SSDs behavior, there are param-
eters an attacker can tune to optimize the performance. For
example, as shown in Section III-E, the minimal detectable
read size as well as the frequency with which the receiver
reads (observer read delay) has a big impact. Additionally,
depending on the SSD, the duration in which the sender
performs read requests within one time slice to transmit a 1
has an impact on the covert channel performance.
Sender. To transmit a 1-bit, the sender must continuously
send read requests. These read requests to the SSD take some
time to finish. If the sender were to submit read requests until
the end of the time slice, the higher delays on the receiver side
would leak into the following time slice, adding up until all
requests are done. To prevent this from happening, the sender
performs read requests only for a fraction f of the time slice.
We test f = 0.5, 0.25 and 0.12.

As the sender only performs read requests to induce
contention with the receiver, the sender is not interested
in the result of the reads. Read requests can be flagged
with IOSQE_CQE_SKIP_SUCCESS in io_uring. With
this flag, they skip the completion queue, lowering the CPU
load and simplifying the code on the sender side.
Receiver. The receiver periodically reads from the SSD and
measures the round-trip time of each access. After every time
slice, it performs the threshold training and start sequence
detection as described in Section IV-B. If it is able to detect
the start sequence with over 80% accuracy it starts to decode
the following bits as data with the learned threshold.

B. Threshold Learning & Communication Protocol

As shown in the previous section, SSDs exhibit very different
behavior under access contention. The minimum number of
read blocks that can be detected vary greatly and is addition-
ally dependent on the read delay of the observer. In both of
our threat models we want the covert channel to work SSD
agnostic, so the communication parties do not have to know
anything about the underlying SSD. This is especially relevant
for the VM threat model where this information is not available
or for a sandboxed processes where the operating system
could choose to hide it. Therefore, for our covert channel, we
developed an approach that dynamically adjusts the parameters
to the underlying SSD based on the observed timings.

The sender repeatedly transmits two known bytes, the
start sequence, in our case J2, before every transmission.
The receiver does not know when a transmission starts and,

0 0 1 1 X X X X
Time

R
T

T

(a) In the beginning the receiver is not able to learn a threshold because the
timings for the 0-bits and 1-bits are too similar. Hence, the receiver does not
proceed with the next steps.

0 0 1 1 1 0 1 0

Threshold

Time

R
T

T

(b) With the next slice, the receiver is able to learn a threshold which is not
yet optimal, and applies it on the test slices. The resulting sequence is not the
start sequence.

0 0 1 1 0 0 1 1

Threshold

Time

R
T

T

(c) Finally, the receiver learns an optimal threshold and when applying it on
the test slices it is the start sequence. The receiver found a threshold for this
SSD and the start of the transmission.

Fig. 9. Visualization of the automatic threshold learning and start sequence
detection. For this example, the start sequence is 0011.

therefore, repeatedly performs threshold learning and start start
sequence detection as described in the following paragraph.

Figure 9 shows the threshold learning and start sequence
detection with an example start sequence of 0011. The
receiver constantly measures. If it measured enough data that
could contain start sequences, it splits the measured data into
70% training set and 30% test set. Using the training set,
it assumes that the start sequence was sent and tries to find
a threshold that distinguishes 0 and 1 bits. It computes the
mean round-trip times of all segments and then assigns these
mean round-trip times to the 0-group or 1-group based on the
binary representation of the start sequence. The threshold is
then computed by taking the mean over all 0-segments and
the mean over all 1-segments and selecting the access time
in the middle of the two. If the transmitter is not sending
anything, the start sequence is misaligned or other data is sent,
the receiver does not find a proper threshold. For example, the
mean over all 0-segments could then be larger than the mean
over all 1-segments. If a threshold was found, the receiver
tests it by trying to classify the segments of the test set,
again with the binary representation of the start sequence.
Whenever a new bit is received the receiver performs the
training procedure.

C. Covert Channel across Processes

We mount our first covert channel in a cross-process scenario.
It achieves a channel capacity of up to 1 763 bit/s on SSD D
with an average of 964 bit/s across all SSDs.
Threat Model. We assume the sender process has access to
secret information the attacker wants to exfiltrate but no net-
work access, e.g., firewall or sandbox restrictions. We assume

8

TABLE II. COVERT CHANNEL RESULTS OF ALL SSDS.

Process Virtual Machine

SSD
1 000 bit/s, f = 0.12 Fastest per SSD 500 bit/s, f = 0.5 Fastest per SSD

Error Capacity Trans. Rate Error Capacity Error Capacity Trans. Rate Error Capacity

A 13.4% 431 bit/s 2 000 bit/s 14.5% 808 bit/s 17.9% 161 bit/s 1 000 bit/s 21.0% 258 bit/s
B 16.3% 359 bit/s 2 000 bit/s 14.9% 787 bit/s 15.4% 191 bit/s 2 000 bit/s 18.6% 615 bit/s
C 13.1% 439 bit/s 5 000 bit/s 19.0% 1 492 bit/s 15.8% 186 bit/s 1 000 bit/s 18.8% 303 bit/s
D 19.6% 285 bit/s 5 000 bit/s 16.4% 1 784 bit/s 25.8% 88 bit/s 1 000 bit/s 29.5% 124 bit/s
E 13.0% 441 bit/s 5 000 bit/s 19.4% 1 447 bit/s 13.3% 217 bit/s 5 000 bit/s 18.9% 1 503 bit/s
F 17.4% 333 bit/s 2 000 bit/s 17.5% 660 bit/s 13.7% 212 bit/s 1 000 bit/s 14.5% 404 bit/s
G 15.6% 375 bit/s 2 000 bit/s 14.3% 814 bit/s 18.2% 158 bit/s 2 000 bit/s 18.8% 605 bit/s
H 25.0% 188 bit/s 2 000 bit/s 24.2% 403 bit/s 14.0% 207 bit/s 2 000 bit/s 21.6% 493 bit/s
I 13.5% 428 bit/s 2 000 bit/s 17.5% 664 bit/s 19.4% 145 bit/s 1 000 bit/s 21.0% 258 bit/s
J 13.2% 437 bit/s 2 000 bit/s 17.8% 647 bit/s 14.9% 196 bit/s 2 000 bit/s 19.1% 592 bit/s
K 29.2% 129 bit/s 2 000 bit/s 15.5% 755 bit/s 14.6% 200 bit/s 2 000 bit/s 16.6% 702 bit/s
L 13.1% 439 bit/s 5 000 bit/s 20.8% 1 313 bit/s 15.1% 194 bit/s 1 000 bit/s 13.5% 429 bit/s

Avg 16.9% 357 bit/s 3 000 bit/s 17.7% 964 bit/s 16.5% 180 bit/s 1 750 bit/s 19.3% 524 bit/s

The capacity is computed from the raw transmission rate and the error rate. The first two columns of “Process” (1 000 bit/s, f = 0.12) and “Virtual
Machine” (500 bit/s, f = 0.5) show the raw transmission rate that resulted in the highest channel capacity over all SSDs. The parameter f defines
the fraction of the transmission window the sender was submitting read requests. This transmission rate could be used to test and negotiate a higher
transmission rate. The “Fastest per SSD” columns show the highest channel capacity we achieved on each individual SSD.

the receiver process has no access to the secret information
but network access. Jointly the two unprivileged processes aim
to exfiltrate the secret information by transmitting it through a
covert channel. We assume each process has read access to one
file on the same SSD but not the same files, e.g., the sender
runs in a sandbox. Both processes have access to a clock to
synchronize the sending of individual bits. We assume the
processes are isolated from each other and have no additional
permissions that would help their efforts to communicate,
i.e., in particular there are no other communication channels
between the two processes. The processes are not pinned to
specific CPU cores.

