
L-HAWK: A Controllable Physical Adversarial
Patch Against a Long-Distance Target

Taifeng Liu†, Yang Liu†, Zhuo Ma†✉, Tong Yang§, Xinjing Liu†, Teng Li†, Jianfeng Ma†
†Xidian University §Peking University

Emails: tfliu@gmx.com, bcds2018@foxmail.com, mazhuo@mail.xidian.edu.cn,
yangtong@pku.edu.cn, liuxinjing j@163.com, litengxidian@gmail.com, jfma@mail.xidian.edu.cn

Abstract—The vision-based perception modules in autonomous
vehicles (AVs) are prone to physical adversarial patch attacks.
However, most existing attacks indiscriminately affect all passing
vehicles. This paper introduces L-HAWK, a novel controllable
physical adversarial patch activated by long-distance laser sig-
nals. L-HAWK is designed to target specific vehicles when the
adversarial patch is triggered by laser signals while remaining
benign under normal conditions. To achieve this goal and address
the unique challenges associated with laser signals, we propose
an asynchronous learning method for L-HAWK to determine
the optimal laser parameters and the corresponding adversarial
patch. To enhance the attack robustness in real-world scenar-
ios, we introduce a multi-angle and multi-position simulation
mechanism, a noise approximation approach, and a progressive
sampling-based method. L-HAWK has been validated through
extensive experiments in both digital and physical environments.
Compared to a 59% success rate of TPatch (Usenix ’23) at 7
meters, L-HAWK achieves a 91.9% average attack success rate at
50 meters. This represents a 56% improvement in attack success
rate and a more than sevenfold increase in attack distance.

I. INTRODUCTION

The rapid development of autonomous vehicles (AVs) has
led to the deployment of the vision-based perception mod-
ules [1]. These modules typically incorporate at least one
camera to capture images of driving environments and em-
ploy several perception models, such as object detectors and
image classifiers, to detect traffic signs and obstacles. These
modules are crucial for AVs to make safety-critical driving
decisions [2]. Consequently, ensuring the correct execution of
vision-based perception modules in untrusted environments is
essential for maintaining safe driving.

However, recent studies reveal that these modules are vul-
nerable to physical adversarial example (AE) attacks [3]–[9].
Adversarial attackers can manipulate AV perception results
using carefully designed adversarial patches if they gain de-
tailed knowledge of those modules. Nonetheless, as described
in [10], existing adversarial patches, whether in the physical or
digital form, affect every passing AV indiscriminately. In other
words, these AE attacks are uncontrollable. Once deployed,
the attacker cannot determine when the attack will work or
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Fig. 1: Comparison between L-HAWK and TPatch [10].

which AV will be targeted. As a result, such uncontrollable
attacks risk detections by “unexpected” victims, particularly
those equipped with recent countermeasures [11]–[13].

To date, the only work addressing the above problem is pro-
posed by Zhu et al. [10], which introduces the first controllable
adversarial patch method, termed TPatch. Unlike prior work,
TPatch leverages image distortion caused by acoustic signals
to ensure that the adversarial patch only triggers against a
specific, attacker-chosen AV. This design significantly reduces
the chance of the attack being noticed by unexpected vic-
tims. However, despite its promising capability, the practical
application of TPatch is limited by the short transmission
distance of acoustic signals and the “conspicuous” nature of
the attack device. For instance, the attack scenario (illustrated
in Figure 1 and [10]) requires the attacker to carry a 30cm ×
30cm ultrasonic transducer and approach a speeding car within
7m to launch attacks, with an approximately 50% failure rate.
As such, most attackers are unlikely to attempt such a risky
attack due to the potential of being recognized by drivers or
injured by AVs.

A. Our Contribution

In this paper, we propose a controllable physical adversarial
patch (called L-HAWK). Our approach requires only a portable
device to trigger attacks and can achieve a high attack success
rate (more than 90%) even at a long distance (more than
50m). Specifically, L-HAWK is a physical adversarial patch
triggered by laser signals. In normal circumstances, L-HAWK
remains harmless but can manipulate the driving decision of
a targeted AV via a specific image distortion caused by laser
signal injection towards the camera. Unlike TPatch, L-HAWK
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maintains its effectiveness over long distances due to the
stability of the laser beam. Moreover, the small size of the laser
device allows the attacker to launch attacks more easily than
TPatch, minimizing the detection risk and enhancing attack
stealthiness.

The real-world implementation of L-HAWK leads to sig-
nificant challenges, setting our approach apart from TPatch
despite their similar attack objectives.
Identifying Laser-Based Adversarial Patches. As previ-
ously discussed, the vision-based perception modules of au-
tonomous vehicles (AVs) encompass both object detection and
classification tasks. To ensure the applicability of attacks, L-
HAWK enables adversaries to target either task. Crucially, L-
HAWK must remain benign unless triggered for a specific task.
Unlike TPatch, which distorts the image stabilization system
(i.e., x/y-axis gyroscope), L-HAWK must consider additional
laser-specific parameters for implementing image distortion
at the victim’s end, such as wavelength, laser power, and
pulse width (see Section IV). However, to achieve controllable
attacks, we need to optimize both the laser-specific parameters
and the corresponding adversarial patch. This requirement
renders the optimization objectives of prior laser-based attack
methods [14], [15] inapplicable to our scenario1. To overcome
this challenge, we propose an asynchronous learning method
for L-HAWK that facilitates multi-objective adversarial patch
and laser parameter optimization. Additionally, we introduce
a multi-angle and multi-position simulation mechanism to
enhance the robustness of L-HAWK in real-world attacks,
thereby significantly reducing the “shooting” difficulty for the
laser attacker targeting the camera.
Random Noises From Lens Scattering. Laser light is
highly susceptible to scattering phenomena within the camera
lens [16]. In practical scenarios, random noise introduced by
lens scattering can easily distort and diminish the efficacy of
the laser-based adversarial patch. This issue is also examined
in prior vision perception sensor attacks [15], which mitigate
noise by treating it as normally distributed. However, real-
world noise varies with environmental factors, particularly
the laser incident angle, often deviating significantly from a
normal distribution. To address this challenge specific to L-
HAWK, we approximate real-world noise by evaluating dif-
ferences between continuous camera frames. We then design
a progressive sampling-based method to extend the approxi-
mated noise to accommodate different laser incident angles.
Using this method, we can refine the generated laser-based
adversarial patch, significantly enhancing its robustness and
increasing the average attack success rate from 41.8% to
94.4%.
Contributions. We summarize the contributions as follows.

• We propose a controllable physical adversarial patch
attack based on physical laser signal attacks.

1To our best knowledge, only two prior works used lasers to generate adver-
sarial image distortion, namely Rolling Shutter [14] and Rolling Colors [15].
Rolling Shutter only achieves random object detection blocking attacks based
on image distortion, while Rolling Colors just uses different colors of laser
to disturb the traffic light recognition.

• We investigate the attacker’s capability of controlling
physical laser signals and the correspondence between
laser signals and image distortion caused by laser signal
attacks. This helps developers understand the impact and
prevalence of laser signal attacks.

• We propose an asynchronous learning method for opti-
mizing laser parameters and physical adversarial patches.
A multi-angle and multi-position simulation mechanism,
an approximate method for real-world noises, and a pro-
gressive sampling-based method are proposed to improve
the attack robustness in the real world.

• We perform extensive evaluations of the proposed attack
across both digital and physical scenarios. Results show
the effectiveness of L-HAWK at long distances against
mainstream object detectors and image classifiers.

• The source code and physical attack demo can be found
at https://github.com/Jupiterliu/L-Hawk.

II. BACKGROUND

A. Vision-Based Perception Module

For AVs, the vision-based perception module is essential for
accurately sensing the driving environment and ensuring safe
driving. This module typically consists of two components:
the camera and the perception model.
Camera. A camera is an optical instrument that captures
images by focusing light through a lens onto a light-sensitive
medium, such as a digital sensor. Complementary metal-
oxide-semiconductor (CMOS) digital sensors are favored in
consumer electronics due to their cost-effectiveness and lower
power consumption. Digital cameras equipped with CMOS
sensors typically manage exposure time using electronic shut-
ters that control the activation states of the sensor photodiodes.
Due to the readout bottleneck of CMOS sensors, most of
them use rolling shutter techniques that turn on and off the
photodiode row-by-row at a frequency as if it is “rolling.”
Therefore, when a light source operates at the same frequency
as the rolling shutter, CMOS sensors will only capture the light
source in a few rows. Notably, many digital cameras, including
the AR0132AT camera used in Tesla [17] vehicles and the
Kodak KAC-9619 Monochrome sensor used in Mobileye [18],
use rolling shutters.
Perception Model. The images captured by cameras are sub-
sequently analyzed by the perception model through advanced
machine learning techniques. Deep learning, in particular, is
one of the most popular perception models and has been
instrumental in advancing capabilities in critical areas such as
object detection and image classification—both pivotal for au-
tonomous driving. Object detectors such as YOLO V3 [19] and
YOLO V5 [20] are employed to identify and categorize key
objects like pedestrians and vehicles, while two-stage detec-
tors like Faster R-CNN [21] offer alternative methodologies.
Besides, image classifiers, utilizing models such as VGG [22],
ResNet [23], Inception [24], and MobileNet [25], execute
more nuanced classifications, like recognizing the colors of
traffic lights [26]. Object detection and image classification
form the fundamental components of vision-based perception
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modules, influencing more complex functions such as tracking
and planning. This paper delves into the vulnerabilities of
vision-based perception modules and explores their potential
risks to the safety of autonomous driving.

