
What’s Done Is Not What’s Claimed: Detecting and
Interpreting Inconsistencies in App Behaviors

Chang Yue1,2, Kai Chen1,2,⋆, Zhixiu Guo1,2, Jun Dai3, Xiaoyan Sun3 and Yi Yang1,2

1Institute of Information Engineering, Chinese Academy of Sciences, China
2School of Cyber Security, University of Chinese Academy of Sciences, China

3Department of Computer Science, Worcester Polytechnic Institute, USA
{yuechang,chenkai,yangyi}@iie.ac.cn, gzhixiu@gmail.com, {jdai,xsun7}@wpi.edu

Abstract—The widespread use of mobile apps meets user
needs but also raises security concerns. Current security analysis
methods often fall short in addressing user concerns as they do not
parse app behavior from the user’s standpoint, leading to users not
fully understanding the risks within the apps and unknowingly
exposing themselves to privacy breaches. On one hand, their
analysis and results are usually presented at the code level, which
may not be comprehensible to users. On the other hand, they
neglect to account for the users’ perceptions of the app behavior.
In this paper, we aim to extract user-related behaviors from apps
and explain them to users in a comprehensible natural language
form, enabling users to perceive the gap between their expectations
and the app’s actual behavior, and assess the risks within the
inconsistencies independently. Through experiments, our tool
InconPreter is shown to effectively extract inconsistent behaviors
from apps and provide accurate and reasonable explanations.
InconPreter achieves an inconsistency identification precision of
94.89% on our labeled dataset, and a risk analysis accuracy
of 94.56% on widely used Android malware datasets. When
applied to real-world (wild) apps, InconPreter identifies 1,664
risky inconsistent behaviors from 413 apps out of 10,878 apps
crawled from Google Play, including the leakage of location, SMS,
and contact information, as well as unauthorized audio recording,
etc., potentially affecting millions of users. Moreover, InconPreter
can detect some behaviors that are not identified by previous tools,
such as unauthorized location disclosure in various scenarios (e.g.
taking photos, chatting, and enabling mobile hotspots, etc.). We
conduct a thorough analysis of the discovered behaviors to deepen
the understanding of inconsistent behaviors, thereby helping users
better manage their privacy and providing insights for privacy
design in further app development.

I. INTRODUCTION

The global population of smartphone users has exceeded
5 billion [1]. This extensive usage has led to significant
amounts of private data stored in users’ mobile devices,
including contacts, photos, and locations. However, concerns
about app privacy are growing, as evidenced by Facebook’s
secret collection of call records and SMS texts without user

⋆ Corresponding Author

consent [2]. In response, industries have enacted regulations
such as the General Data Protection Regulation (GDPR), which
introduces principles like “only processing necessary data”
and “transparency in data processing” [3]. App platforms
have implemented measures such as permission management
systems to protect user data. However, these measures are not
always sufficient [4–7]. Users often struggle to understand the
permissions they grant, and apps may misuse data in ways
that contradict user expectations. For example, users might
permit a photo editing app to access location data but the
app secretly uploads their location without clear notification.
This inconsistency between app behavior and user expectations
raises significant concerns regarding privacy and trust.

Prior work has made efforts to identify such inconsisten-
cies [8–15]. However, these efforts have certain limitations: (1)
Incapable of fulfilling user’s expectations. Some studies rely
solely on app function descriptions or analyze specific texts
or icons on the UI to represent the functionalities disclosed
to users. However, such information may not fully represent
every user’s expectations because different users may have
varying understandings of the UI and app functionalities; (2)
Reliance on inaccurate assumptions. Some works utilize neural
network models to classify inconsistent behaviors, and they
assume that the functionalities depicted by UI elements align
with their actual functions in benign apps when obtaining
training data. Nevertheless, this assumption is demonstrated
to be flawed in previous work [15]; (3) Focus on limited
behaviors. Some studies only identify inconsistencies related
to behaviors associated with interactive UI elements such
as buttons, overlooking numerous app behaviors that can be
triggered without user interactions.
Approach. In our work, we do not rely on the inaccurate
assumption that UI functionality description matches their
actual functions, or restrict the analysis to behaviors associated
with only interactive UI elements. Instead, we aim to extract
user-related behaviors directly from apps and explain them to
users in comprehensible natural language. This allows users to
independently identify inconsistencies between their expecta-
tions and the apps’ actual behaviors, assess the associated risks,
and determine whether these risks are a concern for them. We
develop InconPreter to achieve these objectives.

InconPreter first extracts a wide range of behaviors from the

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.242290
www.ndss-symposium.org

app. A behavior is defined as a call sequence accompanied
by its associated UI context. Common methods that extract
call graphs directly based on control flow graphs may not
accurately represent a complete behavior due to missing implicit
calling relationships and overlooking logical relationships
during data processing. Therefore, InconPreter collects a list
of common implicit calls and utilizes data flow analysis to
further extend the call graph, constructing more comprehensive
behaviors. InconPreter further filters and retains the behaviors
that might concern users from all the extracted behaviors, based
on observations of user data operation-related API naming
conventions from various perspectives. By comparing the
semantics of the code with the corresponding UI information,
InconPreter identifies the inconsistent behaviors.

To help users comprehend these behaviors, identify the
associated risks, and assess their concerns independently,
InconPreter interprets the extracted inconsistent behaviors
into understandable natural language. Given the excellent
performance of large language models (LLMs) in fields like
code understanding [16, 17], we leverage LLMs to interpret
these behaviors. However, due to the redundant information
in long call sequences, directly applying LLMs to these
sequences presents significant challenges. In Android, API
permissions effectively reflect the operations of APIs on system
resources [18–20], and the number of permissions involved
in an API sequence is relatively small, which makes it easier
for LLMs to understand the behavior. Therefore, by designing
appropriate prompts, InconPreter leverages LLMs to generate
natural language interpretations of these behaviors based
on permissions involved in the API sequence. Additionally,
recognizing users’ limited knowledge of security and privacy,
InconPreter provides risk analysis to users for reference.
Results and Findings. InconPreter is shown to effectively
extract inconsistent behaviors from apps and provide accurate
and reasonable explanations. InconPreter achieves an incon-
sistency identification precision of 94.89% on our labeled
dataset, and a risk analysis accuracy of 94.56% on the widely
used Android malware datasets. User studies confirm that
InconPreter’s natural language interpretations for inconsistent
behaviors are both reasonable and easily comprehensible, aiding
ordinary users in understanding app behaviors.

InconPreter discovers 1,664 risky inconsistent behaviors from
413 apps out of 10,878 apps (after deduplication) crawled from
Google Play between 2020 and 2024. These 413 apps are
widely distributed and have over 4.3 billion downloads. The
risky behaviors include leakage of location, SMS, and contact
information, as well as unauthorized audio recording, etc.,
potentially affecting millions of users. Moreover, InconPreter
detects some behaviors overlooked by previous tools, such
as unauthorized location disclosure in various scenarios like
taking photos, chatting, and enabling mobile hotspots. We
analyze the distribution of risky inconsistent behaviors from
different perspectives. For example, “Tools” category apps
have the highest number of risky inconsistent behaviors, and
accessing device location is one of the most common risky
behaviors. Additionally, we find that 77.97% of the 413 apps

contain self-starting risky inconsistent behaviors, indicating that
without user interaction, apps automatically conduct a series
of risky behaviors, posing serious threats to users and device
privacy and security. Additionally, we explore the distribution
of risky inconsistent behaviors in apps from 2010 to recent
years. The results indicate a shifting landscape in the popularity
rankings of risky inconsistent behaviors over time. Notably,
the proportion of apps containing risky inconsistent behaviors
decreased from 26.44% around 2010 to 3.80% in recent years.
The trend underscores a positive trajectory toward enhanced
mobile app privacy and security measures.
Contributions. The contributions of the paper are as follows:
• We analyze inconsistencies between user expectations and
app behavior from users’ perspective. Without inferring user
expectations from UI elements, we explain sensitive app behav-
iors to users in understandable natural language, which bridges
the gap between users’ actual expectations and app behavior,
enabling users to independently assess inconsistencies.
• We develop InconPreter to automatically extract user-related
behaviors from apps and interpret these behaviors. To accurately
extract behaviors that need attention from users, we design
multiple behavior filters based on a series of insights and
statistics. Then we carefully design prompts for the LLM to
make the behavior explanations more readable and reasonable.
• From 10,878 wild apps crawled from Google Play, we
discover 1,664 risky inconsistent behaviors from 413 apps,
including leakage of location, SMS, and contact information, as
well as unauthorized audio recording, etc., potentially affecting
millions of users. We explore the distribution of these behaviors,
which deepens the understanding of them, helping users better
manage their privacy and providing insights for privacy design
in further app development.

II. BACKGROUND AND RELATED WORKS

A. Android Security Analysis

Android analysis techniques can be primarily categorized
into static analysis [21–27], dynamic analysis [28–33], and
learning-based analysis [34–38]. However, most existing tools
can only detect generic patterns of malicious behavior, such as
the use of private data, without fully confirming whether such
behavior indeed poses a risk. For example, Flowdroid [21]
utilizes data flow analysis to trace paths between sources and
sinks to identify potential sensitive data leaks. However, leakage
of sensitive data does not inherently indicate malicious intent, as
many benign apps also require access to sensitive information.
IntelliDroid [33] design inputs for dynamic analysis, dynami-
cally triggering and validating potential malicious behaviors
present in the app. However, it does not consider whether such
malicious behavior is unintentional from the user’s perspective
or if it indeed has an impact on users.

Some works identify risky behaviors from policy/permis-
sion’s perspective [19, 39, 40]. Felt et al. [19] study Android
applications to evaluate whether Android developers follow the
principle of least privilege in their permission requests. Slavin
et al. [40] propose a semi-automated framework that consists
of a policy terminology-API method map that links policy

2

App Repository

……

Target apps

UI Contents

Call Sequences

App Behaviors

③ Inconsistent

Behavior Identifier

Inconsistent

Behaviors

Android Online

Documents

Link

Graph

Behavior

Interpretation

Android API List

④ Behavior

 Interpreter

ui-code semantics

comparing① Behavior Extractor

Risks

Analysis

② Behavior Filter

three-step filtering

Attention Library

keywords matching

Attention Behaviors
interpreting

Fig. 1: The framework of InconPreter

phrases to API methods that produce sensitive information, and
information flow analysis to detect misalignments. Zimmeck
et al. [39] combine machine learning (ML) and static analysis
techniques to analyze apps’ potential non-compliance with
privacy requirements. However, determining whether a behavior
is truly risky to users is challenging. An app may comply with
policies/permissions but still perform sensitive actions without
user awareness. For example, users may consent to a social
app’s policy that allows the collection of their location for
sharing moments, unaware that the app continuously tracks
their location in the background, even when they are simply
browsing stories or chatting with friends.

