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Abstract—Anonymous broadcast systems, which allow users to
post messages on a public bulletin board without revealing their
identities, have been of persistent interest over the years. Recent
designs utilizing multi-party computation (MPC) techniques have
shown competitive computational efficiency (CCS’ 20, NDSS’ 22,
PETS’ 23). However, these systems still fall short in communi-
cation overhead, which also dominates the overall performance.
Besides, they fail to adequately address threats from misbehaving
users, such as repeatedly spamming the system with inappropri-
ate, illegal content. These tangible issues usually undermine the
practical adoption of anonymous systems.

This work introduces Gyges, an MPC-based anonymous broad-
cast system that minimizes its inter-server communication while
reconciling critical anonymity and accountability guarantees. At
the crux of Gyges lies an honest-majority four-party secret-shared
relay. These relay parties jointly execute two key protocols: 1) a
“silent shuffling” protocol that requires no online communication
but relies solely on non-interactive, local computations to unlink
users from their messages, thereby ensuring sender anonymity; 2)
a companion fast and lean tracing protocol capable of relinking a
specific shuffled message back to its originator when the content
severely violates moderation policy, without jeopardizing others’
anonymity guarantees. Additionally, Gyges adheres to the private
robustness to resist potential malicious disruptions, guaranteeing
the output delivery while preserving sender anonymity. To better
support a large user base, the system also supports both vertical
and horizontal scaling. Our evaluation results show that Gyges’s
communication-efficient shuffle designs outperform state-of-the-
art MPC-based anonymous broadcast solutions, such as Clarion
(NDSS’ 22) and RPM (PETS’ 23), while its shared trace technique
can swiftly track down the misbehaving users (when necessary),
giving orders of magnitude cost reductions compared to traceable
mixnets (PETS’ 24) that offers similar capabilities.

I. INTRODUCTION

Anonymous broadcast has long been a focal point of com-
puter security research, allowing users to share messages while
ensuring that network observers cannot learn their identities.
Existing approaches in this area generally adhere to one of two
classical paradigms: 1) mix-nets, where a chain of intermediary
servers unlink the batched messages from senders by verifiably
and sequentially rearranging them [1]; and 2) DC-nets, which
obscure the true sender by having all users participate equally,
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Fig. 1. Overview of Gyges. Its core relay server group serves as the minimal
unit capable of jointly performing secret-shared shuffling and tracing to ensure
sender anonymity while enabling accountability for the misuse and abuse.

with only one sending a meaningful message while the rest
submit empty dummies [2]. However, traditional designs often
rely on computationally expensive public-key cryptography to
ensure non-malicious participation of users and servers [3–5].
Despite recent advancements [6–9], these systems still suffer
from relatively high latency, sometimes extending to tens of
minutes, particularly when scaling to accommodate millions
of users or very large messages.

In light of them, there has been growing interest in utilizing
multi-party computation (MPC) techniques to build more ef-
ficient anonymous communication applications. For instance,
MCMix [10] and Clarion [11] develop multi-party shuffle pro-
tocols to mimic the behavior of mix-nets chains; Riposte [12]
and Express [13] refine server-assisted DC-nets variants based
on recent multi-server function secret sharing primitive [14].
Compared to traditional solutions, MPC-based systems primar-
ily rely on symmetric and/or information-theoretic cryptogra-
phy, delivering competitive computational efficiency. However,
they remain suboptimal in terms of inter-server communication
costs, which is another dominating factor for the overall perfor-
mance. Meanwhile, although anonymity plays a critical role in
protecting privacy and promoting free expression, it has been
repeatedly criticized for disinhibition and harmful abuse [15–
19]. Internet trolls, for instance, would exploit anonymity as a
smokescreen to disseminate racism, misinformation, or illicit
content (e.g., child pornography and terrorist propaganda), all
while evading accountability. In addition, ensuring in-protocol
robustness – specifically guaranteed output delivery (G.O.D)
against malicious disruptions from both compromised users
and servers [20–22] – and scaling the system to serve a large,
increasing user base [8, 9, 23], are essential for the long-term
viability of anonymous services yet pose new domain-specific
challenges. Failure to address them could substantially impede
the practical adoption of such systems.
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System architecture. This work introduces Gyges, a secret-
shared accountable anonymous broadcast system built upon a
family of communication-efficient and privately robust MPC
techniques over the finite ring.1 At its core lies a non-colluding
four-party secret-shared relay, as shown in Fig. 1. These relay
servers collect client message shares and jointly execute two
key protocols: 1) secret-shared shuffle that unlinks users from
messages; and 2) secret-shared trace, triggered only when very
inappropriate content is identified, that relinks the shuffled
message(s) to their originating sender(s).

