
Statement from NDSS 2025: The NDSS 2025 PC appreciated the technical contributions made in this paper, the confirmation of
prior work that is otherwise not (directly) reproducible, and the contributions towards fostering future anti-censorship research, but it
also found the paper highly controversial because the experiments that the authors conducted raise ethical concerns. This paper went
through scrutiny by various stakeholders beyond the regular PC review, including evaluation by the NDSS’25 Ethics Review Board
and consultation of the Steering Committee and ISOC. While the ethical ambiguities were deemed remedied after data aggregation
and deletion, the IRB Exempt decision that the authors received from their institution should have been questioned and repudiated
by the authors as there are clear human risks involved. Questioning such an IRB decision should be an obligation by researchers
in the security community. Additionally, the PC does not consider itself qualified to make a judgment about the legal implications
of this work. We acknowledge that there were conflicting opinions during the broader review process on whether the benefits of
this research outweigh its risks. We hope that the acceptance of this paper helps the community understand the possible impact
of research work, allows better mechanisms to deal with similar cases, and contributes to developing accepted standards on when
and how such types of offensive research can be done. The acceptance of this paper does not constitute the PC’s endorsement of
the used methodology. We advise authors to seek legal advice (from different legislations if applicable) before/while doing security
research that may impact critical targets.

Wallbleed: A Memory Disclosure Vulnerability
in the Great Firewall of China

Shencha Fan
GFW Report

gfw.report@protonmail.com

Jackson Sippe
University of Colorado Boulder

Jackson.Sippe@colorado.edu

Sakamoto San
Shinonome Lab

54k4m070@proton.me

Jade Sheffey
University of Massachusetts Amherst

jsheffey@cs.umass.edu

David Fifield

david@bamsoftware.com

Amir Houmansadr
University of Massachusetts Amherst

amir@cs.umass.edu

Elson Wedwards

ElsonWedwards@proton.me

Eric Wustrow
University of Colorado Boulder

ewust@colorado.edu

Abstract—We present Wallbleed, a buffer over-read vulner-
ability that existed in the DNS injection subsystem of the
Great Firewall of China. Wallbleed caused certain nation-wide
censorship middleboxes to reveal up to 125 bytes of their memory
when censoring a crafted DNS query. It afforded a rare insight
into one of the Great Firewall’s well-known network attacks,
namely DNS injection, in terms of its internal architecture and
the censor’s operational behaviors.

To understand the causes and implications of Wallbleed, we
conducted longitudinal and Internet-wide measurements for over
two years from October 2021. We (1) reverse-engineered the
injector’s parsing logic, (2) evaluated what information was
leaked and how Internet users inside and outside of China were
affected, and (3) monitored the censor’s patching behaviors over
time. We identified possible internal traffic of the censorship
system, analyzed its memory management and load-balancing
mechanisms, and observed process-level changes in an injector
node. We employed a new side channel to distinguish the injec-
tor’s multiple processes to assist our analysis. Our monitoring
revealed that the censor coordinated an incorrect patch for
Wallbleed in November 2023 and fully patched it in March 2024.

Wallbleed exemplifies that the harm censorship middleboxes
impose on Internet users is even beyond their obvious infringe-
ment of freedom of expression. When implemented poorly, it also
imposes severe privacy and confidentiality risks to Internet users.

I. INTRODUCTION

The national Internet censorship system in China, known
as the Great Firewall (GFW), is composed of many parts and
subsystems, each using different techniques to control access
to online information. One prominent component is the DNS
injection subsystem, which forges DNS responses to DNS
queries for censored domain names. Until March 2024, certain
DNS injection devices had a parsing bug that would, under
certain conditions, cause them to include up to 125 bytes of
their own memory in the forged DNS responses they sent.
We call this bug Wallbleed, as a nod to similar buffer over-
read vulnerabilities like Heartbleed [1], Ticketbleed [2], and
Cloudbleed [3], [4].

In this work,1 we analyze the causes and implications of
Wallbleed. Our study confirms that Wallbleed existed for at
least two years. (Reports of a similar vulnerability circulated
as early as 2010 [5], [6].) We ran continuous measurements

1Project homepage: https://gfw.report/publications/ndss25/en/.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230237
www.ndss-symposium.org

https://gfw.report/publications/ndss25/en/

between October 2021 and April 2024. The vulnerability was
partially patched in November 2023, but DNS injectors were
still vulnerable to certain crafted queries until March 2024,
when it was finally fully patched.

Wallbleed provides an unprecedented look at the GFW, both
its internal architecture as well as the censor’s operational
behaviors. While prior work has studied what domains and
resources are blocked in China, little is known about the inner
workings of the GFW’s network middleboxes [7]–[9]. From
the data leaked with Wallbleed, we are able to discern the
underlying architecture of the GFW, and we reverse-engineer
the parsing bug responsible for Wallbleed to create a behavior-
identical implementation in C. During the course of our study,
we discovered previously unknown characteristics of GFW
DNS injection, such as that every injection process cycles
through a list of false IP addresses independently and in a fixed
order, a side channel that distinguishes multiple processes in an
injector node. Finally, we conducted longitudinal and Internet-
wide measurements to monitor the censor’s patching activity,
taking advantage of a rare opportunity to learn more about
how the GFW maintains its censorship infrastructure.

We examined the contents of Wallbleed-leaked memory
and discovered apparent network protocol headers, payloads,
x86_64 stack frames, and executable code (though we show
evidence that it is not the code of the GFW itself). We sent
traffic tagged with recognizable byte patterns past the GFW,
and in some cases recovered those tags in subsequent Wall-
bleed responses, demonstrating that the vulnerability leaked
at least some of the traffic seen by the GFW. We see, in
Wallbleed-leaked memory, samples of plaintext network traffic
and protocols not all of which are related to DNS censorship,
including IP, TCP, UDP, and HTTP. We also performed IPv4-
wide scans to estimate how many addresses inside and outside
China might have had their traffic processed by Wallbleed-
vulnerable middleboxes. Even some traffic whose source and
destination are both outside China might have been affected,
due to routing through China’s network border.

Significant ethical considerations accompany an investiga-
tion of this nature. We discuss them in depth in Section IX,
including the question of whether or not to disclose a vulner-
ability in a system that is, itself, considered by many to be
a source of harm [10], [11]. The injection of fraudulent DNS
responses is one of many persistent attacks carried out daily
by the GFW. The intention and effect of these attacks are well-
known: to limit people’s access to information. Wallbleed is an
example of how censorship devices pose risks to security and
privacy even beyond their obvious infringement of freedom
of expression. While this specific vulnerability was eventually
fixed, the existence of such devices continues to be a hazard.

II. BACKGROUND

A. DNS injection attacks

The GFW’s DNS injection subsystem employs a fleet of
middlebox devices at China’s network border that watch for
DNS queries for blocked domain names. When they see
one, they inject a DNS response back towards the client,

spoofing the source address as if it came from the intended
resolver. The injected response is a false answer to the query,
containing an incorrect, useless IP address. When the client
subsequently tries to connect, it will meet with an error rather
than a connection to the expected destination. The injection
middleboxes are on-path, not in-path devices: they do not
block the query from reaching the legitimate resolver, nor
the authentic response from reaching the client. The injectors’
false response “wins” because it arrives first, having been
injected at a point in the network path nearer to the client [12].
Clients accept the first received DNS response, as only one
response is expected per query in normal operation.

The DNS injection subsystem is bidirectional: it responds
to queries in both directions, whether they are leaving China
or entering it. This feature is convenient for analysis: it is
easier to send packets into China from the outside, than
to acquire and maintain a network vantage point inside the
country. By sending DNS queries to a non-live IP address in
China, we can be sure that any responses received are from a
middlebox injector, not the end host.

Just as the GFW consists of disparate components, DNS
injection is done by several distinct kinds of DNS injector—
at least three. The foundational pieces of research on this
topic are gfwrev’s work of 2009 [13], Anonymous’s work of
2014 [7], Anonymous et al.’s “Triplet censors” of 2020 [8],
and Hoang et al.’s “How great is the Great Firewall?” of
2021 [9]. The several kinds of injector differ in their lists of
blocked domain names, their network fingerprints at the IP and
DNS layers, and quirks of their parsing logic. The Wallbleed
vulnerability exists in just one kind of injector, the one which
Anonymous et al. call “Injector 3” [8 §4.1].

DNS injection has long been a primary technique of the
GFW. But circumventing it alone is not enough, because there
are other systems in play. Even if a client is able to get a
correct DNS response by some means, their communication
may be disrupted by a different subsystem, such as the IP
address filter [14 §4.1], TLS SNI filter [14]–[16] or TLS ESNI
filter [14], [17]. In this paper we will be concerned only with
DNS injection, and with only one kind of DNS injector.

The government of China is not alone in using DNS
injection for censorship. See also, for example, the “DNS
Tampering” column of Table 1 of the 2023 survey of Master
and Garman [18], and Nourin et al.’s study of bidirectional
injection of DNS and other protocols in Turkmenistan [19].

B. The format of DNS messages

As the Wallbleed vulnerability stems from low-level parsing
errors, it will be important to understand how DNS messages
are represented on the wire and in memory. The format of DNS
messages is specified in RFC 1035 [20]. Queries and responses
have the same basic format: a 12-byte header, followed by
four variable-length sections: question, answer, authority, and
additional. We will be concerned only with the question and
answer sections. The question section contains the DNS name
being queried (or, in a response, the name that the response is
in answer to). The answer section, present only in responses,

2

contains the information requested by a query (commonly an
IP address) in a data structure called a resource record.

Figure 1 is a sample injected DNS response. It features
everything that will be necessary to understand the DNS
messages that arise in this research. We will use these field
names and background colors consistently.

1234 ID

Header

8180 flags
0001 QDCOUNT
0001 ANCOUNT
0000 NSCOUNT
0000 ARCOUNT
03 r s f 03 o r g 00 QNAME

Question0001 QTYPE (A, IPv4 address)
0001 QCLASS (IN)
c00c NAME (pointer to QNAME)

Answer

0001 TYPE (A, IPv4 address)
0001 CLASS (IN)
000000ec TTL (236 seconds)
0004 RDLENGTH
1f 0d 5b 21 RDATA (31.13.91.33)

Fig. 1: The structure of an injected DNS response.

The message is a DNS response (rather than a query),
as indicated by the most significant bit of the flags being
set. It has one question and one answer; the authority and
additional sections are empty. The QNAME in the question
section is the name the DNS client asked to resolve, rsf.org.
The answer section has been constructed by the GFW injector.
It asserts that the client’s QNAME resolves to an incorrect
IPv4 address (one of hundreds the injector may use).

The most important thing to understand is the encoding
of DNS names. Names are pervasive in the DNS protocol:
there is one in every question section (QNAME field), and at
least one in every resource record (NAME field). A name is
a sequence of labels. A label, in turn, is sequence of bytes,
prefixed by a byte indicating its length. A name ends at an
empty label, i.e., one that consists only of the length prefix 00 .
The name example.com has three labels of 7, 3, and 0 bytes.
Its encoding is 13 bytes long: 07 e x a m p l e 03 c

o m 00 .
There is an exception to the length-prefix encoding of

names. If the two most significant bits of the the length prefix
are set, then the other 6 bits of that byte, and the 8 bits of the
next byte, form a 14-bit compression pointer that indicates
that the remaining labels in the name are found starting at
the given byte offset in the message. Message compression is
useful because it is common for DNS messages to contain the
same name more than once, or several names with a common
suffix. The compression pointer pattern c00c is one to know
by sight. It points to byte offset 12, which is the offset of the
QNAME field in the question section. Rather than copy the
QNAME into the answer section, the injectors vulnerable to

Wallbleed begin the answer section with a c00c compression
pointer. (The use of compression pointers is not unique to the
GFW; legitimate resolvers use them as well. Of the various
kinds of DNS injector that exist in the GFW, some use c00c

and some make a copy of QNAME [8 §4.1].)
The format of DNS names, with its length prefixes and

pointer indirection, lends itself to memory safety errors in
parsers. When processing a label length prefix, one must check
that the end of the label stays inside the bounds of the message.
The lack of such a check is the fundamental cause of the
Wallbleed overflow vulnerability.

III. DEMONSTRATING OVERFLOW

This is a well-formed query whose QNAME, rsf.org,
is on the GFW’s blocklist:

1234 0100 0001 0000 0000 0000 03 r s f 03

o r g 00 0001 0001

If we send these bytes, in a UDP datagram with destination
port 53, from a host outside China to a host inside China,
we get an injected DNS response. (Actually more than one
response, because this QNAME is on the blocklist of more
than one kind of injector.) Any destination IP address in China
will do, even a non-responsive one—the query only needs to
pass by an injector middlebox in transit.

An injected response looks like the following (this is
Figure 1 in a more compact form):

1234 8180 0001 0001 0000 0000 03 r s f 03

o r g 00 0001 0001 c00c 0001 0001

000000ec 0004 1f 0d 5b 21

The ID and question section are copied from the query. The
flags have been set as appropriate for a response. The answer
section falsely asserts that the name rsf.org (represented by
a compression pointer c00c) resolves to the IPv4 address
31.13.91.33 (1f 0d 5b 21). As detailed in Appendix A, this
fake address is one of many that the injector may use. If we
send the query again, we will likely get a different one.

See what happens if we now artificially increase the length
prefix of the org label from 03 (3) to 20 (32):

1234 0100 0001 0000 0000 0000 03 r s f 20

o r g 00 0001 0001

For one thing, we now get only one injected response: the
malformed query is ignored by injectors other than the Wall-
bleed ones. The TTL and IP address in the answer section are
different than before, which is expected: these typically change
in every response. More significantly, the injected response
contains 29 additional bytes before the answer section. These
bytes come from the memory of the injection device that
handled the query. In this example, the leaked bytes are a
fragment of a UPnP HTTP header:

1234 8180 0001 0001 0000 0000 03 r s f 20

o r g 00 0001 0001 C u s t o m / 1 .

0 U P n P / 1 . 0 P r o c / V

e r 0d c00c 0001 0001 00000082 0004 68 f4

2e a5

3

Whenever an injector responds to such a query, it reveals a
small window of its memory, each time with different contents.

We posit that something like the following process must
have occurred inside the injector device. Having observed a
DNS query on its network tap, the injector copies the packet
into memory for processing. Its goal is to parse the QNAME
from the query, check it against a blocklist, and inject a
response if needed. In parsing the QNAME, the injector first
sees the 3-byte label rsf: so far, so good. But the length
prefix 20 says that the next label is 32 bytes long, which
extends over the org label and empty label, the QTYPE and
QCLASS fields, and past the end of the query. Because it fails
to enforce a bounds check, the injector regards the bytes that
follow the packet in memory as being part of the query—as if
the QNAME had been the 38 bytes 03 r s f 20 o r g

00 00 01 · · · P r o c / . Despite the extraneous bytes at
the end of the name, it still matches the blocklist, for reasons
we will explain in Section III-A. The injector copies the entire
QNAME (as it sees it) into a DNS response. The next 4 bytes
(in this example, V e r 0d) are interpreted as the query’s
QTYPE and QCLASS, and also copied into the response.

Why does the parser stop at the / byte, rather than treat
it as a length prefix and reading another label? We present
a precise, reverse-engineered description of the parsing algo-
rithm in Appendix B, which answers this and other questions.
In this case, it is because the QNAME parser stops after the
first label length prefix that is past the end of the query.