To address this issue, some researchers consider analyzing
the risks within apps from the user’s perspective, focusing on
whether the functionality performed by the app violates the
user’s expectations [8–15]. Researchers [8, 9] use app descrip-
tions as user expectations, but the granularity of the functional
description is too coarse to express the different expectations of
users in different scenarios. Several studies[10, 12, 13] use UI
elements to infer user expectations. UI is more representative of
user expectations than app description. However, they use the
UI information in benign applications with the actual behavior
performed by the apps as norm standards to detect abnormal
behavior. As mentioned above, behaviors in benign applications
do not always exactly match user expectations either, which has
been demonstrated in related works [15]. In addition, they can
only discover inconsistencies related to behaviors associated
with interactive UI elements such as buttons, while many
behaviors in the app can be triggered without user interaction.

In our work, without relying on the trustworthiness of benign
apps or restricting the analysis to behaviors associated with
interactive UI elements, we directly extract all user-related
operations from an app and compare them semantically with
the associated UI information (if no associated UI information
is found, the comparison is made with all text information
in the app), revealing any inconsistencies. We then present
these inconsistencies to users in natural language, highlighting
potential risk behaviors, thereby enabling even non-technical
individuals to comprehend these behaviors.

B. Code Behavior Interpretation

Understanding code can be challenging for ordinary people.
Hence, recent efforts have aimed to present code behavior
in natural language. Many studies employ deep learning

models to generate comments for code [41–43]. However,
these comments often focus on how to use the code, rather
than providing the abstract functionality that normal users seek.
Additionally, most available training data is developer-oriented,
rather than user-oriented. In the context of explaining malicious
behavior, XMAL [38] seeks to identify the factors that lead to
categorizing an Android app as malicious and articulate these
reasons in natural language. However, the explanation process
relies on manually creating a blacklist of APIs and providing
natural language descriptions for these APIs.

Recently, with the flourishing development of LLMs [44–
46], many researchers have been exploring the application
of LLMs to code summaries, yielding impressive results.
For instance, Junaed et al. [16] investigate GPT-3 [47] and
Codex [17] to assess their capabilities in generating code
documentation, achieving excellent results with just one round
of training. Toufique et al. [48] confirm similar results and
demonstrate significant improvements in output using few-shot
training with minimal training samples. Furthermore, Eason et
al. [49] develop a Visual Studio Code plugin called GPTutor,
leveraging the ChatGPT API [44], to provide concise and
accurate explanations for a given source code. Therefore, in
our work, we also strive to utilize LLMs to assist us in analyzing
and explaining app behaviors.

III. APPROACH

A. Overview

We develop a tool called InconPreter, which consists of
four major components as illustrated in Fig. 1: the Behav-
ior Extractor, responsible for extracting app behaviors; the
Behavior Filter, which identifies behaviors related to users
and devices; the Inconsistent Behaviors Identifier, which
further finds potentially inconsistent behaviors by analyzing the
consistency between code and corresponding UI elements; and
the Behavior Interpreter, which interprets these behaviors to
users in natural language and analyzes the associated risks for
user reference. We will use the following example to illustrate
the major components of our approach.
Example. Fig. 2 shows an example of how InconPreter extracts
and interprets an inconsistent behavior. First, InconPreter
utilizes static analysis to extract behaviors from the app.
We define an app behavior as a sequence of API calls
together with associated UI contents, e,g., [onCreate (UI
contents in main.xml), ..., fixLocation (“location”, “fix_btn”,

3

(a) A code example (MainActivity.java)

(b) UI layout file (main.xml).

(c) Rendered UI (main.xml).

(d) Explanation for the inconsistent behavior.

Fig. 2: An example of inconsistent behavior: (a) is a snippet of
code from an app, from which a call sequence can be extracted;
(b) and (c) are the associated UI elements, including the content
highlighted in red in (b) and the text and icon embedded in
(c). By performing the semantic comparison, the inconsistent
behavior mCamera.takePicture (line 22 in (a)) is identified,
and an explanation is given in (d).

...), mCamera.takePicture (“location”, “fix_btn”, ...)] in Fig. 2,
and each API in the sequence represents an operation.

Second, apps can exhibit numerous behaviors, and many
APIs are unrelated to user data or device operations, such as
onCreate and setContentView in the example. We created an

a

b c

d e

a

b c

d e

(a) (b)

Fig. 3: An example that extends a call graph using data flow.
The red dashed arrow is added according to the data flow, and
the call graph is then expanded into sequences “a→b→d” and
“a→c→e”, without “a→c→d”.

Attention Library to filter out these APIs, retaining only those
relevant to users. This process results in attention behaviors
like [lm.requestLocationUpdates (“location”, “fix_btn”, ...)]
and [mCamera.takePicture (“location”, “fix_btn”, ...)].

Third, InconPreter identifies inconsistent behaviors by
comparing the semantics of APIs with the correspond-
ing UI information. For the two attention behaviors men-
tioned above, the keyword “location” appears in the API
lm.requestLocationUpdates, aligning with the UI content. In
contrast, the API mCamera.takePicture includes the keyword
“camera”, which is absent from the UI information, leading to
its classification as an inconsistent behavior.

Fourth, InconPreter utilizes a link graph to map APIs within
a behavior to the corresponding permissions, facilitating the
analysis and summaries of remaining sensitive behaviors [18–
20]. It then employs large language models (LLMs) to generate
natural language interpretations of these sensitive behaviors,
enabling users to understand them and identify inconsistencies.
Considering that users may have limited knowledge of security
and privacy, InconPreter provides a risk analysis for reference,
accompanied by easily digestible explanations. For example, in
Fig. 2d, InconPreter determines the API mCamera.takePicture
accesses sensitive permission CAMERA by using link graph and
provides a natural language description and risk analysis of
this behavior. It informs users that when the “fix your location”
button is clicked, the app operates (i.e., accessing the camera)
unrelated to its claimed functionality.

In the following subsections, we will explain the details of
each major component in our approach.

B. Behavior Extraction

The behavior extraction includes three parts: API sequences
extraction, UI content extraction, and API-UI association.
API sequences extraction. Currently, the common method for
obtaining API call sequences involves utilizing Soot [50], a Java
optimization framework, to extract the call graph of the app,
and subsequently expanding the call graph into multiple call
sequences via depth-first traversal. For example, the call graph
in Fig. 3a can be expanded into “a→b, a→c→d, a→c→e”.

However, call sequences obtained above may be incomplete
and fail to represent a complete behavior. First, Soot overlooks
some implicit calling relationships when constructing the

4

TABLE I: The extended implicit call
Caller Callee

Thread.start Thread.run
Runnable.run

Handler.post Runnable.run
Handler.sendMessage Handler.handleMessage
Activity.runOnUiThread Runnable.run

AsyncTask.execute
doInBackground
onPreExecute
onPostExecute

call graph, e.g., the subsequent call Thread.run after the
invocation of Thread.start. Second, the above call sequences
disregard logical relationships between APIs when handling
data. Different operations may manipulate the same dataset
(for example, “b” represents data collection and “d” represents
uploading this data), implying that these operations collectively
execute a single complete behavior.

To address the first issue, we analyzed and summarized
common implicit calling relationships triggered by widgets
linking APIs and UIs (shown in Table I), and add edges between
these APIs in the call graph. To address the second issue,
InconPreter leverages FlowDroid [21] to conduct data flow
analysis and extend the call graph. Specifically, as shown by
the red dashed line in Fig. 3b, if a function (i.e., “d”) in a
data flow path (i.e., “b→d”) is not on the same call sequence
as the source function (i.e., “b”), we add a special edge from
the source function to that function. When expanding the call
graph, the API nodes pointed to by the special edge are not
added to the sequence of previous ordinary call relationships to
avoid repeated counting of data operations represented by these
nodes in subsequent analysis, i.e., the call graph is expanded
into “a→b→d” and “a→c→e”, without “a→c→d”.
UI content extraction. In Android apps, the content displayed
on the UI is mostly defined in XML files (e.g., main.xml in
Fig. 2b), which can be directly accessed after disassembling an
Android APK using Apktool [51]. Each XML file consists of
widgets (e.g., ImageView in Fig. 2b), organized hierarchically
to create what users see and interact with. The widgets mainly
consist of two types: text and icons. As highlighted in Fig. 2b
and Fig. 2c, for text, InconPreter extracts widget-id, widget-text-
name, and widget-text-content, which is text content of widget-
text-name obtained from string.xml file. For icons, InconPreter
extracts not only icon-name defined in XML file, but also
icon-ocr (the text embedded in the icon, extracted using the
optical character recognition (OCR) technique [52]) and icon-
prediction (the functional meaning of the icon, predicted by an
icon classification model in Guibat [15]). Widget-text-content,
icon-ocr, and icon-prediction are all directly presented to users
in the UI, ensuring that InconPreter can extract semantically
meaningful UI information.

Considering that the information on the interface and the
naming of widgets may contain abbreviations or non-English
languages, we utilized two well-known online abbreviation
databases [53, 54] to expand common abbreviations and trans-
lated all languages into English using standardized terminology
to facilitate subsequent analysis.

API-UI association. InconPreter links UI widgets to the call
graph to form app behaviors. Firstly, we locate the UI layout
linked to the call graph. In Android, APIs such as setCon-
tentView and inflate are commonly used to load a UI layout.
For example, in Fig. 2a, the UI layout R.layout.activity.main
(i.e., main.xml) is loaded using setContentView at line 6.
We search for such APIs in the code, where the parameter
corresponds to the associated UI layout.

Secondly, we search for widgets associated with the call
graph. In Android, widgets are primarily linked to code in
two ways. One is through APIs such as findViewByID (e.g.,
the widget “id/location” is bound at line 7 in Fig. 2a). The
other is by defining the android:onclick attribute in XML
files, which binds a widget to the corresponding API (e.g.,
the <Button android:onClick=“dialPhoneMethod”/> definition
binds the button to API dialPhoneMethod). By searching for
these patterns, we can find widgets associated with each node
in the call graph. When expanding the call graph into call
sequences, if a node lacks associated UI information, it inherits
the UI information from its parent.

In an app, many behaviors are not bound to any widgets,
and they can run in the background without requiring user
interaction. If the app does not display any information on
its UIs to inform the user about such behaviors, this poses a
significant risk, regarded as self-starting inconsistent behaviors.
For a self-starting behavior, the root node of the corresponding
call graph lacks any UI information, and thus we consider all
UI information extracted from the app as its UI information.

C. Behavior Filtering

Behavior Filtering filters out behaviors irrelevant to users
from all the behaviors extracted. Considering that Android apps
can access and modify sensitive data, system resources, and de-
vice states exclusively through the utilization of corresponding
Android system APIs [55], InconPreter only retains Android
system APIs documented in the official Android document [56]
within each behavior. For example, in Fig. 2a, we retain system
APIs such as mCamera.takePicture, and filter out other APIs
such as onCreate. Focusing solely on Android system API
call sequences also helps InconPreter mitigate the challenges
of code obfuscation, as most apps do not obfuscate system
APIs due to the risk of causing system crashes.