B. Adversarial Patch

An adversarial patch [27] is a type of adversarial example
that appears as localized perturbations. The adversarial patch
can be a sticker attached to an existing object or a stand-alone
image, such as a billboard. Compared to various pixel-wise
perturbations directly added to images in the digital world [24],
[28], [29], the adversarial patch is not generated under noise
magnitude constraints but rather under location and printability
constraints, making patch-based attacks more practical in the
real world. Due to its practicality and robustness, adversarial
patch has recently drawn much attention, and several prior
works [3], [4], [6]–[8], [10], [27], [30] have demonstrated
the feasibility of physical adversarial patch attacks on both
classifiers and detectors. However, most existing adversarial
patches indiscriminately affect every passing AV, increasing
the risk of detection by unexpected victims. TPatch [10] is
the first work that investigates the possibility of controllable
adversarial attacks on a specific victim vehicle using the
acoustic signal-based patch. The controllable patch remains
harmless in normal circumstances but becomes adversarial
when triggered by image distortion caused by acoustic signals.
However, the short transmission distance of acoustic signals
and the “conspicuous” attack device limit the practice of
TPatch. In this paper, we aim to explore the use of stealthier
signal attacks to achieve controllable adversarial attacks.

III. THREAT MODEL

A. Attack Goals

The adversary’s primary objective is to interfere with the
output of vision-based perception modules, thereby compro-
mising the safety and reliability of AV operations. We focus
on targeted attack scenarios and explore four distinct types of
attacks on both object detectors and image classifiers. Each
type of attack aims to disrupt the vehicle’s perception deci-
sions, leading to diverse and potentially hazardous outcomes.

• Hiding Attack (HA) is designed to make an existing
object disappear from the vehicle’s perception and render
it invisible to the AV’s detection systems.

• Creating Attack (CA) causes the vehicle to falsely detect
a non-existent object, leading to erroneous decision-
making and potentially dangerous maneuvers.

• Targeted Attack Against Detectors (TA-D) aims to alter
both the classification and bounding box of an object.

• Targeted Attack Against Classifiers (TA-C) only ma-
nipulates the classification scores of image classifiers.

B. Attack Assumptions

To effectively launch the aforementioned attacks, we assume
that an adversary possesses the following capabilities:
Laser Signal Injection to The Onboard Camera. The
adversary is capable of using physical laser signals to interfere

Fig. 2: Overview of parameters of our attack.

with the onboard camera of the target vehicle from a remote
location. This capability involves precision in directing laser
signals to disrupt the camera’s normal functioning. The fea-
sibility of laser signal injection against an onboard camera is
discussed in Section IV and Section VI-E, where we examine
various factors that enable such interference, including the
necessary power and accuracy of the laser signals.
Camera and Sensor Awareness. The adversary can obtain a
camera with the same model as the one used in the target AV
to optimize attack parameters. This assumption is feasible in
practice because the camera details are often publicly available
for most vehicles, which also aligns with the common practice
in physical adversarial attacks [10], [15].
Prior Knowledge of Perception Models. We assume that
the adversary has advanced knowledge of the object detection
and image classification models used in the victim AV. This
includes understanding the types of models and their archi-
tectures. Such knowledge allows the attacker to craft more
effective adversarial patches tailored to the specific models in
use. In the absence of exact model knowledge, the attacker can
exploit the transferability of adversarial examples to perform
black-box attacks [10].

IV. WHAT CAN WE DO WITH LASER

In this section, we present a detailed description of our
attack and scenario parameters for laser injection in Figure 2
and investigate what we can do by adjusting these parameters.
In our attack scenario, we are mainly concerned about the
following attack and scenario parameters.
Attack Parameters. The following are the parameters that
can be controlled by the attacker to launch laser-based attacks.

1) w: the wavelength of the laser signal that directly deter-
mines the color of image distortion.

2) p: the laser power that impacts the intensity of image
distortion caused by laser injection attacks.

3) PWM: the pulse width modulation (PWM) signal that
controls the pulse width and the period of laser devices.

4) dpv: the adversarial patch’s vertical distance from the
victim camera’s optical axis.

Term the image distortion caused by laser signal injection
as color stripe (serving as the trigger of the adversarial patch
in L-HAWK) [15]. The PWM signal directly determines the
position and height of the color stripe on the image and other
parameters determine the color stripe’s brightness on the im-
age. Any slight adjustment of the above parameters can lead to
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Fig. 3: Overview of L-HAWK attacks generation. (a) The attacker first approximates the trigger by evaluating the differences
between continuous camera frames and then constructs the trigger space by extending the trigger under various parameters.
(b) The attacker optimizes L-HAWK and the trigger through an asynchronous learning method. (c) The proposed four attacks
are deployed and verified in both the digital and physical worlds.

a significant change in the color stripe. Intuitively, to maximize
the attack success rate, the attacker needs to simultaneously
optimize these parameters as well as the adversarial patch.
Notably, w, PWM, and dpv are considered in the process of
patch and color stripe optimization but not unoptimizable. For
example, dpv only determines the color stripe occurs on the
left or right on the captured images, which can hardly affect
the attack success rate as being fixed.
Scenario Parameters. These parameters are about the envi-
ronmental factors affecting laser work and include:

1) d: the distance of the laser device from the victim camera.
2) θ: the incidence angle between the laser beam and the

optical axis of the camera lens.
3) dph: horizontal distance of the adversarial patch from the

victim camera.
4) l: the ambient light intensity.
5) v: the speed of the victim vehicle.
Without loss of generality, we assume the scenario param-

eters cannot be controlled by the attacker. However, most of
the scenario parameters will affect the color stripe’s brightness
and further impact the attack performance. Therefore, before
launching attacks, an attacker needs to previously optimize
its adversarial patches to maximize their robustness against
different scenario settings.

V. DETAILED ATTACK DESIGN

In this section, we present the attack details of our design.

A. A Closer Look At Our Design Challenges

Challenge 1: Multi-Objective Optimization for Laser-based
Adversarial Patch. When handling physical adversarial patch
δ, all prior works proceed with the following optimization:

argmin
δ

Ex,t[L(x, δ, t)] (1)

where x and L denote the manipulated input and the loss
function, respectively. Especially, the adversarial trigger t
is empirically fixed, and only involved in the controllable
adversarial patch optimization, i.e., TPatch [10].

However, referring to our attack, the above solution is no
longer applicable. This is because despite the ideal capability
of laser to achieve long-distance attacks, its signals are more
sensitive to environmental factors (discussed in Section IV)
than other physical signals like the acoustic signal. As a result,
it is almost impossible to empirically find the set of parameters
to generate effective triggers. To address this challenge, our
basic solution is to extend the loss of Equation 1 to be in the
multi-objective format as follows.

argmin
δ,t

Ex[L∗(x, δ, t)],

s.t. t ∈ {S(p, d, θ, l) | p, d, θ, l ∈ P,D,Θ, L}.
(2)

where S(·) outputs a specific trigger, and the input is a set
of parameters. P , D, Θ, and L denote the corresponding
set of parameters. Especially, considering real-world attack
scenarios, the introduction of d and θ can also lower the
difficulty of shooting a laser at the victim object. Moreover,
due to the extended search space caused by additional opti-
mization objectives, Equation 2 is much harder to converge
than Equation 1. To resolve this problem, we introduce an
asynchronous learning mechanism to limit the searching space
at each optimization epoch (Algorithm 1).
Challenge 2: Random Noise Caused by Lens Scattering.
As mentioned before, laser-based attacks are easily blocked
by random noises caused by the scattering phenomenon of the
camera lens, such as the water ripple noises in the Hikvision
C6 Pro dashcam [31]. One existing work, i.e., Rolling Col-
ors [15], also discusses a similar issue and proposes to resolve
it by simulating the noises according to a standard normal
distribution. However, in practice, the scattering noises are
determined by different environmental factors, especially for
the laser incidence angle, always leading to a large deviation
from the standard normal distribution (shown in Figure 4).

To address this challenge, we propose a more straightfor-
ward but effective model to simulate the random noises caused
by lens scattering as follows.

ηi =
1

n
|
∑
n

I ′ −
∑
n

I|i, i ∈ R,G,B (3)
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Fig. 4: Comparison between trigger modeling methods.

where 1
n

∑
n I

′ indicates that n consecutive frames are aver-
aged to mitigate the effects of temporal image noise. I and I ′

are the consecutive frames captured by the camera before and
after the laser signal injection, respectively. Here, Equation 3
models the noise η via the differential between consecutive
frames. Intuitively, by progressive sampling different frame
pairs in different environmental settings, we can obtain some
noises that look more “natural” (see experiments in Sec-
tion V-C) and apply them to further optimize our adversarial
patches and triggers (discussed in Section V-D). Moreover,
such a differential approximation is friendly to implement
because the two camera frames can be easily captured when
the attacker tests attacks in his own space.

Putting all together, the overall loss of our attack can be
formalized in the following format.

argmin
δ,t

Ex,η[L∗(x, δ, t+ η)],

s.t. t ∈{S(p, d, θ, l) | p, d, θ, l ∈ P,D,Θ, L}.
(4)

B. Attack Module Overview

As illustrated in Figure 3, the detailed design of L-HAWK
is composed of three modules.

1) Trigger Modeling. We approximate real-world noises by
evaluating the differences between continuous camera
frames. To enhance the attack robustness, we construct
a trigger space by using a progressive sampling-based
method to extend the trigger under various parameters.

2) Joint Optimization. We propose an asynchronous learning
method for L-HAWK to achieve multi-objective patch and
trigger optimization. We further introduce a multi-angle
and multi-position simulation mechanism to improve the
robustness of L-HAWK and greatly reduce the difficulty
of the laser attacker in targeting the camera.

3) Attack Deployment. We evaluate and deploy the four
proposed attacks against object detectors and image clas-
sifiers in both the digital and physical worlds.

In the following subsection, we present the details of the
first two modules. For the third module, we illustrate it with
experiments in Section VI.

C. Trigger Modeling

L-HAWK is designed to become adversarial when triggered
by color stripes caused by special laser signals but remain
benign when not triggered. We define color stripes as triggers.