A. Blocklist matching

When an injector checks a name against its blocklist,
it does not use the name’s wire-format representation. Instead,
it flattens the QNAME into a dot-delimited string terminated
by a 00 byte. This string is what is passed to the blocklist
lookup function. The evidence for this claim is that when a
label in a query contains an ASCII dot character . or a
null byte 00 , the blocklist matcher interprets it as a label
separator or name terminator, respectively. For example, if
the name example.com were on the blocklist, either of the
QNAMEs 07 e x a m p l e 03 c o m 00 or 0f e

x a m p l e . c o m 00 a b c 00 would elicit an
injection. Though the names are distinct at the DNS level (the
first consists of three labels of 7, 3, and 0 bytes; the second
of two labels of 15 and 0 bytes), they are both flattened into
the same effective string “example.com”.

This explains why the QNAME 03 r s f 20 o r g 00

00 01 · · · P r o c / that was understood by the injec-
tor in the previous example matches the blocklist rule for
rsf.org. Though the second label is not just org, but rather
org plus many additional bytes, the first of those additional
bytes is 00 , which terminates the name when it is flattened
into a string. The extra bytes are included in the injected DNS
response, but they do not affect blocklist matching.

It also explains why we modified the length prefix of the org
label, rather than the rsf label. If we had extended the rsf

label, the 03 before o r g would have been interpreted as a
literal character in the flattened name string—and because the

(7, 13)

(125, 131)

y = x + 6

y = 130

0

32

64

96

128

0 32 64 96 128 160 192 224
Label Length Prefix x in QueryS

iz
e

of
 Q

ue
st

io
n

S
ec

tio
n

in
 R

es
po

ns
e

Fig. 2: The size of the question section in injected DNS
responses versus the label length prefix x in a query for
the QNAME x r s f . o r g 00 . We are using the
“embedded dot character” and “embedded null terminator”
tricks from Section III-A, in order to place the variable label
length prefix at the beginning of the question section.

string “rsf\x03org” does not match anything on the blocklist,
it would not have gotten a response. Whereas by extending the
org label, rsf and org remain separate labels, and the final
empty label 00 becomes a string terminator. Altering the first
length prefix can work, but then the second length prefix must
also be changed to a dot, in order to separate the labels in the
final string: 20 r s f . o r g 00 .

Blocklist rules are not literal names, but patterns, like
regular expressions [9 §4.1]. A single rule may, for exam-
ple, block an entire domain with its subdomains. Patterns
are not uniformly constructed (showing signs of fallible hu-
man curation). The rsf.org pattern we have been using is
end-anchored and label-anchored: rsf.org and x.rsf.org

match the pattern, but xrsf.org, rsf.org.x, and rsf.orgx

do not. As a regular expression, it would be something
like (.*\.)*rsf\.org$. In comparison, the pattern for
shadowvpn.com is start-anchored and not label-anchored:
shadowvpn.com, shadowvpn.comx, and shadowvpn.com.x

match it, but xshadowvpn.com and x.shadowvpn.com do
not. Its regular expression would be ^shadowvpn\.com.*.

B. Maximizing leaked bytes per response

The greatest number of bytes that may be leaked in a single
response is 125. This is a consequence of the fact that the
question section in injected responses has a maximum size
of 131 bytes, and the shortest question section in a query
that triggers a response has a length of 6 bytes. The question
section in a response contains a copy of the question section
from the query at the beginning; everything after that is
leaked memory. To maximize the amount of leaked memory,
minimize the size of the question section in the query (how
big the query actually is), and maximize the size of the
question section in the response (how big the injector thinks
the query is).

The first step in minimizing the size of the query is to omit
the QTYPE and QCLASS fields. When these fields are absent,

4

the injector reads them from its own memory. QCLASS has
no effect, and QTYPE only controls whether the injector crafts
a type A (IPv4) or type AAAA (IPv6) response. The injectors
default to type A for unknown QTYPEs; they send a type
AAAA response only when the QTYPE is 001c . In either
case, the size of the question section is the same.

The other part of minimizing query size is to use a short
QNAME. To find short DNS names that trigger an injection
response, we enumerated all names of the forms a.b, a.bc,
and ab.c, with a, b, and c ranging over the characters ‘a’–‘z’,
‘0’–‘9’, ‘-’, and ‘_’, and sent them in DNS queries into China.
We found eight short names that worked: 3.tt, 4.tt, 5.tt,
6.tt, 7.tt, 8.tt, 9.tt, and x.co. 2 Each of these names
takes 6 bytes to encode (e.g., 01 3 02 t t 00). 3

At the start of Section III, we caused an injector to leak
29 bytes by increasing a QNAME label length prefix from 3
to 32. Intuitively, in order to leak more bytes, one should
increase the label length further. This intuition holds true,
but only up to a point. Figure 2 shows how the size of the
question section in a response varies as the label length in
a query is increased. (The injector we are concerned with
does not enforce RFC 1035’s length limit of 63 bytes on
labels [20 §4.1.4], naively interpreting every byte value as a
simple length instead.) They increment one-for-one until the
response question section reaches a maximum of 131 bytes.
Beyond that point, the question section becomes slightly
smaller than the maximum, 130 bytes.

This odd behavior is a product of the confused logic of the
query parsing algorithm (Appendix B). Two conditions that
cause the algorithm’s main loop to terminate are when the total
length of the QNAME exceeds 127 bytes while processing the
contents of a label, and when the parser has just read a length
prefix past the end of the query. The sweet spot of 131 bytes
occurs when the QNAME is 127 bytes exactly (including the
final label length prefix). In this case, the first exit condition
is avoided, allowing the next iteration of the loop to read 1
additional byte before exiting. The 127 bytes of the QNAME,
plus 4 bytes for the missing QTYPE and QCLASS, produce
a question section of 131 bytes total.

The QNAME length limit is a general characteristic of this
kind of injector, independent of the Wallbleed parsing bug.
We sent well-formed queries for names of increasing length
(a.google.sm, aa.google.sm, aaa.google.sm, . . .) into
China, using a base domain google.sm known to match the
blocklist. The injectors stopped responding once the m byte at
the end of the final label was pushed out of the first 127 bytes.

2We did this experiment on November 3, 2021. The name 3.tt stopped
triggering injection on August 7, 2023: see Section IV.

3There is a minor subtlety here. With names as short as these, it is
technically possible to omit the final 00 byte, which otherwise is needed to
terminate the flattened name string parsed from the query. The injector seems
to zero the 18th byte of the destination buffer before copying the query into
memory, so queries that are only 17 bytes long effectively have an implicit
null terminator. As the DNS header takes up 12 bytes, this trick only works for
QNAMEs as short as 5 bytes. But because the first leaked byte is a constant
00 in this case, shortening the QNAME from 6 to 5 bytes does not increase
the number of informative bytes leaked. See Appendix B for an algorithmic
description of this and other low-level details.

The limit is the same for type A and type AAAA queries, and
for any number of labels in the QNAME. The maximum name
length prescribed in RFC 1035 is 255 bytes [20 §2.3.4].

Though it is satisfying to know the absolute limits and the
reasons for them, there is little difference between 130 and
131 bytes in practice. In many of the experiments of this
paper (some performed before we understood the nuances of
the parsing algorithm), we used a label length prefix of ff ,
which gets 1 byte fewer per query than the maximum possible.
A question section of 130 bytes in response to sufficiently large
length prefixes agrees with findings of klzgrad in 2012 [6].

C. Incomplete patch (Wallbleed v2)

The GFW attempted to patch Wallbleed between September
and November 2023, adding restrictions to the DNS message
parsing algorithm. We have documented the progression of
patching in Section VII. The QTYPE and QCLASS fields
could no longer be omitted, and QCLASS had to have the
value 0001 . In addition, a label length prefix that overflowed
the end of the query but did not reach the 127-byte QNAME
length threshold caused a query to be ignored. A query like
the following no longer worked to leak DNS injector memory:

0000 0120 0001 0000 0000 0000 03 w w w 06

g o o g l e ff c o m 00

But the first patch overlooked one of the exit conditions
in the parsing loop. A query with QTYPE and QCLASS,
and with a final label length prefix that exceeded the 127-
byte threshold, still caused the parser to think the query was
larger than it really was. A slightly modified probe format still
worked to elicit the contents of memory:

0000 0120 0001 0000 0000 0000 03 w w w 06

g o o g l e 03 c o m ff 0001 0001

We named the pre-patch and post-patch vulnerabilities Wall-
bleed v1 and Wallbleed v2 respectively. We have used Wall-
bleed v1 probes in most of the experiments described in this
paper. After the patch, we were able to resume experiments
using modified probes, until Wallbleed v2 was finally patched
in March 2024. With Wallbleed v2, only maximum-length
overflows were possible: ff for a label length worked, but
20 did not. We found that the shortest domains, like 3.tt, no
longer worked as triggers, and therefore did later experiments
with te.rs, the next shortest effective domain.

D. Other details of injection triggering

Here we comment on a few other details of the conditions
to trigger injection. Note that there are other kinds of DNS
injector in the GFW [8], [9], with its own blocklist and
implementation quirks.

The injector defaults to type A responses. The DNS
injectors respond only to queries whose QNAME matches a
certain blocklist. The vulnerable injector injects type AAAA
responses to type AAAA queries, and type A responses to
queries of all other types.

The injector works on both IPv4 and IPv6. The UDP
datagrams that carry DNS queries may be sent over IPv4 or

5

TABLE I: Experiment timeline and vantage points. In total, we used three VPSes in Tencent Cloud (TC, Beijing) (AS45090),
one machine at the University Colorado Boulder (Scan, CO) (AS104) and one machine at the University of Massachusetts
Amherst (Long, MA) (AS1249).

Experiments Time Span Duration CN Hosts US Hosts Sections

Characterization Oct. 2, 2021 – Feb. 10, 2022 4 months 1 (TC, Beijing) 1 (Long, MA) §III-B
Re-characterization May 9 – Sep. 10, 2023 & Feb, 2024 5 months 1 (TC, Beijing) 1 (Long, MA) §III
Longitudinal Nov. 21, 2021 – Apr. 16, 2024 2 years 3 (TC, Beijing) 1 (Long, MA) §IV
Seeing Our Own Aug. 12 – Sep. 8, 2023 & Mar. 13, 2024 4 weeks 1 (TC, Beijing) 1 (Scan, CO) §V
Internet Scan Jun. 25 & Aug. 23, 2023 & Mar. 6, 2024 3 days – 1 (Scan, CO) §VI
Patching Behavior Sep. 6 – Nov. 7, 2023 & Mar. 6 – Apr. 16, 2024 3 months 2 (TC, Beijing) 2 (Scan & Long) §VII §III-C

IPv6; the injector responds to either, forging an IPv4 or IPv6
response as appropriate for the query. (Here we are referring to
the IP version over which the query is sent, not the QTYPE of
the query. A query sent over IPv4 may request an IPv6 address
and vice versa.) On May 9, 2023, we sent Wallbleed probes for
the QNAME ff g o o g l e . s m 00 from a VPS in
DigitalOcean (San Francisco, AS14061) to an IPv6 host in
Alibaba Cloud (Beijing, AS37963) and to a non–DNS server
2400:dd01:103a:4041::101 in China. In both cases, we got an
injected DNS response containing leaked memory. However,
we could not trigger DNS injection in the other direction,
sending queries from the VPS in China to the VPS or other
IPv6 addresses in the US. This is likely because the injector
was not deployed on the paths from our VPS in China to the
foreign destinations we tested.

Only destination port 53 is looked at. On May 9, 2023, we
sent queries for google.sm from the VPS in the US to our
VPS in China, varying the UDP destination port over every
value between 0 and 65535. Only queries sent to port 53
resulted in injections. This observation is consistent with prior
findings of Lowe et al. in 2007 [21 §6.4] and Anonymous et al.
in 2020 [8 §2.1].

IV. WHAT INFORMATION IS LEAKED?

To better understand what information is leaked from the
vulnerability, we conducted a longitudinal measurement and
collected data for two years, from November 21, 2021 to
November 29, 2023. Table I summarizes this experiment,
as well as those of later sections.

Based on the observations in Section III-B, we designed the
following Wallbleed probe to trigger the vulnerability:

0000 0120 0001 0000 0000 0000 01 3 ff t t

The probe is a query for 3.tt, but truncated before the ter-
minating empty label of QNAME (omitting the QCLASS and
QTYPE fields), and with the tt label length prefix increased
from 02 to ff . (Per footnote 3, no final 00 label is needed
for a QNAME this short.) As explained in Section III-B, this
probe causes a leak of 124 bytes of memory.

Experiment setup. We sent Wallbleed probes from a host in
a US university to an IP address in China. The address in China
was a VPS under our control in Tencent Cloud (AS45090). We
varied the UDP source port of probes over a range of 1,000
port numbers (10001 to 11000), as prior work has suggested

that the source port number may affect DNS injection [22].
We sent probes at a rate of 100 packets per second (pps) and
collected 5.1 billion Wallbleed responses over two years.

Query names. The QNAME we started with, 3.tt, was
evidently removed from the injectors’ blocklists and stopped
eliciting injection responses on Monday, August 7, 2023 at
11:04:01 (China Standard Time, UTC+8). We changed the
QNAME to 4.tt, another short name from Section III-B.

A. Wallbleed leaks network traffic

Looking at samples of the 124-byte leaked fragments of
memory, it is immediately clear that they include snippets
of network traffic. These snippets originate, at least in part,
in packets that pass by the injection device: in Section V we
demonstrate recovery of packet payloads that we ourselves
sent through the GFW. But the mix of protocols is different
from what one would expect of a uniform sample of all traffic
entering or exiting China.

After preliminary manual analysis of a sample of responses,
we used regular expressions to search for common or sensitive
strings. To reduce the risk of analyzing human-identifiable
information, our program outputs only the number of matches.
As shown in Table II, we find instances of UPnP, SSDP,
HTTP, SMTP, SSH, and TLS, as well as potentially sensitive
information such as HTTP cookies and passwords.

TABLE II: Counts of matches of regular expressions against
5.1 billion Wallbleed responses observed over two years.

Regular Expression Note Count Rate

ssdp:discover SSDP 184M 3.61%
UPnP/IGD\xml UPnP 174M 3.41%
(?s)[3-4]\xfftt.....-CONTROL (§IV-B) 121M 2.37%
\x45\x00 (§IV-A) 2.8M 0.05%
uuid:WAN SSDP 34M 0.67%
Host:␣ HTTP 21M 0.41%
(?i)Date:\s* . . . (§IV-C) 16M 0.31%
\x7f\x00\x00 (§IV-D) 2.8M 0.05%
Cookie:␣ HTTP 2.0M 0.04%
RCPT␣TO SMTP 72.5k 0.0014%
&key= URL 58.1k 0.0011%
MAIL␣FROM SMTP 42.4k 0.0008%
&password= URL 26.9k 0.0005%

It is remarkable that the memory contains application-layer
protocols other than DNS. Since the injector responds to DNS
queries only on UDP port 53 (Section III-D), we might expect

6

to see only DNS, or only UDP port 53 traffic; but in fact we
see a variety of protocols, including ones that typically run
on different ports and transport protocols. A noticeably large
fraction consists of UPnP (Universal Plug and Play) and SSDP
(Simple Service Discovery Protocol). UPnP uses HTTP—but
there is more than an order of magnitude more UPnP than
other forms of HTTP. The sample response in Section III is
one such instance of UPnP. We extracted the HTTP Location
header from 166 million UPnP snippets: in every case, the
host part of the URL was a literal IP address in one of
the private ranges of RFC 1918 [23]. Private addresses are
consistent with UPnP and SSDP, which are normally used for
service discovery in local networks. Nonetheless, it is difficult
to explain why they appear at such a high rate in the memory
of the vulnerable injector.