InconPreter then conducts thorough filtering of the behaviors
based on an Attention Library, which is a repository of
keywords that are likely to be of interest to users. We design
a three-step filtering method to establish the Attention Library,
with which InconPreter employs a keyword matching method
for the thorough filtering. Specifically, if none of the keywords
in an API are present in the Attention Library, the API will
be filtered out, and the remaining APIs form the attention
behaviors. Note that the filtering is based on individual
keywords rather than entire APIs because APIs may change
with the updating of Android versions, but the keywords
constituting these APIs remain relatively stable. By constructing
a lexicon instead of an API library, InconPreter can be more
adaptable to continuously updating versions.

5

CTF-IDF Filter

Phrase Filter

API-UI Match Filter

Android Corpus

Basic Behavior Library

Attention Library

Android API List

Fig. 4: The framework of three-step filtering

The process of the three-step filtering to establish the
Attention Library is shown in Fig. 4. We first collect a de-
duplicated Android API List from the Android API documen-
tation [56], across versions spanning from Android 4.0 to
Android 14.0. Then we tokenize the APIs using the Camel-
Case split method [57] (e.g., takingPicture is tokenized into
“taking”, “Picture”), and each token is converted to its lemma
using NLTK [58] (e.g., “taking” is converted to “take”) to
form the initial Android Corpus. Next, we designed a three-
step filtering method based on some observations to select
keywords from the Android Corpus that are likely related to
behaviors of interest to users, forming the Attention Library.

Observation 1: “Unimportant” words appear more frequently
in various apps than those related to sensitive resources.

We collect behaviors from both benign and malicious apps,
forming the Basic Behavior Library (short for BBL). The
benign apps are randomly selected from Google Play, and
the malicious apps are from the CIC malware dataset [59].
Then, we statistically analyze the frequency of each word
in the Android Corpus across the APIs in the BBL. We
found the words about sensitive resources utilized in previous
works [12, 13, 15] (e.g., “contact”, “camera”, “location”) all
exhibit relatively moderate probabilities. In contrast, words like
“string”, “builder”, and “view” have higher frequency.
CTF-IDF Filter. Based on this observation, we designed a
CTF-IDF (Corpus-based Term Frequency-Inverse Document
Frequency) filter. CTF-IDF adapts the principles of TF-IDF [60]
to evaluate the overall frequency of a term across all apps. If a
term has a high frequency among all the terms and appears in
most apps, it is considered unimportant and should be filtered
out. CFT-IDF is defined as below:

ctf − idf = ctf · idf (1)

where ctf represents the frequency of a term t within the
corpus BBL, and idf assesses the distribution of a term across
different apps. The formulas are as follows:

ctf =
n

N
(1a)

idf = log
M

1 + |{j : t ∈ dj}|
(1b)

where n is the times t appears in BBL, N is the total number
of terms in BBL, M is the number of apps, and |{j : t ∈ dj}|
denotes the number of apps in which the term t appears.

Observation 2: Words that combine with many other words
are not important.

Android API developers typically adhere to certain naming

conventions, such as naming an API based on the action they
perform on specific objects (e.g., mCamera.takePicture), so
that programmers can easily understand the functionality of
the API. However, there are common verbs (e.g., “get”, “set”,
and “load”) and nouns (e.g.,“data”) frequently appearing in
API names combined with other words. These words are user-
irrelevant, thus needing to be filtered out.
Phrase Filter. We use the Android API List as our database
and analyze the phrase patterns of each word. Specifically,
we first conduct dependency syntactic parsing implemented
by spaCy [61] on the name of each API (the class name and
function name parsed separately) in the Android API List to
obtain the part-of-speech tags of each word in the name and
the relationships between words. Then we count the number
of nouns combined with each verb and the number of verbs
combined with each noun. If the count exceeds a predefined
threshold, the word will be removed from Android Corpus.

Observation 3: An API should be important when it is
semantically related to its UI elements.

UI represents the behavior that the app informs the user it
will perform, while the APIs corresponding to the UI elements
reflect the actual behavior executed by the app. When the API
and its UI information exhibit semantic correlation, it indicates
that this semantic information is important to convey to the
user, and its semantic words are significant.
API-UI Match Filter. After the first two filtering steps, we
perform a semantic comparison between API and UI content
for each node in the API sequences in BBL. If there is a
semantic match (i.e., at least one keyword in the UI content
matches a keyword in the API), and the matching keyword is
present in the Android Corpus, the keyword is added to the
Attention Library. Although the initial size of the Attention
Library is influenced by the apps within BBL, this library can
be continually expanded with data from future test apps.

D. Inconsistent Behavior Identification

The Inconsistent Behavior Identifier performs consistency
analysis by comparing the semantic keywords of APIs and
UI content in the attention behaviors. The semantic keywords
refer to keywords in APIs or UI contents, which exist in the
Attention Library, such as “camera”, “picture” in the API
mCamera.takePicture and “location” in the UI main.xml in
Fig. 2. For a semantic keyword of an API, if its associated
UI contents do not contain any synonyms of that keyword,
the API operation will be flagged as UI-unmatched, and the
entire attention behavior will be marked as an inconsistent
behavior. For example, in Fig. 2, the semantic keywords of
API mCamera.takePicture (i.e., “camera” and “picture”) do
not match the keywords in the associated UI contents (i.e.,
“location”), so this attention behavior is marked as inconsistent.

E. Behavior Interpretation

Due to the complexity of API sequences, which can be dif-
ficult for average users to understand, InconPreter incorporates
a Behavior Interpreter, which translates the app’s behavior

6

TABLE II: The design of prompts for behavior explanation and risk analysis

Type Function Example

role_prompt Assigning roles to LLM so it can focus more on specific
domains and access relevant knowledge accordingly.

You are an expert in mobile security, skilled in analyzing
behaviors of Android apps and identifying potential risks.

background_prompt Introduce the relevant background knowledge of incon-
sistent behavior.

Mobile apps are developing rapidly, but we have found
inconsistencies between the claimed functionality and the
actual operations in some mobile apps, which threatens
user data security. Note that if the operations executed by
the app do not reflect the current UI or app functionality,
it is considered an inconsistency.

intro_prompt Introduce the app and the discovered inconsistent behav-
iors.

In an app categorized as <app category>, the claimed
functionality (or user-performed action) is <UI se-
matics>. During this process, we found inconsistent
operations: <permissions requested>.

prepare_prompt Inform LLM that the following are tasks to be performed
so that it better understands what needs to be done. You have the following two tasks.

task_prompt 1 Give the first task: summarize the inconsistent behaviors
of the app in simple and user-friendly language.

Explain in plain language what the inconsistencies are.
Output format: When users use <xxx> app (or perform
a <xxx> action), the app performs <xxx>.

task_prompt 2
Give the second task: analyze the risky operations among
the inconsistent behaviors and provide explanations for
the analysis.

Among these inconsistent operations (<permissions
requested>), which ones are necessary to achieve the
desired functionality, and which ones may cause potential
risks to users or devices? Give explanations for each oper-
ation. Output format: Necessary operation: [<permission
xxx>, <permission xxx>]; Risky operation: [<permission
xxx>, <permission xxx>]; Explanation: <xxx>.

into natural language, helping users understand the app’s
inconsistent behaviors and alerting them to potential risks.

For interpretation, we first find permissions associated
with the APIs to identify user-related data operations. In
Android, accessing user data or system resources requires APIs
associated with relevant permissions [18–20]. For example,
the API android.location.Criteria: void setAltitudeRequired
requires the ACCESS FINE LOCATION permission. Therefore,
we can infer the operation of this API using the meaning of
this permission, i.e., accessing precise location information
from the device, including GPS, etc. If an API is not
associated with any permissions, it implies that it is unrelated
to sensitive resources, and we do not need to interpret it. We
construct a Link Graph that maps APIs to their corresponding
permissions. This mapping is crawled from the official Android
documentation [56], and we also leverage the mapping list from
the previous work PScout [62] to extend the Link Graph.

With the Link Graph, we can obtain all the permissions
requested by a behavior. However, if we express the semantics
of the actions solely using these specialized terms (e.g., ACCESS
NETWORK STATE, READ PHONE STATE), ordinary users may still
find it difficult to understand what they represent. Considering
the outstanding performance of large language models (LLMs)
in semantic understanding and language expression [63–65],
we apply them to generate simpler and more user-friendly
explanations for each behavior. In addition, we provide an
analysis of the potential risks to users for reference in case
users may have limited knowledge of security and privacy.

Specifically, we employ prompt engineering techniques and
design appropriate prompts to stimulate the ability of large
language models for our task. The design of our prompts is

present in Table II. For each inconsistent behavior, we fill in the
relevant information extracted earlier into the corresponding
positions in the intro prompt and sequentially input these
prompts to the LLM using its API calls. Then, the LLM
will generate an explanation and risk analysis report for
the inconsistent behavior according to the output templates
specified in the task_prompt, as exemplified by Fig. 2d. With
these explanations, users can understand the behaviors by
themselves and discern any risky inconsistent behaviors.

IV. EVALUATION AND FINDINGS

A. Experiment Setup

Dataset and Experiment. We primarily evaluate the perfor-
mance of InconPreter on the following datasets.

Wild apps. We collected 10,878 apps across all 34 categories
from Google Play based on their popularity between 2020
and 2024, with approximately the same number of apps in
each category1. Wild apps serve as the source for evaluating
InconPreter’s inconsistent behavior detection and interpretation
performance and help us gain a deeper understanding of the
inconsistent behaviors through the results.

Comparison dataset. To evaluate InconPreter’s accuracy in
extracting inconsistent behaviors and compare the results with
DeepIntent [13], the most relevant current work, we collected
a comparison dataset consisting of 600 apps, including 510
wild apps and 90 samples provided by DeepIntent.

Malware dataset. To further evaluate InconPreter’s perfor-
mance in identifying risky behaviors, we collected a malware
dataset comprising 100 randomly selected samples from the
widely used AMD (Android Malware Dataset) [66], and used

1Use https://app.diandian.com/rank/googleplay for categorizing and ranking.

7

the AMD reports (detailed human-generated reports for each
malicious sample) and VirusTotal reports [67] as references.
Preparation. To use InconPreter, it is essential to first construct
the Attention Library and the Link Graph. We spent approxi-
mately 2 weeks building the Attention Library following the
steps outlined in III-C, using the randomly selected 500 wild
apps and 500 malicious apps from the CIC dataset [59]. We
spent several hours crawling the Android official documentation
across versions from Android 4.0 to Android 14.0 to gather
the API-permission mappings, which, along with the results
from PScout [62], formed the Link Graph.
Platform and Runtime. It took approximately 4 months to
analyze all wild apps (about 16 minutes per app) on servers
equipped with an Intel(R) Xeon(R) CPU E7-4830 and 188GB
of RAM. If more computing resources were available to support
parallel processing, the time could be further reduced.