To generate the effective L-HAWK, we first model the accurate
trigger with noise in the digital world as shown in Figure 3(a).
Recognizing the significant disparity between real and simu-
lated triggers due to random noise caused by lens scattering,
we propose approximating real-world noise by evaluating the
differences to extract the noise. Our approach is based on
the fact that the pixel intensity value represents the number
of photons detected by the camera [32]. The approximate
method is illustrated in Equation 3. However, laser signals
can cause certain channels to reach their maximum pixel
value, resulting in saturation. Saturation impedes the accurate
representation of the laser’s true effect on the image. To
address this issue, we place a black cloth in front of the camera
lens as the background for the trigger, without affecting the
laser irradiation of the camera. The low RGB pixel values of
the black area help prevent saturation in the RGB channels.

Based on the approximate noise η, we achieve the following
objective:

1

3

∑
i∈R,G,B

|I ′ − Clip(I + t+ η)|i ∼ 0 (5)

which represents that apart from the tiny temporal image
noise of cameras, our simulated triggers are virtually indistinct
from real triggers. Clip(·) means to limit the pixel value
from 0 to 255. Figure 4 presents a comparison between the
triggers generated by our method and the one produced by
the existing simulation technique [15]. We evaluate the pixel
accuracy using the mean square error (MSE) between the
real image and the image with the trigger. The left result
illustrates that the noise caused by camera lens scattering is
very different from the normal distribution noise. Results in
the right demonstrate that the trigger generated by our method
closely matches the real trigger, both visually and in terms of
pixel accuracy. In contrast, the trigger generated by the existing
simulation method shows substantial discrepancies from the
real trigger. Our approach circumvents the limitations of simu-
lating physical noises involved in camera and attack modeling,
thereby improving the accuracy of the simulated triggers. By
focusing on the real trigger, attackers can effectively leverage
the physical characteristics of the laser signals to create robust
adversarial patches.

In addition, to maximize the attack performance, we ini-
tialize a set of triggers instead of just one. A trigger space is
constructed by extending the trigger and noise under different
attack and scenario parameters. In this trigger space, there
is a one-to-one correspondence between the trigger and the
parameter, which helps us find the attack parameter in the
physical world based on the trigger (discussed in Appendix B).
Note that the pixel height of the extracted color stripe is larger
than that of the real attack, which is also to obtain more laser
interference influence, thereby enriching the space of triggers.

D. Joint Optimization

To obtain the optimal patch and trigger, we propose an asyn-
chronous joint optimization method as detailed in Figure 3(b).
This method mainly proceeds with two steps.
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Algorithm 1: Joint Optimization
Input: the training data x; the detector or classifier F ;

the training epoch N ; the initial adversarial
patch δ0; the initial parameter distribution
P0, D0,Θ0, L0; the trigger generation function
S(·); the noise η .

Output: the optimal trigger t; the optimal adversarial
patch δ.

1 δ ← δ0;
2 Initialize T = {S(p, d, θ, l)|p, d, θ, l ∈ P0, D0,Θ0, L0};
3 for [1, N ] do
4 t ∈ T ;
5 Compute loss with Equation 6;
6 Optimize δ with Equation 7 ;
7 Compute loss with Equation 9;
8 Optimize t Trigger with Equation 10 ;
9 P,D,Θ, L← t;

10 T = {S(p, d, θ, l)|p, d, θ, l ∈ P,D,Θ, L} ;
11 end
12 return δ, t;

In the first step, since the trigger in the trigger space is
larger than the size of the training data, we randomly sample
each trigger. Random sampling also simulates the trigger in
multi-angle and multi-position situations. Then, we define the
following loss function to optimize the patch and trigger.

Lδ(x, δ, t0 + η) =αℓattack(x, δ, t0 + η) + βℓbenign(x, δ)

+ λℓtv(δ) + µℓcontent(δ) + ξℓnps(δ)
(6)

where t0 indicates the trigger in the initial trigger space.
ℓattack and ℓbenign represent loss functions under triggered
and benign scenarios, which are used to achieve the proposed
four attacks. ℓtv is the total variation (TV) loss [33] which
ensures that L-HAWK maintains a realistic appearance by
smoothing out abrupt color transitions. ℓcontent in [10] is
used to increase the stealthiness of L-HAWK by encouraging
the patch to mimic the spatial structure and general content
of natural images. ℓnps is the non-printability score (NPS)
loss [33] to make colors in L-HAWK closer to the colors that
can be printed by a common printer. The detailed definition
of the above losses can be found in Appendix C. Hyperpa-
rameters, i.e., α, β, λ, µ, and ξ, are used to balance different
loss components. Then, based on Equation 7, we obtain the
optimized patch δ∗.

argmin
δ

Ex,η[Lδ(x, δ, t0 + η)],

s.t. t0 ∈ {S(p, d, θ, l) | p, d, θ, l ∈ P0, D0,Θ0, L0}
(7)

where P0, D0, Θ0, and L0 denote the initial parameters.
In the second step, we aim to optimize the parameters based

on the patch δ∗. We present the trigger generation function:

t = S(p, d, θ, l) (8)

where S(·) is used to generate the special trigger based on the

parameter input, which is illustrated in Appendix B. The loss
function of optimizing parameters is defined in Equation 9.

Lt(x, δ
∗, t+ η) = ζℓattack(x, δ

∗, t+ η) + ψℓbenign(x, δ
∗)
(9)

where ζ and ψ are used to balance different losses. The
optimization objective is illustrated in Equation 10.

argmin
t

Ex,η,δ∗ [Lt(x, δ
∗, t+ η)],

s.t. t ∈ {S(p, d, θ, l) | p, d, θ, l ∈ P0, D0,Θ0, L0}
(10)

We obtain the optimal parameters, i.e., p∗, d∗, θ∗, and l∗.
Next, we repeat the above two steps until the maximum

training epoch N . We present the joint optimization method
in Algorithm 1. To ensure that L-HAWK is robust to variable
attack scenarios, the optimization is re-initizalized with differ-
ent parameters at each training epoch. For example, we obtain
an optimized set of parameters where p∗ = 50 mW, d∗ = 30
m, θ∗ = 15◦, and l∗ = 1000 Lux. We extend this set of
parameters and obtain a new setting P ∗ = [40 mW, 60 mW],
D∗ = [25 m, 35 m], Θ∗ = [10◦, 20◦], and L∗ = [800 Lux,
1200 Lux]. In the next round, we optimize L-HAWK based
on the new parameters. In our evaluation, such a parameter
extension strategy can improve the average attack success rate
of L-HAWK from 59.4% to 94.4%.

VI. EVALUATION

A. Overview

We evaluate the attacks from three aspects: digital evalu-
ation, physical evaluation in stationary setups, and physical
evaluation in moving setups. We use the attack success rate
(ASR) to evaluate the digital experiments. Furthermore, we
use the highest ASR in n consecutive frames fmax(n)

succ [6],
[34] to evaluate the physical experiments in stationary and
moving setups. The key results are highlighted as follows:

• In digital experiments, the proposed methods achieve an
average ASR of 94.4%, while the baseline2 only achieves
an average ASR of 15.2%. Specifically, the overall ASRs
reach 95.3%, 94.9%, and 96.9% for HA, CA, and TA-
D against three object detectors. The attacker achieves
overall ASRs of 83.1% for TA-C against eight image
classifiers (discussed in Section VI-B).

• In stationary physical experiments, L-HAWK achieves
average fmax(150)

succ of 99.8%, 88.4%, and 90.3% for HA,
CA, and TA-D against three object detectors and four
victim cameras, respectively (discussed in Section VI-C).

• In moving-setup physical experiments, the average
f
max(50)
succ reaches 100.0%, 83.3%, and 68.7% for HA,

CA, and TA-D against three object detectors. Compared
to an average 59% ASR of TPatch at 7 m, L-HAWK
achieves an average 91.9% ASR for HA and CA at an
attack distance of 50 m. We extensively investigate the
transferability and robustness of L-HAWK in the physical
world (discussed in Section VI-D).

2We use the patch optimization method in TPatch [10] as the baseline, but
do not include our proposed joint optimization and trigger modeling methods.
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Fig. 5: The evaluation results of L-HAWK under the proposed four attacks in the digital world. The box plots show the min/max
and quarterlies, and the dots represent different attack classes.

Fig. 6: The ASR under different patch sizes is evaluated. Each
adversarial patch is square-shaped. The patch size is specified
by the length of its side.

B. Digital Evaluation

In the digital evaluation, we use public datasets to evaluate
the proposed four attacks, i.e., HA, CA, TA-D, and TA-C. We
first evaluate each attack under various attack classes. Then,
we investigate the impact of critical factors such as adversarial
patch sizes and triggers on the effectiveness of L-HAWK. We
also study the transferability of L-HAWK with two black-
box attacks: single model attack and ensemble model attack.
Finally, the improvement of the proposed method is discussed.