In addition to application-layer protocols, there are network-
layer and transport-layer headers and packets. For instance,
there are IPv4 headers. To find these, we first looked for the
two-byte pattern 45 00 that commonly begins an IPv4 header,
then (interpreting the bytes that follow as a header) filtered
for a valid IP checksum. Table III shows the distribution of
the protocol field in 181,834 IPv4 headers. TCP, UDP, and
ICMP are the most common, with a long tail of 43 others.

TABLE III: The most common protocol fields in IPv4
headers. Only counts of more than 10 are shown.

Number Protocol Name Count

6 TCP 120,087
17 UDP 59,882

1 ICMP 1,735
50 ESP 38

0 IPv6 Hop-by-Hop Option 36
47 GRE 12

There were 7,743 cases where an IP header was followed
by a TCP header and enough data to form a complete TCP
segment, having consistent length fields and valid IP and TCP
checksums. TCP headers have flags and port numbers, from
which we may heuristically infer which of the two IP addresses
in the IP header is the server, and which is the client. To avoid
analyzing human-identifiable information, we anonymized IP
addresses into two coarse categories: private (RFC 1918) and
public. We then counted the proportions of client/server and
private/public; the results are shown in Table IV.

TABLE IV: Client/server and private/public flows inferred
from 7,743 complete TCP segments.

Client Address Server Address Count

Private Private 384
Private Public 6,276
Public Private 193
Public Public 890

Since the DNS injectors monitor public Internet traffic,
we expected that TCP segments recovered from their memory
would have mostly public IP addresses; however only 11%

of TCP segments are public-to-public. Most of them actually
involve a private client and a public server. Because private
IP addresses are not globally routable, one might suspect that
they represent part of the GFW’s internal traffic (which would
be compatible with the observations about UPnP above).
However, the limited size of the memory leak means we
can count only fairly short TCP segments (up to 125 bytes).
It is also a possibility that the TCP segments we see were
encapsulated in a higher-level protocol like GRE, not directly
routed past the middlebox.

B. The four “digest” bytes

At the beginning of the longitudinal experiment, the first
4 bytes of leaked data in Wallbleed responses were different
from the others. They were generally more random-looking,
which was especially apparent when a leak otherwise consisted
of readable ASCII. Dissimilar byte sequences might be at-
tributed to partially overwritten memory, but this was different:
it was consistently the first 4 bytes,4 and they did not contain
fragments of network protocols as the other bytes did. We took
to calling these bytes “digest” bytes, on the supposition that
they represented a hash of the query packet, possibly for load-
balancing purposes. (This is only a guess—we tried, but did
not find a hash algorithm that reproduced the digest bytes.)
Digest bytes disappeared from Wallbleed responses in two
stages across 2022 and 2023.

Digest bytes were not actually random, but were determined
by the contents of the DNS query, including its UDP 4-tuple.
On February 15, 2022 (at a time when all Wallbleed responses
had digest bytes), we sent Wallbleed probes with identical
payloads and source and destination IP addresses and ports.
In all 114,717 resulting injections, the first 4 bytes were
exactly d8 fd d0 41 . Keeping the 4-tuple fixed and changing a
bit in the payload, however, caused the digest bytes to change.5

This may be compared to the injector process assignment of
Section V-A, which depends on the 4-tuple but not the payload.

We measured the prevalence of digest bytes over time by
looking for a particular string, ACHE-CONTROL (part of an
HTTP Cache-Control header), that frequently appears at the
beginning of Wallbleed responses (Table II). When digest
bytes are present, the first 4 bytes of the string are overwritten.
Figure 3 shows how digest bytes disappeared in two stages
over nine months. When we began measurements, all re-
sponses had digest bytes. The first response that lacked digest
bytes was on Saturday, September 3, 2022, at 01:31 (China
Standard Time, UTC+8). After that, the presence or absence
of digest bytes depended on the source port of the probe, with
roughly half of ports eliciting digest bytes at a given point in
time. The mapping of which ports caused digest bytes changed
sporadically, but remained at a 50% fraction—we suspect this
represents load balancing. After Thursday, June 8, 2023, at
15:33 (UTC+8), digest bytes almost completely disappeared.

4In the special case of a 17-byte query, including the probe used in this
section, the digest bytes came after the initial 00 described in footnote 3.

5Changing a payload bit also changes the IP checksum, so digest bytes
may have depended on IP and UDP headers only, or on headers and payload.

7

10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000

So
urc

e P
ort

 N
um

be
r o

f P
rob

e

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n o

f R
esp

on
ses

 H
av

ing
 D

ige
st

By
tes

Sep
2022

Nov Jan
2023

Mar May

0%
50%

100%

%
Di

ge
st

Fig. 3: The lower plot shows the rate of Wallbleed responses
with digest bytes, averaged over all probe source ports in a
day. Before September 3, 2022, all responses had digest bytes;
after June 8, 2023, none did; and in between, half did and half
did not. During the transition period, whether a given source
port elicited digest bytes was consistent over short time spans.
The upper plot shows the rate of digest responses by probe
source port and day, which is always close to 0% or 100%.

C. How long bytes remain in memory

We estimated how long bytes tend to remain in memory
by looking for naturally occurring timestamps, namely HTTP
Date headers. These strings, in the format Date: Wed, 21

Apr 2021 00:00:00 GMT, indicate the time at which an
HTTP response was generated. Figure 4 shows the distribution
of the age of 16.3 million Wallbleed responses containing
complete Date headers: the difference between when a re-
sponse was received and the timestamp encoded in its Date
header. Most Date headers are from the recent past: 75% are
between 0 and 5 seconds old, and 7% are older. About 10%
are nominally almost exactly 8 hours in the future relative to
the time of capture, which is likely a result of servers wrongly
reporting local time as UTC.

In Section V-A we conduct a similar memory-age experi-
ment, using our own deliberately placed timestamps.

D. Inferring the GFW’s internal architecture

Leaked memory occasionally contained what looked like
x86_64 pointers. These are 64-bit values in little-endian byte
order, whose most significant 16 bits are zero, and which

10 s 5 s 0 s +5 s +10 s
0%

25%
50%
75%

100%

16 h 8 h 0 h +8 h +16 h
0%

25%
50%
75%

100%

Fig. 4: Cumulative distribution of HTTP Date timestamps
relative to the time of capture. The upper plot has a scale
of seconds; the lower a scale of hours. Most timestamps are
less than 5 seconds old. Time zone errors make some appear
to be 8 hours in the future.

20
22

-01

20
22

-04

20
22

-07

20
22

-10

20
23

-01

20
23

-04

20
23

-07

20
23

-10

20
24

-01

20
24

-04

100

101

102

103

104

C
ou

nt

20
22

-0
9-

03

20
23

-0
6-

08

 Pattern
 __c_sscc0__1c2c

 sc_ss0_ssss_s4

 c_0scsc__0cccs

 __c_s122scsssss

 c_0scsc__0cccc

 cccs_0sc0cc__0

 s0_ss_s__4_ssc

 ssc_cc_s_c__cc

 ____sscc0__1c2c

 _c0ss0scs0s_s_

 _s_0c4s0csc_c0

 _s_0c4s0csc_c_

 _s4s_cccc_sc12_

Fig. 5: The counts of common stack frame patterns in leaked
memory seen weekly over time. ‘s’ and ‘c’ correspond to stack
and code addresses respectively, and digits to specific common
64-bit values we observed. Red vertical lines indicate when we
observed changes in the digest-byte pattern (Figure 3).

lie in conventional address ranges. On Linux, the typical
address range of stack pointers is 0x00007f0000000000–
0x00007fffffffffff, and that of code and heap pointers
is 0x0000550000000000–0x000056ffffffffff.

A typical stack from on Linux contains a stack address
followed by a code address (corresponding to a saved frame
pointer and return address respectively). We looked for these
patterns in our leaked payloads. We found 70,497 examples,
and noticed several common patterns. We created pattern
templates based off the 14 64-bit words present in each
payload. For example, a stack address (a 64-bit value in the

8

typical Linux stack pointer range) is replaced with the single
character ‘s’. In this way, code pointers (‘c’), and common
numbers including zero (‘0’), −128 (‘1’), 22 (‘2’), and 4 (‘4’)
are replaced, and remaining unlabeled words are converted
to ‘_’. This yields 3,559 unique patterns, the most frequently
occurring of which we plot in Figure 5.

The two red lines indicate the stages of digest byte transition
from Figure 3. The first line, on September 3, 2023, coincides
with a shift to the most seen stack frame patterns; the second,
on June 8, 2023, does not show as clear a pattern change. We
were not able to draw more concrete conclusions from these
changing patterns though; they may be purely coincidental.

The stack frames we see are congruent with Linux stack
frames with ASLR enabled, as indicated by a given pattern
seeing randomization in a subset of bits: the least significant
12 bits are consistent across stack/code pointers, corresponding
to the consistent offset in a 4 KB page. In some stack frames,
we also observe what appear to be glibc stack canaries [24],
indicated by a random value whose least significant 8 bits are
set to 0 preceding a stack/code address pair.

We also observe sequences of x86_64 instructions, such as
function prologues. We believe these to be code that the GFW
sees on the network, not the code of the GFW itself, for two
reasons. First, it is implausible that instructions would leak in
a stack-based memory disclosure, as Linux clears pages before
allocation and does not allow executable code in writable
pages. Second, we also observe x86_64 code in traffic seen on
a university network tap, which appears to be Microsoft code
updates that send (signed) plaintext binaries [25].

V. SEEING OUR OWN TRAFFIC

In Section IV-A we saw evidence that Wallbleed leaked at
least some network traffic, even non-DNS traffic, that passed
through an injection device. Here we confirm that fact with a
dedicated experiment. We sent our own tagged traffic across
the border into China, and were later able to recover a fraction
of it in Wallbleed responses.

Tagged traffic was recoverable only within a few seconds of
its being sent. The recovery rate was low, and varied by time
of day. Injection devices are internally divided into multiple
independent processes, which we reveal using a previously
undocumented side channel in the ordering of injected false
IP addresses. Each process has its own memory: recovery of
past traffic is possible only when a Wallbleed probe happens to
be assigned to the same process. The assignment of packets to
processes is deterministic, and depends on (at least) the source
port of the probe. Probes sent over IPv6 may recover traffic
originally sent over IPv4, and vice versa.

A. Timestamped magic sequence probes

We developed a new probe for this experiment. The magic
sequence probe is a UDP packet, sent to port 53, whose
40-byte payload is two copies of the 20-byte sequence:

G F W B l e e d exp pkt rep
timestamp

10 s 5 s 0 s +5 s +10 s
0%

25%
50%
75%

100%

Fig. 6: Cumulative distribution of the difference between the
timestamp stored in a magic sequence and when we recovered
it in a Wallbleed response. The graph shows the distribution
of 3,521 Wallbleed responses with magic sequences, collected
between August 12 and September 8, 2023. The range of time
differences is −10.19 s to −0.23 s.

where exp is an experiment ID, pkt is an incrementing
packet ID, rep is 0 for the first copy of the sequence in a probe
or 1 for the second, and timestamp is an epoch timestamp.
The fixed string “GFWBleed” and unique IDs make it easy to
identify magic sequences in Wallbleed responses. The time-
stamp lets us estimate how long a recovered magic sequence
was kept in memory. While magic sequence probes use UDP
and destination port 53, they are not DNS in structure.

At the same time as sending magic sequence probes, we sent
Wallbleed probes, as in Section IV, to recover the sequences
we were trying to place in memory. We sent the probes from
a US university to a destination in China between August 12
and September 8, 2023 (Table I). The destination host was
different from the one used in Section IV to avoid potential
interference between the two experiments. We sent magic
sequence probes at an average rate of 30 pps, from a single
source port 10000. We sent Wallbleed probes at 100 pps from
199 source ports in the range 20001–20199. The choice to use
a single source port for magic sequence probes would turn out
to be significant, as it helped reveal the existence of discrete
injector processes. We collected 3,521 Wallbleed responses
containing magic sequences.

Recovered traffic is usually less than 1 second old. Fig-
ure 6 shows the difference between the timestamp encoded
in a magic sequence probe and when it was recovered in a
Wallbleed response. As with the HTTP Date timestamps of
Section IV-C, traffic was short-lived in the injector’s memory:
99% of recovered magic sequences were less than 1.5 s old.
The uniform slope between −1 s and 0 s is an artifact of the
one-second granularity of timestamp. Unlike the HTTP Date
experiment, here there is no possibility of time zone confusion.

The likelihood to recover traffic varies in a daily cycle.
Figure 7 shows the number of Wallbleed responses containing
magic sequences at each hour of the day, over 28 days. Though
we sent Wallbleed probes and magic sequence probes at a
constant rate, the number of probes recovered per hour varies
in a 24-hour cycle, with a peak between 04:00 and 05:00
and a trough between 22:00 and 23:00 (China Standard Time,
UTC+8). This is consistent with the inverse diurnal pattern of
Internet traffic volume in China: the more traffic the injector
handles, the less likely we are to observe our own packets.

9

0

5

10

15

20

20 00 04 08 12 16 20 00 04
Hour of Day (China Standard Time, UTC+8)

M
ag

ic
 S

eq
ue

nc
e

R
es

po
ns

es
 P

er
 H

ou
r

Fig. 7: The likelihood of observing a magic sequence depends
on the time of day. The faint background points represent the
number of Wallbleed responses containing a magic sequence
received during every hour of the day, over four weeks starting
on August 14, 2023. The dark foreground points are averages
of corresponding hours across all 28 days.

Packets have consistent alignment in memory. When
we recover a magic sequence, we do not get all 40 bytes
in full. Almost always, the beginning is overwritten by the
bytes of the Wallbleed probe that triggered the response.
With the Wallbleed probe from Section IV, the first 18 bytes
are overwritten and the last 22 bytes are intact. It is likely
that the injection device aligns the first byte of packets at
consistent locations in memory. Other observations support
this hypothesis: in Section IV-B, we took advantage of the
alignment of a common ACHE-CONTROL string to test for the
presence of digest bytes.

Only a subset of source ports ever saw a magic sequence.
We sent magic sequence probes from a single source port
(10000). Though we sent Wallbleed probes from 199 differ-
ent source ports (20001–20199), only 64 source ports ever
recovered a magic sequence. (Those that did recovered 55
magic sequences on average.) Further investigation led us to
believe that each DNS injection device consists of multiple
independent processes, each with its own memory buffer,
and that packets are deterministically assigned to a process
according to features that include the source port. (But not
the payload, because magic sequence probes had variable
payloads. This contrasts with the digest bytes of Section IV-B,
which did depend on the payload.) Only when a Wallbleed
probe is assigned to the same process as the original magic
sequence probe does it have a chance of recovering it. (This
could explain the horizontal bands in Figure 3: for a time, half
of processes used digest bytes and half did not.) In the next
subsection, we show more evidence for the multiple-process
hypothesis, in the form of a previously unknown side channel
in the fake IP addresses of injected DNS responses.

