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Abstract—Text-to-image diffusion model’s fine-tuning technol-
ogy allows people to easily generate a large number of customized
photos using limited identity images. Although this technology is
easy to use, its misuse could lead to violations of personal portraits
and privacy, with false information and harmful content potentially
causing further harm to individuals. Several methods have been
proposed to protect faces from customization via adding protective
noise to user images by disrupting the fine-tuned models.

Unfortunately, simple pre-processing techniques like JPEG
compression, a normal pre-processing operation performed by
modern social networks, can easily erase the protective effects
of existing methods. To counter JPEG compression and other
potential pre-processing, we propose GAP-Diff, a framework of
Generating data with Adversarial Perturbations for text-to-image
Diffusion models using unsupervised learning-based optimization,
including three functional modules. Specifically, our framework
learns robust representations against JPEG compression by
backpropagating gradient information through a pre-processing
simulation module while learning adversarial characteristics for
disrupting fine-tuned text-to-image diffusion models. Furthermore,
we achieve an adversarial mapping from clean images to protected
images by designing adversarial losses against these fine-tuning
methods and JPEG compression, with stronger protective noises
within milliseconds. Facial benchmark experiments, compared
to state-of-the-art protective methods, demonstrate that GAP-
Diff significantly enhances the resistance of protective noise to
JPEG compression, thereby better safeguarding user privacy and
copyrights in the digital world.

I. INTRODUCTION

When posting/sending photos within your social networks,
have you ever thought that someone might customize and
modify your photos, as shown in Figure 1, without your
permission? Many image customization tools (e.g., GAN-
based ones [20], [21] and diffusion-based ones, named fine-
tuned text-to-image diffusion models [10], [15], [34], [35])
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Fig. 1: Taken a random identity from VGGFace2 [3] facial
dataset (left), the FT-T2I-DM (using DreamBooth [34]) pro-
duces four fake images (right) based on different prompts.

can easily generate lifelike photos using your posted/sent ones.
Such tools are bringing serious and pervasive social problems,
reported by major media outlets like CNN and BBC [8], [9],
[42], as increasingly being used to create fake news about
different individuals. Among these image customization tools,
the fine-tuned text-to-image diffusion models (FT-T2I-DMs),
implemented by fine-tuning T2I-DMs using techniques like
DreamBooth [34] and its successors - DreamBooth-based
LoRA [35] (which integrates LoRA [17] into DreamBooth)
and SVDiff [15], generate the most realistic images thanks to
the powerful posterior knowledge learned by diffusion models
in image generation [1], [5], [45], [50].

As a researcher, you can surely find out that existing
works [24], [26], [36], [38], [45], [47], [49], [53] might protect
your photos against the FT-T2I-DMs-based malicious image
customization. Unfortunately, according to our observation
(shown in Figure 2), these protective means will never work
in your case, simply due to the JPEG compression applied on
your uploaded (and also protected) photos, which is a normal
pre-processing action performed by modern social networks,
such as Facebook, Instagram, Whatsapp, X, WeChat, etc. [29],
[43]. In Figure 2, we show two sets of customized images
using DreamBooth-based FT-T2I-DMs on the protected images
with and without JPEG compression, where JPEG compression

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.242088
www.ndss-symposium.org



a clean image

(1) Photoguard[36] (2) Glaze[38] (3) Mist[24] (4) Anti-DB[45] (5) ACE[53] (6) MetaCloak[26] (7) CAAT[49] (8) SimAC[47] (9) GAP-Diff (ours)

protect against FT-T2I-DMs

Fine-tuned Text-to-Image Diffusion Models (FT-T2I-DMs)

JPEG Compression

Inference prompt of customized model:
"In front of Eiffel Tower"

customized outcomes on protected images

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(a)
(b)

(a)
w.o. JPEG

compression

(b)
w. JPEG

compression

(b)

Fig. 2: Comparison between existing methods and GAP-Diff (ours) using DreamBooth-based FT-T2I-DMs on the protected
images with and without JPEG compression.

did damage the protection effect of the existing works (images
from number one to number eight) against the customization.
The reason behind our observation is two-fold. First, JPEG
compression is capable of reducing high-frequency information
from images [46]. Second, to prevent the FT-T2I-DMs-based
customization, the existing works inject noise concentrating on
the high frequency information of images [47]. Hence, most of
such high-frequency noise present in the protected images will
be removed by JPEG compression, potentially compromising
the effectiveness of existing protective measures.

To mitigate the degradation in protection against FT-T2I-
DMs customization caused by JPEG compression, we propose
a novel generative framework of unsupervised learning-based
optimization, named GAP-Diff. In a nutshell, we achieve an
adversarial mapping from clean images to protected images
by designing adversarial losses against fine-tuning and JPEG
compression. Specifically, different from the existing works
that belong to iterative methods as depicted in Figure 3, we
first construct a generator module as the mapping function
through a robust neural network to obtain protected images in
one step. Then, the generative framework uses the proposed
adversarial loss functions that are invariably utilized in the
fine-tuning methods of T2I-DMs as the primary optimization

objectives from our fine-tuning T2I-DM module. Finally, thanks
to the powerful learning and optimization capabilities of our
generative framework, enabling JPEG compression to be com-
puted during the backpropagation relying on a pre-processing
simulation module, the protective noise injected by our solution
is resistant to JPEG compression; hence keeps the protection
effect against the FT-T2I-DMs in real social networks scenarios.
This also explains why adaptive defense methods are difficult
to apply in this scenario: most existing methods use the PGD
strategy to generate protective noise, which involves an iterative
process of creating adversarial samples and customizing DM for
reference. These attacks are more complex than those applied to
pre-trained classification models. Adding JPEG resistance while
maintaining reported effectiveness requires careful redesign and
significant modification of the noise generation process, which
has been effectively addressed in this paper.

Our contributions can be summarized as follows:

• We propose a novel solution designed to protect images
from customization by fine-tuned text-to-image diffusion
models, which demonstrates significantly enhanced resis-
tance to JPEG compression, a common pre-processing
operation in real social networks scenarios, making it more
suitable for digital world compared to existing solutions.
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Fig. 3: The difference between the solution of existing works
and ours. Given a clean image x, the former generally uses a
fine-tuning loss from the FT-T2I-DM to calculate the gradients
and update xadv iteratively. After given iterations, they can
get the final protected image. By contrast, the latter directly
outputs the xadv via a neural network and optimizes the network
through unsupervised learning using a combined loss. Here, in
addition to fine-tuning loss, more control and computational
items, such as adversarial loss for countering JPEG compression,
can be added than the former ones using the iterative way.
After given epochs, we can get a well-trained and robust neural
network that can generate protected images.

• To the best of our knowledge, we are the first to uti-
lize neural networks to learn adversarial losses against
diffusion models. This way, we can achieve potentially
stronger protective noises by searching global optima of
the optimization problem. Additionally, by shifting the
time-consuming iterative process of generating protective
noise for each image from existing works to the training
phase of the neural network, our generator, once trained,
can rapidly produce protected images within milliseconds.

• We conduct extensive experiment evaluation on com-
monly used datasets under various configurations. The
experimental results confirmed the advantages of our
solution in time and space efficiency and resistance
to JPEG compression, compared to the state-of-the-art
methods. Furthermore, experiments on different noise
budgets, prompt and T2I-DM weight mismatch, fine-tuning
methods and pre-processing techniques are also conducted
in detail.

II. RELATED WORK

A. Generative Models and T2I Diffusion Models

In previous works [12], [22], variational autoencoders (VAEs)
and generative adversarial networks (GANs) have been widely
used for generative tasks. They can roughly be categorized into
likelihood-based generative models that directly fit the data
distribution and implicit generative models, which aim to map
the output images to the target distribution by ensuring that
they are classified as real by a discriminator. However, these

previous methods are often limited by network architecture
and suffer from issues such as sample quality and training
instability [13].

Recently, the diffusion model has emerged [16], [40], [41],
which generates samples by simulating the diffusion process.
In the forward process, the original sample is gradually diffused
into standard Gaussian noise through noise injection. Then,
in the reverse process, the noise learned by the U-Net from
the forward process is used to gradually denoise the image,
mapping the data back to the original distribution to generate
new samples similar to the original image.

Benefiting from large-scale datasets like LAION5B [37],
the diffusion model has been used as a text-to-image model
known as T2I-DM for various generative tasks. In this type of
task, text is typically encoded by an encoder such as Clip [31]
to generate a condition c for the diffusion model, which is
then incorporated into the training input of the U-Net. In the
open-source and widely used LDM [32], VAEs are used as
image encoders to encode images into smaller latent variables,
which are then added to the diffusion process, reducing training
and inference costs. Additionally, LDM incorporates attention
mechanisms into the residual layers of the U-Net, enabling
better mapping between the conditional c and the input latent
variables in the neural network, allowing users more creative
freedom.

B. Fine-tuning and Customization

To reduce training costs and enable users to better generate
specific characters or artistic styles, fine-tuning methods on T2I-
DMs have been proposed and widely adopted for customization.
The fine-tuning methods are based on pre-trained conditional
diffusion model weights and involve personalized training by
outputting several images of specific characters or styles along
with specific concept terms. Typically, their training process
does not require much time.

Among these approaches, DreamBooth [34] is popular due
to its excellent generation quality and straightforward fine-
tuning method. Specifically, DreamBooth conducts training by
providing 3 ∼ 5 images of characters needing customization
along with a special term denoting the target user such as
“sks”, which is a special token chosen by performing a rare-
token lookup so that it could minimize the probability of the
identifier having a strong prior when fine-tuning [34]. This
method encourages the T2I-DM to remember relevant concepts
and achieve image mappings corresponding to those concepts
during inference, thereby achieving customization.