Evaluation. To evaluate the covert channel, we transmit
random data for 20 seconds, including the start sequence.
On every SSD, we test raw transmission rates from 5 bit/s
to 10 kbit/s. This translates to transmitted data amounts of
6B to 30.9 kB. After the transmission, we apply the threshold
learning and start sequence detection in a post-processing step
and then extract the data and compute the Levenshtein distance
between the sent and received data, giving us the bit-error
ratio. A bit-error ratio of 0 or 1 corresponds to a perfect
transmission without errors, a bit-error ratio of 0.5 means that
no information was transmitted. We use the binary symmetric
channel model to compute the true channel capacity T as
T = C ⋅ (1+ ((1− p) ⋅ log2(1− p)+ p ⋅ log2(p))) where C is
the raw bit-rate and p the bit-error probability. According to
Shannon’s noisy-channel coding theorem, T is the maximum
transmittable information over a noisy channel.

Results. Figure 10 shows the raw measurement trace of the
RTTs on the receiver side and the extracted binary data on
SSD G. The transmission rate is 2 000 bit/s, the transmission
fraction f is 0.12 and the observer read delay 20 µs.

Table II shows all covert channel results of all SSDs.
If the receiver cannot find a threshold or detect the start
sequence with at least 70% correctness, we cannot transmit
data on this SSD through our covert channel. When excluding

0 5 10 15 20 25 30

200

400

600

Time in ms

D
el

ay
in

µs

Raw Measurement
Decoded Data

Fig. 10. The raw measurements of the access round trip times of the covert
channel receiver and the decoded binary signal on SSD G. The transmission
rate is 2 000 bit/s, the transmission fraction f is 0.12 and the observer read
delay 20 µs.

10
2

10
3

10
4

0

25

50

B
it

E
rr

or
R

at
io

in
%

10
2

10
3

10
4

0

0.5

1

1.5

Raw Transmission Rate in B/s

C
ha

nn
el

C
ap

ac
ity

in
kB

/s

Fig. 11. Raw transmission rate vs bit-error ratio and resulting channel capacity
across processes on average over all SSDs.

transmission rates and fractions where at least on one SSD
no data transmission is possible, a raw transmission rate of
1 000 bit/s with a transmission fraction f of 0.12 resulted in
the highest average channel capacity over all tested SSDs
of 357 bit/s with an average bit-error ratio of 16.9%. We
find that independent of the underlying SSD, 1 000 bit/s with

9

f = 0.12 can be used to transmit data on all SSDs and a higher
transmission rate can then be negotiated.

With a theoretical negotiation of a higher transmission rate,
the next three columns in Table II “Fastest per SSD” show
the highest achievable channel capacity on each SSD with
the corresponding raw transmission rate and bit-error ratio.
The fastest covert channel runs on SSD D with 1 784 bit/s
with a 5 000 bit/s raw transmission rate and a bit-error ratio of
16.4%. This relatively high bit-error ratio decreases the raw
transmission rate significantly, meaning that approximately 1−
1784/5000 = 65% of the transmitted information must contain
redundant error correction data. The slowest covert channel is
on SSD H, achieving a channel capacity of 403 bit/s with a
raw transmission rate of 2 000 bit/s and the highest bit-error
ratio (24.2%).

There is no real correlation between PCIe version and
covert-channel capacity. The average capacity over all PCIe
3.0 SSDs is 1 017 bit/s while the average capacity over all
PCIe 4.0 SSDs is 911 bit/s. However, the fastest covert channel
was on a PCIe 4.0 SSD, while the slowest was on a PCIe 3.0
SSD. Similarly, the SSD cache also does not appear to be
a significant influence factor on the channel capacity: While
the fastest SSD D (1 784 bit/s) has 1GB of LPDDR4 cache,
the second fastest SSD C (1 492 bit/s) does not have a cache.
Of the two SSDs with the slowest and second slowest covert
channel, one has a cache and the other has no cache, indicating
that the existence of a cache inside the SSD is not a significant
influence factor for the timing leakage we observe, i.e., the
SSD cache is not a contention source or mitigation.

D. Covert Channel across Virtual Machines

As a second scenario, we mount our covert channel in a cross-
VM attack setup. Our covert channel across virtual machines
reaches a channel capacity of up to 1 503 bit/s on SSD E .
Threat Model. We assume the sender process is running
inside a VM, with access to secret information but without
network access. With a receiver process either in another VM
or directly on the host that has network access, they can use
the covert channel to exfiltrate the secret data. We assume no
special privileges of the processes in their respective VM. We
run the VMs on a fully updated Linux Kernel-based Virtual
Machine (KVM) with QEMU. We assume both processes have
access to a clock to synchronize the sending of individual
bits. Furthermore, we assume that the VM disk images are on
the same SSD. We did not observe large differences between
raw disk images and disk images in the qcow3 format. As
it is generally recommended to not use raw disk files, we
present the results for qcow3 disk images. The disk images
are accessed without caching on the host, as recommended for
example by Red Hat [26].

We evaluate the covert channel across VMs like the covert
channel across processes (cf. Section IV-C).
Results. Table II shows all covert channel results of all
SSDs. If the receiver cannot find a threshold or detect the start
sequence with at least 70% correctness, we cannot transmit
data on this SSD through our covert channel. When excluding

10
2

10
3

10
4

0

25

50

B
it

E
rr

or
R

at
io

in
%

10
2

10
3

10
4

0

0.5

1

Raw Transmission Rate in B/s

C
ha

nn
el

C
ap

ac
ity

in
kB

/s

Fig. 12. Raw transmission rate vs bit-error ratio and resulting channel capacity
across virtual machines on average over all SSDs.

transmission rates and fractions where at least on one SSD
no data transmission is possible, a raw transmission rate of
500 bit/s with a transmission fraction f of 0.5 resulted in
the highest average channel capacity over all tested SSDs of
180 bit/s and an average bit-error ratio of 16.5%.

