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Abstract—Matter is emerging as an IoT industry–unifying
standard, aiming to enhance the interoperability among diverse
smart home products, enabling them to work securely and
seamlessly together. With many popular IoT vendors increasingly
supporting Matter in consumer IoT products, we perform a
systematic study to investigate how and whether vendors can
integrate Matter securely into IoT systems and how well Matter
as a standard supports vendors’ secure integration.

By analyzing Matter development model in the wild, we
reveal a new kind of design flaw in user-facing Matter control
capabilities and interfaces, called UMCCI flaws, which are
exploitable vulnerabilities in the design space and seriously
jeopardize necessary control and surveillance capabilities of
Matter-enabled devices for IoT users. Therefore we built
an automatic tool called UMCCI Checker, enhanced by the
large-language model in UI analysis, which enables automatically
detecting UMCCI flaws without relying on real IoT devices. Our
tool assisted us with studying and performing proof-of-concept
attacks on 11 real Matter devices of 8 popular vendors to confirm
that the UMCCI flaws are practical and common. We reported
UMCCI flaws to related vendors, which have been acknowledged
by CSA, Apple, Tuya, Aqara, etc. To help CSA and vendors
better understand and avoid security flaws in developing and
integrating IoT standards like Matter, we identify two categories
of root causes and propose immediate fix recommendations.

I. INTRODUCTION

The development of Matter, initially known as Project
CHIP (Connected Home over IP), was launched by the
Connectivity Standards Alliance (CSA), formerly known as
the Zigbee Alliance. The primary objective of the Matter
project is to develop a universal, open-source application-
layer connectivity standard that can overcome the prevalent
fragmentation and heterogeneity in the smart home industry.

¶The first two authors Haoqiang Wang and Yiwei Fang contributed equally
to this work and they were intern students at Indiana University Bloomington
at the time the work was conducted.

∥Corresponding author: Luyi Xing, Qixu Liu.

Emerging as an industry–unifying standard, Matter aims to en-
hance the interoperability among diverse smart home products,
enabling them to work securely and seamlessly together. Since
late 2022 [4], major IoT vendors (Apple, Google, Amazon,
SmartThings, Tuya, etc.) have extensively deployed support
for Matter in their IoT devices, IoT mobile apps (e.g., Google
Home, SmartThings, Apple Home, Amazon Alexa), and IoT
development frameworks (e.g., HomeKit [10], Tuya SDK [14],
etc.). With this trend, the number of users using the Matter
technology is growing rapidly worldwide.

Matter open-source development and vendor integration.
At a high-level, Matter is known to be an open-source standard
with public specifications. While the Matter standard internally
includes protocol specification for multiple IoT functionalities,
including device commissioning, user management, local ac-
cess control, etc., we refer to them collectively as the Matter
protocol. The Matter standard and protocol comes with an
open-source implementation, as a project named “connect-
edhomeip” [31] maintained on GitHub by its open-source
community coordinated by CSA. The open-source developers
include those from industry members of CSA [18] such
as Apple, Google, and Comcast and individual developers
of interest. They contribute to the open-source layer of a
Matter-enabled product. Moreover, individual vendors develop
specific applications and features on top of the open-source
layer of Matter (see the Matter development model, § II-B).
With popular IoT vendors increasingly supporting Matter in
consumer IoT products, we ask three key research questions
to guide our research. (RQ1:) How do real-world IoT vendors
integrate Matter to existing IoT devices and applications?
(RQ2:) Can vendors securely integrate Matter to IoT devices
and applications, and what is the error space that we should
be aware of? (RQ3:) How well does Matter as a standard
define and support IoT vendors’ secure integration?

Revealing security risks in vendors’ Matter integration.
By analyzing the Matter development model in the wild
which includes three layers: the Matter open-source layer,
and the vendor’s local and cloud layers (Figure 2 in § II-B),
we uncover the security responsibilities of multiple parties
in developing Matter and integrating Matter into real IoT
devices, including the open-source community and the ven-
dors (§ III). Specifically, the open-source community [31]
provides implementation for (1) device firmware and (2) the

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240266
www.ndss-symposium.org



Matter protocol to control devices. In particular, the latter is
implemented as an SDK called the CHIP SDK [30], which
implements a range of primitive capabilities to communicate
with and control the Matter-enabled IoT devices (called Matter
devices). On top of the Matter open-source implementation,
vendors develop Matter controllers (usually proprietary), by
integrating the CHIP SDK and using the SDK APIs to access
and control Matter devices. Matter controller is a logical
concept in Matter, being transparent to users, and they are
commonly implemented either as part of a mobile app (e.g.,
Tuya Smart [15] and uHome+ [16] app) or inside an IoT
gateway hub especially in smart speakers (Figure 2), e.g.,
Apple HomePod [10], Google Nest Mini [7], Amazon Echo
Dot [6]. In the IoT mobile app or hub, vendors additionally
develop user-facing Matter control capabilities and interfaces
(UMCCI), as graphical user interface (GUI) or voice interface,
for users to view, use, and control Matter devices through
Matter controllers (§ II-A).

We find that the design and practice of UMCCI are
up to individual IoT applications, devices, and Matter
functionalities that the vendors support. Although the Matter
standard focused a lot on standard functionalities, low-level
data model, etc., particularly helpful for the open-source
layer development of Matter (the firmware and CHIP SDK,
Figure 2), the standard lacks guidance and security design
to help vendors securely integrate Matter. In particular,
how to design and develop UMCCI providing secure and
sufficient Matter control capabilities for users, is up to
individual vendors, which can easily go wrong and comes
with a range of serious design flaws violating three security
requirements (P1-P3) we summarized for vendors to integrate
an application-layer IoT standard like Matter (§ III).

For example, we expect that the vendors’ IoT app should
show users all Matter controllers that have control (i.e., access
rights) over their IoT devices — unawareness of unauthorized
control poses serious security threats to legitimate users [48].1
However, we find that the apps of Apple Home, SmartThings,
Google Home, Tuya, and others either show a partial list of
controllers based on the vendors’ problematic interpretation
of Matter UMCCI, or show unverified controller information
(e.g., controller vendors or controller names) that can be faked
by malicious IoT users (such as prior employees, guests, and
delegatee users [39], [40], [43], [58], [62]) to hide from device-
owners their unauthorized control over Matter devices. Those
design flaws in the wild, termed UMCCI flaws in our study,
seriously endanger Matter users’ control and awareness capa-
bilities for Matter devices. By studying Matter integration of
11 popular IoT devices from 8 vendors, we report six types of
novel UMCCI flaws (Table II), which enable practical exploits
that allow unauthorized users to control Matter devices through
covert channels or hidden Matter controllers, or even allow
unauthorized users to arbitrarily downgrade or remove device
owners’ privileges. We performed proof-of-concept attacks on
11 real Matter devices of 8 vendors to confirm that the UMCCI
flaws are real and practical (see attack demo online [13]).

Automatic detection of UMCCI flaws. Our Matter security
analysis is assisted by a novel automatic tool called UMCCI
Checker (§ VI), that is based on large-language model (LLM)

1The term “app” in this paper always refers to the IoT vendor’s mobile app.

assisted automatic UI analysis and is capable of detecting
UMCCI flaws from the IoT vendors’ apps. UMCCI Checker
automatically detects UMCCI flaws without relying on pur-
chasing and configuring real IoT devices, which is made
possible by a virtual Matter device we developed armed
with UMCCI attack vectors that can automatically pair and
cooperate universally with different vendors’ Matter controllers
(§ VI-A). The automatic pairing of our virtual Matter device
with vendor apps featuring diverse GUI workflows is enabled
by our LLM-enhanced UI automation technique as part of
UMCCI Checker. Our evaluation shows that UMCCI Checker
is highly effective, efficient and scalable. We reported the
UMCCI flaws in Table II to related vendors and all UMCCI
flaws we reported were acknowledged by CSA, which main-
tains Matter standards and is seeking modifications to Matter
specifications to regulate vendors’ UMCCI implementations
and help mitigate the problems. Apple and Aqara told us they
would fix these flaws promptly by providing view and control
capabilities meeting our security requirements P1-P3. Tuya has
already fixed the problem based on our suggestion.

Towards defense against UMCCI flaws. To help CSA and
vendors better understand and avoid security flaws in develop-
ing and integrating IoT standards like Matter, we systematize
the UMCCI flaws in two categories based on a responsibility
model that determines whether the flaw is caused by vendors
(§ IV) or due to flaws in the Matter standard (§ V). In the two
respective categories, we show that UMCCI flaws come with
two root causes: (1) vendors’ ad-hoc, insecure practices in de-
veloping user-facing Matter control capabilities, (2) inadequate
security design in the underlying Matter protocol for ensuring
user-facing Matter control information (e.g., controllers, fab-
rics, ACL) is trustworthy and the control is adequate (e.g.,
revoking control). Our root cause analysis shows that Matter
aims to provide uniform, cross-vendor interoperable control for
end-users by defining rich application-layer semantics and data
models (e.g., fabrics, controllers, Vendor IDs/Labels), unlike
protocols like ZigBee/Bluetooth [56], which focus more on
networking. UMCCI flaws show that complex application-level
semantics give vendors room for logic errors, introducing new
attack vectors that are hard to prevent. Moreover, UMCCI
flaws reveal complex security and development responsibilities
between vendors and the Matter standard. Our findings call for
immediate and thorough security analysis of the Matter proto-
col, the Matter open-source implementation (CHIP SDK), and
vendor implementation (atop CHIP SDK). We discuss imme-
diate changes that should be made to the Matter standards and
vendor practices to fix UMCCI flaws in § VI and Appendix B.

Contributions. We summarize our contributions as follows:

• New understanding and new attacks. We perform a novel,
systematic security analysis for Matter’s development model
to understand (1) how vendors integrate Matter standard to
IoT devices and applications; (2) the error space of vendors’
Matter integration; (3) novel root causes of security risks in
vendors’ integration of Matter. Our study reveals serious design
flaws unknown before, termed UMCCI flaws, that seriously
jeopardize necessary control and surveillance capabilities of
Matter devices for IoT users. We discovered UMCCI flaws
from 8 top-of-the-line IoT vendors that integrated the Matter
standard, performed PoC attacks with 11 real devices, show-
ing that UMCCI attacks are realistic and UMCCI flaws are
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common. All the UMCCI flaws are acknowledged by CSA.

• New detection and mitigation techniques. We have devel-
oped novel techniques for pinpointing UMCCI flaws from
real vendors without relying on purchasing and physically
configuring real devices, mitigating a prior scalability problem
thwarting practical security analysis across IoT vendors. Based
on our findings, we provide recommendations for vendors and
CSA respectively to fix UMCCI flaws. More importantly, we
identify two categories of root causes to help CSA and vendors
better avoid UMCCI flaws and related security risks in future
development and integration of IoT standard.