B. Effectiveness of Inconsistency Extraction

Since there is no benchmark dataset in this field yet, we
compare InconPreter with the most related work, DeepIntent.
DeepIntent associates each widget on the UI with executed APIs
and their corresponding permissions. It then uses a model to
predict the behavior of this widget and determines whether the
executed API requests additional permissions, indicating incon-
sistent behavior. DeepIntent outputs inconsistent behaviors as
<widget-id, API, permission> tuples, which we can use as the
comparison target. However, due to methodological differences
between InconPreter and DeepIntent, for a given widget-id, we
might identify the same API mapped to different permissions,
or the same permission mapped from different APIs. Since
both API and permission in the <widget-id, API, permission>
tuple represent the app’s operation associated with the current
widget-id, we consider the behavior the same if either the API
or the permission matches. Specifically, for DeepIntent and
InconPreter, we analyze their result tuples to merge all <widget-
id, API, permission> tuples into new <widget-id, permission>
tuples and firstly compare the permissions. With the same
widget-id, given two tuples from two tools, if the permissions
match, it’s considered a match. If not, we then check whether
DeepIntent and InconPreter outputs the same <widget-id, API>.
If they do, it is considered a match. However, this may lead
to some duplicate counting. For example, for DeepIntent’s
tuple <w1, API1, permission1>, InconPreter might count <w1,
API1, permission1> as a match due to permission1 matching,
and then count <w1, API1, permission2> again due to API1
matching. To avoid duplicate counting, we will not match
API1 in the second comparison if it has been associated with
permission1 in the permission matching phase.

On the 600 apps in the comparison dataset, DeepIntent
extracts a total of 1,026 risky inconsistent behaviors, while
InconPreter extracts 1,625. After manually checking the results,
we find 102 false positives (i.e., the extracted behaviors are
not actual inconsistencies) in DeepIntent’s results, and 83
false positives in InconPreter’s results. Therefore, the precision
of InconPreter in identifying risky inconsistent behaviors is
94.89%, better than DeepIntent’s 90.06%. We analyze the

TABLE III: Comparision with DeepIntent in inconsistent
behaviors extraction

Common InconPreter Only DeepIntent Onlywith widget without widget
838 280 424 86

reasons behind the false positives generated by InconPreter.
The main cause is the inaccurate extraction of relevant UI
content bound to the API during static analysis.

After removing false positives, we compare our results with
DeepIntent’s. As shown in Table III, DeepIntent extracts 924
risky inconsistent behaviors, and we identify 1,542 behaviors, of
which 838 are common. After analyzing the 86 behaviors that
InconPreter missed, we find that some share common causes.
21 of the missed behaviors are VIBRATE and WAKE LOCK,
which may disturb users and accelerate battery consumption.
InconPreter incorrectly regards them as functionally necessary
in some music or communication apps, and therefore does not
mark them as risky. 13 behaviors are related to the API an-
droid.app.ActivityManager: void killBackgroundProcesses,
i.e., RESTART PACKAGES and KILL BACKGROUND PROCESSES.
We primarily focus on actions directly related to user and
device data, while these behaviors pertain mainly to impacts
on the app process, which falls outside our scope.

While we miss 86 inconsistent behaviors, we find 280+424
inconsistent behaviors missed by DeepIntent. Specifically, we
discover an additional 280 inconsistent behaviors that are bound
to widgets, such as reading SMS and contacts, and installing
another app when users click a “video_start” button. These
behaviors can potentially have a significant impact on users.
Furthermore, we can identify 424 self-starting inconsistent
behaviors that are not associated with any widgets. For instance,
an app wabao.ETAppLock quietly accesses the device status and
identity information, reading the contacts and other sensitive
data in the background. Another app com.apostek.untangle
access the device’s camera, allowing the ability to take photos
or record videos and get the user location when the user merely
opens the app without any additional interaction.

Our superior performance may be attributed to the fact that
DeepIntent is trained based on a dataset that collects mappings
between icons and permissions, overlooking the differences
in the harmfulness of these mappings across different apps.
That is, behaviors may be benign in some apps or contexts
but risky in others. In addition, DeepIntent can only discover
inconsistencies related to behaviors associated with interactive
UI elements such as buttons, while many behaviors in the app
can be triggered without interaction. In our study, for each
app, InconPreter first extracts potentially sensitive operations
related to user data or device resources. Then, it investigates
whether the app’s execution of these behaviors aligns with the
semantics communicated to users, including both fine-grained
semantics (i.e., semantics associated with the widgets bound to
APIs) and coarse-grained semantics (i.e., semantics conveyed
by all UI elements within the app). This allows us to discover
more inconsistencies, including some behaviors that DeepIntent

8

cannot detect, such as apps secretly accessing users’ locations
while chatting, or accessing the network to consume mobile
data while watching offline videos maliciously or mistakenly.

Additionally, we recognize that not all semantically incon-
sistent behaviors pose risks. For instance, when a user employs
a gallery app to search for images, the app may access the
network or read resources locally. While these actions may
not be evident in the UI, they are reasonable for such a task.
Therefore, we further analyze these inconsistent behaviors from
a functional perspective. However, DeepIntent does not consider
this aspect, resulting in false positives.

C. Validation of Risks Analysis in Behavior Interpretation
InconPreter provides an analysis of potential risks within

behaviors to users as a reference. To avoid misleading users, the
analysis should be reasonably accurate. Therefore, we validate
the performance of the risk analysis on the malware dataset.

AMD and VirusTotal reports provide generalized summaries
of behaviors, often combining multiple risky behaviors into a
single sentence. For comparison, we first need to break down
the behaviors into basic sub-behaviors. We define a basic sub-
behavior as a sensitive operation corresponding to a single
permission. For example, the behavior “Send GPS to a remote
location” can be divided into “Access precise location” (ACCESS
FINE LOCATION) and “Open network sockets” (INTERNET). We
manually analyze all sentences in the reports to extract the
sub-behaviors and compare them with our results.

For the 100 malicious samples, AMD and VirusTotal report
a total of 855 basic sub-behaviors. InconPreter successfully
identifies 782 (91.46%) of these behaviors. Additionally, we
discover 27 new risky behaviors from 21 apps, including
ACCESS FINE LOCATION, READ PHONE STATE, etc. These risks
are not included in the reports from AMD and VirusTotal, but
they do pose a threat to user privacy.

For the 73 malicious behaviors not identified, we find that
24 missed behaviors involve APIs with generic keywords not
present in the Attention Library (e.g., the behavior “Read
database like contact or SMS” corresponds to the “ContentRe-
solver.query()” API with keywords “content”, “resolver” and
“query”) and are filtered out. 21 behaviors are related to
network activities, where static analysis cannot fully discern the
intent of network requests or data transmissions, resulting in
potential misjudgments of malicious intent. For the remaining
28 behaviors, we do extract the relative APIs, but the lack of
corresponding permissions in the manifest file indicates the app
does not actually have permission to execute these behaviors.
The AMD report also does not include these behaviors, which
could be false positives from VirusTotal. Therefore, the risk
identification rate of InconPreter should be 94.56%.

D. Human Perception of Behavior Interpretation
To demonstrate the effectiveness of InconPreter in helping

users understand app behaviors and recognize risky behaviors,
as well as to understand user opinions on the identified risky
behaviors, we conduct survey studies. In the first question-
naire, participants are shown 7 UIs from apps with differ-
ent functionalities, along with explanations for the detected

inconsistent behaviors. Participants rate the explanations in
terms of comprehensibility and reasonability. We also inquire
about their perceptions of the behaviors and whether our
explanations increase their awareness of the risks. In the second
questionnaire, participants rate their levels of concern about
each risky behavior. Both questionnaires were reviewed and
received IRB approval at our institute. The main questions are
illustrated in the Appendix.

We distributed the questionnaires online and recruited partic-
ipants via social media. Before consenting, participants were
informed of the survey’s purpose, procedures, risks, benefits,
and lottery-based compensation. We received a total of 256
valid responses. 14 were excluded due to unfinished answers,
inconsistent age and occupation, and repeated selections. All
participants are anonymous, and the collected data does not
identify any individuals and is securely stored.

The participants are from different fields and age groups. This
allows us to explore how individuals from diverse backgrounds
perceive and understand our analysis, thereby better helping
them mitigate risks. The respondents range in age from 18 to 41
years, with an average age of 22. Among the 256 respondents,
205 (80.08%) either hold or are pursuing a bachelor’s degree
or higher, and 66 (25.78%) have a background in computer-
related fields. The results indicate that our explanations are
easily understood by the vast majority of respondents, with an
average score of 4.07 (on a scale of 1-5, where 5 indicates
easiest to understand). Even participants with a high school
education or below and those outside the computer field achieve
an average score of 4.04. Furthermore, the analysis of risky
inconsistent behaviors in our explanations receives recognition
from participants, with an average score of 4.15 (on a scale of
1-5, where 5 indicates the most reasonable). Participants with
a background in computer science also rate this aspect highly,
with an average score of 4.11.

In the first questionnaire, for the risky behaviors we identified,
on average, 25.45% of participants claim they do not notice
the risks before. However, their level of concern regarding
these risks is high, with an average score of 4.03 (on a scale
of 1-5, where 5 indicates the most concerned). In the second
questionnaire, regarding the 32 identified risks, users rate their
level of concern on average as 4.01. The highest concern is for
CAMERA (accessing the device’s camera, allowing the ability
to take photos or record videos), with an average score of 4.23,
while the lowest concern is for WAKE LOCK (preventing the
device from entering sleep mode to ensure it stays awake during
specific operations, which accelerates battery and resource
consumption), with an average score of 3.81. These results
suggest that such inconsistent issues in mobile apps are quite
serious. Despite users’ high concern for their privacy and device
security, they may lack awareness of relevant knowledge in
their day-to-day experience.

With the help of our explanations for app behaviors,
participants are able to better understand issues within the
apps. Overall, participants find our explanations very helpful,
with an average score of 4.12 (on a scale of 1-5, where 5
indicates most helpful). Particularly for individuals outside the

9

TABLE IV: Categories of apps containing risky inconsistent behaviors

Category Communication Education Entertainment Finance Game Fitness Life &
Traveling Reading Office Gallery Photography

& Beauty Tools Video &
Audio Total

app num 29 29 26 11 59 14 43 42 24 20 23 59 34 413
risks 206 76 161 28 156 41 102 158 154 51 82 313 136 1664

risks per app 7.10 2.62 6.19 2.55 2.64 2.93 2.37 3.76 6.42 2.55 3.57 5.31 4.00 4.03

TABLE V: Performance comparison between different LLMs.

TP FP TN FN Precision Recall Accuracy
GPT-4 233 18 201 13 92.83% 94.72% 93.33%

GPT-3.5 214 61 158 32 77.82% 86.99% 80.00%
Llama-2 66 38 181 180 63.46% 26.83% 53.12%

computer science field, the assistance is more pronounced, as
they gave an average score of 4.26.

