
UI-CTX: Understanding UI Behaviors with Code
Contexts for Mobile Applications

Jiawei Li†‡∗ Jiahao Liu‡∗ Jian Mao†§¶ Jun Zeng‡ Zhenkai Liang‡
†Beihang University ‡National University of Singapore

§Tianmushan Laboratory ¶Hangzhou Innovation Institute, Beihang University
{daweix, maojian}@buaa.edu.cn {jiahao99, junzeng, liangzk}@comp.nus.edu.sg

Abstract—Many mobile apps utilize UI widgets to interact with
users and trigger specific operational logic, such as clicking a
button to send a message. While UI widgets are designed to be
intuitive and user-friendly, they can also be misused to perform
harmful behaviors that violate user expectations. To address these
potential threats, recent studies strive to understand the inten-
tions of UI widgets in mobile apps. However, existing methods
either concentrate on the surface-level features of UI widgets,
failing to capture their underlying intentions, or involve tedious
and faulty information, making it challenging to distill the core
intentions. In this paper, we present UI-CTX, which demystifies
UI behaviors with a concise and effective representation. For
each UI widget, UI-CTX first represents its intentions with a UI
Handler Graph (UHG), incorporating the code context behind the
widget while eliminating irrelevant information (e.g., unreachable
code blocks). Then, UI-CTX performs graph summarization and
explores both the structural and semantic information in UHGs
to model the core intentions of UI widgets. To systematically
evaluate UI-CTX, we extract a series of UI widget behaviors,
such as login and search, from a large-scale dataset and conduct
extensive experiments. Experimental results show that UI-CTX
can effectively represent the intentions of UI widgets and sig-
nificantly outperforms existing solutions in modeling UI widget
behaviors. For example, in the task of classifying UI widget
intentions, UHG achieves the highest average F1-score compared
to other widget representations (+95.2% and +8.2% compared
with permission set and call sequence, respectively) used in state-
of-the-art approaches. Additionally, by accurately pinpointing the
code contexts of widgets, UI-CTX achieves a 3.6× improvement
in widget intention clustering performance.

I. INTRODUCTION

Mobile applications (a.k.a., apps) have become an indis-
pensable part of our daily lives, providing powerful support
for various activities such as travel, education, and finance [1],
[2]. To enhance user experience, most apps are equipped with
UI widgets, such as buttons and text boxes, to facilitate smooth
user interactions. Specifically, the functionalities and behaviors
of mobile apps are often driven by these UI widgets [3], such
as executing a search query when a user presses a search
button. However, not all UI widgets perform as intended
by their design, which can raise security and privacy con-
cerns [4]–[6]. For instance, a login operation in a phishing

∗ Co-primary authors. Jian Mao is the corresponding author.

app may send the user’s credentials to an attacker instead
of initiating a legitimate login request. To detect potentially
harmful behaviors that violate user expectations, it is crucial to
accurately identify and understand the true intended behaviors
behind UI widgets in mobile apps. Existing solutions for
representing UI widgets’ intended behaviors generally fall
into three categories: appearance-based, permission-based, and
code-based methods.

Appearance-based methods use the appearance (e.g., texts
and images) of UI widgets as the primary source to describe
their intentions [7]–[9]. However, due to the lack of underlying
execution semantics, these solutions fail to recognize the real
intended behaviors of UI widgets, especially when counterfeit
apps mimic the appearance of legitimate apps [10]. To resolve
this issue, permission-based methods represent UI widgets’ in-
tended behaviors by analyzing their associated permissions [4].
Nevertheless, with the increasing complexity of app behaviors,
similar permissions may be shared, leading to a significant
mix-up and increased manual efforts for security analysts.
For example, both a login and a help operation may require
the same INTERNET permission. As a remedy, code-based
methods analyze the associated code contexts of UI widgets
to uncover their deeper latent functionalities [3], [5]. One
common approach is to leverage the invocation relationships
among API calls (e.g., call graph). However, these techniques
often introduce unnecessary code parts (e.g., code blocks that
are not reachable from the UI widgets), making it challenging
to identify the true functionality of UI widgets. For instance,
existing methods over-approximate code contexts connected to
UI widgets and bind more code than necessary [4], [11]–[13].

To resolve this issue, we propose UI-CTX, an approach
that specifies and understands UI widgets’ intended behaviors
with code contexts triggered by UI events in mobile apps. We
focus on Android in this study since it is the most popular
mobile platform with a large number of apps [8], but the
general idea applies to graph user interface (GUI) applications
on other platforms. Specifically, UI-CTX is based on three key
insights. First, UI widgets usually trigger certain app behaviors
when their status changes by UI events (e.g., being clicked, se-
lected, or focused). The corresponding event callbacks are the
starting points of the UI’s background logic. This inspires us to
locate the specific callback and its subsequent invocations for
each UI widget to reveal its functionality. Second, developers
often use encapsulation-based external library APIs to acquire

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240238
www.ndss-symposium.org

certain functionalities, such as HTTP connections. While the
implementation details of these libraries are usually tedious
and complex compared to the execution logic constructed by
the app developer, understanding how the APIs interact is
essential to discerning the UI widgets’ intended behaviors.
This motivates us to prune and summarize the meaning of
these external libraries, avoiding their dominance over the
entire code context and reducing the analysis burden. For
example, if a UI widget invokes a library API for data
encryption, we should focus more on the context of the
encryption and the high-level data operation (e.g., encrypt
and save data) as the UI widget’s functionality, instead of
the detailed implementation of the data encryption algorithm.
Third, both the semantics within a function and its structural
information play crucial roles in understanding the intended
behavior of UI widgets. This guides us to explore the code
context from both semantic and structural perspectives to
describe the intended functionality of a UI widget.

We represent UI widget functionality with UI Handler
graph (UHG), a graph representation where nodes denote
function calls and edges represent the invocation relationships
between them. To construct the UHG, we employ a backward
analysis starting from the event handler rather than a forward
analysis from the UI widget. This strategy tracks the data
flow from the event handler to the UI widget, constructing the
minimal event handler set for the UI widget and reducing false
connections. We further perform a fine-grained analysis of the
conditional code branches and thread blocks in event handlers
to identify the true triggered callback functions for different
UI widgets. Additionally, we summarize the key semantics of
the external libraries to reduce noisy graph parts and focus
on essential information. Finally, we leverage the instruction-
level information of the functions in the UHG to enhance the
semantics of the graph. Having built the UHG to describe UI
widget functionality, we incorporate both structural-level (e.g.,
inter-procedural control flow) and node-level (e.g., instruction
semantics of functions and APIs) information to embed the UI
widget’s intention. We then conduct an unsupervised clustering
analysis to categorize UI widgets according to their intended
functionalities.

To investigate UI-CTX’s effectiveness in describing UI
widget functionality, we compile a comprehensive dataset of
40,000 Android apps from public repositories. These apps
are sourced from various platforms, including Google Play,
AppChina, Mi and Anzhi, and span ten year periods. For
the widget categories, we focus on common and popular UI
widgets, particularly those related to user privacy and data
operations, such as login, search, and location. Evaluation
results demonstrate that UHG more accurately depicts and
distinguishes UI widget functionality compared to widely
used approaches based on permission sets and call sequences.
Additionally, we also conduct a series of ablation studies to
highlight the importance of addressing the challenges faced
by existing solutions. Our findings also indicate that a deeper
understanding of UI widget functionality can significantly
assist real-world security applications, such as in-depth widget

analysis and anomaly detection.
In summary, we make the following contributions:

• We highlight the importance and identify the challenges of
UI widget behavior representation, and design UI Handler
graph (UHG), a concise and accurate representation to
describe the intended behavior of a UI widget.

• We present UI-CTX, an end-to-end approach to build UHG,
summarize and embed the semantics in UHG to investigate
UI widget functionality1.

• Experimental results show that UI-CTX can effectively
identify UI widgets with similar functionalities, enhancing
Android app analysis through a better understanding of UI
widget behavior.

II. BACKGROUND AND MOTIVATION

In this section, we introduce background knowledge, utilize
an example to underscore the need for a concise and accurate
representation to describe UI widgets’ intentions, and outline
the challenges associated with formulating UI widget func-
tionalities of existing methods.

A. Background

An Android app typically consists of foreground UIs for
user interaction and backend code to implement corresponding
app behaviors. A UI window within an app is termed an
activity, where UI widgets are initialized using attributes like
ID, text, and image source from tree-structured layout re-
sources. To interact programmatically with widgets, developers
associate a UI layout with a code class or instance using
APIs like setContentView and inflate, and retrieve
widgets via findViewById to find the widgets [14]. Once
a specific widget is retrieved from the UI, its attributes can be
modified or overridden. In addition, user-triggered events (e.g.,
onClick, onTouch, and onKey) are assigned to UI widgets
for the binding of the widget’s and its execution logic. Since
Android operates on an event-driven model, a widget’s code
context stems from its event handlers. Additionally, developers
may reuse a widget (with a fixed ID) across different UI pages,
making it crucial to uniquely bind widget IDs, layout IDs, and
event handlers during widget analysis to prevent ambiguity.

B. Motivation Example

Figure 1 presents two visually similar login buttons from
two different apps: the left one from a popular instant
messaging app and the right one from a phishing version.
Both widgets display the text “LOGIN” and trigger the
same permission, android.permission.INTERNET, suggest-
ing data exchange with the Internet. However, these surface-
level information fail to depict their true functionalities in
detail. A closer analysis of their code contexts shows clear
differences: the legitimate app uploads user credentials to
an HTTP server, while the phishing app sends them to an
external email address using the JavaMail API [15]. These
function call operations, including how data is fetched and

1To facilitate further analysis and research, we open source the implemen-
tation of UI-CTX on https://github.com/DaweiX/UI-CTX.

2

https://github.com/DaweiX/UI-CTX

functionality

appearance

• INTERNET permission • INTERNET

post login request steal user privacy

code

context

onClick()

javax.mail.internet.MimeMessage

setSender()

android.widget.EditText

getText()
sendMail()

javax.mail.internet.MimeMessage

setDataHandler()

javax.mail.Transport

send()

onClick()

android.widget.EditText

getText()

initData() getResponse()

okhttp3.Formbody.Builder

build()

okhttp3.Request.Builder post()

okhttp3.Response code()

“LOGIN”“LOGIN”

Fig. 1: Two login buttons with different functionalities.

transmitted, serve as fundamental components of the UI widget
functionality and key to understanding widget behavior. This
insight drives us to utilize detailed code contexts to accurately
infer and analyze widget intentions.

C. Challenges in Existing Solutions

Code contexts encapsulate essential information and can
serve as a basis for understanding UI widget functionalities.
However, we identify several inherent challenges faced by
existing approaches in describing the intended functionalities
of UI widgets based on code-level semantics.