Regarding other fine-tuning methods, for example, Text-
Inversion [10] adjusts the text encoding set to describe concepts,
while Custom Diffusion [23] optimizes only the parameters
in the model’s cross-attention layers. By integrating fine-
tuning methods with LoRA [17], the cost of fine-tuning can be
reduced by decomposing attention layers into low-rank matrices.
Consequently, DreamBooth-based LoRA was proposed [35].
SVDiff [15] involves fine-tuning the singular values of the
weight matrices, thereby reducing the risk of and language
drift.
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C. Privacy Protection on GANs and DMs

With the continuous advancement of artificial intelligence
technology and the deepening research into generative networks,
the issues of identity forgery and protection have become hot
topics in related fields, with DeepFake being widely recognized
as one prominent example. There are numerous detection
techniques for DeepFake [2], [14], [18], [48], [54], which aim to
discern forged images by learning the distinct features between
forged and genuine facial images. Although these methods
can detect forged images, they operate after the forgery has
occurred, making it challenging to protect individuals’ privacy.

Before DeepFake and customization happen, a called “image
cloaking” [39] privacy protection technique is proposed to
prevent the generation of forged images. Methods like [51],
[52] disrupt the learning and generation capabilities of GAN-
based DeepFake methods, thereby concealing images from the
GAN model.

For popular T2I-DM-based DeepFake methods, many new
privacy protection techniques based on adversarial attacks have
recently emerged. PhotoGuard [36] proposes attacking the VAE
or U-Net parts of text-to-image models by perturbing the latent
encoding to mislead the model. Glaze [38] misguides diffusion
models by making the feature distance of the training data
closer to the target image. AdvDM [25] and its subsequent
version Mist [24] achieve protection by performing adversarial
attacks on pre-trained diffusion models. ACE [53] induces
the fine-tuned LDM to learn the same pattern as a bias in
predicting the score function and improves the attack effects.
Anti-DreamBooth [45] focuses on face protection during fine-
tuning by iteratively applying the classic PGD [27] method to
the diffusion model to obtain protective noise. Several methods
have been further proposed to optimize Anti-DreamBooth.
Specifically, CAAT [49] enhances protection by attacking only
the U-Net’s cross-attention layers. MetaCloak [26] addresses
the lack of pre-processing resistance in Anti-DreamBooth by
using multiple surrogate diffusion models to find the optimal
perturbation against pre-processing, although this reduces
protection effectiveness in non-preprocessed scenarios and
incurs a high computational cost for generating protective noise.
SimAC [47] improves Anti-DreamBooth through a greedy
algorithm, identifying the best perturbation timestep and feature
layer.

However, the protection effects of these existing methods
can be easily removed by the high-frequency information
quantization of JPEG compression. Therefore, our GAP-Diff
framework is proposed to address this challenge.

III. PRELIMINARIES AND THREAT MODEL

A. Preliminaries

Diffusion model. As introduced in Section II-A, DM primarily
contains two processes. In the forward process, an image
x0∼q(x) is perturbed with a noise scheduler {βt : βt ∈
(0, 1)}T

t=1 that is designed based on a sequence of increasing
levels of noise through T steps. In this process, we can obtain a
sequence of x, {x0, x1, ..., xT }, where each x can be obtained

through the following formula that depends on random noise
and timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)

where αt = 1− βt, ᾱt =
∏t
i=1 αi and ϵ ∼ N (0, I).

During the reverse process, it denoises xt into xt−1 by
training a U-Net network ϵθ(x, t) or ϵθ(x, c, t), depending
on whether it is a conditional denoising diffusion model.
Ultimately, it gradually denoises from a standard Gaussian
distribution to obtain an image from the original distribution.
Training the U-Net network effectively involves making the
removed noise as similar as possible to the noise added during
the forward process, aiming to approximate the reconstructed
distribution to the original distribution in the forward process.
The training formulas are as follows:

Luncond(θ, x0) = Ex0,t,ϵ∼N (0,I)||ϵ− ϵθ(xt+1, t)||22, (2)

Lcond(θ, x0) = Ex0,t,c,ϵ∼N (0,I)||ϵ− ϵθ(xt+1, t, c)||22, (3)

where c is condition input.
Adversarial attacks. The objective of adversarial attacks is to
deceive the behavior of a model by adding small perturbations
to the input images. Conventional adversarial attack methods
typically target a classifier f . They start by obtaining the output
ytrue of the input x from f , then alter the pixels of x until
f(x) ̸= ytrue. The visual imperceptibility of the perturbation
is ensured by the noise budget η, and the formula for obtaining
the perturbation δ is as follows:

δadv = argmax
||δ||p<η

L(f(x+ δ), ytrue). (4)

Projected Gradient Descent (PGD) [27] is a widely utilized
iterative attack method that aims to modify the pixels of input
x to induce an ascent in the loss function gradient of network
f , which is used in previous attack methods [24], [26], [36],
[45], [47], [49], [53] and can be described by the following
formula:

xk+1 =
∏
(x,η)

(xk + αsgn(∇xL(f(x+ δ, ytrue))), (5)

where x0 = x, α represents the step size for each gradient
ascent iteration, and sgn(·) is a sign function.

Different from iterative methods, by solving an optimization
problem initially proposed by C&W [4] to obtain the pertur-
bation satisfying Eq. 4, [30] seeks θ disrupting classification
network such that the following formula holds for most x ∈ N ,
where N represents the set of natural images:

K(fθ(x)) ̸= K(x), (6)

where K represents the target classification network, while f
denotes the network being optimized.
JPEG compression resistance. As a common lossy tech-
nique, JPEG compression aims to preserve more noticeable
low-frequency components while eliminating high-frequency
components that are less perceptible to the human eye. Some
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Fig. 4: Explanation of JPEG-Mask. In the left, the quantization
of JPEG compression is more intense in high-frequency
components, meaning that values in dark areas are quantized
close to zero. In contrast, JPEG-Mask, as depicted in the right
image, simulates this process by retaining some low-frequency
regions while directly setting the positions of high-frequency
regions to zero.

advancements have focused on simulating JPEG compression
during the training phase of neural networks to enhance their
resistance. One notable method is the JPEG-Mask approach
by [55], which involves zeroing out a set of fixed high-frequency
coefficients, retaining only the 5× 5 low-frequency region of
the Y channel and the 3 × 3 low-frequency region of the U
and V channels, as illustrated in Figure 4. This simulation
technique can be utilized to enable the network to exhibit a
certain level of robustness against JPEG compression during
the training process.

B. Threat Model

As described in Section I, FT-T2I-DMs can utilize a few
facial images to generate images featuring specific individuals
in various scenes. The adversary may gather a set of images
Xn depicting a particular identity from nature and input all
instances of xn ∈ Xn into the T2I-DM for fine-tuning. The
adversary employs the conditional diffusion model of DM to
train its denoiser U-Net, denoted as ϵθ, following the fine-
tuning algorithm to obtain optimized model parameters θ∗.
Specifically, the fine-tuning algorithm compels the DM to
learn to reconstruct images from Xn and utilize a generic
prompt c, such as “a photo of S* person”, where “S*” serves
as a specific prompt word to bind with identity Xn. To train
for effective binding, the adversary utilizes the loss of the
conditional diffusion model as described in Eq. 3 with the
generic prompt c. On the other hand, fine-tuning models also
often introduce a loss term preserving prior knowledge about the
person subject, aiming to prevent overfitting and language drift
issues solely from training on specific identity images, using
a prior prompt cpr. Overall, these two components comprise
the optimization objective in Eq. 7 employed by the adversary
using the family of DreamBooth-based methods [15], [34],
[35] which are demonstrated most powerfully by fine-tuning
through text-encoder and U-Net of the T2I-DM.

Lft(θ, x
n
0 ) = Exn

0 ,t,t
′ ||ϵ− ϵθ(xnt+1, t, c)||22

+ λ||ϵ′ − ϵθ(x′t′+1, t
′, cpr)||22, (7)

where xnt is noisy variable of xn ∈ Xn, and x′t′+1 is noisy
variable of class example x′ ∈ X ori, where X ori represents
the set of images generated from original LDM θori with prior
prompt cpr. ϵ and ϵ′ are sampled from standard Gaussian noise
N (0, I). λ represents the weight of the regularization term.

Furthermore, due to common compression methods em-
ployed by social media platforms or to circumvent recent noise-
based protective measures aimed at preventing customization
of individual photos, the adversary may obtain a collection
of preprocessed images X pre by JPEG compression, which
represents Xn undergoing pre-processing function p(·). They
would then utilize xpre ∈ X pre for fine-tuning following Eq. 8.

Lft’(θ, x
pre
0 ) = Expre

0 ,t,t′ ||ϵ− ϵθ(x
pre
t+1, t, c)||22

+ λ||ϵ′ − ϵθ(x′t′+1, t
′, cpr)||22. (8)

To protect user photos, we cannot directly attack the whole
customization part of the model, since it is entirely controlled
by the adversary, making the fine-tuning function become our
condition for the protection scenario rather than the target.
Additionally, we also do not solely attack the image encoder,
because even if we have a way to disrupt it, the disruption is
likely to be probabilistically eliminated by the prior knowledge
of the diffusion model, and we cannot guarantee that the
adversary’s encoder is the same as ours. Therefore, we decide
to start from the generation part and disrupt the predictive
performance of the U-Net model through the conditional
loss. The goal of GAP-Diff can be succinctly summarized
as obtaining a mapping f(·) from clean images to protected
images that satisfy the following criteria, with the intensity of
the protective noise constrained by η.

f∗ ∈ argmax
f

Lcond(θ
∗, p(f(Xn))),

s.t. θ∗ ∈ argmin
θ

Lft’(θ, f(Xn)), (9)

||f(Xn)−Xn||p ≤ η.