1) Experimental Setup: We first show the setup in the digi-
tal evaluation, including victim models, training and validation
datasets, attack classes, and evaluation metrics.
Victim Models. We evaluate L-HAWK against three pop-
ular object detectors, including the one-stage YOLO V3/V5
and a two-stage Faster R-CNN. All object detectors are
trained on the MS Common Objects in Context (COCO)
datasets [35] for detection. We also evaluate L-HAWK on eight
widely-used image classifiers, i.e., VGG-13/16/19, ResNet-
50/101/152, Inception-v3, and MobileNet-v2, which cover
models of different depths and architectures. All of these
classifiers are trained on the training set of the large vision
database ImageNet [36].
Datasets. For object detectors, we use the COCO validation
set for optimizing the adversarial patch and trigger. We then
utilize two popular autonomous driving datasets KITTI [37]

with 1242× 375 pixels and BDD100K [38] with 1280× 720
pixels for evaluation. The images contained in these two
datasets are captured in real driving scenarios. For the image
classifier, we utilize the ImageNet validation set with 224×224
pixels for evaluation. A total of 10846 and 10000 images are
used for detectors and classifiers in our evaluation experiments.
Attack Classes. We investigate 8 primary attack classes
for our attacks against object detectors. 20 primary attack
classes for image classifiers are selected. These classes are
deemed security-critical in the context of autonomous driving
scenarios [10], [39].
Metrics. We further define the ASR for our attack evaluation
in detail. ASR indicates the ratio of the number of successful
attacks against object detectors or image classifiers over the
total number of conducted attacks. A successful attack is
defined as being adversarial when triggered by laser signals,
but benign when not triggered. The metric of ASR can be
formulated as follows:

ASR =
1

N

N∑
i=1

CF (x′,t)=ya&F (x′)=yb
(x′) (11)

where N is the number of evaluation samples. C(·) is the
counting function. F (·) denotes the recognition function of
the victim model. x′ is the image embedded with L-HAWK.
t denotes the trigger caused by laser signals. ya and yb
are the adversarial and benign labels, respectively. Unlike
image classification, object detection outputs not only the class
probability but also the bounding box of the detected object.
The accuracy of the bounding box is usually judged using the
Intersection-over-Union (IOU), and the threshold of the IOU
is usually set to 0.5 [19].

2) Overall Performance: In this section, we evaluate the
effectiveness of our attacks on different object detectors and
image classifiers, respectively. Before the evaluation, we con-
struct a trigger space based on the attacks of a 532 nm
wavelength green laser. The trigger size is 700× 2880 pixels.
Then, we acquire the optimal trigger and the adversarial patch
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Fig. 7: The ASR of attacking YOLO V5 and ResNet-50 under
the various laser power and patch positions.

for each attack based on the proposed optimization framework.
During the sampling of triggers, the width of the trigger is the
same as the width of the evaluation images. The height of the
trigger is set to 50 pixels. In addition, the size of L-HAWK is
set to 48 ∗ 48 pixels in the overall evaluation.

For each test involving CA, TA-D, and TA-C, L-HAWK is a
standalone object and randomly patched on the image. For HA,
L-HAWK is attached to each target object (e.g., a “stop sign”)
and then randomly patched on the image. A detailed definition
of L-HAWK is shown in Figure 16. Then, we create a pair of
images by applying the trigger which represents the benign and
adversarial cases for detection or classification, respectively.
For all attacks, the trigger covers the entire L-HAWK or target
object to activate the adversarial effect. Following the metric
formulated by Equation 11, we calculate the overall ASR.

The results of the overall performance evaluation are de-
picted in Figure 5. The overall ASRs reach 95.3%, 94.9%,
96.9%, and 83.1% for HA, CA, TA-D, and TA-C, respectively.
For HA, CA, and TA-D, the attack performance against differ-
ent object detectors is consistent. Specifically, the overall ASR
for YOLO V3 is the highest, followed by the ASR for YOLO
V5, and the lowest is the ASR for Faster R-CNN. For TA-C,
the VGG series are the easiest to attack with ASR exceeding
94%, followed by ResNet with ASR over 75% and Inception
with ASR over 74%, and the worst is MobileNet with ASR
of 73.4%. The result shows that notable differences in ASRs
are observed across various classes. For HA, ‘person’ is the
most challenging to impact across all detectors. ‘stop sign’ is
the easiest to hide, which is because the trigger produced by
the green laser largely destroys the red color feature of the
stop sign. In contrast to HA, in CA, ‘person’ is the easiest to
affect across all detectors. For TA-D, we find that the attack
effect is bad against Faster R-CNN and YOLO V5 when the
class after triggering is ‘stop sign’. Especially, the ASR is only

Fig. 8: The ASR of attacking YOLO V5 and ResNet-50
under the cover of triggers of various positions and widths.
Illustrations of (a) the trigger’s position and width compared
with L-HAWK and four typical cases, (b) the ASR of CA
against YOLO V5 under 6 cropped regions, and (c) the ASR
of TA-C against ResNet-50 under 6 cropped regions.

TABLE I: The impact of various trigger colors.

Trigger Type
Attack Type HA CA TA-D TA-C

Green 97.6% 95.5% 99.6% 85.0%
Red 90.8% 100% 94.9% 86.1%

1% on Faster R-CNN when the benign class is ‘motorcycle’
and the adversarial class is ‘stop sign’. In addition, in the
Inception v3 experiments, the most vulnerable class is ‘traffic
light,’ achieving ASR exceeding 98%. Conversely, the ‘plow’
class exhibits the lowest vulnerability, with an ASR of just
13%, indicating minimal adversarial impact.

3) Impact of Other Factors: We investigate several fac-
tors that may influence the attack effectiveness of L-HAWK,
including the size and position of the adversarial patch, as
well as the pixel intensity, color, and size of the trigger. To
simplify our analysis, we focus on a selection of representative
perception models. For the image classifier analysis, we use
ResNet-50, which demonstrates medium overall performance
among the eight models we evaluated, and the target class for
TA-C is the ‘traffic light’. For the object detector analysis, we
select YOLO V5, one of the latest models, and focus on the
‘stop sign’ class for CA.
Impact of Adversarial Patch Size. The size of the adversarial
patch reflects the attacker’s ability to influence the input
image. A smaller size suggests a greater distance between the
camera and the adversarial patch, and vice versa. As illustrated
in Figure 6, adversarial patches that are too small rarely
succeed in executing a successful attack. For image classifiers,
the success rate curve shows a gradual increase, achieving
nearly 100% success when the size reaches 64 × 64 pixels.

8



TABLE II: The transferability of attacking object detectors.

Atack Type HA CA TA-D

White Detector
Black Detector

Faster R-CNN YOLO v3 YOLO v5 Faster R-CNN YOLO v3 YOLO v5 Faster R-CNN YOLO v3 YOLO v5

Faster R-CNN 96.6% 59.3% 27.4% 97.0% 93.4% 68.8% 100.0% 94.0% 45.6%
YOLO v3 56.3% 98.6% 97.6% 6.1% 99.3% 72.4% 0.12% 100.0% 21.9%
YOLO v5 89.0% 63.6% 99.9% 10.4% 99.6% 98.4% 48.0% 99.4% 99.6%

TABLE III: The transferability of attacking image classifiers.

White Classifier
Black Classifier

VGG-13 VGG-16 VGG-19 ResNet-50 ResNet-101 ResNet-152 Inception-v3 MobileNet-v2

VGG-ens 94.9% 97.1% 99.9% 58.0% 44.0% 62.9% 35.5% 40.3%
ResNet-ens 14.9% 50.1% 57.4% 95.8% 96.6% 93.6% 22.4% 56.8%

TABLE IV: Our improvement for various attacks.

Method HA CA TA-D TA-C
Patch optimization in TPatch [10] 10.7% 0.5% 14.4% 35.1%

Our joint optimization 36.9% 25.1% 42.8% 62.3%
Our joint optimization & trigger modeling 97.6% 95.5% 99.6% 85%

In contrast, the ASR for YOLO V5 exhibits two significant
increases at sizes of 48 × 48 pixels and 80 × 80 pixels.
This behavior is attributable to the YOLO V5’s three-scale
prediction mechanism, which becomes more susceptible to
misclassification as the size increases, making the adversarial
patch more detectable by the detector.
Impact of Patch Position and Pixel Intensity of Trigger.
Lasers of different power levels produce triggers with varying
pixel intensities, and the pixel intensity at different positions
on the trigger also varies. Therefore, we aim to explore the
impact of various triggers and patch positions. Specifically, we
extend the laser power from the trigger space used for overall
performance evaluation with a power step of 10 mW. Other
experiment setups remain unchanged in the overall experiment.
Two heatmaps in Figure 7 show the ASRs of attacking YOLO
V5 and ResNet-50 under various laser powers and patch
positions. The x-axis indicates the lateral position of L-HAWK
relative to the left edge of the color stripe, varying from 0 to
7/8 for YOLO V5 and from 0 to 7/9 for ResNet-50. The y-
axis is the laser power, which varies from 10 mW to 70 mW.
From the results, we find that the responses of the detector
and classifier to laser power and patch position are consistent.
For the optimal trigger, i.e., the laser power of about 29 mW,
L-HAWK has high ASRs in any position. Since the incidence
angle of the optimal trigger is about 18◦, the trigger’s pixel
intensity distribution behaves as becoming stronger from left to
right. When p > 30 mW, the pixel intensity on the right side of
the trigger is too strong, resulting in poor trigger ability. This
performance is reversed when p < 30 mW, which is because
the pixel intensity in the left part of the trigger is too low to
exhibit triggering ability. In summary, too strong or too weak
pixel intensity is not conducive to trigger L-HAWK.
Impact of Trigger Position and Width. Since the adversarial
patch taken at a long distance is small, this may cause the
trigger to not accurately cover all of the adversarial patch, fur-

ther leading to trigger failure. Thus, we conduct experiments
to explore the impact of the trigger’s position and width on
attacks. Figure 8(a) visually illustrates the trigger’s position
and width. Position “0” indicates that the upper edge of the
trigger aligns with the bottom edge of L-HAWK, whereas
position “1” denotes that the upper edge of the trigger aligns
with the top edge of L-HAWK. To interpret the results shown
in Figure 8(b) and Figure 8(c), we divide the heatmaps into
six regions corresponding to the typical cases depicted in
Figure 8(a). In case 1, the trigger covers the entire L-HAWK;
in case 2 and 5, the trigger covers more than 1/2 lower or
upper part of L-HAWK but never covers the entire L-HAWK,
including the lower or upper edge of L-HAWK; in case 3 and
6, the trigger covers less than 1/2 lower or upper part of L-
HAWK but includes the lower or upper edge of L-HAWK; in
case 4, the trigger covers only a part of L-HAWK between its
upper and lower edges. The results presented in Figure 8(b)
and Figure 8(c) indicate for the detector and classifier the
smaller the area of L-HAWK covered by the trigger, the worse
the attack effect. However, when the trigger is unable to fully
cover the entire L-HAWK, we can still achieve an average 42%
and 32.1% ASRs against YOLO V5 and ResNet-50.
Impact of Trigger Color. In addition to the green laser, we
utilize a laser with a wavelength of 650 nm to generate red
triggers. The other experiment setups are consistent with the
overall evaluation experiment. We set the benign class to ‘stop
sign’ for HA. The benign class is ‘person’ and the adversarial
class is ‘stop sign’ for TA-D. Then, HA, CA, and TA-D are
conducted against YOLO V5, and TA-C is conducted against
ResNet-50. As shown in Table I, the average ASR for the
red trigger reaches 92.9% and for the green trigger is 94.4%.
The result also shows that HA, CA, and TA-D attacks behave
differently on different color triggers, such as the green trigger
easily hides a ‘stop sign’, and the red trigger easily creates a
‘stop sign’. This may be because the detector is more likely to
associate red with a ‘stop sign’ and more difficult to associate
green with a ‘stop sign’.