B. The ordering of phony IP addresses

Previous research has shown that the GFW’s DNS injection
draws fake response IP addresses from a fixed pool—and that
different subsets of the pool are used, depending on what name
is queried [8 §3.2], [9 §5.3]. What has not been appreciated,
before now, is that the pools are also ordered and cyclic. When

probed at a high enough rate (around 100 queries per second
or more—much greater than an injector’s natural injection
rate), using a consistent query name and source/destination
IP address and port tuple, injected responses repeatedly cycle
through IP addresses in the same order (with occasional gaps
where the injector responded to queries from other users).
By repeated probing, it is possible to get multiple copies of the
sequence, reconcile the gaps, and recover the complete ordered
list of false IP addresses for a given query name. A sample
ordered list of 592 IP addresses for the query name 4.tt

appears in Appendix A.
Choosing any IP address to be “first” in the cycle, we may

build a reverse mapping from an IP address to its index. In-
dependent of the Wallbleed leak, every DNS response reveals
the injector’s internal index variable at the time of injection.
Figure 8 shows the index of the IP address contained in
Wallbleed responses over a 45-second interval, when probed
at a high rate from 199 source ports. We see not one, but
three roughly linear sequences. They are cyclic: when one
reaches the top, it wraps around to the bottom. The same
source port consistently maps to the same sequence. To us, it
looks like hash-based load balancing over multiple processes
within the injector device. The input to the load balancing
assignment includes a packet’s UDP 4-tuple, but not its data
payload (because the magic sequence probes’ payloads are
variable). Keeping the rest of the 4-tuple fixed, source ports
fall into a handful of equivalence classes according to which
injector process they are assigned to. This explains why only
64 of 199 source ports recovered magic sequences: those are
the ones that happened to be assigned to the same process as
the magic sequence probes with source port 10000.

C. IPv4 and IPv6

Wallbleed provides a way to tell if IPv4 and IPv6 packets
are processed on the same GFW nodes or different ones. If we
send a unique payload over IPv4 past the GFW, and see parts
of that payload in leaked memory from IPv6-based Wallbleed
queries, then we know that there are nodes that process both
IPv4 and IPv6 in the same memory.

We assembled a set of IPv6 prefixes that geolocate to
China from MaxMind’s GeoLite2 country code database [26]
(downloaded March 12, 2024), excluding prefixes that were
not routed, based on RouteViews BGP data (downloaded
March 13, 2024). We sent a Wallbleed v2 probe to 8 random
addresses in each IPv6 prefix. If at least 6 responded with
a Wallbleed leak, we kept the prefix. We sampled these 610
IPv6 prefixes to obtain 133 k random IPv6 addresses that have
a high likelihood of passing a GFW node. For IPv4 addresses,
we randomly sampled 126 k IPv4 addresses that responded to
an IPv4-wide ZMap scan, conducted March 6, 2024.

To each IPv4 and IPv6 address, we sent a needle: a UDP
port 53 packet with a 900-byte payload consisting of a repeated
sequence of an 8-byte string, 2-byte experiment ID, and 4-byte
index that identified which IP address we sent the needle to.
In parallel, we sent Wallbleed v2 probes to each address at a
speed of 50 packets per second, and collected the responses

10

0 5 10 15 20 25 30 35 40 45
Relative Time (s)

1

200

400

592
In

de
x

of
 IP

 A
dd

re
ss

Fig. 8: A 45-second sample of Wallbleed responses received on August 23, 2023, the result of probing at a high rate from 199
different source ports. The IP address in each response has been reverse-mapped to its index (from 1 to 592) in the ordered list
of Appendix A. The indices are not random, but form three distinct cyclic sequences—each source port consistently mapping
to one of the three. Each sequence represents a process within the DNS injector, with its own address list iterator and memory
allocation. Only 64 of 199 source ports mapped to the right process to recover the magic sequence probes of Section V-A.

to see if any contained previously sent needles. We repeated
this process five times over 80 minutes.

There were 70 instances of one address receiving a
Wallbleed-leaked payload containing a needle originally sent
to a different address. Of these, 12 leaked from an IPv4
needle to an IPv4-probed address, 47 leaked IPv6-to-IPv6,
8 IPv4-to-IPv6, and 3 IPv6-to-IPv4. The presence of IPv4-
to-IPv6 and IPv6-to-IPv4 leaks demonstrates that Wallbleed-
vulnerable DNS injectors process both IPv4 and IPv6 traffic
in the same memory space.

VI. IP ADDRESSES AFFECTED BY WALLBLEED

Wallbleed-prone DNS injectors formed part of the Great
Firewall of China. Did these injectors affect every part of
China, or anywhere outside China? How many IP addresses
might have had their traffic pass through a vulnerable injector,
and thus potentially be leaked? We did IPv4-wide scans
from the outside of China to answer these questions. Both
Wallbleed v1 and v2 affected IP addresses everywhere in
China, consistent with the hypothesis of deployment of DNS
injection at the network border. In many cases, even probes
sent from the US to a place outside China got Wallbleed
injections, because of network paths that transit the border.

A. IPv4-wide scan

We used ZMap [27] to scan the public IPv4 address space
from a US university. To discover IP addresses affected by
Wallbleed v1, we sent this payload to UDP port 53:

0000 0120 0001 0000 0000 0000 01 4 10 t t

The payload is designed to elicit overflow from Wallbleed
injectors, with only a small amount (14 bytes) of overflow
to confirm the vulnerability. As is explained in footnote 3,
this very short QNAME does not require a trailing 00 to be
effective. We sent packets at a rate of 250 Mbps, and the scan
took three hours.

We chose the name 4.tt because it is unlikely to be on
the DNS blocklists of countries other than China. As late
as November 2020, 4.tt was a Chinese-language gambling
site.6 (Gambling is one of the topics blocked by the Great

6https://web.archive.org/web/2020*/http://4.tt/

Firewall [28 Art. 15], [9 §4.2].) The name no longer resolves
to an IP address, and has not since at least July 2023. Using
a China-focused and defunct name in our scans reduces the
chance of triggering DNS injectors in other countries.

To discover IP addresses affected by Wallbleed v2, we sent
the following payload to UDP port 53:

0000 0100 0001 0000 0000 0000 02 t e 02 r

s ff 0001 0001

As introduced in Section III-C, te.rs was the shortest
effective QNAME for Wallbleed v2, and the label length prefix
had to extend past a constant threshold in the parser.7

Limitations. We ran the scans just three times: on June 25,
2023 and August 23, 2023 for Wallbleed v1, and on March 6,
2024 for Wallbleed v2. We scanned from one host in the US:
other locations with different network paths to China might
find different results. The results of this snapshot study reflect
routing patterns at the time of the scan, and we cannot say how
they may change over time. Similar injector middleboxes—
with or without Wallbleed-like vulnerabilities—may exist in
other countries, but our scans would not have found them, as
we used a China-specific blocked domain.

B. Analysis of Wallbleed responses

Unless stated otherwise, the analysis in this section is
based on the scan of August 23, 2023. The results of the
June 25, 2023 scan for Wallbleed v1 and the March 6, 2024
scan for Wallbleed v2 were qualitatively similar.8 The scan
elicited 248.3 million responses from 245.4 million distinct
IP addresses. 2.17 million IP addresses had more than one
response, as many as 20,270 in one case, which may have
been the result of routing loops [29], [30].

We used a two-step filter to separate Wallbleed in-
jections from other responses. First, we filtered for re-
sponses whose answer section contained a false IP ad-

7We failed to limit the amount of overflow with Wallbleed v2 probes as we
did with Wallbleed v1, which we might have done by adding a prefix to the
QNAME to bring its length close to the injectors’ maximum length threshold.

8Of the 1,157,694 /24 subnets with at least one responsive IP address in any
scan, 10,181 (0.9%) responded to a v1 scan only, 27,351 (2.4%) responded
to the v2 scan only, and 1,120,162 (96.8%) responded to both v1 and v2.

11

https://web.archive.org/web/2020*/http://4.tt/

dress known to be used by Wallbleed injectors. To be pre-
cise, we kept responses that ended in a resource record
of the form c00c 0001 0001 TTL 0004 a b c d
(type A), or c00c 001c 0001 TTL 0010 a b

c d e f g h (type AAAA), where
a.b.c.d or a:b:c:d:e:f :g:h is one of the IP addresses in Ap-
pendix A. (Both type A and type AAAA responses are
possible, though the probe did not specify a QTYPE.) Next,
we filtered for responses beginning with the byte pattern
0000 8180 0001 0001 0000 0000 01 4 10 t t ; that is, a
response for the QNAME and ID field of the probe, and flags
equal to 8180 , as is characteristic of the affected injectors.

After filtering, there remained 244,911,941 responses
(98.6% of all responses) from 242,442,549 distinct IP ad-
dresses that were definite Wallbleed injections. Table V shows
the distribution of UDP payload lengths and DNS answer
resource record types.

TABLE V: UDP length and DNS resource record type of
Wallbleed responses in the Wallbleed v1 scan.

UDP Payload Length (Bytes) # Responses TYPE

52 244,881,083 A
64 30,837 AAAA
33 8 A
48 7 A
45, 46, 50, 51, 158 1 A
68 1 AAAA

In virtually all cases (99.99%), the response to our probe
was a type A (IPv4) response of 52 bytes. 52 bytes is the
expected length, given the label length prefix in the probe
and the fixed size of the injector’s answer section. In a small
number of cases, the response was a type AAAA (IPv6)
response of 64 bytes. There is an explanation for this effect:
because our probe did not contain a QTYPE field, the injector
took the QTYPE from bytes in memory located just after the
probe. The injector defaults to type A responses, but in the
special case that the bytes corresponding to QTYPE have the
value 001c , the injector crafts a type AAAA response instead.

C. Analysis of responding IP addresses

We used IP geolocation and IP-to-ASN mapping to find
the location of IP addresses for which a Wallbleed response
was received in the horizontal scans (after filtering out non-
Wallbleed responses as described in the previous subsection).
Unsurprisingly, almost all are reported to be in China, and they
represent every geographic region of the country. A minority
of responding IP addresses are reported to be outside China
(after cross-checking against multiple databases to reduce the
chance of geolocation errors).

We looked up every IP address affected by Wall-
bleed responses in the country-level IP2Location LITE
DB5 database [31] (June 30, 2023) and the CAIDA ASN
database [32] (July 18, 2023). The 242 million IP addresses for
which a Wallbleed response was received map to 32 countries
or regions, and belong to 381 ASes with 554 different ASNs.

TABLE VI: The ASes with the greatest number of Wallbleed-
affected IP addresses. All are located in China, according
to a geolocation database. When an AS has multiple ASNs,
we show the one with the most affected IP addresses.

AS Name ASNs # IPs

China Telecom 4134, . . . 104.2 M
China Unicom Backbone 4837, . . . 54.9 M
China Mobile 9808, . . . 23.9 M
China TieTong 9394, . . . 12.8 M
China Unicom 4837, . . . 12.7 M
Alibaba 37963, . . . 7.3 M
Tencent 45090, . . . 5.2 M
China Networks IX 4847 3.7 M
CERNET 4538 3.1 M
Oriental Cable Network 9812 1.7 M

Table VI shows the top ten ASes by number of responding IP
addresses, all located in China.

For finer granularity, we sampled 10,000 IP addresses that
country-level geolocation placed in China, and looked them
up in the city- and province-level IP2Location LITE DB5
database [31] (August 24, 2023). The sampled IP addresses
represented all 22 provinces, 5 autonomous regions, and 4
municipalities of China. We therefore surmise that Wallbleed-
prone DNS injectors affected the entire country, not only
certain regions.

Just 110,676 (0.05%) IP addresses mapped to a country
other than China in country-level geolocation. It is not im-
plausible that addresses outside China should be affected,
as DNS injection is known to affect network paths that merely
pass through China in transit [33]. But because geolocation
databases can be inaccurate [34 §6.2], we applied additional
filtering to eliminate addresses that are less certain to be
outside of China:

1) We used three different databases: MaxMind Geo-
Lite2 city [26] (September 1, 2023), IP2Location LITE
DB5 [31] (August 24, 2023), and IPGeolocation.io [35]
(October 2, 2023). If an IP address mapped to China in
any database, we discounted its entire /24 network.

2) We looked up each IP address in the ASN databases of
Team Cymru [36] (October 2, 2023) and CAIDA [32]
(June 27, 2023). When an ASN’s country of registration
was China, we also discounted its entire /24 network.

The filter is designed to be conservative, in that it errs on
the side of placing IP addresses in China. 6,822 IP addresses
remained after filtering. Table VII summarizes them by AS,
and Figure 9 shows their geolocation.

Though there likely remain a few incorrect geolocations,
it is clear that some traffic outside of China may have been
exposed to the privacy risk represented by Wallbleed. In 2010,
Sparks et al. observed that 109 regions are DNS-polluted,
primarily due to GFW DNS injections on the transit paths to
TLD servers [33 §4.4]. In 2021, hosts in Mexico were not able
to reach whatsapp.net as the GFW injected forged responses
to queries to the root DNS servers in China [37], [38].

12

TABLE VII: Networks outside China for which Wallbleed
responses were received in horizontal scans from the US.
Two scans are represented, one on June 25, 2023 and one
on August 23, 2023. The table shows the ten ASes with the
greatest number of affected IP addresses. In total, there were
104 non-Chinese ASes in 37 countries in the June scan, and
99 ASes in 31 countries in the August scan.

AS Name ASN CC # Unique IPs

Jun. Aug.

Dreamline 9457 KR 1,534 1,086
MASTER-7-AS 26380 AU 315 489
Anpple Tech 133847 MY 243 257
Chinanet Backbone 4134 HK 235 248
AZT 53587 US 186 168
Network Joint 133762 HK 63 61
HK Broadband 9269 HK 50 85
STACKS-INC-01 398704 HK 31 78
Viettel Group 7552 VN 31 30
Aofei Data 135391 HK 29 28

Affected by the vulnerable injectors
Scanning host (US)

Fig. 9: City-level geolocation of IP addresses outside China
for which a Wallbleed response was received, when scanning
from our host in the US.

VII. MONITORING THE CENSOR’S PATCHING BEHAVIOR

We expected that the GFW would eventually patch the
Wallbleed vulnerability. With a combination of continuous
monitoring and China-wide scans, we captured the process of
patching both Wallbleed v1 in September/October 2023, and
Wallbleed v2 in March 2024.

Experiment setup. For continuous monitoring, we sent
Wallbleed probes and ordinary DNS queries for the same
QNAME, at 100 pps, from the US to an IP address under
our control in China. We used 4.tt for v1 probes and and
te.rs for v2 probes. The ordinary DNS queries acted as
controls to distinguish patching of the vulnerability from the
injector being offline or the QNAME being removed from
the blocklist. If the injector stops responding to Wallbleed
probes, but continues to respond to the normal probes without
interruption, this is evidence that the censor can hot-patch
the GFW with minimal downtime. On the other hand, if
the injector stops responding to both for some time, and
later resumes responding to normal probes only, then we can
measure the downtime related to patching. Using a machine

09
Sep

16
Sep

23
Sep

30
Sep

07
Oct

14
Oct

21
Oct

28
Oct

0.25 M

0 M

0.25 M

0.5 M

0.75 M

1 M

Un
iqu

e /
24

 Su
bn

ets

Total Monitored
Total Responsive
New Responsive
New Unresponsive

Fig. 10: We tracked the number of IPv4 /24 subnets that
responded to Wallbleed v1 probes over time. We scanned
1,130,343 IP addresses (one per subnet) every 15 minutes
between September 6 and November 7, 2023. We failed to
collect data between September 17 and October 4, 2023.
Wallbleed v1 was patched in two major stages: between
September 6 and 14, 2023; and between October 22 and
November 1, 2023.

in UMass Amherst, we did continuous monitoring of Wall-
bleed v1 between September 6 and November 7, 2023, and of
Wallbleed v2 between March 6 and April 16, 2024.

