
Distributed Function Secret Sharing and Applications

Pengzhi Xing∗, Hongwei Li∗, Meng Hao†,B, Hanxiao Chen∗, Jia Hu∗, and Dongxiao Liu∗
∗University of Electronic Science and Technology of China

†Singapore Management University
{p.xing, jiahu}@std.uestc.edu.cn, {hongweili, hanxiao.chen, dongxiao.liu}@uestc.edu.cn, menghao303@gmail.com

Abstract—Function Secret Sharing (FSS) has emerged as a
pivotal cryptographic tool for secure computation, delivering
exceptional online efficiency with constant interaction rounds.
However, the reliance on a trusted third party for key generation
in existing FSS works compromises both security and practical
deployment. In this paper, we introduce efficient distributed
key generation schemes for FSS-based distributed point function
and distributed comparison function, supporting both input and
output to be arithmetic-shared. We further design crucial FSS-
based components optimized for online efficiency, serving as
the building blocks for advanced protocols. Finally, we propose
an efficient framework for evaluating complex trigonometric
functions, ubiquitous in scientific computations. Our framework
leverages the periodic property of trigonometric functions, which
reduces the bit length of input during FSS evaluation. This
mitigates the potential performance bottleneck for FSS-based
protocols incurred by bit length. Extensive empirical evaluations
on real-world applications demonstrate a latency reduction of
up to 14.73× and a communication cost decrease ranging from
27.67 ∼ 184.42× over the state-of-the-art work.

I. INTRODUCTION

Secure two-party computation (2PC) in the preprocessing
setting has shown tremendous success in real-world scenarios
[1]. This setting involves two stages, i.e., offline stage and
online stage. During the offline stage, extensive cryptographic
operations are performed to generate input-independent cor-
related randomness. The randomness is then consumed in
the online stage, which only involves lightweight operations.
Among various preprocessing-based 2PC protocols, Function
Secret Sharing (FSS) [2] stands out as a promising and fun-
damental protocol, introducing constant interaction rounds and
minimal communication overhead during the online stage. This
efficiency advantage makes it a powerful tool for developing
privacy-preserving applications involving complex non-linear
functions [3], [4], [5].

Unfortunately, most advanced FSS-based protocols [6],
[4], [3] rely on a trusted third party (also called dealer) to
generate the FSS key at the offline stage, which is unrealistic
in real-world applications and weakens security guarantees.
On the one hand, identifying a universally trusted dealer
is challenging across various scenarios. For instance, in the
satellite collision prediction task [7] where two military entities

BCorresponding author.

seek to collaboratively and privately conduct proximity testing
without disclosing the actual trajectories, it is difficult to find a
dealer that both parties trust simultaneously. On the other hand,
the dealer introduces additional security risks [8]. Specifically,
if a compromised party colludes with the dealer, the private
information held by the honest party would be fully exposed.

To address the above problem, a few works [9], [10]
explored using 2PC protocols to generate FSS keys instead
of relying on a dealer. For example, Floram [9] presents the
first dealer-less generation of FSS key for distributed point
function (DPF). More recently, Half-tree [10] optimizes the
DPF protocol of Floram and further proposes a 2PC-based key
generation protocol for distributed comparison function (DCF).
However, these protocols can not support arithmetic-shared
inputs or outputs, which limits the applicability for many
practical scenarios, such as secure machine learning training
and inference [11], [12]. On the other hand, to facilitate
real-world applications, several works propose optimized FSS
protocols [13] and customized FSS-based schemes [4], [3] in
the dealer setting. Unfortunately, these works heavily rely on
the knowledge of the pre-generated randomness possessed by
the dealer, thus restricting their extension to the dealer-less
2-party setting. Therefore, the above discovery urges us to
propose efficient dealer-less FSS protocols with applications
to real-world scenarios.

In this paper, we tackle the above challenges by designing
efficient and practical dealer-less key generation schemes for
DPF and DCF. Specifically, at the core of our DPF scheme
is a lightweight constrained comparison protocol to support
arithmetic-shared results, which utilizes merely a single invo-
cation to AND protocol. Furthermore, we construct an efficient
2PC-based DCF scheme based on a new correlated correction
words generation protocol. This optimizes communication
overhead by reducing the invocations of underlying multiplexer
operations. We additionally resolve the overflow problem that
has hindered previous works, in order to support DCF-based
comparisons on arithmetic-shared inputs.

As depicted in Figure 1, building on our efficient and prac-
tical 2PC-based DPF and DCF schemes, we develop several
essential building blocks including equality test, comparison,
truncation, digit decomposition, and interval containment.
These blocks incorporate multiple optimizations to achieve
constant round evaluation and small communication. Upon
this, we carefully design a framework to evaluate complex
mathematical functions in scientific computation, implement-
ing efficient lookup table and spline polynomial approximation
methods. This framework exploits periodic properties to reduce
the bit length required for protocol evaluation, significantly
alleviating performance bottlenecks in the FSS-based schemes

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.242233
www.ndss-symposium.org

Distributed

Point Function

Distributed

Comparison Function

(1) Basic Function Secret Sharing Schemes

Lookup

Table

Spline

Approximation

Trigonometric

Function

(3) Applications

Truncation
Digit

Decomposition

Interval

Containment

(2) Building Blocks

Equality

Test
Comparison

Construct

Support

Fig. 1: The high-level overview of our framework.

and yielding substantial performance improvements in real-
world applications. Our extensive experiments demonstrate
that our approach significantly outperforms prior work. Our
contribution can be summarized as follows.

• We propose the first efficient 2PC protocol to gen-
erate FSS keys for DPF and DCF without a dealer,
supporting both arithmetic-shared inputs and outputs.

• We design several constant-round FSS-based building
blocks within our efficient 2PC-based FSS paradigm.

• We introduce novel lookup table and spline polyno-
mial approximation methods for complex mathemati-
cal functions in scientific computation.

• We fully implement our DPF and DCF protocols along
with a series of FSS-based building blocks in the
2PC setting. When applied in the privacy-preserving
proximity tests and biometric authentication, our pro-
tocols achieve 27.67 ∼ 184.42× improvements in
communication performance and 1.16 ∼ 14.73× less
latency over the prior art.

II. RELATED WORKS

We summarize the related works on function secret sharing
and compare them with our work in Table I.

Function secret sharing. FSS provides an efficient way for
additively secret-sharing a function within a function family.
The FSS scheme for DPF was first proposed in the initial
work [2]. Later, Boyle et al. [14] proposed an optimized
DPF construction with reduced key size while supporting
the evaluation results as elements in arbitrary groups. They
also proposed FSS-based DCF to support comparison function
family. Then, incremental DPF (iDPF) [6] was introduced,
which generalizes DPF to output different payloads in each
layer. More recently, Boyle et al. [13] further proposed an
optimized DCF, with reduced DCF share size and arithmetic
DCF output. However, the aforementioned works assume the
existence of a dealer to handle the FSS key generation.

FSS-based protocols. In the following, we discuss existing
works that utilize FSS to construct 2PC protocols. FSS serves
as the primitives that efficiently evaluate a private function on
public inputs [2]. In contrast, most 2PC protocols are designed
to protect the sensitive inputs, i.e., they handle the private
inputs with a publicly known function. To fill this gap, Boyle
et al. [15] proposed a new concept known as offset gate (refer
to Section III-E), making it possible to take advantage of both
FSS online efficiency and 2PC compatibility. Later, several
optimized building blocks based on FSS, such as interval
containment and bit decomposition, were proposed [13]. Ryffel
et al. [5] leverages DCF to build the ReLU function in machine
learning models with probabilistic error. LLAMA [4] and
Agarwal et al. [16] employed the FSS technique to devise a
series of tailored protocols specifically for machine learning
tasks, where the general spline approximation method [17] is
utilized to evaluate math functions. Wagh [3] also proposed
an FSS-based secure evaluation method for complex functions
with a trusted dealer, by employing the help of the DPF-based
lookup table technique [18]. Unfortunately, the above works
do not consider the potential overhead bottleneck introduced
by large bit-length in the FSS solution.

Emulating the FSS dealer. In the above-mentioned FSS-
based protocols and applications, the offline stage is entrusted
to the dealer, who possesses knowledge of the function in-
tended for secret sharing and the random masks employed
in subsequent operations. Recently, Floram [19] proposed a
2PC-based distributed key generation approach for DPF [2],
outputting payload in the binary field. Their construction ef-
fectively obviates the requirement for the dealer. Another 2PC
implementation for DPF and DCF, Half-Tree [10], utilizes a
new GGM-tree construction, leading to simpler key generation
and evaluation with reduced PRG invocations. Unfortunately,
the above methods cannot support both arithmetic input and
output while constructing further building blocks due to a
potential overflow problem, limiting their practicality. (Refer
to Section V-A).

III. PRELIMINARIES

A. Notations

Let λ be the computational security parameter. We use
negl(·) to present a negligible function. [n] denotes the set
{0, 1, . . . , n− 1}. 1{event} represents the indicator function,
which equals 1 if event is true, and 0 otherwise. We use
bold lower-case letters (e.g., x) to represent vectors, and x[i]
denotes the i-th element in this vector. Similarly, we use x[i]
to denote the i-th bit of a bit string x. Let R be the set of
real numbers and Z2ℓ be an ℓ-bit finite ring. We embed a
real number x ∈ R into Z2ℓ via the fixed-point representation
⌊2s ·x⌋ mod 2ℓ, where s is the fractional scale. To differentiate
the decimal number x from its binary representation, we use
x2 to denote the binary form. We use ConvertG : {0, 1}∗ → G,
abbreviated as CG(·), to denote a function that maps random
strings to pseudo-random elements in G [13] and G(·) to
denote a pseudo-random generator (PRG). x := y denotes that
x is assigned by y.

B. Threat model

The security of our 2PC protocols is provably provided
against a static semi-honest probabilistic polynomial-time

2

TABLE I: Comparison with related works on function secret sharing

Protocols Dealer-lesss DPF Dealer-less DCF Arithmetic-shared Inputs Arithmetic-shared Outputs Applications
BGI15 [2] × × × × ×
Floram [9] ✓ × × × ✓

BCG+21 [13] × × ✓ ✓ ×
LLAMA [4] × × ✓ ✓ ✓

Pika [3] × × ✓ ✓ ✓
Half-Tree [10] ✓ ✓ × ✓ ×

This work ✓ ✓ ✓ ✓ ✓

(PPT) adversary A that corrupts one of the parties but not both.
In this setting, A strictly follows the protocol specification,
but tries to learn additional information about the honest
party’s input from the received messages. We model security
using the simulation paradigm [20], which defines a real
interaction and an ideal interaction. In the real execution,
both parties execute protocols in the presence of A. In the
ideal execution, both parties send their inputs to a trusted
functionality F that faithfully executes the operation. Security
requires that no efficient distinguisher can distinguish between
real and ideal interactions. Our protocols invoke several sub-
protocols, and for ease of exposition, we describe them using
the hybrid model, which is the same as a real interaction except
that the sub-protocols are replaced with the corresponding
functionalities. In this work, a protocol invoking F is referred
to as the F-hybrid model.

C. Secret sharing

In this work, we use 2-out-of-2 additive secret sharing
schemes [21], [22], including both arithmetic and Boolean
sharing, denoted as ⟨·⟩. Specifically, ⟨x⟩ℓ indicates that x is
arithmetic shared over Z2ℓ , and ⟨x⟩B denotes the Boolean
shares over Z2. We use the subscription of party id b ∈ {0, 1}
to distinguish the share held by parties, namely ⟨·⟩0 and ⟨·⟩1.
We invoke existing secret sharing-based 2PC functionalities,
including Fℓ,B

MUX, Fℓ,A
MUX, FAND, FOR, Fℓ

MILL and Fℓ
B2A. We

present the detailed description in Appendix A.

D. Function secret sharing

A two-party function secret sharing (FSS) scheme for a
function family F is an efficient algorithm that splits a function
f ∈ F into two additive shares f0, f1, such that (1) for b ∈
{0, 1}, each share fb hides the function f and (2) for any x in
the domain of f , it holds f0(x) + f1(x) = f(x). The formal
definition of FSS is described as follows.

Definition 1 (Function Secret Sharing [14]). For a function
family FGin,Gout with domain Gin and range Gout, a two-party
FSS scheme with key space K0×K1 has a pair of algorithms
(Gen,Eval), both taking λ as an implicit input:

• (k0, k1) ← Gen(f̂). On input the description f̂ ∈
{0, 1}∗ of a function f ∈ FGin,Gout , the key generation
algorithm outputs a key pair (k0, k1) ∈ K0×K1. Here,
f̂ contains the domain Gin and range Gout.

• fb(x) ← Eval(b, kb, x). On input b ∈ {0, 1}, the
party’s key kb ∈ Kb, and a function input x ∈ Gin,
the evaluation algorithm outputs fb(x) ∈ Gout.

An FSS scheme (Gen,Eval) is secure for the function
family FGin,Gout with respect to a leakage function Leak :
{0, 1}∗ → {0, 1}∗ if it satisfies the following requirements. In
this work, Leak only includes the function domain and range.

• Correctness. For any function f ∈ FGin,Gout with
description f̂ and any function input x ∈ Gin,
if (k0, k1) ← Gen(f̂) then Pr[Eval(0, k0, x) +
Eval(1, k1, x) = f(x)] = 1.

• Security. For any function f ∈ FGin,Gout with descrip-
tion f̂ , any party id b ∈ {0, 1}, and any PPT adversary
A, there exists a PPT simulator Sim, such that

Pr[A(kb) = 1 | (k0, k1)← Gen(f̂)]−
Pr[A(kb) = 1 | kb ← Sim(b, Leak(f̂))] ≤ negl(λ).

(1)

Distributed point function (DPF) [2]. A point function
fα,β , for α ∈ Gin and β ∈ Gout, is defined as fα,β(α) = β and
fα,β(x) = 0 for x ̸= α. A distributed point function (DPF)
with domain Gin and range Gout is a two-party FSS scheme
(GenDPF,EvalDPF) for the point function family FGin,Gout =
{fα,β}α∈Gin,β∈Gout .