4) Transferability Study: When the attacker has limited
prior knowledge of the DNN models used in vision-based
perception modules, it is impractical to apply a gradient-based
optimization approach directly to these black-box models.
However, the attacker can potentially evade the target model by
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Fig. 9: A bird’s eye view of the physical attack setup.

leveraging the transferability of adversarial patches across sim-
ilar DNN models. To evaluate the transferability of L-HAWK,
we perform a single-model attack on object detectors and an
ensemble-model attack on image classifiers. The setup of L-
HAWK, such as the target class, adversarial patch size, and
trigger settings, remains fixed. We only vary the recognition
across different models to assess the transferability.

Table II summarizes the transfer attack results across various
detectors. The result shows that, in all the experiments, the
average ASR of transfer attacks between YOLO V3 and
YOLO V5 is relatively high (73.1%) because of their similar
model architectures. In contrast, the average ASR of transfer
attacks between one-stage detectors (YOLO series) and two-
stage detectors (Faster R-CNN) is only 50%. Table III lists
the detailed ASRs of ensemble transfer attacks on different
ensemble classifiers. Specifically, we create two ensemble
models: VGG-ens (VGG-13+VGG-16+VGG-19) and ResNet-
ens (Res50+Res101+Res152) to optimize L-HAWK for trans-
fer attacks on the other five models. The result shows that the
average ASR of transfer attacks with the same architecture
is relatively higher (96.3%), than the average ASR of transfer
attacks with different architectures (44.2%). In conclusion, we
can achieve an average ASR above 96% and 44% for white-
box attacks and transfer attacks.

5) Our Improvements: In this section, we compare our
method with the state-of-the-art attack approach under four
attacks. The baseline is the patch optimization method in
TPatch [10], which optimizes the patch only, without the
optimization of the trigger. We then compare the improve-
ment of the joint optimization method and the entire scheme
(i.e., consisting of joint optimization and trigger modeling)
respectively. Note that we only change the patch optimization
process, and the evaluation is done under the fixed trigger
with random noise. As reported in Table IV, 1) the joint
optimization method improves the average ASR from 15.2%
to 41.8%; 2) the entire scheme improves the average ASR
from 15.2% to 94.4%. Our method achieves the highest
performance against all attacks. The results also show that
the noise caused by lens scattering has a significant influence
on the triggering of L-HAWK.

C. Physical World Evaluation in Stationary Setups

In this section, we validate HA, CA, and TA-D against
four real cameras and three object detectors in the physical
world with stationary setups. Then, we investigate the impact
of various factors on attacks, including the positions of L-

Fig. 10: Overview of the attack equipment. On the left is the
tracking and laser aiming equipment. On the right is the victim
camera and the laser speck observed by the telescope.

HAWK, and attack parameters of lasers. Finally, we evaluate
TA-C against three image classifiers in the physical world.

1) Experimental Setup: The experimental setup is shown
in Figure 9. The victim vehicle remains stationary and is
equipped with four real cameras, i.e., a Hikvision C6 Pro dash-
cam [31] (Camera 1), a Logitech C920 PRO HD Webcam [40]
(Camera 2), an Intel RealSense Depth Camera D435i [41]
(Camera 3), and an iPhone XR smartphone (Camera 4). The
detailed information of four cameras is listed in Table XI.
Note that we only utilize the monocular imaging function
of the Intel RealSense Depth Camera. The attacker is about
20 m from the adversarial patch and 30 m from the victim
vehicle. Then, we use a 532 nm green laser diode with a
maximum power of 200 mW. An overview of the attack
equipment is shown in Figure 10. Since each camera has a
different sensitivity to the laser, we optimize the trigger and
the corresponding L-HAWK for each camera. We present the
specific patches used in the physical evaluation in Figure 16.
The realistic size of L-HAWK is 60 cm ×60, which is also the
minimum size used in previous works [8], [10], [42]. Finally,
for each experiment, we capture a video of around 10 s and
the number of frames is about 300 at an fps of 30.
Metrics. To gain a better comprehension of the effectiveness
of the L-HAWK, we evaluate benign scenarios and triggered
scenarios separately, utilizing the best attack success rate
(i.e., 1

n

∑n
i=1 CF (xi)=ya

(xi)) within captured 300 consecutive
frames, denoted as fmax(n)

succ [6], [10], [34], which is formulated
as follows:

fmax(n)
succ = max

j

1

n

n∑
i=1

CF (xi+j)=ya
(xi+j) (12)

where n is the number of consecutive frames used for evalu-
ation and is set to 150. xi is the ith frame of the video x.

2) Overall Performance: To evaluate the overall perfor-
mance, we generate 9 L-HAWK (3 for HA, 3 for CA, and 3 for
TA-D) against three detectors for each camera, i.e., a total of
36 adversarial patches. Then, we utilize fmax(150)

succ to evaluate
the result under the benign scenario (i.e., no trigger scenario)
and trigger scenario. The overall result is illustrated in Table V.
The average fmax(150)

succ are 99.8%, 88.4%, and 90.3% for HA,
CA, and TA-D, respectively. For different cameras, the highest
average fmax(150)

succ is 99% for Camera 2, the average fmax(150)
succ
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TABLE V: The overall performance of our attacks against various cameras.

Attack
Type

Target
Model

Victim Camera
Avg.Hikvision C6 Pro Logitech C920 PRO Intel RealSense D435i iPhone XR

No Trigger Trigger No Trigger Trigger No Trigger Trigger No Trigger Trigger

HA
Faster R-CNN 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

99.8%YOLO v3 100.0% 100.0% 100.0% 96.7% 100.0% 100.0% 100.0% 98.0%
YOLO v5 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

CA
Faster R-CNN 96.7% 82.7% 100.0% 97.3% 92.0% 61.3% 100.0% 100.0%

88.4%YOLO v3 100.0% 97.3% 100.0% 92.0% 100.0% 81.3% 93.3% 23.3%
YOLO v5 100.0% 93.3% 100.0% 98.0% 100.0% 78.0% 90.6% 44.0%

TA-D
Faster R-CNN 98.7% 84.6% 100.0% 100.0% 81.3% 70.6% 85.3% 64.7%

90.3%YOLO v3 100.0% 100.0% 100.0% 97.8% 100.0% 96.7% 97.3% 50.0%
YOLO v5 100.0% 98.0% 100.0% 100.0% 100.0% 78.7% 92.0% 71.3%

Fig. 11: The ASR under various positions of L-HAWK. The
x-axis and y-axis represent dph and dpv , respectively. A value
of dpv of 0 means that the adversarial patch is on the optical
axis of the camera.

are 97.3%, 91.1% for Camera 1 and Camera 3, and the worst
average fmax(150)

succ is 83.9% for Camera 4, respectively. The
difference in the above results is due to the variation in pixel
intensity of the trigger caused by the same laser on different
cameras. For example, the trigger in Camera 4 has a strong
pixel intensity, which increases the ability to hide an object
but decreases the ability to create an object. In addition, we
find that fmax(150)

succ is better in the benign scenario (average
98%) than in the triggered scenario (average 87.7%), which
may be due to the influence of the trigger on the performance
of the target object detection task. Therefore, in the physical
world, the appropriate trigger is very important for attacks.

3) Impact of Patch Position.: For simplicity, we utilize a
representative camera (Camera 1, the mainstream dashcam in
vehicles) for investigating the impact of the patch position
in the physical world. During the evaluation, CA with class
‘stop sign’ is conducted against YOLO V5 under various dpv
and dph. Considering that fmax(150)

succ in benign scenarios is
high (average 99.3%) and there is no difference in the overall
evaluation, we only select fmax(150)

succ in trigger scenarios as
the evaluation metrics. The other experiment setups are the
same as the overall evaluation in the stationary setups. We set
three typical values for dpv , i.e., −5 m, −2.5 m, 0 m, 2.5 m,
and 5 m, which represents the general situation of setting up
L-HAWK on the roadside. Then, dph is set from 3 m to 15
m. We choose not to start at 1 m because the camera cannot
capture the entire L-HAWK when dph < 2 m and dpv = 5 m.
Figure 11 demonstrates the overall attack performance, where
the result for dph from 3 m to 4 m is removed because of
the average ASR of 100%. We find that, as dph increases, the

Fig. 12: Attack results at different attack distances and inci-
dence angles at 3 laser power (30 mW, 50 mW, and 70 mW).

attack success rate decreases gradually. There is basically no
attack effect when dph > 12 m, which is because that the size
of L-HAWK captured by Camera 1 when dph = 13 m is only
about 31 × 31 pixels. In addition, when θ = 15◦, the pixel
intensity on the right side of the trigger is high, and the pixel
intensity on the left side is low, which has a slight impact on
the attack. It is because that stronger pixel intensity makes it
easier to hide objects rather than make them appear.