We further categorize the threat model settings into the
following types:

Regular setting. In this setting, the adversary utilizes an open-
source Stable Diffusion [32] for fine-tuning training. During
training, the special identifier “sks” is employed as “S*” along
with the cpr prior knowledge.

Preprocess setting. This setting is the focal point of our work,
in which, the adversary still employs regular setting, but the
images fed into the FT-T2I-DMs undergo JPEG compression
by the adversary or social media. It is worth noting that these
pre-processing steps are regulated to a certain intensity to
ensure that the generated images remain authentic and natural.
Excessive pre-processing might degrade the quality of the
images [45].

Adverse settings. In these settings, the adversary’s choice of
the weight of pre-trained text-to-image diffusion model, fine-
tuning method, training prompt, or pre-processing methods
remains undisclosed.
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Fig. 5: Pipeline of GAP-Diff. We first input the clean images into the generator to get the output noises which is then scaled
and concatenated with the clean image to create protected images. These protected images are fed into the discriminator and
T2I-DM to obtain Loss1, which measures the visual quality of protected images, and Loss2, which directly contributes the
adversarial features of the protective noise. Next, the protected images are passed through the pre-processing layer, and the
preprocessed images are fed into the DM to obtain Loss3 to counter JPEG compression and other pre-processing. Finally,
according to different training strategies, these three losses are combined to optimize the generator.

IV. METHODOLOGY

A. Overview

GAP-Diff aims to disrupt the customization capability of FT-
T2I-DMs by adding small perturbations δ to the set of images
Xn that need protection. In other words, we aim to maximize
the distortion introduced when these images x = xn + δ are
used for customization, such that adversaries cannot create clear,
natural-looking, deceptive, or machine-usable fake images from
X and X pre, which represent the set of protected images x and
the set of preprocessed protected images xpre. The customized
outcomes of T2I-DM fine-tuned with the JPEG compressed
images protected by GAP-Diff should exhibit one or more of
the following characteristics:

• Poor image quality with obvious distortions, blurriness,
grid patterns, or bubble-like cracks.

• Faces that are unrecognizable by humans or unusable for
downstream tasks by machines.

• Faces that are extremely blurry or identities that do not
match even if faces are present.

Towards these goals, we will provide detailed descriptions of
the different modules of GAP-Diff in the following subsec-
tions. GAP-Diff is divided into three components. Firstly, in
Section IV-B, we discuss the primary generator part requiring
training. Next, in Section IV-C, we introduce the inserted pre-
processing layer. Finally, in Section IV-D, we explain how we
derive the adversarial optimization target for the FT-T2I-DMs.
The pipeline is shown in Figure 5.

B. Generator Module

To establish the mapping f in Eq. 9, we aim to train a
generator represented as gψ(·) to generate protective noise or
protected images. Specifically, for the same facial images from
the natural domain input Xn, we can directly generate the
protected image set X or the protective noise set ∆, where ∆

is the set of δ and it corresponds one-to-one with the input
xn ∈ Xn.

For the former, we can utilize a standard GAN architecture,
where the input is an image xn, and the output is directly a
protected image x. Here, an MSE loss can be employed to
enforce the similarity between xn and x. For the latter, we
can input an image xn and output protective noise δ0. This
allows η×δ0 to be added to xn as δ to form the final protected
image x, with η representing the noise budget that controls the
stealthiness of the noise.

Similar to the observations in [30], we believe that the former
method may result in perturbations that are either too small
to be effective or too large causing significant visual changes
in the entire image due to a lack of control over the noise.
Therefore, we ultimately adopt the latter approach, directly
managing the perturbation generation by scaling the noise
through an activation function with the budget η, rather than
obtaining the noise first and then truncating it to control its
size as iterative methods typically do.

Consequently, we train a neural network to get robust
protective perturbations. For its architecture, since we require
the generated noise to be added to the original image, the
network must be an end-to-end structure. Here, we opt for the
classical U-Net architecture [33] as the generator, and design it
to consist of convolution, deconvolution, and skip connections.
We feed the input image xn into the U-Net to obtain its output
δ0. Here, we apply a tanh function to constrain δ0 to the range
(-1, 1). Subsequently, we use η to constrain the size of the
noise at the l∞ norm level, that is, ||x − xn||∞ < η, where
x = xn+δ, δ = η×δ0 and δ0 = gψ(x

n). This way, the neural
network automatically constrains the output in terms of the l∞
norm. The parameters of the generator ψ are obtained through
computation and optimization of the following loss functions
that will be introduced next.
Discriminator and GAN loss. For experimental rigor, we
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integrate an extra discriminator into the architecture to enhance
the visual quality of the generated protected images. The
discriminator employs conventional GAN loss to quantify the
discrepancy between the adversarial example and the original
image. The loss for discriminator is formulated as:

LGAN(x
n, x) = Exn∈Xn [logD(xn)] + Ex∈X [log(1−D(x))],

(10)

where D(·) represents the discriminator.
Once this component is added to the pipeline, the generator

also needs to incorporate new generation loss terms to deceive
the discriminator:

LD(x) = Ex∈X [log(1−D(x))]. (11)

C. Pre-processing Simulation Module

To enhance the resilience of generated images against
JPEG compression (our main goal) and other pre-processing
techniques in adverse settings, we design a pre-processing
simulation module. It is mainly a pre-processing layer con-
taining different pre-processing simulation functions p(·) that
preprocess the input images and automatically sample a single
function for each input. This involves leveraging JPEG-Mask,
as introduced in Section III-A, which simulates differentiable
JPEG compression. Additionally, we incorporate other pre-
processing methods such as Gaussian blur, along with a Skipped
function for training diversity.

It’s important to note that while we utilize the JPEG-Mask
from the steganography field, the optimization of the generator
involves complex, time-varying information from diffusion,
which completely differs from the simple decoder task. That
means we should pay more attention to the functions comprising
the pre-processing layer and ignore any information from
real JPEG compression which can result in unnecessary zero-
gradient updates, reducing training efficiency and simultane-
ously affecting the overall expected value, which is the primary
objective of our optimization task as follows.

Exn∈Xn,t∈(0,T )Ladv(p(x
n + η × gψ(xn)), t), (12)

where T represents max diffusion training step in next module,
p(xn+η×gψ(xn)) can be represented as xpre which belongs to
X pre. Ladv denotes the final adversarial optimization objective.

As Eq. 12, through mixed training with the pre-processing
layer, we can achieve training results that reflect the mathemat-
ical expectation across different conditions with and without
pre-processing, rather than focusing solely on a single scenario.
In other words, the approach can facilitate training towards a
global optimum across multiple scenarios. Specifically, our pre-
processing layer mainly includes: (1) The JPEG-Mask function,
which simulates JPEG compression and repeatedly set in the
pre-processing layer at different compression qualities, enables
the gradient to be back-propagated to the generator, allowing
it to learn adversarial features against JPEG compression. (2)
The Skipped function, which applies no processing. Since our
architecture needs to be effective both with and without pre-
processing, learning adversarial features without pre-processing

is essential for the generator. (3) Other pre-processing functions,
which can be added as additional options in mixed training.
This enables the generator to learn more robust features, like
those against Gaussian blur.

D. Fine-tuning T2I-DM Module

For the Fine-tuning T2I-DM module, we disrupt the U-Net
generation part following Eq. 9. Contrary to Eq. 3, where the
U-Net aims to make the denoised distribution as close to the
original distribution as possible, we aim to make the former
far from the latter.

To achieve this goal, we seek the noise to exhibit adversarial
characteristics to U-Net across all diffusion timesteps involved
in training (0,MaxT imeStep). As observed in [11], [47],
the noise levels vary across different timesteps, resulting in
different gradient information obtained during iterative attacks.
We test the conditional losses of the fine-tuned model across
different time intervals, as shown in Figure 6.

Due to the varying noise levels through diffusion, the adver-
sarial characteristics at high timesteps (dominated by noise)
may differ significantly from those at low timesteps (clear facial
features). Therefore, if we only learn adversarial characteristics
across specific time intervals, the learned characteristics may
not persist across other timesteps. Using such training results
for final inference can lead to two possible outcomes. One is
that images with only adversarial characteristics to high time
intervals can be overshadowed by the denoising process of low
time intervals. The other is that images with only adversarial
characteristics to low time intervals may allow DM to generate
images already having facial contour features before it works,
possibly only disrupting a few details during generation.

Thus, we believe it is necessary to consider information
from both low and high timesteps to train for resilience and
ignore the adversarial features of timesteps that are too high
and are completely noisy. As a result, we incorporate a simple
α function to balance adversarial information from different
timesteps. After a series of tests and evaluations, including
those illustrated in Figure 6, we set the α function as follows:

y =

1 if x ∈ (0, 800),

0 otherwise.
(13)

And the loss function for this part is as follows:

Ladv(x, c, t) = Et[−α(t)Ex,cd(ϵ, ϵθ(xt+1, t, c))], (14)

where c is the condition containing S∗, ϵθ represents the
pre-trained U-Net, and d(·) measures the distance between
variables.