E. Performance Comparison between LLMs

In the Behavior Interpreter, we employ LLM to provide
natural language descriptions of detected inconsistent behaviors
and analyze the risks involved. As LLM technology is gaining
momentum, numerous high-performing LLM models have
emerged. We select several popular LLMs (GPT-3.5, GPT-4
and Llama-2) to compare their performance for our task.

Given the perfect performance of LLMs in language represen-
tation, we mainly compare their performance in analyzing risky
behaviors. We randomly select 100 apps from the wild apps
that contain 465 inconsistent behaviors in total. These behaviors
are manually annotated to determine if they constitute risky
behaviors, i.e., if they truly violate the functionality claimed
by the app. We recruit 3 volunteers with at least three years of
experience in Android development or security analysis. They
individually analyze each inconsistent behavior to determine if
it is a risky behavior. In cases of disagreement, they vote to
arrive at a consensus. Ultimately, they identify a total of 246
risky inconsistent behaviors.

Afterward, we evaluate the 465 inconsistent behaviors using
three popular LLMs. The results are shown in Table V. From
the results, we observe that without modifying the LLMs, GPT-
4 achieves the best performance in our task, with a recall of
94.72% and an accuracy of 93.33%. This means that most
risky behaviors can be accurately identified. On the other hand,
Llama-2 performs poorly in this task, with an accuracy of only
53.12% and a recall of only 26.83%. Therefore, InconPreter
utilizes GPT-4 for the risk analysis task.

F. Findings in The Wild

To gain a deeper understanding of inconsistent behaviors in
apps and draw users’ attention to these issues, we applied
InconPreter to the 10,878 wild apps to explore the risky
inconsistent behaviors they contain. For ease of counting, we
consider using a single permission to represent each risky
behavior. The behaviors are illustrated in Table X in the
appendix. We identify a total of 1,664 risky inconsistent
behaviors among 413 (3.80%) of these apps, with an average
of approximately 4 risky behaviors per app, as depicted in
Table IV. These 413 apps cover all categories and have been

downloaded over 4.3 billion times collectively, among which,
89 (21.55%) apps have downloads exceeding 1 million for each.
The average rating of these apps is 3.97, with 122 (29.54%)
of them having a rating exceeding 4.0 out of 5. This indicates
that the risks we discovered are widespread and have already
affected millions of mobile users.

To gain a deeper understanding of inconsistent behaviors,
raise awareness among users about app inconsistencies, and
improve their consciousness of protecting their privacy and
device security, we explore the following questions:

Q1: What are the main risky behaviors? Which risky behaviors
occur more commonly?

We list the risky behaviors in Table VI and count the number
of apps containing each type of risky behavior. We find that
READ PHONE STATE, ACCESS NETWORK STATE, WAKE LOCK,
and ACCESS COARSE LOCATION are the most common risky
behaviors. Additionally, we discover risky behaviors related to
personal data in certain apps. For example, 93 apps contain
ACCESS FINE LOCATION, posing risks of location tracking. 6
apps request device identifiers for unauthorized authentication.
25 apps secretly access account information stored on the
device, including local accounts and those synced with the
device, such as Google accounts, social media accounts, and
email accounts. 4 apps initiate unauthorized phone calls, and
another 5 conduct unauthorized audio recordings. Some apps
directly access and manipulate contact data on the device, and
some apps receive and read user SMS messages, with some
even sending unauthorized SMS messages. These behaviors
significantly threaten user and device privacy and security.

Q2: Which categories are more likely to contain risky incon-
sistent behaviors?

In Table IV, we count the number of apps containing risky
inconsistent behaviors and the total number of risky inconsistent
behaviors within each category. To facilitate the statistics, we
compress the 34 categories provided by Google Play into 13
categories based on the apps’ functionality.

We discover the highest number of apps that contain
inconsistent risk behaviors in the categories “Game” and
“Tools”, with each category containing nearly 60 apps. This
could be because, in the case of “Game”, users are often deeply
immersed in gameplay, making it easier for apps to perform
additional actions without being easily noticed. In “Tools” apps,
they often require direct interaction with the device’s system,
leading to a higher likelihood of requesting various permissions
and potentially engaging in risky inconsistent behaviors.

Additionally, we compare the average number of risky
inconsistent behaviors per app across each category. In the

10

TABLE VI: Distributions of risky inconsistent behaviors

Behavior
Category Communication Education Entertainment Finance Game Fitness Life &

Traveling Reading Office Gallery Photography
& Beauty Tools Video &

Audio Total

READ PHONE STATE 10 11 9 4 32 1 16 22 8 6 3 24 24 170
ACCESS NETWORK STATE 10 8 11 2 22 6 11 14 4 6 13 22 12 141

WAKE LOCK 12 13 7 5 5 5 16 16 8 6 7 13 9 122
ACCESS COARSE LOCATION 9 9 8 4 13 5 10 9 7 5 9 13 12 113

ACCESS FINE LOCATION 9 5 6 4 5 6 7 9 10 5 7 14 6 93
WRITE EXTERNAL STORAGE 4 6 8 3 8 5 1 8 5 1 3 18 6 76

ACCESS WIFI STATE 3 3 1 0 9 2 9 5 3 3 3 11 3 55
INTERNET 0 0 3 0 2 3 2 0 3 8 9 17 4 51
VIBRATE 2 1 4 0 3 1 4 4 2 2 1 0 3 27

READ EXTERNAL STORAGE 1 0 5 1 1 1 2 1 2 0 5 6 2 27
GET ACCOUNTS 2 2 0 1 3 1 2 4 4 0 0 5 1 25

SEND SMS 2 0 2 0 7 0 0 1 1 1 0 7 2 23
BLUETOOTH 3 2 1 0 1 1 2 1 2 0 0 4 3 20

READ CONTACTS 3 1 1 1 1 0 2 1 3 0 1 4 0 18
WRITE SETTINGS 2 0 1 0 1 0 0 1 0 1 0 8 3 17

CAMERA 0 3 0 0 0 1 5 0 3 0 0 2 0 14
CHANGE WIFI STATE 1 0 0 0 2 0 1 1 0 0 0 8 0 13

READ SMS 2 0 0 0 2 0 0 0 1 1 0 3 1 10
SYSTEM ALERT WINDOW 0 1 1 0 0 1 1 0 1 0 1 2 1 9

BROADCAST STICKY 2 1 1 0 0 0 0 0 2 0 0 0 1 7
MODIFY AUDIO SETTINGS 1 4 0 0 0 0 1 0 0 0 0 1 0 7
SCHEDULE EXACT ALARM 2 2 1 0 0 0 0 1 0 0 0 1 0 7

USE ICC AUTH WITH DEVICE IDENTIFIER 1 0 0 0 2 1 1 0 0 0 0 1 0 6
RECEIVE SMS 1 0 0 0 0 0 0 0 2 0 1 1 0 5

RECORD AUDIO 0 0 0 0 0 0 1 1 3 0 0 0 0 5
CALL PHONE 1 0 0 0 0 0 1 0 0 1 0 1 0 4

CHANGE NETWORK STATE 1 0 0 0 0 0 1 1 0 0 0 1 0 4
WRITE CONTACTS 1 0 0 0 0 0 0 0 1 0 0 1 0 3

INSTALL PACKAGES 1 0 0 0 1 0 0 0 0 0 0 0 0 2
NEARBY WIFI DEVICES 0 0 0 0 0 0 0 0 0 0 0 2 0 2

BLUETOOTH SCAN 0 0 0 0 0 0 0 0 0 0 0 1 0 1
FOREGROUND SERVICE 0 0 0 0 0 0 0 0 0 0 0 1 0 1

TABLE VII: Categories of apps containing self-starting risky inconsistent behaviors

category Communication Education Entertainment Finance Game Fitness Life &
Traveling Reading Office Gallery Photography

& Beauty Tools Video &
Audio Total

app num
(ratio)1

24
(82.76%)

28
(96.55%)

21
(80.77%)

10
(90.91%)

50
(84.75%)

8
(57.14%)

38
(88.37%)

38
(90.48%)

19
(79.17%)

18
(90.00%)

18
(78.26%)

23
(38.98)

27
(79.41%)

322
(77.97%)

risks 61 65 59 21 94 22 76 89 49 34 43 65 62
740

(44.47%)2

risks per app 2.54 2.32 2.81 2.10 1.88 2.75 2.00 2.34 2.58 1.89 2.39 2.83 2.30 2.30
1 the percentage of apps containing self-starting risky inconsistent behaviors among all apps containing risky behaviors within each category.
2 the percentage of self-starting risky inconsistent behaviors among all risky inconsistent behaviors.

“Communication”, “Office”, “Entertainment” and “Tools” cate-
gories, the average number of risky inconsistent behaviors per
app is higher than others, exceeding 5, which surpasses the
overall average. Particularly in the “Communication” category,
the number even exceeds 7. This may be because these
categories of apps have richer functionality compared to others,
making it easier to hide risky behaviors within them.

Q3: Is there any correlation between risky inconsistent behav-
iors and app categories?

In Table VI, we count the number of apps containing each
type of risky inconsistent behavior across different categories.
We find that for some behaviors, there are indeed differences
in the number of occurrences among different categories. For
the majority of risky behaviors, the categories containing them
most frequently are almost always the “Game” or “Tools”.
For several behaviors, more than half are found in these two
categories of apps, such as SEND SMS, CHANGE WIFI STATE.
This could be due to the reasons discussed in Q1.

Apart from these two categories, there are several interesting

findings. READ PHONE STATE appears most frequently in
the categories “Video & Audio” and “Reading”, despite
seeming unrelated to the primary functionality of apps in
these categories. ACCESS COARSE LOCATION is prevalent in the
category “Video & Audio”. While location may be legitimately
used for personalized recommendations, accessing it without
user consent violates privacy norms. Behaviors involving
READ EXTERNAL STORAGE and WRITE EXTERNAL STORAGE
are commonly observed in the category “Entertainment”.
INTERNET is frequently requested by apps in the “Gallery”
and “Photography & Beauty” categories. Some of these apps
initiate internet communication even for tasks that could be
performed offline, such as browsing local albums or taking
photos. However, this behavior might involve uploading local
image resources to the cloud, potentially compromising user
privacy and consuming mobile data without users’ consent.

In addition, we find that in each category, the most commonly
encountered risky behaviors are generally behaviors mentioned
in Q1. Excluding these behaviors, we observe that in the “Life
& Traveling” category, CAMERA behavior is more prevalent.

