
Oreo: Protecting ASLR Against Microarchitectural
Attacks

Shixin Song
Massachusetts Institute of Technology

shixins@mit.edu

Joseph Zhang
Massachusetts Institute of Technology

jzha@mit.edu

Mengjia Yan
Massachusetts Institute of Technology

mengjiay@mit.edu

Abstract—Address Space Layout Randomization (ASLR) is
one of the most prominently deployed mitigations against mem-
ory corruption attacks. ASLR randomly shuffles program virtual
addresses to prevent attackers from knowing the location of
program contents in memory. Microarchitectural side channels
have been shown to defeat ASLR through various hardware
mechanisms. We systematically analyze existing microarchitec-
tural attacks and identify multiple leakage paths. Given the vast
attack surface exposed by ASLR, it is challenging to effectively
prevent leaking the ASLR secret against microarchitectural
attacks.

Motivated by this, we present Oreo, a software-hardware co-
design mitigation that strengthens ASLR against these attacks.
Oreo uses a new memory mapping interface to remove secret
randomized bits in virtual addresses before translating them
to their corresponding physical addresses. This extra step hides
randomized virtual addresses from microarchitecture structures,
preventing side channels from leaking ASLR secrets. Oreo is
transparent to user programs and incurs low overhead. We pro-
totyped and evaluated our design on Linux using the hardware
simulator gem5.

I. INTRODUCTION

Memory corruption vulnerabilities are some of the oldest
security problems that continue to pose a serious security
threat to modern systems [2], [72]. Among all the memory
safety mechanisms proposed in the last few decades, Address
Space Layout Randomization (ASLR) [36], [60], has shown
to be effective in raising the barrier of attacks and has become
one of the most prominently deployed mitigations in modern
systems. ASLR works by randomly arranging the positions
of code or data regions for the kernel or user-space applica-
tions. If the attackers cannot reliably determine the location
of specific code or data, they will have difficulty carrying
out control-flow hijacking attacks, such as return-oriented
programming [62] and jump-oriented programming [10]. With
ASLR, the attacker must perform an extra information disclo-
sure step utilizing other existing vulnerabilities to leak ASLR
secret before conducting their exploits.

However, ASLR has been defeated with various microar-
chitectural side channels. They pose a real threat, as we

witness an increasing number of such attacks being utilized
in real-world software exploitations. For example, in 2017, a
macOS kernel 0-day exploit [69] used the prefetch attack [31]
to bypass ASLR. In 2022, a Linux kernel exploit (CVE-
2022-42703) [38] also used side channels to bypass ASLR.
In the same blog post, the authors stated that “KASLR is
comprehensively compromised on x86 against local attackers,
and has been for the past several years, and will be for the
indefinite future.”

Among these microarchitectural-attack-assisted ALSR by-
passes, a wide range of channels can be utilized, including
TLBs, caches, and BTBs, using speculative execution, or even
power-induced timing information [12], [13], [21], [22], [27]–
[29], [31], [33], [37], [45], [47], [49], [52], [66], [76], [84].
Even worse, given the large attack surface, it seems that
almost every newly discovered side-channel attack variant will
likely become a new ASLR-bypassing attack vector. Given
this phenomenon, two questions present themselves: (1) why
has ASLR become such a fragile target for microarchitectural
attacks, and (2) how can we secure ASLR to broadly block
existing and potential future attack vectors?
Challenges. With a detailed investigation of existing ASLR
bypasses using microarchitectural side channels, we find that
the microarchitecture features that can be leveraged to use as a
leakage channel are diverse and continue growing. Therefore,
when protecting ASLR against side-channel attacks, address-
ing each individual channel or feature is not an appealing
approach. For example, FLARE [13] narrowly focuses on
closing a single channel, i.e., the address translation latency,
while ignoring the abundant other side channels in modern
processors, as well as other existing attack vectors. Instead, in
this paper, we focus on blocking the leakage at the source by
restricting the usage of the ASLR secret in both software and
hardware.

Consider how the ASLR secret is used. ASLR shifts the
location of a memory region by a secret offset. As such,
the secret offset determines the virtual memory layout, i.e.,
which memory region is mapped and which is unmapped.
The secret offset is also embedded in code and data pointers
that are extensively used while executing a victim program.
We systematically analyze and categorize microarchitectural
ASLR bypasses into three leakage paths.

In the first leakage path, the attacker probes the virtual
memory layout. This class of attacks relies on the fact that

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240264
www.ndss-symposium.org

secret

Virtual Memory Virtual MemoryMasked MemoryPhysical Memory

Page
Table

Page
Table

(a) Baseline Memory Interface (b) Oreo Memory Interface

Secret
Leakage!

No Secret
Leakage!

secret

v0

v1

v2

v3

v2

Cache
BTB
TLB

Cache
BTB
TLB

w

Figure 1: Overview of Oreo’s new memory interface

probing a mapped address versus an unmapped address re-
solves different microarchitectural side effects and thus distinct
latency [12], [13], [27], [33], [37], [49], [66], [76], [78].
Additionally, these probe operations can be stealthy and do not
cause system crashes, because they are either conducted under
speculation or assisted with cache manipulation instructions
such as prefetch.

Second, as the ASLR secret offset is embedded in code and
data pointers, the attacker can leak the secret by monitoring the
victim using its secret-dependent pointers to fetch instructions
or perform loads and stores [21], [28], [29], [31], [45], [50],
[52], [84]. These operations can result in distinguishable side
effects on BTB, TLB, page table walker, caches, and DRAM.

Finally, the attacker can leak the victim’s pointers by using
the Spectre attack gadget and its variants. For example, the
attacker may load the secret pointer into a register and then use
it as the address of a load or a store instruction. There exists a
substantial amount of work to block this leakage path, such as
STT [82], NDA [77], InvisiSpec [79], and others [5], [6], [8],
[15], [20], [23], [39], [40], [44], [48], [53], [58], [63]–[65],
[67], [80], [81]. Unfortunately, existing mitigations targeting
Spectre and its variants can only block the third leakage
path, leaving the other two leakage paths unblocked. More-
over, many mitigations work by selectively delaying secret-
dependent speculative execution. Such schemes are applicable
to the backend of a processor (at the load/store queue) with
moderate performance loss, but they are unappealing to the
frontend of the processor, where delaying fetching instructions
means leaving the rest of the processor seriously underutilized.
Oreo. The challenges discussed above motivate us to design
Oreo, a software-hardware co-design scheme that secures
ASLR against a wide range of microarchitectural side-channel
attacks. Specifically, given a randomized virtual address, Oreo
aims to protect selected randomized bits from being leaked
via microarchitectural attacks following the first two leakage
paths. We refer to these protected bits as microarchitecture
oblivious bits.

The core of Oreo is a new memory interface, as shown
in Figure 1. The left side of the figure shows the existing
memory interface utilizing ASLR, mapping randomized virtual

addresses to physical addresses. A randomized virtual address,
which embeds the secret ASLR offset, is used as input to look
up entries in various hardware structures (caches, BTB, TLB,
etc.) and critical software structures (the page table).

In contrast, Oreo introduces a new layer of memory, called
the masked memory, sitting between the virtual and physical
memory, shown on the right side of the figure. A masked
address is constructed from a randomized virtual address
with the microarchitecture oblivious bits being redacted. In
this way, Oreo can map multiple virtual addresses to the
same masked address and then map masked addresses to
physical addresses using a modified page table. For example,
in Figure 1, we show a valid region in the virtual address
space starting with address v2. Oreo maps v2 and another three
invalid addresses v0, v1, v3 to the same masked address w. All
the hardware structures that used to use virtual addresses as
input now switch to using masked addresses.

Oreo additionally changes the memory security check pro-
cedure. Given mapped and unmapped virtual addresses, which
only differ in the microarchitecture oblivious bits, accessing
them on Oreo will have the exact same microarchitectural
side effects during speculation and only result in different
architectural behaviors upon instruction commit time.

We further identify research challenges in selecting which
bits to be protected by Oreo. In fact, not all the ASLR
randomized bits can become microarchitecture oblivious bits.
Moreover, it poses a security dilemma to obtain the en-
tropy towards locating gadgets for both control-flow hijacking
attacks and speculative execution attacks. We provide bits
selection strategies to achieve entropy towards both attacks,
and meanwhile to be adoptable by existing systems.

We prototype our design with support for protecting both
kernel and user-space ASLR. We integrate the kernel changes
on Linux 6.6, and implement our microarchitecture changes on
the gem5 [9], [54] simulator. We show that our design intro-
duces negligible performance overhead running the SPEC2017
IntRate benchmark [11] and the LEBench benchmark [85]. We
provide a formal proof in a technical report [71] to show that
Oreo achieves a non-interference property to prevent attackers
from distinguishing virtual memory layouts with different
secret offsets.

In summary, we make the following contributions:

• We systematically analyze existing microarchitectural at-
tacks that leak the ASLR secret offset and classify them
into three leakage paths.

• We propose a software-hardware co-design mitigation to
prevent leaking selected bits of the ASLR secret, innovating
a new memory interface.

• We prototype the software and hardware changes to support
Oreo on Linux and the gem5 simulator.

• We provide security evaluation to show that Oreo prevents
leakage of the ASLR secret, and our performance evaluation
shows Oreo introduces negligible overhead.

2

......

......

......

start

end

start'

end'

end

start offsetpublic

offsetsecret

ASLR Randomization Region Unmapped Mapped (Code/Data)

end

start

(c) With ASLR(b) Without ASLR(a) Whole Virtual Memory

0

max

Figure 2: Coarse-grained ASLR. (a) shows the whole virtual
address space with multiple randomization regions. (b) and (c)
show memory content is loaded using a public offset when
ASLR is disabled and a private offset when ASLR is enabled.

II. BACKGROUND

A. Address Space Layout Randomization

Address Space Layout Randomization (ASLR) [36], [60]
is a widely deployed mitigation against memory corruption
attacks. The idea is to randomly relocate code or data regions
so that the attacker has difficulty determining the addresses
for specific instruction gadgets to construct reliable code-reuse
attacks. Figure 2 describes how coarse-grained ASLR works.

Given the full virtual address space, ASLR selects a mem-
ory region to perform its random re-location. In the whole
virtual address space, multiple non-overlapping randomiza-
tion regions exist for relocating different memory contents.
For example, Linux kernel uses a region to hold kernel
text and a different region for kernel modules. Figure 2(a)
shows two randomization regions denoted as [start, end) and
[start′, end′).

Within each randomization region, only a subset of ad-
dress slots are used to hold code/data, thus considered valid
addresses (the blue regions), while the rest are considered
invalid. The length of the valid region is usually significantly
smaller than the total size of the randomization region, which
is necessary for achieving a reasonable amount of entropy.
Address relocation shifts the valid region by an offset, which
is the distance between the starting address of the valid region
and the randomization region. This offset can be a public value
when no ASLR is used (Figure 2(b)), and must be chosen
secretly when ASLR is in place (Figure 2(c)).

B. Virtual Memory Systems

Modern systems support virtual memory for the purpose of
process isolation, programmability, and hardware abstraction.
With the virtual memory interface, the software does not
directly operate on physical addresses backed by DRAM.
Instead, the operating system abstracts DRAM by providing
software with a large, contiguous, and unified virtual address

space, and introduces a layer of indirection to translate every
virtual address to its mapped physical address.

Linux and many existing operating systems use page-based
address translation. Taking the virtual page number (VPN)
from a virtual address, a page table walk translates the VPN
to its corresponding physical page number (PPN). Modern
systems use hierarchical page tables to store the page table in
a space-efficient manner. The CPU looks up virtual addresses
by traversing a tree structure from root to leaf, requiring
multiple memory accesses. Microarchitecture structures, such
as translation lookaside buffers (TLBs) and page table caches,
can buffer recently accessed translations to accelerate this
procedure.

The virtual memory system enforces security checks upon
every memory access leveraging protection bits embedded
in page table entries (PTEs). The check involves checking
whether a virtual address is mapped or not. Accessing an
unmapped address leads to looking up an invalid PTE entry
and thus results in a page fault. The virtual memory security
check additionally examines whether the access to the page has
the correct permissions from an appropriate privilege level.

C. Microarchitectural Side Channel Attacks

A microarchitectural side channel involves information leak-
age from a victim’s security domain to an attacker’s security
domain. The attacker exploits visible side effects of the exe-
cution of instructions whose behaviors are secret-dependent.
We call such instructions transmitters. The transmitter leaves
side effects by modifying the states or occupancy of various
microarchitecture structures, such as caches [41]–[43], [51],
[56], [68], TLBs [28], [45], BTB [16], [21], and Network-
on-Chips [19]. Furthermore, recent microarchitectural attacks
exploit power-induced timing leakage [75].

Speculative execution attacks, also referred to as tran-
sient execution attacks, are a class of information leakage
attacks where attackers exploit the side effects of transient
instructions. A transient instruction is an instruction that is
speculatively executed on an out-of-order core but is later
squashed due to misspeculation. High-profile speculative ex-
ecution attacks include Meltdown [51], Spectre [42], and its
variants [41], [43], [56], [68].