E. Final Optimization Function

Combining the aforementioned modules, we aim to train the
generator jointly with discriminator loss and adversarial losses.
To balance the adversarial feature contributions before and after
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Fig. 6: Fine-tuning conditional loss corresponding to the
all timesteps within the entire time interval under different
conditions. The blue line represents the conditional loss of the
original image input to the fine-tuned model (here DreamBooth).
The orange and green lines correspond to the conditional losses
of protected images with low and high time intervals trained
separately input to the fine-tuned model. The red line indicates
the desired fine-tuning loss of our protected images, which
combines adversarial effects at both low and high time intervals;
the higher this red line is overall, the better.

the application of the pre-processing simulation module, we
design the final loss function formulated as follows:

LGAP-Diff = αLD(x) + βLadv(x, c, t) + γLadv(x
pre, c, t),

(15)

where α, β and γ are the regularization terms used to balance
the discriminator and adversary weights. Since this loss function
is not based on ground truth, our task falls under the category of
unsupervised learning. Based on the formula, the algorithm for
GAP-Diff is illustrated in Algorithm 1, where we first consider
using α and β to obtain the pure adversarial features, and then
add γ to learn the robustness features against pre-processing.

As shown in Figure 7, the whole pipeline aims to guide
the neural network to learn adversarial noises at different
timesteps to shift the entire distribution used for customized
inference away from the original data distribution. We believe
that such a shifted distribution encompasses features devoid
of any prior knowledge from the diffusion model. However,
it still contains facial features specific to the individual and
semantic features describing the individual (such as “a photo
of person”). Consequently, the generated images will contain
distorted, noisy, and partially recognizable facial characteristics
while they are still photos of someone.

From the perspective of probability distributions, our network
can be understood as performing unsupervised training to treat
the generator’s function as a parameterized density. In this
case, the distribution of images generated by gψ(·) becomes
the Pψ distribution. If we denote the true distribution with prior
knowledge of the diffusion model as Pr, then Padv represents
a distribution within the diffusion model that is adversarial to

Algorithm 1: GAP-Diff framework.
Input: original images xn, noise budget η, generator

parameters ψ, pre-training epochs N , resume
training epochs N2, pre-processing layer P ,
diffusion max training step T , generic prompt c,
weights of loss α, β, γ

Output: trained parameters ψ∗

1 Initialize P with seqP=[JPEG-Mask, Skipped, GB, ...]
2 for each epoch in N do
3 for each batch in the epoch do
4 δ0 ← gψ(x

n) ▷ gψ(·) contains the tanh(·)
mapping δ0 ∈ (−1, 1)

5 x← η × δ0 + xn

6 Sample t uniformly from (0, T )
7 L ← αLD(x) + βLadv(x, c, t)
8 Backpropagate L and optimize ψ

9 for each epoch in N2 do
10 for each batch in the epoch do
11 δ0 ← gψ(x

n)
12 x← η × δ0 + xn

13 Sample a pre-processing function p(·) uniformly
from seqP ,

14 xpre ← p(x)
15 Sample t uniformly from (0, T )
16 L ← αLD(x) + βLadv(x, c, t) + γLadv(x

pre, c, t)
17 Backpropagate L and optimize ψ

18 return ψ∗

...

Unet mispredictions
...

Fig. 7: The inference process of the disrupted DM. For the
prior q(x|c), there exists a distribution pθ(x0:T |c) predicted
by the DM after learning from natural images. When the
DM is trained on adversarial samples, during inference, the
U-Net’s predictions will gradually deviate from the original
samples until they reach the adversarial distribution pθ′(x0:T |c)
from the potential Padv that the DM has been misled to learn.
From the denoising process perspective, the U-Net will struggle
to correctly denoise and produce natural backgrounds, facial
features, etc., at different timesteps, especially at low timeteps.

a specific true distribution, for which the diffusion model lacks
prior knowledge about adversarial examples under different
conditions. In other words, the objective of GAP-Diff is to get
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TABLE I: Performance comparison using different metrics for GAP-Diff on VGGFace2. The protected images output by all
methods in the table are subjected to JPEG compression with Q = 70 and then input into the customization model fine-tuned
with DreamBooth to obtain corresponding evaluation metrics. “↑” means the higher the better while “↓” means the lower the
better.

Methods “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓ FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

No Defense 5.33 0.61 26.27 0.69 21.57 0.48 9.64 0.71
Photoguard [36] 6.22 0.55 29.38 0.71 19.44 0.46 13.74 0.71

Glaze [38] 6.57 0.53 30.42 0.69 18.78 0.45 11.04 0.69
Mist [24] 14.89 0.46 35.68 0.60 19.56 0.38 20.43 0.63

Anti-DB [45] 22.89 0.41 40.19 0.40 32.67 0.34 32.72 0.44
ACE [53] 8.44 0.47 37.22 0.61 15.22 0.38 27.80 0.64

MetaCloak [26] 31.69 0.44 38.82 0.51 35.28 0.36 27.31 0.56
CAAT [49] 25.44 0.43 42.01 0.45 21.67 0.38 25.07 0.57
SimAC [47] 19.11 0.49 39.43 0.52 23.56 0.41 24.15 0.62

GAP-Diff (ours) 77.56 0.25 42.04 0.23 76.33 0.19 48.97 0.20

Methods “a photo of sks person looking at the mirror” “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓ FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

No Defense 8.67 0.44 19.61 0.56 20.67 0.22 20.11 0.44
Photoguard [36] 9.67 0.40 23.43 0.56 19.56 0.21 17.91 0.45

Glaze [38] 9.33 0.41 19.69 0.55 17.44 0.20 19.78 0.43
Mist [24] 12.33 0.35 22.17 0.50 27.33 0.18 21.05 0.36

Anti-DB [45] 21.67 0.30 24.77 0.37 34.88 0.14 31.21 0.26
ACE [53] 12.44 0.30 31.90 0.42 36.11 0.15 25.25 0.26

MetaCloak [26] 32.76 0.32 34.14 0.36 30.57 0.15 31.22 0.25
CAAT [49] 16.33 0.32 23.82 0.37 34.22 0.14 31.82 0.25
SimAC [47] 14.89 0.33 31.09 0.42 28.56 0.14 32.98 0.25

GAP-Diff (ours) 84.56 0.14 47.30 0.13 72.78 0.08 41.69 0.08

the minimum value of KL(Pψ||Padv).
In Algorithm 1, we achieve this by optimizing ψ through

LGAP-Diff. During inference, according to the DDPM [16]
inference Eq 16 and as illustrated in Figure 7, the generated
images gradually shift towards the distribution of adversarial
samples due to the adversarial features learned by the U-Net
during training as described by Eq 17.

xt−1 =
1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t, c)) + σtz, (16)

x′t−1 =
1
√
αt

(x′t −
βt√
1− ᾱt

ϵ′θ(x
′
t, t, c)) + σtz, (17)

where xt and ϵθ respectively represent the noisy variable of
clean images and the LDM pre-trained U-Net. While x′t and
ϵ′θ represent the noisy variable of adversarial images (protected
images) and the U-Net that, after being fine-tuned using the
protected images, has been misled by adversarial samples.

V. EVALUATION

A. Setup

Dataset. We utilize three widely-used facial datasets
FFHQ [20], CelebA-HQ [19] and VGGFace2 [3] in our
experiments. The FFHQ dataset contains 70, 000 high-quality
and lossless PNG images. CelebA-HQ is an enhanced version
of the original CelebA dataset consisting of 30, 000 celebrity
face images. VGGFace2 is a comprehensive dataset with over
3.3 million face images from 9, 131 unique identities. The
resolution of all images in the datasets is set to 512 × 512.
It is worth mentioning that, since the primary objective of
our work is to resist JPEG compression and the CelebA-HQ

dataset is already JPEG-compressed, most of our experiments
are conducted on the lossless datasets FFHQ and VGGFace2.
T2I-DM weight. We utilize the most widely used and open-
source model weights from Stable Diffusion [32] for training
and testing. In our experiments, we primarily use the SD-v2.1
weights, as it is the latest and most popular, effective architecture
based on the U-Net diffusion model. To test the performance
of GAP-Diff under adverse setting, we assume the versions of
Stable Diffusion between anti-customization and customization
are the same or different.
Fine-tuning method. Consistent with [26], [45], [47], among
all methods for fine-tuning text-to-image diffusion models, we
choose DreamBooth [34], one of the best-performing and most
widely used fine-tuning methods, as our primary experimental
subject. Further, in subsequent comparative experiments, we
use DreamBooth-based LoRA [35] and SVDiff [15], which
are also popular and perform well in facial customization, to
conduct comparative analyses.
Baseline. We compare several open-source state-of-art models
designed to disrupt the training or customization of text-to-
image diffusion models, including PhotoGuard [36], Glaze [38],
Mist [24], Anti-DreamBooth [45], ACE [53], MetaCloak [26],
CAAT [49] and SimAC [47]. Due to memory and runtime
constraints, MetaCloak is only compared on the VGGFace2
dataset, which is the primary focus of this paper.
Metric. Consistent with [45], [47], we use RetinaFace [6] as
the face detector to determine whether a face is present in the
image, recorded as the Face Detection Failure Rate (FDFR).
When a face is detected, we use ArcFace [7] to compute the
cosine similarity between the face encoding and the original
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TABLE II: Performance comparison using different metrics for GAP-Diff on CelebA-HQ. The protected images output by all
methods in the table are subjected to JPEG compression with Q = 70 and then input into the customization model fine-tuned
with DreamBooth to obtain corresponding evaluation metrics.