11

TABLE VIII: Distributions of self-starting risky behaviors

behaviors type app num ratio1

READ PHONE STATE 124 72.94%
WAKE LOCK 111 90.98%

ACCESS NETWORK STATE 94 66.67%
ACCESS COARSE LOCATION 84 74.34%

ACCESS FINE LOCATION 60 64.52%
WRITE EXTERNAL STORAGE 52 68.42%

ACCESS WIFI STATE 34 61.82%
VIBRATE 26 96.30%

INTERNET 25 49.02%
READ EXTERNAL STORAGE 20 74.07%

BLUETOOTH 14 70.00%
GET ACCOUNTS 14 56.00%

CAMERA 10 71.43%
READ CONTACTS 10 55.56%

SEND SMS 9 39.13%
WRITE SETTINGS 7 41.18%

SYSTEM ALERT WINDOW 6 66.67%
SCHEDULE EXACT ALARM 6 85.71%

BROADCAST STICKY 5 71.43%
MODIFY AUDIO SETTINGS 5 71.43%

READ SMS 4 40.00%
CHANGE WIFI STATE 4 30.77%

CHANGE NETWORK STATE 3 75.00%
USE ICC AUTH WITH DEVICE IDENTIFIER 3 50.00%

CALL PHONE 2 50.00%
RECORD AUDIO 2 40.00%
RECEIVE SMS 2 40.00%

WRITE CONTACTS 1 33.33%
BLUETOOTH SCAN 1 100.00%

INSTALL PACKAGES 1 50.00%
NEARBY WIFI DEVICES 1 50.00%
FOREGROUND SERVICE 0 0.00%

1 the percentage of apps containing each self-starting risky
inconsistent behavior among all apps containing such risky
inconsistent behavior.

VIBRATE and GET ACCOUNTS behaviors are more common
in the “Reading” category. Additionally, “Game” and “Tools”
categories contain more ACCESS WIFI STATE and SEND SMS
behaviors. Hence, when users are concerned, they can pay
particular attention to the risky behaviors commonly found
within the category to which the app belongs.

Q4: How many self-starting risky inconsistent behaviors are
there?

As shown in Table VII, We find a total of 740 self-
starting risky inconsistent behaviors among 322 (77.97%)
apps, accounting for 44.47% of all identified risky behaviors.
These apps span across all categories. On average, each app
has approximately 2 self-starting risky inconsistent behaviors.
Additionally, we tabulate the number of apps containing each
type of self-starting risky inconsistent behavior in Table VIII,
and we find that the ranking of common self-starting risky
behaviors is similar to the ranking of common risky behaviors
identified earlier. We then calculate their percentages relative
to all apps containing such risky behavior. We find that for
23 out of the 32 risky behaviors, more than half of the
apps containing these behaviors self-start them. An interesting
finding is that behaviors typically considered to require user
interaction, such as WRITE CONTACTS, SEND SMS, CALL PHONE,
can also self-start in some apps. These indicate that self-starting
risky inconsistent behaviors constitute a significant percentage

and are widely distributed. The results also underscore that
previous work focusing solely on app behaviors related to user
interaction may overlook many potential risks.

Q5: Which categories of apps are more likely to contain self-
starting risky inconsistent behaviors?

We count the number of apps containing self-starting risky
inconsistent behaviors for each category in Table VII. We find
that the category with the highest number of apps containing
such behaviors is “Game” followed by “Life & Traveling”
and “Reading”. Interestingly, the “Tools” category which
previously ranked highest drops in rank. Additionally, we
observe that in the categories “Education”, “Finance”, “Reading”
and “Gallery”, the percentage of apps containing self-starting
risky inconsistent behaviors among all apps containing risky
inconsistent behaviors is the highest.

Q6: Are there any typical instances of inconsistent behaviors?

In our experiments, we discover numerous instances of risky
behaviors, including some interesting and noteworthy cases.

Case 1: when you’re having fun, risks may be lurking.
When users are using their phones for entertainment, they
often overlook other activities happening on their devices.
Apps may take advantage of this distraction to perform
actions without the user’s knowledge. For example, the app
com.banjen.app.balalaika might secretly send a text mes-
sage to a particular number while the user is engaged in
playing guitar, thus compromising the user’s phone num-
ber and other information. Another educational game app
com.preschoolacademy.toddlerpreschoollearning might access
the device’s precise location, obtain the phone’s status informa-
tion, modify certain system settings, and access user accounts
stored on the phone, posing a threat to user privacy and security.

Case 2: your location may have been continuously exposed.
Location is one of the most valued aspects of personal
privacy for users, but we find that users’ locations might
be leaked through various means. For example, in the app
kha.prog.mikrotik, when users use their phones as hotspots,
the app reads the device’s location. Similarly, in the app
net.braincake.pixl.pixl, the location might also be collected
when users take photos. Additionally, in some media and
social apps, location might be collected for features like
location-based recommendations. However, these apps, e.g.,
com.wtoday1usabvd and com.kubetho.hotroku might continu-
ously collect device location during runtime, even if the user
is not actively engaged in actions related to location.

Case 3: Offline-use apps or functions might also consume
mobile data. Currently, mobile data plans can be costly, so
people are mindful of their data usage. However, we find that in
some apps, when users engage in what they assume are offline
features, the app still consumes network data. For example, in
the video playback app com.samsung.rms.retailagent.proxy, the
app continues to access the network when users play locally
downloaded videos. As another example, in the piano playing
app com.synthesia.synthesia, the app continues to access the
network while the user is playing the piano.

12

TABLE IX: Evolution between different periods

2010-2014 2015-2019 2020-2024
percentage of apps
containing risks 26.44% 15.64% 3.80%

number of risky behav-
iors which more than
10% apps contain

22 14 8

Q7: Are there any changes over time in the primary risky
inconsistent behaviors in mobile apps with the development of
apps and increasing concern for privacy and security?

Since early versions of apps are no longer available for
download on official markets, we manually searched and
obtained 261 apps released from 2010 to 2014, and 748 apps
released from 2015 to 2019 through a third-party app collection
website [68]. Apps are randomly collected from different time
periods, with only one version of an app retained per period.
As shown in Table IX, InconPreter identifies risky behaviors
in 69 (26.44%) of the apps from 2010-2014 and 117 (15.64%)
of the apps from 2015-2019. We calculate the percentage of
apps containing each risky behavior across different periods.
In 2010-2014, 22 risky behaviors appear in more than 10% of
apps (11 risky behaviors appear in more than 40% of apps,
with the highest percentage being 82.61%). In 2015-2019, 14
risky behaviors appear in more than 10% of apps (9 behaviors
in more than 40% of apps, with the highest being 64.96%). In
2020-2024, 8 risky behaviors appear in more than 10% of apps
(only one exceed 40%, with the highest being 41.16%). This
indicates an improvement in the prevalence of risky behaviors
in apps, possibly due to increasing attention from developers
and users toward privacy and security concerns.

Additionally, we analyze the changes in the popularity
rankings of risky behaviors across different periods. In all three
periods, the top rankings remain almost unchanged, with READ
PHONE STATE, ACCESS NETWORK STATE, and WAKE LOCK
consistently appearing at the forefront. This could be attributed
to these behaviors being fundamental and susceptible to misuse.
Furthermore, we make some interesting observations. Risky
behaviors related to user contact information (such as READ
CONTACTS, READ SMS) have a declining trend in rankings, while
those associated with Wi-Fi, Bluetooth, and other connectivity
features (such as ACCESS WIFI STATE, BLUETOOTH) experience
a rise in rankings. This trend could be attributed to the evolving
nature of mobile phones, where interactions between users
or devices increasingly involve Bluetooth, Wi-Fi, etc., rather
than traditional communication methods like phone calls or
text messages. Another interesting finding is that there’s an
increasing trend in the rankings of risky behaviors related to
user location (such as ACCESS FINE LOCATION, ACCESS COARSE
LOCATION). This could be attributed to the growing importance
of location data for various services such as intelligent
notifications and recommendations. Consequently, many apps
may attempt to clandestinely collect such information. Although
there are changes in the popularity rankings of risky behaviors,
the frequency of these behaviors’ occurrence has significantly

decreased. Overall, mobile application privacy and security
protection are moving towards a positive development trend.

V. DISCUSSION

Deployment. InconPreter operates as an offline tool that
analyzes app packages and provides detection results. App
developers can locally deploy InconPreter, inputting the APK
package to identify inconsistencies before app release or usage,
to help provide users with a more reliable and satisfactory app
service, leading to a better reputation and attracting more users.
Third parties can deploy InconPreter for large-scale scanning,
aiding in privacy governance within the mobile ecosystem.

For regular app users, similar to VirusTotal [67], InconPreter
can be accessed through a web portal, allowing them to query
by uploading app names/IDs or APKs. The analysis results not
only help users avoid potential privacy breaches but also enable
them to understand the actual behaviors of the app. InconPreter
searches for inconsistent behaviors through the semantics of UI
elements and code sequences, but not all inconsistent behaviors
are necessarily risky. Some behaviors may be reasonable at
the functional level. For example, when a user uses a gallery
app to search for images, the app may access the network or
directly read from a cache. These actions may not be apparent
in the UI but are reasonable for such a task. InconPreter will
present these app operations to users but not flag them as risky.
Insights. On the one hand, benign app developers and mobile
system manufacturers can implement strategies to inform
users in real time about the permissions an app requires
and prompt users to confirm sensitive permissions when the
app requests them. Currently, some systems, such as iOS
and HyperOS, have implemented real-time monitoring of app
permissions. These systems alert users when an app requests
access to sensitive data or system resources. However, these
notifications often lack detailed explanations regarding the
specific reasons why the app requires such permissions, which
can lead to user misunderstandings or even cause users to ignore
these alerts altogether. Future improvements could involve
implementing more informative and transparent permission
request mechanisms. One effective approach could be to
include comprehensible explanations alongside permission
requests, specifying exactly how the requested permissions
will be used and what benefits or potential risks are associated
with granting them. Additionally, incorporating user-friendly
design elements such as intuitive visual indicators, step-by-
step walkthroughs, and examples of how the permissions
will enhance the app’s functionality could also improve user
understanding and decision-making.

On the other hand, users should be cautious about granting
sensitive permissions and remain vigilant about permissions
that seem unrelated to the app’s functionality. During app usage,
users should pay attention to how their permissions are being
utilized, particularly regarding the most common privacy breach
of location access. Additionally, users can directly disable
certain functionalities to prevent privacy misuse, such as turning
off GPS location services. Our tool can also assist in identifying
potential risks within apps, thus helping to avoid related issues.

13

Limitation. The limitation of this work mainly stems from the
following two aspects.

Static Analysis. InconPreter utilizes static analysis to extract
behaviors from app code. Consequently, it inherits common
limitations of static analysis methods: it cannot guarantee
that the extracted code will actually execute or that the UI
information extracted statically will match what users see
at runtime. The dynamic loading of interface elements and
techniques like code reflection, where the app can modify
its behavior or examine its structure at runtime, introduce
complexities that static analysis tools may not account for. In
future work, to further enhance the effectiveness of InconPreter,
we can consider incorporating dynamic analysis methods, such
as capturing fully loaded UIs during runtime to supplement
and correct the statically extracted UI information. We can
also design detection rules for common dynamic code loading
techniques to improve the accuracy of call sequence extraction.