Challenge A: Finding the correct code context for the
intended widget functionality. Existing solutions typically
employ a context-insensitive reference strategy to determine
the corresponding code contexts for UI widgets [4], [12], [13].
These methods decompile app bytecode into an intermediate
language (IL) and trace the reachability of UI widget variables
within the app’s codebase by performing forward analysis on
the callsites where these variables are used. However, this
forward analysis often overestimates widget-event pairs due
to the repeated use of some temporary variables, mistakenly
linking multiple unrelated event handlers to a single widget.
Listing 2a illustrates an IL code snippet featuring three UI
widgets and their respective event handlers. By analyzing
variable reachability, we observe that the return value of
retrieving the widget with ID 2131230766 flows to $r6 , which
then “accesses” all of $r11 , $r12 , and $r13 , corresponding
to three different event handlers on Lines 11, 14, and 17.
However, this UI widget is actually linked only to one event
listener class at Line 9 (Gallery$Adapter$7).

Additionally, it’s important to note that not all code con-
texts originating from an event handler are necessarily trig-
gered at app runtime. This is because a single event handler
can encompass multiple event callbacks through conditional
branches [16]. For example, Listing 2b illustrates an event
handler containing various branches for different widgets. Ex-
isting solutions often operate at the level of event handlers and
overlook the fine-grained code contexts within these handlers,
which results in a lack of precision when identifying the

1 // app: com.mediaaz.bryanadamtopfree
2 $r6 = invoke $r1.<findViewById(int)>(2131230766)
3 $r11 = (ImageView) $r6
4 $r6 = invoke $r1.<findViewById(int)>(2131230767)
5 $r12 = (ImageView) $r6
6 $r6 = invoke $r1.<findViewById(int)>(2131230768)
7 $r13 = (ImageView) $r6
8 ...
9 $r25 = new Gallery$Adapter$7

10 invoke $r25.<Gallery$Adapter$7: void <init>(...)
11 invoke $r11.<void setOnClickListener(...)>($r25)

12 $r26 = new Gallery$Adapter$8
13 invoke $r26.<Gallery$Adapter$8: void <init>(...)
14 invoke $r12.<void setOnClickListener(...)>($r26)

15 $r27 = new Gallery$Adapter$9
16 invoke $r27.<Gallery$Adapter$9: void <init>(...)
17 invoke $r13.<void setOnClickListener(...)>($r27)

(a) Setting event handlers by anonymous classes.
1 // app: com.bionicpanda.aquapets
2 r0 := @this: TankWallActivity
3 $r1 := @parameter0: View
4 $i0 = invoke $r1.<View: int getId()>()
5 lookupswitch($i0) {
6 case 2131427367: goto s1;
7 case 2131427707: goto s2;
8 case 2131427708: goto s3;
9 case 2131427713: goto s4;

10 default: goto return;
11 }
12 return
13 s2: invoke r0.<TankWallActivity: void finish()>()
14 return
15 s1: invoke <game.b: void a(int)>(0)
16 invoke r0.<TankWallActivity: void a(int)>(99)
17 return
18 s3: $r2 = new Intent
19 $r3 = invoke r0.<TankWallActivity: Context

getApplicationContext()>()
20 ...
21 return
22 s4: $r4 = r0.<TankWallActivity: EditText e>
23 $r5 = invoke $r4.<EditText: Editable getText()>()

(b) Setting code logic to be triggered by branches.

Fig. 2: Assigning code contexts for different UI widgets (we
make some simplifications on the IL for illustration).

intended functionality of a specific UI widget. This observation
is substantiated by our empirical study using 20,000 apps
sampled from our collected dataset (see Section IV). We in-
vestigate cases where multiple function callbacks for different
UI widgets are consolidated into a single event handler. The
cumulative distribution function (CDF) curves in Figure 3
demonstrate that 21.99% of apps integrate multiple callbacks
within one handler. Moreover, while most handlers contain no
more than 20 branches, some handlers manage callbacks for
up to 58 UI widgets. On average, one event handler contains
5.39 branches for different UI widgets.

Challenge B: Focusing on widget functionality amidst
extensive code contexts. Modern app development frequently
relies on mature third-party library (TPL) and software devel-
opment kit (SDK) APIs to leverage rich functionalities such
as data encryption and HTTP requests. However, integrating
these encapsulated APIs introduces significant challenges,

3

0 10
0

10
1

10
2

of sharing-handler
 UI widgets in one app

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60
average # of UI widget

 in one switch block

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

of
 o

cc
ur

re
nc

e

Fig. 3: CDF curves of widget event callbacks of apps.

0 20 40 60 80 100
percentage of API implementation to all code contexts

0.0

0.5

1.0

1.5

2.0

2.5

%
 o

f a
pp

s

API node
API edge

Fig. 4: Distribution of the percentage of API code in the
complete app call graph.

including managing large codebases during code analysis. We
further investigate the usage of TPL and SDK in 20,000
apps, and illustrate the distribution of code contexts invoked
by external TPL and SDK APIs in Figure 4. Our analysis
reveals that in 88.4% of apps, more than 30% of function calls
originate from external APIs rather than from app-specific
code (i.e., code written by app developers). Furthermore, for
over half of these apps, TPL and SDK implementations con-
stitute more than 60% of the entire app’s code contexts. The
prevalence of external API implementations in app codebases
results in UI widget intentions becoming obscured within
extraneous information. This makes it challenging to concisely
and accurately represent the core functionality of UI widgets.

Challenge C: Representing meaningful function call se-
mantics. To describe code semantics, previous approaches
utilize class or method names to represent the semantic
information of function calls [17]–[19]. For instance, given
the function call picasso.OkHttpDownloader: HttpURLCon-
nection openConnection(Uri uri), OkHttpDownloader or open-
Connection can be used to represent its semantics since
they reasonably reflect the function’s purpose. However, app
developers widely employ obfuscation techniques such as
ProGuard [20] and packers [21] to safeguard their code against
reverse-engineering [22]. These techniques often rename code
identifiers (such as class names and method names) to mean-
ingless strings (e.g., a.a.z for a class name, z for a method
name). Moreover, apps may use method overloading to map
unrelated identifiers to the same name [23]. Consequently, lit-
eral names extracted from decompiled apps may be insufficient
for comprehensive code functionality analysis. Addressing this
challenge requires aggregating fine-grained code semantics to
accurately represent function calls within a code graph.

III. DESIGN

A. Overview

Figure 5 illustrates the workflow of UI-CTX, which takes
Android application packages (APKs) as input and analyzes
the functionalities of UI widgets. The end-to-end framework
of UI-CTX consists of three distinct phases: (1) Multi-
layer Knowledge Extraction (Section III-B), which parses app
resources to collect the UI layer corpus, including layouts,
widget attributes, and string values. Additionally, it performs
static code analysis to extract code layer information, such as
inter- and intra-process control flow, data flow, and detailed
implementations of different functions. (2) UHG Construction
(Section III-C), which identifies the precise backend code con-
texts associated with each UI widget and represents them using
graphs. UI-CTX further refines these graphs by eliminating
and summarizing graph parts that could potentially obscure
or mislead the analysis, such as detailed implementations of
external libraries. (3) Behavior Investigation (Section III-D).
This phase embeds the UHG representation and applies clus-
tering analysis to investigate the UI widget functionalities.

B. Multi-layer Knowledge Extraction

Given an Android app, UI-CTX first extracts knowledge
from both the UI and code layers, serving as the basis for
UHG construction and UI widget behavior investigation.
UI Layer. UI-CTX analyzes the static resources bundled in
resources.arsc, a binary file containing a table of app re-
sources. Among different resource types, the layout resources
establish relationships between UI layouts and UI widgets,
and string resources map string references to literal values,
such as @string/changeLangTitle→ “Select language”. Some
layout resources can also serve as components to be em-
bedded and reused in complex UI pages. For example, the
activity main layout in Figure 6 introduces a button panel
using the include tag (Line 3). UI-CTX identifies and
unfolds such sub-layouts. In this case, the ImageView widget
with ID btn login will be regarded as a child widget of the
layout activity main. Such associating widgets and layouts
is essential as UI widgets may have different functionalities
when they are attached to different layouts. In the end, the UI
resource parsing phase yields separate UI pages, each holding
several UI widgets with attributes like id, text, and src,
which define their appearance and semantics at the UI layer.
Code Layer. UI-CTX conducts a flow-sensitive and context-
sensitive static analysis to construct a code graph for an
Android app. This approach preserves the statement order and
contextual information of function calls, facilitating the subse-
quent identification and summarization of the code context of
UI widgets. Notably, UI-CTX does not differentiate between
self-defined methods by app developers and API calls (i.e.,
internal and external methods as in existing tools [24]), aiming
to integrate as much information as possible when constructing
the code graph. If the implementation of a method call does
not appear in the disassembly output, UI-CTX searches for
it within Android SDKs [25] compatible with the app (e.g.,

4

UHG Construction

INVOKE_DIRECT

NEW_INSTANCE

CONST_STRING

IF_EQZ

SGET_BYTE

ADD_INT_LIT16

Knowledge Extraction

…

download

download

UI layouts and widgets

App call graph

new login

Resource

Class

…

UI resource parsing

Code graph building

?

Code context entry identification

download login

?

new

UI context refining

… … …

API summarization

login

…

……

…

Behavior Investigation

UHG modeling

Clustering analysis

behavior
clusters

Node feature Structural feature

login

API implementation

function call

UI event

branch/leaf noise

Fig. 5: The overview of UI-CTX, which consists of Knowledge Extraction, UHG Construction, and Behavior Investigation.

Symbol Note

c, ξc class instance and its heap in the address space,
c ∈ Class, ξc ∈ Addr

m, f method and field of class. m ∈Method, f ∈ Field
x, y, z local variables, x, y, z ∈ V ar
s an assignment statement, s ::= {x := y | x := y.f |

x.f := y | x := y.m(z)}
σ the environment that maps local variables to addresses,

σ ∈ Env = V ar → Addr
η the heap that manages the values of the fields of heap

objects, η ∈ Heap = Addr × Field→ Addr
id a constant in the ID set for layouts and widgets Z, id ∈ Z

TABLE I: Syntactic expressions.

minimal and target SDK versions). Finally, UI-CTX captures
comprehensive code-layer knowledge, encompassing specific
details of all calls and their relationships.