DPF invariant [14]. The FSS key generation and evalua-
tion are built upon the GGM-style construction [23]. A node
on the binary tree consists of a label and its control bit. For
DPF with an ℓ-bit value α, a special path is defined from the
root node to the α-th leaf node, corresponding to the binary
representation of α from the most significant bit (MSB) to the
least significant bit (LSB), where α[i] = 0 to the left child and
1 to the right child at i-th level. The DPF invariant property
defines that control bits of all the on-path nodes are 1, and 0
for off-path nodes. Accordingly, given an input x, the Boolean
FSS output should be the control bit of the x-th leaf node. We
demonstrate the DPF invariant property in Figure 2.

Maintaining DPF invariant via Correction Words [14]. As
illustrated, labels and control bits in the GGM-style binary tree
are pseudo-random. During key generation, the dealer’s task
is to walk through the special path and generate correction
words for each layer to convert a random GGM-style tree to
one following the DPF invariant. Specifically, the correction
words will correct the control bit of the node on the off-path
side and the consecutive labels to zero.

Supporting arithmetic output [14]. The original DPF
scheme defines the control bit of the leaf node as the output,
which can be seen as the Boolean-shared result. To output
the payload β as the element in Gout, it suffices to compute
the multiplication with payload β and the one-bit final control
bit. For simplicity, we use t0 and t1 to denote the control

3

0 1

Label Control

bit
Bit

Value

Apply

correction words

Random GGM-style binary tree Corrected tree with DPF invariant

𝑟1||𝑡1
0

0

0 0 0 0

1

1 10

1111

𝑡12𝑡11 𝑡13 𝑡14 𝑡15

0||0

0

0

0 0 0 0

1

1 10

1111

00 0 0 0

𝑟2||𝑡2

𝑟1||𝑡1

𝑟1||𝑡1

𝑠𝑖||𝑡𝑖

𝑟7||𝑡7𝑟6||𝑡6𝑟5||𝑡5

𝑟3||𝑡3

𝑟4||𝑡4

0||0
0||0
0||0
0||0
0||0
0||0

0||0

0||0 0||0

𝑠1 ||1

𝑠3||1

𝑠2||1

𝑡8 𝑡10𝑡9 00 1

Fig. 2: The transformation from a random GGM-style binary
tree to a tree with DPF invariant property on DPF target α = 2.
We use ri and ti to represent the random value and red lines
to denote the special path.

bit held by the two parties. Given the random value in Gout

determined by the node label, namely r0 := CG(s0) held by
P0 and r1 := CG(s1) held by P1, Boyle et al. [14] present the
following transformation to avoid revealing β to parties.

(t0 ⊕ t1) · β
=(t0 − t1) · (−1)t1 · (β − r0 + r1)︸ ︷︷ ︸

Final Correction Word

+r0 − r1 (2)

As shown, the dealer sets the final correction term as (−1)t1 ·
(β − r0 + r1), using two random values to conceal β. Upon
reaching the leaf node, both parties multiply the correction
term by their control bits and then add (or subtract) their
respective random values to obtain the arithmetic output. If
the control bits differ, the output is β. If the control bits are
identical, by the DPF invariant, they share the same label and
random value, i.e. r0 = r1, resulting in an output of 0.

Therefore, to generate the key, which can be seen as
distributing the tree to two parties in a shared manner, a DPF
key consists of the root node label for determining the full
binary tree, correction words for each layer for maintaining
DPF invariant, and a final correction word for supporting
arithmetic output. We present this process in Figure 3.

Distributed comparison function (DCF) [13]. A com-
parison function fα,β , for α ∈ Gin and β ∈ Gout, is defined
as fα,β(x) = β for x < α and fα,β(x) = 0 for x ≥ α.
A distributed comparison function (DCF) is an FSS scheme
for the family of all comparison functions, with the leakage
function Leak(f̂) = (Gin,Gout).

DCF invariant [13]. Nodes on the GGM tree for DCF
consist of three parts: a control bit t, a node label s (the
same as in DPF), and an additional comparison label v. While
the comparison label v is not corrected by CW or passed to
the next level, it is derived solely from its parent node label.
Nevertheless, the labels and control bits still adhere to the
DPF invariant property, as all node labels s and control bits t
are corrected by CW . Additionally, the DCF invariant defines
an intermediate value V ∈ Gout for each node. Given an ℓ-bit
target value α for comparison and input value x, the cumulative
sum of V along the path to any x-th leaf node will be zero if
x ≥ α, and β ∈ Gout if x < α.

E. FSS with secret-shared inputs

The original FSS scheme cannot be directly integrated with
MPC frameworks due to its inherent assumption that a secret
parameterized function is to be evaluated with a public input,
which restricts its applicability.

To address this problem, Boyle et al. [15] proposed FSS off-
set gate. It requires the dealer to generate keys for the function
f(x−rin) instead of f(x), where rin is chosen randomly by the
dealer. Upon receiving the key kb and shares of random mask
⟨rin⟩b, two parties reconstruct xreal + rin as the public input
and evaluate the function to get the correct output of f(xreal).
The offset function family or an offset FSS gate is defined as
follows. Let G = {g : Gin → Gout} be a computation gate for
a parameterized function by input and output groups Gin,Gout.
For g : Gin → Gout ∈ G,rin ∈ Gin,rout ∈ Gout, the family of
offset functions Ĝ of G is given by

Ĝ := {g[r
in,rout] : Gin → Gout},where

g[r
in,rout](x) := g(x− rin) + rout

(3)

and g[r
in,rout] contains an explicit description of rin, rout with

an FSS scheme.

IV. DISTRIBUTED FUNCTION SECRET SHARING

In this section, we present efficient 2PC FSS key generation
for both DPF and DCF, supporting arithmetic-shared inputs
and outputs.

A. Dealer-less FSS key generation for DPF

DPF is an important underlying building block itself and is
wildly used in ORAM [19] and PIR [24]. We propose a two-
party DPF key generation protocol, enabling arithmetic-shared
inputs and outputs. This is particularly useful in real-world
applications and addresses the limitation from Floram [9] that
only supports Boolean shares. As illustrated in Algorithm 2,
our protocol mainly consists of two phases: (1) traversing
the GGM tree without knowing the exact special path, to
generate layer-wise correction words, and (2) computing the
correction word for arithmetic output. Before the first phase,
we convert the ℓin-bit arithmetic share of the target index ⟨α⟩ℓinb
into Boolean shares with ΠBitDec detailed in Appendix B1.

During the first phase, as shown in Figure 4, we follow
the observation from Floram [9] to generate correction words
without knowing the actual special path, as the off-path labels
are identical and can be canceled after sum-up based on the
DPF invariant. Therefore, for each party, it suffices to add all
their left (right resp.) child nodes together as the shares of left
(right resp.) label and use the multiplexer to decide the correct
correction word based on α[i].

During the second phase, to support arithmetic output, we
have to generate an extra correction word (−1)t1 · (β − r0 +
r1) following Equation 2. Without the dealer, the parties are
unaware of their α-th control bits, which results in t1 not being
determined. Our observation is that according to the invariant
of the DPF’s GGM tree, the parties have access to the 2ℓin

control bits at the last level leaf nodes, instead of their α-
th control bits, namely t1 in Equation 2. Given DPF invariant
t0⊕t1 = 1, the problem simplifies to determine which of t0 or

4

0

0 0 0 0

1 10

1111

00 0 0 0

Shared GGM tree for 𝑃1

𝑠1

𝑠2 𝑟′5

𝑟′7 𝑠3 𝑟′11 𝑟′13

0

0

0

0 0 0 0

1

1 10

1111

00 1 0 0 0 0

1

1

1

0

0 00

GGM tree from dealer

0

0 0 0 0

1 10

1111

00 0 0 0

Shared GGM tree for 𝑃0

𝑠1 0 𝑏0 𝑠1 1 𝑏11

𝐺𝜆 𝑠

𝑠0
𝐿 𝑠0

𝑅𝑏0
𝐿 𝑏0

𝑅 𝑠1
𝐿 𝑠1

𝑅𝑏1
𝐿 𝑏1

𝑅𝑠𝐿 𝑏𝐿 𝑠𝑅 𝑏𝑅

1 0 0

⨁

↓
𝑥 = 𝑠𝑅 𝑏𝐿 𝑠𝑅 𝑏𝐿 Layer CW

𝑠′

𝑠1

Step 3: Output final DPF key

Root Node

Label Layer CW

…… 𝑙

冷宫

Step 1: Generate Correction Word (CW) for each layer

Final CW

𝑊𝐶𝑊

𝑟𝑏

Target value 𝛼 = 2 = 0102
Special path left-right-left

Step 2: Generate final CW

(−1)𝑡1 ∙ (𝛽 − 𝐶𝔾 𝑠3 0 + 𝐶𝔾(𝑠3 1)

𝐶𝔾 𝑠3 0 𝐶𝔾(𝑠3 1)𝑟0 𝑟1

𝑊𝐶𝑊

Layer-wise CW

𝑠0
𝐿||𝑏0

𝐿||𝑠0
𝑅||𝑏0

𝑅 𝑠1
𝐿||𝑏1

𝐿||𝑠1
𝑅||𝑏1

𝑅𝑠𝐿||𝑏𝐿||𝑠𝑅||𝑏𝑅

𝑠𝑅||𝑏𝐿||𝑠𝑅||𝑏𝑅

Label and control

bits by 𝑃0

Label and control

bits by 𝑃1

Reconstructed

label and control

bits෪𝑠𝐿||෪𝑏𝐿 ෪𝑠𝑅||෪𝑏𝑅

PRG expansion PRG expansion

Step 1: Generate Correction Word (CW) for each layer

Final DPF key: 1. Root Node Label 2. Layer-wise CW 3. Final CW

0 10 1

0 1

·
LabelControl

bit

Bit

Value

Special

Path

0 1

Label Control

bit

Bit

Value

𝑠𝑖||𝑡𝑖

Special

Path

𝑠1||1

0||0

𝑠1||1

0||0

0||00||00||00||00||00||0

𝑠1||1

𝑠3||1

𝑠2||1

𝑠1||1

𝑠3||1

𝑠2||1

100 00 1

Decided by 𝛼[𝑖]

Fig. 3: An example for the dealer-based key generation with target value α = 2.

0||0 0 𝑠||1 0

0

0

1 10

1

0

Previous level

0

0

1 10

1

0

Previous level

0||0 0 0||0 0 0||0 1 0||0 1 0||0 1

⨁Sum-up ⨁Sum-up

Shared GGM tree for 𝑃0 Shared GGM tree for 𝑃1

0

0 0 0 0 1111

00 1 0 0 0 0

Previous level

0

0 0 0 0 1111

00 1 0 0 0 0

Previous level

Sum-up + Sum-up +

ℱCCMP

𝛽 − 𝐶𝔾 𝑠 0 + 𝐶𝔾(𝑠 1)
𝑊𝐶𝑊

Shared GGM tree for 𝑃0 Shared GGM tree for 𝑃1

Comparison result: 𝑡

ℱMUX
−(𝛽 − 𝐶𝔾 𝑠 0 + 𝐶𝔾 𝑠 1)𝑡Layer-wise

Correction Word

ℱMUX

𝑠0
𝐿||𝑏0

𝐿||𝑠0
𝑅||𝑏0

𝑅 𝑠1
𝐿||𝑏1

𝐿||𝑠1
𝑅||𝑏1

𝑅𝑠𝐿||𝑏𝐿||𝑠𝑅||𝑏𝑅

𝑠𝑅||𝑏𝐿||𝑠𝑅||𝑏𝑅

Label and control

bits by 𝑃0

Label and control

bits by 𝑃1

Reconstructed label

and control bits

0||0

𝑠||1 1

1 1

Fig. 4: Dealer-less layer correction word generation (Step 5-8,
Algorithm 2).

0||0 0 𝑠||1 0

0

0

1 10

1

0

Previous level

0

0

1 10

1

0

Previous level

0||0 0 0||0 0 0||0 1 0||0 1 0||0 1

⨁Sum-up ⨁Sum-up

Shared GGM tree for 𝑃0 Shared GGM tree for 𝑃1

0

0 0 0 0 1111

00 1 0 0 0 0

Previous level

0

0 0 0 0 1111

00 1 0 0 0 0

Previous level

Sum-up+ Sum-up+

ℱCCMP

𝛽 − 𝐶𝔾 𝑠 0 + 𝐶𝔾(𝑠 1)
𝑊𝐶𝑊

Shared GGM tree for 𝑃0 Shared GGM tree for 𝑃1

Comparison result: 𝑡

ℱMUX
−(𝛽 − 𝐶𝔾 𝑠 0 + 𝐶𝔾 𝑠 1)𝑡Layer-wise

Correction Word

ℱMUX

𝑠0
𝐿||𝑏0

𝐿||𝑠0
𝑅||𝑏0

𝑅 𝑠1
𝐿||𝑏1

𝐿||𝑠1
𝑅||𝑏1

𝑅𝑠𝐿||𝑏𝐿||𝑠𝑅||𝑏𝑅

𝑠𝑅||𝑏𝐿||𝑠𝑅||𝑏𝑅

Label and control

bits by 𝑃0

Label and control

bits by 𝑃1

Reconstructed label

and control bits

0||0

𝑠||1 1

1 1

Fig. 5: Dealer-less generation of correction word for arithmetic
output (Step 17-21, Algorithm 2).

t1 is 1. To achieve this, parties sum their respective control bits
from the last level and determine the party holding the bigger
value differentiating by 1. We depict this phase in Figure 5.

We propose an efficient constrained integer comparison
using only one AND gate and present our protocol ΠCCMP

in Algorithm 1 based on the following theorem.

Lemma 1. Given two positive integers x0, x1 ∈ N that differ
by 1, 1{x0 < x1} can be computed as follows:

1{x0 < x1} =

{
l1 h0 = h1

¬h1 h0 ̸= h1, h0 = l0
h1 h0 ̸= h1, h0 ̸= l0

where for b ∈ {0, 1}, lb and hb are the last bit and second to
last bit of xb, respectively.

Algorithm 1 Constrained Comparison, ΠCCMP

Input: Pb holds xb ∈ N with |x0 − x1| = 1.
Output: Pb obtains ⟨y⟩Bb where y = 1{x0 < x1}.