We also did scans of a sample of about one million ad-
dresses in China. These were designed to test whether patching
would happen at different times in different regions, or simul-
taneously across the country. We selected one representative
per /24 subnet from the 215 million responsive IPv4 addresses
discovered in the IPv4 scan of Section VI, yielding 1,130,343
IP addresses. We used ZMap [27] to send a Wallbleed probe
to each of these IP addresses every 15 minutes. We conducted
these scans from CU Boulder, between September 6 and
November 7, 2023 for Wallbleed v1, and between March 28
and April 16, 2024 for Wallbleed v2.

Experiment results. Figure 10 shows the number of /24
subnets that responded to Wallbleed v1 probes in ZMap scans,
as well as the hourly churn rate: the number of IP addresses
that were responsive in one hour but not the next, or vice versa.
We aggregated responding IP addresses by hour to reduce false
negatives caused by packet loss.

There are some variations in the response rate leading up
to October 23, when the Wallbleed vulnerability was patched
over about a week. Starting on October 23, we observed
discrete steps down in response rate as the vulnerability
was progressively patched. The last three steps occurred on
October 30 (Monday), October 31 (Tuesday), and November 1
(Wednesday) at the same time each day: between 10:00
and 12:00 (China Standard Time, UTC+8). After 12:00 on
November 1, we no longer saw Wallbleed v1 responses for
any IP addresses we scan. We examined the IP addresses that

13

transitioned to unresponsive in the step on October 30. 86% of
the 39 k addresses were part of a /20 subnet that no longer
responded, indicating that the discrete steps corresponded to
large blocks of IP addresses changing in tandem, rather than
a more randomized, load-balancing style of update.

Wallbleed v2 was completely patched by March 28, 2024.
Unfortunately, we only captured the last 60 minutes of the
patching process, in four horizontal scans. Like Wallbleed v1,
Wallbleed v2 was patched in discrete steps. We isolated the
time of final patching of Wallbleed v2 to between 16:01:30
and 16:16:30 (China Standard Time, UTC+8) on March 28,
2024 (a different time of day than v1).

In the last one-hour capture, 42,084 IP addresses elicited
Wallbleed v2 responses. Interestingly, 33,779 (80.3%) of these
addresses belong to AS4538 (CERNET, the China Education
and Research Network Center), along with a long tail of 49
ASes that belong to China Mobile and various universities in
China. This observation supports the hypothesis that CERNET
maintains a subset of the national GFW infrastructure. The
DNS injector in CERNET had the Wallbleed v2 vulnerability
in common with the rest of the GFW, suggesting unified
management and coordinated patching. Meanwhile, its distinct
patching schedule demonstrates a degree of independence in
its operation and maintenance.

VIII. RELATED WORK

DNS injection by the Great Firewall is one of the oldest
and most-studied forms of Internet censorship. The earliest
documentation we know of is in two independent studies
from 2002, one by Dong [39] and one by Zittrain and Edel-
man [40], both of which found that a single bogus IP address
was used in all injected responses. In 2009, gfwrev discovered
two types of DNS injector in China with distinct fingerprints,
and documented another seven response IP addresses in ad-
dition to the one that had been used in 2002 [13]. In 2014,
Anonymous et al. analyzed IP ID and TTL patterns in injected
responses to infer the existence of 367 separate injection
processes, each injecting at a rate of between 0 and 60 fake
DNS responses per second [7 §7]. The number of bogus IP
addresses in use had grown to at least 174 by 2016 [41], [42].
Anonymous et al. distinguished the fingerprints of at least
three DNS injectors in 2020 [8]. Large-scale measurements
by Hoang et al. in 2021 showed that tracking changes in
the GFW’s DNS domain blocklists can help in understanding
censorship trends in China [9].

The past work that most resembles, and indeed inspires,
our own is gfw-looking-glass.sh, a one-line shell script posted
by klzgrad from gfwrev in 2010 [5], [6]. To the best of our
knowledge, it was the first memory-dumping vulnerability in
the GFW. DNS queries with a name truncated after the first
byte of a 2-byte compression pointer caused the GFW’s DNS
parser to treat nearby memory as part of the name, and leak
it back in the injected response. This vulnerability was fixed
prior to our discovery of Wallbleed. The script incidentally
demonstrated that a query name containing an embedded

dot character, 06 w u x . r u , was treated the same as
one correctly split into separate labels, 03 w u x 02 r u ,
indicating that the GFW, at that time too, serialized the name
to a dotted string before matching it against a blocklist, rather
than matching on structured labels. In 2014, klzgrad found that
the GFW’s DNS injector had ceased to interpret compression
pointers, opening opportunities to evade DNS injection with
queries that used pointers in unusual ways [43].

Wallbleed was independently discovered by Sakamoto and
Wedwards in 2023 [44]. They analyzed the leaked data,
inferred the characteristics of the GFW’s processes, and
proposed several attacks leveraging this vulnerability. Apart
from confirming their observations, we developed the study
of Wallbleed further with longitudinal and Internet-wide mea-
surements of more than two years since October 2021. We
uncovered the root cause of Wallbleed, reconstructed the
parsing logic in C code, used a novel side channel to iden-
tify individual processes in the vulnerable injector, examined
affected IP addresses, and, after the first incomplete patch of
November 2023, found the Wallbleed v2 vulnerability.

Wallbleed is named like other similar memory disclosure
vulnerabilities. Heartbleed, a vulnerability in OpenSSL, al-
lowed clients to leak up to 64 KB of a TLS server’s memory
at a time [1]. Cloudbleed was a vulnerability in an HTML
parser used on edge servers of the Cloudflare content delivery
network in 2017 [3], [4]. Similarly, Ticketbleed documented
a vulnerability in F5 middleboxes [2].

IX. ETHICS

Three main ethical considerations arise in this research. The
first is the handling of experimental data, such as what we
collected over two years in our longitudinal experiment. If, as
we contend, Wallbleed represented a privacy risk to the users
whose traffic passed through vulnerable injectors, then the
storage and analysis of leaked data require sensitivity and care.
The second is whether, or under what circumstances, it is okay
to exploit a security vulnerability in a system that may itself
be regarded as a hostile network attacker [10], [11]—in this
case the GFW. The third is how to approach disclosure.

A. Data handling

The experiment in Section V demonstrates that at least some
of the data exposed by Wallbleed to third parties originated in
traffic transiting the firewall. This presents a privacy concern:
network traffic may contain sensitive information such as
usernames, passwords, or web requests. We submitted our
research plan to our institutional review board (IRB), which
exempted the research as not involving human subjects. Below
we detail our considerations and safeguards for this data.

Data collection. There is an unavoidable trade-off between
reducing data collection and being able to do meaningful
analysis. Once the Wallbleed vulnerability was understood,
leaking a single byte would have been sufficient to confirm
its presence, but such limited measurement would not have
allowed us to study the firewall’s architecture or how Internet
users were impacted. On-the-fly analysis of in-memory (rather

14

than stored) data would have allowed us to report some results,
but we would not have noticed and would not have been
able to analyze unanticipated changes, such as the gradual
disappearance of “digest” bytes in Section IV-B. We therefore
focused on a strategy of protecting collected data, rather
than artificially limiting what was collected. Ultimately, after
discussion within our team and with reviewers, we decided to
delete the collected data upon publication of this work.

B. Ethics of exploitation

Exploiting a bug of this nature is ethically complicated.
From a deontological perspective [45 §4.1], security re-
searchers might decide to avoid exploiting vulnerabilities
in systems they do not control under any circumstances,
as doing so may have unintended and negative impacts that
are difficult to predict. Alternatively, from a consequentialist
perspective [45 §4.1], one must weigh the benefits of research
against its risk of harms.

We identify two high-level sources of potential harm and
negative effects in our research: (1) the data we collected,
which may contain sensitive information, could leak; and
(2) the probes we sent may cause the GFW, or other middle-
boxes or end hosts, to crash or malfunction. We have discussed
the first source of risks in Section IX-A. Below we discuss how
we manage the second source of risks.

Given that the system we exploit is itself considered by
many to be a source of harm [10], [11], even if our experiments
result in damage to the GFW, it will essentially reduce harm
to more than a billion people by hampering censorship. In
particular, any crash of the GFW is unlikely to impede network
traffic. Past research has shown that GFW DNS injectors are
on-path devices [7]–[9], [12], [21], [39], [46]–[48]; that is,
they work by getting a mirrored copy of traffic, and are not
themselves a link in the transmission chain. Finally, prior work
has exploited vulnerabilities in other harmful systems like
botnets and middleboxes in order to study those problematic
systems [29], [49]–[52].

To minimize the risk of crashing other middleboxes and end
hosts, we cautiously only sent traffic to hosts under our control
during the first 18 months of experiments. Only after observing
a lack of adverse effects did we start Internet-wide scans.
Following best practices for Internet scanning [27], we limited
the traffic volume to each host not under our control to only
one UDP packet per 15 minutes. We hosted a web page at the
source IP address of our scans, displaying a project description
and explaining how to opt out of scanning. We received and
honored one opt-out request in the course of the study.

C. Whether to disclose, and how

Disclosing a bug of this nature is also complicated. By re-
porting the vulnerability, are we ultimately “helping” the
Great Firewall? There is also a trade-off to consider between
immediate and delayed disclosure: remove the privacy risk to
users now, or take time to gain a greater understanding of the
censorship system, in order to perhaps avoid even greater risks
and harm in the future?

We decided on a strategy of coordinated disclosure, but
only after taking advantage of the opportunity occasioned by
the vulnerability to learn as much about the DNS injection
subsystem as possible. Two factors led us to the decision
to eventually disclose. The first is the risk to the privacy of
users. Once the unpatched bug was made public, it could be
used by others who do not have regard for users’ safety. The
second is that the Wallbleed vulnerability does not reduce the
effectiveness of the DNS censorship system. With Wallbleed
fixed, the injectors carry on interfering with connections as
before, but they do not do more of it.

This ethical calculus is specific to this situation. Under other
circumstances we might come to a different decision. If there
were an implementation error in the Great Firewall that caused
it to fail to censor some fraction of connections, and otherwise
did not increase risk to users, we would not be obligated to
report it. Our allegiance is not to bug-fixing in the abstract,
but to the security of users. We maintain that the only correct
fix for a bug like Wallbleed is the removal of affected devices
(i.e., the GFW injectors) from the network: the real “bug” is
their very presence, not in the specific implementation errors
they undoubtedly have. The incomplete patch in November
2023 that led to the Wallbleed v2 variant reinforces the point:
as long as the injectors exist, they will pose a risk to users.

In the end, our decision to disclose was made moot by the
patching of the vulnerability, before we were able to report the
issue to CNCERT. This paper, too, forms part of our disclosure
strategy: documenting and publicizing this vulnerability will
draw more attention to the many dangers of censorship.

X. LESSON LEARNED FOR FUTURE WORK

Our study provides a unique case study of the balance
between protecting user data and utility of research data in
understanding a system. While in hindsight it is possible to
see areas where we could have chosen to collect less data
(and thus reduced the risk of collecting personal information),
we note that it is difficult to know the optimal boundaries of
unstructured data ahead of time. For instance, we learned of
the 4-byte “digest bytes” feature by studying a large number of
full payloads. In hindsight, we might still have discovered this
feature of the GFW by leaking only 4 bytes, so it may appear
unnecessary to collect more than that. But without knowledge
of the nature of this feature ahead of time, it would be difficult
to know that 4 bytes would be sufficient. Likewise, when
choosing how many bytes to leak, we are faced with a difficult
trade-off: leak more bytes at the risk of collecting personal
data (but potentially learn more about a yet-unknown feature
of the GFW), or leak fewer bytes at the risk of learning less
(but limit the potential collection of sensitive data). This type
of trade-off should be considered carefully for all work, and
we hope that by documenting our thought process, we inspire
further discussion and debate among the research community.

IRB decisions. We were asked to push back on our Institu-
tional Review Board’s decision to mark our work as exempt, as
reviewers felt that there were additional ethical considerations

15

of our work not captured by that decision. We agree that our
work has complex ethical considerations, but disagree that
these considerations fall explicitly within the bounds of an
IRB, or that authors should be required to push back on IRB
decisions they disagree with.

We were transparent in the protocol we submitted to the
IRB, including that the collected data may contain third-party
network traffic. This is an excerpt from our submitted protocol:

“We have discovered that, in processing certain
malformed DNS queries, the subsystem may in-
clude fragments of unrelated system memory in
its injected response. In short, the firewall ‘leaks’
small fragments of memory, which may incidentally
include other people’s network traffic that passes
by the GFW. The discovery is significant both for
network security and for understanding the Great
Firewall. While the contents of the leaked mem-
ory are unpredictable, it is possible that they may
contain personally identifiable information, such as
IP addresses. Therefore, we are seeking the IRB’s
guidance on how to proceed, and in particular, on
whether this research requires full IRB review.”

We recognize that IRB exemption is not the same thing as
the IRB making an ethical determination about the work, nor
does it necessarily mean the IRB feels there is no potential
harm or ethical considerations needed. Rather, an exemption
means that the IRB has determined it does not fall within a
narrow definition of “human subjects research” [53 § 219.102].
To this end, we treated the data we collected as sensitive, and
have deleted it prior to publication as a precaution against
potential abuse. Nonetheless, we feel it is important for our
community to understand the limitations of IRBs, and to avoid
using them as a stand-in for ethical decisions.

XI. CONCLUSION

In this work, we present and study Wallbleed, a buffer
over-read vulnerability in the DNS injection subsystem of the
Great Firewall of China (GFW). We conducted longitudinal
and Internet-wide measurements to understand the cause and
implications of Wallbleed. We also revealed details of the
GFW’s internal architecture and operations that would not
be possible to learn about without Wallbleed. Wallbleed ex-
emplifies that the harm censorship middleboxes impose on
Internet users goes even beyond the direct (and designed)
harm of censorship: it can severely violate users’ privacy and
confidentiality.

AVAILABILITY

To encourage future research and promote transparency and
reproducibility, we have made the code, anonymized data,
and additional context about our work and publishing process
publicly available. For improved accessibility, we offer both
English and Chinese HTML versions of the paper. The project
homepage is at: https://gfw.report/publications/ndss25/en.

ACKNOWLEDGMENTS

We are deeply grateful to several colleagues who wish to
remain unnamed for their valuable contributions and guidance
throughout the entire project. We are also thankful to klzgrad
from gfwrev for their inspiring pioneering work in 2010, and
for providing rounds of thoughtful comments in this study.
In addition, we thank Alberto Dainotti, Ali Zohaib, Cecylia
Bocovich, Diogo Barradas, J. Alex Halderman, Jakub Dalek,
Jeffrey Knockel, Michael Carl Tschantz, Nadia Heninger,
Philipp Winter, ppmaootc, Prateek Mittal, Xiao Qiang, and
Zakir Durumeric. We also thank the anonymous reviewers for
their helpful comments and guidance.