II. BACKGROUND

A. Basic Concepts in the Matter Protocol

While the Matter standard internally includes protocol
specification for multiple IoT functionalities, including device
commissioning, user management, local access control, etc.,
we refer to them collectively as the Matter protocol. In this
study, we focus on the Matter protocol at the application layer,
without emphasis on the networking layers that Matter is built
on, including the Internet Protocol (IP), Thread and Wi-Fi
network transports. In the following, we elaborate on key, basic
concepts in the Matter protocol. The detailed specification can
also be found at the Matter Handbook [5] and Matter
Specification version 1.3 [34].

Fabric 1 - Apple Home

Fabric 2 – Google Home
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Fig. 2: Matter Development Model

• Cluster: A cluster represents a specific set of functionalities
or attributes maintained inside Matter devices. For example,
the cluster named “On/Off” can be used in a light bulb, and
setting the cluster value as either “on” or “off” effectively
toggles switch of the bulb.

• Node: A Matter node represents an addressable resource,
each possessing a unique address within the same Matter
network. For instance, a Matter-supported plug or an app on
a mobile phone acting as a Matter controller, both constitute
Matter nodes, each with its unique Node ID.

• Fabric: Fabric refers to a collection of Matter devices and
controllers, which form a virtual network of Matter nodes.
A node can simultaneously join multiple fabrics. Each fabric
contains multiple Matter attributes such as a Vendor ID, Label,
and others, designated by a Matter controller (see below) that
creates the fabric by pairing with the device through the Matter
pairing code (Figure 1). Devices within a fabric share the same
Certificate Authority (CA) top-level certificate and a unique
64-bit identifier named Fabric ID. Within a fabric, each device
node possesses a unique NOC certificate (see below).

• Controller: A Matter controller is an entity (i.e., a Matter
node) that can control Matter devices paired with it. Matter
controller functionality can be integrated into hardware devices
such as IoT hubs or mobile apps. Multiple Matter controllers

can exist within a fabric to offer redundancy and convenient
control options for users.

• Matter Certificates: The Matter protocol uses three types
of certificates to authenticate and authorize nodes, concep-
tually administrators, low-privilege users, and devices. Each
fabric has a self-signed Root Certificate Authority Certificate
(RCAC). Within the fabric, Matter devices are identified by a
Node Operational Credential (NOC) or an optional Intermedi-
ate Certificate Authority Certificate (ICAC). The ICAC, signed
by the RCAC, can issue the NOC. If there is no ICAC, the
NOC is signed directly by the RCAC.

• Fabric Administrator: Fabric administrators are usually
Matter controllers that possess the ICAC or RCAC of a fabric,
enabling them to add devices to the fabric as new Matter nodes
by issuing NOCs, as well as remove devices from the fabric.

• On-Device in-Fabric Access Control List (ACL): Each Matter
device has an ACL cluster that maintains an ACL for each
fabric of the device, recording the privileges of other Matter
nodes in the fabric to perform operations on the device. Based
on the ACL, operation requests from unauthorized nodes are
denied by the device. Privileges, ranked from low to high, in-
clude View, ProxyView, Operate, Manage, and Administrator,
corresponding to level values 1 through 5, respectively.

B. Matter Development Model

At a very high-level, Matter is known to be an open-source
standard with public protocol specifications and open-source
implementation, as a project namely ”connectedhomeip” [31]
maintained on GitHub by its open-source community coor-
dinated by CSA. Based on CSA and public information in
the commits on GitHub, the open-source developers include
those from Apple, Google, and other companies from IoT
industry [18]. They contribute to the open-source layer of a
Matter-enabled product and then individual vendors develop
specific applications and features on top of the open-source
layer of Matter (detailed below).

For an end-user facing IoT product supporting Matter, we
decompose Matter implementation model into three layers:

• L1: The Matter open-source layer. By inspecting the Matter
project on GitHub, the open-source implementation of Matter
(L1) includes (1) device-side firmware for a range of IoT
device types (e.g., smart plug, smart light) across multiple
platforms such as ESP32 and ARM; (2) implementation of
Matter controller protocol in the form of an SDK called the
CHIP SDK [30]. The CHIP SDK implemented a range of
primitive capabilities to communicate with and control the
Matter device — Matter devices are any IoT devices whose
firmware supports communication with Matter controllers
through the Matter protocol. The CHIP SDK exposes the prim-
itive capabilities through Application Programming Interfaces
(APIs) illustrated in Appendix Table IV. These APIs are used
by Matter controllers implemented by individual vendors to
control Matter devices (see below). For example, the API
pairing code with a secret pairing code as an argument can
be used by Matter controllers to pair with the device; the API
accesscontrol write acl can be used by Matter con-
trollers (that is paired with the device and authorized) to update
the access control list (ACL) maintained in Matter devices.
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• L2: Vendors’ Matter application layer (local). At L2, IoT
vendors develop a few key components under the Matter
context: (1) Matter controller (MC): The vendors’ Matter
controllers integrate the CHIP SDK and use the SDK APIs
to bind with and control IoT devices, leveraging the primitive
capabilities implemented by the CHIP SDK. Matter controllers
are commonly implemented either as part of an IoT mobile
app (e.g., Apple Home [10] and Google Home app [7]) or
inside an IoT gateway hub (e.g., Apple HomePod, Google Nest
Mini, Amazon Echo Dot [6]). (2) User-facing Matter control
capabilities and interfaces (UMCCI): UMCCI is usually im-
plemented in mobile apps for users to view, use, and control
Matter devices through Matter controllers. Conceptually, Mat-
ter controllers are transparent to users. The Matter open-source
project additionally comes with a command-line tool called
CHIP Tool, which integrated the CHIP SDK and can be used
by developers as a Matter controller to test connection and
control with Matter devices.

• L3: Vendors’ cloud layer (remote). At L3, although Matter
is designed for local-control (§ V), by studying 8 IoT vendors,
we notice that vendors tend to come with their IoT backend
(cloud) service for remote or centralized user and device
management. For example, when the Matter controller is in an
IoT gateway device like Apple HomePod, Apple users (using
the Apple Home app) can remotely send IoT commands to
iCloud, which performs authorization. If the authorization is
successful, the cloud will send the commands to the Matter
controller local to the device. After that, the controller will
go with the Matter protocol to operate the device. Such a
remote access paradigm is a combination of Matter and the
prior cloud-based IoT access [39], which is emergent along
with wide adoption of Matter.

III. SYSTEMATIC SECURITY ANALYSIS FOR MATTER
DEVELOPMENT MODEL

Security risks in vendors’ Matter integration. By studying
Matter integration of 11 popular IoT devices from 8 vendors,
we notice that although the CHIP SDK offers a set of
standard APIs and primitive control capabilities under the
Matter standard, how individual vendors leverage those
APIs to design user-facing Matter control capabilities and
interfaces (UMCCI) are different, up to individual vendors’
interpretation of the Matter standard and the functionalities
that individual vendors aim to offer.

Systematic security analysis for UMCCI flaws. To systemat-
ically analyze UMCCI flaws, denoting absence or mistakes in
offering user-facing Matter control capabilities by vendors, we
summarize security requirements and responsibilities expected
from vendors in Matter integration. Based on the three-layer
Matter development model, UMCCI flaws are user-facing
aspects in the Matter design space and primarily concentrate on
vendors’ L2 development (Figure 2). Specifically, we propose
the following security requirements (P1 to P3 below) in ven-
dors’ L2 development and analyze whether they are violated
in vendors’ user-facing IoT apps and controllers. We note
that even issues of user-facing control capabilities stemming
from L1 (Matter open-source implementation) and L3 (vendor
cloud) (with examples in § IV-B) can be identified from ana-
lyzing non-fulfilled security requirements at L2 development,
presenting a novel user-centric security analysis in our study.

• View access-control information (P1): provide legitimate
users with capabilities to view or query Matter access-control
information, including all Matter controllers of the IoT
devices, all Matter nodes (e.g., Matter devices, controllers)
under a Matter fabric, and Matter ACL information maintained
in Matter devices.

• Access-control information trustworthiness (P2). The
access control information shown to users should be true and
trustworthy.

• Update access-control information (P3): provide capabilities
for legitimate users to establish or revoke access-control for
Matter devices.

For systematic analysis, we assessed whether vendors’
Matter products violate each security requirement, assisted by
UMCCI Checker in § VI: for P1-P2, we examine app UI to
find whether access-control information is available and true
given our attacks; for P3, we examine if the access-control
capability (i.e., Matter binding and revoking) provided by real
vendors is implemented and effective. A violation of the above
security requirements indicates a UMCCI flaw.

In the following sections, we report our security analysis
results, i.e., 6 types of UMCCI flaws we find in violation of the
above security requirements by popular vendors. We categorize
the UMCCI flaws based on whether they are mainly caused
by the vendors in adopting Matter (§ IV) or the flaws are
due to design weaknesses deep in the Matter standard itself
potentially impacting all vendors (§ V).

Notably, in analyzing the vendors’ Matter design and
development, we have deployed 11 different Matter devices
that work with the vendors’ apps and controllers (Table II
and Table III in Appendix). Based of Matter’s interoperability
nature, a vendor’s Matter device usually works with other
vendors’ controllers (otherwise, it can be considered as a
functionality bug, which sometimes happens but is out of
our current research scope). In our experiments to verify the
UMCCI flaws below, we extensively used a consumer Matter
device (the SM-PW703 smart plug from Xenon, CSA Vendor
ID 0x1481) which we referred to as device X . For each
UMCCI, we confirmed the issues also using other Matter
devices (Table III). We release all PoC videos and supporting
materials on our website [13].

Threat Model. We consider the IoT infrastructure and systems
to be benign (hardware and firmware in the devices, vendors’
software, the cloud, networks, etc.). The adversary has access
to public information from the Matter open-source project,
including the Matter standard and protocol specification and
open-source implementation. He can open user accounts with
IoT vendors and can analyze network traffic between the
IoT cloud, Matter-enabled IoT devices, and the vendor app
under his control. He cannot eavesdrop on or interfere with
the communication of other users’ devices and apps. We
also consider real-world access-control delegation and device-
sharing scenarios (e.g., Airbnb/offices): the adversary (e.g.,
prior employees, guests or tenants — delegatee users) can have
temporary access to Matter devices and their access rights are
subject to revocation by device owners or administrators.

IV. ERROR SPACE IN VENDOR DESIGN

4



This section reports three types of UMCCI flaws due to
vendor mistakes (§ IV-A to § IV-C). The findings bring to
light a key security challenge for IoT vendors to integrate the
Matter protocol. That is, vendors generally failed to design and
develop adequate security awareness and control capabilities
in their user-facing Matter-compatible apps, especially when
the user-facing security capabilities are not defined and stan-
dardized by the Matter protocol. Specifically, even most high-
profile vendors such as Apple, Google, SmartThings failed to
ensure that the Matter protocol’s key semantic elements and
operational states related to awareness, integrity and functions
of access control should be identified and provided to users.