1: Pb extracts last two bits of xb, sets hb∥lb := lsb2(xb).
2: Pb sets ⟨z0⟩Bb := hb and ⟨z1⟩Bb := hb ⊕ lb ⊕ b.
3: Pb computes ⟨t⟩Bb := FAND(⟨z0⟩Bb , ⟨z1⟩Bb).
4: Pb outputs ⟨y⟩Bb := ⟨t⟩Bb ⊕ (lb ∧ b).

Proof: Without the loss of generality, we assume t0 is the
smaller value between x0 and x1 and hence t1 = t0 + 1. We
analyze it through four cases: (1) lsb2(t0) = 002, lsb2(t1) =
012; (2) lsb2(t0) = 012 and lsb2(t1) = 102; (3) lsb2(t0) = 102
and lsb2(t1) = 112; (4) lsb2(t0) = 112 and lsb2(t1) = 002.
The four cases are mutually exclusive.

Further, the comparison result can be summarized into 3
specific conditions, as illustrated above. When the high-order
bits of two numbers are identical, the comparison depends
solely on the lower bits, with a 1 in the lower bit indicating
the larger value. If the high-order bits differ but the lower bits
are the same, the comparison hinges on the high-order bit. In
cases where both high and lower-order bits differ, including
the special case (002 vs. 112), the high-order bit determines
the outcome. Specifically, for 012 vs. 102, the number with 1
in the high-order bit is larger.

Therefore, to compare two integers that differ by 1, it
suffices to extract their last bit lb and second to last bit hb

and calculate Equation 4 with one AND operation.

(1⊕ h0 ⊕ h1) ∧ l1 ⊕ (h0 ⊕ h1) ∧ ((h0 ⊕ l0)⊕ h1 ⊕ 1)

=l1 ⊕ (h0 ⊕ h1) ∧ (l1 ⊕ h1 ⊕ l0 ⊕ h0 ⊕ 1)
(4)

Complexity. Given the input and payload bit length to be
ℓ, our dealer-less DPF key generation requires 9ℓ + 5 offline
rounds with the communication size of 18λℓ + 5λ + 13ℓ + 2
bits. The evaluation process is identical to prior work [13],
which requires ℓ bits of communication size within 1 round.

Optimization from Half-tree [10]. Our protocol follows
the DPF construction [13], in which all labels are pseudo-
randomly generated. Recently, Half-tree [10] proposed an
improved DPF construction with correlated labels for inter-
mediate layers and pseudo-random labels only for the last

5

Algorithm 2 Dealer-less DPF Key Generation

Genℓin,ℓoutDPF (b, ⟨α⟩ℓinb , ⟨β⟩ℓoutb):
Input: Pb holds shares of position ⟨α⟩ℓinb and payload ⟨β⟩ℓoutb .
Output: Pb obtains a DPF Key kb.

1: Pb invokes Fℓin
BitDec with input ⟨α⟩ℓinb to get Boolean shares

⟨α⟩Bb ∈ {0, 1}ℓin
2: Pb samples a random seed s0,0b from {0, 1}λ and sets

t0,0b := b.
3: for i ∈ [ℓin] do
4: Pb sets si+1,2j

b ∥ti+1,2j
b ∥si+1,2j+1

b ∥ti+1,2j+1
b := G(si,jb)

for j ∈ [2i]
5: Pb sets Si,p

b :=
⊕

j∈[2i] s
i+1,2j+p
b for p ∈ {0, 1}

6: Pb sets T i,p
b :=

⊕
j∈[2i] t

i+1,2j+p
b for p ∈ {0, 1}

7: Pb invokes FB,λ
MUX with input Si,0

b , Si,1
b , ⟨α[ℓin−1−i]⟩Bb ⊕

b to get σi
b := S

i,α[ℓin−1−i]⊕1
b .

8: Pb sets τ i,0b := T i,0
b ⊕ ⟨α[ℓin − 1− i]⟩Bb ⊕ b and τ i,1b :=

T i,1
b ⊕ ⟨α[ℓin − 1− i]⟩Bb .

9: Pb sends σi
b, τ

i,0
b , τ i,1b to P1−b to reconstruct

σi, τ i,0, τ i,1.
10: for j ∈ [2i] do
11: Pb sets si+1,2j

b ∥si+1,2j+1
b := si+1,2j

b ∥si+1,2j+1
b ⊕ti,jb ·

σi.
12: Pb sets ti+1,2j

b := ti+1,2j
b ⊕ ti,j ·τ i,0 and ti+1,2j+1

b :=
ti+1,2j+1
b ⊕ ti,j · τ i,1

13: end for
14: Pb sets CWi := σi∥τ i,0∥τ i,1 for i ∈ [ℓin].
15: end for
16: Pb evaluates wi

b := ConvertG(s
ℓin−1,i
b) for i ∈ [2ℓin].

17: Pb sets wb :=
∑

i∈[2ℓin] w
i
b, tb :=

∑
i∈[2ℓin] t

ℓin,i
b .

18: Pb invokes FCCMP with input tb to get ⟨g⟩Bb .
19: Pb sets ⟨W 0

CW ⟩
ℓout
b := ⟨β⟩ℓoutb + (−1)1−b · wb

20: Pb sets ⟨W 1
CW ⟩

ℓout
b := −⟨β⟩ℓoutb + (−1)b · wb

21: Pb invokes FA,ℓout

MUX with input ⟨W 0
CW ⟩

ℓout
b , ⟨W 1

CW ⟩
ℓout
b , ⟨g⟩Bb

to get ⟨WCW ⟩ℓoutb where WCW = W g
CW .

22: Pb sends ⟨WCW ⟩ℓoutb to P1−b to reconstruct WCW .
23: Pb sets kb := s0,0b ∥CW0∥ . . . ∥CWℓin−1∥WCW .
24: return kb

layer. This optimization can be seamlessly integrated into our
protocol, reducing the number of invocations of FB,λ

MUX by ℓin
in the tree traversing phase.

B. Dealer-less FSS key generation for DCF

Distributed comparison function is an important building
block in a wide range of FSS-based protocols [5], [4]. We
describe the detailed construction of our dealer-less DCF
protocol that supports arithmetic-shared inputs and outputs.

We present our dealer-less DCF key generation protocol in
Algorithm 3. Our construction can be viewed as a dealer-less
extension of the dealer-based DCF [13]. The major difference
between DCF and DPF key generation is calculating an
extra correction word, namely VCW . It corrects the random
GGM tree and ensures the output satisfies the DCF invariant.
Therefore, in our protocol, we compute VCW for each layer
(step 11), along with all the correction words in the DPF key
(step 4-9).

To efficiently compute VCW , we propose a correlated DCF
correction words generation protocol, as outlined in Algorithm
4. We explain the insight of our design by first introducing how
VCW is computed in the prior dealer-based work [13]:

VCW :=(−1)t
(i−1)
1 · (CG(v

Lose
1)− CG(v

Lose
0)− Vα + α[i] · β)

Vα :=Vα − CG(v
Keep
1) + CG(v

Keep
0) + (−1)t

(i−1)
1 · VCW

=CG(v
Keep
0)− CG(v

Keep
1)− CG(v

Lose
0) + CG(v

Lose
1) + α[i] · β

(5)

In the above equation, t(i−1)
1 is the control bit of the node

at the (i− 1)-th layer held by P1. The comparison label vLose0
(and vLose1 , respectively) is expanded from the node label at
the previous layer held by P0 (and P1, respectively). The
superscript Lose indicates the opposite side of the special path,
while Keep denotes the same side as the special path.

Therefore, computing VCW can be divided into two parts:
evaluating the term t

(i−1)
1 and CG(v

Lose
1)−CG(v

Lose
0)+α[i] ·β.

Similar to our dealer-less DPF, it suffices to invoke our
efficient ΠCCMP protocol to compute the former term. Without
knowing the special path, the latter term is partitioned into
CG(v

Lose
1) − CG(v

Lose
0) and α[i] · β, computed by two multi-

plexer invocations (step 3 and 5, Algorithm 4)

To update Vα, recalling the second relation in Equation 5,
one may follow the same way that using multiplexer to obtain
−CG(v

Keep
1) + CG(v

Keep
0). However, we observe that Pb can

locally compute the following randomness by summing all left
side (denoted with superscript L) and right side (denoted with
superscript R) comparison labels v at the same layer without
requiring knowledge of which side represents the special path
(step 1, Algorithm 4):

Σb∈{0,1}(−1)b(CG(v
L
b) + CG(v

R
b))

=CG(v
L
0)− ΣCG(v

L
1)︸ ︷︷ ︸

Part 1

+CG(v
R
0)− ΣCG(v

R
1)︸ ︷︷ ︸

Part 2

(6)

As we have obtained CG(v
Lose
1)−CG(v

Lose
0) (step 3, Algorithm

4), it corresponds to either part 1 or part 2 in the preceding
equation. This suffices to compute −CG(v

Keep
1) + CG(v

Keep
0)

by locally subtracting the output of the multiplexer (step 4,
Algorithm 4) from the sum-up randomness in Equation 6. This
approach effectively eliminates one multiplexer invocation of
λ bits.

Complexity. Given the input and payload bit length to be ℓ,
it requires 16ℓ+7 offline rounds with the communication size
of ℓ2+17λℓ+2λ+47ℓ+12 bits to generate a DCF key. The
evaluation process is identical to the prior work [13], which
requires ℓ bits of communication size within 1 round.

Optimization for public payload. Although we provide
general DCF construction for protecting both index α and
payload β, in most cases, the payload is a public constant
like 1. When there is no need to hide the payload, we can
replace Step 5 in Algorithm 4 with a public multiplication,
which reduces one FA,ℓout

MUX invocation.

Optimization from Half-tree [10]. With the correlated
GGM construction of Half-tree [10], our DCF scheme further
reduces two multiplexer invocations FA,ℓout

MUX for each layer
during DCF correction word generation. As the result, the total

6

Algorithm 3 Dealer-less DCF Key Generation

Genℓin,ℓoutDCF (b, ⟨α⟩ℓinb , ⟨β⟩ℓoutb):
Input: Pb holds shares of position ⟨α⟩ℓinb and payload ⟨β⟩ℓoutb .
Output: Pb obtains a DCF Key kb.

1: Pb invokes Fℓin
BitDec with input ⟨α⟩ℓinb to get Boolean shares

⟨α⟩Bb ∈ {0, 1}ℓin .
2: Pb samples a random seed s0,0b from {0, 1}λ and sets

t0,0b := b, Vα := 0.
3: for i ∈ [ℓin] do
4: Pb sets Qi+1,2j∥Qi+1,2j+1 := G(si,jb) for j ∈ [2i],

where Qi+1,2j+p := si+1,2j+p
b ∥vi+1,2j+p

b ∥ti+1,2j+p
b ∈

{0, 1}λ × {0, 1}λ × {0, 1} for p ∈ {0, 1}
5: Pb sets Si,p

b :=
⊕

j∈[2i] s
i+1,2j+p
b for p ∈ {0, 1}.

6: Pb sets T i,p
b :=

⊕
j∈[2i] t

i+1,2j+p
b for p ∈ {0, 1}.

7: Pb invokes FB,λ
MUX with input Si,0

b , Si,1
b , ⟨α[ℓin−1−i]⟩Bb ⊕

b to get σi
b := S

i,α[ℓin−1−i]⊕1
b .

8: Pb sets τ i,0b := T i,0 ⊕ ⟨α[ℓin − 1− i]⟩Bb ⊕ b and τ i,1b :=
T i,1 ⊕ ⟨α[ℓin − 1− i]⟩Bb .

9: Pb sends σi
b, τ

i,0
b , τ i,1b to P1−b to reconstruct

σi, τ i,0, τ i,1.
10: Pb sets v[i] := vi+1,j

b for j ∈ [2i+1]
11: Pb sets t[i] := ti,jb for j ∈ [2i]
12: Pb calls ComputeVCW(b, i,v, t, ⟨α[ℓin − 1− i]⟩Bb , Vα)

to get (VCW , Vα)
13: Pb sets CW i := σi∥VCW ∥τ i,0∥τ i,1
14: for j ∈ [2i] do
15: Pb sets si+1,2j

b ∥si+1,2j+1
b := si+1,2j

b ∥si+1,2j+1
b ⊕ti,jb ·

σi

16: Pb sets ti+1,2j
b := ti+1,2j

b ⊕ ti,jb ·τ i,0 and ti+1,2j+1
b :=

ti+1,2j+1
b ⊕ ti,jb · τ i,1

17: end for
18: end for
19: Pb evaluates wi

b := ConvertG(s
ℓin,i
b) for i ∈ [2ℓin].

20: Pb sets wb :=
∑

i∈[2ℓin] w
i
b, tb :=

∑
i∈[2ℓin] t

ℓin,i
b .

21: Pb invokes FCCMP with input tb to get ⟨g⟩Bb .
22: Pb sets ⟨W 0

CW ⟩
ℓout
b := (−1)1−b·wb−Vα and ⟨W 1

CW ⟩
ℓout
b :=

(−1)b · wb − Vα.
23: Pb invokes FA,ℓout

MUX with input ⟨W 0
CW ⟩

ℓout
b , ⟨W 1

CW ⟩
ℓout
b , ⟨g⟩Bb

to get ⟨WCW ⟩ℓoutb where WCW = W g
CW .

24: Pb sends ⟨WCW ⟩ℓoutb to P1−b to reconstruct WCW .
25: Pb sets kb := s0,0b ∥CW 0∥ . . . ∥CW ℓin∥WCW

26: return kb

amount of FA,ℓout
MUX and FB,λ

MUX invocations can be reduced by
2ℓin and ℓin respectively.

V. BUILDING BLOCK PROTOCOLS

Built upon the 2PC-based FSS schemes presented in Sec-
tion IV, this section provides efficient secure protocols for im-
portant building blocks used in the consequent framework for
complex function evaluation, including equality test, compari-
son, truncation, interval containment, and digit decomposition.

A. Equality test and comparison

Equality test and comparison are two key components in
our building block protocols and complex function evaluation

Algorithm 4 Correlated DCF Correction Word Generation

ComputeVCW(b, i,v, t, ⟨α[i]⟩Bb , ⟨β⟩
ℓout
b , Vα):

Input: Pb holds the depth of correction words i, seeds vector
v, control bits vector t, shares of the input bit ⟨α[i]⟩Bb and
shares of payload ⟨β⟩ℓoutb .