Given that modern processors have been aggressively opti-
mized, an increasing number of microarchitectural side chan-
nels and speculative execution features have been revealed
in the last few years. We envision this trend will continue.
Furthermore, as the arms race continues, due to performance
overhead and hardware costs, it is unlikely that the industry
will commit to delivering processors with comprehensive
mitigations in the near future. Hence, non-complete solutions
that only block certain leakage channels are insufficient. This
paper presents a mitigation that blocks microarchitectural-
attack-assisted ASLR bypasses. Our scheme works even if
the processor exhibits vulnerable microarchitectural leakage
channels and speculation features.

3

2

Secret offset

Secret virtual memory layout Secret-embedded code pointer

modulate microarchitectural side channels
e.g. cache, TLB, BTB, etc.

Leak secret offset

used to check address
mapped or not

used as PC or
load/store address

used to derive PC or
load/store address

Access attacker-
controlled addresses

in the victim
address space

Trigger a
victim

function call
or load/store

Trigger a victim
pointer loaded
into a register

Attacker's
operation

Transmit
operation

1 3

Blocked by Oreo

Blocked by existing
Spectre mitigations

Figure 3: Three leakage paths that leak ASLR secret offset

III. UNDERSTANDING ASLR BYPASSES USING
MICROARCHITECTURAL ATTACKS

ASLR can be bypassed by leaking the secret offset using
either software attacks or microarchitectural attacks. In this
paper, we focus on microarchitectural-attack-assisted ASLR
bypasses because most of these attacks do not need to exploit
software bugs and can universally work with a wide range of
commercial processors. In fact, these attacks have been put
into use in real-world software exploits [38], [61], [69].

We systematically analyze the past microarchitectural-
attack-assisted ASLR bypasses and find there exist multiple
possible leakage paths. As the ASLR secret is spread through-
out the system, it unavoidably exposes a large attack surface.
Specifically, the secret offset determines the virtual memory
layout, meaning it determines which regions are mapped and
which are not. The secret offset is also embedded in victim
pointers, which are extensively used by the processor to
fetch/load/store when executing a victim program.

Figure 3 summarizes these attack surfaces. From top to
bottom, we show where the secret offset is located (the
top row), what attacker operations (the second row) can
be used to trigger a secret-dependent transmission operation
(the third row), and what microarchitectural side channels
the transmission operation can modulate (the bottom row).
Overall, the figure shows three leakage paths. Moreover, the
microarchitectural channels (structures) that can be used to
leak the secret are diverse, indicating blocking each single side
channel is not a promising strategy to defend against ASLR
bypass attacks. A detailed enumeration of existing attacks is
provided in Appendix B, including the leakage paths they take
and the utilized side channels.
Virtual Memory Layout Probing. The first leakage path
(the left path in Figure 3) shows an attacker probes the
virtual memory layout to figure out which region is mapped
and which is unmapped [12], [13], [27], [33], [37], [49],
[66], [76], [78]. The attacker’s operation involves triggering
the processor to access an attacker-controlled address in the

victim address space. The processor needs to consult several
microarchitecture structures and perform a page table walk
if needed to determine whether the address is mapped or
not, resulting in distinguishable microarchitectural side effects.
Usually, accessing unmapped addresses will result in system
crashes or exceptions. However, microarchitectural attacks can
be stealthy since a clever attacker can suppress the crashes
using speculation and other tricks, such as cache manipulation
instructions (e.g., prefetch) and Intel TSX [35].

Multiple existing attacks fall into this category. For example,
as shown in the following code snippet, DrK [37] attacks ker-
nel ASLR by probing each page in the kernel’s randomization
region from the user space and checking whether the page is
mapped or not.
1 // guess_addr is a kernel address, controlled by the attacker
2 for (guess_addr = start; guess_addr < end;
3 guess_addr += page_size) {
4 // Step 1: Access guess_addr, suppress crashes with Intel
5 // TSX. TLB caches transformation if guess_addr is valid.
6 tsx_probe(guess_addr);
7 // Step 2: Access guess_addr again, measure page fault
8 // latency. Latency is low if the translation is in TLB.
9 page_fault_latency = tsx_probe(guess_addr);

10 if (page_fault_latency < threshold) { break; }
11 }

For each page, the attacker probes (e.g., issue a load)
to a virtual address (denoted as guess_addr) in that page
two times. In both instances, the attacker uses Intel TSX
to suppress page faults caused by failed permission checks.
Specifically, instead of informing the OS and causing a real
crash, Intel TSX invokes a user-specified exception handler
when a page fault occurs [35]. At the first probe, a page
table walk (PTW) is triggered. The PTW inserts a PTE entry
into the TLB if the tested page is mapped and leaves the
TLB unchanged otherwise. The attacker then issues the second
probe to test whether the address translation for guess_addr
is cached in the TLB. This test is performed by measuring
how long it takes for the second probe to trigger a page fault
that is then caught by the attacker’s exception handler.

As shown above, attacks in this leakage path rely on distin-
guishing between mapped and unmapped addresses based on
their microarchitectural side effects. In addition to using TLB
behaviors, prior work [12], [13], [66], [76] also discovered that
pipeline behaviors differ for mapped and unmapped addresses.
Taking the Data Bounce attack [12], [66] as an example, they
exploit the timing difference introduced by the store-to-load
forwarding scheme, which is only triggered when the store
address is mapped.
Leaking Pointers as Addresses. The middle path in Figure 3
shows how the secret offset embedded in a victim pointer can
be leaked when it is used as an address during the victim’s
execution. Specifically, the pointer is used as the program
counter or a load/store address. Unlike the first leakage path,
this attack vector does not require speculation or any crash
suppression schemes. For example, to use a victim address as
the program counter, the attacker only needs to trigger the vic-
tim to do a function call non-speculatively. When accessing a
secret-dependent address, various microarchitecture structures

4

will be modulated, including BTBs (Jump Over ASLR [21]),
TLBs (TLBBleed [28], TagBleed [45], the Prefetch attack [31],
and EntryBleed [52]), and page table walkers (AnC [29] and
Binoculars [84]).

We provide an example below to illustrate the AnC at-
tack [29], which uses cache Prime+Probe to leak the kernel
ASLR secret from user space. After resetting the cache states,
the attacker simply makes a system call, which triggers the
victim (i.e., the kernel in this example) to fetch instructions
using secret-dependent virtual addresses and the processor will
trigger the page table walker (PTW) to translate these virtual
addresses. Note that, as the PTW uses secret bits of the virtual
addresses to index into page tables and modulate the caches,
the attacker can leak the secret offset by monitoring cache
states.
1 // Step 1: reset cache states
2 prime_the_whole_cache();
3 // Step 2: trigger the victim to fetch mapped virtual
4 // addresses and the PTW process to translate these

addresses.↪→

5 syscall();
6 // Step 3: Use cache Prime+Probe to figure out which cache

set↪→

7 // has been modulated by the PTW. "hit_set" reveals
8 // selected bits in the virtual addresses used by PTW
9 hit_set = probe_every_cache_set();

Leaking Pointers as Data. The final leakage path (shown as
the right path in Figure 3) describes how the secret embedded
victim pointers can be leaked as data. Different from the
previous leakage path, the attacker needs to leverage a memory
corruption vulnerability or transient out-of-bound memory
access to load a victim pointer into a register and then use the
secret bits in the pointer to compute an address. This derived
address is then leaked via side channels.

This leakage path usually requires a classic Spectre attack
gadget or its variants [41]–[43], [56], [68]. Such gadgets pose
a serious threat as they can be exploited to leak arbitrary
data in the victim’s address space, not just pointers. As such,
extensive work has been proposed to mitigate this threat. For
example, STT [82] and NDA [77] delay speculative execution
of transmission instruction (e.g., load/store) if their operand
holds speculative data. Many other prior works [5], [6], [8],
[15], [20], [23], [39], [40], [44], [48], [53], [58], [63]–[65],
[67], [79]–[81] intend to hide side effects of speculative
execution on the cache hierarchy and other structures.

IV. THREAT MODEL

We follow the threat model of microarchitectural side
channel attacks, where the attacker and the victim reside in
different security domains. This setup includes the case when
the attacker and the victim are two user-space processes,
or the victim is a privileged software, such as an operating
system kernel and hypervisor, while the attacker is a user-
space application. This also applies when the victim is an
enclave program while the attacker is privileged software. The
attacker and the victim execute on the same machine, shar-
ing various microarchitecture structures. We broadly consider
timing-based side channels due to resource contention and

speculation. Our threat model does not specifically consider
power-induced timing side channels [49], but we elaborate on
how our scheme can help future mitigations in Section VIII.

We set out to block the first two ASLR leakage paths in
Figure 3, indicated by the two green crosses. We propose Oreo,
a software-hardware co-design scheme to prevent leakage
through direct virtual memory layout probing and ensure
secret-embedded pointers, when used as program counters
or load/store addresses, remain indistinguishable to attackers.
Oreo is highly practical and can be adopted in real systems.

As a side note, substantial prior work [5], [6], [8], [15],
[20], [23], [39], [40], [44], [48], [53], [58], [63]–[65], [67],
[77], [80]–[82] has attempted to address the data leakage path
(the third path). These schemes can be used in complementary
with Oreo to serve as a comprehensive defense solution for
achieving security goals beyond mitigating ASLR bypasses.

V. DESIGN OF Oreo

A. Overview

The goal of Oreo is to protect selected randomized bits
in virtual addresses from being leaked via microarchitectural
attacks in the first two leakage paths in Figure 3. We refer
to these bits as microarchitecture oblivious bits or protected
bits for short. The protected bits in a valid randomized virtual
address concatenated with trailing zeros form the secret offset.
Without ambiguity, we refer to the secret offset protected by
Oreo as offsetoreo. For example, given a valid randomized
address 0xFFAB12340, if configuring the protected bits as bits
20 to 27, then the secret offsetoreo is 0xAB00000.
How to Protect Microarchitecture Oblivious Bits? We in-
troduce a new memory interface, with an extra layer of masked
address space that sits between the virtual address space and
the physical address space. A masked address is mapped from
a virtual address with the microarchitecture oblivious bits
redacted. As shown in Figure 4, multiple virtual addresses
with different microarchitecture oblivious bits are mapped to
the same masked address. Oreo uses masked addresses to build
and traverse page tables and access various microarchitecture
structures, such as BTBs and TLBs. This scheme ensures
accessing a virtual address results in microarchitectural side
effects independent from its protected bits.

In addition, Oreo changes the memory address security
check flow. Using masked addresses makes unmapped and
mapped virtual addresses that only differ in microarchitecture
oblivious bits have exactly the same microarchitectural side
effects, but we eventually need to distinguish between them to
raise exceptions upon illegal memory accesses. Oreo performs
this check at the commit time of instructions, forcing the
distinguishability between these addresses to happen only at
the architectural level rather than the microarchitectural level.
How to Choose Which Bits to Protect? There exist several
constraints in choosing the bits to be protected by Oreo.
For example, Oreo’s protection faces a security dilemma.
On the positive side, Oreo prevents leaking offsetoreo using
microarchitectural attacks, strengthens the security of ASLR,
and raises the barrier against control-flow hijacking attacks.

5

......

......

start

Virt2Mask

end

Page
Tableoffsetoreo

lensubregion

(a) Virtual Memory (b) Masked Memory (c) Physical Memory

w

v

Mask2Validv w

Figure 4: Mapping between a virtual address v and a masked
address w using Oreo’s memory interface.

However, on the negative side, an attacker who aims to
perform speculative execution attacks can execute a Spectre-
like gadget under speculation without knowing the secret
offsetoreo. This is because accessing addresses only differing
in the Oreo protected bits speculatively results in the same
microarchitectural side effects.

We present two strategies to determine which bits to be
protected by Oreo. A naive strategy chooses to protect part of
the default baseline ASLR randomized bits, and an enhanced
strategy introduces additional entropy and protects bits that do
not overlap with the randomized bits in the baseline.

B. Protecting Microarchitecture Oblivious Bits

Masked Address Space. Oreo introduces the masked address
space and maps multiple virtual addresses to the same masked
address. Figure 4 shows the notation we use to describe the
masked address space layout. Given a memory range to be
used for ASLR denoted as [start, end), we divide this range
into multiple subregions with equal size denoted as lensubregion,
marked by the dotted lines in Figure 4(a). Addresses in the
i-th region have their microarchitecture oblivious bits equal to
i, and the goal is to prevent these bits from being leaked.

Oreo maps each subregion to the very first subregion in
the masked address space. Given a valid address v, the
corresponding masked address can be calculated as:

Virt2Mask(v) = ((v − start) mod lensubregion) + start.

We note two things from the formula above. First, the calcu-
lation of the virtual-to-masked memory mapping, as well as
the masked-to-physical mapping, are independent of microar-
chitecture oblivious bits. Second, it is simple enough to be
implemented efficiently in hardware with low cost.

After the address conversion is done, Oreo needs to set up
page tables to map masked addresses instead of virtual ad-
dresses. We discuss required kernel changes in Section VI-A.
In addition, any microarchitecture structures that use virtual

addresses as indices will be modified to use masked addresses,
as detailed in Section VI-B.
Security Check Flow. Oreo forces the virtual addresses, as
long as they map to the same masked address, to be only
distinguished at the architectural level after the instruction
commits. In other words, accessing unmapped addresses even-
tually results in exceptions upon instruction commits. We
clarify how Oreo’s security check flow interacts with the
existing virtual memory security check.