With a theoretical negotiation of a higher transmission rate,
the next three columns in Table II “Fastest per SSD” show
the highest achievable channel capacity on each SSD with the
corresponding raw transmission rate and bit-error ratio. The
fastest covert channel runs on SSD E with 1 503 bit/s with a
5 000 bit/s raw transmission rate and a bit-error ratio of 18.9%.
The slowest covert channel is on SSD D, achieving a channel
capacity of 124 bit/s with a raw transmission rate of 1 000 bit/s
and a bit-error ratio of 29.5%.

With the only exception being SSDs E and H, the covert
channel between processes is generally faster than between
VMs. On SSD E the error rate is lower between virtual
machines, 18.9% versus 19.4%, resulting in a slightly higher
channel capacity of 1 503 bit/s versus 1 447 bit/s. On SSD
H the error rate is lower between virtual machines, 21.6%
versus 24.2%, resulting in a slightly higher channel capacity of
493 bit/s versus 403 bit/s. Our hypothesis why this is the case
on some SSDs has two reasons. First, while software overhead
from virtualization and management of the qcow2 disk image
is higher than accessing a file directly, management of qcow2
disk images could also induce additional disk accesses we
measure. Second, we do not rule out triggering contention
inside the software stack of KVM, QEMU or libvirt.

E. Impact of Noise

In the previous experiments the operating system was installed
on the SSD where the covert channel was performed but apart
from occasional background tasks no programs were running
that access the SSDs. To investigate the impact of noise on the
covert channel, we run the experiments again with additional
artificial noise of different strengths.
Implementation. To make the noise comparable, we measure
the maximum IOPS of each SSD using up to four threads
submitting random reads. Then we cause 5%, 10%, 20%,

10

10
1

10
2

10
3

0

500

1,000

1,500

2,000 0 % 5 % 10 %

20 % 50 %

100 %

Noise in kilo-IOPS

C
ha

nn
el

C
ap

ac
ity

in
B

/s
SSD C D F H I Noise Percentage

Fig. 13. The covert channel capacity on various SSD under different noise
scenarios. The noise is always relative to the maximum achievable IOPS on
each SSD. The marks mark the percentage of the noise’s IOPS in relation
to this maximum IOPS. For example, a 50% noise on SSD C creates more
IOPS than the maximum IOPS of SSDs F and J and the covert channel still
achieves 700 bit/s on SSD C.

50% and 100% of the IOPS in a separate process while
running the covert channel. For the covert channel across VMs
the noise is generated on the host.
Results. Figure 13 shows the impact of noise on the covert
channel capacity between processes on five SSDs. The results
of all SSDs in the process and VM threat model are shown in
Table IV.

On almost all SSDs 20% noise has negligible impact on the
channel capacity in the process threat model. Between VMs,
20% noise more than halves the channel capacity on 8 SSDs.
Figure 13 plots the absolute strength of the noise in kilo-IOPS.
The absolute comparison shows that, e.g., 50% noise on SSD
C has more IOPS than 100% on SSDs F and H while only
slightly impacting the channel capacity.

The noise we inject is relatively constant over the time
of a transmission. Because of that, the automatic threshold
learning is able to identify and ignore the noise. This makes it
even possible to transmit data when the noise already causes
100% of the maximum IOPS on SSD F because the additional
accesses of the sender just make the SSD “even slower”.
Strongly fluctuating noise could directly impact the error rate
or hinder the threshold learning by injecting false 1-bits into
the transmission, rendering the covert channel unusable.

F. Discussion

In Section III-E, we measured that even only reading 32
blocks is clearly detectable and could, therefore, be used for
a covert channel. However, we found that such reads of this
size happen constantly on a typical system introducing a lot of
fault positive bit detections into the transmission. Increasing
the blocks read by the sender, reduces this problem.

We explain the large differences in channel capacities
between the SSDs with the different behaviors we saw in
Section III-E. To enable a fast transmission, the receiver
(observer) must be able to perform many measurements to
always have multiple measurements per time slice, i.e., bit. The
sender is always sending bits with large bursts, so the minimal
victim read size has a lower impact. As shown in Figure 6,

SSD D is able to detect reads with very low observer read
delays, it also the SSD where the highest transmission rate
was achieved. In contrast, SSDs H and J require higher read
delays and achieve only a lower transmission rate.

We assumed a synchronized clock between sender and
receiver. While hypervisor of conventional VMs could modify
the TSC value, secure VMs (AMD SEV [3], [12] and Intel
TDX [30]) can guarantee unmodified TSC values for their
guests. Under the relaxed assumption, that the clocks only
have to run with the same rate, the threshold learning and
start sequence detection could also learn the offset between
the clocks. For this the receiver would perform them on every
new received measurement, automatically learning the offset
when the threshold is most optimal, i.e., it would perform
many intermediate runs in Figure 9.

V. WEBSITE FINGERPRINTING

The goal of website fingerprinting is to determine the web-
sites visited by a victim. Leaking visited websites has huge
implications on the victim’s privacy as it can reveal sensitive
information about a user and could be, for example, be used for
extortion campaigns. We show that the browser cache access
patterns, caused by the web browser when loading a website,
are enough to fingerprint the Alexa top 100 websites in an
open-world scenario with up to 97.0% accuracy. In an open-
world scenario, there is an additional “other” group containing
all websites not explicitly classified, including those that were
never seen during training. The goal is to have a classifier
that can explicitly classify the top 100 websites, and if it
encounters a website not in the top 100, it should classify
it as “other”. Our open-world set contains websites randomly
sampled from the Alexa top 10 000 websites combined into
the “other” group. As each trace is from a different website,
the websites seen during training in this class do not overlap
with the ones encountered during testing.

If a user opens a previously visited website, the browser
serves a significant amount (i.e., megabytes) of content of the
website from the web cache. The browser reads the website’s
cache as well as data stored in cookies or localStorage
when loading the website. The reading of this data can be
detected and is unique for every website as shown by the
following cache analysis. Analyzing the cache of the Alexa top
100 websites loaded in Chrome reveals that the average cache
size of a website is 2.2MB (n = 90, σ = 3.9MB) and consists
of 148.5 (n = 90, σ = 390) files. The median is 1.1MB and
71 files. As shown in Section III-E, this is well in the range
of detectable reads, especially because reading many small
files still loads entire blocks from the SSD, typically 4 kB
and additionally the operating system typically reads ahead
multiple blocks. The high deviation in cache size and file count
per website contributes to the great performance of our attack.
Threat Model. The attacker has native code execution on a
system and the possibility to access a file on the same disk
where the web browser stores its data. The data is stored in
the home directory of the victim that is usually on the same
disk as the operating system (e.g. ~/.cache/chromium on

11

Linux and %AppData%\Local\Chromium on Windows).
However, the attacker is isolated, e.g., in a sandbox or another
user, and has no means to access this data, any other data of
the user, or to interact with the user’s processes.