A. Flaw Type 1: Concealment of Matter Fabrics

Hidden Matter fabrics in Apple Home. Based on design
of the Matter protocol, once users pair a Matter device X
with both Apple Home and another controller such as CHIP
Tool (through Matter pairing code), X exists in two separate
Matter fabrics. Two controllers representing the two fabrics
can be viewed on the “connected services” page in Apple
Home (Figure 3), with each controller identified by Matter
parameters such as Vendor ID and Label value. In Figure
3, “Matter Test” is the vendor name of CHIP Tool, based
on an Matter-official mapping from Vendor ID to vendor
name [9], [34]; “My Home” is the Matter Label value used by
Apple Home controller. However, when we use the CHIP Tool
controller to issue Matter’s operationalcredentials
read fabric command to query X’s fabric list, we find that
X is actually in three fabrics, identified by Vendor ID 4937 for
Apple Home, 65521 for CHIP Tool, and an additional one 4996
for Apple Keychain (Figure 4). The last one is hidden by Apple
Home to users. In our research, once we change the Vendor
ID of the CHIP Tool controller to 4996 (either before or after
pairing), as an attempt to masquerade as Apple Keychain, we
find that the CHIP Tool is hidden in the “connected services”
page of Apple Home. This reflects that Apple Home’s logic for
hiding the Apple Keychain fabric relies on whether the Vendor
ID equals 4996, which is the Vendor ID for Apple Keychain
officially assigned by Matter [9].

Fig. 3: Connected Controllers for Device X in Apple Home

Such a “hiding fabric” design is likely for reducing con-
fusion to normal users since Apple Keychain is a concept
internal to Apple Home and HomeKit. On iOS, when any
vendor’s IoT app establishes pairing as a controller with a
Matter device, required by Apple HomeKit’s developer pol-
icy [11], [12], the vendor app must create a separate fabric
for Keychain and related Matter credential (by calling the
CHIP SDK API Operationalcredentials) and store
the credential to iCloud keychain database by calling HomeKit
API Home.addAndSetupAccessories() [2], [3], [22].

Behind the scene, Apple Home on iOS can leverage the
Keychain fabric credential, acting as an independent Matter
controller to the device, and use the Matter command addnoc
to create the Apple Home fabric generating related credentials.
From an end-user’s perspective, even if she only pairs with the
device using a third-party vendor app, she can alternatively use
the Apple Home app to control the device as if it is already
paired using Apple Home. This is done by simply clicking an
icon button related to this device appearing in the Apple Home
app (Appendix Figure 11) and correspondingly the Keychain
fabric will create the Apple Home fabric. In such a “seamless”
process designed by Apple, the Keychain fabric is more like a
bridge, while the actual operation of the device relies on Apple
Home and the vendor app’s fabrics and controllers. Further,
the Keychain fabric’s credential (stored in iCloud database) is
accessible to other Apple devices of the user and, thus, the user
can use the Apple Home app on other devices to easily estab-
lish a Matter controller for the device without pairing again.

Hidden fabric attack. Such a vendor-level design by Apple is
aimed at consumer usability, but it brings in practical security
risks found in our study. Specifically, a malicious delegatee or
guest user, once invited for at least temporary use of the Matter
device (through a Matter pairing code), can exploit the hidden
fabrics. Specifically, he can use a controller like CHIP Tool that
is configured to bear the same Vendor ID as Apple Keychain.
Such a fabric and controller are hidden in the owner’s Apple
Home app, and even when the owner removes the user (by
removing any of his controllers shown in Apple Home), the
hidden controller is unknown and invisible to the owner (see
PoC exploit below).

Fabrics: 3 entries
[1]: { [2]: { [3]: {
RootPublicKey: ### RootPublicKey: ### RootPublicKey:###
VendorID: 4937 VendorID: 4996 VendorID: 65521
FabricID: 3516426054 FabricID: 661177271 FabricID: 1
NodeID: 3650752681 NodeID: 3823095863 NodeID: 100
Label: My Home Label: Label:
FabricIndex: 63 FabricIndex: 64 FabricIndex: 62
} } }

Fig. 4: Listing Fabrics for Device X Using CHIP Tool

PoC exploit. A Matter device owner (victim) uses the Apple
Home app to share the device with a guest, who can be
malicious. To this end, the owner generates a Matter pairing
code in Apple Home (Appendix Figure 10). The attacker
initially pairs with the owner’s device using a regular app
that has implemented a Matter controller (such as the Smart
Life app of Tuya in our experiment). Afterwards, the attacker
shares the device with his CHIP Tool, which also acts as a
Matter controller paired with the device. By configuring the
Vendor ID 4996 in his CHIP Tool through the CHIP SDK API
commissioner-vendorid [Vendor_ID], the same as
Apple Keychain during the pairing process, the attacker’s
CHIP Tool is invisible in the owner’s Apple Home app,
effectively establishing a covert control channel. In Apple’s
Home app, the owner can remove the guest user by removing
his Matter controller of Smart Life in the app UI. Even if the
owner removes the guest user, the attacker’s CHIP Tool will
still retain full control privileges.

Stealthiness discussion. In real scenarios such as Airbnb and
hotels, after the guest has checked out and the owner has
removed him using the Apple Home app, the guest’s CHIP

5



Tool remains completely invisible to the owner in Apple Home
and has full Matter control over the device.

Matter control restoring attack. We find that the design
of hidden Keychain fabric even enables non-technical savvy
Apple users to easily attack Matter devices, with serious
security and privacy implications to Matter device owners. As
mentioned earlier, Apple Home, behind the scene, automati-
cally leverages the hidden Keychain fabric as a controller to
create the Apple Home fabric, such that the Home app is able
to control the device without going through a Matter pairing
process. Consider the logic process and scenario as follows. A
device owner, as an Apple Home user, shares the device with
a delegatee or guest user (e.g., Airbnb guest, employee) by
sharing a Matter pairing code. The guest uses the Apple Home
app to establish a Matter controller and use the device. Like
any vendor app, the guest’s Apple Home app silently creates
a Keychain fabric, which, however, is hidden on the owner’s
Apple Home app. The natural way for the owner to revoke
and remove the guest user is to go to “connected service”
page of Apple Home app and remove the guest’s fabric. Once
this is done, the guest user’s Keychain fabric is still effective,
retaining full Matter control over the device, which is unknown
to the owner based on Apple Home UMCCI.

PoC exploit. To easily exploit the leftover Keychain fabric, the
guest user simply uses his Apple Home app, and clicks the icon
button related to the device of the owner (Appendix Figure 11).
Apple Home will re-recreate the Apple Home fabric using the
Keychain fabric (see above), allowing the guest user to perform
arbitrary Matter operations towards the device using the Apple
Home app. Such a capability of the guest user is unknown to
the owner and he can exploit it at any appropriate time. The
consequence depends on the types of the devices, such as door
locks that may incur serious security and privacy implications.

Similar “hidden fabric” flaws in Samsung SmartThings. A
similar flaw was found by our UMCCI Checker when testing
the Matter functionality of Samsung SmartThings. Unlike the
flaw in Apple Home, the SmartThings app did not add an
additional fabric but hid its own. This violates the security
requirement P1 proposed in § III. Notably, the title of the
page for querying connected services in the SmartThings app is
“Share with other services”, suggesting that the original intent
of SmartThings’ UMCCI design might have been to display
fabrics other than SmartThings to the user.

(a) When CHIP Tool with fabric
label values “No name fff1”

(b) When CHIP Tool with special
label value “XsmartthingsX”

Fig. 5: Non-Display of SmartThings’ Elements

We paired Matter device X separately with the Smart-
Things app and CHIP Tool. Subsequent queries of connected

services, i.e., fabric information, using these two Matter con-
trollers revealed that in the SmartThings app, only the fabric
information of CHIP Tool was displayed, not the SmartThings
app’s own fabric (see Figure 5a). From CHIP Tool, the Vendor
ID of the SmartThings fabric was seen as 4362, with the Label
value being “SmartThings Hub XXXX” (where XXXX varies
with the device and Samsung account).

We found that SmartThings obfuscated itself based on the
controller’s Label value and not Vendor ID, unlike Apple.
Any fabric whose Label value includes the string “smart-
things”, case-insensitively matching the regular expression
/smartthings/i, would be hidden in the SmartThings
app’s connected services list (see Figure 5b). This indicates
that SmartThings uses flawed logic dependent on Label values
to determine if a fabric is its own, creating a security vul-
nerability. Therefore, a guest acting as a malicious attacker
could exploit this flaw in SmartThings to achieve a hidden
fabric attack similar to those against Apple Home and Apple
Keychain, namely establishing a covert control channel for the
device without the owner’s knowledge.

PoC exploit. Like the PoC with Apple Home above, a Matter
device owner using SmartThings app shares the device pairing
code with a delegatee user (e.g., a malicious guest). The
guest can initially pair with the device using a normal app
with a Matter controller (e.g., Smart Life in our experiment)
and then share the device with his CHIP Tool that uses
the crafted Label value smartthings. To configure La-
bel value of CHIP Tool, the attacker uses CHIP SDK API
operationalcredentials update-fabric-label
smartthings (Appendix Table IV). The guest’s CHIP Tool
fabric is invisible in the SmartThings app, effectively estab-
lishing a covert control channel within the Matter protocol.

Stealthiness discussion. In real scenarios like Airbnb, this flaw
allows the malicious guest’s CHIP Tool to become invisible to
the owner in the SmartThings app. Hence, even after the guest
leaves, the owner can remove the guest’s normal controller, but
cannot identify or remove this hidden CHIP Tool controller in
the SmartThings UMCCI, allowing the guest to retain covert
control over the devices.

B. Flaw Type 2: Incomplete Access Control Displays in Intra-
Fabric Matter Systems

Different from Apple Home, SmartThings, Google Home,
etc., that are designed to create separate fabrics for delegatee
users to control Matter devices, other vendors like Tuya
place delegatee users into the same fabric as the owner.
Interestingly, the former design requires the delegatee users
to go through the Matter pairing process using a pairing code
(e.g., Apple Home), and the latter design enables the vendor
to more seamlessly integrate Matter into their existing IoT
products. In the Tuya app, for example, the owner simply
invites a delegatee user (using his email or Tuya account) to
the Tuya home as a low-privilege guest user. Then the guest’s
Tuya app, equipped with a Matter controller implementation,
is added to the owner’s existing Matter fabric, with the
assigned Matter node ID and related credentials, enabling it to
control the Tuya device. In such an intra-fabric Matter system,
essentially, the guest user’s permissions are determined by
how the on-device intra-fabric ACL is configured. Properly
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managing user permissions requires proper management and
display of intra-fabric ACL, which we find are error-prone
for vendors in the absence of security analysis like ours,
presenting another type of UMCCI flaw.