Additionally, FlowDroid is applied to extend the call graph,
but its complex processing flow can lead to issues such as
excessive memory usage and execution time. To enhance
efficiency, we pruned FlowDroid’s analysis. First, we focused
on the data flow between Android system APIs and skipped
analyzing irrelevant code from third-party libraries, such as ad
libraries, thereby reducing the analysis scope. Second, since
Android system APIs represent the smallest unit of behavior
in our analysis, we terminate the analysis for a branch as soon
as it reaches a system API, avoiding further exploration of
its sub-calls. Pruning may affect the completeness of some
data flows, but it saves resources. In the future, we can further
explore and optimize the extent of the pruning.

Application of LLMs. InconPreter leverages LLMs to analyze
risks among inconsistent behaviors. In this process, we employ
the method of prompt engineering to acquaint the LLM with
our background knowledge and accomplish the given tasks.
However, due to the need for carefully designed prompts and
continuous adjustment, the effectiveness may vary between
different prompts, resulting in the inconvenience of human
involvement. In the future, it may be worth considering the
integration of prompt tuning methods to automatically explore
prompts that yield satisfactory results. Additionally, the output
results from a single large language model may exhibit some
level of inaccuracy. We can consider using multiple large
language models to determine the final results in further work.
Ethics. We conduct local experimental analysis of apps in
a lab environment and report our findings through Google’s
feedback interface [69] in time. We will work collaboratively
with their team on further verification and resolution efforts.

VI. CONCLUSIONS

The widespread adoption of mobile phones has resulted in a
surge of apps, fulfilling user needs but also introducing various
security concerns. In our research, we focus on extracting user-
related behaviors from apps and explaining them to users in a
comprehensible natural language form, empowering users to
discern the disparities between users’ real expectations and the
app’s actual behavior. We introduce InconPreter, which employs

static analysis to initially extract app behaviors, followed by
a series of filters to retain behaviors that may raise user
concerns. Subsequently, inconsistent behaviors are identified
by comparing the semantics of code operations with the app’s
UI content. Finally, LLM is utilized to interpret inconsistent
behaviors in understandable natural language. Our evaluation
demonstrates that InconPreter effectively extracts inconsistent
behaviors from apps and provides accurate and reasonable
explanations. Analyzing 10,878 wild apps obtained from
Google Play, InconPreter discovers 1,664 risky inconsistent
behaviors among 413 apps, highlighting significant threats
to user data and device privacy and security. We conduct a
thorough analysis of the discovered behaviors to deepen the
understanding of inconsistent behaviors, thereby enhancing the
privacy and security of the mobile ecosystem.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
constructive comments. The IIE authors are supported in part
by CAS Project for Young Scientists in Basic Research (Grant
No. YSBR-118), NSFC (92270204, U24A20236) and Youth
Innovation Promotion Association CAS.

REFERENCES

[1] “Number of smartphone users
worldwide from 2014 to 2029,”
https://www.statista.com/forecasts/1143723/smartphone-
users-in-the-world, 2024.

[2] “Facebook has been collecting call his-
tory and sms data from android devices,”
https://www.theverge.com/2018/3/25/17160944/facebook-
call-history-sms-data-collection-android, 2018.

[3] “Data protection act 2018,”
https://www.legislation.gov.uk/ukpga/2018/12/contents/ena
cted, 2018.

[4] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji, “A methodology for empirical analysis of
permission-based security models and its application to
android,” in Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS 2010,
Chicago, Illinois, USA, October 4-8, 2010, E. Al-Shaer,
A. D. Keromytis, and V. Shmatikov, Eds. ACM, 2010,
pp. 73–84.

[5] A. P. Felt, K. Greenwood, and D. A. Wagner, “The effec-
tiveness of application permissions,” in 2nd USENIX Con-
ference on Web Application Development, WebApps’11,
Portland, Oregon, USA, June 15-16, 2011, A. Fox, Ed.
USENIX Association, 2011.

[6] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin,
and D. Wagner, “Android permissions: user attention,
comprehension, and behavior,” in Proceedings of the
Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12. New York, NY, USA: Association
for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2335356.2335360

[7] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. A. Wagner, “Android permissions: user attention,
comprehension, and behavior,” in Symposium On Usable

14

Privacy and Security, SOUPS ’12, Washington, DC, USA
- July 11 - 13, 2012, L. F. Cranor, Ed. ACM, 2012, p. 3.

[8] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking
app behavior against app descriptions,” in 36th Interna-
tional Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, P. Jalote,
L. C. Briand, and A. van der Hoek, Eds. ACM, 2014,
pp. 1025–1035.

[9] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen,
“Autocog: Measuring the description-to-permission fidelity
in android applications,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, Scottsdale, AZ, USA, November 3-7, 2014,
G. Ahn, M. Yung, and N. Li, Eds. ACM, 2014, pp.
1354–1365.

[10] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang,
“Asdroid: detecting stealthy behaviors in android
applications by user interface and program behavior
contradiction,” in 36th International Conference on
Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, P. Jalote, L. C. Briand, and A. van der
Hoek, Eds. ACM, 2014, pp. 1036–1046. [Online].
Available: https://doi.org/10.1145/2568225.2568301

[11] C. Gatsou, A. Politis, and D. Zevgolis, “From icons
perception to mobile interaction,” in Federated Conference
on Computer Science and Information Systems, FedCSIS
2011, Szczecin, Poland, 18-21 September 2011, Proceed-
ings, M. Ganzha, L. A. Maciaszek, and M. Paprzycki,
Eds., 2011, pp. 705–710.

[12] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao,
“Iconintent: automatic identification of sensitive UI wid-
gets based on icon classification for android apps,” in
Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019, J. M. Atlee, T. Bultan, and J. Whittle,
Eds. IEEE / ACM, 2019, pp. 257–268.

[13] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang,
P. Gao, Z. Liu, F. Xu, and J. Lu, “Deepintent: Deep
icon-behavior learning for detecting intention-behavior
discrepancy in mobile apps,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2019, London, UK, November 11-15,
2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds.
ACM, 2019, pp. 2421–2436.

[14] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang,
and G. Jiang, “SUPOR: precise and scalable sensitive
user input detection for android apps,” in 24th USENIX
Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015, J. Jung and T. Holz, Eds.
USENIX Association, 2015, pp. 977–992.

[15] T. T. Nguyen, D. C. Nguyen, M. Schilling, G. Wang,
and M. Backes, “Measuring user perception for detecting
unexpected access to sensitive resource in mobile apps,”
in ASIA CCS ’21: ACM Asia Conference on Computer
and Communications Security, Virtual Event, Hong Kong,
June 7-11, 2021, J. Cao, M. H. Au, Z. Lin, and M. Yung,
Eds. ACM, 2021, pp. 578–592.

[16] J. Y. Khan and G. Uddin, “Automatic code documen-

tation generation using gpt-3,” in Proceedings of the
37th IEEE/ACM International Conference on Automated
Software Engineering, 2022, pp. 1–6.

[17] “Codex,” https://openai.com/blog/openai-codex/.
[18] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,

S. Rasthofer, and E. Bodden, “Mining apps for abnormal
usage of sensitive data,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1,
2015, pp. 426–436.

[19] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the
18th ACM Conference on Computer and Communications
Security, ser. CCS ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 627–638. [Online].
Available: https://doi.org/10.1145/2046707.2046779

[20] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck,
“Appcontext: Differentiating malicious and benign mobile
app behaviors using context,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,
vol. 1, 2015, pp. 303–313.

[21] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. L. Traon, D. Octeau, and P. D. McDaniel,
“Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps,” in
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, M. F. P. O’Boyle and
K. Pingali, Eds. ACM, 2014, pp. 259–269.

[22] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise
and general inter-component data flow analysis framework
for security vetting of android apps,” in Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November
3-7, 2014, G. Ahn, M. Yung, and N. Li, Eds. ACM,
2014, pp. 1329–1341.

[23] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon,
S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and P. D.
McDaniel, “Iccta: Detecting inter-component privacy
leaks in android apps,” in 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Flo-
rence, Italy, May 16-24, 2015, Volume 1, A. Bertolino,
G. Canfora, and S. G. Elbaum, Eds. IEEE Computer
Society, 2015, pp. 280–291.

[24] S. Arzt and E. Bodden, “Stubdroid: automatic inference of
precise data-flow summaries for the android framework,”
in Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May
14-22, 2016, L. K. Dillon, W. Visser, and L. A. Williams,
Eds. ACM, 2016, pp. 725–735.

[25] K. Xu, Y. Li, and R. H. Deng, “Iccdetector: Icc-based
malware detection on android,” IEEE Trans. Inf. Forensics
Secur., vol. 11, no. 6, pp. 1252–1264, 2016.

[26] E. Mariconti, L. Onwuzurike, P. Andriotis, E. D. Cristo-
faro, G. J. Ross, and G. Stringhini, “Mamadroid: Detecting
android malware by building markov chains of behavioral
models,” in 24th Annual Network and Distributed System
Security Symposium, NDSS 2017, San Diego, California,
USA, February 26 - March 1, 2017. The Internet Society,

15

2017.
[27] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and

Y. Chen, “Flowcog: Context-aware semantics extraction
and analysis of information flow leaks in android apps,”
in 27th USENIX Security Symposium, USENIX Security
2018, Baltimore, MD, USA, August 15-17, 2018, W. Enck
and A. P. Felt, Eds. USENIX Association, 2018, pp.
1669–1685.

[28] K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective
automated testing for android applications,” in Proceed-
ings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, Saarbrücken, Germany,
July 18-20, 2016, A. Zeller and A. Roychoudhury, Eds.
ACM, 2016, pp. 94–105.

[29] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: a
lightweight ui-guided test input generator for android,”
in Proceedings of the 39th International Conference
on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume, S. Uchi-
tel, A. Orso, and M. P. Robillard, Eds. IEEE Computer
Society, 2017, pp. 23–26.

[30] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu,
Y. Liu, and Z. Su, “Guided, stochastic model-based GUI
testing of android apps,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, Paderborn, Germany, September 4-
8, 2017, E. Bodden, W. Schäfer, A. van Deursen, and
A. Zisman, Eds. ACM, 2017, pp. 245–256.

[31] A. I. Ali-Gombe, S. Sudhakaran, A. Case, and G. G. R.
III, “Droidscraper: A tool for android in-memory object
recovery and reconstruction,” in 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses,
RAID 2019, Chaoyang District, Beijing, China, September
23-25, 2019. USENIX Association, 2019, pp. 547–559.

[32] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A.
Sani, and Z. Qian, “Charm: Facilitating dynamic analysis
of device drivers of mobile systems,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 291–307.