The victim uses Chromium and opens websites they visited
before. When the victim opens a website for the first time,
it is not yet in the web cache. Hence, the disk activity from
writing data to the disk cache cannot be classified by our
model. However, if the victim navigates through the page, any
subsequent click and load will be served from the web cache
and, thus, is classifiable.

We run the attacks on unmodified, default-configured
Ubuntu and Chromium version 126.0. The detailed system
configuration for each SSD is shown in Table III. The back-
ground processes and activities that are present in the default
configuration are also present in our test and may access the
disk. The attacker process and Chromium are not pinned to
specific CPU cores.
Implementation. In the data recording phase, we record 300
traces of the web browser opening each website (Section V-A).
A trace consists of the access times of periodical read accesses
to a file on the disk. To classify the traces we use a convo-
lutional neural network (CNN). We also perform experiments
with artificial noise to see how it impacts the fingerprinting
accuracy.

A. Data Recording

We measure the access round-trip times while a website is
loading 100 times for every website in the top 100. Further-
more, we collect traces of 400 randomly selected websites,
one trace each, for the open-world class. The 400 randomly
selected websites are not in the top 100. We then repeat this
measurement 3 times to have 300 website traces each and
1200 open-world traces. Performing 3 × 100 measurements
reduces the risk that we measure and classify environmental
influences like the time of the day. Recording all traces takes
approximately three days.
Browser Instrumentalization. We use an unmodified default
Chromium installation and script the website navigation using
xdotool. First, we open the target website once to load it
into the cache. Second, we record the round-trip traces by
opening the website once per trace recording.
RTT Trace Measurement. We again time disk accesses
by reading from a file on the SSD. One thread periodically
sends read requests and a second thread receives the responses
and computes the duration. We use the clock_gettime()
timer with ns accuracy. We record approximately 40 000
round-trip times for the first 3 s of a website loading.
Page Cache Eviction. Because the operating system uses
all available memory to cache recently used disk data, web-
cache files do not cause disk accesses after the first load.
To circumvent this, the attacker has to evict the page cache
periodically. During page cache eviction, no traces can be
recorded, leaving blind spots. Therefore, it is crucial to make
this page cache eviction as fast as possible while at the same

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

Fig. 14. Classification heat map of the website fingerprinting on SSD K. The
F1 score is 97.0%, the open-world dataset is correctly classified with an
accuracy of 78%.

time keeping memory footprint and pressure low. The amount
of available memory is known to unprivileged code.

We implement the eviction first shown by Gruss et al. [20].
It uses three sets of data. The first two sets are a file on the SSD
mapped into the memory. The first set, 95% of the page cache
large, is constantly kept in the page cache by periodically
reading all pages. The second set has the size of the remaining
5% and is used for actual page cache eviction. For the eviction,
both sets are read, filling the whole page cache with their data
and evicting everything else. The third set limits the size of the
page cache by allocating memory. We use this set to limit the
page cache size to 4GB, this is a good compromise between
free memory and page cache eviction speed.

We are able to evict the page cache in 347ms (n = 10000,
σ = 75.5) on average. We never observed an out-of-memory
problem during our experiments because 4GB of memory are
always kept available for other processes.

B. Classification Machine Learning Model

With all round-trip time traces recorded we use a convolutional
neural network (CNN) to build a classifier.

Our CNN has a very typical structure with nine con-
volutional layers with max pooling and dropout layers in-
between. The output is then flattened and classified with three
subsequent dense layers, again with dropout layers in-between.

We train the CNN on spectrograms of our recorded traces.
The spectrograms are computed using a Short-Time Fourier
Transform (STFT) with a window size of 256. This is a
well established technique for signal classification [87], [10],
[29], [58]. Each website has a unique spectrogram, e.g., see
Figure 16. Spectrograms from the same websites have key
features that are the same for each trace and only vary slightly,
most likely due to timing variations and other noise.

To be able to compare different SSDs, with and without
caches, with PCIe 3.0 or PCIe 4.0, we train a classifier for
each SSD. We randomly split our traces into 64% for training,
16% for the validation set and the remaining 20% for the final
test set. Additionally, we try to classify the traces of an SSD
unknown while training. For this we do not include any traces
of one SSD in the training or validation set and then only

12

10
1

10
2

0

50

100 0 % 2 %
5 % 20 %

50 %

100 %

Noise in kilo-IOPS

F
1

Sc
or

e
in

%
SSD A C H Noise Percentage

Fig. 15. The website fingerprinting F1 score on various SSD under different
noise scenarios. The noise is always relative to the maximum achievable IOPS
on each SSD. The marks mark the percentage of the noise’s IOPS in relation
to this maximum IOPS.

use traces from this SSD for the final test. For training and
validation we use all traces from all other 11 SSDs.

C. Results

The results for all SSDs are shown in Table I. Figure 14 shows
the classification heat map of the SSD K with the best results
of 97.0%, the open-world dataset is correctly classified with
78% accuracy. The worst result is on SSD H with an F1

score of 80.2%, however the open-world dataset is correctly
classified with 96% accuracy.

Over all SSDs the geometric mean F1 score is 92.9%. On
PCIe 3.0 SSDs we get a geometric mean F1 score of 92.8%.
On PCIe 4.0 SSDs it is 93.1%. Similar to the covert channel
results, we do not really see a difference in the results between
PCIe 3.0 and 4.0 SSDs.

When fingerprinting traces from an SSD unknown during
training we never achieve a result above 5% which is just
slightly better than random guessing. This was independent
of the tested SSD. We suspect that the very different SSD
behavior that we demonstrated in Section III-E is the reason
for it not working properly. However, this does not mean that
better data preprocessing or a more refined machine learning
model would not be able to improve classification in this
scenario. Future work could focus on the classification and
machine learning aspect in more detail.

D. Impact of Noise / Mitigation

To investigate the impact of noise on website fingerprinting,
we run the experiments again on a few selected SSDs with
additional artificial noise of different strengths like we did
for the covert channels (Section IV-E). We also injected
random burst, to analyze if artificial noise is a viable approach
to mitigate the website fingerprinting attack. The burst are
relatively small, from a few hundred kB to a few MB, around
the same size at the different website’s caches.
Results. Figure 15 shows the F1 scores at different injected
noise levels on SSDs A, C and H. On SSDs A and C
the noise has a comparable impact. While it decreases the
classification accuracy, it is still 58.1% on SSD C and 37.0%
on SSD A at a 50% noise level, significantly higher than
the 1% chance when randomly guessing. SSD H showed the

worst classification accuracy without noise and was also more
strongly influenced by noise than the others. Already adding
only a 2% noise level decreased the accuracy by over 50%
to 27.6%. This strong influence could also be the reason for
the worst result without artificial noise, because other system
activities were always running during our experiments. The F1

score than further decreases to 17.8% at a 50% noise level.
Figure 17 shows spectrograms with noise. Figure 18 and 19
show heat maps at different noise levels on SSDs C and H.