Methods “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓ FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

No Defense 6.67 0.63 16.67 0.72 20.78 0.48 5.25 0.69
Photoguard [36] 5.78 0.53 24.56 0.69 22.44 0.47 12.46 0.72

Glaze [38] 6.12 0.57 30.78 0.72 25.56 0.40 17.97 0.70
Mist [24] 11.56 0.50 36.87 0.67 28.78 0.35 24.08 0.71

Anti-DB [45] 41.44 0.42 40.98 0.33 36.56 0.33 34.98 0.53
ACE [53] 10.00 0.53 36.89 0.70 18.22 0.32 30.94 0.73

CAAT [49] 42.56 0.45 45.76 0.42 22.33 0.37 28.47 0.67
SimAC [47] 25.78 0.51 40.21 0.61 23.00 0.39 33.68 0.69

GAP-Diff (ours) 78.67 0.28 43.39 0.32 60.22 0.20 43.00 0.31

Methods “a photo of sks person looking at the mirror” “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓ FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

No Defense 8.56 0.44 18.97 0.56 21.67 0.19 17.51 0.42
Photoguard [36] 9.33 0.43 21.43 0.54 29.11 0.18 19.85 0.38

Glaze [38] 9.44 0.41 17.97 0.55 25.33 0.14 19.54 0.39
Mist [24] 12.22 0.34 25.18 0.52 34.78 0.12 20.41 0.30

Anti-DB [45] 27.33 0.28 29.82 0.36 38.33 0.09 31.64 0.26
ACE [53] 14.56 0.28 31.47 0.45 47.33 0.09 28.28 0.19

CAAT [49] 17.67 0.31 24.71 0.41 36.67 0.10 31.04 0.23
SimAC [47] 18.11 0.33 33.68 0.42 34.98 0.12 30.95 0.25

GAP-Diff (ours) 81.33 0.21 49.14 0.21 77.67 0.06 46.61 0.07

identity encoding, recorded as the Identity Score Matching
(ISM). Additionally, we use BRISQUE [28], a classic and
commonly used image quality assessment metric, and SER-
FIQ [44], another advanced face quality assessment metric.

Implementation details. We use “a photo of sks person” (the
same prompt as the existing work when fine-tuning T2I-DM)
as the condition to obtain the loss function for Fine-tuing
T2I-DM Module. In the experiments, all noise budgets are
set to 16/255, which provides an effective balance between
perturbation capability and visual quality. For training details
of the generator, we set the optimizer to Adam with a learning
rate of 0.001, and set the discriminator weight α to 0.001.
During training, we obtain a training set in FFHQ with 20, 000
randomly chosen images and employ a “resume training”
strategy. Specifically, we first pre-train the generator on images
without pre-processing for 40 epochs to establish base protective
generation capabilities. Then, we continue training for an
additional 10 epochs with the pre-processing layer added. The
pre-processing layer consists of JPEG-Mask with two quality
levels: Q = 70, which is commonly used in real-world JPEG
compression, and Q = 50, which presents more challenging
compression tasks. Additionally, we apply Gaussian blur with
K = 7 for transformation resilience and a Skipped function
to handle unprocessed inputs. During this latter phase, β is
set to 0.6 and γ is set to 0.4 based on empirical performance.
Aligning with Anti-DreamBooth, we train each text encoder
and U-Net model of DreamBooth with batch size of 2 and
learning rate of 5e−7 for 1, 000 training steps.

To ensure diversity in our experimental inference state-
ments, we select a union of inference prompts from Anti-
DreamBooth [45] and SimAC [47]. The prompts are as follows:
PromptA “a photo of sks person”, PromptB “a dslr portrait of

sks person”, PromptC “a photo of sks person looking at the
mirror”, and PromptD “a photo of sks person in front of eiffel
tower”. For each prompt, we first sample 30 identities in face
datasets, then generate 30 images per identity and finally use
all these generated images to calculate the evaluation metrics
and report their average values.

B. Comparison with Baseline Methods

To evaluate the effectiveness of GAP-Diff, we conduct
quantitative and qualitative comparisons under four prompts
with different identities on widely used datasets, compared to
the state-of-the-art methods. Specifically, we first use the fully
trained GAP-Diff model, which was trained on FFHQ with a
randomly chosen set of 20, 000 images for approximately 120
GPU hours. Note that, while costly, the trained model is scalable
and could generate protective noise in milliseconds. We then
apply this model to generate four protected images for each of
the identities in the VGGFace2 and CelebA-HQ datasets. These
protected images are then JPEG-compressed at Q = 70, which
is a lower end of commonly used JPEG compression quality
on social networks [29], [43], to demonstrate the effectiveness
of GAP-Diff. The compressed images are subsequently input
into the customization model fine-tuned with DreamBooth.
Quantitative results. As shown in Tables I and II, the compari-
son of the evaluation metrics reveals that GAP-Diff significantly
outperforms the state-of-the-art works across all prompts. For
instance, GAP-Diff achieves a ∼30% higher FDFR across
all prompts compared to the best one of existing works.
Additionally, ISM and SER-FIQ are reduced to extremely low
ranges, indicating both low person identity matching rates and
exceptionally low face generation quality. For BRISQUE, our
values exceeding 40 indicate extremely poor image quality
across all prompts. We attribute this to the learning capabilities
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Fig. 8: Visualization results (four prompts) on VGGFace2. The first column shows clean identity photos, while the columns on
the right depict results obtained by first protecting clean photos using different methods, then compressing them with JPEG
Q = 70, and finally getting customized outcomes from the customization model fine-tuned with DreamBooth.
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Fig. 9: Visualization results (four prompts) on CelebA-HQ. The first column shows clean identity photos, while the columns on
the right depict results obtained by first protecting clean photos using different methods, then compressing them with JPEG
Q = 70, and finally getting customized outcomes from the customization model fine-tuned with DreamBooth.

of our generative framework. Specifically, GAP-Diff makes it
easier to find the globally optimal solution across all timesteps
compared to existing iterative approaches. Further, GAP-Diff
can simulate real JPEG compression during training and use
it as gradient information to backpropagate and optimize the
generator, while existing works struggle to achieve this due to
the limits of their frameworks. These two aspects make our
noise more robust cause higher face detection failure rates and
often poorer image quality. As a result, GAP-Diff proves more
effective in protecting faces from being customized in real
social network scenarios.

Qualitative results. We present some of the visual results on
VGGFace2 and CelebA-HQ dataset in Figure 8 and Figure 9.
Compared to existing works, GAP-Diff clearly achieves superior
visual protection. This is because GAP-Diff tends to generate
protective noise that is concentrated in the low-frequency region

of images, making it more resistant to JPEG compression. In
contrast, while SimAC is an improved method based on Anti-
DreamBooth and significantly enhances performance [47], its
resistance to JPEG compression is lower. This is because
SimAC focuses more on capturing high-frequency information
in the U-Net feature layers during improvement, leading the
protective noise to deviate more from the low-frequency region.
Moreover, when our framework achieves better optimization for
facial data, the generated protective noise tends to have stronger
adversarial effects within the time interval when obtaining the
adversarial loss. This means that both detailed and edge features
of the face are more challenging for the FT-T2I-DM to generate,
making the facial features more blurred overall. Consequently,
the minimum amount of facial information is exposed in the
customization model’s output, achieving superior protection.

Why does GAP-Diff outperform the existing work? Figure 11
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Fig. 10: Human study results on face protection effectiveness.
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Fig. 11: Comparison of change in high-frequency information
relative to the original image between images protected by
different methods after DCT transformation. The blue bars in
the figure represent the change in the high-frequency regions
of images protected by different methods compared to the
original image, while the orange bars show the change in high-
frequency regions after JPEG compression at Q = 70.

reveals that JPEG compression removes the high-frequency
protective noise introduced by existing methods, rendering
them ineffective. GAP-Diff relies least on high-frequency
information, which is largely removed from all images. This
partially explains why protection methods dependent on high-
frequency details fail, while GAP-Diff remains more robust
due to its reduced reliance on compressible information.
One more thing - Human survey. To better evaluate the
protective effectiveness of GAP-Diff under JPEG compression
with Q = 70, we conducted a human study using a survey
composed of 10 single-choice questions. Each question presents
an image from VGGFace2 of a specific individual. Users are
asked to select the most obscured and difficult-to-identify image
of the person’s identity among the customized outcomes of T2I-
DM fine-tuned with the JPEG compressed images protected
by baseline methods and ours. (We directly call them the
customized outcomes of baseline methods and ours.)

We collected surveys from 102 participants, most of whom
are not familiar with adversarial attacks or image compression
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Fig. 12: Quantitative comparison of protection effectiveness
under different JPEG compression qualities on VGGFace2.
Here, Q = 100 indicates no compression.

techniques. Figure 10 illustrates the results, demonstrating that
GAP-Diff not only surpasses state-of-the-art methods in the
evaluation metrics shown in Table I but also proves to be more
effective in protecting facial privacy as perceived by human
eyes. The participants consistently find that the customized
outcomes of ours are more difficult for them to recognize
faces or identities. Therefore, it is more practical for real-world
applications.