Oreo’s security check flow involves two steps. The first
step is performed during speculation and is exactly the same
as the existing virtual memory security check, with the only
difference being performing the check upon masked addresses
rather than virtual addresses. Recall from Section II-B; the
existing virtual memory security check examines whether the
accessed page is mapped as well as whether the access has
the correct read/write/execute permissions from an appropriate
privilege level. This check is performed during TLB accesses
or page table walks. Oreo applies this check on masked
addresses during speculation so that this check is independent
from the microarchitecture oblivious bits.

The second step of the security check happens at the commit
time. The task is to check whether the virtual address has the
correct microarchitecture oblivious bits. This can be done by
reconstructing the valid virtual address and checking whether
the virtual address used by the committing instruction is equal
to the valid virtual address. The following formula reconstructs
the valid virtual address from a masked address w.

Mask2Valid(w) = offsetoreo + w.

This formula indicates that we need to store the secret
offsetoreo somewhere to be readily used upon instruction
commit time. In our implementation, we store this information
in the unused bits in page table entries [35], which we detail
in Section VI-A.
Blocking Leakage Paths. We show below how Oreo blocks
the first two leakage paths using concrete examples. Formal
reasoning is presented in a technical report [71]. Consider
the following example where a program is loaded at a
random address 0xFFAB12340. If Oreo intends to protect
offsetoreo = 0xAB00000, the corresponding masked address
can be computed as 0xFF0012340.

In the first leakage path, the attacker probes the victim’s
virtual address space by issuing speculative memory access
operations targeting different victim addresses and expecting
to distinguish between mapped and unmapped addresses based
on their microarchitectural side effects. For example, when
performing the Double Page Fault attack [33] and Code Region
Probing attack [27] on the baseline insecure system, if the
attacker accesses any address with incorrect microarchitecture
oblivious bits (e.g., 0xFFAA12340), the TLB will not be filled
for this invalid address translation, and the caches will not
be filled with such an invalid address. This differs from the
microarchitectural behaviors when accessing the valid address.

Using masked addresses allows Oreo to have the exact same
microarchitectural effects when accessing addresses that differ

6

in microarchitecture oblivious bits for two reasons. First, on
Oreo, virtual addresses that fall within the randomization will
be converted to masked addresses before address translation
and memory accesses. Both the invalid address 0xFFAA12340
and the valid one 0xFFAB12340 will be converted to the
same masked address 0xFF0012340. In both cases, the TLB
will be filled with a valid address translation, and a valid
cache entry located using the translated physical address will
be inserted into the cache hierarchy. Second, Oreo delays
the check until the commit time to determine whether an
address is mapped or not. Recall that, as the attacker aims
to suppress potential exceptions using pipeline squashes, none
of the attacker’s probing operations will reach the commit
stage. As a consequence, they follow the same security check
under speculation and their microarchitectural effects will not
be distinguishable on Oreo.

Reasoning about how Oreo blocks the second leakage path
is straightforward. Recall that in the second leakage path, the
attacker triggers a victim functional call to make the victim
branch to a valid virtual address (e.g., 0xFFAB12340). In the
insecure baseline, the secret bits 0xAB are used as part of the
address to locate entries in TLBs, BTBs, and caches. While,
Oreo redacts the secret bits from the virtual address to obtain
the secret-free masked address 0xFF0012340. Furthermore,
all the microarchitecture structures that used to take virtual
addresses as input now switch to using masked addresses,
leading to no side effects related to the secret offsetoreo, so
that Oreo successfully blocks the second leakage path.

C. Choosing Bits to Protect

Constraints. Before presenting our strategies in choosing
the bits to be protected by Oreo, let’s first understand what
constraints we have.

First, the least significant microarchitecture oblivious bit
is constrained by the subregion size used by Oreo. Recall
from Figure 4, Oreo divides the memory range to be used
by ASLR into multiple equally-sized subregions and maps
these subregions to a single subregion in the masked address
space. It is required that only one of the subregions in the
virtual address space is valid. As such, we need to ensure the
subregion size lensubregion to be large enough to hold the code
or data that is being relocated. For example, the Linux kernel
text is 225 = 32MB, and thus the least significant bit we can
pick to be protected by Oreo is bit 25. The baseline ASLR
does not have this constraint since the valid region can be
shifted at the page granularity. The least significant bit to be
randomized is bit 12 if using 4KB pages or bit 21 if using
2MB pages.

Second, we face a security dilemma. Oreo makes mapped
and unmapped addresses to be indistinguishable at the mi-
croarchitectural level if they only differ in microarchitecture
oblivious bits. The problem is that if attackers aim to con-
duct speculative execution attacks, they can utilize Spectre-
like gadgets without knowing the correct microarchitecture
oblivious bits in the gadgets’ randomized virtual addresses.
The attack can succeed because accessing virtual addresses

with incorrect microarchitecture oblivious bits has the same
microarchitectural effects during speculation as accessing the
one with the correct bits.

If we increase the bits to be protected by Oreo, we increase
the system’s resilience against ASLR bypass attacks and thus
make control-flow hijacking attacks, such as ROP attacks,
more difficult. However, we may face the risk of decreasing the
time it takes an attacker to locate and exploit Spectre gadgets.
Therefore, we need to choose which bits to protect carefully to
optimize for the entropy we can achieve against both attacks.
Bits Selection Strategies. Figure 5 lists the ASLR randomized
bits and microarchitecture oblivious bits in four different
setups, including the default baseline ASLR used in Linux, a
naive Oreo bits selection strategy, an enhanced baseline with
additional randomized bits, and an enhanced Oreo selection
strategy. In the baseline ASLR setup used by Linux (top row
in the figure), the n bits in the virtual address, colored in blue,
are randomized, and the lower k bits are not randomized.

The naive strategy is to choose part of the ASLR secret bits
as the microarchitecture oblivious bits. For example, we can
choose the higher m bits (colored in green) of the ASLR secret
bits, so the least significant bit protected by Oreo is the (k+n−
m)th bit. Due to the subregion size constraint discussed before,
we have to ensure m is small enough so that we have 2k+n−m

to be at least as large as the valid region size. The concern with
this strategy is when the value of m is too small, Oreo has
limited entropy towards mitigating ASLR bypasses. Besides, it
is not effective in addressing the speculative execution security
dilemma discussed above either.

We address the above constraints by proposing an enhanced
bits selection strategy, which introduces extra entropy in addi-
tion to the entropy of the default ASLR. For a fair comparison,
we present an enhanced baseline (the third row) and the
enhanced Oreo strategy (the bottom row) in Figure 5. The
enhanced baseline additionally randomizes the higher m bits in
the virtual address to the left of the n bits already randomized
by the default ASLR. Oreo’s enhanced bits selection strategy
randomizes the same m + n bits as the enhanced baseline,
but protects the higher m bits (marked as green). In this
case, we no longer need to be concerned with the subregion
size constraint since the least significant bit protected by
Oreo is not smaller than (k + n). 2k+n is the default ASLR
randomization region and is deemed to be larger than the valid
region size.
Entropy Analysis. We summarize the entropy comparison of
these schemes in Figure 5. We show the entropy of each
scheme against locating gadgets to be used in code reuse
attacks and speculative execution attacks. We then compare the
original entropy of each scheme with their remaining entropy
after the attacker performs any of the microarchitectural-based
ASLR bypasses in the first two leakage paths in Section III.
Note that blocking speculative execution attacks is out of the
scope of our threat model; rather, we want to ensure Oreo
does not make this type of attack easier.

We begin by clarifying the security implications of the
original entropy. It is desired to retain the original entropy

7

m bits

n bits k bits
... k bits(n - m) bits

m bits... k bitsn bits

Randomized bits not protected by Oreo

Randomized bits protected by Oreo

...

...

Locating Gadgets for...

Original Entropy Remaining Entropy* Original Entropy Remaining Entropy*

Baseline-Default n 0 n 0

Oreo-Naive n m n - m 0

Baseline-Enhanced n + m 0 n + m 0

Oreo-Enhanced n + m m n 0

Code Reuse Attacks Speculative Execution Attacks

m bits... k bitsn bits...

Figure 5: Protected bits selection strategies and their corresponding entropy. “Remaining entropy*” refers to “remaining entropy
after ASLR bypasses using the first two leakage paths”

of Oreo to match the corresponding baseline ASLR. In this
way, we force the attacker to pay extra effort to perform
ASLR bypass attacks. However, further increasing the original
entropy does not help strengthen the security of ASLR against
microarchitectural attacks. Several attacks in leakage path 2 ,
such as the AnC attack [29] and Binoculars [84], directly leak
all ASLR randomized bits. Importantly, their leakage time is
independent of the number of bits to be leaked. As shown
in Figure 5, though the enhanced baseline has higher original
entropy than the default baseline, they both have no resilience
against microarchitectural-attack-assisted ASLR bypasses and
have 0-bit remaining entropy against locating gadgets for both
code reuse attacks and speculative execution attacks.

With the naive Oreo bit selection strategy, we obtain m-bit
entropy against gadget detection for code reuse attacks. The
original entropy of gadget detection for speculative execution
attacks is reduced from n bits to n−m bits since the attacker
does not need to know the microarchitecture oblivious bits.
Using the enhanced bits selection scheme, we have m-bit
remaining entropy against gadget detection for code reuse
attacks and n-bit original entropy against gadget detection for
speculative execution attacks.

To summarize, introducing extra randomized bits that are
not protected by Oreo does not gain security against mi-
croarchitectural attacks. Even though the enhanced baseline
provides m more bits of original entropy compared to the
default baseline and the Oreo enhanced strategy, it increases
little security guarantee against speculative execution attacks.
Overall, the Oreo enhanced bits selection strategy achieves the
best security property, effectively increasing the barrier against
control-flow hijacking attacks and retaining the barrier against
speculative execution attacks.
Feasibility and Linux Prototyping. It is feasible to adopt
the enhanced Oreo bit selection strategy in existing systems.
We have implemented this strategy in our Linux prototype for
kernel text, kernel modules, and user-space programs.

For kernel text, Linux’s default configuration relocates the
code within a 1GB region using 2MB as the relocation
alignment. As such, the default ASLR randomizes bits 21 to
29, providing a 9-bit entropy. Similarly, ASLR relocates kernel
modules within a 1GB region that is consecutive to the kernel
text randomization region and uses 4KB as the alignment size,
so bits 12 to 29 are randomized. To reserve large enough
memory for kernel modules, the default ASLR allows 1024
possible offsets for relocation, providing 10-bit entropy.

Following the enhanced strategy in Figure 5, we need
to randomize additional bits higher than the ASLR secret
bits. According to the Linux kernel memory management
documentation [3], there exists a consecutive 444GB unused
region that can serve our randomization goal. We use this
region for both kernel text and modules, so each of them can
use 222GB. We configure Oreo to protect bits 31 to 38 (8
bits in total) for both the kernel text and kernel modules.

We can also apply the enhanced selection strategy to kernel
data regions and user-space memory. For example, the default
user-space ASLR can use the whole user-space virtual address
space as the randomization region with a granularity of 4KB
and it provides a high entropy of 28 bits. To maximize applica-
bility, we do not want to reduce the available virtual memory
size for the user space. Therefore, we choose non-canonical
bits as microarchitecture oblivious bits. Considering a memory
system using 4-level page tables, a canonical address is derived
by taking a 48-bit virtual address and sign-extending it to
form a 64-bit address. Bits 48 and above are not used in the
baseline, so using them as microarchitecture oblivious bits will
not affect available memory size.

D. Further Increasing Entropy of Oreo-Protected Bits

So far, we have shown Oreo works with coarse-grained
ASLR, where the addresses from the same valid region (the
blue region in Figure 4(a)) share the same secret offset. How-
ever, one limitation of coarse-grained ASLR is that leaking
one pointer breaks the whole defense. We now examine how
to further increase the entropy of Oreo-protected bits.
Working with Existing FGASLR. The existing fine-grained
ASLR randomizes the memory layout by (1) shuffling the
order of functions inside the program and (2) relocating the
program by a random offset (same as the coarse-grained
ASLR). Oreo can only protect the random offset in (2) but
cannot prevent leaking the order of functions after shuffling.
Supporting Page-Granularity ASLR. An appealing fea-
ture of Oreo is its capability to conveniently support page-
granularity ASLR to improve its safety level. Figure 6 shows
a configuration where we have four pages in the valid region.
Figure 6(a) describes when using coarse-grained ASLR, the
four pages use the same offsetoreo to be relocated to the
third subregion in the virtual address space. Alternatively,
Figure 6(c) shows the case when the four pages are relocated
to different subregions in the virtual address space while still
mapped to non-overlapped pages in the masked address space.

8

p0
p1
p2
p3

p0
p1
p2
p3

p0

p1

p2

p3

start

end

lensubregion

(a) Coarse-grained (c) Fine-grained(b) Masked Memory

Figure 6: Compare Oreo’s randomized memory layout for
coarse-grained ASLR (left) and page-granularity ASLR (right)

We now analyze the Virt2Mask and Mask2Valid functions
to highlight that minimal changes are needed to make Oreo
support page-granularity ASLR. First, the coarse-grained and
the fine-grained schemes use the same Virt2Mask func-
tion. Second, the Mask2Valid function only differs slightly
as the page-granularity scheme needs to configure different
offsetoreo for different pages, which means storing different
offsetoreo values in the corresponding PTE entries.