At a 100% noise level, classification was not possible on
any of the three SSDs. The machine learning model was not
able to learn anything from the data during the training phase.

When injecting random noise with similar size as the
website’s caches, classification was also not possible with our
model. The model was again, not able to learn from the data.
We do however, not rule out, that a more advanced model
or a huge amount of data could make this possible. For now,
web browsers could perform additional random reads when
accessing the web cache to mitigate this attack.

VI. DISCUSSION AND MITIGATIONS

We exploited the unprivileged low-overhead io_uring inter-
face. Removing unprivileged access to low-overhead interfaces
could hinder attacks, at a considerable performance cost, but
not mitigate them. The coarse granularity of the channel
limits the potential attack targets and makes the attack more
susceptible to noise. Similar as it has been suggested for the
interrupt keystroke side-channel attacks [63], it could be a
viable approach to add noise. By letting the kernel or the web
browser perform additional dummy operations, more noise
could be induced to make website fingerprinting impractical
on all SSDs, without significant performance costs attached.

However, even with noise or an interface with higher
overheads and latencies, the covert channel cannot be closed.
This problem is not easy to overcome and hardware vendors
typically take the perspective that closing covert channels
cannot be an acceptable goal [31]. It is, however, important
to understand these channels and their properties to learn
when they can be extended to side channels and leak sen-
sitive information, e.g., sensitive browsing activity. Our work
shows that the SSD timing channel is a relevant threat and
further analysis is required understand whether more severe
information leakage is possible as well.

Private browsing does not mitigate the website fingerprint-
ing attack. While all browser clear the cache created during
private browsing after finishing the session [1], for the time of
the session, the cache is used. Therefore, after the first visit to
a website it is loaded from the cache and can be fingerprinted.

We used O_DIRECT for direct disk access bypassing the
operating system’s caches. Making this flag privileged does
not mitigate our attacks as accessing a file larger than the
kernel caches leads to constant cache eviction and thus also
to direct disk accesses. Additionally, O_DIRECT is used by
benign applications like databases for performance reasons.

In real cloud systems, SLAs (Service Level Agreements)
guarantee a certain disk bandwidth for every customer. To

13

enforce this, the hypervisor has to throttle I/O. We did not
evaluate hypervisor caused disk throttling in this work.

VII. CONCLUSION

In this work, we showed that access contention to an SSD
causes measurable differences in the round-trip time of in-
dividual requests. Different SSDs behave very differently in
contention scenarios. Still, we showed that covert channel
transmissions with up to 1 784 bit/s across processes and
1 503 bit/s across virtual machines are possible. The covert
channel is also resilient to noise. Furthermore, we show that
SSD contention can also be used to invade the privacy of
internet users. In a website fingerprinting attack, we identified
loading website with up to 97.0% accuracy in a top-100 open-
world scenario. While contention-based timing side channels
are always difficult to mitigate, better scheduling of queues
inside the SSD controller or artificial noise from the operating
system or web browser could decrease the channel capacity
of covert channels and mitigate fingerprinting attacks.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their valuable feedback
on this work. This research is supported in part by the
European Research Council (ERC project FSSec 101076409),
and the Austrian Science Fund (FWF SFB project SPyCoDe
10.55776/F85 and FWF project NeRAM I6054). Additional
funding was provided by generous gifts from Red Hat, Google
and Intel. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

REFERENCES

[1] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. An
Analysis of Private Browsing Modes in Modern Browsers. In USENIX
Security, 2010.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port Contention for Fun and
Profit. In S&P, 2019.

[3] AMD. AMD64 Architecture Programmer’s Manual, 2023.
[4] Johann Betz, Dirk Westhoff, and Günter Müller. Survey on covert

channels in virtual machines and cloud computing. Transactions on
Emerging Telecommunications Technologies, 2016.

[5] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. Var-CNN: A
Data-Efficient Website Fingerprinting Attack Based on Deep Learning.
PoPETS, 4:292–310, 2019.

[6] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt ner,
Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus.
SMoTherSpectre: exploiting speculative execution through port con-
tention. In CCS, 2019.

[7] Jalil Boukhobza and Pierre Olivier. Flash Memory Integration: Perfor-
mance and Energy Issues. Elsevier, 2017.

[8] Serdar Cabuk, Carla E Brodley, and Clay Shields. IP Covert Timing
Channels: Design and Detection. In CCS, 2004.

[9] Ang Chen, W Brad Moore, Hanjun Xiao, Andreas Haeberlen, Linh
Thi Xuan Phan, Micah Sherr, and Wenchao Zhou. Detecting Covert
Timing Channels with Time-Deterministic Replay. In OSDI, 2014.

[10] Zhibo Chen, Yi-Qun Xu, Hongbin Wang, and Daoxing Guo. Deep STFT-
CNN for spectrum sensing in cognitive radio. IEEE Communications
Letters, 2020.

[11] Jack Cook, Jules Drean, Jonathan Behrens, and Mengjia Yan. There’s
always a bigger fish: a clarifying analysis of a machine-learning-assisted
side-channel attack. In ISCA, 2022.

[12] Nikunj A Dadhania. [PATCH v7 00/16] Add Secure TSC support for
SNP guests, 2023. URL: https://lore.kernel.org/all/20231220151358.
2147066-1-nikunj@amd.com/.

[13] Ran Dubin, Amit Dvir, Ofir Pele, and Ofer Hadar. I Know What
You Saw Last Minute—Encrypted HTTP Adaptive Video Streaming
Title Classification. IEEE Transactions on Information Forensics and
Security, 12(12):3039–3049, 2017.

[14] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, An-
dres Marquez, and Kevin Barker. Leaky buddies: Cross-component
covert channels on integrated cpu-gpu systems. In ISCA, 2021.

[15] Sankha Baran Dutta, Hoda Naghibijouybari, Arjun Gupta, Nael B. Abu-
Ghazaleh, Andres Marquez, and Kevin J. Barker. Spy in the GPU-box:
Covert and Side Channel Attacks on Multi-GPU Systems. In ISCA,
2022.

[16] Dmitry Evtyushkin and Dmitry Ponomarev. Covert Channels Through
Random Number Generator: Mechanisms, Capacity Estimation and
Mitigations. In CCS, 2016.

[17] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the Scheduler Queue Contention Side Channel. In
S&P, 2023.

[18] Ilias Giechaskiel, Ken Eguro, and Kasper B Rasmussen. Leakier Wires:
Exploiting FPGA Long Wires for Covert-and Side-channel Attacks.
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
12(3):11, 2019.

[19] Ilias Giechaskiel, Shanquan Tian, and Jakub Szefer. Cross-VM Covert-
and Side-Channel Attacks in Cloud FPGAs. ACM Transactions on
Reconfigurable Technology and Systems, 2022.

[20] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari Tracht-
enberg, Jason Hennessey, Alex Ionescu, and Anders Fogh. Page Cache
Attacks. In CCS, 2019.