REFERENCES

[1] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey,
and J. A. Halderman, “The matter of Heartbleed,” in Internet
Measurement Conference. ACM, 2014. [Online]. Available:
https://dl.acm.org/doi/10.1145/2663716.2663755

[2] F. Valsorda. (2016) Ticketbleed (CVE-2016-9244). [Online]. Available:
https://filippo.io/Ticketbleed/

[3] J. Graham-Cumming. (2017, Feb.) Incident report on
memory leak caused by Cloudflare parser bug. [Online].
Available: https://blog.cloudflare.com/incident-report-on-memory-leak-
caused-by-cloudflare-parser-bug/

[4] M. Prince. (2017, Mar.) Quantifying the impact of “Cloudbleed”.
[Online]. Available: https://blog.cloudflare.com/quantifying-the-impact-
of-cloudbleed/

[5] gfwrev. (2010, Sep.) “gfw-looking-glass.sh: while true; do printf
"\0\0\1\0\0\1\0\0\0\0\0\0\6wux.ru\300" | nc -uq1 $SOME_IP 53 |
hd -s20; done”. [Online]. Available: https://twitter.com/gfwrev/status/
25220534979

[6] Anonymous. (2020, Mar.) GFW archaeology: gfw-looking-glass.sh.
[Online]. Available: https://github.com/net4people/bbs/issues/25

[7] ——, “Towards a comprehensive picture of the Great Firewall’s
DNS censorship,” in Free and Open Communications on the Internet.
USENIX, 2014. [Online]. Available: https://www.usenix.org/system/
files/conference/foci14/foci14-anonymous.pdf

[8] Anonymous, A. A. Niaki, N. P. Hoang, P. Gill, and A. Houmansadr,
“Triplet censors: Demystifying Great Firewall’s DNS censorship
behavior,” in Free and Open Communications on the Internet. USENIX,
2020. [Online]. Available: https://www.usenix.org/system/files/foci20-
paper-anonymous_0.pdf

[9] N. P. Hoang, A. A. Niaki, J. Dalek, J. Knockel, P. Lin, B. Marczak,
M. Crete-Nishihata, P. Gill, and M. Polychronakis, “How great
is the Great Firewall? Measuring China’s DNS censorship,” in
USENIX Security Symposium. USENIX, 2021. [Online]. Available:
https://www.usenix.org/system/files/sec21-hoang.pdf

[10] Internet Society. (2023, Dec.) When is the Internet not the Internet?
[Online]. Available: https://www.internetsociety.org/resources/internet-
fragmentation/the-chinese-firewall/

[11] D. Anderson, “Splinternet behind the Great Firewall of China: Once
China opened its door to the world, it could not close it again,” Queue,
vol. 10, no. 11, pp. 40–49, Nov. 2012. [Online]. Available: https://queue.
acm.org/detail.cfm?id=2405036&doi=10.1145%2F2390756.2405036

[12] H. Duan, N. Weaver, Z. Zhao, M. Hu, J. Liang, J. Jiang, K. Li, and
V. Paxson, “Hold-On: Protecting against on-path DNS poisoning,” in
Securing and Trusting Internet Names. National Physical Laboratory,
2012. [Online]. Available: https://www.icir.org/vern/papers/hold-on.
satin12.pdf

[13] gfwrev. (2009, Nov.) 深入理解GFW：DNS污染. [Online]. Available:
https://gfwrev.blogspot.com/2009/11/gfwdns.html

[14] Z. Chai, A. Ghafari, and A. Houmansadr, “On the importance of
encrypted-SNI (ESNI) to censorship circumvention,” in Free and Open
Communications on the Internet. USENIX, 2019. [Online]. Available:
https://www.usenix.org/system/files/foci19-paper_chai_update.pdf

[15] K. Bock, G. Naval, K. Reese, and D. Levin, “Even censors have a
backup: Examining China’s double HTTPS censorship middleboxes,”
in Free and Open Communications on the Internet. ACM, 2021.
[Online]. Available: https://doi.org/10.1145/3473604.3474559

16

https://gfw.report/publications/ndss25/en
https://dl.acm.org/doi/10.1145/2663716.2663755
https://filippo.io/Ticketbleed/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/
https://blog.cloudflare.com/quantifying-the-impact-of-cloudbleed/
https://blog.cloudflare.com/quantifying-the-impact-of-cloudbleed/
https://twitter.com/gfwrev/status/25220534979
https://twitter.com/gfwrev/status/25220534979
https://github.com/net4people/bbs/issues/25
https://www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf
https://www.usenix.org/system/files/conference/foci14/foci14-anonymous.pdf
https://www.usenix.org/system/files/foci20-paper-anonymous_0.pdf
https://www.usenix.org/system/files/foci20-paper-anonymous_0.pdf
https://www.usenix.org/system/files/sec21-hoang.pdf
https://www.internetsociety.org/resources/internet-fragmentation/the-chinese-firewall/
https://www.internetsociety.org/resources/internet-fragmentation/the-chinese-firewall/
https://queue.acm.org/detail.cfm?id=2405036&doi=10.1145%2F2390756.2405036
https://queue.acm.org/detail.cfm?id=2405036&doi=10.1145%2F2390756.2405036
https://www.icir.org/vern/papers/hold-on.satin12.pdf
https://www.icir.org/vern/papers/hold-on.satin12.pdf
https://gfwrev.blogspot.com/2009/11/gfwdns.html
https://www.usenix.org/system/files/foci19-paper_chai_update.pdf
https://doi.org/10.1145/3473604.3474559

[16] N. P. Hoang, J. Dalek, M. Crete-Nishihata, N. Christin, V. Yegneswaran,
M. Polychronakis, and N. Feamster, “GFWeb: Measuring the Great
Firewall’s Web censorship at scale,” in USENIX Security Symposium.
USENIX, 2024. [Online]. Available: https://www.usenix.org/system/
files/sec24fall-prepub-310-hoang.pdf

[17] K. Bock, iyouport, Anonymous, L.-H. Merino, D. Fifield,
A. Houmansadr, and D. Levin. (2020, Aug.) Exposing and
circumventing China’s censorship of ESNI. [Online]. Available:
https://github.com/net4people/bbs/issues/43

[18] A. Master and C. Garman, “A worldwide view of nation-state Internet
censorship,” in Free and Open Communications on the Internet,
2023. [Online]. Available: https://www.petsymposium.org/foci/2023/
foci-2023-0008.pdf

[19] S. Nourin, V. Tran, X. Jiang, K. Bock, N. Feamster, N. P. Hoang,
and D. Levin, “Measuring and evading Turkmenistan’s internet
censorship,” in The International World Wide Web Conference. ACM,
2023. [Online]. Available: https://dl.acm.org/doi/abs/10.1145/3543507.
3583189

[20] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035, Nov. 1987. [Online]. Available: https://www.rfc-editor.org/
info/rfc1035

[21] G. Lowe, P. Winters, and M. L. Marcus, “The great DNS wall of
China,” New York University, Tech. Rep., 2007. [Online]. Available:
https://censorbib.nymity.ch/pdf/Lowe2007a.pdf

[22] A. Bhaskar and P. Pearce, “Many roads lead to Rome: How
packet headers influence DNS censorship measurement,” in USENIX
Security Symposium. USENIX, 2022. [Online]. Available: https:
//www.usenix.org/system/files/sec22-bhaskar.pdf

[23] R. Moskowitz, D. Karrenberg, Y. Rekhter, E. Lear, and G. J. de Groot,
“Address allocation for private Internets,” RFC 1918, Feb. 1996.
[Online]. Available: https://www.rfc-editor.org/info/rfc1918

[24] hugsy, “Playing with canaries,” Jan. 2017. [Online]. Available:
https://www.elttam.com/blog/playing-with-canaries/#glibc-analysis

[25] M. Phaedrus, “Some technical details behind the
mundane Windows update,” 2022. [Online]. Available:
https://great-computing.quora.com/Some-technical-details-behind-
the-mundane-Windows-Update-https-www-quora-com-Does-the-
Windows-update-use-HTTP-answer

[26] “MaxMind GeoLite2 geolocation database.” [Online]. Available:
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

[27] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide scanning and its security applications,” in USENIX Security Sym-
posium. USENIX, Aug. 2013. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity13/technical-sessions/paper/durumeric

[28] State Council of the People’s Republic of China, “互联网信息服务
管理办法 (Measures for the Administration of Internet Information
Services),” Sep. 2000. [Online]. Available: https://www.gov.cn/gongbao/
content/2000/content_60531.htm

[29] K. Bock, A. Alaraj, Y. Fax, K. Hurley, E. Wustrow, and D. Levin,
“Weaponizing middleboxes for TCP reflected amplification,” in
USENIX Security Symposium. USENIX, 2021. [Online]. Available:
https://www.usenix.org/system/files/sec21-bock.pdf

[30] A. Alaraj, K. Bock, D. Levin, and E. Wustrow, “A global measurement
of routing loops on the Internet,” in Passive and Active Measurement.
Springer Nature Switzerland, 2023, pp. 373–399. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-031-28486-1_16

[31] “IP2Location LITE IP address geolocation database.” [Online].
Available: https://www.ip2location.com/database/ip2location

[32] CAIDA, “CAIDA AS to organization mapping dataset.”
[Online]. Available: https://www.caida.org/catalog/datasets/request_
user_info_forms/as_organizations/

[33] Sparks, Neo, Tank, Smith, and Dozer, “The collateral damage of Internet
censorship by DNS injection,” SIGCOMM Computer Communication
Review, vol. 42, no. 3, pp. 21–27, 2012. [Online]. Available:
https://conferences.sigcomm.org/sigcomm/2012/paper/ccr-paper266.pdf

[34] Z. Weinberg, S. Cho, N. Christin, V. Sekar, and P. Gill, “How to
catch when proxies lie: Verifying the physical locations of network
proxies with active geolocation,” in Internet Measurement Conference.
ACM, 2018. [Online]. Available: https://www.contrib.andrew.cmu.edu/
~nicolasc/publications/Weinberg-IMC18.pdf

[35] “IPGeolocation.io IP geolocation API.” [Online]. Available: https:
//ipgeolocation.io/documentation/ip-geolocation-api.html

[36] Team Cymru, “Team Cymru IP to ASN lookup v1.0.” [Online].
Available: https://asn.cymru.com/

[37] Q. Lone. (2022, Apr.) Detecting DNS root manipulation.
[Online]. Available: https://labs.ripe.net/author/qasim-lone/detecting-
dns-root-manipulation/

[38] Y. Nosyk, Q. Lone, Y. Zhauniarovich, C. H. Gañán, E. Aben, G. C. M.
Moura, S. Tajalizadehkhoob, A. Duda, and M. Korczyński, “Intercept
and inject: DNS response manipulation in the wild,” in Passive and
Active Measurement. Springer Nature Switzerland, 2023. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-031-28486-
1_19

[39] B. Dong, “A report about national DNS spoofing in China on
Sept. 28th,” Dynamic Internet Technology, Inc., Tech. Rep., Oct. 2002.
[Online]. Available: https://web.archive.org/web/20021015121616/http:
//www.dit-inc.us/hj-09-02.html

[40] J. Zittrain and B. G. Edelman, “Internet filtering in China,” IEEE
Internet Computing, vol. 7, no. 2, pp. 70–77, Mar. 2003. [Online].
Available: https://nrs.harvard.edu/urn-3:HUL.InstRepos:9696319

[41] O. Farnan, A. Darer, and J. Wright, “Poisoning the well – exploring
the Great Firewall’s poisoned DNS responses,” in Workshop on
Privacy in the Electronic Society. ACM, 2016. [Online]. Available:
https://dl.acm.org/authorize?N25517

[42] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster, N. Weaver, and
V. Paxson, “Global measurement of DNS manipulation,” in USENIX
Security Symposium. USENIX, 2017. [Online]. Available: https://www.
usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf

[43] klzgrad. (2014, Nov.) DNS compression pointer mutation. [Online].
Available: https://gist.github.com/klzgrad/f124065c0616022b65e5

[44] Sakamoto and E. Wedwards, “Bleeding wall: A hematologic
examination on the Great Firewall,” in Free and Open
Communications on the Internet, 2024. [Online]. Available:
https://www.petsymposium.org/foci/2024/foci-2024-0002.pdf

[45] T. Kohno, Y. Acar, and W. Loh, “Ethical frameworks and computer
security trolley problems: Foundations for conversations,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 5145–
5162. [Online]. Available: https://securityethics.cs.washington.edu/

[46] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson, “SoK:
Towards grounding censorship circumvention in empiricism,” in
Symposium on Security & Privacy. IEEE, 2016. [Online]. Available:
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf

[47] X. Xu, Z. M. Mao, and J. A. Halderman, “Internet censorship in China:
Where does the filtering occur?” in Passive and Active Measurement
Conference. Springer, 2011, pp. 133–142. [Online]. Available:
https://web.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf

[48] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishnamurthy, “Your
state is not mine: A closer look at evading stateful Internet censorship,”
in Internet Measurement Conference. ACM, 2017. [Online]. Available:
https://www.cs.ucr.edu/~krish/imc17.pdf

[49] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
analysis of a botnet takeover,” in Proceedings of the 16th ACM
conference on Computer and communications security, 2009, pp.
635–647. [Online]. Available: https://sites.cs.ucsb.edu/~chris/research/
doc/ccs09_botnet.pdf

[50] A. Mirian, A. Ukani, I. Foster, G. Akiwate, T. Halicioglu, C. T. Moore,
A. C. Snoeren, G. M. Voelker, and S. Savage, “In the line of fire:
Risks of DPI-triggered data collection,” in Proceedings of the 16th
Cyber Security Experimentation and Test Workshop, 2023, pp. 57–63.
[Online]. Available: https://arianamirian.com/docs/cset2023_fireye.pdf

[51] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker,
V. Paxson, and S. Savage, “Spamalytics: An empirical analysis
of spam marketing conversion,” in Proceedings of the 15th ACM
conference on Computer and communications security, 2008, pp. 3–
14. [Online]. Available: https://www.icir.org/christian/publications/2008-
ccs-spamalytics.pdf

[52] K. Bock, P. Bharadwaj, J. Singh, and D. Levin, “Your censor
is my censor: Weaponizing censorship infrastructure for availability
attacks,” in Workshop on Offensive Technologies. IEEE, 2021.
[Online]. Available: https://www.cs.umd.edu/~dml/papers/weaponizing_
woot21.pdf

[53] U.S. Government, “Title 32 of the Code of Federal
Regulations § 219.102: Definitions,” 2024. [Online]. Avail-
able: https://www.ecfr.gov/on/2024-11-27/title-32/subtitle-A/chapter-
I/subchapter-M/part-219/section-219.102