Unknown over-privilege in Tuya fabric. Unlike Matter
controllers of Apple Home and SmartThings that hold the
root authority of the fabric (by holding the fabric’s root
certificate called RCAC, § II-A), the Tuya cloud holds the
authority of Tuya home Matter fabric and offers an API
thing.m.matter.icac.issue to sign ICAC when this
is requested by Tuya apps. Specifically, once a guest user
is added to a Tuya home, the guest’s Tuya app generates a
public key and private key pair and calls the Tuya cloud API
to sign the key pair, obtaining an ICAC of the Tuya home
fabric and Matter node ID. Here, only user accounts already
added to the Tuya home are allowed to do so. Then the guest
user’s Tuya app is able to serve as a Matter controller and
operate the device. A benign guest user’s privilege in the Tuya
home is highly restricted with only basic “view” and “operate”
capability designated by Tuya home (“home” is a common
concept in IoT products); she cannot, for example, remove the
home owner, change the owner’s privileges, or edit devices in
the home. However, her actual control capabilities over Matter
devices are determined by the on-device in-fabric ACL. In
the case of Tuya device design, we find that her privilege is
configured at level 5 (“Administrator”, the highest). By sending
arbitrary commands in Matter protocol directly to the Tuya
device, her controller is empowered with full control capability.
The problem is that, the actual privilege of Matter controllers
determined by in-fabric ACL is not shown or known to the
device owner, based on the UMCCI design of Tuya app. We
show that this enables multiple attacks, elaborated below.

Covert control attack within the Matter fabric. The ma-
licious guest can call the Tuya cloud API to generate an
additional ICAC, used by another controller of his such as
CHIP Tool to control the device. Such multiple controllers
within the owner’s fabric are not expected, and are not shown
in the Tuya app UMCCI. Even after the owner removes the
guest from the Tuya home, the CHIP Tool controller retains
administrative level control over the device, unknown by the
victim owner. Alternative to this “extra controller” attack, the
guest can add malicious devices to the smart home invisible to
the owner in the UMCCI, to operate the victim device (§ V-B).

PoC exploit. The device owner invites a guest (malicious) into
his Tuya home and grants the guest level privilege who can
only operate the device but cannot edit the device or other
users. Through reverse engineering the Tuya app, the guest
can hook his app to interact with the Tuya cloud through
some APIs. The guest can initiate a request to the clouds’
thing.m.matter.icac.issue API, with arguments in-
cluding the Tuya home’s group ID, and an ECC public key
to be signed (Appendix Figure 12a). The response includes
RCAC and ICAC certificates signed by the Tuya cloud, the
fabric ID of the Tuya home, and the node ID assigned to the
guest within that fabric (Appendix Figure 12b). Additionally,
by requesting the cloud API thing.m.matter.device.
node.batch.get, the node IDs of devices within the
fabric in the home can be obtained. The guest installs the
ICAC to CHIP Tool by modifying the ini configuration file,

further configures CHIP Tool’s control parameters, including
the commissioner’s name, node ID, and Vendor ID (Table IV),
and then can use CHIP Tool to control the device as the Tuya
home’s fabric administrator. The device owner then revokes the
guest’s access by removing him from Tuya home. Afterwards,
the guest’s CHIP Tool can still perform arbitrary operations on
the Tuya device by issuing Matter commands such as write
acl (Table IV).

ACL: 1 entries
[1]: {
Privilege: 5
AuthMode: 2
Subjects: 3 entries
[1]: ###
[2]: 65536
[3]: 65537

Targets: null
FabricIndex: 1}

(a) Original

ACL: 2 entries
[1]: { [2]: {
Privilege: 5 Privilege: 1
AuthMode: 2 AuthMode: 2
Subjects: 2 entries Subjects: 1 entries
[1]: ### [1]: 65536
[2]: 65537

Targets: null Targets: null
FabricIndex: 1 FabricIndex: 1
} }

(b) Malicious ACL Data Altered by an Attacker

Fig. 6: ACL Data within the Fabric in Tuya Home

Permission downgrading attack within the Matter fabric.
The malicious guest bears high privileges (based on ICAC)
for the Matter device. Using the ICAC, his controller (a CHIP
Tool in our PoC implementation) is able to call the CHIP
SDK API read acl and write acl to read and update in-
fabric ACL of the device. In our experiment, he downgrades
the privilege of the victim owner’s Tuya controller (node ID
65535) from 5 to 1 (Figure 6a and 6b) while keeping privilege
of his own controller (node ID 65537) as 5. After such an
attack, the owner is not even permitted to operate the device,
even though the Tuya app UMCCI still shows she is the home
owner (Appendix Figure 13), but never shows her true privilege
over the Matter device defined by intra-fabric ACL.

PoC exploit. By extending the above PoC exploit, the guest
uses his CHIP Tool to modify the device’s ACL using Matter’s
write acl [ACL_VALUE] command, decreasing the priv-
ilege level of the owner from 5-Administer to 1-View
(Figure 6b). The owner using his Tuya app can not control the
device at all, nor can he learn the current privilege level of his
controller for the device from the Tuya app.

Stealthiness discussion. In real scenarios like Airbnb or
hotels, Tuya’s permission structure erroneously grants guests
elevated ACL permissions, enabling them to exploit hidden
APIs and gain excessive control. The owner cannot view or
manage ACL permissions for all members in the Tuya home,
making it easy for malicious guests to use the CHIP Tool
to establish an invisible Matter controller within the same
fabric. Even after being removed by the owner, guests retain
covert control over devices, leaving the owner unaware. This
flaw further enables guests to launch permission downgrading
attacks, where they can reduce the owner’s ACL permissions
to prevent normal device control—without the owner knowing
the cause or source of the malfunction.

C. Flaw Type 3: Errors in Managing Connected Services

Inability to view connected Matter services in Amazon
Alexa. Amazon Alexa now supports the Matter protocol and
can normally complete pairing, control, and sharing operations
with Matter devices. However, it lacks important functionality
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as a Matter controller, specifically the ability to view paired
controllers or fabric information. This violates the security
requirement P1 proposed in § III. We find that after pairing
a Matter device with Amazon Alexa and CHIP Tool, there is
no UMCCI within Amazon Alexa for querying fabric informa-
tion, hence missing visibility of any other Matter controllers.
If a device owner shares their Matter device with a guest
(malicious) through Amazon Alexa, the owner has no way
to revoke the guest’s Matter control permissions other than
by factory resetting the device. They also cannot prevent the
guest from reopening the device’s commissioning window and
silently sharing the pairing code again (while the guest has
permissions). The absence of fundamental features comes with
serious security implications.

PoC exploit. A Matter device owner who uses Amazon Alexa
to manage Matter devices shares a Matter device’s pairing
code with a guest, who can be malicious. The sharing code
is generated in the Alexa app by the owner. The guest can
arbitrarily choose apps that implement a Matter controller and
possess permissions that are difficult to revoke because their
presence is not visible in the owner’s Amazon Alexa app
or UMCCI, effectively establishing a covert control channel
within the Matter protocol.

Stealthiness discussion. In real scenarios such as Airbnb
and hotels where the owner uses Amazon Alexa to manage
Matter devices, as long as the guest is shared with the device
and established a Matter controller, the controller is invisible
to the device owner based on Alexa UMCCI, and cannot
be revoked. Even if the guest shows to the owner while he
deletes his Matter controller, he could have created additional
Matter controllers for the device while he still has legitimate
permissions, and these controllers are invisible to the owner
based on Alexa UMCCI.

Incomplete hardware reset logic in Signify WiZ. Typically,
with a hardware-level factory reset, one expects that any
prior users or configurations of the device, if they exist, are
completely removed. However, we find that this is not the
case for Signify WiZ [17]’s Matter devices and this cannot
remove its established fabrics, intra-fabric ACL and control
capabilities of established controllers, which violates normal
security exceptions and our security requirement P3 (§ III).
Interestingly, a software-level factory reset performed using
the Signify WiZ mobile app by the device user (who has
paired with the device) successfully factory resets the Matter
protocols in the device. Further, Signify WiZ devices support
prior control channels besides Matter, such as control by
Google Home and Amazon Alexa with their smart speaker
protocols and Signify WiZ app’s proprietary protocol [40],
[55] (not Matter protocols). Surprisingly, a hardware factory
reset on Signify WiZ devices successfully resets those other
control channels, but silently keeps the control capability
by established Matter controllers. This vulnerability partially
arises from Signify WiZ enabling already deployed devices to
support the Matter protocol via Over-The-Air (OTA) updates,
without timely updates to the logic for hardware resets. § V-C
further discusses that the Matter protocol itself lacks a function
to easily and completely reset in-device Matter status including
fabrics and ACL.

PoC exploit. The owner shares the WiZ device with a guest
(malicious). He can either use his WiZ app to generate a

Matter pairing code and share with the guest, or let the guest
freely configure and use the device. The guest uses any Matter
controller app to pair with the device and establish control.
Later, the owner performs hardware level factory reset through
repeated switching aiming to remove the guest’s access rights.
However, the guest’s Matter control to the device cannot be
removed, which is unexpected by the owner. Below, we further
discuss that the owner’s WiZ app UMCCI cannot show the
Matter controller of the device, like the Alexa attack above.

Stealthiness discussion. In real scenarios such as Airbnb and
apartments, owners may share WiZ devices with guests (or
tenants). After guests leave, owners can attempt to clear guests’
control by a hardware reset. However, owners cannot realize
that this reset method does not remove the guest’s control
over the devices through the Matter protocol, but other control
channels of the guest such as Alexa and WiZ app are reset.

Inability to view Matter controllers in Signify WiZ app.
The Signify WiZ app lacks the functionality to show the
device’s Matter fabrics and even WiZ app itself cannot serve
as a Matter controller at all. Initially, Signify WiZ did not
support the Matter protocol. To accelerate the adaptation of
its products for the Matter protocol, Signify WiZ not only
pre-installs Matter capabilities in new products, but also offers
OTA updates for deployed older models to support Matter.
When users of Signify WiZ products wish to utilize the Matter
protocol, Signify WiZ requires them to first pair and connect
their devices with the WiZ app (not through Matter, but using
WiZ’s original, proprietary protocol). Subsequently, the WiZ
app allows the activation of the device’s Matter commissioning
window and the retrieval of Matter pairing code. Users can use
any app that implements Matter controller, with the pairing
code, to pair with the WiZ device. The WiZ app itself, version
1.17.3 at the time of our research, does not support Matter
pairing. Nor is the WiZ app of the owner able to query
and show Matter controller established for the WiZ device,
a violation of security requirement P1 if the owner relies on
the WiZ app to manage the devices.