[21] Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth, and Berk Sunar.
PerfWeb: How to violate web privacy with hardware performance events.
In ESORICS, 2017.

[22] Mordechai Guri, Matan Monitz, Yisroel Mirski, and Yuval Elovici.
Bitwhisper: Covert signaling channel between air-gapped computers
using thermal manipulations. In IEEE CSF, 2015.

[23] Mordechai Guri, Yosef Solewicz, Andrey Daidakulov, and Yuval Elovici.
Acoustic data exfiltration from speakerless air-gapped computers via
covert hard-drive noise (‘DiskFiltration’). In ESORICS, 2017.

[24] Jawad Haj-Yahya, Lois Orosa, Jeremie S Kim, Juan Gómez Luna,
A Giray Yağlıkçı, Mohammed Alser, Ivan Puddu, and Onur Mutlu.
IChannels: Exploiting Current Management Mechanisms to Create
Covert Channels in Modern Processors. In ISCA, 2021.

[25] Youngkwang Han and John Kim. A Novel Covert Channel Attack Using
Memory Encryption Engine Cache. In DAC, 2019.

[26] Jiri Herrmann, Yehuda Zimmerman, Dayle Parker, and Scott Radvan.
Red Hat Enterprise Linux 7 - Virtualization Tuning and Optimization
Guide, 2019.

[27] Wei-Ming Hu. Lattice Scheduling and Covert Channels. In S&P, 1992.
[28] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time. Journal

of Computer Security, 1992.
[29] Jingshan Huang, Binqiang Chen, Bin Yao, and Wangpeng He. ECG ar-

rhythmia classification using STFT-based spectrogram and convolutional
neural network. IEEE access, 2019.

[30] Intel. Intel Trust Domain Extensions Module Base Architecture
Specification, 2024. URL: https://www.intel.com/content/www/us/en/
developer/tools/trust-domain-extensions/documentation.html.

[31] Intel Corporation. Configuring Workloads for Microarchitectural and
Side Channel Security, 2024. URL: https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-guidance/
best-practices/securing-workloads-against-side-channel-methods.html.

[32] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets from
Process Footprints. In S&P, 2012.

[33] Qisheng Jiang and Chundong Wang. Sync+Sync: A Covert Channel
Built on fsync with Storage. In USENIX Security, 2024.

[34] S Karen Khatamifard, Longfei Wang, Amitabh Das, Selcuk Kose,
and Ulya R Karpuzcu. POWERT channels: A novel class of covert
communicationexploiting power management vulnerabilities. In HPCA,
2019.

[35] Beomjun Kim and Myungsuk Kim. LazyRS: Improving the Perfor-
mance and Reliability of High-Capacity TLC/QLC Flash-Based Storage
Systems Using Lazy Reprogramming. Electronics, 2023.

14

https://lore.kernel.org/all/20231220151358.2147066-1-nikunj@amd.com/
https://lore.kernel.org/all/20231220151358.2147066-1-nikunj@amd.com/
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/securing-workloads-against-side-channel-methods.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/securing-workloads-against-side-channel-methods.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/securing-workloads-against-side-channel-methods.html

[36] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In CRYPTO, 1996.

[37] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin
Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard. Col-
lide+Power: Leaking Inaccessible Data with Software-based Power Side
Channels. In USENIX Security, 2023.

[38] Butler W Lampson. A note on the confinement problem. Communica-
tions of the ACM, 16(10):613–615, 1973.

[39] Bartosz Lipinski, Wojciech Mazurczyk, and Krzysztof Szczypiorski.
Improving Hard Disk Contention-based Covert Channel in Cloud Com-
puting Environment. In S&P Workshops, 2014.

[40] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and
Stefan Mangard. ARMageddon: Cache Attacks on Mobile Devices. In
USENIX Security, 2016.

[41] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Cather-
ine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS: Software-
based Power Side-Channel Attacks on x86. In S&P, 2021.

[42] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
Frequency throttling side-channel attack. In CCS, 2022.

[43] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler, Daniel
Gruss, and Samira Khan. Side-Channel Attacks on Optane Persistent
Memory. In USENIX Security, 2023.

[44] Nikolay Matyunin, Jakub Szefer, Sebastian Biedermann, and Stefan
Katzenbeisser. Covert channels using mobile device’s magnetic field
sensors. In ASP-DAC, 2016.

[45] Nikolay Matyunin, Yujue Wang, Tolga Arul, Kristian Kullmann, Jakub
Szefer, and Stefan Katzenbeisser. Magneticspy: Exploiting magnetome-
ter in mobile devices for website and application fingerprinting. In ACM
Workshop on Privacy in the Electronic Society, pages 135–149, 2019.

[46] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. C5: Cross-Cores Cache Covert Channel. In DIMVA, 2015.

[47] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In RAID, 2015.

[48] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels in
the Cloud. In NDSS, 2017.

[49] Steven J Murdoch and Stephen Lewis. Embedding Covert Channels into
TCP/IP. In Workshop of Information Hiding, 2005.

[50] Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael B. Abu-
Ghazaleh. Constructing and characterizing covert channels on GPGPUs.
In MICRO, 2017.

[51] Keisuke Okamura and Yoshihiro Oyama. Load-Based Covert Channels
between Xen Virtual Machines. In Symposium on Applied Computing
(SAC), 2010.

[52] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Ange-
los D Keromytis. The Spy in the Sandbox: Practical Cache Attacks in
JavaScript and their Implications. In CCS, 2015.

[53] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA, 2006.

[54] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. Prime+Scope:
Overcoming the Observer Effect for High-Precision Cache Contention
Attacks. In CCS, 2021.

[55] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in ScatterCache.
arXiv:1908.03383, 2019.

[56] Yi Qin and Chuan Yue. Website Fingerprinting by Power Estimation
Based Side-Channel Attacks on Android 7. In TrustCom/BigDataSE,
2018.

[57] P. Ranjith, Chandran Priya, and Kaleeswaran Shalini. On covert channels
between virtual machines. Journal in Computer Virology, 8(3):85–97, 6
2012.

[58] Fabian Rauscher, Andreas Kogler, Jonas Juffinger, and Daniel Gruss.
IdleLeak: Exploiting Idle State Side Effects for Information Leakage.
In NDSS, 2024.

[59] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and
Wouter Joosen. Automated website fingerprinting through deep learning.
In NDSS, 2017.

[60] Gururaj Saileshwar, Christopher W Fletcher, and Moinuddin Qureshi.
Streamline: a fast, flushless cache covert-channel attack by enabling
asynchronous collusion. In ASPLOS, 2021.

[61] Mickaël Salaün. Practical overview of a Xen covert channel. Journal
in Computer Virology, 6(4):317–328, 8 2010.