17

https://www.usenix.org/system/files/sec24fall-prepub-310-hoang.pdf
https://www.usenix.org/system/files/sec24fall-prepub-310-hoang.pdf
https://github.com/net4people/bbs/issues/43
https://www.petsymposium.org/foci/2023/foci-2023-0008.pdf
https://www.petsymposium.org/foci/2023/foci-2023-0008.pdf
https://dl.acm.org/doi/abs/10.1145/3543507.3583189
https://dl.acm.org/doi/abs/10.1145/3543507.3583189
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
https://www.usenix.org/system/files/sec22-bhaskar.pdf
https://www.usenix.org/system/files/sec22-bhaskar.pdf
https://www.rfc-editor.org/info/rfc1918
https://www.elttam.com/blog/playing-with-canaries/#glibc-analysis
https://great-computing.quora.com/Some-technical-details-behind-the-mundane-Windows-Update-https-www-quora-com-Does-the-Windows-update-use-HTTP-answer
https://great-computing.quora.com/Some-technical-details-behind-the-mundane-Windows-Update-https-www-quora-com-Does-the-Windows-update-use-HTTP-answer
https://great-computing.quora.com/Some-technical-details-behind-the-mundane-Windows-Update-https-www-quora-com-Does-the-Windows-update-use-HTTP-answer
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.gov.cn/gongbao/content/2000/content_60531.htm
https://www.gov.cn/gongbao/content/2000/content_60531.htm
https://www.usenix.org/system/files/sec21-bock.pdf
https://link.springer.com/chapter/10.1007/978-3-031-28486-1_16
https://www.ip2location.com/database/ip2location
https://www.caida.org/catalog/datasets/request_user_info_forms/as_organizations/
https://www.caida.org/catalog/datasets/request_user_info_forms/as_organizations/
https://conferences.sigcomm.org/sigcomm/2012/paper/ccr-paper266.pdf
https://www.contrib.andrew.cmu.edu/~nicolasc/publications/Weinberg-IMC18.pdf
https://www.contrib.andrew.cmu.edu/~nicolasc/publications/Weinberg-IMC18.pdf
https://ipgeolocation.io/documentation/ip-geolocation-api.html
https://ipgeolocation.io/documentation/ip-geolocation-api.html
https://asn.cymru.com/
https://labs.ripe.net/author/qasim-lone/detecting-dns-root-manipulation/
https://labs.ripe.net/author/qasim-lone/detecting-dns-root-manipulation/
https://link.springer.com/chapter/10.1007/978-3-031-28486-1_19
https://link.springer.com/chapter/10.1007/978-3-031-28486-1_19
https://web.archive.org/web/20021015121616/http://www.dit-inc.us/hj-09-02.html
https://web.archive.org/web/20021015121616/http://www.dit-inc.us/hj-09-02.html
https://nrs.harvard.edu/urn-3:HUL.InstRepos:9696319
https://dl.acm.org/authorize?N25517
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-pearce.pdf
https://gist.github.com/klzgrad/f124065c0616022b65e5
https://www.petsymposium.org/foci/2024/foci-2024-0002.pdf
https://securityethics.cs.washington.edu/
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://web.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
https://www.cs.ucr.edu/~krish/imc17.pdf
https://sites.cs.ucsb.edu/~chris/research/doc/ccs09_botnet.pdf
https://sites.cs.ucsb.edu/~chris/research/doc/ccs09_botnet.pdf
https://arianamirian.com/docs/cset2023_fireye.pdf
https://www.icir.org/christian/publications/2008-ccs-spamalytics.pdf
https://www.icir.org/christian/publications/2008-ccs-spamalytics.pdf
https://www.cs.umd.edu/~dml/papers/weaponizing_woot21.pdf
https://www.cs.umd.edu/~dml/papers/weaponizing_woot21.pdf
https://www.ecfr.gov/on/2024-11-27/title-32/subtitle-A/chapter-I/subchapter-M/part-219/section-219.102
https://www.ecfr.gov/on/2024-11-27/title-32/subtitle-A/chapter-I/subchapter-M/part-219/section-219.102

APPENDIX A
AN EXAMPLE ORDERED POOL OF FAKE IP ADDRESSES

Below are the ordered lists of 592 IPv4 and 30 IPv6 addresses used by the Wallbleed-affected DNS injectors when forging
responses to A and AAAA queries, respectively, for the DNS name 4.tt. The pools for other injectors and other query names
may differ [8 § 3.2] [9 § 5.2]. When an injector process injects a DNS response, it takes the next IP address from its ordered
list, cycling back to the beginning after reaching the end. This fact becomes evident when collecting injected responses at
a sufficiently high sample rate (around 100 packets per second or more). The selection of a “first” address in each cycle is
arbitrary.

We put the ordered lists to two uses: in Section VI-C, to filter Wallbleed-related DNS responses from other responses; and in
Section V-B, to isolate the multiple independent processes within each injector device. Machine-readable versions are included
with the data published alongside this paper.

1) 208.77.47.172
2) 173.252.88.133
3) 173.252.88.67
4) 108.160.170.45
5) 157.240.10.32
6) 174.36.196.242
7) 174.36.228.136
8) 174.37.154.236
9) 174.37.175.229

10) 174.37.54.20
11) 185.60.216.11
12) 185.60.216.50
13) 199.16.158.12
14) 199.16.158.182
15) 199.16.158.8
16) 199.16.158.9
17) 199.59.148.96
18) 199.59.148.229
19) 199.59.148.20
20) 157.240.17.35
21) 31.13.94.37
22) 31.13.68.169
23) 31.13.88.26
24) 31.13.88.169
25) 31.13.94.36
26) 31.13.94.49
27) 31.13.94.41
28) 31.13.94.10
29) 31.13.73.169
30) 31.13.73.9
31) 31.13.112.9
32) 31.13.106.4
33) 31.13.96.195
34) 31.13.82.169
35) 31.13.86.21
36) 31.13.85.169
37) 31.13.85.53
38) 31.13.96.194
39) 31.13.96.208
40) 31.13.96.193
41) 31.13.96.192
42) 31.13.112.4
43) 31.13.80.169
44) 31.13.95.169
45) 104.244.43.136
46) 199.96.61.1
47) 104.244.43.52
48) 104.244.43.6
49) 157.240.0.18
50) 104.244.43.231
51) 104.244.43.35
52) 66.220.148.145
53) 31.13.95.34
54) 31.13.95.48
55) 173.252.105.21
56) 31.13.95.35
57) 157.240.0.35
58) 173.252.108.21
59) 157.240.11.40
60) 104.244.43.167
61) 199.59.150.39
62) 199.59.149.230
63) 199.59.149.208
64) 199.16.158.104
65) 199.16.156.38
66) 96.44.137.28
67) 69.50.221.20
68) 69.30.25.21
69) 69.197.153.180
70) 69.162.134.178
71) 65.49.26.99
72) 65.49.26.98
73) 65.49.26.97
74) 50.23.209.199

75) 199.59.150.45
76) 199.59.150.44
77) 199.59.150.43
78) 199.59.150.40
79) 199.59.150.13
80) 199.59.150.12
81) 199.59.149.239
82) 199.59.149.238
83) 199.59.149.237
84) 199.59.149.236
85) 199.59.149.235
86) 199.59.149.234
87) 199.59.149.232
88) 199.59.149.231
89) 199.59.149.210
90) 199.59.149.207
91) 199.59.149.206
92) 199.59.149.205
93) 199.59.149.203
94) 199.59.149.202
95) 199.59.149.201
96) 199.59.148.9
97) 199.59.148.89
98) 199.59.148.8
99) 199.59.148.7

100) 199.59.148.6
101) 199.59.148.247
102) 199.59.148.246
103) 199.59.148.222
104) 199.59.148.206
105) 199.59.148.202
106) 199.59.148.201
107) 199.59.148.15
108) 199.59.148.147
109) 199.59.148.106
110) 199.59.148.102
111) 199.16.156.75
112) 199.16.156.71
113) 199.16.156.39
114) 199.16.156.11
115) 199.16.156.103
116) 184.72.1.148
117) 182.50.139.56
118) 173.255.213.90
119) 173.255.209.47
120) 173.252.248.244
121) 173.236.212.42
122) 173.236.182.137
123) 173.234.53.168
124) 173.231.12.107
125) 173.208.182.68
126) 168.143.171.93
127) 168.143.171.189
128) 168.143.171.186
129) 168.143.171.154
130) 168.143.162.58
131) 168.143.162.42
132) 128.242.250.157
133) 128.242.250.155
134) 128.242.250.148
135) 128.242.245.93
136) 128.242.245.43
137) 128.242.245.29
138) 128.242.245.253
139) 128.242.245.244
140) 128.242.245.221
141) 128.242.245.212
142) 128.242.245.189
143) 128.242.245.180
144) 128.242.245.157
145) 128.242.245.125
146) 128.242.240.93
147) 128.242.240.61
148) 128.242.240.29

149) 128.242.240.253
150) 128.242.240.244
151) 128.242.240.221
152) 128.242.240.218
153) 128.242.240.212
154) 128.242.240.189
155) 128.242.240.180
156) 128.242.240.157
157) 128.242.240.125
158) 128.121.243.77
159) 128.121.243.76
160) 128.121.243.75
161) 128.121.243.107
162) 128.121.243.106
163) 122.248.226.57
164) 159.106.121.75
165) 59.24.3.173
166) 66.220.146.94
167) 66.220.147.11
168) 66.220.149.18
169) 66.220.149.32
170) 69.171.224.40
171) 69.171.227.37
172) 69.171.228.74
173) 69.171.229.11
174) 69.171.229.73
175) 69.171.234.48
176) 69.171.242.11
177) 69.171.247.32
178) 69.171.247.71
179) 69.63.176.143
180) 69.63.176.15
181) 69.63.176.59
182) 69.63.178.13
183) 69.63.180.173
184) 69.63.181.12
185) 69.63.184.14
186) 69.63.184.142
187) 69.63.184.30
188) 69.63.186.30
189) 69.63.186.31
190) 69.63.187.12
191) 69.63.190.26
192) 67.15.100.252
193) 67.15.129.210
194) 199.16.156.40
195) 199.16.156.7
196) 199.16.158.190
197) 199.59.148.209
198) 199.59.148.97
199) 199.59.149.136
200) 199.59.149.244
201) 199.59.150.49
202) 88.191.249.182
203) 88.191.249.183
204) 208.101.21.43
205) 208.101.60.87
206) 208.43.170.231
207) 208.43.237.140
208) 67.228.102.32
209) 67.228.235.91
210) 67.228.235.93
211) 74.86.118.24
212) 74.86.12.172
213) 74.86.12.173
214) 74.86.142.55
215) 74.86.151.162
216) 74.86.151.167
217) 74.86.17.48
218) 74.86.226.234
219) 74.86.228.110
220) 74.86.3.208
221) 75.126.115.192
222) 75.126.124.162

223) 75.126.135.131
224) 75.126.150.210
225) 75.126.164.178
226) 75.126.33.156
227) 205.186.152.122
228) 64.13.192.74
229) 64.13.192.76
230) 104.16.252.55
231) 104.16.251.55
232) 210.56.51.193
233) 23.234.30.58
234) 210.56.51.192
235) 202.53.137.209
236) 156.233.67.243
237) 154.85.102.32
238) 154.92.16.97
239) 154.83.15.20
240) 154.85.102.30
241) 154.83.15.45
242) 154.83.14.134
243) 103.214.168.106
244) 150.107.3.176
245) 103.97.176.73
246) 103.73.161.52
247) 103.200.31.172
248) 52.175.9.80
249) 159.65.107.38
250) 59.188.250.54
251) 4.78.139.50
252) 93.179.102.140
253) 148.163.48.215
254) 54.89.135.129
255) 4.78.139.54
256) 23.101.24.70
257) 199.193.116.105
258) 162.220.12.226
259) 98.159.108.61
260) 50.87.93.246
261) 47.88.58.234
262) 98.159.108.58
263) 67.230.169.182
264) 159.138.20.20
265) 124.11.210.175
266) 98.159.108.57
267) 111.243.214.169
268) 103.42.176.244
269) 210.209.84.142
270) 107.181.166.244
271) 98.159.108.71
272) 23.225.141.210
273) 114.43.24.59
274) 45.77.186.255
275) 202.182.98.125
276) 45.114.11.25
277) 203.111.254.117
278) 103.240.180.117
279) 45.114.11.238
280) 43.226.16.8
281) 116.89.243.8
282) 80.87.199.46
283) 198.27.124.186
284) 39.109.122.128
285) 103.228.130.27
286) 118.107.180.216
287) 103.97.3.19
288) 103.56.16.112
289) 115.126.100.160
290) 118.193.202.219
291) 118.184.78.78
292) 118.193.240.41
293) 118.184.26.113
294) 103.39.76.66
295) 103.240.182.55
296) 103.230.123.190

297) 103.246.246.144
298) 103.200.30.143
299) 118.193.240.37
300) 198.44.185.131
301) 211.104.160.39
302) 103.228.130.61
303) 122.10.85.4
304) 103.226.246.99
305) 208.31.254.33
306) 50.117.117.42
307) 157.240.15.8
308) 157.240.13.8
309) 157.240.1.33
310) 157.240.12.5
311) 31.13.87.34
312) 31.13.91.33
313) 31.13.90.33
314) 31.13.87.33
315) 31.13.90.19
316) 31.13.95.18
317) 31.13.87.19
318) 31.13.83.34
319) 31.13.84.34
320) 31.13.85.34
321) 31.13.82.33
322) 31.13.76.99
323) 31.13.76.65
324) 31.13.75.12
325) 31.13.71.19
326) 31.13.70.33
327) 157.240.7.5
328) 31.13.70.13
329) 31.13.67.33
330) 157.240.7.8
331) 31.13.92.5
332) 31.13.91.6
333) 31.13.84.2
334) 31.13.87.9
335) 31.13.83.2
336) 31.13.85.2
337) 31.13.75.5
338) 31.13.70.9
339) 104.244.43.57
340) 199.59.149.204
341) 202.160.128.16
342) 199.96.58.15
343) 185.45.6.103
344) 202.160.128.203
345) 104.244.46.165
346) 199.96.63.177
347) 103.252.115.53
348) 104.244.46.17
349) 202.160.128.210
350) 104.244.46.211
351) 202.160.130.52
352) 104.244.46.5
353) 199.96.59.19
354) 104.244.46.85
355) 202.160.129.6
356) 103.252.114.101
357) 103.252.115.59
358) 103.252.115.49
359) 199.96.63.53
360) 192.133.77.197
361) 199.96.62.41
362) 104.244.43.234
363) 202.160.128.40
364) 202.160.128.96
365) 192.133.77.189
366) 202.160.128.14
367) 199.96.59.95
368) 104.244.43.104
369) 192.133.77.191
370) 192.133.77.145

371) 104.244.46.57
372) 185.45.7.185
373) 104.244.46.208
374) 104.244.46.186
375) 104.244.43.208
376) 103.252.114.11
377) 202.160.129.37
378) 199.96.62.75
379) 199.96.58.85
380) 104.244.46.185
381) 185.45.7.97
382) 104.244.46.93
383) 104.244.43.229
384) 104.244.43.182
385) 202.160.128.195
386) 185.45.6.57
387) 199.96.63.163
388) 199.96.58.177
389) 199.96.59.61
390) 199.96.63.75
391) 104.244.46.9
392) 202.160.128.238
393) 104.244.46.21
394) 103.252.115.153
395) 199.96.58.157
396) 192.133.77.59
397) 202.160.128.205
398) 199.96.62.21
399) 202.160.130.118
400) 104.244.43.228
401) 202.160.130.66
402) 185.45.7.189
403) 192.133.77.133
404) 185.45.7.165
405) 202.160.130.145
406) 104.244.43.128
407) 202.160.129.36
408) 103.252.115.221
409) 103.252.114.61
410) 199.96.58.105
411) 103.252.115.169
412) 104.244.46.246
413) 104.244.43.248
414) 104.244.46.63
415) 202.160.130.117
416) 104.244.46.52
417) 199.96.62.17
418) 202.160.129.164
419) 179.60.193.16
420) 157.240.3.50
421) 157.240.16.50
422) 157.240.2.50
423) 185.60.218.50
424) 162.125.83.1
425) 162.125.6.1
426) 162.125.8.1
427) 31.13.95.17
428) 157.240.17.14
429) 157.240.2.36
430) 185.60.216.36
431) 185.60.219.36
432) 157.240.2.14
433) 185.60.216.169
434) 157.240.8.50
435) 157.240.8.41
436) 157.240.3.8
437) 185.60.219.41
438) 157.240.12.50
439) 31.13.95.38
440) 31.13.81.4
441) 31.13.67.19
442) 157.240.6.35
443) 31.13.94.7
444) 157.240.20.18