PoC exploit. A device owner who uses the WiZ app shares her
WiZ device via the Matter protocol with a guest (malicious).
Once the guest uses Matter to establish a controller for the
device, it becomes difficult for the owner to identify the
device’s access control status within the Matter protocol, as
the Signify WiZ app does not provide the capability to query
the device’s fabric or controllers. Nor can the owner remove
the guest’s Matter controller and fabric using the WiZ app.
This limitation can inadvertently allow the guest to maintain
stealthy control over the device.

Stealthiness discussion. In real scenarios such as Airbnb and
apartments, WiZ device owners who rely on the WiZ app and
hardware reset capability are unable to properly view, identify
or remove the guests’ Matter control over the WiZ devices.
This easily allows guests to retain control over the devices
without the owner’s knowledge.

V. ERROR SPACE IN MATTER STANDARD DESIGN

This section reports three types of UMCCI flaws due to
insufficient or flawed security design in the Matter protocol
itself. The flaws and related attacks are initially found and
launched in popular vendors’ IoT apps, while our root cause
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analysis shows that the problems are caused by flawed design
of Matter, making critical access control information and
operations (e.g., resetting) related to Matter devices hard to
verify, gather and perform in vendors’ Matter implementation.
Our findings call for immediate and thorough security analysis
of the Matter protocol itself.

A. Flaw Type 4: Untrusted Fabric Information

Matter Vendor ID and Label forgery attack in Apple
Home. The Matter protocol design does not verify parameters
used by Matter controllers, such as Vendor ID and Label value.
Consequently, Matter controller information of a device that
can be shown to benign users is subject to forgery by malicious
users, who, for example, use a controller implementation like
CHIP Tool that can be configured to use arbitrary parameters.
This makes it difficult for benign users to distinguish between
legitimate and malicious or unauthorized Matter controllers.
It can easily result in failure of controller revocation and
the persistence of unauthorized controllers that should be
removed, violating the security requirement P2 (§ III).

When Apple Home as a Matter controller is used by
device owner or administrator, it provides a feature to query
and view the Matter controllers paired with the device, on a
“connected services” page of the app (Figure 7a). Based on
Apple Home UMCCI design, the page lists basic information
of all fabrics/controllers associated with the device, including
the Label value of each controller and the vendor name, where
the vendor name is mapped from the Vendor ID used by the
controller to the corresponding vendor name (based on the
Matter-official mapping [9]).

Consider a realistic scenario where the device owner uses
the Apple Home app and shares the device temporarily with
a guest user (e.g., Airbnb guest, tenants, employees) through
a Matter pairing code. The guest can be malicious aiming to
gain unauthorized control even after his permission is revoked.
When using a Matter controller to control the owner’s device,
he can use fake Vendor ID and Label value. Normally, the guest
may use a controller implementation like the Tuya app, which
bears Vendor ID 4701 and Label value “Smart Life”, so the
owner easily knows that controller belongs to the guest in the
Apple Home UMCCI (Figure 7a) and can correctly removes
it when the guest leaves. However, a malicious guest can use
a crafted controller like the CHIP Tool being configured with
the Vendor ID 4937 (for Apple Home) and the Label like
“Owner” or “Administrator” resembling a controller of the
true owner (the last one listed in Figure 7a). Actually, the
true owner’s Apple Home fabric (the first one listed in Figure
7a) bears the same Vendor name but uses a Label value “My
Home” (implemented by Apple Home). This can practically
confuse the true owner in deciding which controller belongs
to the guest and should be removed when he leaves. Once
the owner removes the wrong controller, the guest retains
control capabilities, violating the security expectations of the
owner. Notably, Apple has acknowledged the problem and is
making new design to mitigate the problem, which is non-
trivial without a standard, assured verification mechanism at
the Matter protocol level.

PoC exploit. The Apple owner generates a new Matter pairing
code of the device and shares it with the guest (malicious). The

(a) In Apple Home (b) In Tuya

Fig. 7: Falsifying Vendor ID and Label Values

guest pairs with the device using any app that has implemented
a Matter controller (the Smart Life app of Tuya in our experi-
ment). Afterwards, the attacker shares the device with his CHIP
Tool, which also acts as a Matter controller paired with the
device. The CHIP tool uses a Vendor ID 4937 and Label value
“Administrator”. After the owner removes the guest user by re-
moving his Smart Life controller in the Apple Home UMCCI,
it is difficult for the owner to associate the malicious guest’s
CHIP Tool controller with the guest. In the implementation,
we configure the Vendor ID of CHIP Tool with the command
commissioner-vendorid [Vendor_ID], and config-
ure the Label value with the update-fabric-label
[Label_Value] command (Appendix Table IV).

Stealthiness discussion. In real scenarios such as Airbnb,
device owners may use Apple Home to manage their Mater
devices, share devices with temporary guests, and remove
guest users after they check out, expecting that the guest user’s
permissions are transparent when they stay and are completely
revoked after they leave. With our exploit above, the malicious
guest can leverage fake Matter Vendor ID and Label value to
easily confuse benign owner, making it difficult for the owner
to correctly identify and completely remove the guest user’s
Matter controllers (the Smart Life and the CHIP Tool). The
consequence is that the guest retains full Matter control over
the owner’s device even after the owner removes the guest (by
removing the obvious Smart Life of the guest, Figure 7a).

Similar flaws in Tuya. From the description of the flaw in
Apple Home above, it is evident that the UMCCI display
flaws encountered by vendors when using the Matter protocol
predominantly occur on the interface for querying connected
fabric information, and the exploitation of these vulnerabilities
often hinges on the Vendor ID and Label values. A similar flaw
was found by our UMCCI Checker in the Matter functionality
of Tuya. The display logic for Vendor ID and Label informa-
tion in the Tuya app is disorganized and does not correctly
present the information in a complete and accurate manner
within the UMCCI. This violates the security requirement P2
proposed in § III. Utilizing this flaw in the Tuya app can
achieve an attack effect similar to that observed in Apple Home
(see Figure 7b). According to the Tuya app’s code logic got
through reverse engineering, Tuya first checks if the fabric’s
Vendor ID matches any of the following: 4142 (LG ThinQ),
4321 (noted in the code as SmartThings), 4631 (Amazon
Alexa), 4937 (Apple Home), 4996 (Apple Keychain), 24582
(Google Home). If it matches one of these Vendor IDs, the
Tuya app displays the vendor name. If not, it then checks if the
Label is null; if null, the Tuya app displays “Third-Party App”;
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if not, it displays the specific content of the Label. Further-
more, Tuya uses the Matter protocol’s isCurrentFabric
function to determine if it’s Tuya fabric, marking it additionally
as ”Current App” if true. The analysis of the code revealed that
when the controller’s Vendor ID does not match any listed in
the code, the text output in the Tuya app becomes the cus-
tomizable Label value. At this point, similar attack strategies
to Apple Home can be utilized, using CHIP Tool to display
strings such as “Administrator” on the connected services of
UMCCI, confusing the device owner to prevent them from
revoking the attacker’s control over the device (see Figure 7b).

PoC exploit. We implemented proof-of-concept attacks using
our device X . A device owner using Tuya app shares the
device’s Matter pairing code with a guest who is a malicious
attacker. The guest can then pair with the owner’s device
using CHIP Tools with a crafted Vendor ID that is not one
of the following: 4142, 4321, 4631, 4937, 4996, or 24582,
and a fabricated Label value. The owner will only be able
to see the malicious Label values fabricated by the guest in
the Tuya app (see Figure 7b). Consequently, similar to the
previously mentioned Apple Home flaws in § V-A, the owner
may struggle to distinguish the authentic fabric entries from
the forged ones in the list of connected services.

Stealthiness discussion. Similar to the stealthiness of Apple
Home flaws in § V-A, in real scenarios such as Airbnb, when
owners use the Tuya app to share devices with guests via the
Matter protocol, guests can also use the CHIP Tool to alter
the Vendor ID and Label values, creating deceptive fabrics
that confuse the owner. Additionally, the Tuya app conceals the
vendor name when a Label value is present, so the owner might
only see a fabric labeled simply as ‘Administrator’ making it
even more challenging to discern.

B. Flaw Type 5: Missing Capability for Intra-Fabric Node
Display and Auditing

Invisible node and malicious device in Matter fabric. The
Matter protocol does not provide functionality for the Matter
controller to gather or query information about nodes already
added to a fabric. Notably, a node is conceptually a Matter de-
vice or controller under a Matter fabric, and holds a credential
(called NOC) signed and recognized by the fabric (§ II-A). If
the node ID of a device is forgotten, it becomes irretrievable,
and the Matter controller is unable to find out nodes in the
fabric or issue control operations to the device, based on Matter
protocol design (Matter version 1.3, § II-A). We find that
some vendors have designed proprietary mechanisms to record
node information of paired devices when designing Matter
controllers. For example, the vendors’ controllers record node
information (to the cloud) when the device is paired or added
to the fabric, and designed lists and icons in the UMCCI to
display Matter devices that users have paired. However, once
a malicious device joins the fabric without being recorded by
the vendor’s controller or cloud, its presence in the fabric and
the capabilities it has are unknown to the benign controller,
which essentially violates the security requirement P1 (§ III).

Specifically, building on the aforementioned attack process
in § IV-B, the attacker can engage in further attacks. Based on
the design of Tuya’s Matter integration, every user added into
a home by the owner (e.g., a guest user) is assigned a Matter

controller node within the fabric of the home owner, while
simultaneously adding the guest’s Tuya account information
to the Tuya cloud for that home. In benign scenarios, every
Matter device added to the home (using the Tuya app) is
allocated node information within the fabric and synchronized
with the Tuya cloud. Normally, this information is available
and can be displayed in the owner’s Tuya app UMCCI.
The Tuya app retrieves home and device information of the
fabric directly from the cloud, but it is unable to gather such
access control information from the local Matter networks and
devices based on Matter protocol design. Hence, based on
the aforementioned Flaw Type 2 in Tuya, the malicious guest
obtained operational permissions for the fabric, and through his
CHIP Tool controller, any subsequent actions by the attacker
directly in the fabric can bypass the Tuya cloud. Next, the
attacker can add any malicious devices to the fabric without the
owner’s knowledge, and these additions and malicious device
are all invisible in the owner’s Tuya app.

We find that a malicious, invisible Matter device in the
owner’s Matter fabric comes with serious security and privacy
implications. Such a device could control other Matter devices
within the fabric leveraging Matter’s “devices control devices”
functionality. Similar to a regular Matter controller, a malicious
device in the fabric can send regular Matter commands to the
victim device as long as the intra-fabric ACL in the victim
device allows the malicious device node to do so. In this case,
since the malicious guest obtained a controller, he is able to
write ACL in the victim device using Matter command write
acl [ACL_VALUE], practically enabling the attack (see our
PoC exploit implementation below).