[62] Samsung. 980 PRO NVMe M.2 SSD Specification, 9 2020.
[63] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser, Clé-

mentine Maurice, Raphael Spreitzer, and Stefan Mangard. KeyDrown:
Eliminating Software-Based Keystroke Timing Side-Channel Attacks. In
NDSS, 2018.

[64] Meng Shen, Jinpeng Zhang, Liehuang Zhu, Ke Xu, and Xiaojiang Du.
Accurate decentralized application identification via encrypted traffic
analysis using graph neural networks. TIFS, 16:2367–2380, 2021.

[65] Carlton Shepherd, Jan Kalbantner, Benjamin Semal, and Konstanti-
nos Markantonakis. A side-channel analysis of sensor multiplexing
for covert channels and application fingerprinting on mobile devices.
arXiv:2110.06363, 2021.

[66] Carlton Shepherd, Jan Kalbantner, Benjamin Semal, and Konstantinos
Markantonakis. A Side-Channel Analysis of Sensor Multiplexing for
Covert Channels and Application Profiling on Mobile Devices. Trans-
actions on Dependable and Secure Computing, 2023.

[67] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust Website Finger-
printing Through The Cache Occupancy Channel. In USENIX Security,
2019.

[68] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Stefan Man-
gard. Exploiting data-usage statistics for website fingerprinting attacks
on Android. In ACM Conference on Security & Privacy in Wireless and
Mobile Networks, 2016.

[69] StorageNewsletter. Overall SSD Shipments De-
creased 6% Q/Q to 82.8 Million in 1Q24, 6 2024.
URL: https://www.storagenewsletter.com/2024/06/20/
overall-ssd-shipments-decreased-6-q-q-to-82-8-million-in-1q24/.

[70] Dean Sullivan, Orlando Arias, Travis Meade, and Yier Jin. Microar-
chitectural Minefields: 4K-aliasing Covert Channel and Multi-tenant
Detection in IaaS Clouds. In NDSS, 2018.

[71] Jakub Szefer. Survey of microarchitectural side and covert channels,
attacks, and defenses. Journal of Hardware and Systems Security,
3(3):219–234, 2019.

[72] Billy Tallis. 2021 NAND Flash Updates from ISSCC: The Leaning
Towers of TLC and QLC, 2 2021. URL: https://www.anandtech.com/
show/16491/flash-memory-at-isscc-2021.

[73] Billy Tallis. The ADATA GAMMIX S50 Lite 2TB SSD Review: Main-
stream PCIe Gen4, 4 2021. URL: https://www.anandtech.com/show/
16635/the-adata-gammix-s50-lite-ssd-review-mainstream-pcie-gen4/5.

[74] Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li. Invisible probe:
Timing attacks with pcie congestion side-channel. In S&P, 2021.

[75] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic.
Robust smartphone app identification via encrypted network traffic
analysis. TIFS, 13(1):63–78, 2017.

[76] Jing Tian, Gang Xiong, Zhen Li, and Gaopeng Gou. A survey of
key technologies for constructing network covert channel. Security and
Communication Networks, 2020:1–20, 2020.

[77] Theodoros Trochatos, Anthony Etim, and Jakub Szefer. Covert-channels
in FPGA-enabled SmartSSDs. ACM Transactions on Reconfigurable
Technology and Systems, 2023.

[78] Theodoros Trochatos, Anthony Etim, and Jakub Szefer. Security Eval-
uation of Thermal Covert-channels on SmartSSDs. arXiv:2305.09115,
2023.

[79] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning
Power Side-Channel Attacks Into Remote Timing Attacks on x86. In
USENIX Security, 2022.

[80] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant
Garrett-Grossman, Christopher W Fletcher, David Kohlbrenner, and
Hovav Shacham. DVFS frequently leaks secrets: Hertzbleed attacks
beyond SIKE, cryptography, and CPU-only data. In S&P, 2023.

[81] Zhenghong Wang and Ruby B Lee. Covert and Side Channels due to
Processor Architecture. In ACSAC, 2006.

[82] John C Wray. An Analysis of Covert Timing Channels. Journal of
Computer Security, 1992.

[83] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-speed Covert Channel Attacks in the Cloud. In USENIX
Security, 2012.

[84] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the Hyper-
space: High-bandwidth and Reliable Covert Channel Attacks inside the
Cloud. ACM Transactions on Networking, 2014.

[85] Jidong Xiao, Zhang Xu, Hai Huang, and Haining Wang. A covert
channel construction in a virtualized environment. In CCS, 2012.

15

https://www.storagenewsletter.com/2024/06/20/overall-ssd-shipments-decreased-6-q-q-to-82-8-million-in-1q24/
https://www.storagenewsletter.com/2024/06/20/overall-ssd-shipments-decreased-6-q-q-to-82-8-million-in-1q24/
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/16491/flash-memory-at-isscc-2021
https://www.anandtech.com/show/16635/the-adata-gammix-s50-lite-ssd-review-mainstream-pcie-gen4/5
https://www.anandtech.com/show/16635/the-adata-gammix-s50-lite-ssd-review-mainstream-pcie-gen4/5

[86] Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti
Hiltunen, and Richard Schlichting. An exploration of L2 cache covert
channels in virtualized environments. In CCSW, 2011.

[87] Shuochao Yao, Ailing Piao, Wenjun Jiang, Yiran Zhao, Huajie Shao,
Shengzhong Liu, Dongxin Liu, Jinyang Li, Tianshi Wang, Shaohan
Hu, et al. Stfnets: Learning sensing signals from the time-frequency
perspective with short-time fourier neural networks. In The World Wide
Web Conference, 2019.

[88] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security, 2014.

[89] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz.
(M)WAIT for It: Bridging the Gap between Microarchitectural and
Architectural Side Channels. In USENIX Security, 2023.

APPENDIX

Table III shows which SSD was tested with which SSD,
Ubuntu version and Linux kernel version.

TABLE III. THE CPU, OPERATING SYSTEM AND LINUX KERNEL VERSION EACH SSD WAS TESTED ON.

SSD Model CPU OS Kernel Version

A Samsung 980 Pro Intel Core i7-1260P Ubuntu 23.04 Linux 6.2.0-39-generic
B Samsung 980 AMD Ryzen 7 5800X Ubuntu 23.04 Linux 6.2.0-39-generic
C Samsung 970 Evo Intel Core i7-1260P Ubuntu 23.04 Linux 6.2.0-39-generic
D Samsung MZVL21T0HCLR-00BL7 Intel Core i7-1260P Ubuntu 22.04.4 LTS 6.5.0-45-generic
E Samsung 970 Evo Plus Intel Core i9-13900KF Ubuntu 22.04.4 LTS 6.5.0-44-generic
F Crucial P5 AMD Ryzen 7 5800X Ubuntu 22.04.6 LTS Linux 5.15.2-generic
G Crucial P5 Plus Intel Core i7-1260P Ubuntu 23.04 Linux 6.2.0-39-generic
H Kingston SA2000M81000G Intel Core i7-5820K Ubuntu 22.04.4 LTS Linux 6.8.0-32-generic
I Toshiba KXG6AZNV1T02 Intel Core i7-1165G7 Ubuntu 22.04.4 LTS 5.15.0-58-generic
J ADATA XPG Gammix S50 Lite AMD Ryzen 7 5800X Ubuntu 23.04 Linux 6.2.0-39-generic
K Gigabyte Aorus Gen4 AMD Ryzen 7 5800X Ubuntu 23.04 Linux 6.2.0-39-generic
L Western Digital Blue SN550 Intel Core i7-1260P Ubuntu 23.04 Linux 6.2.0-39-generic

TABLE IV. DETAILED COVERT CHANNEL NOISE RESULTS.