C. UI Handler Graph (UHG) Construction

Code Context Entry Identification. UI widgets in apps often
utilize various event handlers, such as onTouch, onDrag,
onKey, onClick, onLongClick, and onFocusChange,
to trigger their working logic. As discussed in Section II-A,
to complete the UI widget setup, an app developer needs
to set or inflate a UI layout on the current screen window,
retrieve a widget from the layout, and assign an event listener
(with its handler callback) to the widget. Consequently, ex-
isting works [4], [8], [12], [13] follow the UI widget setup
diagram layout → widget → event and adopt a forward
analysis mechanism to associate widgets with event handlers.
However, the forward analysis tends to over-approximate and
generate false UI-handler linkages due to temporary registers
generated by the IL (e.g., $r6 in Listing 2a). To address
this issue, UI-CTX employs a backward analysis workflow,
event→ widget→ layout, to identify the code context entry
of UI widgets. Specifically, UI-CTX performs a two-step
procedure: (1) tracing the data flow from the event handler to

the UI widget allocation (e.g., a local variable or a class field),
and (2) mapping the widget object to the layout it attaches on.

To better illustrate how UI-CTX identifies the entry points
of UI widget code contexts, we present the syntactic expres-
sions used in our code analysis in Table I. We elaborate on
our two-step analysis workflow as below.
event → widget: UI-CTX initializes its analysis from
event register methods, which serve as the entry points for
the widget’s code contexts. For example, consider the method
mreg = setOnClickListener in Figure 6, which registers
an event listener (x = listener) for a widget object where
c = MainActivity and f = btnLogin. Formally, the process
can be described as:

〈c.f.mreg(x), σ, η〉 → 〈σ, η[c.f 7→ c.f ∪ ξx]〉.

The tracing process starts from the event register method
mreg and extends to the allocation point of the widget object.
Specifically, we trace the register variable $r2 through the
following path: Line 28 ($r2) → 25 (btnLogin) → 17 ($r2)
→ 16 ($r1) → 15 (the callsite of mfind = findViewById).
Next, we examine the argument of method mfind to get the
widget ID idw. If the argument is a literal value in Z, idw
is directly obtained. Otherwise, if the argument is a local
variable, a similar backward data flow analysis is conducted to
determine idw. To confirm the listener class ξx for x ($r1 in
Line 28), we trace the data flow of x from Line 28 to Line 23
and resolve ξx = MainActivity$1. Once ξx is identified,
we investigate its contextual information and locate the event
handler implemented by ξx in Line 30. Consequently, we de-
termine the event handler mh = MainActivity$1.onClick
as the entry point of the widget’s code contexts2.
widget → layout: To identify the layout of a widget,
we focus on the method calls that set activity contents. For

2In cases where x refers to the current class instance (i.e., x = c.this),
we associate the event handler overridden by c with the widget.

5

1 <android.support...PercentRelativeLayout ...>
2 <LinearLayout ...>
3 <include layout:"@layout/panel" />
4 </LinearLayout>
5 <TextView ... /> ...
6 </android.support...PercentRelativeLayout>

(a) layout: activity main.xml

1 <FrameLayout ...>
2 <ImageView android:id="@+id/btn_login" /> ...
3 </FrameLayout>

(b) layout: panel.xml

1 public class MainActivity extends Activity {
2 private android.widget.Button btnLogin;
3 private static final String BTN_TEXT;
4 <MainActivity: String BTN_TEXT> = "login";
5 public void onCreate() {
6 MainActivity r0;
7 r0 := <MainActivity: String BTN_TEXT>
8 invoke r0.<Activity: void setContentView(int)

>(2131427357);
9 invoke r0.<MainActivity: void bindView()>();

10 invoke r0.<MainActivity: void setView()>();
11 return; }
12 private void bindView() {
13 MainActivity r0;
14 r0 := @this: MainActivity;
15 $r1 = invoke r0.<Activity: View findViewById(

int)>(2131230720);
16 $r2 = (android.widget.Button) $r1
17 r0.<MainActivity: Button btnLogin> = $r2;
18 return; }
19 private void setView() {
20 MainActivity r0;
21 View$OnClickListener $r1;
22 r0 := @this: MainActivity;
23 $r1 = new MainActivity$1;
24 invoke $r1.<MainActivity$1: void <init>(...);
25 $r2 = r0.<MainActivity: Button btnLogin>;
26 $r3 = r0.<MainActivity: String BTN_TEXT>;
27 invoke $r2.<void setText(CharSequence)>($r3);
28 invoke $r2.<void setOnClickListener...>($r1);
29 return; }}
30 public static class MainActivity$1 implements

View$OnClickListener {
31 public void onClick(android.view.View) {
32 MainActivity$1 r0;
33 r0 := @this: MainActivity$1;
34 invoke r0.<MainActivity: void doLogin()>();
35 return; }}

(c) code: class MainActivity

Fig. 6: UI and code contexts of a UI widget. We make some
simplifications on the IL for illustration. : layout-code re-
lation, : layout-layout relation, : data dependency,

: control dependency.

example, in Figure 6, the method minf = setContentView

in Line 8 is invoked to set the layout R.layout.activity main
as the content to display when the class c = MainActivity

is running. This method call updates the heap as follows:

〈c.minf (x | id), σ, η〉 → 〈σ, η[ξc 7→ ξc ∪ ξroot]〉,

where ξroot, the address of the root View in the layout (i.e.,
PercentRelativeLayout), is added to the heap. Similar
to obtaining the widget ID idw, we conduct backward data
flow tracing to extract the layout ID idl from the argument

of minf . It is important to note that UI-CTX also handles
m′inf = inflate, another way that is more complex but more
flexible to inflate a layout into the current activity based on
View inflation semantics [26], which can be formulated as:

〈z :− x.m′inf (y | id), σ, η〉 → 〈σ[z 7→ ξroot], η〉, or

〈c.f :− x.m′inf (y | id), σ, η〉 → 〈σ, η[c.f 7→ ξroot]〉.

Here, the return value of the function can be assigned to either
a class field (c.f) or a local variable (z). We trace its dataflow
to the widget allocation (e.g., the mfind = findViewById

callsite) to determine its layout. By combining idw and idl , we
can uniquely identify a widget. The event handler correspond-
ing to the event register from which we initiate our analysis
is then determined as the entry point of the widget’s code
contexts — all the subsequent code contexts of this handler
serve as candidates to describe the widget’s functionality.

Widget Context Pruning and Updating. Even if we have
pinpointed the accurate event handler for a widget, not all
code blocks originating from the handler can be triggered
by the widget. To prune unrelated widget code contexts,
UI-CTX executes a fine-grained code analysis to investigate
which branches are truly responsible for the widget’s behavior.
The process consists of five steps: (1) splitting the event
handler into smaller code blocks based on code branches (e.g.,
switch and if); (2) identifying the first and last statements
of each block by checking the control flow labels (e.g., goto
and return); (3) listing the block conditions; (4) including
the code snippets under a code block whose condition matches
the widget (e.g., view id equals to a value) as valid code
contexts for the widget; (5) performing a forward depth-first
search (DFS) rooted at the event handlers of widgets to extract
the code graph representing widget code contexts, guided by
the block conditions. Taking Listing 2b as an example, UI-
CTX first splits the lookupswitch part into five blocks based on
the case labels. Next, it identifies goto and return statements to
determine the block boundaries. Then, it lists and resolves the
block conditions, checking the widget ID and prunes the code
contexts that should not be connected to the widget. Finally,
it performs a DFS to construct the code graph representing
the widget’s intentions. Note that when encountering implicit
inter-procedural control flows introduced by multi-thread us-
age, UI-CTX does not employ a simple caller-callee pairing as
existing work [4], which is another source of overestimating.
Instead, we select the correct thread that will be launched by
a widget among all the thread callbacks (similar as the event
callback selection) by a customized dataflow analysis (more
details can be found in Appendix A).

Since code-layer widget manipulations (e.g., setText)
may occur at app runtime, we also account for updating
the widgets’ UI-layer contexts accordingly. For instance, the
ImageView in Figure 6 is initially defined in the layout file
with only an id attribute. However, this widget will act as a
login button during the activity’s lifecycle. In this case, we
conduct data flow analysis from $r2 and $r3 in Line 27
to determine the widget’s actual attribute (i.e., determine its

6

text as login in Line 4). Finally, for each widget event, we
generate a unique UI handler graph (UHG), where a widget
(with attributes like id and text) is connected to an event
handler, followed by the widget’s reachable code contexts,
with each method call represented as a node, and its executed
functionality as a feature. It is important to note that a single
widget may have multiple UHGs for different events (e.g.,
onClick and onFocusChange).
Graph Encoding and Summarization. To represent the
semantics of function calls, existing solutions often rely on
human-readable names in code [13], [17], [18]. However,
it is challenging for these methods to capture stable and
meaningful function call semantics when obfuscation or over-
loading exists. For example, semantics in class name or
method signatures are often obfuscated or removed in real-
world apps according to Google’s app development principles,
like shortening class/member names into meaningless literals
(e.g., a and b) to optimize apps [27]. Therefore, to encode
function calls in a UHG, we turn to Dalvik Opcodes [28]
of each instruction within a function to represent function
features and capture fine-grained program behaviors (e.g.,
register operations). The principle behind this choice is that
Opcodes serve as the fundamental building blocks of function
implementations, reflecting the specific operations performed
by the function [29]. For instance, int-to-char converts
an integer to a character, and if-eq checks for equality
between two operators. Moreover, the Opcodes of a function
are relatively stable, as similar operations are often required
to complete a given task.

When extracting semantics from a UHG, we observe that a
significant amount of tedious information is introduced by the
implementations of third-party libraries (TPLs) and SDK APIs,
which may obscure the core functionality of UI widgets. To
mitigate the influence of such noisy information, we propose to
summarize and abstract the semantics of API implementations.
Specifically, for each API call in the widget code contexts,
UI-CTX iteratively aggregates the semantic information of
its downstream graph nodes, from the leaves to the API node
itself. By summarizing the features of the subgraph nodes
into a single representation at the API node, the aggregation
process reduces the complexity of the graph. This approach
minimizes the impact of extraneous information and provides
a clearer representation of the UI widget’s core functionality.
The detailed algorithm is illustrated in Appendix B.

D. UHG-based UI Behavior Investigation

Graph Embedding. Given the UHG G derived from the code
and layout contexts, the next step is to embed it into a vector
space for further analysis. The UHG comprises structural in-
formation (e.g., function call relations) and node features (e.g.,
Opcode-based instruction semantics). The structural informa-
tion is crucial for uncovering the intricate relationships and
interactions between graph entities [30], [31]. Additionally,
node features detail method implementations. Our objective is
to distill both structural and node features into a meaningful
and informative representation for downstream tasks.