Attacker Malicious Control

Owner Normal Control

Malicious Device

Normal Device Tuya APP

CHIP Tool

Matter Fabric

Tuya Home

Fig. 8: Diagram of a Malicious Device Attack in Tuya

PoC exploit. By extending the Tuya convert control PoC
(§ IV-B), a malicious guest can add a malicious device (e.g.,
a switch) to the owner’s fabric. The guest binds the malicious
switch with the benign device using Matter protocol cluster
Bind, such that when the switch is pressed, the switch sends a
Matter command onoff [32] to toggle the victim device. The
guest also updates infra-fabric ACL of the victim device using
the Matter cluster AccessControl, granting the switch the
highest privilege level. Now the guest can operate the victim
device by physically operating the malicious switch.

Stealthiness discussion. In real scenarios such as Airbnb,
apartments or workplaces, the delegatee users such as guests,
tenants, or employees can launch such attacks. The Tuya app
UMCCI cannot show there exists a malicious device in the
fabric or in the owner’s Tuya home. Even after the owner
removes the guest’s Tuya account from the home or removes
his Matter controller, the guest can still use such a hidden
malicious device nearby to operate the owner’s Matter device
through the Matter protocol.
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C. Flaw Type 6: Insufficient Definitions of Usage Rules for
New Features

In § IV-C, we discuss two UMCCI flaws of Signify WiZ:
incomplete hardware reset logic and the inability to view
Matter controller information. These security flaws, however,
are not solely the vendor’s responsibility. The Matter protocol
does not provide a function to completely clear in-device
fabrics and reset its access control list, for example, at the
invocation of a Matter API or press of a physical button on
Matter device. This violates the security requirements P3 in
§ III. As a new protocol introduces new features, the designers
and developers of the Matter protocol should provide more
comprehensive security functions.

VI. AUTOMATIC DETECTION OF UMCCI FLAWS

LLM-Based Semantic Assistant

Efficient Automatic

UI Exploration

Special 

Prompts

LLM

Input …

Output

Flaws

Report

App

Collection

Virtual Matter 

Device Environment

…

Automatic

Device

Pairing

Fig. 9: Architecture of UMCCI Checker

To help detect UMCCI flaws from real vendors’ Matter
integration, we developed UMCCI Checker that can automat-
ically explore GUI elements within IoT apps and analyze
the display and Matter control functionality provided in the
apps (§ VI-A). Consequently, it identifies potential defects
and detects IoT apps that are susceptible to UMCCI attacks,
pinpointing UMCCI flaws in the apps for vendors to repair.

A. Design and Implementation.

Design overview. UMCCI Checker takes the IoT vendors’
mobile apps as input, automatically executes and analyzes
them, and reports UMCCI flaws found in the apps. The core
idea of UMCCI Checker is to automatically search for and
analyze UMCCI related GUI pages in the apps, assisted by
large language models (LLMs), and verify whether the app
meets security requirements P1 to P3 (§ III) providing users
with necessary Matter control capabilities and displaying true,
necessary access control information (e.g., Matter controllers,
vendor IDs, fabric labels, and ACLs). The architecture of
UMCCI Checker is outlined in Figure 9. Specifically, UMCCI
Checker first prepares a Virtual Matter Device Environment
(VMDE), which comes with a generic virtual Matter device
that can be paired with any Matter-compatible IoT apps
under test. VMDE eliminates the need for deploying physical
devices in testing various vendors’ apps, increasing automation
and scalability. Then, the Automatic Device Pairing (ADP)
module automatically pairs the virtual Matter device with
the app under test, assisted by a module called LLM-based
Matter Agent (L-MA). Also assisted by L-MA, the Efficient
Automatic UI Exploration (EAUE) module searches for all
UMCCI pages in the app, which are then checked by the
Flaw Analysis and Reporting (FAR) module to identify any

UMCCI flaws and produce patch suggestions for vendors.
These key modules are elaborated below.

Virtual Matter Device Environment (VMDE). UMCCI
Checker employed the open-source framework Matter.js [47],
which is part of the Matter open source project and can be used
to simulate real Matter devices. It is a TypeScript/JavaScript
implementation of the Matter protocol of the device side and
is originally for functionality testing during Matter CHIP SDK
development. Also in VMDE is a CHIP Tool, which is used
as a Matter controller and VMDE can automatically leverage
CHIP Tool to pair with and control the virtual Matter device
(like a real device under factory setting, Matter.js generates
an initial Matter pairing code when it first runs). VMDE can
dynamically configure parameters (Vendor ID and Label value)
of the CHIP Tool and in-fabric access control list in the virtual
devices for testing UMCCI flaws (detailed in FAR below).

Automatic Device Pairing (ADP). ADP automatically pairs
the IoT app with the virtual Matter device. Starting from the
app launching page, ADP queries LLM to identify the next
UI operation necessary to navigate to the Matter binding page
and performs the device binding. To query LLM, ADP first
leverages our Pairing Prompt template (Appendix § A) and
uses a set of information including a new pairing code of
the virtual Matter device (obtained by CHIP Tool being a
connected controller), the list of UI elements on the app’s
launching screen, and the app screenshot to populate the Pair-
ing Prompt template, generating a specific pairing prompt; then
ADP invokes the L-MA along with the pairing prompt. L-MA
queries the external LLM and returns LLM’s output to ADP.
Specifically, based on the Pairing Prompt, the LLM outputs
an ordered list of UI elements suggesting ADP to operate on
next for the pairing goal. ADP then automatically performs UI
operation. In implementation, ADP employs Appium [21], a
generic UI automation development framework, to extract UI
elements from the app pages and automatically perform the
intended UI operation. UMCCI Checker keeps leveraging the
latest UI states (UI elements, screenshot) to query LLM to
be guided for the next UI operation, essentially performing a
depth-first search along a potentially shortest path in navigating
through the app GUI, until the virtual device is successfully
paired with the app. Specifically, ADP’s pairing attempts stop
when (1) the output of LLM indicates success of pairing or
(2) the pairing cannot succeed within 5 minutes for the app.

Efficient Automatic UI Exploration (EAUE). UMCCI
Checker automatically explores and identifies all UMCCI
pages in the app. The exploration algorithm employs a depth-
first search (DFS) approach to automatically navigate through
the app’s GUI, and meanwhile leverages LLM to help navigate
to and find UMCCI pages efficiently (as early as possible).
More specifically, UMCCI Checker generates a directed graph
G, where explored page states serve as nodes, and GUI
operations leading to state transitions (e.g., clicks) represent
edges. Specifically, a node comprises all UI elements extracted
from the current app page denoted as a set Se, which includes
UI elements along with their attributes (such as class, text, and
element ID). In the automatic GUI exploration, EAUE lever-
ages LLM to help identify and prioritize the next UI operation
that may most likely lead to UMCCI pages. Specifically, EAUE
uses UI information recorded in the current node and the page’s
screenshot to populate our Searching Prompt (Appendix § A)
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and invokes L-MA, which queries the employed LLM. Based
on the prompt, LLM returns two pieces of information: (1)
whether the current page is a UMCCI page of interest (based
on semantics similar to “Connected Services” and “Matter
controllers”), and (2) the ordered list of UI elements on the
page to operate on to further look for and explore UMCCI
pages. Based on the LLM guidance, EAUE records if the page
is a UMCCI page, and continues to operate on the next UI
element, possibly transitioning to the next node on the graph
G (i.e, a new app page or the same page with different states
of the UI elements). EAUE compares each newly visited state
with those already in G to avoid creating redundant nodes.

After exploring a branch of new pages or nodes, the
exploration backtracks to the previous page or node and
continues to explore other unprocessed UI elements (those also
suggested by LLM but lower on the ordered list). This ensures
comprehensive coverage of all interactive pathways within the
app until all UMCCI pages are analyzed. Pseudocode of the
DFS exploration Algorithm 1 is on our website [13].

Flaw Analysis and Reporting (FAR). FAR generates a
comprehensive report detailing the identified flaws, including
screenshots of the analyzed UMCCI page(s). Specifically, FAR
uses node information of the UMCCI pages along with the
screenshots of these pages to populate a Checking Prompt
template (Appendix § A) and invokes L-MA, which queries
LLM to check UMCCI flaws. FAR includes multiple rounds
of testing considering the CHIP Tool as a (malicious) Matter
controller: in each round, the CHIP Tool uses a different
pair of Vendor ID and Label value, either copied from the
app’s Matter controller (obtained by the CHIP Tool reading
the virtual device’s fabric) or randomly generated. This is
to test whether the app UMCCI pages properly display the
CHIP Tool controller. In an additional testing round, VMDE
programmatically changes Matter ACL in the virtual device
for the vendor app’s fabric by lowering the app controller’s
privilege from the highest level “Administrator” to the lowest
level “View” (see fabric ACL in § II-A). This round tests
whether the app UMCCI displays true privileges of the app
controller for the device based on in-fabric ACL.

LLM-based Matter Agent (L-MA). LLM-based Matter
Agent are empowered with three specialized prompt templates
to perform key functions: assisting in decision-making for UI
element interaction during device pairing (Pairing Prompt),
UMCCI page search (Searching Prompt), as well as verifying
security violations on UMCCI pages (Checking Prompt), used
by ADP, EAUE, and FAR respectively to generate specific
prompts (see above). LLM-based Matter Agent employs Chat-
GPT 3.5 and 4 as the LLM, can be easily configured to
employ other LLMs. Detailed prompt templates are provided
in Appendix § A.

Technical challenges in UI automation and our solutions.
We detail several technical challenges in app UI automation
and our solutions as follows.

C1 How to eliminate the redundancy brought by stacked
elements? In some cases, elements on a page may overlap, and
clicking on any of them leads to the same new page. These
overlapping elements are equivalent in terms of page transi-
tions, and their redundancy can contribute to state explosion.

S1 UMCCI Checker first filters all elements on the page that

satisfy clickable="true" to identify clickable elements.
When selecting an element e to generate touch input, UMCCI
Checker calculates and filters out all other elements covered
by e based on their positions in the UI page, thereby pruning
unnecessary branches (Algorithm 2 on our website [13]).

C2 How to tackle dynamic UI elements? Specifically, when
UMCCI Checker touches a UI element e on page n, the appli-
cation navigates to a new page. After thoroughly exploring the
new page, it generates the back event to backtrack and explore
the remaining elements on page n. However, the app may not
be able to return to n since some page elements can disappear
after the event e occurs unless one restarts the app.

S2 During DFS backtracking, UMCCI Checker identifies the
corresponding node n in the directed graph G, compares the
element set of that node with the element set on the current
app page, and identifies the disappearing elements Sde by the
difference between the two sets. By appending each of Sde to
the path from the initial state to n, UMCCI Checker determines
all the paths to the lost states, facilitating quick access when
restarting the app.