Configuring Oreo is handy if page-granularity ASLR is in
place. However, we acknowledge that there exist engineering
challenges to implement a proper code relocator for such a
randomization scheme in software.

E. Limitations

While Oreo offers substantial improvements in ASLR secu-
rity, it also has several limitations that must be considered. In
this section, we summarize these limitations to help understand
the trade-offs involved in applying Oreo.
Security Dilemma. In Section V-C, we have detailed the
security dilemma problem and how we address it by carefully
selecting bits to protect. Basically, on the one hand, Oreo
successfully protects ASLR randomized bits against the first
two leakage paths and makes control-flow hijack attacks
more difficult. On the other hand, the protected bits cannot
prevent attackers from utilizing Spectre gadgets since they
can speculatively execute the gadgets without knowing these
bits. When applying Oreo, we need to take this dilemma
into consideration and carefully choose bits to protect so that
the overall system achieves a satisfactory security guarantee
against both attacks.
Using Non-Canonical Bits or Canonical Bits. When apply-
ing Oreo to user-space programs, we choose microarchitecture
oblivious bits from non-canonical bits. We see no problem
in applying such a scheme in systems using 4-level page
tables where we implement our prototype, but it may introduce
limitations due to reduced non-canonical bits in other system
configurations.

For example, given a system using 5-level page tables and
57-bit virtual addresses, Oreo can use no more than 7 bits as

microarchitecture oblivious bits. The non-canonical bits might
also be used for other purposes such as ARM PAC [34], which
further limits the entropy. To achieve higher entropy, we can
use canonical bits as microarchitecture oblivious bits for user-
space programs, following a similar configuration used by
Oreo for kernel text and modules.

However, using canonical bits faces another constraint due
to the program’s code or data sizes. As analyzed in Section
V-C, the least significant microarchitecture oblivious bit is
constrained by the subregion size (lensubregion) used by Oreo,
which must be large enough to hold the relocated code or
data. Different programs have varying code and data sizes.
Enforcing a uniform configuration for all user-space programs
to accommodate the largest programs would unnecessarily
limit the entropy for smaller programs. Instead, Oreo can
adopt a more flexible approach. Specifically, lensubregion can
be adjusted based on the size of each program, allowing Oreo
to protect more bits and achieve higher entropy for smaller
programs.
Using PTE Bits. As Oreo stores the protected bits in PTEs,
the maximum entropy of the protected bits is limited by the
number of unused bits in PTEs. For example, PTE bits can be
used by other system software and security mechanisms such
as MPK [4]. In our prototype, we have already considered
these factors and used PTE bits that do not overlap with MPK
bits and software-available bits. Specifically, our prototype
(Section VI-A) uses leaf PTEs to store microarchitecture
oblivious bits, which allows at most 9 bits for the kernel space
and 5 bits for the user space. If future software uses more leaf
PTE bits, Oreo can use the unused bits in other levels of PTEs.

VI. IMPLEMENTATION DETAILS

A. Software Changes

Oreo’s software changes require modifying the page table
to use masked addresses. We prototype the software changes
in Linux kernel. Our current prototype supports three types of
memory regions: kernel text, kernel modules, and user-space
programs. It is also feasible to adopt Oreo for other memory
regions, including kernel data regions.

For all the randomization regions, we set up the page table
to map masked addresses to physical addresses and record
the secret offsetoreo in PTE entries. Our implementation is
compatible with the existing Linux kernel implementation.
The implementation for the three regions slightly differs on
1) which bits are selected to be microarchitecture oblivious
bits, and 2) when a page mapping is set up.
Kernel Text. Linux kernel uses 21 to 29 as the ASLR ran-
domized bits. Our prototype uses the enhanced bits selection
strategy (Section V-C) to additionally randomize and protect
bits 31 to 38, i.e., the microarchitecture oblivious bits. We
store these bits at the PTE entry for each kernel text page.

Several Linux-specific implementation details are worth
mentioning. First, Linux sets up the page table for kernel text
at boot time. Therefore, our prototype directly integrates our
changes at the boot code. Second, since our prototype uses
8 microarchitecture oblivious bits and the x64 architecture

9

reserves 9 unused bits in leaf PTEs [46], our changes to
the PTE entries are compatible with existing implementations
without affecting the current page tables’ functionality.
Kernel Modules. Similar to kernel text, we choose bits 31 to
38 as the microarchitecture oblivious bits for kernel modules.

We note one implementation detail specific to the current
implementation of Linux. In our prototype, we use the same
offsetoreo for kernel modules and kernel text. This differs
from the baseline ASLR, where the kernel modules can have
different entropy from kernel text. The reason is that the
current Linux implementation requires the kernel text and
modules located in a 2GB consecutive region, so bits 31 to 38
(the microarchitecture oblivious bits) in their virtual addresses
need to be the same. If we want to support different entropy for
kernel text and modules, we will need to relax this constraint
by leveraging prior work, such as Adelie [59], which allows
relocating kernel modules in the whole 64-bit address space.

We make the following changes to the page setup procedure
for kernel modules. Linux allocates memory for a module
when the module is loaded into the kernel. The virtual memory
allocation triggers page table entry setup. Additionally, Linux
builds a red-black tree to manage memory for these modules.
In the default implementation, each module’s randomized
virtual base address is used as the key to construct and
search the tree, which introduces a side-channel vulnerability.
We change the kernel to allocate and manage memory using
masked addresses. In addition to properly setting the page table
entries, we also use modules’ masked base addresses to build
the red-black tree.
User-Space ASLR. As discussed in Section V-C, we use the
non-canonical bits as microarchitecture oblivious bits for user-
space applications. Theoretically, we have 16 non-canonical
bits. In our prototype, we use bits 48 to 52, providing 5-bit
entropy, which matches the number of unused bits in user-
space leaf PTEs (rather than 9 unused bits in kernel leaf
PTEs). We note that this is an engineering decision made for
convenience. It is feasible to increase the entropy by storing
the extra microarchitecture oblivious bits in the PTEs of the
other levels of page tables. As each user process has its
own page tables, we can configure different processes to use
different microarchitecture oblivious bits and store these bits
in the per-process page tables.

B. Microarchitecture Changes

One of the central ideas in Oreo is to limit the usage
of secret-dependent randomized virtual addresses in microar-
chitecture structures. We modify the processor pipeline to
extensively use masked addresses except for the virtual address
security check at the commit stage. We divide the pipeline
into three components: the frontend for fetch and decode,
the middle component for execute and memory operations,
and the backend for committing instructions. In Figure 7,
we use different colors to indicate the usage of different
types of addresses in each microarchitecture structure: red for
secret bits and secret-dependent virtual addresses, green for

secret-free masked addresses, and blue for secret-free physical
addresses.
The Fetch & Decode Stage. The frontend fetch stage main-
tains a PC (program counter) register and the branch predictor.
Oreo uses the masked address in both the PC register and the
branch predictor, requiring no changes to the fetch stage. To
understand why, consider the four sources that the hardware
uses to update the PC register: (1) PC + instruction size for
non-branch instruction; (2) PC + an immediate value from the
decode stage for relative direct branches such as jmp short;
(3) target address predicted by the branch predictor; and (4)
target address from the register file or memory, usually for
indirect jumps, such as call and ret.

Among the four sources above, only the last type obtains the
branch target from other pipeline stages, namely the execute
& memory stage. We place a Virt2Mask module between the
execute & memory and the fetch stages to ensure the external
PC update source uses masked addresses. As such, all the
internal updates of the fetch stage, including the PC-derived
targets and predicted targets, will consistently use masked
addresses without extra intervention.
The Execute & Memory Stage. The middle component of
a speculative processor uses a ROB to track all the in-flight
instructions, and a load/store queue (LSQ) to track all the in-
flight load and store operations.

We extend the ROB (reorder buffer) to store the correct
microarchitecture oblivious bits (i.e., offsetoreo) for the PC
of each instruction to facilitate Oreo’s security check at the
commit stage. Specifically, when fetching instructions using
a masked address, the address translation procedure looks up
TLBs or performs a page table walk to obtain its physical
address. As we store offsetoreo in PTE entries and the TLB,
the translation procedure can obtain offsetoreo and send it
back to the core.

In this pipeline stage, we also prevent information leakage
caused by load and store instructions. When inserting each
load and store instruction into the load/store queue (LSQ),
we convert the virtual address used by the load/store instruc-
tion into a secret-free masked address and also extract the
microarchitecture oblivious bits. Memory dependency checks
and other microarchitectural optimizations, such as load-to-
store forwarding and address prediction, use masked addresses
as inputs. When a load/store is issued to the memory system,
similar to instruction fetch, the address translation procedure
uses the masked address. For each load/store instruction,
the memory system returns data (if it is a load) and the
correct offsetoreo for the given masked address. This correct
offsetoreo is then compared against the extracted microarchi-
tecture oblivious bits in the LSQ entry to determine whether
the original load/store virtual address is valid. The comparison
result is stored in the corresponding LSQ entry. Note that, this
operation is secure because this pre-computed check result
does not affect any other microarchitecture states, will only
be used in the commit stage, and thus does not introduce new
timing side channels.
The Commit Stage. In the baseline hardware, security checks

10

Resolved TragetVirt2Mask

Ld/St
Addr

Virt2Mask

Extract Bits

PC +size +imm

Branch
Predictor

Fetch & Decode

DRAM

Cache TLB

Page Table

offsetoreo

PredPC

ROB

LSQ

offsetoreo

Execute & Memory Commit

Memory System

ArchPC
+size

+imm

offsetoreo

Secret-free
masked address

Secret bits or
secret-dependent
virtual address

Secret-free
physical address

Oreo's Modification

=?

Extract Bits

=?

=1?

Virtual address check on ArchPC

Virtual address check on load/store

1

1

2

3

3

Figure 7: Microarchitecture changes required by Oreo.

on memory accesses are performed during the address trans-
lation within the MMU. When an instruction enters the com-
mit stage, the hardware checks whether it should trigger an
exception (e.g., failing to pass a security check) and retires
the instruction if no exception occurs. In Oreo, MMU only
performs page permission checks on masked addresses during
speculation, i.e., whether the masked address has the correct
read/write/execute permission on a given page. Notably, the
MMU leaves the check of whether the microarchitecture
oblivious bits of the virtual address is correct to the commit
stage.

We perform two virtual address checks in the commit stage
depending on the instruction types. For any type of instruction,
we check whether the microarchitecture oblivious bits of its
PC is correct. For load/store instructions, we additionally
perform this check on the load/store addresses. As we have
pre-computed the check result on load/store addresses in the
execute & memory stage and stored the check result in the
LSQ, we can directly use this check result in the commit stage.

To check the microarchitecture oblivious bits in PCs, we
add another PC register to the commit stage. This PC register
keeps track of the virtual address for the instruction at the
head of ROB. To distinguish from the PC register in the fetch
stage, we call it ArchPC, since the PC register at the fetch
stage is speculative, while the one at the commit stage keeps
track of the PC to be committed, reflecting architecture-level
information. Since we inserted the correct offsetoreo into
the ROB in previous stages, we can conveniently check the
validity of ArchPC by extracting microarchitecture oblivious
bits of the ArchPC and comparing them with the correct bits. If
the ArchPC is valid, we can retire the instruction. Otherwise, an
exception is triggered for a virtual address check failure. Note
that we always let the other exceptions take priority over this
virtual address check results to avoid leaking ASLR secrets to
attacks using microarchitectural replay attacks [70].

Furthermore, the commit stage replicates some of the next-
PC computation logic similar to the fetch stage. As shown

in Figure 7, this replicated part involves integer addition
operators, data forwarding from the execution stage, and a
multiplexer. After successfully retiring an instruction, we use
the next-PC logic to derive the architecture PC value of the
next instruction and update the ArchPC register. The design
above is a naive baseline to showcase that Oreo’s hardware
modification is not intrusive. There exist plenty of optimization
opportunities to omit these replicated computation structures
or move it to an earlier stage of the pipeline.

C. Timing and Hardware Cost Analysis

We provide a comprehensive analysis to estimate the timing
and area overhead. We acknowledge that a synthesizable
implementation of the hardware components of Oreo can offer
a more accurate measurement.
Pipeline Timing Impacts. The hardware changes introduced
by Oreo include: (1) applying Virt2Mask to virtual addresses
to obtain masked addresses; (2) obtaining offsetoreo from
page tables/TLBs; (3) checking whether a virtual address has
valid microarchitecture oblivious bits at the commit stage. We
labeled these changes in Figure 7.

First, the Virt2Mask operation is performed before branch
squashing and issuing load/store requests, labeled as 1 in
Figure 7. Given there can exist multiple randomization regions,
when converting a virtual address to a masked address, we
first determine which randomization region the input virtual
address falls into. This operation requires parallel compar-
isons between the virtual address and the boundaries of
each randomization region. Once the randomization region
is determined, we obtain the information of which bits are
microarchitecture oblivious bits. We can then clear these bits
using a quick bit-wise AND operation to obtain the masked
address. Overall, it is a lightweight operation consisting of
parallel comparisons and bit-wise AND operations. Hence, we
count no extra cycles introduced by Virt2Mask.

Second, Oreo obtains secret ASLR offsets from page tables
to fill in TLB entries and further passes them to the ROB and

11

the load/store unit, labeled as 2 in Figure 7. These operations
are performed in parallel with address translation and do not
introduce extra latency.