C. Ablation Studies

JPEG compression qualities. In the pre-processing setting,
besides the commonly used JPEG compression quality in social
media, potential adversaries may use different compression
qualities or even no compression according to the regular
setting. As shown in Figure 12 and Figure 13, GAP-Diff
demonstrates strong adversarial effects across various JPEG
compression levels. Even at a compression quality of 30, which
significantly distorts details, GAP-Diff still maintains effective
protection, with BRISQUE exceeding 38 and the generated
images visually exhibiting grid patterns or bubble-like cracks.
For JPEG Q = 50, we conduct additional quantitative and
qualitative experiments, as shown in Table III and Figure 14.
The results show that existing methods fail completely at
Q = 50, while GAP-Diff still maintains strong protective
performance. The results also confirm that GAP-Diff performs
well with other image formats, including uncompressed images
(Q = 100), further validating its robustness across varying
compression scenarios.
Noise budget. We adjust the noise budget to test protection
under different η limits. As shown in Table IV and Figure 15,
GAP-Diff already demonstrates protection effectiveness under
the noise budget η = 8/255 with low face matching accuracy
and poor image quality. With a perturbation size of η = 32/255,
it can completely prevent any prompt customization with FDFR
approaching 100%, while ISM and SER-FIQ are nearly 0.
Therefore, GAP-Diff achieves better defense performance with
larger noise budgets, although this comes at the cost of increased
noise visibility.

12



TABLE III: Performance comparison using different metrics for GAP-Diff on VGGFace2. The protected images output by all
methods in the table are subjected to JPEG compression with Q = 50 and then input into the customization model fine-tuned
with DreamBooth to obtain corresponding evaluation metrics.

Methods “a photo of sks person” “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓ FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

Photoguard [36] 4.78 0.55 32.72 0.70 22.89 0.44 9.52 0.68
Glaze [38] 4.89 0.56 30.81 0.71 23.11 0.43 8.76 0.68
Mist [24] 10.89 0.52 34.92 0.69 21.22 0.42 12.02 0.68

Anti-DB [45] 10.44 0.50 36.45 0.57 23.00 0.39 19.33 0.62
ACE [53] 7.55 0.51 37.94 0.68 17.67 0.38 21.24 0.67

MetaCloak [26] 32.16 0.46 40.05 0.54 38.25 0.41 27.76 0.60
CAAT [49] 10.44 0.52 37.50 0.61 17.44 0.42 13.90 0.65
SimAC [47] 10.22 0.51 37.19 0.65 18.89 0.43 14.60 0.67

Ours 62.44 0.32 45.85 0.35 64.80 0.24 49.78 0.27

Methods “a photo of sks person looking at the mirror” “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓ FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

Photoguard [36] 4.33 0.39 20.76 0.55 19.56 0.21 17.91 0.45
Glaze [38] 6.89 0.40 20.71 0.56 20.56 0.20 20.34 0.44
Mist [24] 7.78 0.37 22.69 0.51 21.56 0.18 20.91 0.38

Anti-DB [45] 17.78 0.32 14.82 0.42 26.89 0.17 28.11 0.28
ACE [53] 7.89 0.32 28.09 0.48 32.56 0.16 22.97 0.31

MetaCloak [26] 28.40 0.33 33.87 0.38 24.73 0.17 30.89 0.27
CAAT [49] 11.11 0.36 13.17 0.46 28.33 0.18 27.84 0.31
SimAC [47] 7.22 0.36 26.90 0.49 20.67 0.18 27.57 0.35

Ours 76.73 0.22 52.93 0.15 58.61 0.11 44.67 0.15
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Fig. 13: Qualitative Comparison of protection effectiveness
under different JPEG compression qualities on VGGFace2.

Training epochs. To evaluate training efficiency, we conduct
experiments by comparing different pre-training steps with the
same resume training steps to assess the impact on protection
effectiveness. Our results in Figure 16 of FDFR at different
training epochs indicate that our model achieves a significant
protection effect with only 10 epochs of pre-training, reaching at
least 65% FDFR under different prompts, and the performance
continues to improve with additional training epochs. Given
that our model quickly generates images once trained, investing
additional time to discover a more robust training strategy and
model is highly cost-effective.

D. Adverse Settings

Prompt mismatch. When adversaries train their own Dream-
Booth models, they may not necessarily use the same special
identifier “sks” as we do during training (although “sks” is

TABLE IV: Quantitative comparison of protection effectiveness
under different noise budget on VGGFace2.

η “a photo of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

8/255 32.78 0.41 34.65 0.42
12/255 84.33 0.21 36.85 0.17
16/255 95.22 0.12 45.73 0.06
32/255 100.0 0.00 42.07 0.01

η “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

8/255 42.44 0.29 35.33 0.38
12/255 80.78 0.18 36.92 0.18
16/255 87.67 0.16 42.44 0.11
32/255 99.67 0.01 46.02 0.01

η “a photo of sks person looking at the mirror”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

8/255 61.22 0.25 45.94 0.19
12/255 71.22 0.18 44.26 0.10
16/255 94.11 0.09 45.93 0.05
32/255 98.00 0.01 46.42 0.01

η “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

8/255 60.33 0.11 40.05 0.15
12/255 66.78 0.09 39.62 0.14
16/255 77.00 0.07 41.15 0.06
32/255 92.87 0.03 40.82 0.02

considered the default optimal DreamBooth customization
prompt). We attempt to replace “sks” with another special
identifier like “t@t,” which is exactly the same used by Anti-
DreamBooth [45] and SimAC [47] in comparative experiments,
and the results are shown in Table V and Figure 17. Under the
first two prompts, GAP-Diff still demonstrates strong protection
effectiveness. Under the last two prompts, although performance
on FDFR and BRISQUE decreases, the key metric ISM remains

13



\

Photoguard Glaze Mist Anti-DB ACE MetaCloack CAAT SimAC GAP-Diff (ours)

Pr
om

pt
A

Pr
om

pt
B

Pr
om

pt
C

Pr
om

pt
D

clean image

Fig. 14: Visualization results (four prompts) on VGGFace2. The first column shows clean identity photos, while the columns
on the right depict results obtained by first protecting clean photos using different methods, then compressing them with JPEG
Q = 50, and finally getting customized outcomes from the customization model fine-tuned with DreamBooth.
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Fig. 15: Qualitative comparison of protection effectiveness
under different noise budget on VGGFace2.
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Fig. 16: FDFR at different training epochs on VGGFace2, by
observing the changes in which, we can discern the impact of
different training epochs on the protection effectiveness.

TABLE V: Quantitative results of prompt mismatch between
training and testing on VGGFace2. The training prompt is “a
photo of sks person” and the inference prompt uses special
identifier “sks” or “t@t”.

Train S* Test S* “a photo of S* person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

sks sks 95.22 0.12 45.73 0.06
sks t@t 88.78 0.13 45.00 0.11

Train S* Test S* “a dslr portrait of S* person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

sks sks 87.67 0.16 42.44 0.11
sks t@t 72.89 0.14 36.19 0.20

Train S* Test S* “a photo of S* person looking at the mirror”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

sks sks 94.11 0.09 45.93 0.05
sks t@t 46.44 0.16 34.79 0.23

Train S* Test S* “a photo of S* person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

sks sks 77.00 0.07 41.15 0.06
sks t@t 32.67 0.09 32.54 0.28

low, not exceeding 0.16. That means while a face may have
been generated, its identity still does not match closely, proving
that GAP-Diff still provides effective protection.
Different fine-tuning methods. Furthermore, the protected
images we generate could be used by adversaries to fine-tune
T2I-DM with different methods. We compare the results in
Table VI against different fine-tuning methods and prompts.
Our best performance is observed using DreamBooth with full
utilization of the conditional loss function. Since LoRA and
SVDiff only fine-tune the weight matrix, unlike DreamBooth
which conduct complete customized training on the entire text-
encoder and U-Net, the disruption of generation is not as severe
as with DreamBooth. However, the results with high FDFR up
to 63% using LoRA and 98% using SVDiff along with other
metrics indicating low face generation quality, demonstrate that
GAP-Diff still achieves a strong protective effect.
Different pre-processing methods. Apart from common
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Fig. 17: Qualitative results of prompt mismatch between
training and testing on VGGFace2.

TABLE VI: Quantitative results of fine-tuning T2I-DM with
different methods on VGGFace2 with GAP-Diff.

Fine-tuning Method “a photo of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

DreamBooth [34] 95.22 0.12 45.73 0.06
LoRA [35] 63.44 0.18 53.48 0.24
SVDiff [15] 98.44 0.02 52.37 0.01

Fine-tuning Method “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

DreamBooth [34] 87.67 0.16 42.44 0.11
LoRA [35] 54.00 0.18 51.38 0.34
SVDiff [15] 64.67 0.12 28.72 0.26

Fine-tuning Method “a photo of sks person looking at the mirror”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

DreamBooth [34] 94.11 0.09 45.93 0.05
LoRA [35] 58.78 0.12 41.89 0.11
SVDiff [15] 65.56 0.12 42.70 0.12

Fine-tuning Method “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

DreamBooth [34] 77.00 0.07 41.15 0.06
LoRA [35] 63.11 0.09 44.08 0.11
SVDiff [15] 47.56 0.06 34.25 0.16

pre-processing methods like JPEG compression, potential
adversary may also employ other pre-processing techniques
before customizing images. Consistent with CAAT [49], we
experiment with random noise set at a scale of 0.05, Gaussian
blur applied with a kernel size of 3 and sigma of 0.05, and
image quantization reducing 8-bit to 6-bit. Additionally, we
include experiments that involve downscaling by halving the
original size, followed by super-resolution, as well as standard
resolution experiments at the reduced size.