C3 How to ensure safe navigation and interaction? UMCCI
Checker may trigger irreversible operations, such as removing
the devices, or unregistering the account, which prevents
further analysis, even restarting the app can not help.

S3 This challenge is addressed by implementing a smart
blacklist mechanism that identifies and filters elements related
to hazardous irreversible operations by gathering comprehen-
sive descriptions of the elements and querying LLM-based
Semantic Assistant. The descriptions include the text within
the elements’ attributes and their screenshots. This strategy
ensures that UMCCI Checker does not inadvertently alter the
application’s state, thereby preserving its intended functionality
and stability.

Other implementation details. We implemented UMCCI
Checker with 253 lines of Python code and 844 words LLM
prompts, based on the UI automation framework Appium [21]
and the LLM ChatGPT 3.5 and 4 [27]. When testing apps, we
use driver UI Automator [20] for Android and XCUITest [1]
for iOS. We will release the full source code of UMCCI
Checker upon acceptance of the paper.

B. Example of UMCCI Checker Analysis.

We use UMCCI Checker to perform a UMCCI security
analysis on the SmartThings app (v1.8.14.26), demonstrating
the step-by-step walkthroughs of UMCCI Checker.

• Step 1: Initializing the VMDE. UMCCI Checker initiates the
virtual device and retrieves an initial Matter pairing code from
it. Then UMCCI Checker initiates the CHIP Tool, which pairs
with the virtual device using the pairing code.

• Step 2: Initializing the SmartThings mobile app. UMCCI
Checker installs and launches the SmartThings app on the
connected phone (Xiaomi Mi10 running Android 13). Then
we manually complete the SmartThings account registration
and login and thus the app is ready for UMCCI testing.

• Step 3: ADP. UMCCI Checker populates the Pairing Prompt
template as input to the L-MA. UMCCI Checker then automat-
ically performs ADP operation in the SmartThings app until
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the virtual device is successfully paired with the SmartThings
app (see screenshots and UI operation sequence on our web-
site [13]). Appium employed in UMCCI Checker is configured
to automatically grant all the permissions when a permission
dialog pops up.

• Step 4: EAUE explores and identifies all UMCCI pages in
the SmartThings app. EAUE constructs the Searching Prompt
template as input to the L-MA. In the SmartThings app,
UMCCI Checker identified one UMCCI page titled “Share
with other services” (see the figures on our website [13]).

• Step 5: FAR. UMCCI Checker analyzes all UMCCI pages
with multiple rounds of testing based on constructing the
Checking Prompt template as input for L-MA. In the Smart-
Things app, when the Label value of the CHIP Tool is set
to match the SmartThings app’s Matter controller, specifically
match the /smartthings/i regular expression, the CHIP Tool’s
Matter controller is not shown on SmartThings app’s UMCCI
page, indicating the presence of Flaw Type 1 mentioned in
§ IV-A (see the figures on our website [13]).

C. Evaluation

By analyzing 10 IoT apps of 9 vendors, UMCCI Checker
successfully identified 13 UMCCI flaws (Table II), all con-
firmed on our real devices, with multiple flaw types and
novel attacks elaborated in § IV and § V. UMCCI Checker
primarily focused on automatically identifying Flaw Type 1
to 4. Automatically testing Flaw Type 5 involves adding a
“malicious” node to the app’s fabric, and this requires signing
a NOC for the node using the app fabric’s certificate (RCAC
or ICAC, see § II-A), which we do not have. Flaw Type 6
is related to identifying the missing security function in the
Matter specification (i.e., a function to reset in-device Matter
fabric and access control), which is out of UMCCI Checker’s
current scope. Our initial experiment shows that this can be
achieved using LLM or natural language processing (NLP)
to analyze API documents of the CHIP SDK and shows that
there is no such API to reset Matter control for Matter devices.
Based on CVE [8] and public information, no known UMCCI
flaws in the 10 apps were missed by UMCCI Checker.

Performance overhead. We evaluated UMCCI Checker on all
10 IoT apps using a laptop with an AMD Ryzen 7 6800H CPU
and 16GB of memory, and a Xiaomi Mi10 smartphone. Based
on average results from five rounds of testing, UMCCI Checker
took 194.58 seconds and utilized 20,320 KB of memory to
discover all UMCCI pages within one app. We set a limit of
five minutes to run the EAUE module for testing each app.
The average total time for testing each app is 263.50 seconds.

Comparison with state-of-the-art tools. We compared two
prior app UI automation tools DroidBot [44] and Auto-
Droid [54] with UMCCI Checker. Since AutoDroid and Droid-
Bot are not designed for flaw analysis and mitigation, we
compared them with UMCCI Checker on two key UI tasks on
the 10 IoT apps: (T1) automatic pairing IoT apps with Matter
devices; (T2) searching for the Matter “Connected Services”
page in the app. UMCCI Checker succeeded in all 10 apps,
while AutoDroid failed in 7 (70% failure). DroidBot, without
semantic analysis capabilities, was not applicable for such
tasks at all. The results are detailed in Table I.

AutoDroid, being Android-only, could not test Apple
Home, whereas UMCCI Checker is cross-platform. When
AutoDroid was tested on other apps like SmartThings and
Amazon Alexa, it faced challenges C1 to C3 and failed
to identify essential elements such as the button to explore
device details and the pairing code input box. Consequently, it
could not perform device pairing or identify UMCCI pages.
In contrast, UMCCI Checker features accurate UI element
identification and filter that ensure no necessary elements are
overlooked, enabling thorough exploration.

TABLE I: Comparing with SOTA Tools

APP Name
UMCCI Checker AutoDroid DroidBot

T1 T2 T1 T2 T1 T2

Apple Home ✓ ✓ × × — —
Google Home ✓ ✓ ✓ ✓ — —
SmartThings ✓ ✓ × × — —
Amazon Alexa ✓ ✓ × × — —
Tuya Smart ✓ ✓ × × — —
Smart Life ✓ ✓ × × — —
uHome+ ✓ ✓ × × — —
Aqara Home ✓ ✓ ✓ ✓ — —
WiZ V2 ✓ ✓ ✓ ✓ — —
Nanoleaf ✓ ✓ × × — —

Failed 0 7 —

Discussion. UMCCI Checker did not encounter false positives
in reporting UMCCI flaws in testing the 10 IoT apps. Potential
false positives may arise if UMCCI Checker fails to correctly
identify the UMCCI pages, and in such a case, detecting
UMCCI flaws on wrong UMCCI pages may lead to false
alarms. Thanks to our search prompt template, the search and
identification of UMCCI pages were correct across all 10 apps.

Generality of UMCCI flaw analysis. Our analysis and UM-
CCI Checker can be generalized to detect flaws in user-facing
control interfaces across various protocols. For other protocols,
end-users should reliably view/update access-control statuses
based on security requirements like P1-P3. The application-
layer semantic elements to analyze may differ across protocols,
like fabrics in Matter. For instance, in user-facing “Blue-
tooth” control capabilities and interfaces (UBCCI), we could
verify attributes of Bluetooth device and controller (called
“peripheral” and “central” [24]), such as device name, profile
configuration, and icon, all of which are access control-related
and susceptible to forgery or modification by attackers [56].

VII. RELATED WORK

Security analysis of the Matter protocol. Previous studies on
the Matter protocol [42], [45], [50] have primarily addressed
isolated incidents and case studies, and potential display errors,
providing only a limited scope of the associated security risks.
Our research is new and systematic, introduces the UMCCI
flaws, analyzes the Matter development model, and based on
the model systematically identifies novel, subtle design flaws
of both vendors and Matter, and introduces new serious attack
vectors in both inter-fabric and intra-fabric Matter systems.
Additionally, we introduce a novel technique UMCCI Checker
to automatically analyze UMCCI flaws from real vendors’ apps
and further propose effective mitigation strategies to address
these vulnerabilities.

Security analysis of other IoT protocols. Recent studies have
extensively examined various IoT protocols, revealing key vul-

13



nerabilities and proposing security enhancements across dif-
ferent platforms and systems [39], [40], [43], [57], [58], [62].
These works have identified issues ranging from authentication
gaps in MQTT to inadequate policy enforcement in cloud-
based systems. However, none have specifically addressed the
unique challenges posed by the Matter protocol. In contrast,
our work specifically focuses on the Matter protocol, identi-
fying novel security risks and proposing targeted strategies to
mitigate these vulnerabilities.

Security analysis of IoT platforms, devices and applica-
tions. The security of IoT platforms and applications/devices
has been extensively explored in recent studies [19], [23], [25],
[26], [28], [29], [33], [35], [35], [36], [36]–[38], [41], [46],
[49], [51]–[53], [58]–[61], [61]. These studies predominantly
focus on specific cloud platforms and application layer logic
errors. In contrast, our research systematically examines secu-
rity issues related to the Matter protocol, addressing gaps in
current IoT security research.

VIII. CONCLUSION

This paper systematically investigates the security risks
of UMCCI in the Matter-based IoT environment, which is
assisted by a novel automatic tool called UMCCI Checker we
developed. This has enabled us to understand the fundamental
challenges within UMCCI and identify various root causes
that can lead to flaws in real-world systems. These security
flaws significantly compromise Matter users’ control and
awareness of their devices. Our research indicates that this
security weakness is both widespread and fundamental,
affecting both vendor and Matter design. Thus, we propose
immediate fix suggestions. Our research on the security of
the Matter protocol has pioneered further study in this field.
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APPENDIX

Fig. 10: Matter Sharing UI in Apple Home

Fig. 11: Tapping the icon pairs devices from the Keychain
fabric with Apple Home.

{
"gid": 166897639 ,
"elementid": 166897639 ,
"pubkey": ###
}

(a) Request

{
"fabricid": 4540950 ,
"icac": ### ,
"nodeid": 65537 ,
"rcac": ###
}

(b) Response

Fig. 12: Request and Response JSON Format of Tuya API
thing.m.matter.icac.issue

Fig. 13: Tuya app displays the owner as still having Home
Owner status after their ACL privileges have been downgraded.

A. Prompts of UMCCI Checker

The Crafted LLM Pairing Prompt

### Role: System
You are a smartphone assistant to help users complete tasks
by interacting with mobile apps related to IoT control based
on the Matter protocol (just like Tuya Smart, Google Home,
Amazon Alexa and so on). Your task is to cooperate in
the depth-first exploration of the app page elements, and
pair a matter device with setup code XXXX-XXX-XXXX.
The order of exploration of the elements on the page is
sorted according to importance, with important elements at
the front.
Given a list containing all elements of the current UI page,
your job is to reorder the list based on your prediction of the
importance of each element in the list. At the same time, you
should pay attention that when you analyze that the element
may be a return, back page, exit, or similar operation, put
such operations at the end to reduce invalid exploration such
as exiting the page too early. Likewise, if you find specific
pairing device icons related elements, put them in the front
position for exploration.
Your answer must always be one element per line, without
numbering (just like the list of elements given to you each
time). Your answer may not contain any explanatory text.
The number of elements you output must match the number
of elements in the original list given to you. You cannot omit
elements or modify the content of elements.
### Role: User
The list of elements is as follows:
<xxx><xxx>. . .
If you think the task has been completed, please output ‘0’.