4) Impact of Trigger Pixel Intensity: To investigate the
influence of pixel intensity on attack performance, we conduct
experiments under various laser power p, attack distance d,
and incidence angle θ. The experiment setups are the same
as that used in the evaluation of the patch position, but we
keep the position of L-HAWK the same, i.e., dpv = 2.5 m and
dph = 10 m. Then, at three different laser powers (30 mW, 50
mW, and 70 mW), we test the attack effect under d from 10 m
to 30 m by step of 5 m and θ from 0◦ to 45◦ by step of 15◦.
Note that we choose the maximum attack distance of 30 m
because of the limitations of the test field (a rooftop). In fact,
the attacker can achieve a longer-distance attack by adjusting
the laser power. In Section VI-D, we achieve effective attacks
at a distance of about 50 m.

The results, shown in Figure 12, indicate that L-HAWK is
sensitive to the pixel intensity of the trigger and performs
best in a range of pixel intensities. For example, the overall
average fmax(150)

succ are 59.7%, 77.9%, and 64.1% at p = 30,
50, and 70 mW, which means that triggers generated by
50 mW of laser power are more likely to trigger L-HAWK.
The results also show that under different attack distances
and incidence angles, setting the appropriate laser power has
a certain influence on the attack. According to the optimal
trigger and the results, it is recommended to set p to 50 mW
for a long distance attack (i.e., d > 20 m), 40 mW for a
distance from 15 m to 20 m, and finally 30 mW for a close
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TABLE VI: The overall performance of L-HAWK in the physical world across different object detectors under moving setups.

Attack Type HA CA TA-D

White Model Black Model f
max(50)
succ f

max(100)
succ f

max(150)
succ f

max(50)
succ f

max(100)
succ f

max(150)
succ f

max(50)
succ f

max(100)
succ f

max(150)
succ

Faster R-CNN
Faster R-CNN 100.0% 100.0% 96.7% 50.0% 25.0% 16.7% 6.0% 3.0% 2.0%

YOLO v3 76.0% 62.0% 56.7% 20.0% 11.0% 7.3% 12.0% 6.0% 4.0%
YOLO v5 98.0% 81.0% 73.3% 26.0% 14.0% 9.3% 2.0% 1.0% 0.7%

YOLO v3
Faster R-CNN 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 46.0% 23.0% 15.3%

YOLO v3 100.0% 100.0% 100.0% 100.0% 68.0% 45.3% 100.0% 100.0% 68.0%
YOLO v5 100.0% 100.0% 100.0% 14.0% 7.0% 5.3% 24.0% 12.0% 8.7%

YOLO v5
Faster R-CNN 100.0% 100.0% 94.7% 0.0% 0.0% 0.0% 46.0% 23.0% 15.3%

YOLO v3 68.0% 64.0% 57.3% 100.0% 93.0% 78.7% 100.0% 63.0% 44.0%
YOLO v5 100.0% 100.0% 97.3% 100.0% 100.0% 71.3% 100.0% 50.0% 33.3%

range attack (i.e., d < 50 m) for the best effect. In conclusion,
as long as the laser power is large enough, we can achieve
effective attacks at long distances.

In addition, we find that the attack is more influenced by the
incidence angle than by its attack distance from the camera.
When d is from 10 m to 30 m, the overall average fmax(150)

succ

is 69.9%, 68.6%, 67.5%, 66.7%, and 63.3%. However, when
θ is from 0◦ to 45◦, the overall average fmax(150)

succ is 75.5%,
87.2%, 71.0%, and 35.2%. Successful attacks predominantly
occurred within 30◦ off-axis, across d from 10 m to 30 m.
This effect is likely due to the pixel intensity of the trigger
being too fainter when θ > 30◦.

5) Targeted Attacks Against Image Classifiers: We con-
ducted indoor physical experiments to evaluate TA-C. Specifi-
cally, we placed the L-HAWK with a mouse (an existing class
in ImageNet [36]) in the camera’s view. When there is no laser
attack, the image classifiers correctly recognize the mouse, and
the target class, traffic light, is not within the top-5 recognition
results. After laser signal attacks, the top-1 recognition result
is altered to the traffic light. L-HAWK achieved an average
f
max(150)
succ of 100% against VGG16, Res50, and Incv3. The

possible reason is that the green color stripe caused by the
laser not only destroys the feature robustness of the mouse
but also has a distinct traffic light feature.

D. Physical World Evaluation in Moving Setups

In this section, we further evaluate HA, CA, and TA-D
against a moving vehicle under both white-box and black-
box settings. We also investigate the influence of lighting
conditions and vehicle speeds on the attack performance.
Finally, we evaluate L-HAWK against an end-to-end object
detection system in an autonomous robot platform.

1) Experimental Setups: The experiments are conducted
under the same scenario shown in Figure 9. The attacker is
about 35 m from L-HAWK and 50 m from the victim vehicle.
Then, researchers drive the vehicle equipped with Camera 1
toward L-HAWK at a speed of 5 km/h, and the distance from
L-HAWK ranges from 15 m to 1 m. The laser power is set to
70 mW empirically based on the optimal trigger. The ambient
light intensity is about 511 Lux. Finally, the attacker captures
the video of around 10 seconds with about 300 consecutive
frames at an fps of 30.
Metrics. We also utilize the best attack success rate in
captured 300 consecutive frames, i.e., fmax(n)

succ formulated in

Equation 12, to evaluate the L-HAWK in moving setups. To
quantify our evaluation, we choose three frame lengths n 50,
100, 150, i.e., fmax(50)

succ , fmax(100)
succ , and fmax(150)

succ .
2) Overall Performance: To evaluate the overall perfor-

mance, we generate 9 L-HAWK (3 for HA, 3 for CA, and 3 for
TA-D) against three detectors for Camera 1. Each L-HAWK
is specifically trained against a particular detector using the
proposed framework. To evaluate the transferability of these
L-HAWK, we tested them on the same video clips with other
black-box detectors.

We illustrate the overall performance of three attacks in
Tab.VI. Since the average ASR reaches 99.1% for all attacks
under the benign scenario, we only show the results under the
triggered scenario. The result indicates that the transfer attacks
can be implemented in the physical world. For different target
detectors, the attack performance in the white box setting is
consistent with that in the digital evaluation. Specifically, the
average ASR for YOLO V3 is the highest and reaches 86.8%,
followed by the average ASR for YOLO V5 is 83.5%, and the
worst average ASR is 44.4% for Faster R-CNN. In transferred
attacks, the average ASRs are 58.2%, 42.0%, and 31.1% for
YOLO V5, YOLO V3, and Faster R-CNN. Although some
results are not very ideal, at least one surrogate model (for
any victim model) can achieve a transferred ASR over 42%.
To our best knowledge, there has been no work that can
perfectly transfer physical-world attacks from one surrogate
model to all others. We will investigate this further in future
works. For different attacks, HA has better performance (the
average fmax(50)

succ of 93.6%) than CA (the average fmax(50)
succ

of 45.6%) and TA-D (the average fmax(50)
succ of 48.4%), which

is because the green trigger breaks the robustness of the ‘stop
sign’, making it easier to blind the detector and thus hide
the object. Furthermore, the average fmax(50)

succ for HA and CA
reaches 91.9% at an attack distance of 50 m, while the average
f
max(50)
succ for HA and CA in TPatch [10] is only 59% at a short

attack distance of 7m.
3) Impact of Other Factors: We further investigate the

impact of ambient light and vehicle speeds.
Impact of Ambient Light. Lighting conditions can al-

ter the pixel intensity of triggers, potentially affecting the
effectiveness of L-HAWK. To investigate this, we tested L-
HAWK under three different lighting conditions: daytime (2237
Lux), dusk (758 lux), and backlight (119 lux). As shown in
Figure 13, L-HAWK maintains robustness across all lighting
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Fig. 13: Impact of light conditions on HA, CA, and TA-
D. The three adjacent bars denote fmax(50)

succ , fmax(100)
succ , and

f
max(150)
succ .

conditions, achieving average ASRs of 98.7%, 62.1%, and
50.4% for HA, CA, and TA-D under the triggered scenario.
This robustness is attributed to two factors. First, according to
the attacker capability study in Section IV, the three lighting
conditions in the experimental setting have little effect on the
trigger pixel intensity. Furthermore, we can choose the appro-
priate laser power for different lighting conditions according
to the optimal trigger. In addition, due to the comprehensive
EoT process for L-HAWK, which incorporates potential color
shifts in brightness, contrast, saturation, and hue, it ensures
consistent performance despite variations in lighting.

Impact of Vehicle Speeds. To investigate the impact of
vehicle’s movements, we extend evaluations across various
speeds from 10 km/h to 50 km/h, covering safe driving speeds
in cities. Since fewer frames are captured due to faster vehicle
speeds, the metric of Equation 12 cannot be directly applied.
Therefore, we directly utilize the attack success rate, i.e.,
1
m

∑m
i=1 CF (xi)=ya

(xi) to evaluate our attack under various
speeds. m is the number of valid frames captured when the
vehicle travels from 15 m to 1 m from the adversarial patch.
The results are illustrated in Table VII. We present the number
of valid frames and the number of successful frames for the
attack. As a result, we achieve an average attack success rate
of 93.2% for HA, 67.2% for CA, and 51.6% for TA-D across
all speeds. The results also show that the attack success rate
is affected when the speed is increased. This is because the
average aiming success rate of the laser is reduced, resulting
in an increase in the possibility of L-HAWK triggering failure.
But we can also achieve an average attack success rate of 56%
across all attacks at 50 km/h.