Table VII demonstrates the resistance of GAP-Diff against
these alternative pre-processing methods. Due to our strong
noise and the addition of Gaussian blur in the pre-processing
layer during training, the evaluation metrics of most pre-
processing methods are as good as the output results of directly
customizing protected images without pre-processing. However,
random noise significantly disrupts our noise structure at the
pixel level, thereby reducing the protection effectiveness. We
speculate that enhancing the robustness of protective noise
against random noise can still, similar to how resistance to
JPEG compression is achieved, be accomplished by training

with a random noise function added in the pre-processing layer.

TABLE VII: Quantitative results of GAP-Diff against other
pre-processing methods on VGGFace2.

Method “a photo of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

w/o preprocess 95.22 0.12 45.73 0.06
Random noise 26.44 0.41 29.41 0.49
Gaussian blur 83.78 0.24 42.25 0.18
Quantization 93.89 0.11 43.44 0.06

Resize 90.56 0.17 42.50 0.12
Super resolution 93.67 0.13 42.82 0.10

Method “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

w/o preprocess 87.67 0.16 42.44 0.11
Random noise 35.33 0.31 36.30 0.45
Gaussian blur 82.44 0.19 46.67 0.12
Quantization 85.44 0.15 43.05 0.12

Resize 82.67 0.17 41.89 0.15
Super resolution 85.22 0.16 42.75 0.15

Method “a photo of sks person looking at the mirror”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

w/o preprocess 94.11 0.09 45.93 0.05
Random noise 30.46 0.28 34.73 0.32
Gaussian blur 86.11 0.14 44.71 0.09
Quantization 94.00 0.11 46.63 0.05

Resize 87.11 0.18 46.16 0.09
Super resolution 90.11 0.15 49.24 0.08

Method “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

w/o preprocess 77.00 0.07 41.15 0.06
Random noise 24.89 0.12 26.89 0.32
Gaussian blur 73.11 0.08 43.90 0.07
Quantization 77.33 0.08 41.06 0.06

Resize 78.33 0.08 41.34 0.06
Super resolution 78.44 0.09 40.43 0.07

T2I-DM weight mismatch. In practice, the adversary may
not necessarily use the same T2I-DM weights for fine-tuning
as those used to train our generator. We compare the most
commonly used Stable Diffusion versions: v2.1 from v2 and
v1.4, v1.5 from v1. The results are shown in Table VIII. Similar
to the prompt mismatch scenario, some prompts achieve the
same protection effectiveness as when the weights match, while
for other prompts, the critical ISM metric remains low when the
weights do not match, and the above phenomenon is explained
in Figure 18. This indicates that GAP-Diff can still protect
user images in different T2I-DM weight scenarios.

PromptA PromptB PromptC PromptD

test v1.4

clean image

test v1.5

Fig. 18: T2I-DM weight mismatch results on VGGFace2 in
visual interpretations where FDFR is high and ISM is low. In
these cases, the inferred images and personalities are completely
different from the actual individuals.

E. Cost comparison

We compare the time and memory costs of generating 4
protected images using different methods under official settings

15



TABLE VIII: Stable Diffusion weights version mismatch
during training and testing on VGGFace2. The weight used
during training is v2.1.

Train Test “a photo of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

v2.1
v2.1 95.22 0.12 45.73 0.06
v1.4 93.67 0.14 39.68 0.07
v1.5 82.33 0.17 37.69 0.13

Train Test “a dslr portrait of sks person”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

v2.1
v2.1 87.67 0.16 42.44 0.11
v1.4 21.67 0.16 20.70 0.39
v1.5 16.33 0.14 15.89 0.50

Train Test “a photo of sks person looking at the mirror”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

v2.1
v2.1 94.11 0.09 45.93 0.05
v1.4 79.44 0.11 40.68 0.07
v1.5 69.00 0.12 34.67 0.12

Train Test “a photo of sks person in front of eiffel tower”
FDFR↑ ISM↓ BRISQUE↑ SER-FIQ↓

v2.1
v2.1 77.00 0.07 41.15 0.06
v1.4 38.78 0.07 14.23 0.20
v1.5 43.33 0.06 13.82 0.15

in Table IX. For all methods, the memory and time costs are
tested on one RTX 4090 and report their average values. Note
that the costs for MetaCloak are taken from the official data
provided in its paper.
Runtime. GAP-Diff significantly reduces the time required to
generate a protected image by optimizing the process through
neural network training. This allows for faster deployment in
real-time applications where speed is crucial.
Memory usage. The efficient use of memory resources ensures
that GAP-Diff can be scaled across various hardware configu-
rations, making it versatile for different deployment scenarios.

TABLE IX: Comparison of the runtime and memory usage for
generating protected images with GAP-Diff and other baselines.

Method Runtime (second) Memory Usage (GB)
Photoguard [36] 194 16
Glaze [38] 118 4
Mist [24] 294 5
Anti-DB [45] 308 18
ACE [53] 175 6
MetaCloak [26] 1.1× 104 504
CAAT [49] 98 18
SimAC [47] 1.2× 103 33
GAP-Diff (ours) 0.04 2

VI. DISCUSSION

Our proposed GAP-Diff framework demonstrates significant
improvements in protecting personal images from unauthorized
customization by text-to-image diffusion models, particularly
in scenarios involving JPEG compression. In this section,
we discuss the threats to validity and limitations, practical
deployment considerations, and ethical implications of our work.

A. Threats to Validity and Limtations

The effectiveness of our protection mechanism is bounded by
a noise budget of 16/255, as shown in Figure 15 and Table IV.

Values lower than this threshold may lead to the leakage of
more facial information, while exceeding this threshold can
compromise the utility of image generation, creating a trade-off
between protection strength and image quality. One reason for
this limitation may be that we have not yet found the optimal
strategy for training the neural network, which prevents us
from achieving the ideal balance between protection and visual
quality.

Further, we observed that the fine-tuned T2I-DM based on
protected images may still generate relatively clear images
for certain prompts. We believe these images are a result
of the inherent randomness in the diffusion model, leading
to deviations from the original identity and its adversarial
distribution. Even so, we still consider the protection successful,
as the generated identity differs from the original.

Moreover, the current implementation focuses on the most
classic and popular DM structures, but novel model architectures
incorporating transformers may need to be considered for future
improvements.

B. Practical Deployment

GAP-Diff can be deployed via a server API, allowing users
to generate protected images before sharing or sending them
online. This deployment strategy ensures that the protection
is applied consistently and reduces the risk of user error. It
also allows for potential integration with existing social media
platforms or image sharing services, which could significantly
enhance user privacy protection at scale. Future work could
explore optimizing the performance of GAP-Diff for real-
time applications and developing user-friendly interfaces to
help individuals understand and control the level of protection
applied to their images.

C. Ethic Considerations

Our research aims to enhance privacy as a fundamental
human right. We strictly adhered to all ethical requirements
during our experiments and did not engage in any malicious
activities, such as disrupting legitimate services or causing
financial or reputational harm to individuals whose faces
appeared in the publicly available datasets we used.

This work proposes a protective approach against malicious
image customization for images shared on social networks or
communication applications. To illustrate the effectiveness of
GAP-Diff, we present real human faces from CelebA and VG-
GFace2—two well-known publicly available datasets—which
have been identified as potential ethical concerns by some
members of the community.

We believe there are two directions to address these concerns.
First, we could preprocess the raw images by obscuring certain
body parts, such as the eyes, and then conduct our experiments.
Second, we could collect real human face images with explicit
consent and use these images for our experiments. Given our
limited resources for the second option, we plan to pursue
the first approach. Figure 19 in the attached document shows
additional experimental results from the rebuttal period, which,
while not identical to the original results, still support our main

16



Photoguard Glaze Mist Anti-DB ACE CAAT SimAC GAP-Diff (ours)

Pr
om

pt
A

Pr
om

pt
B

Pr
om

pt
C

Pr
om

pt
D

clean image

Fig. 19: Qualitative results of obscuring critical facial information on VGGFace.

conclusion: GAP-Diff outperforms existing methods under
JPEG compression. Note that as seen in Figure 19, it is very
likely that the generator may remove the obscuring blocks
when producing the images.

VII. CONCLUSION

To mitigate the degradation of existing works in protection
against FT-T2I-DMs customization caused by JPEG compres-
sion, we propose GAP-Diff, which can protect images from
customization by adding small yet robust noise. Through
the design of the proposed three modules and the optimiza-
tion loss, it can learn robust representations against JPEG
compression by backpropagating gradient information while
learning adversarial characteristics for disrupting FT-T2I-DMs.
Extensive experiments show that, compared to all state-of-the-
art methods, GAP-Diff provides better facial protection and
higher generation efficiency in digital world. In the future,
we will explore automatically adjusting training strategies to
achieve stronger protective noise and further address challenges
posed by increasingly powerful customization approaches.
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APPENDIX A
ARTIFACT APPENDIX

Our paper proposed GAP-Diff, which is a counter-
customization framework with its generator trained on large
facial data. In this section, we provide a complete description on
the artifacts related to the training and testing phases. Due to the
lengthy training and testing times inherent to diffusion models,
alongside the temporal constraints of the Artifact Evaluation
(AE) process, we will supply pre-trained weights for testing.
Further, the test process will be a scaled-down version (in line
with the temporal constraints of the AE), meaning that we
provide a selection of scenarios and sample inputs, which may
introduce randomness compared to the quantitative results of
testing on the extensive dataset in our paper. Thus, we aim for
our artifacts to conform to the expectations set by our paper
regarding functionality, usability, and relevance.