Output: Pb obtains public correction words of i-th layer
VCW , and the updated V̂α.

1: Pb evaluates V i,p
b := Σj∈[2i+1]ConvertG(v[2j + p]) for

p ∈ {0, 1}
2: Pb sets tb := Σj∈[2i]t[j] and invokes FCCMP with input tb

to get ⟨g⟩Bb
3: Pb invokes the multiplexer functionality FA,ℓout

MUX with input
(−1)1−b ·V i,0

b , (−1)1−b ·V i,1
b , ⟨α[i]⟩Bb ⊕b to get ⟨ϕ⟩ℓoutb :=

⟨V i,α[i]⊕1
1 − V

i,α[i]⊕1
0 ⟩ℓoutb .

4: Pb sets ⟨θ⟩ℓoutb := (−1)b · (V i,0
b + V i,1

b) + ⟨ϕ⟩ℓoutb

5: Pb invokes FA,ℓout
MUX with input ⟨0⟩ℓoutb , ⟨β⟩ℓoutb , ⟨α[i]⟩Bb to get

⟨η⟩ℓoutb := ⟨α[i] · β⟩b.
6: Pb sets ⟨V 0

CW ⟩
ℓout
b := ⟨ϕ⟩ℓoutb − (1 − b) · Vα + ⟨η⟩ℓoutb ,

⟨V 1
CW ⟩

ℓout
b := −⟨ϕ⟩ℓoutb + (1− b) · Vα − ⟨η⟩ℓoutb

7: Pb invokes FA,ℓout

MUX with input ⟨V 0
CW ⟩

ℓout
b , ⟨V 1

CW ⟩
ℓout
b , ⟨g⟩Bb

to get ⟨VCW ⟩ℓoutb where VCW = V g
CW .

8: Pb sends ⟨VCW ⟩ℓoutb to P1−b to reconstruct VCW

9: Pb sets ⟨V̂α⟩ℓoutb := ⟨θ⟩ℓoutb − ⟨ϕ⟩ℓoutb + ⟨η⟩ℓoutb

10: Pb sends ⟨V̂α⟩ℓoutb to P1−b to reconstruct V̂α

11: return (VCW , V̂α)

framework.

At the offline stage, the equality test takes as input the
arithmetic shares of target value ⟨α⟩ℓin ∈ Z2ℓin and payload
⟨β⟩ℓout ∈ Z2ℓout and outputs equality test keys for two parties.
At the online stage, it takes as input the arithmetic shares of
⟨x⟩ℓin ∈ Z2ℓin , and outputs ⟨β⟩ℓout ∈ Z2ℓout if x = α, otherwise
⟨0⟩ℓout ∈ Z2ℓout . We follow the construction based on the FSS
offset gate [15]. It transforms checking x = α into x + r =
α+r by generating a random mask r at the offline stage, thus
preserving the correctness of the equality test. We present the
detailed protocol in Algorithm 5.

The comparison operation takes as input the arithmetic
shares of target value ⟨α⟩ℓin ∈ Z2ℓin and payload ⟨β⟩ℓout ∈
Z2ℓout , and outputs comparison keys for two parties at the
offline stage. Correspondingly, at the online stage, it takes
as input the arithmetic shares of ⟨x⟩ℓin ∈ Z2ℓin , and output
⟨β⟩ℓout ∈ Z2ℓout if x < α, otherwise ⟨0⟩ℓout ∈ Z2ℓout . To be
compatible with the arithmetic-shared input, it is necessary
to determine if an overflow occurs after adding the random
mask to the input share. If an overflow occurs when adding
α and rin in ring Z2ℓin , the correct comparison result should
be 1{x + rin ∈ [(α + rin) mod 2ℓin , rin]}. This problem can
be easily resolved when the dealer has the knowledge of both
α and rin [13]. Without the dealer, to construct the correct
comparison scheme supporting arithmetic shared input while
maintaining extremely low online latency, we integrate secure
comparison via invoking the Millionaire protocol [11] to check
the overflow. Although this check can be performed directly
by the comparison between α + rin and 2ℓin , we opt for
the comparison between two ring elements rin and α + rin

7

Algorithm 5 DPF-based Equality Test

Genℓin,ℓoutEQ (b, ⟨α⟩ℓinb , ⟨β⟩ℓoutb):
Input: Pb holds shares of target value ⟨α⟩ℓinb and payload
⟨β⟩ℓoutb .

Output: Pb obtains an Equality Test Key kb.
1: Pb samples ⟨r⟩ℓinb ∈ Z2ℓin .
2: Pb evaluates k̂b := Genℓin,ℓoutDPF (b, ⟨r⟩ℓinb + ⟨α⟩ℓinb , ⟨β⟩ℓoutb)

3: Pb sets kb := ⟨r⟩ℓinb ∥k̂b
4: return kb

Evalℓin,ℓoutEQ (b, kb, ⟨x⟩ℓinb):
Input: Pb holds shares of input value ⟨x⟩ℓinb and key kb.
Output: Pb obtains ⟨y⟩ℓoutb where y = β · 1{x = α}.

1: Pb parses kb as ⟨r⟩ℓinb ∥k̂b
2: Pb sends ⟨x⟩ℓinb + ⟨r⟩ℓoutb to P1−b and reconstructs x+ r ∈

Z2ℓin

3: Pb evaluates ⟨y⟩ℓoutb := Evalℓin,ℓoutDPF (b, x+ r, k̂b)
4: return ⟨y⟩ℓoutb

mod 2ℓin under fixed-point arithmetic within ℓin bits rather
than ℓin + 1 bits. We present the detailed protocol ΠCMP in
Algorithm 6.

Complexity. The equality test requires one DPF invocation.
Therefore, it introduces 9ℓ+5 offline rounds with 18λℓ+5λ+
13ℓ+ 2 bits to communicate at the offline stage, and 1 round
of ℓ bits data exchange at the online stage. The comparison
requires 2 DCF invocations with one FMUL, one FMILL and one
FB2A. Totally, it costs 32ℓ + log ℓ + 16 rounds with 2λ2ℓ +
2λℓ2 + 2ℓ2 + 35λℓ+ 5λ+ 111ℓ+ 24 bits at the offline stage
and requires 1 round with ℓ bit communication for evaluation.

B. Truncation

The truncation operation on an ℓ-bit input ⟨x⟩ℓ ∈ Z2ℓ can
be represented as y = x ≫ s ∈ Z2ℓ−s , where s is the trun-
cation bit length. The functionality of our truncation protocol
is identical to the truncate-and-reduce protocol proposed in
SIRNN [8]. Given that ⟨x⟩b = ⟨u⟩b∥⟨v⟩b with u ∈ {0, 1}ℓ−s

and v ∈ {0, 1}s, the truncation operation can be further
formulated as

Truncs(⟨x⟩ℓin
b) :=

{
⟨u⟩b, ⟨v⟩0 + ⟨v⟩1 < 2s

⟨u+ 1⟩b, ⟨v⟩0 + ⟨v⟩1 ≥ 2s
(7)

Specifically, a secure comparison protocol is necessary on the
last s bits to determine whether their sum results in an overflow
into the s+1 bits. This can be achieved by employing an (s+
1)-bit comparison. The detailed truncation protocol is given in
Algorithm 7.

Complexity. Our truncation protocol invokes an (s+1)-bit
comparison, which requires s+1 bits of communication within
1 round for evaluation.

C. Interval containment

The interval containment operation takes as input the
public interval list at the offline stage and generates interval
containment keys for the two parties. At the online stage, it
inputs the arithmetic shares of ⟨x⟩ℓin ∈ Z2ℓin , and outputs

Algorithm 6 DCF-based Comparison

Genℓin,ℓoutCMP (b, ⟨α⟩ℓinb , ⟨β⟩ℓoutb):
Input: Pb holds shares of target value ⟨α⟩ℓinb and payload
⟨β⟩ℓoutb .

Output: Pb obtains a Comparison Key kb
1: Pb samples ⟨r⟩ℓinb ∈ Z2ℓin

2: Pb invokes Fℓin
MILL with inputs ⟨r⟩ℓinb and ⟨r⟩ℓinb + ⟨α⟩ℓinb to

get ⟨g⟩Bb
3: Pb invokes Fℓout

B2A with input ⟨g⟩Bb to get ⟨g⟩ℓoutb

4: Pb invoked FMUL with inputs ⟨g⟩ℓoutb and ⟨β⟩ℓoutb to get
⟨ĝ⟩ℓoutb

5: Pb evaluates k̂0b := Genℓin,ℓoutDCF (b, ⟨r⟩ℓinb ,−⟨β⟩ℓoutb)

6: Pb evaluates k̂1b := Genℓin,ℓoutDCF (b, ⟨r⟩ℓinb + ⟨α⟩ℓinb , ⟨β⟩ℓoutb)

7: Pb sets kb := ⟨r⟩ℓinb ∥k̂0b∥k̂1b∥⟨ĝ⟩
ℓout
b

8: return kb
Evalℓin,ℓoutCMP (b, kb, ⟨x⟩ℓinb):
Input: Pb holds shares of input value ⟨x⟩ℓinb and key kb.
Output: Pb obtains ⟨y⟩ℓoutb where y = β{x < α}.

1: Pb parses kb as ⟨r⟩ℓinb ∥k̂0b∥k̂1b∥⟨ĝ⟩
ℓout
b

2: Pb sends ⟨x⟩ℓinb + ⟨r⟩ℓoutb to P1−b and reconstructs x+ r ∈
Z2ℓin

3: Pb evaluates ⟨y0⟩ℓoutb := Evalℓin,ℓoutDCF (b, x+ r, k̂0b)

4: Pb evaluates ⟨y1⟩ℓoutb := Evalℓin,ℓoutDCF (b, x+ r, k̂1b)
5: Pb sets ⟨y⟩ℓoutb := ⟨y0⟩ℓoutb + ⟨y1⟩ℓoutb + ⟨ĝ⟩ℓoutb

6: return ⟨y⟩ℓoutb

Algorithm 7 Truncate and Reduce, Πℓ,s
TR

Input: Pb holds ⟨x⟩ℓb and public truncation bit length s.
Output: Pb obtains ⟨y⟩ℓ−s

b where y = x≫ s mod 2ℓ−s.
Offline Phase:

1: Pb invokes Gens+1,ℓ−s
CMP (b, ⟨2s⟩, ⟨1⟩) to obtain kb.

Online Phase:
1: Pb parses input ⟨x⟩ℓb as an ℓ-bit string ub||vb, where ub ∈
{0, 1}ℓ−s, vb ∈ {0, 1}s.

2: Pb invokes Evals+1,ℓ−s
CMP (b, kb, ⟨t⟩s+1

b) and learns ⟨c⟩ℓ−s
b ,

where ⟨t⟩s+1
b = vb ∈ {0, 1}s+1.

3: Pb sets ⟨y⟩ℓ−s
b := ub + ⟨c⟩ℓ−s

b mod 2ℓ−s.

the one-hot vector indicating the interval that x belongs to.
Specifically, each interval Ii = [di, di+1), for i ∈ [k], is defined
by two public knots di and di+1, and this operation outputs
the vector ⟨v⟩ℓout satisfying vℓout [i] = 1{x ∈ Ii}. Further, this
operation can be represented as

Ctnk(⟨x⟩ℓin
b)[i] :=(1− 1{⟨x⟩0 + ⟨x⟩1 mod 2ℓin < di})

· 1{⟨x⟩0 + ⟨x⟩1 mod 2ℓin < di+1}
(8)

Therefore, this operation can be securely evaluated with se-
cure multiplications and comparison invocations. The detailed
protocol is given in Algorithm 8.

Optimization when the public knot is 0 or 2ℓ − 1. In
most cases like an ℓ-bit spline approximation, the first interval
is always [0, d0), and the last interval is [dk, 2ℓ). In this setting,
we do not need to evaluate comparison for 0 and 2ℓ − 1 as
the result is fixed under integer representation, namely 0 for

8

Algorithm 8 Secure Containment, Πℓin,ℓout,k
Ctn

Input: Pb holds ⟨x⟩ℓinb , knots number k, (k > 2), with k − 1
intervals [di, di+1), i ∈ [0, k − 1], d0 = 0, dk−1 = 2ℓin−1,
with ℓin-bit input

Output: Pb obtains a one-hot vector ⟨v⟩ℓoutb , where v[i] =
1{x ∈ [di, di+1)}

Offline Stage:
1: Pb invokes Genℓin,ℓoutCMP (b, di, 1) to obtain kib for i ∈ [0, k−2].

2: Pb performs k − 3 offline operations of FMUL

Online Stage:
1: Pb computes ⟨c[i]⟩ℓoutb := Evalℓin,ℓoutCMP (b, kib, ⟨x⟩

ℓin
b) for i ∈

[0, k − 1].
2: Pb computes ⟨v⟩ℓoutb by evaluating ⟨v[i]⟩ℓoutb :=
Fℓout

MUL(⟨c[i]⟩
ℓout
b , (b − ⟨c[i + 1]⟩ℓoutb)) for i ∈ [1, k − 3],

⟨v[0]⟩ℓoutb := ⟨c[0]⟩ℓoutb , and ⟨v[k − 2]⟩ℓoutb := b− ⟨c[2]⟩ℓoutb .

comparing with 0, β for comparing with 2ℓ − 1. As such,
the secure multiplication to evaluate v[0] and v[k + 1] can
also be removed and transformed to the local public constant
multiplication.

Complexity. Given the knot number k, we invoke k com-
parisons on ℓ-bit input with addition k − 3 parallel secure
multiplications. Consequently, the online phase of Πℓin,ℓout,k

Ctn
requires ℓin(3k − 2) bits of communication within 2 rounds.