For structural information modeling, we take inspiration
from the graph Laplacian operator, which defines an embed-
ding that maps graph data into an Euclidean space [32]. Specif-
ically, we extract structural features based on the normalized
Laplacian matrix, given by

L = I −A = D−1/2(D −A)D−1/2,

where A is the normalized adjacency matrix, A is the ad-
jacency matrix of G, and D is the diagonal matrix of node
degrees. Among the eigenvalues λ of this Laplacian matrix,
we select the top k minimal ones λ1, λ2, · · · , λk ∈ λ, because
the smallest eigenvalues better capture the global structural
information (e.g., community structure and connectivity pat-
terns) of the graph rather than falling into localized graph
neighborhoods [33]. Thus, the structural embedding estr is
defined as the average of the selected eigenvalues:

estr = (
∑k

i=1
λi)/k.

For node semantics, we implement a graph-level readout by
combining the average-pooling µ(·) and the standard deviation
σ(·) of node features. Average pooling summarizes the central
tendency of the features, while standard deviation captures the
dispersion of the attributes, indicating diversity. Formally, the
node embedding enode is defined as the concatenation of the
average and standard deviation:

enode = µ(X) ‖ σ(X),

where ‖ denotes the concatenation operator.

Finally, the UHG embedding is obtained by concatenating
the structural and node embeddings:

e = estr ‖ enode.

Clustering Analysis. To validate the effectiveness of our
UHG-based UI widget analysis, we conduct a clustering task
to group UHG instances with similar functionalities. We use
Agglomerative Hierarchical Clustering Analysis (HCA) to
cluster the semantic representations of UHGs derived from
the aforementioned code contexts. HCA is an unsupervised
algorithm that recursively merges or splits clusters based on a
distance metric, forming a tree-like structure of nested clusters.
In our case, we utilize the Ward variance minimization method
to determine cluster similarity with Euclidean distance, which
minimizes the within-cluster variance when merging cluster
pairs. The cluster distance d is calculated by:

d(u, v) =

√
|v|+ |s|
T

d(v, s)2 +
|v|+ |t|
T

d(v, t)2 − |v|
T
d(s, t)2,

where u is a new cluster formed by merging clusters s and t,
v is a cluster to be compared, |·| denotes cardinality, and T
is the sum of the cardinalities of v, s, and t. In summary, the
clustering analysis allows us to identify and analyze patterns
and similarities in the functionality of different UI widgets.

7

Category Item Average Max

App overview

of method call 12,006 141,572
of UI widget 150 12,237

- # of in-code attribute 2.09 286
of edge 126,693 3,620,132
of event link in an app 7.49 1,228
of subgraph in an app 7.45 1,228

Code pruning
ratio of pruned node* 0.09 ∼ 1 (∆ < 10−4)
ratio of pruned edge 0.09 ∼ 1 (∆ < 10−6)

UHG
of node in a UHG 1,367 92,590
of edge in a UHG 11,444 3,053,091

* For the graph pruning operation P(G(V, E,X)) = G′(V ′, E ′,X′), the ratio of pruned node
is calculated by |V − V ′| / |V|. Other ratios in this table are given in a similar way.

TABLE II: Dataset overview.

IV. EVALUATION

In this section, we evaluate UI-CTX by answering the
following research questions (RQs):
• How UHG performs in widget intention description com-

pared with existing representations? (§ IV-C)
• To what extent do the different design choices in UI-CTX

contribute to its performance? (§ IV-D)
• Can UI-CTX facilitate real-world app analysis? (§ IV-E)
• What is the overhead of UI-CTX? (§ IV-F)

A. Implementation

We prototype UI-CTX in about 3.8 K lines of Java code
and 2.6 K lines of Python code. Specifically, UI-CTX uses
FLOWDROID [34], a data flow analysis tool to decode app
resources (e.g., layout files) and manifest. We also leverage
it to run inter-procedural code analysis and build apps’ call
graphs. Our customized code analysis, including pinpointing
the code context entry of UI widget, extracting in-code UI
widget property, and identifying code contexts that should be
pruned, are based on the Jimple intermediate representation
(IR) parsed by SOOT [35]. We utilize LIBRADAR [36] to iden-
tify TPL/SDK APIs used in an app. To get the Opcodes from
method implementations, we use dexlib2 [37] to parse dex
files unzipped from apps and Android SDKs. We implement
clustering analysis based on the SciPy library [38].

B. Dataset

To systematically investigate the performance of UI-CTX,
we randomly collect 40,000 Android apps from ANDRO-
ZOO [39], a publicly available and continually expanding app
repository, following prior studies [40], [41]. To ensure that
our dataset reflects the real-world app distribution in recent
years, the apps are sampled from various market sources, such
as Google Play, VirusShare, Mi, and Anzhi. Additionally, the
dataset spans the past ten years, with 4,000 apps collected from
each year, enhancing the comprehensiveness of the dataset and
improving the generalizability of our evaluation.

Table II shows the statistics of the dataset. On average, UI-
CTX generates 7.45 subgraphs containing widget functional-
ities for each app. The value is slightly less than the average
〈widget, layout, event〉 UI-code triples extracted from each

Category Metric Permission Call Sequence UHG

delete
precision 0.67 0.57 0.57

recall 0.19 0.75 0.89
f1-score 0.29 0.65 0.69

login
precision 0.89 0.75 0.78

recall 0.22 0.69 0.77
f1-score 0.36 0.72 0.78

logout
precision 0.23 1.00 1.00

recall 1.00 0.94 0.95
f1-score 0.37 0.97 0.98

send
precision 0.93 0.65 0.79

recall 0.45 0.71 0.67
f1-score 0.60 0.68 0.72

search
precision 0.80 0.73 0.81

recall 0.19 0.56 0.67
f1-score 0.31 0.63 0.73

download
precision 0.74 0.72 0.88

recall 0.34 0.81 0.85
f1-score 0.47 0.76 0.86

share
precision 0.80 0.96 0.99

recall 0.81 0.87 0.88
f1-score 0.81 0.91 0.93

save
precision 0.85 0.65 0.72

recall 0.24 0.62 0.70
f1-score 0.38 0.63 0.71

TABLE III: Effectiveness results for different representations.

app (7.49), because we discard code graphs with no con-
crete code contexts (e.g., directly return after the event is
triggered). Within each subgraph, the pruned code contexts
that a widget cannot trigger account for 9.0% of the original
subgraph on average, in terms of node and edge numbers.
After pruning, for each app, UHGs’ methods and call edges
account for 10.1% and 9.3% of the complete app call graph
on average, respectively.

C. Effectiveness

Benchmark Setup. For better and fair evaluation, we build a
benchmark dataset with ground truth labels. Following previ-
ous work [4], [41], we assume that a UI widget’s functionality
aligns with its appearance in benign apps (i.e., apps with no
malware detection engines on VirusTotal [42] flag as risky).
For example, a login button is expected to facilitate user login.
This assumption is based on the core user experience (UX)
principle that UI widgets should be visually comprehensible
to convey their purpose [43]. Additionally, benign apps are
verified to be safe and perform their intended functions as
expected [44], [45]. While edge cases like widgets with
misleading texts or icons may exist, their rarity minimally
impacts our findings.

In our benchmark, we focus on UI widgets related to
account management and data operation, as they are common
in apps and are highly related to user privacy, which is a
critical concern in mobile security. Specifically, we choose
eight categories of UI widgets with unambiguous UI texts,
including login, logout, send, delete, search, save, refresh,

8

and download. During the benchmark construction process,
we ensure that UI widgets in different categories are balanced.
This is important to avoid overestimating and underestimating
small classes and generating biased evaluation results [46].
We also implement strict labeling strategies to avoid inherent
bias such as label shift [47], [48]. Specifically, we utilize the
text on a widget to present its functionality. In the labeling
process, we only consider widgets whose text exactly matches
a functionality semantic, such as labeling a widget with the text
“login” as login. This strategy helps to rule out noisy labels
and misunderstandings of UI functionalities. For example, a
“Can’t login?” button is not considered as performing login,
and we can filter it out. Finally, we collect and label 2,000 UI
widget functionalities (250 for each category) from different
apps to build our benchmark dataset.

Comparison of Widget Functionality Representations. To
demonstrate UI-CTX’s effectiveness in describing UI wid-
get functionalities, we first compare UHG with two widget
functionality representations applied in existing state-of-the-
art methods, including permission in DEEPINTENT [4] and
call sequence in DESCRIBECTX [13]. For a fair comparison
among different representations, we conduct the same code
context pruning and noise reduction before UHG, permission
and sequence-based embedding. The baselines include:

• Permission: using triggered permissions to represent widget
functionality. Following the prior literature [4], we traverse
the UHG, collect method calls, and map them to a permis-
sion set using PSCOUT [49]. Then, we one-hot encode the
permission set to represent the widget functionality.

• Call sequence: using the sequences of method names in-
voked by a widget to represent its functionality. We extract
call sequences from UHGs. Then, similar to prior work [13],
we feed the sequences into a learning model for context-
aware text embedding to represent the widget functionality.

In this experiment, we conduct an eight-category classi-
fication task to evaluate the performance of UI-CTX and
the baselines. We use precision (p), recall (r), and F1-score
(f1) as the evaluation metrics. To eliminate bias and make
a fair comparison, we extract permissions and call sequences
from the same code graphs associated with widgets, which
are also used for embedding UHG. Note that if we do not
apply pruning and summarization on the code graph, all the
representations will suffer a considerable performance decline
(we put more details in Section IV-D). Table III illustrates
the comparison results. From the table, we observe that UI-
CTX achieves remarkable performance in all categories. In
all the categories, it outperforms the baselines in terms of
F1-scores, and achieves an F1-score improvement by 95.2%
and 8.2% on average compared with permission set and call
sequence, respectively. This validates UI-CTX’s effectiveness
in describing UI widget functionalities, especially for complex
functionalities. We attribute the superior performance of UI-
CTX to its ability to represent the widget functionality with an
accurate and concise UHG, which can capture both the code
semantics and the code interaction semantics of the widget.