A. Description & Requirements

1) How to access: The artifacts are publicly available
on https://github.com/AIASLab/GAP-Diff and
https://doi.org/10.5281/zenodo.14249397.

2) Hardware dependencies: All tasks can be completed on
a single NVIDIA A800 80G GPU. Given the time constraints,
we provide pre-trained model weights, and all testing processes
can be conducted on our rented cloud server equipped with an
NVIDIA RTX 4090 24G GPU and 16 vCPU Intel(R) Xeon(R)
Gold 6430.

3) Software dependencies: A recent Linux operating system
Ubuntu 22.04 with Anaconda (or miniconda3) and CUDA 11.8.
We give the configurations to the implementation language and
its dependencies in the README of our source code.

4) Benchmarks: We select four existing works that per-
formed well in our paper as benchmarks and provide their
implementations or protected results in our artifacts, taking
into account hardware limitations and time. Specific details
will be discussed in Section A-E.

B. Artifact Installation & Configuration

We first require our code to be placed in the correct Linux
user directory. As our testing and evaluation require different
environments, please refer to the README file for detailed
specifications on creating these environments within Conda.
Each environment may require specific pip installations, which
are also outlined in the respective files. Further, relevant
model weights and datasets must be properly placed in the
corresponding directories as indicated in the README file.
On the provided rented cloud server, we have already set up
the required virtual environments, weight files, and datasets,
allowing AEC to proceed directly with the evaluation.

C. Experiment Workflow

Our materials include three independent evaluation stages.
The first stage verifies the facial protection efficacy of GAP-Diff
using pre-trained weights. The second stage assesses the ability
of protective noise of GAP-Diff and benchmarks to resist JPEG
compression. The third stage examines the facial protection

performance of GAP-Diff under conditions mentioned in the
paper’s Adverse Settings, such as prompt mismatch, different
fine-tuning methods, and different preprocessing methods.

Due to time constraints, we recommend conducting evalua-
tions in the order outlined above, with selective experiments
in the second and third evaluation stage as indicated in the
README. All experiments can be run using the provided bash
scripts such as generate.sh; please be patient and wait for
the completion of each sh file before proceeding to the next
evaluation operation.

D. Major Claims

• (C1): GAP-Diff demonstrates effective facial protection
using pre-trained weights. This is verified by experiment
(E1), whose results are reported in Figure 12 under Q =
100.

• (C2): The protective noise generated by GAP-Diff shows
superior resistance to JPEG compression compared to
benchmark methods. This is proven by experiment (E2),
with results illustrated in Table I and Figure 2 and Figure 8.
Further, during this experiment, the resistance to different
JPEG quality of GAP-Diff can also be evaluated with
results illustrated in Figure 12 and Figure 13.

• (C3): GAP-Diff maintains robust facial protection perfor-
mance under adverse settings, including prompt mismatch,
different fine-tuning methods, and different preprocessing
techniques. This is demonstrated by experiment (E3), with
results presented in Figure 17 and Tables V, VI, VII.

E. Evaluation
In total, all experiments require approximately 21 compute-

hours and about 25 human-minutes. We assume that the code
and environment have already been fully deployed (as in the
provided cloud server). The following experimental steps can
be completed to carry out all artifact evaluation tasks. All
experiments are conducted using a randomly selected dataset
of five identities.

1) Experiment (E1) - Claim (C1): [around 2 human-minutes
+ about 1.5 compute-hours].

[How to] Run the GAP-Diff generator with pre-trained
weights to obtain the protected images, then use these images
in DreamBooth training to obtain the Fine-tuned Text-to-
Image Diffusion Model (FT-T2I-DM) and infer the customized
outcomes. Finally, evaluate these outcomes for their protection
effect.

[Preparation] In a new shell, go to the GAP-Diff folder.
[Execution] Run the GAP-Diff generator with pre-trained

weights to obtain the protected images.
$ conda activate gap-diff
$ bash scripts/generate.sh
# Expected output:
# - Command line output "the images are saved" for each

identity
# - The protected images are saved to GAP-Diff/

protected_images/gap-diff-per16

Use the protected images in DreamBooth training to obtain
the FT-T2I-DM and infer the customized outcomes with 4
prompts.
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$ bash scripts/db_infer.sh
# Expected output:
# - Command line output "Finish training" and infer log

for each identity
# - The customized outcomes are saved to GAP-Diff/infer/

gap_diff_per16

Evaluate the customized outcomes for the protective effect
of GAP-Diff.

$ conda activate fdfr_ism
$ bash scripts/evaluate_fdfr_ism.sh
# Expected output:
# - Command line output the mean FDFR and ISM of all

identities for each prompt in the customized
outcomes

$ conda activate serfiq
$ bash scripts/evaluate_brisque_serfiq.sh
# Expected output:
# - Command line output the mean BRISQUE and SER-FIQ of

all identities for each prompt in the customized
outcomes

[Results] Four quantitative metrics for GAP-Diff protection.
Notice that due to the use of sample inputs combined with the
inherent randomness of the diffusion model, the quantitative
results may slightly differ from the data reported in our original
paper, but high FDFR, low ISM, high BRISQUE and low SER-
FIQ can still demonstrate the effective protection of GAP-Diff.

2) Experiment (E2) - Claim (C2): [around 10 human-
minutes + 7.5∼10.5 compute-hours].

[How to] Apply JPEG compression with a quality of Q = 70
to the protected images from Experiment (E1) and the new
protected images generated using benchmark methods. Obtain
the FT-T2I-DM using protected images and infer the customized
outcomes. Finally, evaluate the outcomes for their protection
effect. Similar experiments for GAP-Diff can also be conducted
with JPEG compression quality of Q = 50 and Q = 90.

[Preparation] In the shell, go to the GAP-Diff folder.
[Execution] Apply JPEG compression with a quality of

Q = 70 to the protected images from Experiment (E1).
$ conda activate gap-diff
$ bash scripts/preprocess/jpeg.sh
# Expected output:
# - Command line output "Image compression completed

successfully!"
# - The JPEG compressed protected images are saved to

GAP-Diff/infer/gap_diff_per16_jpeg70

Modify the corresponding file paths according to the
README, and follow the same process as in Experiment (E1)
for customization, inference, and evaluation.

Due to time and memory constraints, we provide imple-
mentations for Anti-DB and CAAT in benchmarks, while for
SimAC and MetaCloak, we only supply the protected images.
Please follow the steps outlined below for evaluation.

$ conda activate gap-diff
$ bash benchmark/scripts/antidb.sh
$ conda activate CAAT
$ bash benchmark/scripts/caat.sh
$ conda activate gap-diff
$ bash benchmark/scripts/jpeg.sh
$ bash benchmark/scripts/db_infer.sh
$ conda activate fdfr_ism
$ bash benchmark/scripts/evaluate_fdfr_ism.sh
$ conda activate serfiq
$ bash benchmark/scripts/evaluate_brisque_serfiq.sh
# Expected output:

# - The protected images and JPEG compressed ones are
saved to GAP-Diff/benchmark/protected_images

# - The customized outcomes are saved to GAP-Diff/
benchmark/infer

# - Command line output the four quantitative results

Additionally, run the jpeg.sh following the instructions of
README with corresponding parameter Q to obtain GAP-Diff
protected images at different compression qualities, and follow
the same process for customization, inference, and evaluation
as previously outlined.

[Results] The sample inputs may still lead to a slightly differ-
ent quantitative results. However, these results are expected to
be better than the benchmarks and still demonstrate that GAP-
Diff has greater resistance to JPEG compression. Qualitative
results can be obtained by downloading via sftp as guided
in README.

3) Experiment (E3) - Claim (C3): [around 10 human-
minutes + around 9 compute-hours].

[How to] Conduct experiments on prompt mismatch, different
fine-tuning methods, and different preprocessing techniques
using different script files and commands.

[Preparation] In the shell, go to the GAP-Diff folder.
[Execution] Train DreamBooth on prompt mismatch, and

infer customized outcomes.
$ conda activate gap-diff
$ bash scripts/db_infer_prompt_mismatch.sh
$ conda activate fdfr_ism
$ bash benchmark/scripts/ex/evaluate_fdfr_ism_ex.sh
$ conda activate serfiq
$ bash benchmark/scripts/ex/evaluate_brisque_serfiq_ex.

sh
# Expected output:
# - The customized outcomes are saved to GAP-Diff/infer/

gap_diff_per16_ex
# - Command line output the four quantitative results

Run different fine-tuning methods (here SVDiff).
$ cd /root/svdiff-pytorch/
$ conda activate svdiff
$ bash scripts/svd.sh
# Expected output:
# - The customized outcomes are saved to GAP-Diff/infer/

svdiff

Modify the paths in the script files and evaluate the cus-
tomized outcomes in the same manner as in Experiment (E1).

Run different preprocessing techniques on protected images.
$ conda activate gap-diff
$ cd /root/gap-diff/
$ bash scripts/preprocess/other_preprocess.sh
# Expected output:
# - Command line output successful preprocessing message
# - The preprocessed images are save to GAP-Diff/

protected_images

Select one of the preprocessing methods described in
README, modify the paths in the script files and evaluate
the customized outcomes in the same manner as in Experiment
(E1) according to README.

[Results] Quantitative results which may still be different
from our original paper but can also demonstrate GAP-Diff’s
protective effects under various adverse settings. To verify
visual observations in the paper, you can also download the
corresponding files to obtain qualitative results.
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