D. Digit decomposition

A digit decomposition protocol Πℓ,c,d
DigDec takes as input the

original bit length ℓ, segment number c and new bit length
d = ℓ/c at the offline stage. It inputs an ℓ-bit arithmetic
value ⟨x⟩ℓ at online stage, and decomposes it into c segments
x[c − 1]∥ . . . ∥x[0], x[i] ∈ {0, 1}d with d = l/c bits for each
segment. Our detailed digit decomposition protocol is given in
Algorithm 9. For the i-th segment, given carryi = 1 denoting
the overflow from the i−1-th segment, we formulate the digit
decomposition operation as

DigDecc(⟨x⟩ℓb)[i] := ⟨x[i]⟩0 + ⟨x[i]⟩1 + carryi (9)

To achieve this operation, the primary objective is to determine
whether an overflow has occurred from the preceding segment
and also within the current segment. We observe that there
are two possible conditions for an overflow. First, if the
sum of ⟨x[i]⟩0 and ⟨x[i]⟩1 exceeds 2d − 1, it indicates that
the cumulative value of the current segment surpasses the
maximum capacity of a d-bit value. Alternatively, an overflow
can occur when ⟨x[i]⟩0 + ⟨x[i]⟩1 = 2d − 1 and there is a
carryover from the preceding segment. As such, we check 2
possible conditions for overflow in Step 2. Intuitively, one
might need to evaluate the logical OR between these two
conditions. However, we would like to emphasize that it is
sufficient to add the evaluation results of the equality test
and comparison for 2d − 1 together to accomplish the digit
decomposition, without resorting to additional OR operations,
as both conditions cannot happen simultaneously [8].

Complexity. We employ a (d+1)-bit comparison to check
potential overflow in the current segment and a d-bit equality
test plus a secure multiplication to verify if the overflow is

Algorithm 9 Secure Digit Decomposition Protocol, Πℓ,c,d
DigDec

Input: Pb holds ⟨x⟩ℓb, segment number c, digit bit length d =
ℓ/c.

Output: Pb obtains ⟨z⟩db , where x = z[c − 1]||...||z[1]||z[0]
with new bit length d = ℓ/c.

Offline Stage:
1: Pb invokes equality test key generation as Gend,dEQ (b, ⟨2d−

1⟩db , ⟨1⟩db) to obtain c− 1 DPF keys kEQ,i
b for i ∈ [c− 1].

2: Pb invokes comparison key generation as
Gend+1,d

CMP (b, ⟨2d⟩d+1
b , ⟨1⟩db) to obtain c − 1 comparison

keys kLT,ib for i ∈ [c− 1].
3: Pb performs c− 1 offline operations of FMUL

Online Stage:
1: Pb parses ⟨x⟩ℓb as ⟨p⟩db [c− 1]||...||⟨p⟩db [1]||⟨p⟩db [0] and sets
⟨z⟩db [0] := ⟨p⟩db [0], ⟨u⟩db [0] := 0

2: Pb invokes Evald+1,d
CMP (b, kLT,ib , ⟨p[i]⟩d+1

b) to obtain
⟨w⟩db [0], ..., ⟨w⟩db [i], and Evald,dEQ (b, k

EQ,i
b , ⟨p[i]⟩db) to obtain

⟨e⟩db [1], ..., ⟨e⟩db [i] for i ∈ [0, c− 2].
3: for i ∈ [1, c− 1] do
4: P0 and P1 invokes Fd

MUL(⟨u[i − 1]⟩db , ⟨e[i − 1]⟩db) to
obtain ⟨v[i− 1]⟩db

5: Pb sets ⟨u[i]⟩db := ⟨v[i− 1]⟩db + ⟨w[i− 1]⟩db
6: Pb sets ⟨z[i]⟩db := ⟨p[i]⟩db + ⟨u[i]⟩db
7: end for

attributed to the preceding carry. Consequently, the online
phase of the protocol Πℓ,c,d

DigDec requires (c − 1)(4d + 1) bits
of communication within c+ 1 rounds.

VI. MATH FUNCTIONS IN SCIENTIFIC COMPUTATION

Scientific computation is fundamental to systems support-
ing various time-critical applications, such as autonomous
vehicle positioning [25], proximity detection in online nav-
igation [26], [27], and biometric authentication [28]. These
services demand low-latency processing of sensitive input data
while maintaining high accuracy. We introduce our optimized
implementation of widely used scientific functions, specifically
trigonometric functions, built on the building blocks discussed
in the previous section. Our design achieves minimal commu-
nication overhead and latency while preserving accuracy.

A. Optimized spline polynomial approximation and lookup
table protocol

Many mathematical functions, such as sine, tangent, and
exponential, pose challenges in efficiently evaluating them
within the MPC environment [1]. There are two common meth-
ods for secure evaluation. The first is the lookup table (LUT)
technique [3], [8], which requires storing all possible input-
output pairs. For an ℓin-bit secret-shared input, this method
involves 2ℓin secure equality tests, resulting in a communication
complexity of O(2ℓin), which is impractically expensive. The
second method approximates functions using piecewise poly-
nomials [4]. With k intervals, O(k) secure comparisons are
needed to identify the input’s interval, which becomes costly
as k increases. To address the inefficiencies of these methods,
we propose optimized constructions leveraging our previously
described building blocks.

9

Algorithm 10 Public Lookup Table Protocol, Πℓin,ℓout,Tpub

pubLUT

Input: Pb holds ⟨x⟩ℓinb and a public lookup table T with 2ℓin

ℓout-bit entries.
Output: Pb obtains ⟨y⟩ℓoutb where y = T [x].
Offline Phase:

1: Pb randomly samples ⟨r⟩ℓinb ∈ {0, 1}ℓin .
2: Pb invokes Genℓin,ℓoutDPF (b, ⟨r⟩ℓinb , ⟨1⟩ℓoutb) to obtain kb.

Online Phase:
1: Pb sends ⟨x⟩ℓinb − ⟨r⟩

ℓin
b to P1−b, to reconstruct x− r.

2: Pb computes ⟨z[i]⟩ℓoutb := Evalℓin,ℓoutDPF (b, kb, i) for i ∈ [2ℓin].
3: Pb circularly shifts the vector ⟨z⟩ℓoutb by x−r to get ⟨z′⟩ℓoutb .

4: Pb outputs ⟨y⟩ℓoutb :=
∑

i∈[2ℓin]⟨z′[i]⟩
ℓout
b · T [i].

Efficient public lookup table protocol. By carefully uti-
lizing the DPF technique, we propose an efficient lookup table
protocol that achieves a communication complexity of O(ℓin),
instead of O(2ℓin) complexity in prior works. During the offline
stage, the parties generate the DPF key on a randomly sampled
location r in the table T . This ensures the offline stage is input-
independent. During the online stage, parties jointly evaluate
the DPF on the public masked input x+ r and get the one-hot
vector z, where z[r] = β. To get the correct result, namely
T (x), we circularly shift z by x− r. Based on this vector, the
parties can easily obtain the secret-shared output y = T (x),
by executing the inner product operation once. It is worth
noting that the offline overhead of our protocol is sub-linear
with the table size, and in the online phase, the parties only
communicate 2 ring elements within 1 round. We present our
public lookup table protocol Algorithm 10.

Extending to the private table. Although the private
LUT protocol can be derived from Π

ℓin,ℓout,Tpub

pubLUT , we provide an
alternative for private LUT illustrated in Algorithm 11 to avoid
costly 2ℓin secure multiplications. In our protocol, we generate
DPF keys for each table entry shifted by r at the offline stage,
whose payload is the secret value in the table. Then the party
evaluates DPF for every position to get respective DPF output
on public FSS input x + r. For the x-th result, it will be
shared in the private table and shares of 0 in other indexes.
Finally, we sum them together to get the protocol output. Our
protocol may suffer from large overhead at the offline stage,
but achieve extreme efficiency at the online stage with 1 round
of interaction to communicate 1 ring element. We carefully
invoke this protocol to reduce offline overhead in our math
function implementation. We present the complete protocol for
our private lookup table in Algorithm 11.

Efficient spline polynomial approximation protocol.
Combining the FSS offset gate with polynomial approximation
requires two key steps: generating correct coefficients for the
shifted function f(x−r) and performing public multiplication
on (x + r)i with the corresponding coefficients. First, at the
offline stage, the polynomial’s coefficients are shifted by a
random value, transforming

∑
ai · xi into

∑
ai · (x − r)i

using secure multiplication. Second, at the online stage, we
determine which spline the masked input falls into. Notably,
we avoid direct DCF-based interval containment, as large
numbers of splines lead to excessive overhead for range

Algorithm 11 Private Lookup Table Protocol, Πℓin,ℓout,Tpri

priLUT

Input: Pb holds ⟨x⟩ℓinb and a secret-shared lookup table ⟨T ⟩ℓoutb
with 2ℓin entries.

Output: Pb obtains ⟨y⟩ℓoutb where y = T [x].
Offline Phase:

1: Pb samples random number ⟨r⟩ℓinb
2: Pb invokes ΠBitDec to get ⟨i+ r⟩Bb for i ∈ [2ℓin]
3: Pb invokes Genℓin,ℓoutDPF (b, ⟨i+ r⟩Bb , ⟨Tpri[i]⟩ℓoutb) to obtain kib

for i ∈ [2ℓin] with random mask r

Online Phase:
1: Pb sends ⟨x⟩ℓinb + ⟨r⟩ℓinb to P1−b to reconstruct x+ r.
2: Pb computes ⟨z[i]⟩ℓoutb := Evalℓin,ℓoutDPF (b, kib, x + r) for i ∈

[2ℓin].
3: Pb outputs ⟨y⟩ℓoutb :=

∑
i∈[2ℓin]⟨z[i]⟩

ℓout
b .

Algorithm 12 Secure Spline Polynomial Approximation Pro-
tocol, Π

ℓ,d,u,s,fi,i∈[u]

Approx

Input: Pb holds ⟨x⟩ℓb, public d-degree spline polynomials
{f ℓ

i }i∈[u] with ℓ-bit coefficients, truncation bit length s.
Output: Pb obtains ⟨y⟩ℓb, where y = f ℓ

i (x) and x belongs to
the i-th piece.

Offline Stage:
1: Pb invokes the offline sub-protocol of Πℓ,s

TR to get kTRb .
2: Pb invokes FMUL on f ℓ

i,j,i∈[u],j∈[d] to get shares of the
updated polynomial approximation coefficients with offset
r, i.e. ⟨f̂i,j,i∈[u],j∈[d]⟩ℓb

3: Pb invokes Gen
ℓ−s,ℓ,⟨f̂i,,j,i∈[u],j∈[d]⟩ℓb
priLUT to get private LUT

protocol keys kpriLUTb for all table entries and ⟨r⟩ℓb, where
⟨r⟩ℓb is the share of mask of LUT key

4: Pb parses ⟨r⟩ℓb ∥ kTRb ∥ kpriLUTb ∥ ⟨f̂i,j,i∈[u],j∈[d]⟩ℓb as kb
Online Stage:

1: Pb parses kb as ⟨r⟩ℓb ∥ kTRb ∥ kpriLUTb ∥ ⟨f̂i,j,i∈[u],j∈[d]⟩ℓb
2: Pb sends ⟨x⟩ℓb + ⟨r⟩ℓb to P1−b to reconstruct x+ r.
3: Pb evaluates ⟨x′⟩ℓ−s

b := Evalℓ,sTR(b, k
TR
b , x + r) to get

truncated input
4: Pb evaluates ⟨f̂j,j∈[d]⟩ℓb := Evalℓ−s,ℓ,

priLUT(b, k
priLUT
b , ⟨x′⟩ℓ−s

b)
to get corrected polynomial coefficients

5: Pb locally computes ⟨y⟩ℓb :=
∑d

j=0⟨f̂j⟩ℓb · (x+ r)d

checks. Instead, for 2u segments, calculating the higher u bits
suffices for range determination. Given xℓ = xu∥xℓ−u, we
have xℓ ∈ Ixu = [xu · 2ℓ−u, (xu + 1) · 2ℓ−u). This allows for
interval containment via an (ℓ − u)-bit DPF on a truncated
input, reducing the need for multiple ℓ-bit comparisons. With
secret-shared coefficients, our optimized spline approximation
protocol employs the private LUT protocol to retrieve the
correct coefficients using lower bit lengths. The protocol
Π

ℓ,d,u,s,fi,i∈[u]

Approx is detailed in Algorithm 12.

B. Trigonometric functions

Trigonometric functions, such as sine, cosine, and tangent,
are essential in scientific computation, particularly for spatial
problems [7]. We propose an efficient protocol that leverages
the periodic properties of these functions along with our FSS-

10

Algorithm 13 Secure Sine Protocol, Πℓ,s,c,d,u,k
Sin

Input: Pb holds ⟨x⟩Ab , with bit length ℓ, scale s, LUT segmentation number c, polynomial approximation degree d with spline
u, truncation bits k,

Output: Pb obtains ⟨y⟩Ab where y = sin(πx)
Offline Stage:

1: Pb invokes Gen2+s,2
ModPow2 to obtain non-negative comparison key kModPow2

b

2: Pb invokes Gens+1,5
Ctn with knots on {0, 0.5, 1, 1.5, 2} to get the interval containment key kCtnb

3: Pb invokes offline stage of FMUL to get multiplication triplets kMUL
b of both ℓ and s+ 2 bit length

4: if Lookup table implementation then
5: Pb invokes Gen

s,c,s/c
DigDec to get digit decomposition key kDigDec

b

6: Pb invokes Gen
s/c,ℓ,Tf

pubLUT for c times to get public LUT keys kpubLUTb [i] for i ∈ [c]
7: else if Spline polynomial approximation implementation then
8: Pb invokes Gen

s,d,u,k,sin(πx)i,i∈[u]

Approx to get spline approximation key kApproxb
9: end if

10: Pb outputs the final key kSinb := kModPow2
b ∥ kCtnb ∥ kMUL

b ∥ kDigDec
b ∥ kpubLUTb [i] ∥ kApproxb

Online Stage:
1: Pb locally drops ℓ− (s+ 2) high order bits of ⟨x⟩ℓinb to get ⟨x′⟩s+2

b

2: Pb evaluates Evals+2,2
ModPow2(b, k

Mod
b , ⟨x′⟩s+2

b) get ⟨xMod⟩s+2
b

3: Pb evaluates ⟨v⟩s+2
b := Evals+2,5

Ctn (b, kCtnb , ⟨xMod⟩s+2
b)

4: Pb locally compute ⟨mi⟩s+2
b := ⟨v⟩b ·Di for i ∈ [3]

5: Pb evaluates FMUL(⟨m0⟩s+2
b , ⟨xMod⟩s+2

b) + ⟨m1⟩s+2
b to get ⟨xTransform⟩s+2

b

6: Pb locally locally drops 2 high order bits of ⟨xTransform⟩s+2
b to get ⟨xFrac⟩sb

7: if Lookup table implementation then
8: Pb evaluates Eval

s,c,s/c
DigDec (b, k

DigDec
b , ⟨xFrac⟩sb) to get the digit decomposition results ⟨xSeg[i]⟩s/cb

9: Pb evaluates Eval
s/c,ℓ,T i

f

pubLUT (b, kpubLUTb [i], ⟨xSeg[i]⟩s/cb) to get ⟨yi⟩ℓb for i ∈ [c], where T i
f [j] = f(j × 2(s−1)/c−s) for f ∈

{sin(πx), cos(πx)}, i ∈ [c], j ∈ [2s/c]
10: Pb evaluates ⟨y′⟩ℓb := Fℓ

MUL(⟨yi⟩ℓb, ⟨yj⟩ℓb) for i, j ∈ [c] according to sum-to-product identity of trigonometric functions.
11: else if Polynomial approximation implementation then
12: Pb evaluates Eval

s,d,u,k,sin(πx)i,i∈[u]

Approx (b, kApproxb , ⟨xFrac⟩b) to get ⟨y′⟩ℓb
13: end if
14: Pb evaluates ⟨y⟩ℓb := Fℓ

MUL(⟨m2⟩ℓb, ⟨y′⟩ℓb)

based building blocks. This approach enables effective and
accurate implementations for both LUT and approximation
methods. Our protocol consists of four major steps, using sine
as a representative example.