Process Virtual Machine

SSD Noise Level Noise Level
0% 5% 10% 20% 50% 100% 0% 5% 10% 20% 50% 100%

A 808 bit/s 626 bit/s 706 bit/s 674 bit/s 243 bit/s 4 bit/s 258 bit/s 247 bit/s 233 bit/s 214 bit/s 198 bit/s 264 bit/s
B 787 bit/s 828 bit/s 826 bit/s 806 bit/s 652 bit/s 5 bit/s 615 bit/s 328 bit/s 337 bit/s 279 bit/s 15 bit/s 6 bit/s
C 1 492 bit/s 1 545 bit/s 1 409 bit/s 1 480 bit/s 701 bit/s 16 bit/s 303 bit/s 387 bit/s 333 bit/s 319 bit/s 33 bit/s 6 bit/s
D 1 784 bit/s 1 706 bit/s 1 590 bit/s 1 045 bit/s 1 147 bit/s 15 bit/s 124 bit/s 52 bit/s 69 bit/s 66 bit/s 48 bit/s 14 bit/s
E 1 447 bit/s 1 420 bit/s 853 bit/s 818 bit/s 643 bit/s 16 bit/s 1 503 bit/s 1 359 bit/s 791 bit/s 1 125 bit/s 42 bit/s 15 bit/s
F 660 bit/s 674 bit/s 671 bit/s 644 bit/s 325 bit/s 292 bit/s 404 bit/s 357 bit/s 324 bit/s 339 bit/s 170 bit/s 68 bit/s
G 814 bit/s 755 bit/s 615 bit/s 564 bit/s 44 bit/s 23 bit/s 605 bit/s 379 bit/s 434 bit/s 176 bit/s 17 bit/s 2 bit/s
H 403 bit/s 468 bit/s 500 bit/s 743 bit/s 154 bit/s 2 bit/s 493 bit/s 644 bit/s 348 bit/s 265 bit/s 10 bit/s 3 bit/s
I 664 bit/s 546 bit/s 623 bit/s 639 bit/s 144 bit/s 15 bit/s 258 bit/s 117 bit/s 36 bit/s 30 bit/s 15 bit/s 13 bit/s
J 647 bit/s 735 bit/s 691 bit/s 432 bit/s 408 bit/s 7 bit/s 592 bit/s 705 bit/s 662 bit/s 318 bit/s 2 bit/s 2 bit/s
K 755 bit/s 555 bit/s 696 bit/s 372 bit/s 331 bit/s 6 bit/s 702 bit/s 448 bit/s 566 bit/s 351 bit/s 2 bit/s 2 bit/s
L 1 313 bit/s 1 202 bit/s 1 253 bit/s 898 bit/s 16 bit/s 13 bit/s 429 bit/s 252 bit/s 243 bit/s 228 bit/s 43 bit/s 13 bit/s

The results of the covert channels between processes and virtual machines of all SSDs at different injected artificial noise
levels.

Table IV shows the detailed results of the covert channel
noise experiments. It contains the maximum covert channel
transmission rates of all SSDs, between processes and virtual
machines at artificial noise levels from 0% to 100%.

Figure 16 shows the spectrograms of 8 selected websites
from the website fingerprinting traces on SSD A. Figure 17
shows the spectrograms of the same 8 websites again with an
injected 50% noise level.

Figure 18 shows classification heat maps of SSD C at noise
levels 2%, 20% and 50%. Figure 19 shows classification heat
maps of SSD H at noise levels 2%, 20% and 50%.

16

(a) google.com (b) youtube.com (c) facebook.com (d) qq.com

(e) xhamster.com (f) imdb.com (g) force.com (h) dropbox.com

Fig. 16. Spectrograms of different websites on SSD A with the time on the x-axis and frequency on the y-axis. The differences between the websites as well
as the similarities of the same websites are clearly visible, easily distinguishable by a convolutional neural network.

(a) google.com (b) youtube.com (c) facebook.com (d) qq.com

(e) xhamster.com (f) imdb.com (g) force.com (h) dropbox.com

Fig. 17. Spectrograms of different websites on SSD A at an injected 50% noise level with the time on the x-axis and frequency on the y-axis. The differences
between the websites as well as the similarities of the same websites are less clearly visible. The individual visible reads from the browser are longer, probably
due to the longer accesses time because of contention with the artificial noise accesses. Because the noise is so constant it is not visible in the spectrograms,
making classification possible.

17

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

(a) 2% noise: The F1 score is 89.9%, the
open-world dataset is correctly classified with
an accuracy of 71%.

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

(b) 20% noise: The accuracy is 69.9%, the
open-world dataset is correctly classified with
an accuracy of 66%.

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

(c) 50% noise: The accuracy is 58.1%, the
open-world dataset is correctly classified with
an accuracy of 77%.

Fig. 18. Website fingerprinting classification heat maps of SSD C at different noise levels.

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

(a) 2% noise: The F1 score is 27.6%, the
open-world dataset is correctly classified with
an accuracy of 57%.

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

(b) 20% noise: The accuracy is 24.2%, the
open-world dataset is correctly classified with
an accuracy of 59%.

Website

Pr
ed

ic
tio

n

0

20

40

60

80

100

(c) 50% noise: The accuracy is 17.8%, the
open-world dataset is correctly classified with
an accuracy of 59%.

Fig. 19. Website fingerprinting classification heat maps of SSD H at different noise levels.

18

	Introduction
	Background
	Covert Channels
	Website-Fingerprinting Side Channels
	Solid-State Drives (SSDs)
	Asynchronous I/O

	SSD Characterization
	Setup
	Round-Trip Time (RTT) Experiment
	SSD Cache Behavior
	Timing Measurement Software Overhead
	Minimal Detectable Read Size
	Minimal Detectable Write Size
	Thermal Throttling

	Covert Channel
	Implementation
	Threshold Learning & Communication Protocol
	Covert Channel across Processes
	Covert Channel across Virtual Machines
	Impact of Noise
	Discussion

	Website Fingerprinting
	Data Recording
	Classification Machine Learning Model
	Results
	Impact of Noise / Mitigation

	Discussion and Mitigations
	Conclusion
	References
	Appendix