To further illustrate the effectiveness of UI-CTX, we visual-
ize the widget representations generated by different methods.
We use t-SNE to project the embedding space into a 2D-plane
to get an intuition of the embedding distribution [50]. Figure 7
shows the visualization for different categories. The UHG
instances are automatically clustered into 10 groups, exceeding
the 8 predefined categories. Upon manual inspection, we
find that the additional clusters reflect fine-grained functional
differences. For example, the login category splits into two
clusters: a simpler one where the username is passed to another
activity for further processing, and a more complex one that
encrypts and sends user credentials, checks the response, and
saves the login status (detailed descriptions are provided in
Appendix D). This aligns with real-world scenarios where
multiple implementations exist for the same functionality. By
investigating the visualization results, we find that the UHG
representations derived by UI-CTX are more accurate and
concise than the permission and call sequence representations.
Specifically, the samples in the same cluster are more similar
to each other, and the boundaries between different clusters are
more clear. This demonstrates the effectiveness of UI-CTX in
describing UI widget functionalities.
Applicability of UI-CTX. In UI-CTX, we directly embed the
structural and node features of UHGs without relying on priori
signal (e.g., ground truth label) to fit the representation towards
a convergence. Therefore, our approach may introduce errors
when conducting unsupervised clustering. To assess its real-
world applicability, we present the detailed clustering results in
Table IV. On average, UI-CTX achieves an accuracy of 95.0%
across all widget categories, demonstrating its effectiveness
in capturing widget functionalities. Although the clustering
results are promising, some misclassifications are observed.
Upon closer investigation, two main factors contribute to UHG
misclassification. First, app behaviors might be implemented
by multiple UI pages and widgets. For instance, both the send
button in app com.autotaxi call.patra18300 and the search
button in com.example.xianji launch a new page for user
confirmation or input. In these cases, the widgets are actually
performing similar navigation functionality (with similar UHG
structure), and will be very close in the embedding space.
Such mistakes can be filtered out by applying simple rules,
such as checking if the UHG contains API calls that only
from specific namespaces like android.app.Activity
or android.view. Another source of false positives or neg-
atives is third-party libraries. For example, using LibRadar as a
plug-in tool for library detection, UI-CTX fails to identify and
summarize some libraries like google.gson and adrt.ADRT,
leading to external codebases overshadowing UHG semantics.
To address this, UI-CTX allows for loading an SDK/TPL list
to complement the library detection module, or replacing the
module with more advanced tools. The integration of existing
tools will be discussed in Section V.

D. Contributions of Design Choices

In this section, we answer the second RQ by exploring
the contributions of different design choices in UI-CTX.

9

−500 0 500

−600

−400

−200

0

200

400

(a) Permission set

−40 −20 0 20 40

−60

−40

−20

0

20

40

60

(b) Call sequence

−300 −200 −100 0 100 200

−200

−150

−100

−50

0

50

100

150

200

(c) UI handler graph

delete

download

login-1

login-2

logout-1

logout-2

save

search

send

share

Fig. 7: Visualization of different representations.

Category TN TP FP FN Category TN TP FP FN

delete 1,580 221 170 29 login 1,696 193 54 57
logout 1,750 237 0 13 send 1,705 167 45 83
search 1,711 166 39 84 download 1,721 211 29 39
share 1,748 221 2 29 save 1,682 175 68 75

TN - True Negative, TP - True Positive, FN - False Negative, FP - False Positive.

TABLE IV: Detailed effectiveness in describing functionalities
for different widget categories.

Specifically, we focus on three components, including code
context pruning, API summarization, and UHG embedding.

Code Context Pruning (Challenge A). Pinpointing accurate
code contexts for UI widgets is the key step of UI-CTX. Here,
we investigate the impact of our code context pruning strategy
on functionality representation. We compare the capacity of
permission set, call sequence and UHG on depicting widget
functionality with and without removing the false UI-code
linkages and unrelated condition branches by (1) replacing
UI-CTX’s event analysis module with GATOR [12] used in
prior works [4], [13], and (2) disabling code branch checking.
To measure the clustering performance, we apply Homogene-
ity, Completeness, V-measure [51] and Adjusted Rand Index
(ARI) [52] as the metrics, all of which are widely used in
clustering analysis. These metrics range from 0 to 1, with
higher values indicating better clustering results. The detailed
definitions of these metrics are provided in Appendix C.

Figure 8 shows the clustering results for different repre-
sentations with and without code context pruning. Without
the code context pruning, the clustering results of all the
widget representations are significantly worse in terms of all
the metrics. Specifically, the V-measure falls off by 28.9%
on average across these three representations. This is within
our expectation, as the over-approximation analysis introduces
much noise into the code contexts for the widgets, leading
to incorrect descriptions of their functionalities. Upon further
analysis, we find that each UI widget in the benchmark is,
on average, associated with 54.3% more code contexts that
are unreachable 3. We also observe that while most samples
within each cluster have the same labels (indicating relatively
high Homogeneity), the samples from the same category can

3Among the apps used for the benchmark, GATOR cannot finish analyzing
2,980 apps in a predefined timeout (30 minutes/app) and no events are obtained
from these apps. We exclude these apps when calculating the metrics.

Homogeneity Completeness V-measure ARI
0.0

0.2

0.4

0.6

0.8 Permission (no pruning)*
Permission
Call Sequence (no pruning)*
Call Sequence
UHG (no pruning)
UHG

*Analysis basis in
 baseline methods

Fig. 8: Clustering results with and without pruning.

be dispersed across multiple clusters (indicating low Complete-
ness). This results in a lower overall consistency between the
clustering results and the true labels (reflected in a relatively
low ARI). This phenomenon is consistent with the fact that
there are multiple ways to implement the same functionality.
ARI < 0.1 for all representations based on unpruned code

contexts, indicating near-random clustering results. It is impor-
tant to note that prior methods, such as DEEPINTENT [4] and
DESCRIBECTX [13], rely on permissions and call sequences
from unpruned widget code contexts for their analysis tasks.
However, after pruning unreachable widget code contexts, the
ARI scores improve by an average of 3.6 times across the three
representations, highlighting the critical role of code context
pruning in improving widget analysis accuracy.

API Summarization (Challenge B). UI-CTX summarizes
the semantics of API calls provided by external libraries (i.e.,
TPL and SDK) instead of taking their detailed implemen-
tations. The API summarization not only reduces the graph
size to a large extent but also improves the UHG’s ability
to represent widget functionalities. For example, when each
API is summarized in one node, UI-CTX achieves the best
performance in terms of the highest F1-score 0.81 with the
least number of nodes (-67.9% on average) and edges (-72.1%
on average). We list the detailed results for different API
neighborhood hop numbers 1, 2, 3, 4, 5, 6 and∞ (i.e., keeping
all API implementations) in Appendix B.

Figure 9 illustrates the CDF curves for the ratio of the
graph size after summarization to the original graph size.
The node number-probability curve is pretty close to a linear
distribution when we summarize each external API in a 4-hop
neighborhood, indicating that the proportion of the reduced

10

0.00 0.25 0.50 0.75 1.00

node

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00

edge

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 o
cc

ur
re

nc
e

Fig. 9: Graph reduction by summarization. The x-axis repre-
sents the ratio of the graph size after summarization to the
original graph size (the left and right subfigure uses nodes
and edges as the unit, respectively). The y-axis denotes the
probability of occurrence. Darker (top) to lighter (bottom) lines
indicate API neighborhood hops from 1 to 6.

node number obeys an even distribution. This means if we
take a smaller hop number, for most graphs, more than half of
the nodes can be reduced after summarization. For example,
when we use only one hop, the node number will be just
one quarter (i.e., abscissa value = 0.25) of the original value
for 51.4% graphs. We also observe that the curves for edge
reduction are closer to the upper left compared to those for
node reduction for all the hop numbers, showing that more
edges can be reduced than nodes. This is reasonable because
one API may have more than one outgoing edges to other APIs
(e.g., JDK 1.8’s concat method calls 5 APIs to concatenate
a string to the end of another one).
UHG Embedding (Challenge C). Embedding is the prerequi-
site to represent a UHG as a vector for downstream tasks (e.g.,
clustering analysis and distance visualization). We explore the
power in widget functionality characterization of the following
UHG embedding method variations:
• structure only: only keep graph adjacency information and

abandon node features.
• node only: only use node features without considering graph

structure and node relationships.
• name only: distill code semantics from method names

instead of the instruction-level method implementations (we
embed method names based on their contexts in sequences
using the same model as in Section IV-C).
The results are shown in Table V. Among all the embedding

methods, the embedding approach that integrates both call
interaction and call implementation semantics achieves the
best performance. Additionally, we observe that node features
contribute more to the UHG embedding than structural fea-
tures. Nevertheless, structural features still provide useful and
complementary information to node features for improving the
functionality representation.

We make another comparison between implementation- and
name-based method embeddings. All of the F1-scores for dif-
ferent widget categories decrease when relying on names. This
is consistent with prior observations that name-based methods
are vulnerable to code obfuscation [29] and renaming [41].
Since the semantics of names are not stable, not concrete,
and prone to obfuscation and mutation, it is needed to present

Category Metric UHGstructure UHGnode UHGname UHG

delete
precision 0.37 0.63 0.64 0.57

recall 0.31 0.79 0.70 0.89
f1-score 0.34 0.70 0.67 0.69

login
precision 0.35 0.78 0.71 0.78

recall 0.64 0.77 0.77 0.77
f1-score 0.45 0.78 0.74 0.78

logout
precision 0.46 1.00 0.98 1.00

recall 0.63 0.96 0.95 0.95
f1-score 0.54 0.98 0.96 0.98

send
precision 0.47 0.78 0.66 0.79

recall 0.44 0.66 0.71 0.67
f1-score 0.45 0.72 0.68 0.72

search
precision 0.46 0.83 0.67 0.81

recall 0.19 0.65 0.57 0.67
f1-score 0.27 0.73 0.62 0.73

download
precision 0.34 0.87 0.83 0.88

recall 0.30 0.85 0.78 0.85
f1-score 0.32 0.86 0.80 0.86

share
precision 0.53 0.92 0.97 0.99

recall 0.67 0.92 0.90 0.88
f1-score 0.59 0.92 0.93 0.93

save
precision 0.48 0.64 0.62 0.72

recall 0.19 0.75 0.65 0.70
f1-score 0.28 0.69 0.63 0.71

TABLE V: Effectiveness of different UHG embeddings
(UHGstructure/node represent for embeddings that only retain
graph structural and node features, respectively. In UHGname,
we embed UHG based on method names instead of Opcodes).

a method call by its inner implementation rather than its
superficial names.