4) End-to-End Evaluation: We further investigate the po-
tential impact of L-HAWK on end-to-end autonomous robots.
The TurBot3-ARM [43], an autonomous robot platform, pro-
vides a black-box object detection pipeline (including data
preprocessing, DNN models, and decision modules). An au-
tonomous driving task is deployed to the platform, which
controls the platform to stop automatically when recognizing
a stop sign. Then, we achieve an average ASR above 80%
for HA, CA, and TA-D. The attack demo is available at
https://github.com/Jupiterliu/L-Hawk.

E. Further Study of Laser Attacks.

In this section, we further investigate the relationship be-
tween attack and scenario parameters and the color stripe’s
brightness, which helps us to conduct robust physical attacks.

TABLE VII: The performance of L-HAWK in the physical
world evaluation under various speeds.

Speed
(Valid Frames)

10km/h
(150)

20km/h
(75)

30km/h
(50)

40km/h
(30)

50km/h
(25)

HA 100%(150) 100%(75) 92.0%(46) 90.0%(27) 84.0%(21)
CA 85.3%(128) 76.0%(57) 66.0%(33) 56.7%(17) 52.0%(13)

TA-D 69.3%(104) 61.3%(46) 52.0%(26) 43.3%(14) 32.0%(8)

We mainly consider four parameters, i.e., p, d, θ, and l. To
intuitively demonstrate the brightness, we calculate the pixel
intensity of color stripes [44]. Specifically, we first extract the
color stripe by calculating the difference between the normal
image I and the image I ′ after laser signal attacks. Then, we
calculate the pixel intensity of the extracted color stripe.

Specifically, on the basis of stationary setups, we utilize a
Hikvision C6 Pro dashcam [31] to act as the victim camera. A
532 nm green laser diode with a maximum power of 200 mW
is used for experiments. The ambient light intensity is about
1600 Lux. To simplify the study, we keep the victim camera
stationary, i.e., v = 0 km/h.

Impact of Laser Power and Attack Distance. On the basis
of the attack setup, we set θ to 15◦. Then, we calculate the
pixel intensity of the color stripe under d from 5 m to 30 m
by a step of 5 m and p from 10 mW to 66 mW by a step of 4
mW. In addition, when the attack distance continues to change,
the attacker can empirically adjust the power to produce the
color stripe with appropriate pixel intensity. Detailed result is
illustrated in Figure 14(a).

Impact of Ambient Light Intensity. On the basis of the
experiment setup, we explore the pixel intensity variation
under three different laser powers (i.e., 10 mW, 30 mW,
and 50 mW) and five ambient light intensities (i.e., 1238
Lux, 719 Lux, 461 Lux, 198 Lux, and 0 Lux). The attacker
can also empirically adjust the laser power based on the
measured ambient light intensity to generate the color stripe
with appropriate pixel intensity. Detailed result is illustrated
in Figure 14(b).

Impact of Incidence Angle. On the basis of the attack setup,
we test the pixel intensity variation by adjusting θ from −60◦
to 0◦ by a step of 15◦. Results in Figure 14(c) show that
the horizontal distribution of pixel intensity under different
incident angles varies significantly. Moreover, the number of
laser photons captured by CMOS decreases due to oblique
injection, causing the reduced pixel intensity.

VII. ETHICAL DISCUSSION

A. Ethical Concerns

To prevent any harm to real-world systems or infrastructure
and comply with ethical and safety standards, we are glad
to collaborate with the safety committee and take every
precaution in our research. First, like all prior work [14], [15],
[45], our experiments are conducted in a strictly controlled en-
vironment, with no interaction with public traffic or roadways.
Second, we have responsibly disclosed the identified security
vulnerability to the relevant vendors and can provide any de-
tailed technical information. To reduce the risk of misuse, we
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TABLE VIII: The evaluation of various defenses. mAP (mean
average precision) denotes the model performance.

Defense Method Before Defense After Defense
ASR mAP ASR mAP

Adversarial Training [46] 94.4% 45.4 41.6% 34.5
Input-Transformation [47] 94.4% 45.4 68.6% 28.8

TABLE IX: The adversarial patch detection accuracy.

Defense Strategy SentiNet [11] PatchGuard [12] PatchCleanser [13]
without activating patch 2.5% 4.7% 3.8%

with activating patch 99.4% 100.0% 99.0%

conditionally release the code to trusted parties. Specifically,
we only expose the available portion of the implementation in
the open-source repository (i.e., the digital patch optimization
and evaluation). Meanwhile, we also provide our contact
information for those interested in accessing the full code
(such as laser parameters and operations). Finally, we discuss
potential countermeasures that manufacturers and developers
can implement to safeguard against our attacks.

B. Countermeasures

To mitigate the threat posed by L-HAWK, we discuss four
types of potential countermeasures:

Adversarial Training and Input Transformation-Based
Method. Adversarial training [46] or the input transformation-
based method [47] can improve the robustness of victim mod-
els against L-HAWK. However, our evaluation in Table VIII
shows that such a method trades off model performance for
security. As a result, these countermeasures only work in those
scenarios that do not require high model performance.

Adversarial Patch Detection. Several adversarial patch
detection methods are also proposed, such as SentiNet [11],
PatchGuard [12], and PatchCleanser [13]. We evaluate patch
detection accuracy with and without activating L-HAWK. The
results in Table IX show that L-HAWK can be detected
once it is activated. However, such methods require complex
computations, which limits their ability in real-time systems.

Multi-Sensor Fusion. Standard practices to avoid traffic
accidents in AVs can also mitigate the effect of L-HAWK.
These include fusing 3D point cloud data from LiDAR. These
fusion techniques enhance the system’s resilience against
adversarial attacks by cross-validating sensor data. However,
sensor fusion cannot detect L-Hawk but only mitigate post-
attack damage, e.g., stopping the vehicle before a collision.

Random Rolling Shutter Mechanism. To defend against
L-HAWK, an effective method is to change the camera imaging
algorithm (a fixed setting of CMOS sensors) and thus destroy
the color stripe. There are two potential camera imaging
algorithms: (1) configuring the electronic shutter to expose
the CMOS sensor rows in a random sequence which disperses
the color stripe across the entire image, thereby making the
attack ineffective and (2) starting the exposure of the shutter
from a random row for each frame and subsequently causing
the color stripe to appear at different locations in the image
across consecutive frames [15].

VIII. CONCLUSION

In this paper, we present L-HAWK, a controllable physical
adversarial patch attack that is activated by specific laser
signals. This innovative approach allows for targeted manip-
ulation of vision-based perception systems used by specific
autonomous vehicles (AVs). Our study conducts four types of
attacks — hiding attacks, creating attacks, and two targeted
attacks — against three object detectors and eight image
classifiers, ensuring a comprehensive evaluation of L-HAWK ’s
capabilities. Extensive experiments demonstrate the effective-
ness of L-HAWK in both digital and physical environments,
highlighting its potential impact on real-world applications.
We hope that our research can inspire the development of new
defense mechanisms to enhance the security of vision-based
perception systems in autonomous vehicles.
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APPENDIX

A. Tracking and Aiming Against Moving Vehicles With Laser

Intuitively, targeting a moving vehicle at a long distance is
challenging. To address this, we construct an aiming equip-
ment also used in [15] by combining a laser diode and a
monocular telescope on a tripod (Figure 10). The laser, aligned
with the telescope’s eyepiece, allows attackers to manually
track moving targets from a long distance, without requiring
high skills. We conduct experiments to test the aiming success
rate under different vehicle speeds. Table X shows the results
under various speeds, yielding an averaged aiming success rate
of 84.2%. Therefore, manual aiming using the equipment is
feasible, even with the vehicle moving at a high speed. More
details are presented in Appendix A.

Then, we test the success rate of laser aiming based on
the aiming equipment. Researchers drive a real car at various
speeds of 5 km/h, 10 km/h, 15km/h, and 20 km/h. Then,
we record about 300 continuous frames (about 10 seconds)
of video as the car moves 50 m away toward the aiming
equipment. 20 trials are conducted for each speed. Based
on the captured video, we calculate the aiming success rate.
Experiments are conducted on closed roads with proper laser
protection at our institute.

Impact of Laser Aiming Position in Camera Lens. The above
test proves that we can use lasers to influence the image of
the camera when the vehicle moves. However, considering
that the circular spot generated by the laser may not all shine
on the lens, we further investigated the influence of circular
spot position on the lens on the color stripe. We use the
Hikvision C6 Pro dashcam for testing. As shown in Figure 15,
the diameter of the camera lens is 0.5 cm and the diameter
of the circular spot generated by the laser is 1.2 cm. Then
we test the effect of the four positions of the circular spot
on the pixel intensity of the color strip. Depending on the
symmetry of the lens, we only test the position of the circular
spot when it moves down: center, offset but full coverage,
about half coverage, and about one-third coverage. The pixel
intensity results show that the brightness of the color stripe
changes little as long as it is fully covered. This is because the
number of photons on the circular spot is evenly distributed,
thus the number of photons captured by the lens in full
coverage remains relatively constant. When the circular spot
only covers part of the lens, the number of photons captured by
the lens correspondingly decreases, resulting in a proportional
reduction in pixel intensity. Therefore, the impact of the laser’s
position on the lens is negligible. In this paper, we only need
to ensure that the laser can be aimed at the lens.

B. Trigger Generation

There are three methods to simulate the trigger, i.e., the
linear function, the sigmoid function, and the Gaussian func-
tion [15]. We first define the minimum and maximum intensi-

TABLE X: The aiming success rate under various speeds.

Speed 5 km/h 10 km/h 15 km/h 20 km/h
Aiming Success Rate 98.6% 92.0% 80.7% 65.3%

ties Imin, Imax measured by the CMOS and define the width
and height of the trigger wt and ht. Therefore, the intensity
of the trigger at a specific point (x, y) can be illustrated
as t = D(Imax, Imin, x, y, ht). The function D(·) has three
cases: linear, signoid, and Gaussian.