Utilizing the periodic properties. Due to the periodic
property, we can calculate the function result in one period,
which requires transforming x ∈ R into a smaller domain that
x′ ∈ [0, 2) (x′ ∈ [0, 1) for tangent). This can be done by
local bits dropping and a non-negative comparison, which is
realized by a (2+s)-bit DCF, where s is the scale in fixed-point
arithmetic. We clarify the correctness of this local operation in
Theorem 1 and provide the proof in Appendix C. The protocol
for secure modular is detailed in Appendix B2.

Theorem 1. Given Fix(k) to be the fixed-point representation
of constant k, s to be the scale, N = 2ℓ > Fix(4). The
transformation from x ∈ R to x′ ∈ [0, 2) under ℓ-bit
fixed-point arithmetic can be correctly performed by locally
dropping high ℓ − 2 − s bit of x following an extra secure
modular with Fix(2).

Calculating on one-forth-period. An intriguing property
of trigonometric functions is that they retain the same shape
within one-fourth of their period, enabling simple transfor-
mations like flipping or inverting. Notably, it suffices to

compute the function within one-fourth of the period (i.e.,
[0, 0.5]) using additional transformations. Formally, there exists
coefficients a, b and c that satisfies gfx(y

′) = af [π(bx+c)] for
y′ ∈ [0, 0.5], x ∈ [0, 2). This further reduces the bit length for
LUT or spline polynomial approximation implementation.

Performing FSS-based trigonometric evaluation. Upon
performing the above optimizations, it comes to evaluating
the actual trigonometric function. We implement both LUT
and approximation methods. For LUT implementation, we
observe that we can decompose the s bit value into several
segments (2 in our work) so that we have lower entry numbers
per LUT because of the sum-to-product identity for sine and
cosine. Correspondingly, we decompose an ℓ-bit input xℓ into
x
ℓ/2
h ×2ℓ/2+x

ℓ/2
l and construct 2 LUTs with 2ℓ/2 entries plus

two extra multiplications. Furthermore, we can reuse the result
of the one-hot vector generated during the LUT protocol so
that we only have to evaluate ℓ/2-bit DPF twice instead of
four times directly. For spline approximation implementation,
it suffices to invoke the optimized spline polynomial protocol
in Algorithm 12 with the correct approximation coefficient for
completion of the trigonometric evaluation.

We provide the complete implementation of the sine func-
tion in Algorithm 13 and tangent function in Appendix F.
Cosine function follows the identical implementation with

11

TABLE II: Runtime and communication overhead of our FSS
protocols with different bit lengths ℓ in (8, 16, 18).

Protocol Params. Time LAN Time WAN Comm.
ℓ Gen(s) Eval(µs) Gen(s) Eval(µs) Gen(MB) Eval(B)

ΠDPF

8 0.050 0.577 1.288 0.615 0.046 0
16 0.092 1.150 2.450 1.151 0.080 0
18 0.124 1.278 2.780 1.265 0.088 0

ΠDCF

8 0.085 1.818 2.417 1.866 0.145 0
16 0.180 3.357 4.625 3.505 0.277 0
18 0.280 3.739 5.247 3.718 0.310 0

different approximation coefficients and lookup table com-
pared to sine. Theoretical analysis for online computation and
communication complexity of our building blocks protocol and
trigonometric evaluation framework is presented in Appendix
D, Table VI.

VII. EVALUATION

A. Experimental setup

We implemented our framework1 built on top of EMP-
toolkit [29] and EzPC [12] in C++. Similar to prior works [30],
[1], we simulate the network connection under two different
settings, where LAN with 10Gbps bandwidth and 0.05ms echo
latency, and WAN with 40 Mbps bandwidth and 20ms echo
latency. All experiments are performed using a single thread on
AWS c5.9xlarge instances with Intel Xeon 8000 series CPUs
at 3.6GHz.

Implementation details. Similar to prior works [4], [3],
we set the computational security parameter to λ = 128
in our implementation. The default integer representation for
fixed-point arithmetic is in Z216 with the scale of 9. When
constructing a lookup table, we decompose it into 2 sub-tables.
We use 2-degree polynomials with the Remez algorithm [31]
to compute the correct coefficients for spline approximation.

Baselines. Our first baseline is MP-SPDZ [1], one of the
state-of-the-art MPC frameworks aligning with our offline-
online paradigm, providing implementations for various build-
ing blocks and trigonometric functions. MP-SPDZ is also
compared in prior works [4], [32], [8]. The second baseline
is EzPC-Secfloat [32], integrated into EzPC [11]. It is one
of the state-of-the-art floating-point-based MPC libraries with
efficient and practical approximation-based trigonometric func-
tion implementations.

B. Performance evaluation

We evaluate the performance of our framework from the
three hierarchical levels as shown in Figure 1.

Performance of 2PC FSS key generation. In Table II,
we show the performance of our 2PC DPF and DCF key gen-
eration schemes. We observe that our schemes are concretely
efficient. Specifically, the DPF/DCF key can be generated in
seconds, while the online phase for evaluating DPF and DCF
requires only a few microseconds with no interaction and
communication between parties. The high efficiency of these
two protocols becomes the basis for our crucial building block
protocols in Section V and efficient trigonometric evaluation
framework in Section VI.

TABLE III: Runtime and communication overhead of our FSS-
based building block protocols. Aux means auxiliary parame-
ters for the tested protocol.

Protocol Params. Time LAN Time WAN Comm.
ℓ Aux. Gen(s) Eval(ms) Gen(s) Eval(ms) Gen(MB) Eval(B)

ΠEQ

8 − 0.050 0.006 1.277 10.335 0.046 1
16 − 0.092 0.006 2.464 10.337 0.080 2
18 − 0.125 0.006 2.783 10.348 0.088 4

ΠCMP

8 − 0.162 0.006 4.819 10.345 0.281 1
16 − 0.354 0.007 9.329 10.370 0.545 2
18 − 0.539 0.007 10.605 10.355 0.611 4

ΠTR

8 s = 5 0.108 0.010 3.127 10.199 0.182 1
16 s = 9 0.181 0.012 5.405 10.207 0.314 1
18 s = 9 0.199 0.013 5.947 10.203 0.347 2

ΠCtn

8 k = 4 0.608 0.190 18.891 31.014 1.099 12
16 k = 4 1.365 0.207 37.234 31.023 2.156 24
18 k = 4 2.157 0.210 42.296 30.982 2.421 48

ΠDigDec

8 k = 2 0.130 0.154 3.821 40.898 0.203 4
16 k = 2 0.220 0.161 6.683 41.040 0.352 5
18 k = 2 0.241 0.164 7.311 40.968 0.389 8

ΠPubLUT

8 T = 2ℓ 0.050 0.041 1.282 10.270 0.046 1
16 T = 2ℓ 0.094 15.028 2.463 25.313 0.080 2
18 T = 2ℓ 0.126 67.023 2.778 77.447 0.088 4

ΠPriLUT 8 T = 2ℓ 9.752 0.165 326.247 10.469 9.596 1
8 d = 2, u = 16 1.071 0.058 36.244 50.889 1.180 5

ΠApprox 16 d = 2, u = 16 1.204 0.061 40.766 51.049 1.445 7
18 d = 2, u = 16 1.391 0.060 41.854 51.031 1.151 9

0.0

0.2

0.4
Ti

m
e

LA
N

 (m
s)

8-bit (Ours)
8-bit (MP-SPDZ)

16-bit (Ours)
16-bit (MP-SPDZ)

18-bit (Ours)
18-bit (MP-SPDZ)

0

50

100

150

Ti
m

e
W

A
N

 (m
s)

EQ CMP TR Ctn DigDec Approx
100

101

102

C
om

m
. (

B
yt

es
)

Fig. 6: Online performance comparison for building blocks
with MP-SPDZ

Performance of building blocks. In Table III, we report
the performance of our crucial building blocks based on our
2PC FSS scheme. We observe that the equality test protocol
ΠEQ and comparison protocol ΠCMP are lightweight and highly
efficient during evaluation because they directly invoke ΠDPF

and ΠDCF. The remaining protocols built upon the equality test
and comparison incur bytes of communication. In Figure 6,
we present an online performance comparison of our building
blocks with MP-SPDZ. Our results demonstrate significant
performance improvements, with runtime reductions ranging
from 1.67× to 52.80× in LAN environments and from 1.99×
to 11.83× in WAN environments. Additionally, we observe
up to a 29.89× reduction in communication overhead. The

1Available at https://github.com/xingpz2008/dealerless-FSS public

12

https://github.com/xingpz2008/dealerless-FSS_public

8 16 18
Runtime

0.0

0.5

1.0

1.5
Ti

m
e

LA
N

 (m
s)

Ours (LUT)
Ours (Approx)
MP-SPDZ

LAN
WAN

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
W

A
N

 (s
)

8 16 18
Communication Overhead

0.0

0.5

1.0

1.5

2.0

C
om

m
un

ic
at

io
n

si
ze

 (K
B

)

Ours (LUT)
Ours (Approx)
MP-SPDZ

Fig. 7: Online performance of Sine function

8 16 18
Runtime

0.0

0.5

1.0

1.5

Ti
m

e
LA

N
 (m

s)

Ours (LUT)
Ours (Approx)
MP-SPDZ

LAN
WAN

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
W

A
N

 (s
)

8 16 18
Communication Overhead

0.0

0.5

1.0

1.5

2.0

C
om

m
un

ic
at

io
n

si
ze

 (K
B

)

Ours (LUT)
Ours (Approx)
MP-SPDZ

Fig. 8: Online performance of Cosine function

8 16 18
Runtime

0

1

2

3

Ti
m

e
LA

N
 (m

s)

Ours (LUT)
Ours (Approx)
MP-SPDZ

LAN
WAN

0.0

0.5

1.0

1.5

2.0

Ti
m

e
W

A
N

 (s
)

8 16 18
Communication Overhead

0

1

2

3

4

C
om

m
un

ic
at

io
n

si
ze

 (K
B

)

Ours (LUT)
Ours (Approx)
MP-SPDZ

Fig. 9: Online performance of Tangent function

cost of our public lookup table protocol ΠPubLUT and private
lookup table ΠPriLUT grows exponentially with input bit length
or the table entries. However, during math function evaluation,
we invoke these protocols in sufficiently low bit length (2 to
4 in our implementation) to alleviate the impact of massive
table entries, thus lowering the overall overhead. Complete
results for lookup table protocols with MP-SPDZ are reported
in Appendix E.

Performance of trigonometric functions. We provide the
performance of our efficient trigonometric function framework
in Table IV. We compare the online performance of our
framework with MP-SPDZ [1] and present the result in Figures
7, 8 and 9 for three respective functions2. It is observed that
our framework is 1.16 ∼ 5.74× faster under LAN settings
and 3.11 ∼ 14.73× faster under WAN settings. Moreover,
our communication size is 27.67 ∼ 184.42× less than MP-
SPDZ. When it comes to function accuracy3, we use the
criterion of Unit in Last Place (ULP) error, similar to [32],
[8]. It represents the amount of representable numbers between

2Our LUT and approximation results in Figures 7 and 8 are identical due
to the same underlying protocol implementation.

3We restrict the input to the range that the approximation coefficients can
be correctly represented under the given fixed-point arithmetic settings.

protocol output and exact output. As seen from the last
column, errors in all protocols are minor, resulting in negligible
accuracy loss. Concretely, sin and cos all achieved around one
ULP error, which equates to a one-bit LSB error. Unlike these
two functions, the LUT-based tan does not employ accuracy-
loss fixed-point multiplication, thus achieving accurate results
without ULP error. We provide additional experimental results
compared with EzPC-Secfloat [32] and report them in the
Appendix E.

C. Case studies

We apply our FSS-based protocols to two real-world
scenarios: privacy-preserving biometric authentication and
privacy-preserving proximity test. Table V shows unprece-
dented online efficiency for real-world applications. We present
the complete experiment result comparing with MP-SPDZ [1]
and EzPC-Secfloat [32] in Appendix E.

Privacy-preserving biometric authentication. A biomet-
ric system verifies user permission for operations by analyzing
sensitive data such as voice, fingerprints, and iris images,
generating a confidence score. It incorporates a score fusion
model that evaluates multiple scores using a tangent approach
[28]. We abstract the system and simulate it as four tangent
functions, which output a final confidence score from four
independent random data pairs. Compared with MP-SPDZ [1],
we achieved 3.39 ∼ 4.77× and 7.46 ∼ 14.49× less latency on
LAN and WAN respectively, as illustrated in Figure 10. It is
worth noting that the advancement of our framework is greater
with a larger bit length in a variety of real-world applications.