445) 179.60.193.9
446) 31.13.94.23
447) 31.13.80.54
448) 31.13.69.169
449) 31.13.67.41
450) 31.13.64.7
451) 157.240.21.9
452) 157.240.20.8
453) 157.240.17.41
454) 157.240.18.18
455) 157.240.10.41
456) 157.240.1.50
457) 157.240.12.35
458) 157.240.1.9
459) 173.244.217.42
460) 173.244.209.150
461) 209.95.56.60
462) 31.13.95.37
463) 31.13.80.37
464) 157.240.8.36
465) 157.240.9.36
466) 157.240.17.36
467) 157.240.12.36
468) 157.240.10.36
469) 173.252.108.3
470) 31.13.69.245
471) 104.244.46.244
472) 104.244.45.246
473) 104.244.46.71
474) 162.125.32.6
475) 162.125.18.129
476) 162.125.80.5
477) 162.125.32.10
478) 162.125.17.131
479) 162.125.32.15
480) 162.125.2.6
481) 162.125.80.6
482) 162.125.80.3
483) 162.125.2.3
484) 162.125.34.133
485) 162.125.32.12
486) 162.125.1.8
487) 162.125.18.133
488) 162.125.32.2
489) 162.125.2.5
490) 162.125.32.5
491) 162.125.32.13
492) 162.125.32.9
493) 162.125.82.7
494) 162.125.7.1
495) 119.28.87.227
496) 31.13.95.33
497) 104.23.124.189
498) 104.23.125.189
499) 130.211.15.150
500) 104.31.142.88
501) 38.121.72.166
502) 65.49.68.152
503) 204.79.197.217
504) 54.234.18.200
505) 52.58.1.161
506) 184.173.136.86
507) 174.37.243.85
508) 69.171.224.36
509) 108.160.161.20
510) 108.160.161.83
511) 108.160.162.104
512) 108.160.162.102
513) 108.160.162.109
514) 108.160.162.115
515) 108.160.163.106
516) 108.160.162.98
517) 108.160.162.31
518) 108.160.163.102

519) 108.160.163.112
520) 108.160.163.108
521) 108.160.163.116
522) 108.160.163.117
523) 108.160.165.147
524) 108.160.165.11
525) 108.160.165.139
526) 108.160.165.141
527) 108.160.165.211
528) 108.160.165.173
529) 108.160.165.212
530) 108.160.165.189
531) 108.160.165.48
532) 108.160.165.53
533) 108.160.165.62
534) 108.160.165.8
535) 108.160.165.9
536) 108.160.166.137
537) 108.160.166.253
538) 108.160.166.61
539) 108.160.166.148
540) 108.160.166.42
541) 108.160.166.142
542) 108.160.167.147
543) 108.160.166.49
544) 108.160.166.57
545) 108.160.166.62
546) 108.160.166.9
547) 108.160.167.30
548) 108.160.167.156
549) 108.160.167.148
550) 108.160.167.165
551) 108.160.167.158
552) 108.160.169.171
553) 108.160.167.159
554) 108.160.167.167
555) 108.160.167.174
556) 108.160.169.178
557) 108.160.169.175
558) 108.160.169.174
559) 108.160.169.179
560) 108.160.169.181
561) 108.160.170.39
562) 108.160.170.33
563) 108.160.169.37
564) 108.160.169.185
565) 108.160.169.186
566) 108.160.169.46
567) 108.160.169.55
568) 108.160.169.54
569) 108.160.170.26
570) 108.160.170.41
571) 108.160.170.43
572) 108.160.170.44
573) 108.160.172.1
574) 108.160.170.52
575) 128.121.146.101
576) 108.160.172.200
577) 108.160.172.232
578) 108.160.172.208
579) 108.160.172.204
580) 108.160.173.207
581) 128.121.146.235
582) 128.121.243.228
583) 128.121.146.109
584) 128.121.146.228
585) 128.242.240.20
586) 128.242.240.59
587) 128.121.243.235
588) 128.242.240.117
589) 128.242.240.155
590) 128.242.240.149
591) 128.242.240.85
592) 128.242.240.91

Every entry in the IPv6 pool contains the pattern ‘face:b00c’, which is characteristic of genuine IP addresses of facebook.com.
The GFW’s use of well-known addresses of Internet companies has been noted in the past [8 §3.2], [9 §5.1].

1) 2a03:2880:f130:0083:face:b00c:0:25de
2) 2a03:2880:f12c:0083:face:b00c:0:25de
3) 2a03:2880:f12c:0183:face:b00c:0:25de
4) 2a03:2880:f127:0083:face:b00c:0:25de
5) 2a03:2880:f126:0083:face:b00c:0:25de
6) 2a03:2880:f129:0083:face:b00c:0:25de

7) 2a03:2880:f12a:0083:face:b00c:0:25de
8) 2a03:2880:f11f :0083:face:b00c:0:25de
9) 2a03:2880:f127:0283:face:b00c:0:25de

10) 2a03:2880:f11c:8083:face:b00c:0:25de
11) 2a03:2880:f11c:8183:face:b00c:0:25de
12) 2a03:2880:f11b:0083:face:b00c:0:25de

13) 2a03:2880:f11a:0083:face:b00c:0:25de
14) 2a03:2880:f10e:0083:face:b00c:0:25de
15) 2a03:2880:f117:0083:face:b00c:0:25de
16) 2a03:2880:f10c:0083:face:b00c:0:25de
17) 2a03:2880:f112:0083:face:b00c:0:25de
18) 2a03:2880:f111:0083:face:b00c:0:25de

19) 2a03:2880:f10f :0083:face:b00c:0:25de
20) 2a03:2880:f10d:0083:face:b00c:0:25de
21) 2a03:2880:f10d:0183:face:b00c:0:25de
22) 2a03:2880:f10c:0283:face:b00c:0:25de
23) 2a03:2880:f10a:0083:face:b00c:0:25de
24) 2a03:2880:f102:0183:face:b00c:0:25de

25) 2a03:2880:f107:0083:face:b00c:0:25de
26) 2a03:2880:f134:0083:face:b00c:0:25de
27) 2a03:2880:f136:0083:face:b00c:0:25de
28) 2a03:2880:f12d:0083:face:b00c:0:25de
29) 2a03:2880:f134:0183:face:b00c:0:25de
30) 2a03:2880:f131:0083:face:b00c:0:25de

18

APPENDIX B
REVERSE-ENGINEERED DNS PARSING AND INJECTION ALGORITHM

The below C code is our attempt to reverse-engineer the faulty DNS query processing algorithm that caused Wallbleed.
It reproduces the behavior of the DNS injectors affected by Wallbleed in all important respects. If PATCHED is false, the code
implements the Wallbleed v1 vulnerability; if true, the partially patched Wallbleed v2 (see Section III-C and Section VII).

Having observed a DNS query and copied it to memory, the injection device parses out the QNAME to decide whether the
query is one to be censored, and prepares a response if so. There are several bugs, the most significant of which is a failure
to bounds-check DNS name label lengths against the message size.

1 // Check if msg is a DNS query for a name that should be censored.
2 // If so, change msg into a response in place and return the length
3 // of the response. If not, return 0.
4 size_t response(unsigned char *msg, size_t msg_len)
5 {
6 if (msg_len < 12 || (msg[2] & 0x80) != 0) No response if message is too short or not a query.
7 return 0;
8
9 char qname[126]; The dot-delimited, null-terminated representation of

QNAME will be stored in qname.10 size_t qname_i = 0;
11 // QNAME parsing loop.
12 size_t msg_i = 12; msg_ptr is meant to track msg_i and point just past

QNAME at the end of the loop.13 unsigned char *msg_ptr;
14 for (;;) {
15 size_t label_len = msg[msg_i++]; Bug: no check that msg_i is in bounds.
16 msg_ptr = &msg[msg_i]; Sync msg_ptr with msg_i.
17
18 if (label_len == 0) Exit condition 1: an empty label.
19 break;
20 if (msg_i > msg_len) Exit condition 2: the label length prefix just parsed

was outside the message bounds.21 break;
22
23 #if !PATCHED
24 if (qname_i + 1 > 124) Exit condition 3: not enough room for at least one

byte of label (with a dot and a null terminator).25 break;
26 #else
27 msg_i += MIN(label_len, 124 - qname_i); Take as much of the label as will fit, leaving room for

a dot and a null terminator.28
29 if (qname_i + label_len > 124) Exit condition 4: label too long to fit in qname.

Bug: msg_ptr ̸= msg + msg_i in this case.30 break;
31 #endif
32
33 if (qname_i > 0) Append a dot to qname, if not the first label.
34 qname[qname_i++] = ’.’;
35 size_t n = MIN(label_len, 125 - qname_i); Copy as much of the label as will fit in qname.

Bug: no check that msg_ptr + n is in bounds.36 memcpy(qname + qname_i, msg_ptr, n);
37 qname_i += n;
38 #if !PATCHED
39 msg_i += n;
40 if (n < label_len) Exit condition 4: label too long to fit in qname.

Bug: qname_ptr ̸= msg_ptr in this case.41 break;
42 #endif
43 }
44 qname[qname_i] = ’\0’; Null-terminate the dot-delimited name string.
45
46 if (!name_matches_blocklist(qname)) Does the extracted QNAME string match the

blocklist? If not, do not send a response.47 return 0;
48
49 // Read QTYPE.
50 uint16_t qtype = ntohs(*(uint16_t *) msg_ptr); msg_ptr may not agree with msg_i here.
51 #if PATCHED
52 // Read QCLASS, enforce QCLASS == 1.
53 uint16_t qclass = ntohs(*(uint16_t *) (msg_ptr + 2));
54 if (qclass != 1)
55 return 0;
56 #endif

19

57 // Change the query into a response.
58 size_t resp_len = msg_i + 4; Add 4 bytes for the query’s QTYPE and QCLASS.
59 if ((msg[2] & 0x01) == 0) If the RD flag was not set in the query, set AD in the

response.60 *(uint16_t *) &msg[2] = htons(0x8400);
61 else If RD was set in the query, set RD and RA in the

response.62 *(uint16_t *) &msg[2] = htons(0x8180);
63 *(uint16_t *) &msg[4] = htons(1); QDCOUNT = 1
64 *(uint16_t *) &msg[6] = htons(1); ANCOUNT = 1
65 *(uint16_t *) &msg[8] = htons(0); NSCOUNT = 0
66 *(uint16_t *) &msg[10] = htons(0); ARCOUNT = 0
67 // Append an answer section according to QTYPE.
68 const unsigned char *rdata;
69 uint32_t rdlength;
70 if (qtype == 28) { Type AAAA queries get a type AAAA response.
71 rdlength = 16;
72 rdata = next_aaaa_address(); Get the next IPv6 address from the cyclic pool.
73 } else { All other QTYPEs get a type A response.
74 qtype = 1;
75 rdlength = 4;
76 rdata = next_a_address(); Get the next IPv4 address from the cyclic pool.
77 }
78 uint32_t ttl = rand_in_range(64, 254); TTL is random between 64 and 254 inclusive.
79 unsigned char rr[] = { Construct a resource record.
80 0xc0, 0x0c, // NAME Compression pointer pointing back to QNAME.
81 0, 0, // TYPE placeholder
82 0x00, 0x01, // CLASS = IN
83 0, 0, 0, 0, // TTL placeholder
84 0, 0, // RDLENGTH placeholder
85 };
86 *(uint16_t *) &rr[2] = htons(qtype); Set QTYPE.
87 *(uint32_t *) &rr[6] = htonl(ttl); Set TTL.
88 *(uint16_t *) &rr[10] = htons(rdlength); Set RDLENGTH.
89 memcpy(msg + resp_len, rr, sizeof(rr)); Append the resource record up to RDATA.
90 resp_len += sizeof(rr);
91 memcpy(msg + resp_len, rdata, rdlength); Append the RDATA (the false IP address).
92 resp_len += rdlength;
93
94 return resp_len; This query gets an injected response.
95 }

We do not know exactly how a packet payload arrives in memory after being observed. It may be, for example, a software
copy, or an automatic DMA transfer from the network interface. However it happens, a few minor peculiarities of the DNS
injectors’ behavior are best explained as artifacts of how packets are copied into memory. These are: that the 18th byte of the
memory buffer is always zero (footnote 3); that at one time, the first 4 bytes of leaked memory were different from the others
(“digest” bytes, Section IV-B); and that the msg_len limit in the response function above comes from the UDP header, not
the number of bytes actually available in the packet (when those quantities differ).

1 // Copy an observed UDP packet payload to memory for analysis and
2 // possible modification, and inject a response if it is a DNS
3 // query for a name on the blocklist. hdr_len is the size of the
4 // payload in the UDP header (not counting the header itself).
5 void udp_packet_callback(const void *data, size_t data_len, size_t hdr_len)
6 {
7 data_len = MIN(data_len, hdr_len); Trim packet payload to the size in the header.
8 void *work = allocate_memory(hdr_len + 28); Memory for the query and a response record.
9 memset(work, 0x00, 18); Clear the beginning of the buffer; see footnote 3.

10 memcpy(work, data, data_len); Copy the packet to working memory. The copy uses
data_len, but parsing uses hdr_len.11

12 if (USE_DIGEST) “Digest” bytes (Section IV-B), when present, are just
after the query. We are using a fixed byte pattern.13 memset(work + data_len, ’D’, 4);

14 size_t resp_len = response(work, hdr_len); Is this packet a DNS query that needs a response?
15 if (resp_len > 0) If so, inject the response. We are omitting details of

spoofing the source address, etc.16 inject(work, resp_len);
17 free_memory(work);
18 }

20

	Introduction
	Background
	DNS injection attacks
	The format of DNS messages

	Demonstrating overflow
	Blocklist matching
	Maximizing leaked bytes per response
	Incomplete patch (Wallbleed v2)
	Other details of injection triggering

	What information is leaked?
	Wallbleed leaks network traffic
	The four ``digest'' bytes
	How long bytes remain in memory
	Inferring the GFW's internal architecture

	Seeing our own traffic
	Timestamped magic sequence probes
	The ordering of phony IP addresses
	IPv4 and IPv6

	IP addresses affected by Wallbleed
	IPv4-wide scan
	Analysis of Wallbleed responses
	Analysis of responding IP addresses

	Monitoring the censor's patching behavior
	Related work
	Ethics
	Data handling
	Ethics of exploitation
	Whether to disclose, and how

	Lesson learned for future work
	Conclusion
	References
	Appendix A: An example ordered pool of fake IP addresses
	Appendix B: Reverse-engineered DNS parsing and injection algorithm