Third, Oreo extracts microarchitecture oblivious bits in the
ArchPC register and checks whether they match the correct bits
or not, labeled as 3 in Figure 7. We count no extra latency
or back-pressure at commit time because the information used
for the virtual address check on the instruction PC is available
at the execution stage, and the logic to do the check is a
simple combinational circuit. Furthermore, the virtual address
check results for load/store addresses are pre-computed before
commit time as discussed in Section VI-B.
Area Cost. We analyze the area cost of Oreo’s hardware
by visiting each block in Figure 7. To begin with, no extra
hardware is needed in the fetch stage as this stage purely
operates on masked addresses.

In the memory system, Oreo includes additional bits to
record the correct offsetoreo for each TLB entry. Specifically,
in our prototyped system, we add 8 extra bits per TLB entry.
For reference, a Mega BOOM processor [83] has 584 TLB
entries (including iTLB, dTLB, and L2TLB), leading to an
overhead of 584 bytes.

In the execute and memory stage of the pipeline, Oreo
incorporates the Virt2Mask and bits extraction modules, as
well as extra bits in the ROB and LSQ. First, both the
Virt2Mask module and the bits extraction module need to
store metadata of randomization regions, including the bound-
ary and microarchitecture oblivious bits information. For each
randomization region, we use 128 bits to store its boundary
(i.e., start and end), and a 64-bit vector to indicate which
bits are microarchitecture oblivious bits. Our prototype im-
plementation uses two randomization regions to protect the
kernel and user ASLR, which yields a total 384-bit overhead.
Second, Oreo introduces extra fields in the ROB and LSQ
to facilitate virtual address checks on instruction PCs and
load/store addresses, including 8 bits to store the correct
offsetoreo for PC in each ROB entry, another 8 bits to store
the extracted offset bits of the load/store address in each LSQ
entry, and 1 bit per LSQ entry to store the pre-computed
virtual address check result. For reference, the Mega BOOM
processor has a 128-entry ROB and a 64-entry LSQ, resulting
in 200 bytes storage overhead.

In the commit stage, we add the ArchPC register, which is
64-bit. The bits extraction module requires extra storage for
recording randomization region metadata, which is shared with
the modules in the execute and memory stages.

Overall, using the Mega BOOM processor as an example,
Oreo incurs small storage overhead, including 256 bytes in-
core overhead and 584 bytes overhead in the memory system.

VII. EVALUATION

A. Experiment Setup

We implement our kernel changes in Linux 6.6. We use a
kernel patch by Hou et. al. [32] to relocate kernel text and
modules to a 444GB unused region in the kernel address
space. We implement our microarchitecture changes in the

pe
rlb

en
ch gc
c

m
cf

om
ne

tp
p

xa
la

nc
bm

k

x2
64

de
ep

sje
ng

le
el

a

ex
ch

an
ge

2

Av
g

0.0

0.5

1.0

1.5

2.0

CP
I

0.59%

0.48%
-0.35%

-0.95%

0.11%

0.70% 0.25%
0.03% 0.11%

0.11%

Baseline
Oreo

Figure 8: Performance evaluation results on SPEC2017

gem5 simulator (v24.0) [9], [54] using the full system mode.
The microarchitecture configuration is similar to the configu-
rations used in prior microarchitectural mitigation papers [53],
[77], [82]. We model a 1-core CPU for running the SPEC2017
benchmark [11] and security evaluation, and a 2-core CPU
for running the LEBench benchmark [85]. We configure each
core as an 8-issue out-of-order (O3) superscalar processor with
32 load queue entries, 32 store queue entries, and 192 ROB
entries. The branch predictor uses the tournament prediction
policy with 4096 BTB entries and 16 RAS entries. We model
64KB 8-way L1 I-cache and D-cache and a 2MB 16-way L2
cache. gem5 has a customized procedure for booting Linux
which deviates from how Linux boots on a real processor and
does not support kernel ASLR. In our implementation, we
modify gem5’s booting procedure to support kernel ASLR.
Overall, our prototype involves 785 lines of code (LoC)
changes to the Linux kernel, and 1897 LoC modifications to
the gem5 simulator.

B. Performance Results

SPEC2017. We evaluate the performance overhead of Oreo
on the SPEC2017 IntRate benchmark [11]. We configure the
applications to use reference input size, warm up the system
and microarchitecture structures by executing 10 billion user-
space instructions, and then measure the performance of the
next 1 billion instructions. We skipped 557.xz_r because the
simulation crashes due to a bug in gem5 for not supporting
certain instructions used by this application. Figure 8 shows
the reported CPI (cycles per user-space instruction) for each
application. We label the CPI overhead ratios incurred by
Oreo compared to the baseline on top of the green bars. The
overall CPI (counting both user-space and kernel instructions)
is mostly identical to the CPI for userspace only, given that the
userspace time dominates when running the SPEC benchmark.

Across all applications, Oreo introduces negligible perfor-
mance overhead compared to the baseline, incurring 0.11%
CPI overhead on average. This indicates that Oreo’s changes
on the software and hardware have little impact on the overall
performance of user-space applications.

We report the ratio of memory accesses where Oreo applies
its protection to provide insight into how much of the program
execution triggers protection. This information allows us to
validate the relevance of the SPEC benchmark in evaluating
the performance impacts of Oreo. In our prototype, we apply
Virt2Mask to any addresses that fall within the user address

12

6
4
2
0
2
4
6

Ov
er

he
ad

 (%
)

co
nt

ex
t-s

wi
tc

h
sm

al
l-r

ea
d

m
ed

-re
ad

bi
g-

re
ad

sm
al

l-w
rit

e
m

ed
-w

rit
e

la
rg

e-
wr

ite
m

m
ap

m
un

m
ap

fo
rk

-p
ar

en
t

fo
rk

-c
hi

ld
bi

g-
fo

rk
-p

ar
en

t
bi

g-
fo

rk
-c

hi
ld

th
rc

re
at

e-
pa

re
nt

th
rc

re
at

e-
ch

ild
sm

al
l-s

en
d

bi
g-

se
nd

sm
al

l-r
ec

v
bi

g-
re

cv
sm

al
l-s

el
ec

t
bi

g-
se

le
ct

sm
al

l-p
ol

l
bi

g-
po

ll
sm

al
l-e

po
ll

bi
g-

ep
ol

l
sm

al
l-p

ag
ef

au
lt

bi
g-

pa
ge

fa
ul

t

0.9

1.0

1.1

La
te

nc
y

no
rm

al
izd

 to
 b

as
el

in
e

Baseline
Oreo

Figure 9: Performance evaluation results on LEBench

space, or the selected randomization region for kernel code
or modules. For the SPEC benchmark, at least 99.46% of the
memory accesses trigger Oreo’s protection, with this being the
minimum ratio observed among all applications.

LEBench. We also evaluate the performance overhead of Oreo
using the LEBench benchmark [85], a microbenchmark suite
that measures the performance of kernel operations (system
calls). We run the LEBench measurement for each system call
16 times and report the average latency overhead in the top half
of Figure 9, comparing Oreo and the insecure baseline. Oreo
introduces an average overhead −0.28% across all system calls
in the suite, which is almost negligible.

However, unlike the SPEC benchmark, we observe large
performance variations in the LEBench, ranging from −6.39%
to 6.16%. To understand the variation, for each system call,
we plot the range of multiple measured latencies normalized
to the medium latency of the insecure baseline in the bottom
half of Figure 9. Specifically, the colored box indicates the
first quartile (Q1) and the third quartile (Q3) of normalized
latency, with the medium latency marked as a horizontal line
dividing the box into two halves. We additionally use hollow
dots to mark outliers.

From the figure, we observe that large variations consis-
tently exist for certain system calls, such as thrcreate and
pagefault, in the baseline and when using Oreo. Given
that these system calls require coordination between multiple
threads, we suspect that the large variation is caused by the
dynamic non-deterministic scheduling of the Linux kernel.

Another difference between LEBench and SPEC2017 is the
ratio of memory accesses that use Oreo’s protection. In the
LEBench benchmark, the average ratio of memory accesses
that need Virt2Mask is 75.17%, ranging from 65.97% to
82.86%, which is lower than the ratio in SPEC2017. This is
because LEBench contains more memory accesses to kernel
data, which is not protected by our prototype implementation.

0xffffff8001800040 0xffffffee81800040
Address

28

30

32

34

La
te

nc
y

(C
yc

le
s)

0xffffff8601800040, 29 cycles

Baseline
Oreo

Figure 10: Evaluating the prefetch attack on the insecure
baseline and Oreo.

C. Security Evaluation

We conduct three experiments to validate the security prop-
erties of Oreo and to demonstrate that our implementation
aligns with the design presented in the paper. Additionally,
we provide a formal proof in a technical report [71] to show
that Oreo achieves a non-interference property, preventing the
leakage of ASLR secrets.
The Prefetch Attack. We evaluate a prefetch attack [31],
[49], [52] on the insecure baseline and Oreo. In both
cases, the kernel code (including text and modules) is ran-
domly relocated to the range from 0xffffff8000000000 to
0xffffffef00000000. The attacker scans the randomization
region by probing addresses with a stride of 2GB. The probing
operation executes the prefetch instruction twice. The first
fetch operation brings the address into various microarchitec-
ture structures. The attacker then measures the latency of the
second fetch operation.

Figure 10 shows the attack results. The prefetch attack
works effectively on the insecure baseline, where the prefetch
latency is distinctively lower at the randomized kernel address
0xffffff8601800040, and is consistently high at the other
unmapped kernel addresses. This timing difference is caused
by the fact that TLB caches address translation only for
mapped addresses, not for unmapped addresses. In contrast,
the prefetch attack no longer works on Oreo. Oreo converts
virtual addresses to masked addresses and uses masked ad-
dresses to access the TLB. Since the TLB already cached the
corresponding masked address during the execution of the first
prefetch operation, the second prefetch always results in a hit,
resulting in indistinguishable low latency.
Leakage Path 1 . In addition to the prefetch attack, we evalu-
ate the speculative code region probing attack from the Blind-
Side paper [27]. We consider this attack as a representative
attack for the leakage path 1 . Besides, we think solely relying
on timing may not fully capture the effectiveness of our design.
Thus, we validate the attack results by comparing internal
microarchitectural traces dumped from the gem5 simulator.

Figure 11(a) shows the attack gadget. Following the attack
described in BlindSide [27], we assume an attacker leverages
a memory corruption vulnerability to overwrite a function
pointer in the kernel memory. The attacker then triggers the
victim to transiently jump to the corrupted function pointer
during the mis-speculation of a conditional branch. In our
experiment, we set the function pointer to a valid address and
an invalid address and compare the input traces on TLB, cache,

13

0xffffff8640002000
0xffffff8640000140
0xffffff8640000180
0xffffff860161b900
0xffffff86400001c0
0xffffff8640000200
0xffffff8601094a80
0xffffff8601094ac0
0xffffff86010979c0
0xffffff8601097a00
0xffffff8640000000
0xffffff8640002000
0xffffc90000127de8
0xffffff8640000040
0xffffff8640000000
0xffffff860161b900
0xffffff8640000140
0xffffff8640000180
0xffffff8640000140
0xffffff8640000180
0xffffff860161b900
0xffffff86400001c0
0xffffff8601094a80
0xffffff8601094ac0
0xffffff86010979c0
0xffffc90000127df0
0xffffff8601097a00
0xffffc90000127df8
0xffffc90000127e00

0xffffc90000127e08
0xffffc90000127e10
0xffffff8601097700

0xffffff8640002000
0xffffff8640000140
0xffffff8640000180
0xffffff860161b900
0xffffff86400001c0
0xffffff8640000200
0xffffff8601094a80
0xffffff8601094ac0
0xffffff86010979c0
0xffffff8601097a00
0xffffff86c0000000
0xffffff8640002000
0xffffc90000127de8
0xffffff86c0000000
0xffffff86c0000000

0xffffff8640000140
0xffffff8640000180
0xffffff860161b900
0xffffff86400001c0
0xffffff8601094a80
0xffffff8601094ac0

0xffffc90000127df0
0xffffff86010979c0
0xffffc90000127df8
0xffffc90000127e00
0xffffff8601097a00
0xffffc90000127e08
0xffffc90000127e10

Valid Invalid
0xffffff8040002000
0xffffff8040000140
0xffffff8040000180
0xffffff800161c5c0
0xffffff80400001c0
0xffffff8040000200
0xffffff8001094c00
0xffffff8001094c40
0xffffff8001097b40
0xffffff8001097b80
0xffffff8001097a80
0xffffff8040000000
0xffffff8040002000
0xffffc90000117de8
0xffffff8040000040
0xffffff8040000000
0xffffff800161c5c0
0xffffff8040000140
0xffffff8040000180
0xffffff8040000140
0xffffff8040000180
0xffffff800161c5c0
0xffffff80400001c0
0xffffff8001094c00
0xffffff8001094c40
0xffffff8001097b40
0xffffc90000117df0
0xffffff8001097b80
0xffffc90000117df8
0xffffc90000117e00
0xffffc90000117e08
0xffffff8001097a80
0xffffc90000117e10