Linear Function: Given the Imax and Imin, we can express
the light intensity function for any point (x, y) on the trigger
as:

t = Imin +
y

wt
(Imax − Imin) (13)

Sigmoid Function: Sigmoid Function is also used for the
case when the incidence angle is from left or right. Given the
Imax and Imin, we define the trigger simulation function as:

t = Imin +
1

1 + e−α1/(y−wt/α2)
(Imax − Imin) (14)

where α1 and α2 are hyper-parameters.
Gaussian Function: If the incidence direction of the light

is from the front, channel overflow is most likely to occur in
the middle of the trigger. The maximum light intensity Imax

and the top position of the trigger x0 are needed. The trigger
simulation function for any points (x, y) on the trigger can be
expressed as follows:

a =
(x− x0 − h/2)2

(ht/ρ1)2

b =
(y − w/2)2

(wtρ2)2

c = ς
2(x− x0 − ht/2)(y − wt/2)

(htwt)/(ρ1ρ2)

t =
1

2πwtht
√
1− ς2/(ρ1ρ2)

e
− 1

2(1−ς2)
(a+b+c)

Imaxhtwt

(15)

where ς is the correlation between two directions. ρ1 and ρ2)
are hyper-parameters representing the decaying rate of the light
intensity from the center to the periphery.

Prior work [48] demonstrates that the laser power directly
affects the trigger’s intensity. The higher the power, the greater
the Imax and Imin values. The attack distance affects the
attenuation rate of light. As the distance increases, the light
intensity decreases in inverse square ratio [49]. Therefore, the
farther the distance, the lower the intensity of light received,
and both Imax and min decrease. Cao et al. [50] also demon-
strate that the incidence angle affects the distribution of the
trigger’s intensity. In addition, the ambient light also interferes
with the trigger’s intensity [48]. The greater the ambient light
intensity, the more obvious the background noise, which may
lead to an increase in the Imax and Imin values. The above
studies fully demonstrate the correlation between parameters
and trigger intensity. Thus, we formulate Equation 16 to
directly show the relationship between the intensities Imax,
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Fig. 14: The influence of attack and scenario parameters on the color stripe’s pixel intensity includes (a) the impact of attack
distance and laser power, (b) the impact of light condition and laser power, and (c) the impact of incidence angle. In (c), the
color stripe is divided horizontally into 20 areas of equal proportion, and the average pixel value of each area is calculated.
The x-axis indicates the different areas from left to right in the color stripe.

Fig. 15: Pixel intensity for different laser aiming positions in
the camera lens.

Imin, and the parameters p, d, θ, l.

Imax = k1 · p ·
cos(θ)

d2
+ k2 · l

Imin = k3 · p ·
cos(θ)

d2
+ k4 · l

(16)

where k1, k2, k3, and k4 are calibration constants related to
the characteristics of the sensor.

C. Definition of Loss Functions

To achieve the proposed attack goals, we extend the design
of the loss function in [10]. The benign and attack losses, i.e.,
ℓbenign and ℓattack, are different across object detectors and
image classifiers. We first define two losses against detectors
as follows:

ℓhide = −log(1−max(pobj · ptc))
ℓcreate = −log(pobj · ptc) + ϕℓreg

(17)

where ℓhide is to make the object with class tc undetectable.
ℓcreate is for the object to be detected and belong to class tc.
Specifically, pobj and ptc represent the objectiveness scores
and the classification scores of target class tc respectively. ℓreg
denotes the regression loss to guide the detected bounding box.
ϕ is the hyperparameter to balance the recognition loss and
regression loss.

Then, based on the Equation 17, we define ℓattack and
ℓbenign to achieve HA, CA, TA-D against object detectors. The
loss functions of different attacks are formulated as follows:

ℓattack =

{
ℓhide if HA
ℓcreate if CA or TA-D

ℓbenign =

{
ℓhide if CA
ℓcreate if HA or TA-D

(18)

Note that the target class tc of ℓattack and ℓbenign is not the
same in the TA-D attack.

Different from attacks against object detectors, attacks
against image classifiers aim to alter the probability of clas-
sification. Thus, we formulate the loss function of TA-C as
follows:

ℓattack = −log(ptc)
ℓbenign = −log(1− ptc)

(19)

where ptc is the probability of target class tc predicted by the
image classifier.

In addition, we present the total variation (TV) loss [33] in
Equation 20 that is utilized to regularize L-HAWK. The TV
loss aims to minimize color changes between adjacent pixels,
thereby reducing overfitting in digital simulations and enhanc-
ing the image quality of L-HAWK. By smoothing out abrupt
color transitions, TV loss ensures that L-HAWK maintains a
realistic appearance, which is crucial for its effectiveness in
real-world attacks.

ℓtv (δ) =
∑
i,j

√
(δi,j − δi+1,j)

2
+ (δi,j − δi,j+1)

2
(20)

To increase the stealthiness of L-HAWK, we adopt the
content-based camouflage loss ℓcam in [10]. The purpose of
ℓcam is to generate adversarial patches that blend naturally
into their surroundings rather than appearing as obvious and
abnormal objects. As shown in Equation 21, ℓcam is calcu-
lated based on high-level features extracted by a pre-trained
convolutional neural network (CNN) M. ℓcontent encourages
δ to mimic the spatial structure and general content of target
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Fig. 16: The specific physical adversarial patches used in the
physical evaluation. For HA, we paste the L-HAWK on the
stop sign. For other attacks, L-HAWK is a standalone object.

image δ̂, rather than its specific details such as color or texture,
leading to a more visually coherent and less detectable δ.

ℓcontent (δ) ==
1

CjHjWj

∥∥∥Mj(δ̂)−Mj(δ)
∥∥∥2
2

(21)

where Mj denotes the j-th layer of M. CjHjWj represents
the shape of δ̂ and δ.

We further present ℓnps that is the non-printability score
(NPS) loss [33] of the adversarial patch. Specifically,

ℓnps (δ) =
∑
p∈δ

min
c∈C
| p− c | (22)

where p is a pixel of δ, and c is one of the printable colors
C [51]. The loss aims to make colors in δ closer to the colors
that can be printed by a common printer.

D. Limitations

L-HAWK currently has several limitations:
Hardware Black-box Attacks. The limitations of hardware

black-box attacks stem from varying camera refresh rates,
complicating consistent interference. Laser injection attacks
require knowledge of the camera’s refresh rate to stabilize the
color stripe, but differences across devices make this challeng-
ing. Accurate timing of the injection is also difficult without
camera feedback. While a wider stripe increases the chance
of triggering L-HAWK, it may cause false alarms and disrupt
object detection, potentially disabling self-driving functions.
Future research should focus on adaptive interference methods
and optimizing stripe width and timing to improve attack
reliability without affecting detection.

Evaluation Scope. Due to budget constraints on testing
cars and safety hazards posed by adversarial attacks, we only
adopt a similar evaluation to the prior work [34], omitting
comprehensive evaluations on self-driving components such
as planning and control. We establish a model to compute the
laser-based trigger, which can be feasibly achieved physically
and will be discussed in our future work.

Attack Camouflage. L-HAWK proves effective in natu-
ral settings with ample light, yet its camouflage capabili-
ties diminish in some special scenarios. Specifically, while
laser-based attacks extend the attack range, they compromise
stealthiness at closer distances. Additionally, in dimly lit
environments, the system exhibits reduced invisibility due to

TABLE XI: Specs of the four experimented cameras used in
the stationary experiment.

Parameter

Hikvision Logitech Intel D435i iPhone XR
Sensor OS 05A20 N/A N/A N/A

Refresh Rate (Hz) 30 30 30 30
Resolution 2880*1620 1920*1080 1920*1080 1920*1080

Field of View 130 78 69 N/A
F 1.6 1.2 3.5 1.8

the more significant color shift induced by the laser stripes.
Hence, enhancing the camouflage performance represents a
crucial area for future development.

E. Related Works

We summarize related works from two aspects: adversarial
attacks, and physical sensor attacks.
Adversarial Attacks. Numerous studies show that deep
learning models, such as object detection and image clas-
sification, are vulnerable to adversarial attacks (adversarial
examples, AEs) [29], [52], [53]. These adversarial attacks
have been explored in the physical world against vision-
based perception systems [3]–[8], [30]. Kurakin et al. [3] first
demonstrate the feasibility of physical attacks against image
classifiers by printing AEs, although subtle pixel modifications
could limit the efficacy of such attacks. Brown et al. [27]
propose adversarial patch attacks by using only localized
perturbations. In [4], Expectation over Transformation (EoT)
is proposed to enhance the robustness of physical adversarial
examples. Song et al. [5]–[7] successfully conduct attacks
against both Faster R-CNN and YOLO detectors. Further
enhancing the stealthiness of AEs, Sato et al. [8] propose
a misclassification attack against traffic sign recognition sys-
tems based on invisible infrared laser reflection. Additionally,
Bhupathiraju et al. [9] and Duan et al. [54] use a laser to
generate adversarial examples in traffic signs or lights and
thus disturb the recognition of AV systems. The AEs produced
in the above studies, either in the digital or physical worlds,
are indiscriminately malicious to every victim. An existing
work [10] proposes a physical adversarial patch activated by
special physical ultrasonic signals but is limited by short attack
distance and conspicuous attack devices.
Physical Sensor Attacks. Another branch of work demon-
strates that certain physical signals can disrupt sensor op-
erations, adversely affecting the imaging process and con-
sequently impairing vision-based perception systems. Jia et
al. [7] propose adversarial blur attacks against object detectors
by emitting acoustic signals to disturb the image stabilization
system. Jiang et al. [55] utilize electromagnetic interference
(EMI) to disrupt image transmission signals and thus disturb
detection tasks. Kohler et al. [14] demonstrate that the rolling
shutter effects formed after a laser attack on the camera are
used to randomly disrupt object detection. Similarly, Yan et
al. [15] utilize the color stripe caused by laser signal attacks
to disturb traffic light recognition.
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