E. Security Implications of UI-CTX

UI widgets are popular attack surfaces for threats like
counterfeiting [53], permission misuse [3], [4], and privacy
leakage [5], [7]. UI-CTX is proposed to capture and represent
the intended behaviors behind general UI widgets to provide
in-depth and decisive semantics for security analysis and threat
mitigation, such as anomaly widget detection.
In-depth widget analysis. Existing solutions primarily focus
on describing widget behaviors with clear and specific ap-
pearances [3], [4], [8], [13]. Intuitively, the more specific a
widget’s appearance, the easier it is to analyze its behavior.
For example, login buttons are likely associated with login
functionality, making it straightforward to determine their
behavior by examining the triggered APIs or permissions.
However, many widgets are ambiguous and lack clear UI
semantics, making it difficult to determine their intended
functionality. For instance, a next button, due to its vague UI
semantics, may trigger various APIs or permissions to perform
different actions. Such ambiguous widgets are overlooked
by prior researches. In contrast, UI-CTX extracts the code
context for all widgets accessible within the app’s codebase,
without any assumptions or prerequisites on their UI-layer
appearance. It represents widget behavior using UHG, a graph-
based representation where edges capture interactions between
calls, and each node encapsulates instruction-level operations
within a single method. This enables more comprehensive
widget analysis by providing decisive semantics, extending the

11

App sha- Login button Detailed Permission
256 prefix functionality description I L

0FA72E3C Login (SSO) Request login via SSO 3
1BE86C35 Login (local) Compare input with a value
1C9E007F Login (web) Get cookie via Apache 3
2BEB633E Login (web) Get cookie via Signpost 3
3C216A25 Login (SQL) Validate secret via H2
5B2ADCAF Login (web) Get cookie and location 3 3
1B2E8C76 Phishing Send privacy via email 3
7AF4A6E2 Phishing Send privacy via email 3

TABLE VI: Functionalities and triggered permissions of login
buttons in different apps. I: Internet, L: Location.

analysis beyond specific icons or buttons to all widgets that
interact with users and trigger code functionalities.

To illustrate this, we analyze the functionality of a next
button in a real-world malicious app [54]. As shown in the
UHG in Figure 10, this button initiates a series of privacy-
stealing actions, including collecting phone numbers, bank
account names, and passwords, zipping them into a file,
and sending them via HTTP and email. The code context
semantics provided by UI-CTX allow us to precisely identify
the malicious behavior behind the next button, which remains
obscured and under-analyzed by previous approaches.
Anomaly widget detection. UI widgets with similar visual
appearance are expected to perform similar functionalities.
For instance, buttons with the same “login” text should be
used for user authentication. In Table VI, we list the func-
tionalities and triggered permissions of eight login buttons
from different apps. As shown, there are multiple ways to
implement the login functionality in Android apps, such as
using single sign-on (SSO) interfaces provided by widely used
social platforms or conducting user cookie synchronization
supported by TPL APIs (e.g., Apache and Signpost). All these
apps launch interactions with remote web servers for logon
operations, which require the same INTERNET permission. A
benign login button may also trigger more permissions (e.g.,
using ACCESS FINE LOCATION to recommend delicacies in
the neighborhoods in a takeaway app) or fewer permissions
(e.g., login by simply comparing the input password with a
specific value stored locally, or by querying user information
from a local SQL database). However, malicious login buttons
can steal user privacy by emailing the username and password
to the adversary, requiring the same INTERNET permission
as the benign ones. It is hard to distinguish such anomaly
functionalities from normal online logins by permissions
invoked by widgets. For example, the UI-permission pair
< login, INTERNET > is regarded by DEEPINTENT [4] as
benign, thus the phishing widgets would bypass the detection.

Nevertheless, differences still exist in the code contexts
between phishing and benign widgets. For example, a normal
web-based login request checks the server’s return code after
sending a message to confirm the user’s login status, while
the phishing apps send mail messages out without checking
the response. As we depict the fine-grained code contexts of
a widget in a UHG, widgets with different functionalities are

Step (i) (ii) (iii) (iv)

Average seconds 1.35 11.41 0.59 8.35
Max seconds 4.52 182.02 3.26 370.02

TABLE VII: Time cost of different steps in app knowledge
extraction and UHG construction. (i):UI resource parsing, (ii):
code graph building, (iii): event handler pinpointing, (iv): UI
context refining and summarization.

well-separated with considerable margins, which is crucial for
anomaly detection and malicious behavior identification.

F. Performance Overhead

To evaluate the performance overhead of UI-CTX, we
measure the time cost and storage overhead. All the exper-
iments are conducted on a Linux server with Intelr Xeonr

E5-2660 v4 @ 2.00 GHz and 64 GB memory. The operating
system is Red Hat 8.5.0-18. Table VII illustrates the time
cost of different steps for app knowledge extraction and UHG
construction. The majority of the time cost is for the code
graph building (ii) and UI context refining and summarization
(iv). UI-CTX’s efficiency can be further improved, because
each step in it supports running in multiprocessing (i, ii and iii)
or multithreading (iv). UI-CTX’s behavior investigation phase
is much faster. It takes 0.02 seconds to get the embedding of
a UHG on average (max value: 0.70 seconds). The clustering
analysis on our benchmark finishes in 0.20 seconds.

The storage overhead of UI-CTX mainly comes from two
databases holding all the graph nodes and edges extracted from
apps. For an app, it takes on average 497.91 KB and up to
14.71 MB to storage graph nodes, on average 285.90 KB and
up to 36.90 MB to storage graph edges. For the UHG database,
the average and max on-disk size for an app is 27.74 KB and
5.92 MB, respectively. In total, we use 10.29 GB to store all
graph entities (6.53 GB for nodes and 3.75 GB for edges) and
372.95 MB to save UHGs for all apps.

V. DISCUSSION

UHG embedding methods. There are many learning-based
methods, such as graph neural network (GNN) [55], [56] and
graph2vec [57], to embed graphs. However, these techniques
are computationally intensive, especially for large graphs [58].
Moreover, their performance is not always interpretable and
is heavily influenced by the quality of the training dataset.
For instance, DEEPINTENT [4] requires manually labeling the
training dataset and lacks generalization to new widgets.

In UI-CTX, we simply present a UHG by aggregating
its structural and node features rather than predicting the
graph embedding with some uncertainty. Evaluation results
show that, despite employing a lightweight graph embedding
approach, the embedding preserves sufficient code context
semantics to represent and distinguish subtle widget func-
tionalities that cannot be captured by more coarse-grained
widget features (e.g., UI appearance). We can expect that if a
high-quality labeled dataset for a specific task is available,
leveraging learning models that are powerful in distilling

12

next

java.io.FileInputStream

read()

com.qwe.Bank

getAccountName() → getAccountPsw()

getCertPsw() → getTransPsw()

javax.mail.Transport

send()

java.util.zip.ZipOutputStream

putNextEntry() → write() → close()

java.io.FileInputStream

close()

java.net.URL

openConnection()
java.io.DataOutputStream

writeBytes()

java.net.HttpURLConnection
getOutputStream()

javax.mail.internet.MimeMessage

setSender() → setSubject() →

setDataHandler()

javax.mail.internet.MimeBodyPart

setDataHandler() → setFileName()

javax.mail.internet.

MimeMultipart addBodyPart()

javax.mail.internet.MimeMessage

setContent() → saveChanges()

android.telephony.TelephonyManager

getLine1Number() →

getSimSerialNumber()

fetch privacy

file write
file upload

send mail

Fig. 10: Detected functionality for a “next” ImageView.

correlations between data and their labels could lead to better
performance on specific analysis tasks.
Threat to validity. Malicious app behaviors are not exclu-
sively implemented through UI. Instead of aiming to pro-
vide an end-to-end malware detection mechanism, UI-CTX
focuses on enhancing the understanding of the functionalities
behind UI widgets, offering a unique perspective for analyzing
app behaviors such as phishing attempts.

UI-CTX extracts code contexts of UI widgets based on
static analysis, which is superior in speed and scalability
compared to dynamic methods. To mitigate the inherent lim-
itations of static analysis like over-approximation, UI-CTX
examines the entry points of widget code contexts and code
branches to identify a subset of code contexts that are would
be truly triggered at dynamic app runtime. Despite these
efforts, UI-CTX cannot always capture precise and concise
widget functionalities. For instance, code analysis tools, like
FLOWDROID [34] and SOOT [35] used in our approach,
may fail when dealing with apps with packed or encrypted
source code [21], [59]. Analyzing UI widget functionalities for
such apps remains a challenging subject for future research.
Besides, as shown in our evaluation, LIBRADAR [36], the
external tool we used for TPL/SDK detection, cannot identify
all the TPLs/SDKs in app codebase, this will impact the
summarization performance of UI-CTX. To solve this, we can
update the TPL/SDK list or borrow the capacity from more
advanced and recent library detection methods [60], [61].

VI. RELATED WORK

UI Appearance Investigation. As the first impression of
an app, UI appearance is a crucial aspect in describing app
functionality and enhancing user experience. Investigating UI
appearance is the cornerstone of many app analysis tasks, such
as detecting similar apps [62]–[66] and identifying similar UI
layouts [53], [67]–[70]. For example, Malisa et al. [67] calcu-
late perceptual hashing values of UI screenshot images to fa-
cilitate the detection of repackaging apps. DROIDEAGLE [68]
represents UI appearance as layout-tree structures and uses a
tree edit distance algorithm to measure the similarity between
UI widgets. UIHASH [53] abstracts and encodes UI controls

across screen regions, then checks the pairwise UI similarity
with a Siamese network. However, the visual appearance itself
is not sufficient to reveal the real functionality behind UI
widgets. Whether a UI widget triggers its functionality as users
expected, or how the widget fulfills its functionality remains
undetermined and obscure to app users and analysts.

UI Intention Analysis. UI widgets provide an intuitive way
for users to interact and trigger specific operational logic.
Additionally, these widgets often use and manipulate users’
sensitive data, such as location and contacts, posing potential
threats to user privacy. Understanding the true intentions
behind UI widgets is crucial for avoiding harmful behaviors
that violate user expectations. Recent studies have explored
the intentions of widgets from different perspectives, such as
UI appearance [8], [9], permissions [3], [4], and data flows [5],
[71]. For example, ICONINTENT [8] utilizes computer vision
and natural language processing to analyze the appearance
of icons (e.g., shape and textual content) to investigate their
intents and classify them into different categories. DEEPIN-
TENT [4] and DROIDGEM [3] represent widget intentions
through permissions and employ deep neural networks to
predict the permissions required by UI widgets. Additionally,
FLOWCOG [5], SUPOR [71] and UIPICKER [7] conduct taint
analysis to analyze information leakage from UI widgets.

UI-based Forensics. Integrating UI knowledge can signifi-
cantly enhance the accuracy and visibility of security forensics.
For instance, UISCOPE [72] attributes system events to high-
level UI widgets and UI events, providing improved visibility
for attack forensics (e.g., investigating remote code execution)
and addressing the dependence explosion problem when audit-
ing syslog. Similarly, TESEC [73] proposes an attack forensics
method for web services, identifying UI elements intruders
utilize to facilitate attack interception and web application
fixing. These works are based on the fundamental observation
that the UI in GUI applications is often the entry point
of attacks; therefore, analyzing UI widgets is crucial for
enhancing the accuracy of security analysis tasks.