0xffffff8040002000
0xffffff8040000140
0xffffff8040000180
0xffffff800161c5c0
0xffffff80400001c0
0xffffff8040000200
0xffffff8001094c00
0xffffff8001094c40
0xffffff8001097b40
0xffffff8001097b80
0xffffff8001097a80
0xffffff8040000000
0xffffff8040002000
0xffffc90000117de8
0xffffff8040000040
0xffffff8040000000
0xffffff800161c5c0
0xffffff8040000140
0xffffff8040000180
0xffffff8040000140
0xffffff8040000180
0xffffff800161c5c0
0xffffff80400001c0
0xffffff8001094c00
0xffffff8001094c40
0xffffff8001097b40
0xffffc90000117df0
0xffffff8001097b80
0xffffc90000117df8
0xffffc90000117e00
0xffffc90000117e08
0xffffff8001097a80
0xffffc90000117e10

Valid Invalid
0x10979c0
0x1097a00
0x1097a00
0x104dc200
0x104dc200
0x104dc200
0x1170000
0x1170000
0x1170000
0x1170000
0x104dc000
0x104dc000
0x104dc000
104dc000
0x104dc000
0x104dc000
0x104dc000
0x104dc000
0x1ed9000
0x1ed9000
0x1ed9000
0x1ed9000
0x1ed9000
0x10439000
0x10439000
0x10439000
10439000
0x10439000
0x10439000
0x104dc040
0x104dc040
0x104dc000
0x104dc000

0x10979c0
0x1097a00
0x1097a00
0x104dc200
0x104dc200
0x104dc200
0x8bc0fc0
0x8bc0fc0
0x8bc0fc0
0x8bc0fc0
0x1e100c0
0x1e100c0
0x1e100c0
0x1e100c0

0x1ed9000
0x1ed9000
0x1ed9000
0x1ed9000
0x1ed9000
0x10439000
0x10439000
0x10439000
10439000
0x10439000
0x10439000
0x8bc0fc0
0x8bc0fc0
0x8bc0fc0
0x8bc0fc0

Valid Invalid
0x1607f80
0x1607f80
0x1607fc0
0x1607fc0
0xbcc1ad00
0xbcc1ad00
0xbcc1ad00
0xbcc1ad00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfd0a000
0xfd0a000
0xfd0a000
0xfd0a000
0x1608000
0x1608000
0x1608000
1608000
0x1608000
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00

0x1607f80
0x1607f80
0x1607fc0
0x1607fc0
0xbcc1ad00
0xbcc1ad00
0xbcc1ad00
0xbcc1ad00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfd0a000
0xfd0a000
0xfd0a000
0xfd0a000
0x1608000
0x1608000
0x1608000
1608000
0x1608000
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00
0xfe91c00

0xffffff86400000a2
0xffffff86400000ac
0xffffff86400000b2
0xffffff860161b900
0xffffff8640000179
0xffffff864000017b
0xffffff8640000183
0xffffff860161b900
0xffffff8640000183
0xffffff860161b900
0xffffff86400001f1
0xffffff8601094aef
0xffffff8601097a0c
0xffffff8640000003
0xffffff8640000003
0xffffff864000001f
0xffffff8640000034
0xffffff864000003d
0xffffff864000001f
0xffffff860161b900
0xffffff8640000183
0xffffff860161b900
0xffffff86400001f1
0xffffff8601094aef
0xffffff8601097a0c
0xffffff8601097a1a
0xffffff8601097a21
0xffffff8601097743
0xffffff86010975ea
0xffffff86010975fc
0xffffff860109760d
0xffffff8601097619
0xffffff8601097629

0xffffff86400000a2
0xffffff86400000ac
0xffffff86400000b2
0xffffff860161b900
0xffffff8640000179
0xffffff864000017b
0xffffff8640000183
0xffffff860161b900
0xffffff8640000183
0xffffff860161b900
0xffffff86400001f1
0xffffff8601094aef
0xffffff8601097a0c

0xffffff8640000183
0xffffff860161b900
0xffffff86400001f1
0xffffff8601094aef
0xffffff8601097a0c
0xffffff8601097a1a
0xffffff8601097a21
0xffffff8601097743
0xffffff86010975ea
0xffffff86010975fc
0xffffff860109760d
0xffffff8601097619
0xffffff8601097629

Valid Invalid
106fa610
107a1328
8a318a0
ffffff86013d6480
8bc0ff8
1e100c0
1e11048
ffffff8601800040
8bc0ff8
1e100c0
1e11060
ffffff8601610b80
8bc0ff8
1e100c0
1e11058
ffffff86011999c0
8bc0ff8
1e100c0
1e11040
ffffff8640000180
8bc0ff8
1e100c8
10702000
1074e000

106fa610
107a1328
8a318a0
ffffff86013d6480
8bc0ff8
1e100c0
1e11048
ffffff8601800040
8bc0ff8
1e100c0
1e11060
ffffff8601610b80
8bc0ff8
1e100c0
1e11058
ffffff86011999c0
8bc0ff8
1e100c0
1e11040
ffffff8640000180
8bc0ff8
1e100c8
10702000
1074e000
ffffff86c0000000
8bc0ff8
1e100d8
ffffff86c0000000
8bc0ff8
1e100d8
ffffff86c0000000
8bc0ff8
1e100d8

0xffffff80400000b2
0xffffff800161c5c0
0xffffff8040000179
0xffffff804000017b
0xffffff8040000183
0xffffff800161c5c0
0xffffff8040000183
0xffffff800161c5c0
0xffffff80400001f1
0xffffff8001094c66
0xffffff8001097b83
0xffffff8001097b91
0xffffff8001097b93
0xffffff8040000003
0xffffff8040000003
0xffffff804000001f
0xffffff8040000034
0xffffff804000003d
0xffffff804000001f
0xffffff800161c5c0
0xffffff8040000183
0xffffff800161c5c0
0xffffff80400001f1
0xffffff8001094c66
0xffffff8001097b83
0xffffff8001097b91
0xffffff8001097b98
0xffffff80010978ba
0xffffff8001097761
0xffffff8001097773
0xffffff8001097790
0xffffff80010977a0
0xffffff80010977d1

0xffffff80400000b2
0xffffff800161c5c0
0xffffff8040000179
0xffffff804000017b
0xffffff8040000183
0xffffff800161c5c0
0xffffff8040000183
0xffffff800161c5c0
0xffffff80400001f1
0xffffff8001094c66
0xffffff8001097b83
0xffffff8001097b91
0xffffff8001097b93
0xffffff8040000003
0xffffff8040000003
0xffffff804000001f
0xffffff8040000034
0xffffff804000003d
0xffffff804000001f
0xffffff800161c5c0
0xffffff8040000183
0xffffff800161c5c0
0xffffff80400001f1
0xffffff8001094c66
0xffffff8001097b83
0xffffff8001097b91
0xffffff8001097b98
0xffffff80010978ba
0xffffff8001097761
0xffffff8001097773
0xffffff8001097790
0xffffff80010977a0
0xffffff80010977d1

Valid Invalid
fd8a390
fe42218
ffd1b70
7febe5f14840
8bfa7f8
ffd2d78
ffd3978
8bc18a0
ffffff8001800040
8bfaff8
1e10000
1e11060
ffffff8001611880
8bfaff8
1e10000
1e11058
ffffff8001611880
8bfaff8
1e10000
1e11058
ffffff80010b2840
8bfaff8
1e10000
1e11040
ffffff8040000180
8bfaff8
1e10008
ffe2000
fe66000
ffffff80012f08c0
8bfaff8
1e10000
1e11048

fd8a390
fe42218
ffd1b70
7febe5f14840
8bfa7f8
ffd2d78
ffd3978
8bc18a0
ffffff8001800040
8bfaff8
1e10000
1e11060
ffffff8001611880
8bfaff8
1e10000
1e11058
ffffff8001611880
8bfaff8
1e10000
1e11058
ffffff80010b2840
8bfaff8
1e10000
1e11040
ffffff8040000180
8bfaff8
1e10008
ffe2000
fe66000
ffffff80012f08c0
8bfaff8
1e10000
1e11048

Baseline Oreo OreoBaseline Baseline Oreo Baseline Oreo

(b) TLB trace (c) Cache trace (d) Branch predictor trace (e) MMU trace

// In kernel:
// Attacker
// chosen fp
fp = xxx;
// ...
if (cond)
 jump fp;
// ...

(a) Attack Gadget

Valid Invalid Valid InvalidValid InvalidTraces deviate

Figure 11: Evaluating the speculative code gadget probing attack on the insecure baseline and Oreo. (b)-(e) compare the input
traces of multiple microarchitecture structures when transiently jumping to a valid and an invalid address.

branch predictor, and MMU, shown in Figure 11(b)-(e). We
highlight the parts where the two traces deviate from each
other, indicating an exploitable side channel.

On the baseline, the input traces to the four microarchi-
tecture structures all deviate when transiently accessing the
valid and the invalid addresses. In contrast, with Oreo, the
traces are identical since the same masked address is used for
transient access. This indicates the attacker cannot distinguish
valid addresses from invalid ones through transient memory
accesses, so Oreo can successfully block leakage path 1 .
Leakage Path 2 . We use microarchitectural traces, similar
to Figure 11, to evaluate Oreo against the second leakage
path. We trigger the victim kernel to execute a system call and
record the input traces to various microarchitecture structures.
We then examine these traces and find that on the baseline,
the input traces to these microarchitecture structures all include
addresses with secret offsetoreo. With Oreo, the input traces
only consist of addresses without these secret bits.

VIII. RELATED WORK

We discuss related work aimed at strengthening the security
property of ASLR schemes. We first discuss ASLR protection
schemes that aim to address different information leakage
threats, i.e., through microarchitectural attacks or software-
level attacks. We then discuss mechanisms designed to in-
crease ASLR entropy.
Blocking Software-Based ASLR Bypasses. Several prior
work [7], [17], [18], [26], [55], [73], [74] aim to make it
more difficult for attackers to leak ASLR secrets via exploiting
software vulnerabilities. For example, ASLR-Guard [55] uses
encryption to prevent leaking code pointers. KASLR-MT [74]
and Vano-Garcia et al. [73] block information leakage due to
memory deduplication attacks. XnR [7] and Readactor [17],
[18], and Gionta et al. [26] enable “executing-only-memory”
to prevent reading and then leaking code pointers. These
techniques focus on software-level threats and are ineffective
against microarchitectural attacks. They can complement Oreo
to further strengthen the security of ASLR schemes.
Blocking Microarchitectural-Attack-Assisted ASLR By-
passes. This group of mitigation mechanisms [13], [25],
[30] shares the same goal as our work. Several defenses

aim to prevent ASLR secrets from being leaked via virtual
memory layout probing attacks, blocking leakage path 1 .
One approach is to isolate the kernel and user-space address
spaces to prevent memory layout probing, as demonstrated in
KAISER [30] (also known as KPTI) and LAZARUS [25].
However, given that some of the kernel trampoline pages
are still mapped in the user space, the Linux prototype of
KAISER [1] is still vulnerable to ASLR bypasses, as shown
in EchoLoad [30] and Entrybleed [52]. Besides, software-
level isolation does not help mitigate the second leakage path,
where the ASLR randomized bits are leaked when the victim
program uses secret pointers as program counters or load/store
addresses.

Alternatively, FLARE [13] makes accessing valid (mapped)
and invalid (unmapped) kernel addresses take the same amount
of time. It works by mapping all invalid kernel addresses to one
valid physical page, so that accessing these invalid pages will
need to go through the full page table walk. This mitigation
has several limitations. First, it cannot block memory layout
probing attacks that use BTB and TLB as side channels.
Second, given that the invalid addresses now map to an empty
physical page, whose content is different from the actual valid
pages, any speculative data-dependent accesses can be used to
distinguish between invalid and valid addresses. In contrast to
this ad-hoc solution, Oreo takes a much more comprehensive
approach to make accessing invalid and valid addresses exhibit
indistinguishable side effects as long as they map to the same
masked address.
Increasing ASLR Entropy. Several prior works aim to
increase the entropy of ASLR [14], [17], [24], [46], [59]
by introducing finer-grained ASLR, increasing the size of
the randomization region, and re-randomization. For example,
FGKASLR [46] randomizes function orders in kernel code to
make it harder to find code gadgets. Adelie [59] increases the
kernel ASLR randomization region to the entire 64-bit virtual
memory and re-randomizes the layout of kernel modules.
Readactor [17], [18] and CodeArmor [14] re-randomizes code
pointers or code memory layout. Morpheus [24] periodically
re-randomizes the code pointers with a higher frequency
than previous approaches as it leverages complex hardware
modifications to do the re-randomization.

14

Power-Induced Timing Side Channels. Recent work [49]
breaks ASLR through power-induced timing side channels.
Although it is out of Oreo’s protection scope, Oreo’s imple-
mentation can make it easier to mitigate this class of side chan-
nels. Power-based side channels arise when circuits perform
computation using secret-dependent values. Different inputs
activate different transistors and lead to different amounts
of power consumption. According to Figure 7, the protected
secret bits are extracted from virtual addresses or obtained
from TLB entries, and are only used in two equality checks
(denoted by the “=?” boxes). Thus, it becomes feasible to
adopt classic mitigations, such as circuit masking [57], to
secure these specific modules against power side channels.