Privacy-preserving proximity test. The proximity test
solutions [26] are usually connected with distance measure-
ment in various online map services. It collects the user’s
position and checks if it is close enough to the target
point like a gas station or restaurant. A privacy-preserving
proximity test framework [32] securely computes the dis-
tance using Haversine’s formula [33] without revealing the
cleartext data: ∆ = 2R · tan−1

√
δ/(1− δ), where δ =

sinπ2[(xA − xB)/2]+cosπxA ·cosπxB ·sinπ2[(yA − yB)/2].
We test the performance of computing the vital component
δ in privacy-preserving systems. We present the performance
for our framework and MP-SPDZ-based implementation in
Figure 11. The evaluation result reveals that the runtime of our
polynomial approximation implementation is 1.15 ∼ 1.42×
faster than MP-SPDZ in LAN settings, and 2.18 ∼ 2.96×
better in WAN settings, with a reduction of 38.55 ∼ 58.90×
in communication.

VIII. CONCLUSION

This paper addresses the gap in function secret sharing
by developing dealer-less key generation protocols for DPF
and DCF, supporting arithmetic-shared inputs and outputs. We
then integrate these into the trigonometric evaluation frame-
work that leverages periodic properties to compute complex
non-linear functions efficiently with low bit-length, ensuring
exceptional online performance. Our experiments demonstrate
the practical applicability of this approach.

A key limitation of our FSS protocols is the linear scal-
ing of offline communication rounds with input bit length.
Although Guo et al. [10] reduce PRG invocations with a

13

TABLE IV: Performance of trigonometric function evaluation. Aux means auxiliary parameters for the tested protocol. Impl
means the underlying implementation method. Average ULP error is measured from 2ℓ random data pairs.

Protocol Impl. Params. Time LAN Time WAN Comm. Error
(ℓ, s) Aux. Gen(s) Eval(ms) Gen(s) Eval(s) Gen(MB) Eval(KB) (ULP)

ΠSin

LUT
(8, 5) d = 2 0.643 0.572 20.115 0.164 1.144 0.024 0.687
(16, 9) d = 2 1.118 0.592 33.816 0.164 1.896 0.042 1.477
(18, 9) d = 2 1.313 0.612 35.007 0.164 1.962 0.050 1.477

Approx
(8, 5) d = 2, u = 16 1.540 0.309 51.086 0.133 2.039 0.019 0.750
(16, 9) d = 2, u = 16 2.018 0.322 64.712 0.133 3.479 0.033 1.387
(18, 9) d = 2, u = 16 2.178 0.329 65.985 0.133 3.562 0.035 1.387

ΠCos

LUT
(8, 5) d = 2 0.643 0.572 20.115 0.164 1.144 0.024 0.188
(16, 9) d = 2 1.118 0.592 33.816 0.164 1.896 0.042 0.360
(18, 9) d = 2 1.313 0.612 35.007 0.164 1.962 0.050 0.360

Approx
(8, 5) d = 2, u = 16 1.540 0.309 51.086 0.133 2.039 0.019 0.750
(16, 9) d = 2, u = 16 2.018 0.322 64.712 0.133 3.479 0.033 1.117
(18, 9) d = 2, u = 16 2.178 0.329 65.985 0.133 3.562 0.035 1.117

ΠTan

LUT
(8, 5) − 0.295 0.253 9.135 0.092 0.712 0.012 0.000
(16, 9) − 0.576 0.321 16.605 0.092 1.223 0.019 0.000
(18, 9) − 0.841 0.307 17.840 0.092 1.305 0.021 0.000

Approx
(8, 5) d = 2, u = 16 1.266 0.310 42.420 0.133 1.755 0.016 0.750
(16, 9) d = 2, u = 16 1.578 0.309 51.380 0.133 2.442 0.023 0.875
(18, 9) d = 2, u = 16 1.785 0.309 56.629 0.133 2.525 0.025 1.053

TABLE V: Performance of our case studies. Aux means auxiliary parameters for the tested protocol. Impl means the underlying
implementation method. Average ULP error is measured from 2ℓ random data pairs.

Task Impl. Params. Time LAN Time WAN Comm. Error
(ℓ, s) Aux. Gen(s) Eval(ms) Gen(s) Eval(s) Gen(MB) Eval(KB) (ULP)

Biometric
Authentication

LUT
(8, 5) − 1.130 1.071 36.232 0.368 2.007 0.048 0.000
(16, 9) − 2.272 1.240 66.343 0.369 3.659 0.076 0.000
(18, 9) − 3.120 1.429 71.343 0.369 3.924 0.084 0.000

Approx
(8, 5) d = 2, u = 16 4.997 1.275 168.904 0.531 6.079 0.064 1.000
(16, 9) d = 2, u = 16 6.281 1.255 204.858 0.530 8.194 0.092 3.438
(18, 9) d = 2, u = 16 7.396 1.252 210.050 0.530 8.458 0.100 2.594

Proximity Test

LUT
(8, 5) d = 2 2.549 2.373 80.167 0.696 4.552 0.110 0.563
(16, 9) d = 2 4.439 2.417 134.994 0.696 7.558 0.188 2.203
(18, 9) d = 2 5.277 2.409 140.135 0.697 10.454 0.220 2.094

Approx
(8, 5) d = 2, u = 16 3.809 1.317 204.370 0.572 8.129 0.090 0.875
(16, 9) d = 2, u = 16 8.003 1.394 258.941 0.572 11.300 0.152 1.078
(18, 9) d = 2, u = 16 8.708 1.394 263.986 0.572 14.211 0.160 0.926

8 16 18
Runtime

0

2

4

6

8

Ti
m

e
LA

N
 (m

s)

Ours (LUT)
Ours (Approx)
MP-SPDZ

LAN
WAN

0

2

4

6

8

Ti
m

e
W

A
N

 (s
)

8 16 18
Communication Overhead

0

5

10

15

C
om

m
un

ic
at

io
n

si
ze

 (K
B

)

LUT
APPROX
MP-SPDZ

Fig. 10: Online performance of bio-authentication

8 16 18
Runtime

1

2

3

Ti
m

e
LA

N
 (m

s)

Ours (LUT)
Ours (Approx)
MP-SPDZ

LAN
WAN

0.5

1.0

1.5

2.0

Ti
m

e
W

A
N

 (s
)

8 16 18
Communication Overhead

0.0

2.5

5.0

7.5

10.0

C
om

m
un

ic
at

io
n

si
ze

 (K
B

)

LUT
APPROX
MP-SPDZ

Fig. 11: Online performance of proximity test

GGM-tree, achieving sublinear communication remains an
open challenge. Additionally, optimizations [13] like reduced
DCF keys apply only in dealer mode. While 2PC protocols
could enable these optimizations, designing efficient protocols
with unknown randomness is a promising area for future
research. This work focuses on semi-honest parties, assuming
no protocol deviations. For malicious security, Castro et al.
[34] proposed verifiable FSS in the dealer model. Extending
our approach to the malicious setting requires verifying input
and output consistency and key correctness [35], which could
involve authenticated outputs via information-theoretic MACs
and efficient ZKPs [36], [37] for our future work.

ACKNOWLEDGMENT

We would like to express our deepest gratitude for the
invaluable help provided by our shepherd and for all the
reviewers’ constructive comments. This work is supported
by the National Key R&D Program of China under Grant
2022YFB3103500, the National Natural Science Foundation
of China under Grant 62020106013, the Chengdu Science and
Technology Program under Grant 2023-XT00-00002-GX, the
Fundamental Research Funds for Chinese Central Universities
under Grant Y030232063003002.

14

REFERENCES

[1] M. Keller, “Mp-spdz: A versatile framework for multi-party computa-
tion,” in Proceedings of ACM CCS, 2020, pp. 1575–1590.

[2] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in
Proceedings of EUROCRYPT, 2015, pp. 337–367.

[3] S. Wagh, “Pika: Secure computation using function secret sharing over
rings,” in Proceedings of PETS, 2022, pp. 351–377.

[4] K. Gupta, D. Kumaraswamy, N. Chandran, and D. Gupta, “Llama: A
low latency math library for secure inference,” in Proceedings of PETS,
2022, pp. 274–294.

[5] T. Ryffel, P. Tholoniat, D. Pointcheval, and F. R. Bach, “Ariann:
Low-interaction privacy-preserving deep learning via function secret
sharing,” in Proceedings of PETS, 2020, pp. 291–316.

[6] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and Y. Ishai,
“Lightweight techniques for private heavy hitters,” in Proceedings of
IEEE S&P, 2021, pp. 762–776.

[7] B. Hemenway, S. Lu, R. Ostrovsky, and W. W. IV, “High-precision
secure computation of satellite collision probabilities,” ePrint 2016/319,
2016.

[8] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chan-
dran, and A. Rastogi, “Sirnn: A math library for secure rnn inference,”
in Proceedings of IEEE S&P, 2021, pp. 1003–1020.

[9] J. Doerner and A. Shelat, “Scaling oram for secure computation,” in
Proceedings of ACM CCS, 2017, pp. 523–535.

[10] X. Guo, K. Yang, X. Wang, W. Zhang, X. Xie, J. Zhang, and Z. Liu,
“Half-tree: Halving the cost of tree expansion in cot and dpf,” in
Proceedings of EUROCRYPT, 2023, pp. 330–362.

[11] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in
Proceedings of ACM CCS, 2020, pp. 325–342.

[12] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
Programmable and efficient secure two-party computation for machine
learning,” in Proceedings of EuroS&P, 2019, pp. 496–511.

[13] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and
M. Rathee, “Function secret sharing for mixed-mode and fixed-point
secure computation,” in Proceedings of EUROCRYPT, 2021, pp. 871–
900.

[14] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing: Improve-
ments and extensions,” in Proceedings of ACM CCS, 2016, pp. 1292–
1303.

[15] ——, “Secure computation with preprocessing via function secret
sharing,” in Proceedings of TCC, 2019, pp. 341–371.

[16] A. Agarwal, S. Peceny, M. Raykova, P. Schoppmann, and K. Seth,
“Communication-efficient secure logistic regression,” in Proceedings of
EuroS&P, 2024, pp. 440–467.

[17] D. Kim, Y. Son, D. Kim, A. Kim, S. Hong, and J. Cheon, “Privacy-
preserving approximate gwas computation based on homomorphic
encryption,” BMC Medical Genomics, vol. 13, 2020.

[18] G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni,
and M. Zohner, “Pushing the communication barrier in secure compu-
tation using lookup tables,” in Proceedings of NDSS, 2017.

[19] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious rams,” Journal of the ACM, vol. 43, no. 3, pp. 431–473,
1996.

[20] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of Cryptology, vol. 13, no. 1, pp. 143–202, 2000.

[21] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[22] G. R. Blakley, “Safeguarding cryptographic keys,” in Proceedings of
Workshop on MARK, 1979, pp. 313–318.

[23] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” Journal of the ACM, vol. 33, no. 4, pp. 792–807, 1986.

[24] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren, “Asymp-
totically tight bounds for composing oram with pir,” in Proceedings of
PKC, 2017, pp. 91–120.

[25] Y. Li, X. Tao, X. Zhang, J. Liu, and J. Xu, “Privacy-preserved federated
learning for autonomous driving,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 7, pp. 8423–8434, 2022.

[26] J. Šeděnka and P. Gasti, “Privacy-preserving distance computation and
proximity testing on earth, done right,” in Proceedings of ASIACCS,
2014, pp. 99–110.

[27] M. Li, Y. Chen, S. Zheng, D. Hu, C. Lal, and M. Conti, “Privacy-
preserving navigation supporting similar queries in vehicular networks,”
IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 2, pp. 1133–1148, 2022.

[28] A. Herbadji, N. Guermat, L. Ziet, Z. Akhtar, and D. Dasgupta,
“Weighted quasi-arithmetic mean based score level fusion for multi-
biometric systems,” IET Biometrics, vol. 9, pp. 91–99, 2020.

[29] X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient
MultiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

[30] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure Two-Party deep neural network inference,” in Proceedings of
USENIX Security, 2022, pp. 809–826.

[31] S. Hocevar, “Polynomial Approximations using the Remez Algorithm,”
https://github.com/samhocevar/lolremez, 2020.

[32] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “Secfloat: Accurate floating-point meets secure 2-party
computation,” in Proceedings of IEEE S&P, 2022, pp. 576–579.

[33] R. W. Sinnott, “Virtues of the haversine,” 1984.
[34] L. de Castro and A. Polychroniadou, “Lightweight, maliciously secure

verifiable function secret sharing,” in Proceedings of EUROCRYPT,
2022, pp. 150–179.

[35] W. Zhang, X. Guo, K. Yang, R. Zhu, Y. Yu, and X. Wang, “Efficient
actively secure dpf and ram-based 2pc with one-bit leakage,” in Pro-
ceedings of IEEE S&P, 2024, pp. 561–577.

[36] C. Weng, K. Yang, Z. Yang, X. Xie, and X. Wang, “Antman: Interactive
zero-knowledge proofs with sublinear communication,” in Proceedings
of ACM CCS, 2022, pp. 2901–2914.

[37] K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any
field,” in Proceedings of ACM CCS, 2021, pp. 2986–3001.

[38] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in Proceedings of CRYPTO, 1992, pp. 420–432.

APPENDIX

A. 2PC functionalities

Our protocols adopt the following 2-party functionalities.

Multiplexer (MUX). The ℓ-bit Boolean MUX functional-
ity, Fℓ,B

MUX, takes as input {⟨xi⟩B , ⟨yi⟩B}i∈[1,ℓ] ∈ {0, 1}2ℓ and
the choice bit ⟨c⟩B ∈ {0, 1}, and outputs {⟨zi⟩B}i∈[1,ℓ] ∈
{0, 1}ℓ such that zi = xi if c = 0 and zi = yi otherwise.
It can be implemented via 2 parallel COTs. Besides, we
also consider the ℓ-bit arithmetic MUX functionality, Fℓ,A

MUX,
that takes as input ⟨x⟩ℓ, ⟨y⟩ℓ ∈ Z2ℓ and the choice bit
⟨c⟩B ∈ {0, 1}, and outputs ⟨z⟩ℓ such that z = x if c = 0
and z = y otherwise. We utilize the method in SIRNN [8] to
instantiate this functionality, which requires 2(λ + ℓ) bits of
communication.