VII. CONCLUSION

Understanding the functionalities of UI weights provides
a fine-grained view to inspect app behavior. In this paper,
we propose UI-CTX, an automated approach to analyze UI
widget functionalities and identify their patterns. We identify
three challenges faced by prior works in finding the cor-
rect widget code contexts, focusing on widget functionality
while not being distracted by tremendous external contexts,
and representing concrete code semantics. UI-CTX addresses
these challenges by conducting a backward code analysis flow,
summarizing external APIs, and leveraging instruction-level
semantics that can reflect app runtime behavior, respectively.
Our experimental results show that UI-CTX can accurately
extract and represent UI widgets’ intended functionalities
compared to state-of-the-art widget representations.

13

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable feed-
back and insightful suggestions. This work is supported by the
National Research Foundation, Singapore, under its Industry
Alignment Fund - Pre-positioning (IAF-PP) Funding Initia-
tive, the National Natural Science Foundation of China (No.
62172027 and No. U24B20117), and the Zhejiang Provincial
Natural Science Foundation of China (No. LZ23F020013).
Any opinions, findings, conclusions, and recommendations
presented in this material are those of the author(s) and do
not reflect the views of the National Research Foundation,
Singapore.

REFERENCES

[1] K. W. Miller, J. Voas, and G. F. Hurlburt, “Byod: Security and privacy
considerations,” It Professional, vol. 14, no. 5, pp. 53–55, 2012.

[2] Elluminati, “Importance of mobile applications in everyday life and
hence the businesses,” https://www.elluminatiinc.com/importance-o
f-mobile-application-in-everyday-and-business/.

[3] V. K. Malviya, Y. N. Tun, C. W. Leow, A. T. Xynyn, L. K. Shar, and
L. Jiang, “Fine-grained in-context permission classification for android
apps using control-flow graph embedding,” in 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2023, pp. 1225–1237.

[4] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu et al., “Deepintent: Deep icon-behavior learning for detect-
ing intention-behavior discrepancy in mobile apps,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2019, pp. 2421–2436.

[5] X. Pan, Y. Cao, X. Du, B. He, G. Fang, R. Shao, and Y. Chen, “FlowCog:
Context-aware semantics extraction and analysis of information flow
leaks in android apps,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 1669–1685.

[6] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang, “Ex-
pectation and purpose: understanding users’ mental models of mobile
app privacy through crowdsourcing,” in Proceedings of the 2012 ACM
conference on ubiquitous computing, 2012, pp. 501–510.

[7] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang, “Uipicker:
User-input privacy identification in mobile applications,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015.

[8] X. Xiao, X. Wang, Z. Cao, H. Wang, and P. Gao, “Iconintent: automatic
identification of sensitive ui widgets based on icon classification for
android apps,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 257–268.

[9] L. Li, R. Wang, X. Zhan, Y. Wang, C. Gao, S. Wang, and Y. Liu, “What
you see is what you get? it is not the case! detecting misleading icons
for mobile applications,” in Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2023, pp. 538–550.

[10] S. Chen, L. Fan, C. Chen, M. Xue, Y. Liu, and L. Xu, “Gui-squatting
attack: Automated generation of android phishing apps,” IEEE Transac-
tions on Dependable and Secure Computing (TDSC), 2019.

[11] A. Rountev and D. Yan, “Static reference analysis for gui objects in
android software,” in Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2014.

[12] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-
flow analysis of user-driven callbacks in android applications,” in 2015
IEEE/ACM 37th IEEE International Conference on Software Engineer-
ing (ICSE), vol. 1. IEEE, 2015, pp. 89–99.

[13] S. Yang, Y. Wang, Y. Yao, H. Wang, Y. Ye, and X. Xiao, “Describectx:
context-aware description synthesis for sensitive behaviors in mobile
apps,” in Proceedings of the 44th International Conference on Software
Engineering (ICSE), 2022, pp. 685–697.

[14] Google, “Activity,” https://developer.android.com/reference/android/ap
p/Activity.

[15] V. Ristić, “How to use android javamail api to send emails,” https:
//mailtrap.io/blog/android-javamail-api/.

[16] Google, “Handle click events,” https://developer.android.com/develop/
ui/views/components/menus/#PopupEvents.

[17] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” in Network and Distributed System
Security Symposium (NDSS), 2017.

[18] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Maldozer: Au-
tomatic framework for android malware detection using deep learning,”
Digital investigation, vol. 24, pp. S48–S59, 2018.

[19] E. B. Karbab and M. Debbabi, “Petadroid: Adaptive android malware
detection using deep learning,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2021, pp. 319–340.

[20] “ProGuard,” https://github.com/Guardsquare/proguard.
[21] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok:

Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in IEEE Symposium on Security and Privacy (SP), 2015.

[22] G. You, G. Kim, S.-j. Cho, and H. Han, “A comparative study on op-
timization, obfuscation, and deobfuscation tools in android.” J. Internet
Serv. Inf. Secur., vol. 11, no. 1, pp. 2–15, 2021.

[23] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding android obfuscation techniques:
A large-scale investigation in the wild,” in Security and Privacy in
Communication Networks: 14th International Conference, SecureComm
2018, Singapore, Singapore, August 8-10, 2018, Proceedings, Part I.
Springer, 2018, pp. 172–192.

[24] “Androguard,” https://github.com/androguard/androguard.
[25] Sable Research Group, “android-platforms,” https://github.com/Sable/a

ndroid-platforms.
[26] Google, “LayoutInflater,” https://developer.android.com/reference/andr

oid/view/LayoutInflater.
[27] ——, “Shrink, obfuscate, and optimize your app,” https://developer.an

droid.com/build/shrink-code.
[28] ——, “Dalvik bytecode format,” https://source.android.com/docs/core/r

untime/dalvik-bytecode.
[29] C. Gao, M. Cai, S. Yin, G. Huang, H. Li, W. Yuan, and X. Luo,

“Obfuscation-resilient android malware analysis based on complemen-
tary features,” IEEE Transactions on Information Forensics and Security
(TIFS), 2023.

[30] J. Zeng, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L.
Chua, “Shadewatcher: Recommendation-guided cyber threat analysis
using system audit records,” in 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 2022, pp. 489–506.

[31] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api semantics
to detect evolved android malware,” in Proceedings of the 2020 ACM
SIGSAC conference on computer and communications security (CCS),
2020, pp. 757–770.

[32] N. G. Trillos, F. Hoffmann, and B. Hosseini, “Geometric structure of
graph laplacian embeddings,” Journal of Machine Learning Research
(JMLR), vol. 22, no. 63, pp. 1–55, 2021.

[33] X.-D. Zhang, “The laplacian eigenvalues of graphs: a survey,” arXiv
preprint arXiv:1111.2897, 2011.

[34] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot: A java bytecode optimization framework,” in CASCON First
Decade High Impact Papers, 2010, pp. 214–224.

[36] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: Fast and accurate
detection of third-party libraries in android apps,” in Proceedings of the
38th international conference on software engineering companion, 2016,
pp. 653–656.

[37] Google, “dexlib2,” https://android.googlesource.com/platform/external/s
mali/+/144951a/dexlib2/src/main/java/org/jf/dexlib2.

[38] “SciPy,” https://scipy.org/.
[39] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:

Collecting millions of android apps for the research community,” in
Proceedings of the 13th international conference on mining software
repositories, 2016, pp. 468–471.

[40] J. Liu, J. Zeng, F. Pierazzi, L. Cavallaro, and Z. Liang, “Unraveling the
key of machine learning solutions for android malware detection,” arXiv
preprint arXiv:2402.02953, 2024.

[41] Y. He, Y. Liu, L. Wu, Z. Yang, K. Ren, and Z. Qin, “MsDroid:
Identifying malicious snippets for android malware detection,” IEEE

14

https://www.elluminatiinc.com/importance-of-mobile-application-in-everyday-and-business/
https://www.elluminatiinc.com/importance-of-mobile-application-in-everyday-and-business/
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://mailtrap.io/blog/android-javamail-api/
https://mailtrap.io/blog/android-javamail-api/
https://developer.android.com/develop/ui/views/components/menus/#PopupEvents
https://developer.android.com/develop/ui/views/components/menus/#PopupEvents
https://github.com/Guardsquare/proguard
https://github.com/androguard/androguard
https://github.com/Sable/android-platforms
https://github.com/Sable/android-platforms
https://developer.android.com/reference/android/view/LayoutInflater
https://developer.android.com/reference/android/view/LayoutInflater
https://developer.android.com/build/shrink-code
https://developer.android.com/build/shrink-code
https://source.android.com/docs/core/runtime/dalvik-bytecode
https://source.android.com/docs/core/runtime/dalvik-bytecode
https://android.googlesource.com/platform/external/smali/+/144951a/dexlib2/src/main/java/org/jf/dexlib2
https://android.googlesource.com/platform/external/smali/+/144951a/dexlib2/src/main/java/org/jf/dexlib2
https://scipy.org/

Transactions on Dependable and Secure Computing (TDSC), vol. 20,
no. 3, pp. 2025–2039, 2022.

[42] “VirusTotal,” https://www.virustotal.com/.
[43] Google, “Accessibility,” https://developer.android.com/design/ui/mobile

/guides/foundations/accessibility.
[44] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Efficient

and comprehensive mobile app classification through static and dynamic
analysis,” in 2015 IEEE 39th annual computer software and applications
conference (COMPSAC), vol. 2. IEEE, 2015, pp. 422–433.

[45] M. Alecci, J. Samhi, T. F. Bissyandé, and J. Klein, “Revisiting android
app categorization,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (ICSE), 2024, pp. 1–12.

[46] G. Forman, “A pitfall and solution in multi-class feature selection for text
classification,” in International conference on machine learning (ICML),
2004, p. 38.

[47] Z. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting for
label shift with black box predictors,” in International conference on
machine learning (ICML). PMLR, 2018, pp. 3122–3130.

[48] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi, C. Wress-
negger, L. Cavallaro, and K. Rieck, “Dos and don’ts of machine learning
in computer security,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 3971–3988.

[49] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security (CCS), 2012.

[50] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson:
Abstracting behaviors from audit logs via aggregation of contextual
semantics.” in Network and Distributed System Security Symposium
(NDSS), 2021.

[51] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-
based external cluster evaluation measure,” in Proceedings of the 2007
joint conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL), 2007,
pp. 410–420.

[52] J. M. Santos and M. Embrechts, “On the use of the adjusted rand index
as a metric for evaluating supervised classification,” in International
conference on artificial neural networks (ICANN). Springer, 2009.

[53] J. Li, J. Mao, J. Zeng, Q. Lin, S. Feng, and Z. Liang, “UIHash: Detecting
similar android uis through grid-based visual appearance representation,”
in 33nd USENIX Security Symposium (USENIX Security 24), 2024.

[54] VirusShare, https://virusshare.com/file?8f073e57b619c9f66a497ca8a15
16ad7ad21159692da16cf6ee60cb788c0fb5c.