IX. CONCLUSION

This paper presented a systematic analysis of microarchi-
tectural side-channel attacks for ASLR bypasses. We use
our analysis to guide the design of Oreo. Oreo strengthens
the security of ASLR via the modification to the memory
interface. By introducing an extra layer of masked address
space and converting virtual addresses to masked addresses
to be used to set up page tables and index into various
microarchitecture structures, Oreo constraints the secret offset
exposure in both software and hardware. Our security and
performance evaluation demonstrates that Oreo is an effective
mitigation and introduces negligible performance overhead.

ACKNOWLEDGMENT

The authors thank the Matcha Group (MIT) for their help
and the anonymous NDSS reviewers for their feedback. This
work was supported in part by a gift from Amazon; by the
Air Force Office of Scientific Research (AFOSR) under grant
FA9550-22-1-0511; by ACE, one of the seven centers in JUMP
2.0, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA.

REFERENCES

[1] “Page table isolation (PTI),” https://www.kernel.org/doc/html/next/x86/
pti.html.

[2] “2023 CWE top 25 most dangerous software weaknesses,” https://cwe.
mitre.org/top25/archive/2023/2023_top25_list.html, 2023.

[3] “Memory management,” https://www.kernel.org/doc/html/v6.4/arch/x86/
x86_64/mm.html, 2024.

[4] “Memory protection keys,” https://docs.kernel.org/core-api/
protection-keys.html, 2024.

[5] S. Ainsworth, “GhostMinion: A strictness-ordered cache system for
spectre mitigation,” in MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2021, pp. 592–606.

[6] S. Ainsworth and T. M. Jones, “MuonTrap: Preventing cross-domain
spectre-like attacks by capturing speculative state,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 132–144.

[7] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014, pp. 1342–1353.

[8] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Spec-
Shield: Shielding speculative data from microarchitectural covert chan-
nels,” in 2019 28th International Conference on Parallel Architectures
and Compilation Techniques (PACT). IEEE, 2019, pp. 151–164.

[9] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.
Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. S. B. Altaf, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–
7, 2011. [Online]. Available: https://doi.org/10.1145/2024716.2024718

[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of
the 6th ACM symposium on information, computer and communications
security, 2011, pp. 30–40.

[11] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
generation compute benchmark,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, 2018, pp. 41–42.

[12] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout: Leaking
data on Meltdown-resistant cpus,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 769–784.

[13] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and D. Gruss,
“KASLR: Break it, fix it, repeat,” in Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security, 2020, pp. 481–
493.

[14] X. Chen, H. Bos, and C. Giuffrida, “CodeArmor: Virtualizing the code
space to counter disclosure attacks,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE, 2017, pp. 514–529.

[15] R. Choudhary, J. Yu, C. Fletcher, and A. Morrison, “Speculative pri-
vacy tracking (SPT): Leaking information from speculative execution
without compromising privacy,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 607–622.

[16] M. H. I. Chowdhuryy and F. Yao, “Leaking secrets through modern
branch predictors in the speculative world,” IEEE Transactions on
Computers, vol. 71, no. 9, pp. 2059–2072, 2021.

[17] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 763–780.

[18] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi,
A.-R. Sadeghi, T. Holz, B. De Sutter, and M. Franz, “It’s a TRaP:
Table randomization and protection against function-reuse attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 243–255.

[19] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan,
“Don’t mesh around: Side-Channel attacks and mitigations on mesh
interconnects,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 2857–2874.

[20] L.-A. Daniel, M. Bognar, J. Noorman, S. Bardin, T. Rezk, and
F. Piessens, “ProSpeCT: Provably secure speculation for the Constant-
Time policy,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 7161–7178.

[21] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over ASLR:
Attacking branch predictors to bypass ASLR,” in 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 2016, pp. 1–13.

[22] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Ponomarev,
“BranchScope: A new side-channel attack on directional branch predic-
tor,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 693–707, 2018.

[23] J. Fustos, F. Farshchi, and H. Yun, “SpectreGuard: An efficient data-
centric defense mechanism against Spectre attacks,” in Proceedings of
the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[24] M. Gallagher, L. Biernacki, S. Chen, Z. B. Aweke, S. F. Yitbarek, M. T.
Aga, A. Harris, Z. Xu, B. Kasikci, V. Bertacco et al., “Morpheus:
A vulnerability-tolerant secure architecture based on ensembles of
moving target defenses with churn,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 469–484.

[25] D. Gens, O. Arias, D. Sullivan, C. Liebchen, Y. Jin, and A.-R. Sadeghi,
“Lazarus: Practical side-channel resilient kernel-space randomization,”
in Research in Attacks, Intrusions, and Defenses: 20th International
Symposium, RAID 2017, Atlanta, GA, USA, September 18–20, 2017,
Proceedings. Springer, 2017, pp. 238–258.

[26] J. Gionta, W. Enck, and P. Larsen, “Preventing kernel code-reuse
attacks through disclosure resistant code diversification,” in 2016 IEEE
Conference on Communications and Network Security (CNS). IEEE,
2016, pp. 189–197.

15

[27] E. Göktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida, “Spec-
ulative probing: Hacking blind in the spectre era,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1871–1885.

[28] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with TLB attacks,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
955–972.

[29] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida, “ASLR on
the line: Practical cache attacks on the MMU.” in NDSS, vol. 17, 2017,
p. 26.

[30] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard,
“KASLR is dead: Long live KASLR,” in Engineering Secure Software
and Systems: 9th International Symposium, ESSoS 2017, Bonn, Ger-
many, July 3-5, 2017, Proceedings 9. Springer, 2017, pp. 161–176.

[31] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch side-
channel attacks: Bypassing SMAP and kernel ASLR,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 368–379.

[32] W. Hou, T. Garnier, and B. Gerst, “x86/pie: Make kernel image’s
virtual address flexible,” https://lore.kernel.org/lkml/cover.1682673542.
git.houwenlong.hwl@antgroup.com/, 2023.

[33] R. Hund, C. Willems, and T. Holz, “Practical timing side channel attacks
against kernel space ASLR,” in 2013 IEEE Symposium on Security and
Privacy. IEEE, 2013, pp. 191–205.

[34] Inc. Qualcomm Technologies, “Pointer authentication on ARMv8.3:
Design and analysis of the new software security instructions,”
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/
documents/pointer-auth-v7.pdf, 2017.

[35] C. Intel, “Intel® 64 and IA-32 architectures software developer’s manual
volume 3 (3a, 3b, 3c & 3d): System programming guide,” Denver,[2006],
2022.

[36] Jake Edge, “Kernel address space layout randomization,” https://lwn.net/
Articles/569635/, 2013.

[37] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout
randomization with Intel TSX,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 380–392.

[38] S. Jenkins, “Exploiting CVE-2022-42703 - bringing back the
stack attack,” https://googleprojectzero.blogspot.com/2022/12/
exploiting-CVE-2022-42703-bringing-back-the-stack-attack.html,
2022.

[39] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of
a Meltdown with leakage-free speculation,” in 2019 56th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[40] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[41] V. Kiriansky and C. Waldspurger, “Speculative buffer overflows: Attacks
and defenses,” arXiv preprint arXiv:1807.03757, 2018.

[42] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 40th
IEEE Symposium on Security and Privacy (S&P’19), 2019.

[43] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018.

[44] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, “SpecCFI: Mitigating Spectre attacks using CFI in-
formed speculation,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 39–53.

[45] J. Koschel, C. Giuffrida, H. Bos, and K. Razavi, “TagBleed: Breaking
KASLR on the isolated kernel address space using tagged TLBs,” in
2020 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2020, pp. 309–321.

[46] Kristen Carlson Accardi, “Finer grained kernel address space random-
ization,” https://lwn.net/Articles/811685/, 2020.

[47] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
557–574.

[48] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional spec-
ulation: An effective approach to safeguard out-of-order execution
against Spectre attacks,” in 2019 IEEE international symposium on high
performance computer architecture (HPCA). IEEE, 2019, pp. 264–276.

[49] M. Lipp, D. Gruss, and M. Schwarz, “AMD prefetch attacks through
power and time,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 643–660.

[50] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and D. Gruss,
“Take a way: Exploring the security implications of AMD’s cache
way predictors,” in Proceedings of the 15th ACM Asia Conference on
Computer and Communications Security, 2020, pp. 813–825.

[51] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[52] W. Liu, J. Ravichandran, and M. Yan, “EntryBleed: A universal KASLR
bypass against KPTI on Linux,” in Proceedings of the 12th International
Workshop on Hardware and Architectural Support for Security and
Privacy, 2023, pp. 10–18.

[53] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle
of transient Non-Observability,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1397–1414.

[54] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,
G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrill’on, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. F.
Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass,
B. Hanindhito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera,
M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul,
T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama,
T. Krishna, T. Marinelli, C. Menard, A. Mondelli, T. M"uck, O. Naji,
K. Nathella, H. Nguyen, N. Nikoleris, L. E. Olson, M. S. Orr, B. Pham,
P. Prieto, T. Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain,
B. Shingarov, M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini,
M. Upton, N. Vaish, I. Vougioukas, Z. Wang, N. Wehn, C. Weis,
D. A. Wood, H. Yoon, and ’Eder F. Zulian, “The gem5 simulator:
Version 20.0+,” CoRR, vol. abs/2007.03152, 2020. [Online]. Available:
https://arxiv.org/abs/2007.03152

[55] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-Guard:
Stopping address space leakage for code reuse attacks,” in Proceedings
of the 22nd ACM SIGSAC conference on computer and communications
security, 2015, pp. 280–291.

[56] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2018, pp. 2109–2122.

[57] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer Science & Business Media, 2008,
vol. 31.

[58] N. Mosier, H. Nemati, J. C. Mitchell, and C. Trippel, “Serberus:
Protecting cryptographic code from Spectres at compile-time,” in
2024 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, may 2024, pp.
51–51. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP54263.2024.00048

[59] R. Nikolaev, H. Nadeem, C. Stone, and B. Ravindran, “Adelie: con-
tinuous address space layout re-randomization for Linux drivers,” in
Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2022, pp.
483–498.

[60] PaX Team, “PaX address space layout randomization (ASLR).” http:
//pax.grsecurity.net/docs/aslr.txt, 2003.

[61] J. Ravichandran and M. Wang, “Lord of the io_urings,” https://css.csail.
mit.edu/6.5660/2023/projects/jravi-mi27950.pdf, Tech. Rep., 2022.

[62] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), vol. 15, no. 1, pp. 1–34,
2012.

[63] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An "undo" approach
to safe speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 73–86.

[64] C. Sakalis, M. Alipour, A. Ros, A. Jimborean, S. Kaxiras, and M. Sjä-
lander, “Ghost loads: What is the cost of invisible speculation?” in

16

Proceedings of the 16th ACM International Conference on Computing
Frontiers, 2019, pp. 153–163.

[65] C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Själander,
“Efficient invisible speculative execution through selective delay and
value prediction,” in Proceedings of the 46th International Symposium
on Computer Architecture, 2019, pp. 723–735.

[66] M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-Leak
Forwarding: Leaking data on Meltdown-resistant cpus (updated and
extended version),” arXiv preprint arXiv:1905.05725, 2019.

[67] M. Schwarz, M. Lipp, C. A. Canella, R. Schilling, F. Kargl, and
D. Gruss, “ConTExT: A generic approach for mitigating Spectre,” in
Network and Distributed System Security Symposium 2020, 2020.

[68] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
Spectre: Read arbitrary memory over network,” in Computer Security–
ESORICS 2019: 24th European Symposium on Research in Computer
Security, Luxembourg, September 23–27, 2019, Proceedings, Part I 24.
Springer, 2019, pp. 279–299.

[69] Siguza, “IOHIDeous,” https://blog.siguza.net/IOHIDeous/, 2017.
[70] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.

Fletcher, “MicroScope: enabling microarchitectural replay attacks,” in
Proceedings of the 46th International Symposium on Computer Archi-
tecture, 2019, pp. 318–331.

[71] S. Song, J. Zhang, and M. Yan, “Oreo: Protecting ASLR
against microarchitectural attacks (extended version),” 2024. [Online].
Available: https://arxiv.org/abs/2412.07135

[72] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in 2013 IEEE Symposium on Security and Privacy. IEEE,
2013, pp. 48–62.

[73] F. Vano-Garcia and H. Marco-Gisbert, “An info-leak resistant kernel ran-
domization for virtualized systems,” IEEE Access, vol. 8, pp. 161 612–
161 629, 2020.

[74] ——, “KASLR-MT: Kernel address space layout randomization for
multi-tenant cloud systems,” Journal of Parallel and Distributed Com-
puting, vol. 137, pp. 77–90, 2020.

[75] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power Side-Channel attacks into
remote timing attacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 679–697.

[76] D. Weber, A. Ibrahim, H. Nemati, M. Schwarz, and C. Rossow, “Osiris:
Automated discovery of microarchitectural side channels,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 1415–
1432.

[77] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“NDA: Preventing speculative execution attacks at their source,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 572–586.

[78] J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting decoder-
detectable mispredictions,” in MICRO Conference 2023, 2023.

[79] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Tor-
rellas, “InvisiSpec: Making speculative execution invisible in the cache
hierarchy,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2018, pp. 428–441.

[80] J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher, “Data oblivious ISA
extensions for side channel-resistant and high performance computing,”
Cryptology ePrint Archive, 2018.

[81] J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher, “Spec-
ulative data-oblivious execution: Mobilizing safe prediction for safe
and efficient speculative execution,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2020, pp. 707–720.