Multiplication (MUL). The ℓ-bit multiplication function-
ality, Fℓ

MUL, takes as input ⟨x⟩ℓ and ⟨y⟩ℓ, and outputs ⟨z⟩ℓ
such that z = x ·y mod 2ℓ. We use the Beaver multiplication
protocol [38] to instantiate this functionality. Based on pre-
generated Beaver triplets, this protocol requires ℓ bits of
communication within 1 round.

AND. The AND functionality FAND takes as input ⟨x⟩B
and ⟨y⟩B , and outputs ⟨z⟩B such that z = a ∧ b. Given the
bit triplets generated using the protocol in Cryptflow2 [11],
this functionality requires 2 bits of communication within 1
round. Note that a variant of this functionality takes as input
a ∈ {0, 1} from P0 and b ∈ {0, 1} from P1, and outputs

15

https://github.com/emp-toolkit
https://github.com/samhocevar/lolremez

⟨z⟩B ∈ {0, 1} such that z = a∧ b. This can be easily achieved
via invoking FAND with another share of a (and b) is 0.

OR. The OR functionality FOR takes as input ⟨x⟩B and
⟨y⟩B , and outputs ⟨z⟩B such that z = a∨b. Given that a∨b =
¬(¬a∧¬b), this functionality can be implemented via invoking
the above FAND.

Millionaire (MILL). The Millionaire functionality Fℓ
MILL

takes as input xB ∈ {0, 1}ℓ from P0 and yB ∈ {0, 1}ℓ from
P1, and outputs ⟨z⟩B such that z = 1{x < y}. We utilize the
method in Cryptflow2 [11] which requires the communication
size of λℓ+ 14ℓ bits with log ℓ rounds.

Boolean-to-Arithmetic (B2A). The Boolean-to-Arithmetic
functionality Fℓ

B2A takes as input boolean shares ⟨x⟩B and
outputs the respective arithmetic shares in the same value
⟨y⟩ℓ ∈ Z2ℓ such that x = y. We utilize the implementation
from Cryptflow2 [11] with communication of λ+ ℓ bits.

B. Supporting Protocols

1) Bit decomposition in DPF and DCF key generation:
A bit decomposition protocol is used in 2PC DPF and DCF
key generation to obtain the binary representation of the shared
target index. The core of this protocol is to check if an overflow
comes from the lower position. More concretely, the carry bit
equals 1 only if: 1) The shares of x[i] incur an overflow, or
2) The shares of x[i] = 1 and the previous carry bit equals 1
thus incur an overflow. Therefore, we invoke 2 FAND and 1
FOR for the protocol. We present our implementation of the
bit decomposition protocol in Algorithm 14.

Algorithm 14 Bit Decomposition, Πℓ
BitDec

Input: Pb holds ⟨x⟩ℓb.
Output: Pb obtains ⟨y⟩Bb ∈ {0, 1}ℓ where y[i] = x[i].

1: Pb sets q := 0
2: for i ∈ [ℓ] do
3: Pb sets ⟨y⟩Bb [i] := ⟨x⟩ℓb[i] ∧ q
4: Pb invokes FAND with input ⟨x⟩ℓb[i] to get ⟨t⟩Bb
5: Pb invokes FAND with input ⟨x⟩ℓb[i] and q to get ⟨u⟩Bb
6: Pb invokes FOR with input ⟨u⟩Bb and q to get ⟨v⟩Bb
7: Pb sets q := ⟨v⟩Bb
8: end for

2) Secure Modular with Power-of-2: A Power-of-2 mod-
ular protocol reflects the input into a period 2s which is the
power-of-2. The protocol first drops the redundant ℓ − s − 1
bit because this will be canceled in modular operations. Now
the input lies in the [0, 2s+1) and we consequently perform
the comparison with 2s to finalize the modular. This protocol
is highly efficient as it only requires an s + 1-bit DCF-based
comparison. We present our protocol in Algorithm 15.

C. Proof of Theorem 1

Proof: For positive inputs x, the correctness holds obvi-
ously.

For negative input x− < 0, let its fixed-point representation
be N − x+.

Algorithm 15 Power-of-2 Modular Protocol, Πℓ,s
ModPow2

Input: Pb holds ⟨x⟩ℓb and a public power-of-2 modular 2s.
Output: Pb obtains ⟨y⟩s+1

b where y = x mod 2s.
Offline Phase:

1: Pb invokes Gens+1,s+1
CMP (2s, 1) to obtain kb.

Online Phase:
1: Pb parses input ⟨x⟩ℓb as an ℓ-bit string ub||vb, where ub ∈
{0, 1}ℓ−s−1, vb ∈ {0, 1}s+1.

2: Pb evaluates ⟨z⟩s+1
b := b− Evals+1,s+1

CMP (b, kb, vb).
3: Pb sets ⟨y⟩s+1

b := vb − 2s · ⟨z⟩s+1
b .

We firstly assume that x+ < Fix(2). The correct output of
this operation should be Fix(2) − x+. When performing bit-
dropping, the input becomes N −x+ mod Fix(4) = Fix(4)−
x+ as we have N = k · Fix(4). Followed by the comparison,
we have Fix(4)− x+ − Fix(2)× 1{Fix(4)− x+ > Fix(2)} =
Fix(2)− x+

When Fix(2) ≤ x+ < Fix(4), the correct output becomes
2× Fix(2)− x+. Results after comparison becomes Fix(4)−
x+ = 2× Fix(2)− x+ as 1{Fix(4)− x+ > Fix(2)} = 0

For Fix(4) ≤ x+, we can divide x+ into two parts: 0 <
x+
Frac < Fix(4) and x+

Four which is times of Fix(4). Correct
output becomes k × Fix(2) − x+

Frac − x+
Four = k′ × Fix(2) −

x+
Frac accordingly. It is clear that x+

Four will be canceled during
bit-dropping, while the remaining part can be converted to
conditions on Fix(2) ≤ x+ < Fix(4) or x+ < Fix(2).

D. Theoretical overhead analysis for building block protocols

In Table VI, we report the theoretical overhead of our
building blocks in terms of online communication rounds and
size.

TABLE VI: Online communication complexity for building
blocks with input and output bit length ℓ, security parameter
λ, multiplication times q for sum-to-product identity.

Protocols Impl. Rounds Comm.(Bits)

EvalℓEQ − 1 ℓ

EvalℓCMP − 1 ℓ

Evalℓ,sTR − 1 s + 1

Evalℓ,kCtn − 2 ℓ(3k − 2)

Evalℓ,c,dDigDec − c + 1 (c − 1)(4d + 1)

EvalℓPubLUT − 1 2ℓ

EvalℓPriLUT − 1 ℓ

Evalℓ,d,u,s,f
Approx − 3 + d s + ℓ + (d + 1) log u

Evalℓ,s,c,d,u,k
Sin LUT 2c + 6 + q

2ℓq + 17s + 2ℓ
+c + (4 − 4s)/c + 34

Evalℓ,s,c,d,u,k
Sin Approx d + 8 3ℓ + 17s + (d + 1) log u + 32

Evalℓ,s,d,u,k
Tan LUT 6 12s + 2ℓ + 8

Evalℓ,s,d,u,k
Tan Approx d + 8 11s + 3ℓ + (d + 1) log u + 10

E. Additional Experiment Results

Lookup table protocols. We provide results for lookup
table protocols and compare with MP-SPDZ in Table VII.

16

TABLE VII: Online performance of 8-bit lookup table proto-
cols with 28 table entries. Impl means the underlying imple-
mentation method.

Protocol Impl. Runtime Comm. RoundsLAN (ms) WAN (ms) (B)

ΠPubLUT
Ours 0.041 10.270 1 2

MP-SPDZ 0.384 81.762 672 10

ΠPriLUT
Ours 0.165 10.469 1 2

MP-SPDZ 0.440 81.898 1184 12

TABLE VIII: Online performance of trigonometric evaluation
and case studies compared with MP-SPDZ and EzPC-Secfloat.
Bolded term stands for the best result.

Protocol Impl. Runtime Comm. Error
LAN (ms) WAN (s) (KB) (ULP)

ΠSin

Ours (LUT) 0.612 0.164 0.050 1.477
Ours (Approx) 0.329 0.133 0.035 1.387

MP-SPDZ 0.941 0.753 1.560 0.629
EzPC-Secfloat 1.614 0.380 26.014 0.318

ΠCos

Ours (LUT) 0.612 0.164 0.050 0.360
Ours (Approx) 0.329 0.133 0.035 1.117

MP-SPDZ 0.892 0.713 1.528 1.070
EzPC-Secfloat 1.625 0.382 26.080 0.318

ΠTan

Ours (LUT) 0.307 0.092 0.021 0
Ours (Approx) 0.309 0.133 0.025 1.053

MP-SPDZ 1.761 1.357 3.840 5.088
EzPC-Secfloat 2.185 0.533 36.043 0.244

Biometric
Authentication

Ours (LUT) 1.429 0.369 0.084 0
Ours (Approx) 1.252 0.530 0.100 2.549

MP-SPDZ 5.977 5.339 15.360 3.707
EzPC-Secfloat 9.369 2.372 165.293 2.370

Proximity
Test

Ours (LUT) 2.409 0.697 0.220 2.094
Ours (Approx) 1.394 0.572 0.160 0.926

MP-SPDZ 1.977 1.694 9.424 2.266
EzPC-Secfloat 8.210 2.030 173.322 6.299

Benefiting from extremely low overhead, we achieve up to
9.32× improvements in lookup table protocols.

Extended trigonometric and case studies results. We
perform extended comparison with EzPC-Secfloat [32], along
with additional error statistics from MP-SPDZ [1]. We provide
these results in Table VIII. Compared with EzPC-Secfloat,
we achieve significant performance improvements, e.g., 5.89×
faster runtime and 858× reduced communication for proximity
tests. Additionally, experiment results show superior accuracy,
e.g., we achieve 3.44 ULP-error for proximity tests, compared
to MP-SPDZ’s 4.06 and EzPC-Secfloat’s 6.30.

F. Secure Tangent Protocol

We provide the complete implementation of our secure
tangent protocol ΠTan in Algorithm 16. Note that the period
of tangent is 1 instead of 2, we adjust the bit length to be
dropped in Step 1 and the knots for interval containment in
Step 3. The tangent evaluation is simpler than sine evaluation
in Section VI-B during LUT implementation as the sum-to-
product identity is inapplicable for tangent in our design due
to costly division.

Algorithm 16 Secure Tangent Protocol, Πℓ,s,d,u,k
Tan

Input: Pb holds ⟨x⟩Ab , with bit length ℓ, scale s, polynomial
approximation degree d with spline u, truncation bits k,

Output: Pb obtains ⟨y⟩Ab where y = tan(πx)
Offline Stage:

1: Pb invokes Gen1+s,1
ModPow2 to obtain non-negative comparison

key kModPow2
b

2: Pb invokes Gens+1,3
Ctn with knots on {0, 0.5, 1} to get the

interval containment key kCtnb
3: Pb invokes offline stage of FMUL to get multiplication

triplets kMUL
b of both ℓ and s+ 1 bit length

4: if Lookup table implementation then
5: Pb invokes Gens,ℓ,Tf

pubLUT public LUT key kpubLUTb
6: else if Spline polynomial approximation implementation

then
7: Pb invokes Gen

s,d,u,k,tan(πx)i,i∈[u]

Approx to get spline approx-
imation key kApproxb

8: end if
9: Pb outputs the final key kTanb as kModPow2

b ∥ kCtnb ∥ kMUL
b ∥

kpubLUTb ∥ kApproxb

Online Stage:
1: Pb locally drops ℓ− (s+1) high order bits of ⟨x⟩ℓinb to get
⟨x′⟩s+1

b

2: Pb evaluates Evals+1,1
ModPow2(b, k

Mod
b , ⟨x′⟩s+1

b) get ⟨xMod⟩s+1
b

3: Pb evaluates ⟨v⟩s+1
b := Evals+1,3

Ctn (b, kCtnb , ⟨xMod⟩s+1
b)

4: Pb locally compute ⟨mi⟩s+1
b := ⟨v⟩b ·Di for i ∈ [3]

5: Pb evaluates FMUL(⟨m0⟩s+1
b , ⟨xMod⟩s+1

b)+⟨m1⟩s+1
b to get

⟨xTransform⟩s+1
b

6: Pb locally locally drops 1 high order bits of ⟨xTransform⟩s+1
b

to get ⟨xFrac⟩sb
7: if Lookup table implementation then
8: Pb evaluates Eval

s,ℓ,T i
f

pubLUT(b, k
pubLUT
b [i], ⟨xfrac⟩sb) to get

⟨y′⟩ℓb
9: else if Polynomial approximation implementation then

10: Pb evaluates Eval
s,d,u,k,tan(πx)i,i∈[u]

Approx (b, kApproxb , ⟨xFrac⟩b)
to get ⟨y′⟩ℓb

11: end if
12: Pb evaluates ⟨y⟩ℓb := Fℓ

MUL(⟨m2⟩ℓb, ⟨y′⟩ℓb)

17

	Introduction
	Related Works
	Preliminaries
	Notations
	Threat model
	Secret sharing
	Function secret sharing
	FSS with secret-shared inputs

	Distributed Function Secret Sharing
	Dealer-less FSS key generation for DPF
	Dealer-less FSS key generation for DCF

	Building Block Protocols
	Equality test and comparison
	Truncation
	Interval containment
	Digit decomposition

	Math Functions in Scientific Computation
	Optimized spline polynomial approximation and lookup table protocol
	Trigonometric functions

	Evaluation
	Experimental setup
	Performance evaluation
	Case studies

	CONCLUSION
	References
	Appendix
	2PC functionalities
	Supporting Protocols
	Bit decomposition in DPF and DCF key generation
	Secure Modular with Power-of-2

	Proof of Theorem 1
	Theoretical overhead analysis for building block protocols
	Additional Experiment Results
	Secure Tangent Protocol