The Crafted LLM Searching Prompt

### Role: System
You are a smartphone assistant to help users complete tasks
by interacting with mobile apps related to IoT control based
on the Matter protocol (just like Tuya Smart, Google Home,
Amazon Alexa and so on). Your task is to cooperate in the
depth-first exploration of the app page elements. The order of
exploration of the elements on the page is sorted according
to importance, with important elements at the front. Addi-
tionally, you need to determine whether the current page is a
UMCCI page. Typically, the page title resembles “Connected
Services” or similar synonyms, and it displays a list of all
Matter controllers with parameters such as vendor name or
ID and Label value.
Given a list containing all elements and the screenshot of the
current UI page, your job is to reorder the list based on your
prediction of the importance of each element in the list. After
completing the list output, you need to output the result of
whether the page is a UMCCI page on the last line. If it is,
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TABLE II: Design Flaws in User-Facing Matter-Controllers of Eight Vendors

UMCCI Flaws Apple Google Amazon Alexa Samsung
SmartThings Tuya Aqara Uascent Signify WiZ

Vendor Design
Flaw Type 1 N/A N/A
Flaw Type 2 N/A N/A
Flaw Type 3

Matter Design
Flaw Type 4 N/A
Flaw Type 5 N/A
Flaw Type 6

denotes that we successfully exploited the weakness in the Matter controller of the specified vendor. denotes that we were unable to exploit
the weakness in the Matter controller of the specified vendor. N/A denotes that the vendor did not implement the related Matter feature.

TABLE III: The Matter Devices of Our Study

Vendor Device Model IoT App Name
Apple HomePod mini Home
Google Nest mini Google Home
Samsung SmartThings Station EP-P9501 SmartThings
Amazon Alexa Echo Dot 3 Amazon Alexa
Tuya Gateway THP10-Z-X Tuya Smart/Smart Life
Uascent LED Light uHome+
Aqara M2 Hub 2002 Aqara Home
Signify WiZ A19 Light WiZ V2
Zemismart LED E27 N/A
Nanoleaf A60 Smart Bulb Nanoleaf
Xenon SM-PW703 Smart Plug N/A

TABLE IV: Examples of CHIP SDK APIs

API Name Arguments Description

commissioner-name [Fabric ID] Set the controller’s Fabric ID
when interacting with devices.

commissioner-nodeid [Node ID] Set the controller’s Node ID
when interacting with devices.

commissioner-vendorid [Vendor ID] Set the controller’s Vendor ID.

pairing code [Node ID]
[Pairing Code]

Pair with a new device through
pairing code.

operationalcredentials update-fabric-
label

[Label Value]
[Node ID]
[Endpoint ID]

Set the controller’s fabric Label.

operationalcredentials read fabrics [Node ID]
[Endpoint ID] Queries all Fabrics of the device.

pairing open-commissioning-window
[Node ID] [Option]
[Iteration] [Discrimi-
nator]

Open the device’s commission-
ing window and enter the device
pairing process.

accesscontrol read acl [Node ID]
[Endpoint ID] Read ACL in the current fabric.

accesscontrol write acl
[ACL Data]
[Node ID]
[Endpoint ID]

Write ACL to the current fabric.

binding write binding
[Binding Data]
[Node ID]
[Endpoint ID]

Describe a relationship between
the device that contains the bind-
ing cluster and the end device.

output ‘yes’; if it is not, output ‘no’. At the same time, you
should pay attention that when you analyze that the element
may be a return, back page, exit, or similar operation, put
such operations at the end to reduce invalid exploration such
as exiting the page too early. Likewise, if you find specific
device names or device icons related elements, put them in
the front position for exploration.
Your answer must always be one element per line, without
numbering (just like the list of elements given to you each
time). Your answer may not contain any explanatory text.
The number of elements you output must match the number
of elements in the original list given to you. You cannot omit
elements or modify the content of elements.
### Role: User
The list of elements is as follows:
<xxx><xxx>. . .
If you think the task has been completed, please output ‘0’.

The Crafted LLM Checking Prompt

### Role: System
You are an Interface Analyst for IoT apps based on the Matter
protocol, your responsibilities include:
1. Analyze the app interface screenshots I provide to de-
termine whether they contain specific information I have
designated.
2. Based on the presence of this information, evaluate the
vulnerabilities or security aspects of the app related to the
displayed interface.
3. Offer specific recommendations for remediation based on
the type of vulnerabilities identified.
You need to verify the presence of the following information
in the screenshot:
1. Check if there is any mention of “current app” or synony-
mous phrases.
2. Determine whether the number of Matter connection
services shown is two.
3. Assess whether the Matter connection services include the
special Label value.
4. Verify the availability of ACL query functionality.
5. Check for the presence of the phrase “Node ID”.
6. Determine if “Vendor ID” or the vendor’s name is dis-
played.
Your remediation suggestions should be as follows:
- If 1 is absent, suggest “Mark the current Matter controller
clearly.”
- If 2 is absent, suggest “Display all entries of Matter devices
fully; none should be hidden.”
- If 3 is absent, suggest “Display complete Fabric Label
values.”
- If 4 is absent, suggest “Include functionality for ACL
information query.”
- If 5 is absent, suggest “Display complete Node ID infor-
mation within the Fabric.”
- If 6 is absent, suggest “Mark the Matter controller’s Vendor
ID or the vendor’s name.”
The output format you should follow is:
{"flaws":"","suggestions":""}
You cannot output any other text except this format!
Example and explanation provided:

{
"flaws": "110001",
"suggestions": "Display complete
Fabric Label values. Include func-
tionality for ACL information query.
Display complete Node ID informa-
tion within the Fabric."

}

In this output, ‘flaws’ means that points 1, 2, and 6 were
confirmed as present (‘1’), whereas points 3, 4, and 5 were
absent (‘0’), resulting in “110001”. The ‘suggestions’ are the
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respective remediation advice for points 3, 4, and 5 linked
together, as explained.
If ‘flaws’ results in “111111”, then leave ‘suggestions’ blank.
### Role: User
The attached picture is the picture I provided to you, please
analyze it.
You can only output the JSON string {"flaws":"",
"suggestions":""}. Do not output any other text. Do
not output your analysis process. Do not output any textual
explanation.

B. Mitigation Recommendations of UMCCI Checker

MITIGATION RECOMMENDATIONS

Vendor design. The main reason for vendors encoun-
tering user interface flaws is due to design issues when
integrating the Matter protocol into their existing app
environment. In response to the flaws identified in § IV,
we propose the following defense recommendations:

• When vendors design unique IoT features based on
the Matter protocol, they must consider whether these
features conflict with existing Matter characteristics. It is
crucial to avoid flaws in the design of new functionalities
that could lead to missing or incorrect information in the
user interface. [Flaw Type 1]

• The Matter protocol is inherently local. When inte-
grating IoT cloud service frameworks, vendors must pay
close attention to the rigour of user interface logic and
information synchronization between Matter and other
protocol. This ensures that device owners can accurately
and timely understand the status of devices at home
through the user interface, preventing malicious actions
from being executed invisibly. [Flaw Type 2]

• Vendors using the Matter protocol should fully imple-
ment critical functionalities, especially those related to
device pairing and permission management in the user
interface. The design should also consider the users’
habits and the practicality of interactions with IoT de-
vices. [Flaw Type 3]

Matter design. The main problem with the Matter pro-
tocol is the lack of sufficient guidance for vendors on
user interface design, along with certain features in the
protocol that are not optimally designed. In response to
the flaws identified in § V, we propose the following
defense recommendations:

• Given that the Matter protocol currently allows for
arbitrary customization of controller and fabric data, such
as Vendor ID and Label, solely through API access,
there should be mechanisms introduced to verify the
legitimacy of these data. Similar to the existing Dis-
tributed Compliance Ledger (DCL) that monitors Matter
devices, certification or online checks could be employed
to promptly detect forged information. [Flaw Type 4]

• The Matter protocol should implement a system for
recording and managing node information. This would

not only facilitate the management of paired device nodes
for vendors and users but also prevent the invisibility
of malicious devices, thus enhancing the security of the
Matter protocol. [Flaw Type 5]

• The Matter protocol needs to strengthen its guidance
and constraints for vendors. Developer documentation
should clearly indicate which information is essential
to be displayed to users and how certain functionalities
differ from existing IoT protocol implementations. This
clarity will help reduce the security risks associated
with the highly autonomous development processes by
vendors. [Flaw Type 6]

Additionally, the CSA should enhance the information
in the following sections of Matter Specification version
1.3 [34] document to provide more rigorous guidance for
vendor development:

Essential Device Information Visibility [Flaw Type 1,
2, 4, 6]

• VendorID, FabricID, NodeID, Label in Section
11.18.4.5

The data structures FabricDescriptorStruct Type en-
codes a Fabric Reference for a fabric within which a given
Node is currently commissioned. Two of these Fields,
Vendor ID and Label, must be represented in the app UI
of the vendor’s design. A NOTE should be made here in
the document.

• CurrentFabricIndex in Section 11.18.5

This data structure is used to output the current fabric
index value. When a vendor’s Matter controller queries
the connected services of a Matter device, it should
display and mark which one is the current controller
(fabric) in the list, to prevent attackers from creating a
malicious fabric and confusing the device’s owner.

Essential Controller Functionality [Flaw Type 3, 6]

• FabricDescriptorStruct in Section 11.18.4.5

• RemoveFabric in Section 11.18.6.12

When implementing the Matter controller function-
ality in their clients, vendors must ensure it is complete.
Essential features must include the capability to query the
fabric of the Matter devices (i.e., the services to which the
devices are connected). In addition to correctly displaying
information about each fabric, it is also necessary to have
the ability to remove a fabric. This section should include
a NOTE to highlight this requirement.

Error Description Correction [Flaw Type 6]

Reserved Vendor ID Range Error in Section 11.18.6.8
and Section 2.5.2 Section 11.18.6.8 mentions that the
value of AdminVendorID should not be one of the re-
served Vendor IDs listed in Table 1 of Section 2.5.2.
However, Section 2.5.2 states that all Vendor IDs in
Table 1 are reserved, which implies that no Vendor IDs
are available for use. This creates a contradiction in the
descriptions between these sections.
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