[82] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (STT): A comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954–968.

[83] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “SonicBOOM: The
3rd generation Berkeley Out-of-Order Machine,” May 2020.

[84] Z. N. Zhao, A. Morrison, C. W. Fletcher, and J. Torrellas, “Binoculars:
Contention-Based Side-Channel attacks exploiting the page walker,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp. 699–
716.

[85] Zirui Zhao, “LEBench-Sim: A Benchmark Suite for Large-Eddy Simu-
lation,” https://github.com/zzrcxb/LEBench-Sim, 2022.

APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The artifact for reproducing the results
in the paper is at https://doi.org/10.5281/zenodo.14261065.
The source code of our implementation and experiments is
available at https://github.com/CSAIL-Arch-Sec/Oreo.

2) Hardware dependencies: The artifact utilizes the gem5
simulator (v24.0) [9], [54] to emulate Linux and execute
benchmarks in full-system mode, requiring only CPU, mem-
ory, and disk resources. Each gem5 instance needs 1 core and
2GB memory. The artifact’s resources, including the source
files and a generated disk image, require 50GB of available
disk space. We estimate the runtime of each experiment in
this artifact on an Intel(R) Xeon(R) Gold 5220R CPU with
252GB memory.

3) Software dependencies: The artifact requires Vagrant
(v2.4) and VirtualBox (v7.0) to build a disk image for running
experiments in gem5 full-system mode. It also requires Docker
Engine (v24+) and Docker Compose (v1.29+) to run all the
experiments.

4) Benchmarks: Reproducing the performance evaluation
results requires SPEC 2017 benchmark [11] and LEBench
benchmark [85]. LEBench is included in the artifact source,
while SPEC 2017 is not included because of copyright issues.

B. Artifact Installation & Configuration

1) Pre-setup: In the artifact folder, run the following com-
mand to clone the git submodules:
$ git submodule update --init --recursive

Note that cpu2017-1.1.9.iso is the official image for SPEC
2017 benchmark, which is not released with the artifact since
it is not open-source. It should be placed in the artifact folder.
The file structure is as shown in Figure 12.

 artifact

 experiments # Sources files to build disk image

 gem5 # Oreo’s microarchitectural changes

 linux # Oreo’s kernel changes

cpu2017-1.1.9.iso # SPEC 2017 official image

Figure 12: Artifact file structure

2) Build: In folder artifact, set up and enter the docker
by running:
$ cd linux
$ docker-compose up -d
$ docker-compose exec x86_fs /bin/bash

In the docker’s shell, build Linux and gem5 by running:
$ cd /root/linux
$ python3 compile_scripts/compile.py --num-cores=80
$ cd /root/gem5
$ python3 scripts/compile.py --num-cores=80

Please replace 80 with an appropriate number of CPU cores
used for the build based on CPU and memory resources.

17

In the host’s shell and in folder artifact, run the following
commands to build the disk image, which takes about 1 hour.
$ tar -cvf linux.tar linux
$ cd experiments/disk-image
$ vagrant up
$ vagrant halt
$ vagrant global-status --prune
$ ls ~/VirtualBox\ VMs
$ # Find vm directory denoted as <vm-directory>
$ qemu-img convert -f vmdk -O raw ~/VirtualBox\

VMs/<vm-directory>/ubuntu-jammy-22.04-cloudimg.vmdk
experiments.img

↪→

↪→

The artifact folder is mounted at /root in the docker. In
the following document, we will refer to the path inside the
docker by default.

C. Experiment Workflow

For each experiment, we use gem5 to boot Linux under the
full system mode and run benchmarks stored in the generated
disk image /root/experiments/disk-image/experiments.
img. We provide scripts under the /root/gem5/scripts
directory to conveniently start experiments using different
setups (baseline and Oreo) and benchmarks (e.g., SPEC 2017,
LEBench, and ASLR attacks).

D. Major Claims

• (C1): Oreo introduces negligible overhead compared to
the insecure baseline, as demonstrated by experiments E2
and E3 in Figure 8, 9.

• (C2): In SPEC 2017 and LEBench, the ratio of mem-
ory accesses where Oreo applies its protection (i.e.,
the ratio of masked memory accesses) is high, which
indicates that the benchmarks are relevant to evaluating
the performance impacts of Oreo. This is demonstrated
by experiment E5.

• (C3): Oreo prevents the leakage of the ASLR secret offset
through paths 1 and 2 , whereas the insecure baseline
does not. This is demonstrated by experiment E4, as
shown in Figure 10, 11.

E. Evaluation

1) Experiment (E1): [Functional Test] [1 human-minute
+ 10 compute-minutes]: This experiment runs two user pro-
grams hello and hello_invalid, whose source code can be
found in /root/experiments/disk-image/experiments/
experiments/src. This experiment demonstrates that Oreo
allows valid programs (e.g., hello) to run successfully while
raising exceptions on invalid memory accesses at commit time
(e.g., hello_invalid).

[Preparation] Enter the docker and change the working
directory:
$ # Host, in folder artifact/linux
$ docker-compose exec x86_fs /bin/bash
$ # Docker
$ cd /root/gem5

We will use /root/gem5 as the default working directory for
running the following experiments and identifying the path to
output files.

[Execution] Running the following command, which takes
10 minutes:

$ python3 scripts/gen_checkpoint.py && python3
scripts/run_example.py↪→

[Results] hello is a valid program, so gem5 should
finish simulation without any exceptions. Check result/
restore_ko_111_0c0c00/hello_/board.pc.com_1.device
for its output. hello_invalid is a malicious program
that accesses an invalid address. In the directory
result/restore_ko_111_0c0c00/hello_invalid_, check
board.pc.com_1.device for its output; check stderr.log
for the gem5 exception message on committing invalid
memory accesses. The exception message can be located by
searching for “ASLR violation” in the log file.

2) Experiment (E2): [Performance Evaluation with SPEC
2017] This experiment evaluates Oreo’s performance against
the baseline using SPEC 2017 Intrate Benchmarks. In our
original setup, we warm up the system and microarchitecture
structures by executing 10 billion user-space instructions, and
then measure the performance of the next 1 billion user-space
instructions. This setup takes several days to finish. For the
artifact evaluation, we provide a scaled-down option to warm
up with 1 billion user instructions. Oreo introduces negligible
overhead compared to the baseline.

[Preparation] Same to E1
[Execution] Run the following command:

$ python3 scripts/run_spec.py --gen-cpt --begin-cpt=1
--num-cpt=1 --num-cores=80 --user-delta=32
--spec-inst-warmup-step=1

↪→

↪→

[Results] Run the following command to parse the result:
$ python3 scripts/parse_spec.py --parse-raw --begin-cpt=1

--num-cpt=1 --roi-idx=2 --expected-stats=3↪→

$ python3 scripts/parse_spec.py --begin-cpt=1 --num-cpt=1
--roi-idx=2 --expected-stats=3↪→

The CPI overhead introduced by Oreo is recorded in scripts/
spec_output/merge_input_mean_user_cpi_1_2.pdf. The
CPI overhead is expected to be negligible, as shown in
Figure 8. However, these benchmarks behave differently in
different regions of interest. Hence, the measured absolute CPI
might differ from the CPI in Figure 8 when using 1 billion
warmup instructions.

3) Experiment (E3): [Performance Evaluation] [1 human-
minute + 8 compute-hours]: This experiment evaluates Oreo’s
performance against the baseline using LEBench, which mea-
sures and reports the average latency of various system calls.
We ran the benchmark multiple times and used the aver-
age latency across all iterations as the final measurement.
As shown in Figure 7, Oreo introduces negligible average
overhead compared to the baseline. The observed variance
in latency across different runs is due to the dynamic, non-
deterministic scheduling of the Linux kernel, which explains
the performance gap between Oreo and the baseline in some
benchmarks.

[Preparation] Same to E1.
[Execution] We repeated the measurement 16 times to

minimize the impact of dynamic scheduling on latency mea-
surement. For artifact evaluation, we offer a scaled-down
option to repeat the measurement 8 times by running:
$ python3 scripts/run_perf.py --gen-cpt --num-cpt=8

--begin-cpt=0 --num-cores=80↪→

18

To modify the number of repetitions, please adjust the
--num-cpt option. This process takes 8 hours to complete.

[Results] Run the following commands to parse experiment
results and generate Figure 7:
$ python3 scripts/parse_perf.py --suffix-range=0,8 --plot

--parse↪→

The output files are stored in /root/gem5/scripts/plot.
Due to Linux’s dynamic scheduling, the overhead measure-
ments may vary from those shown in Figure 7; however, the
average overhead is expected to be negligible.

4) Experiment (E4): [Security Evaluation] [5 human-
minute + 10 compute-minutes]: This experiment consists of
three parts:

• The Prefetch Attack.
• Leakage path 1 : we use the speculative code region

attack as a representative example of the leakage path 1 .
We demonstrate that speculatively accessing both valid
and invalid addresses produces different microarchitec-
tural traces on the baseline, leading to the leakage of the
secret offset. In contrast, Oreo produces the same effects
regardless of the address validity, confirming that Oreo
effectively blocks the leakage path 1 .

• Leakage path 2 : we trigger a system call and record input
traces to various microarchitecture structures, which in-
dicates whether the system leaks secrets from the leakage
path 2 .

[Preparation] Same to E1.
[Execution] Run the following command to run the three

parts, which takes about 10 minutes.
$ python3 scripts/gen_checkpoint.py && python3

scripts/run_sec.py↪→

[Results]
• The prefetch attack: scripts/parse_prefetch.py is

used to generate Figure 8 at scripts/plot/prefetch_
plot.pdf, which indicates that Oreo prevents the
prefetch attack from leaking secrets through the timing
side channel.

• Leakage path 1 : For the baseline, the microarchitecture
traces of speculatively accessing valid and
invalid addresses are at result/restore_ko_
000_0c0c00/blindside_1_0c_/trace.out.gz
and result/restore_ko_000_0c0c00/blindside_
1_0d_/trace.out.gz. For Oreo, the traces are
result/restore_ko_111_0c0c00/blindside_1_
0c_/trace.out.gz and result/restore_ko_111_
0c0c00/blindside_1_0d_/trace.out.gz. Traces of
the baseline are not identical, while traces of Oreo
are identical, which verifies that Oreo blocks the first
leakage path. scripts/parse_trace.py is used to
extract the condensed trace demonstrated in Figure 9 in
the directory scripts/plot/trace and compare them.

• Leakage path 2 : check iTLBWalker and dTLBWalker
traces for both setups (generated by scripts/parse_
trace.py), which prints the virtual addresses that need
to be translated and physical addresses accessed during
page table walk. On the baseline, secret dependent phys-
ical addresses are used for page table walk, while on

Oreo, secret independent addresses are used. Hence, Oreo
blocks leakage path 2 .

5) Experiment (E5): This experiment reports the ratio of
memory accesses where Oreo applies its protection (i.e., the
masked ratio). This is used to evaluate whether the benchmark
is relevant to measure the performance impact of Oreo.

[Results] The masked ratio of SPEC 2017 benchmark
can be found in the last column of scripts/spec_output/
merge_input_oreo_user_cpi_1_2.csv. Run the following
command, and the masked ratio of LEBench can be found
in the last column of scripts/lebench_output/test_mask_
ratio.csv.
$ python3 scripts/parse_perf_stats.py --begin-cpt=0 --num-cpt=8

APPENDIX B
ATTACK SUMMARY

To complement the attack analysis in Section III, we provide
a detailed enumeration of existing microarchitectural-attack-
assisted ASLR bypasses, including the leakage paths they
take and the utilized side channels in Table I. Blindside [27]
involves several attacks including Code Region Probing and
Spectre Probing. We demonstrated that Oreo prevents Code
Region Probing in our security evaluation (Section VII-C).
Spectre Probing is mitigated by existing Spectre mitiga-
tions [5], [6], [8], [15], [20], [23], [39], [40], [44], [48], [53],
[58], [63]–[65], [67], [77], [79]–[82]. The Prefetch+Power
attack in [49] utilizes power side channels, which are not
included in our threat model. Oreo successfully mitigates all
other attacks in Table I.

19

Table I: Summary of microarchitectural-attack-assisted ASLR bypasses. The numbers in the second column refer to the three
leakage paths in Figure 3.

Leakage
Path Attacks Side Channels

1

Code Region Probing [27] ICache Prime+Probe

Double Page Fault [33]
Page fault latency to check TLB states

DrK [37]

Osiris [76] Cache side channel to monitor pipeline squashes caused by page fault

EchoLoad [13] Cache side channel to monitor whether speculation is stalled

Data Bounce [66]
Cache side channel to monitor store-to-load forwarding behaviors

Fallout [12]

AMD Prefetch+Time [49] Prefetch latency to monitor page table walks

AMD Prefetch+Power [49] Prefetch power consumption to monitor page table walks

2

Gruss et al. [31]
Prefetch latency to check TLB states

EntryBleed [52]

TLBleed [28]
TLB Prime+Probe

TagBleed [45]

Jump Over ASLR [21]
BTB Prime+Probe

Phantom [78]

AnC [29]
Cache Prime+Probe to monitor page table walks

Binoculars [84]

Take A Way [50] DCache Collide+Probe

3 Spectre Probing [27] ICache or DCache Prime+Probe

20