[55] J. Liu, J. Zeng, X. Wang, and Z. Liang, “Learning graph-based code
representations for source-level functional similarity detection,” in 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE). IEEE, 2023, pp. 345–357.

[56] J. Liu, J. Zeng, X. Wang, K. Ji, and Z. Liang, “Tell: log level suggestions
via modeling multi-level code block information,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2022, pp. 27–38.

[57] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang, “PROGRAPHER: An
anomaly detection system based on provenance graph embedding,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023.

[58] S. Gandhi and A. P. Iyer, “P3: Distributed deep graph learning at
scale,” in 15th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2021, pp. 551–568.

[59] Z. Dong, H. Liu, L. Wang, X. Luo, Y. Guo, G. Xu, X. Xiao, and
H. Wang, “What did you pack in my app? a systematic analysis of
commercial android packers,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE/ESEC), 2022.

[60] X. Liu, Z. Jin, J. Liu, W. Liu, X. Wang, and Q. Liu, “ANDetect: A third-
party ad network libraries detection framework for android applications,”
in Proceedings of the 39th Annual Computer Security Applications
Conference (ACSAC), 2023, pp. 98–112.

[61] Y. Wu, C. Sun, D. Zeng, G. Tan, S. Ma, and P. Wang, “LibScan: Towards
more precise Third-Party library identification for android applications,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
3385–3402.

[62] S. Jiao, Y. Cheng, L. Ying, P. Su, and D. Feng, “A rapid and scalable
method for android application repackaging detection,” in Information
Security Practice and Experience: 11th International Conference, ISPEC
2015, Beijing, China, May 5-8, 2015, Proceedings. Springer, 2015, pp.
349–364.

[63] F. Lyu, Y. Lin, and J. Yang, “An efficient and packing-resilient two-phase
android cloned application detection approach,” Mobile Information
Systems, 2017.

[64] S. Yue, W. Feng, J. Ma, Y. Jiang, X. Tao, C. Xu, and J. Lu, “RepDroid:
an automated tool for Android application repackaging detection,”
in IEEE/ACM International Conference on Program Comprehension
(ICPR), 2017.

[65] T. Nguyen, J. T. McDonald, W. B. Glisson, and T. R. Andel, “Detecting
repackaged android applications using perceptual hashing,” in Proceed-
ings of the 53rd Hawaii International Conference on System Sciences,
2020.

[66] N. Karunanayake, J. Rajasegaran, A. Gunathillake, S. Seneviratne, and
G. Jourjon, “A multi-modal neural embeddings approach for detecting
mobile counterfeit apps: A case study on google play store,” IEEE
Transactions on Mobile Computing (TMC), 2020.

[67] L. Malisa, K. Kostiainen, M. Och, and S. Capkun, “Mobile application
impersonation detection using dynamic user interface extraction,” in
European Symposium on Research in Computer Security (ESORICS),
2016.

[68] M. Sun, M. Li, and J. C. Lui, “DroidEagle: Seamless detection of visu-
ally similar android apps,” in Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks (WiSec), 2015,
pp. 1–12.

[69] L. Malisa, “Security of user interfaces: Attacks and countermeasures,”
Ph.D. dissertation, ETH Zurich, 2017.

[70] A. G. Patil, M. Li, M. Fisher, M. Savva, and H. Zhang, “Layoutgmn:
Neural graph matching for structural layout similarity,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

[71] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,
“SUPOR: Precise and scalable sensitive user input detection for android
apps,” in 24th USENIX Security Symposium (USENIX Security 15),
2015, pp. 977–992.

[72] R. Yang, S. Ma, H. Xu, X. Zhang, and Y. Chen, “UIScope: Accurate,
instrumentation-free, and visible attack investigation for gui applica-
tions.” in Network and Distributed System Security Symposium (NDSS),
2020.

[73] R. Wang, Y. Peng, Y. Sun, X. Zhang, H. Wan, and X. Zhao, “TeSec:
Accurate server-side attack investigation for web applications,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE, 2023, pp. 2799–
2816.

[74] Google, “Thread,” https://developer.android.com/reference/java/lang/Th
read.

APPENDIX A
DETAILS OF THREAD CALLBACK IDENTIFICATION

In addition to handling multiple events, Android apps
can manage multiple threads. Similar to event listeners hav-
ing handler callbacks, each thread has its corresponding
runnable callback (e.g., run). However, just as a single
widget can be mistakenly linked to multiple unrelated event
handlers (i.e., the widget-event pair overestimating issue in
Section II-C), existing methods overlook the overestimation
problem caused by apps’ multi-threading. For example, if only
a Thread.start call is given without further code context,
static analysis cannot determine which runnable is triggered,
thus all runnable code blocks will be regarded as “implicit”
reachable.

Specifically, every thread is managed by a named or anony-
mous class, either as a subclass of Thread or implementing
the Runnable interface [74]. Accordingly, to solve the cor-
rect runnable callback for a thread, UI-CTX handles both
cases. First, it conducts backward dataflow tracking (similar
to event listener identification) from the Thread.start
callsite to determine the subclass of Thread, tracing back to
the instance creation of the object that calls Thread.start.
If the results remain unsolved, it checks the class constructor

15

https://www.virustotal.com/
https://developer.android.com/design/ui/mobile/guides/foundations/accessibility
https://developer.android.com/design/ui/mobile/guides/foundations/accessibility
https://virusshare.com/file?8f073e57b619c9f66a497ca8a1516ad7ad21159692da16cf6ee60cb788c0fb5c
https://virusshare.com/file?8f073e57b619c9f66a497ca8a1516ad7ad21159692da16cf6ee60cb788c0fb5c
https://developer.android.com/reference/java/lang/Thread
https://developer.android.com/reference/java/lang/Thread

Algorithm 1: UHG summarization
Input: UI property graph G = (V, E ,X), where node

feature xv ∈ X for v ∈ V .
Output: Summarized UHG G′ = (V ′, E ′,X′).

1 V ′ = V , E ′ = E ;
2 visited = ∅; // track processed nodes
3 cache = ∅; // cache aggregated node features
4 foreach API node va ∈ V do
5 X[va]← Aggregate(va,G, cache, visited);
6 X′ ← {x | v ∈ V ′ |xv = x ∈ X};
7 return G′ = (V ′, E ′,X′);

8 Function Aggregate(v,G, cache, visited):
9 if v is a leaf node then

10 return X[v];
11 if v ∈ cache then
12 return cache[v];
13 hsum ← X[v];
14 foreach child u of v in G do
15 if u /∈ visited then
16 hsum ← hsum +

Aggregate(u,G, h, cache, visited);
17 visited.add(u);
18 cache[v]← hsum;
19 for each parent p of v in G do
20 E ′ ← E ′ \ {(p, v)};
21 for each child u of v in G do
22 E ′ ← E ′ \ {(v, u)};
23 V ′ ← V ′ \ {u | u ∈ visited};
24 E ′ ← E ′ ∪ {(v, u) | u ∈ visited};
25 return hsum;

API hop ∞ 6 5 4 3 2 1

% of Node 100 61.7 56.0 49.8 42.7 36.3 32.1

% of Edge 100 52.5 47.2 41.9 36.5 31.3 27.9

F1-score 0.76 0.77 0.78 0.79 0.79 0.80 0.81

TABLE VIII: Average nodes, edges, and macro F1-score when
summarizing API in k-hop neighborhoods.

and identifies the class of the Runnable object. Finally, UI-
CTX links the thread initialization site to the method class:
void run(), where class refers to the resolved class.

APPENDIX B
DETAILS ON API SUMMARIZATION

We outline the detailed procedures for SDK/TPL API
summarization in Algorithm 1, with the corresponding code
context reduction and clustering performance results presented
in Table VIII. The results demonstrate that API summarization
significantly reduces UHG complexity while preserving its
ability to describe widget functionality.

APPENDIX C
DETAILS OF CLUSTERING PERFORMANCE METRICS

We provide brief explanations of the metrics used for
clustering performance assessment as below:

Cluster Widget Functionality

delete Remove data from a list (e.g., ArrayAdapter)
download Parse an external URL and navigate to it
login-1 Transfer user credential to a secondary page to pro-

cess login
login-2 Encrypt and send user credential, check and save

login info
logout-1 Iteratively search for user data, then delete it
logout-2 Clear saved data and finish the current activity
save Get a set of values, and store them by

ContentValues.put
search Search data by operating a database cursor
send Get input text and send it via inter-component com-

munication (ICC)
share Load a file URI, and launch the Android Sharesheet

TABLE IX: Widget Functionality Description.

• Homogeneity h = 1−H(C|K)/H(C): measures the extent
to which each cluster contains only samples of a single
class. A clustering result satisfies homogeneity if all of its
clusters contain only data points that are members of a
single class. H(C) and H(K) are the entropy of the class
distribution and the cluster distribution, respectively.

• Completeness c = 1−H(K|C)/H(K): measures the extent
to which all samples of a given class are assigned to the
same cluster. A clustering result satisfies completeness if
all the data points that are members of a given class are
elements of the same cluster.

• V-measure [51] v = 2 · h · c/(h + c): the harmonic mean
of homogeneity and completeness, providing a balanced
measure between the two.

• Adjusted Rand Index (ARI) [52]: measures the similarity
between two clustering results by considering all pairs of
samples and counting pairs that are assigned in the same or
different clusters in the predicted and true clusters, adjusted
for the chance grouping of elements. ARI is given by ARI =
(RI − E[RI])/(max(RI) − E[RI]), where RI is the Rand
Index, and E[RI] is the expected Rand Index of random
labeling. As ARI is label-based, it directly corresponds to
the difference between the predicted and true clusters.

APPENDIX D
WIDGET FUNCTIONALITIES IN THE VISUALIZED CLUSTERS

We manually review the 10 clusters visualized in Figure 7
and summarize their widget functionality descriptions in Ta-
ble IX. The results indicate that similar behaviors can be
implemented in various ways. For instance, a login widget
might simply pass the username to a secondary page that
requests the user’s password to complete the login process.
Alternatively, apps may perform login by encrypting user
credentials, checking the login status, and saving the corre-
sponding user data.

16

	Introduction
	Background and Motivation
	Background
	Motivation Example
	Challenges in Existing Solutions

	Design
	Overview
	Multi-layer Knowledge Extraction
	UI Handler Graph (UHG) Construction
	UHG-based UI Behavior Investigation

	Evaluation
	Implementation
	Dataset
	Effectiveness
	Contributions of Design Choices
	Security Implications of UI-CTX
	Performance Overhead

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: Details of Thread Callback Identification
	Appendix B: Details on API Summarization
	Appendix C: Details of Clustering Performance Metrics
	Appendix D: Widget Functionalities in the visualized Clusters