[33] M. Y. Wong and D. Lie, “Intellidroid: A targeted input
generator for the dynamic analysis of android malware,”
in 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016.
[Online]. Available: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2017/09/intellidroid-targeted-
input-generator-dynamic-analysis-android-malware.pdf

[34] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining
api-level features for robust malware detection in android,”
in Security and Privacy in Communication Networks
- 9th International ICST Conference, SecureComm
2013, Sydney, NSW, Australia, September 25-28, 2013,
Revised Selected Papers, ser. Lecture Notes of the
Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, T. A. Zia, A. Y.
Zomaya, V. Varadharajan, and Z. M. Mao, Eds., vol.
127. Springer, 2013, pp. 86–103. [Online]. Available:
https://doi.org/10.1007/978-3-319-04283-1_6

[35] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and
K. Rieck, “DREBIN: effective and explainable detection
of android malware in your pocket,” in 21st Annual
Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26,
2014. The Internet Society, 2014. [Online]. Available:
https://www.ndss-symposium.org/ndss2014/drebin-
effective-and-explainable-detection-android-malware-
your-pocket

[36] X. Pan, X. Wang, Y. Duan, X. Wang, and
H. Yin, “Dark hazard: Learning-based, large-scale
discovery of hidden sensitive operations in android
apps,” in 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego,
California, USA, February 26 - March 1, 2017.
The Internet Society, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/dark-hazard-learning-based-large-scale-
discovery-hidden-sensitive-operations-android-apps/

[37] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and
L. Cavallaro, “TESSERACT: eliminating experimental
bias in malware classification across space and time,” in
28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019, N. Heninger
and P. Traynor, Eds. USENIX Association, 2019, pp.
729–746.

[38] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen,
and M. R. Lyu, “Why an android app is classified as
malware? towards malware classification interpretation,”
CoRR, vol. abs/2004.11516, 2020. [Online]. Available:
https://arxiv.org/abs/2004.11516

[39] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu,
F. Schaub, S. Wilson, N. M. Sadeh, S. M. Bellovin,
and J. R. Reidenberg, “Automated analysis of privacy
requirements for mobile apps,” in Network and Distributed
System Security Symposium, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:655548

[40] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Kr-
ishnan, J. Bhatia, T. D. Breaux, and J. Niu, “Toward
a framework for detecting privacy policy violations in
android application code,” in 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE),
2016, pp. 25–36.

[41] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin,
“Summarizing source code with transferred api knowledge,”
07 2018, pp. 2269–2275.

[42] X. Yu, Q. Huang, Z. Wang, Y. Feng, and D. Zhao,
“Towards context-aware code comment generation,” in
Findings of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020, ser.
Findings of ACL, T. Cohn, Y. He, and Y. Liu, Eds.,
vol. EMNLP 2020. Association for Computational
Linguistics, 2020, pp. 3938–3947.

[43] Z. Yang, J. W. Keung, X. Yu, X. Gu, Z. Wei, X. Ma, and
M. Zhang, “A multi-modal transformer-based code sum-
marization approach for smart contracts,” 2021 IEEE/ACM
29th International Conference on Program Comprehen-
sion (ICPC), pp. 1–12, 2021.

16

[44] OpenAI, “Chatgpt [large language model],”
https://openai.com/chatgpt/, 2024.

[45] ——, “Gpt-4,” https://openai.com/gpt-4.
[46] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,

Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale,
D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull,
D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao,
V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou,
H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann,
A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee,
D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov,
P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein,
R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor,
A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov,
Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open
foundation and fine-tuned chat models,” 2023.

[47] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language
models are few-shot learners,” 2020.

[48] T. Ahmed and P. Devanbu, “Few-shot training llms
for project-specific code-summarization,” in Proceedings
of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–5.

[49] E. Chen, R. Huang, H.-S. Chen, Y.-H. Tseng, and L.-Y. Li,
“Gptutor: a chatgpt-powered programming tool for code
explanation,” arXiv preprint arXiv:2305.01863, 2023.

[50] “Soot,” https://github.com/soot-oss/soot/.
[51] “Apktool,” https://apktool.org/.
[52] R. Smith, “An overview of the tesseract ocr engine,” in

ICDAR 2007, vol. 2. IEEE, 2007, pp. 629–633.
[53] “Acronym finder,” https://www.acronymfinder.com/.
[54] “Abbreviations.com,” https://www.abbreviations.com/.
[55] “Android open source project (application secu-

rity),” https://source.android.com/security/overview/app-
security, 2022.

[56] “Android api reference,”
https://developer.android.com/reference.

[57] “spiral,” https://github.com/casics/spiral/.
[58] “Nltk,” https://www.nltk.org/.
[59] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri,

F. Gagnon, and F. Massicotte, “Didroid: Android
malware classification and characterization using
deep image learning,” in ICCNS 2020: The 10th
International Conference on Communication and
Network Security, Tokyo, Japan, November 27-29,
2020. ACM, 2020, pp. 70–82. [Online]. Available:
https://doi.org/10.1145/3442520.3442522

[60] H. C. Wu, R. W. P. Luk, K. Wong, and
K. Kwok, “Interpreting TF-IDF term weights as
making relevance decisions,” ACM Trans. Inf. Syst.,
vol. 26, no. 3, pp. 13:1–13:37, 2008. [Online]. Available:

http://doi.acm.org/10.1145/1361684.1361686
[61] “spacy,” https://spacy.io/.
[62] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout:

analyzing the android permission specification,” in the
ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-
18, 2012, T. Yu, G. Danezis, and V. D. Gligor,
Eds. ACM, 2012, pp. 217–228. [Online]. Available:
https://doi.org/10.1145/2382196.2382222

[63] R. W. McGee, “Annie chan: Three short stories written
with chat gpt,” Available at SSRN 4359403, 2023.

[64] R. J., “Chatgpt and legal writing: the perfect union?”
SSRN, 2023.

[65] T. E. Cox C, “Chatgpt: implications for academic libraries,”
College Research Libraries News, p. 84(3): 99, 2023.

[66] “Android malware dataset,” http://amd.arguslab.org/.
[67] “Virustotal,” https://www.virustotal.com/.
[68] “Apkcombo,” https://apkcombo.com/, 2018.
[69] “Report a policy violation,”

https://support.google.com/googleplay/android-
developer/contact/policy_violation_report.

VII. APPENDIX

A. Study Questionnaire

In the first questionnaire, we presented participants with 7
UI samples from different app functionalities, along with the
analysis results like that shown in Fig. 2d. For each sample,
we ask participants the following questions:
1) How easy is it to understand the provided explanation?

Please rate it from 1 to 5, with 5 being the easiest to
understand.

2) How reasonable do you think the provided explanation is?
Please rate it from 1 to 5, with 5 being the most reasonable.

3) Were you previously aware that mobile apps might exhibit
similar behaviors?

4) How concerned are you about the potential impact of this
behavior on your data privacy or device security? Please
rate it from 1 to 5, with 5 being the most concerned.

5) How helpful do you think our explanation is in enhancing
your awareness of potential risks? Please rate it from 1 to
5, with 5 being the most helpful.

In the second questionnaire, we show participants all detected
risky inconsistent behaviors and provide explanations and
potential risks for these behaviors. For each behavior, we ask
participants the following two questions:
1) How well do you understand what this behavior is doing?

Please rate it from 1 to 5, with 5 being the most under-
standing.

2) Some apps may engage in this behavior without your
awareness, and this behavior is not necessary for the app to
perform its claimed functionality. How concerned are you
about the potential impact of this behavior on your data
privacy or device security? Please rate it from 1 to 5, with
5 being the most concerned.

17

B. Risky inconsistent behaviors

TABLE X: Risky inconsistent behaviors extracted

Behavior Description

READ PHONE STATE
read device status and identity information, including the device’s phone number,
current cellular network information, any ongoing calls, and the device’s IMEI/ESN,
posing potential risks of privacy leakage and identity theft.

ACCESS NETWORK STATE access information about the device’s network connection status, such as the connection
to Wi-Fi or mobile data networks, revealing the user’s network activity information.

WAKE LOCK prevent the device from entering sleep mode to ensure it stays awake during specific
operations, which accelerates battery and resource consumption.

ACCESS COARSE LOCATION access coarse device location information, such as location based on mobile networks
or Wi-Fi, resulting in user location privacy leakage and potential location tracking.

ACCESS FINE LOCATION access precise location information from the device, including GPS location, Wi-Fi
location, Bluetooth location, etc.

WRITE EXTERNAL STORAGE save data to public directories like the SD card and application-specific directories,
including creating, modifying, and deleting files.

ACCESS WIFI STATE
access the Wi-Fi connection status information of the device, including details about
the current Wi-Fi network connection and the list of available Wi-Fi networks nearby,
may result in tracking the user’s network activities.

INTERNET send and receive data over the internet, which may lead to issues such as sensitive
data transmission and mobile data usage.

SEND SMS send unauthorized SMS messages.
VIBRATE control the vibration function, causing unnecessary disturbance to users.

READ EXTERNAL STORAGE read from the device’s storage space, involving accessing any files stored on the device,
such as images, audio, video, and documents.

BLUETOOTH connect to Bluetooth devices and communicate with them.

READ CONTACTS access the list of user contacts on the device, including names, phone numbers, email
addresses, and other information.

WRITE SETTINGS modify system settings, including but not limited to sound, display, input method, date
and time settings.

GET ACCOUNTS access account information stored on the device, including local accounts and those
synced with the device, such as social media accounts and email accounts.

SYSTEM ALERT WINDOW
display overlay content on the user interface, such as floating notifications, menus, or
tools, may disrupt the user’s normal interaction with other applications, or entice them
to click on malicious links or perform risky actions.

CHANGE WIFI STATE modify the Wi-Fi connection status, such as enabling or disabling the Wi-Fi feature
and connecting to specific Wi-Fi networks, disrupting the network connection.

READ SMS read SMS messages.
CAMERA access the device’s camera, allowing the ability to take photos or record videos.

USE ICC AUTH WITH DEVICE IDENTIFIER communicate with the SIM card and authenticate with the device identifier, allowing
apps to interact with carrier services, such as sending messages and receiving calls.

BROADCAST STICKY
send sticky broadcasts, which remain in the system after being sent, allowing them to
be received later or by unregistered receivers, which may lead to the dissemination of
sensitive information and excessive use of device resources.

MODIFY AUDIO SETTINGS modify audio settings, including volume, channels, etc.
RECEIVE SMS receive SMS messages.
CALL PHONE initiate unauthorized phone calls.

RECORD AUDIO record audio.
SCHEDULE EXACT ALARM precisely schedule timers to trigger operations or events at specified time.

WRITE CONTACTS modify, add, or delete user contacts on the device.
INSTALL PACKAGES install other apps.

NEARBY WIFI DEVICES scan nearby Wi-Fi devices, which may lead to tracking and location identification.

CHANGE NETWORK STATE
modify device network connection status, including enabling or disabling network
connections, changing network connection types, etc., may result in unstable network
connections, increased mobile data usage, network hijacking, and other issues.

BLUETOOTH SCAN scan nearby Bluetooth devices, which may lead to tracking and location identification.

FOREGROUND SERVICE display persistent notifications in the notification bar, which may disrupt the user’s
usage experience, and impact device performance and battery life.

18