Cast in modern MPC terms, Gyges follows classical client-
server, offline-online paradigms and adheres to recent popular
small-party settings, specifically an honest-majority four-party
model. Such setups are recognized for providing many most
performant and deployable solutions [11, 24–26]. Gyges offers
cryptographic security and guarantees output delivery against
malicious adversaries capable of corrupting both the client and
server. During the offline phase, relay parties precompute some
message-independent correlated randomness – termed shuffle
correlation and trace correlation. In the online phase, parties
use these precomputed correlations to perform secure shuffling
over user message shares and, when necessary, trace abusive
content. Users (i.e., both broadcasters and subscribers) can
interact with Gyges in a manner akin to how they engage with
non-anonymous broadcast platforms like X/Twitter and Weibo,
yet with enhanced anonymity and accountability features.
Technical overview. In Gyges, we reexamine and address the
inherent tension among user anonymity, misbehavior account-
ability, and system performance in the context of MPC-based
anonymous broadcast. we start from a basic observation that “a
message vector X can be shuffled by applying a random row
permutation matrix M,” a well-established shuffle paradigm
in the literature [20–22, 26], denoted as

X ′ =M◦X .

Tracing, in turn, can be aptly modeled as a partial inversion of
the shuffling operation. Specifically, we deem each column of
the message-independent, secret-shared permutation matrix to
serve as a partial shuffle correlation, while each row encodes a
trace correlation. This framework 1) reduces secure shuffling
to a sharing-based multiplication problem; and 2) simplifies
secure tracing to a specialized sharing reconstruction problem,
enhancing both efficiency and viability.

Our primary contribution lies in a pair of fast and lean four-
party shuffling and tracing protocols (4PS and 4PT) over the
finite ring Z2 and Z2ℓ , specifically optimized to minimize its
inter-server communication. Central to this design is a novel
Boolean permutation correlation (BPC), sampled from ZN×N
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instead of naı̈ve ZN×N
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space. This retains somewhat inherent
sparsity to lower both communication and computation costs.
Our optimized protocols avoid lifting the secret-shared BPC

1The term “Ring of Gyges” derives from Plato’s Republic, where the Gyges
ring grants its wearer invisibility (anonymity). In alignment with the ethical
stance that such power should be wielded responsibly for greater social good,
we propose the secret-shared accountable anonymous broadcast system Gyges
and uphold that “with great anonymity comes great accountability.

elements from Z2 to Z2ℓ during the online computation and,
crucially, achieve zero online communication or interaction –
enabling what we term “silent shuffling” (refer to Table I).

Meanwhile, Gyges efficiently maintains robustness against
malicious disruptions while fully preserving anonymity. MPC
systems upholding security with abort are vulnerable to cen-
sorship, as adversaries may abort the protocol to block mes-
sage delivery [20]. Protocols with traditional robustness either
incur high system overhead or may risk anonymity by relying
on a process that reveals secrets to a non-malicious party [24].
To efficiently achieve G.O.D for anonymous services, we draw
on recent private robustness notion by Dalskov et al. [25] and
develop a suite of customized robust protocols with minimal
overhead, and without compromising anonymity.

Thirdly, we explore the scalability of Gyges with a focus
on enhancing anonymous communication service throughput.
Specifically, we note that our silent shuffling protocol design
works by having relay parties silently perform multiple inde-
pendent computations in parallel. This facilitates the effective
scaling of Gyges in two ways: 1) horizontally, by adding more
computing servers per party and distributing workload, and 2)
vertically, by utilizing GPU devices for faster processing.
Main contributions. Technically summarized below:
• Communication-efficient silent protocol design: In §IV

and §V, we propose a pair of shared four-party shuffling
and tracing protocols over the finite ring(s), specifically
designed to compress offline communication, minimize
online interaction, and optimize computation cost, result-
ing in concretely efficient solutions.

• Efficient privately-robust protocol design: Building on
the above semi-honest constructions, we extend privately
robust variants in §VI. This can efficiently guarantee the
output delivery of shuffled (or traced) messages, while
fully preserving sender anonymity.

• Throughput-oriented scalable protocol design: In §VII,
we revisit the scalability goal for anonymous communi-
cation and explore scaling our MPC-based designs both
vertically and horizontally for better performance.

Evaluation results. Putting all ideas together, we get Gyges,
a secret-shared accountable anonymous broadcast framework.
To demonstrate it, we evaluate Gyges and compare the results
against state-of-the-art MPC-based anonymous broadcast sys-
tems such as Clarion [11] and RPM [21], and recent traceable
mixnets [28] that provides a similar tracking capability. For
mixing 105 messages, each ranging from 32 B to 1 KB, Gyges
outperforms Clarion by 1.41× - 2.32× regarding the end-to-
end latency, while significantly lowering the online inter-server
communication cost. When tasked with tracking down a (or a
set of) shuffled message(s) flagged for abusive content, Gyges
delivers several orders of magnitude improvement over the
traceable mixnets (see details in §VIII and §IX).
Use cases, limitations, and ethical issues. Gyges can support
a variety of practical applications, such as anonymous social
network platform [16], metadata-hiding document sharing [29,
30] and instantiating other primitives like point-to-point two-
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TABLE I
COMPARISON OF THE CORE MULTI-PARTY SHUFFLE PROTOCOLS BETWEEN Gyges AND OTHER MPC-BASED ANONYMOUS BROADCAST SCHEMES.

Ref.†
Adversary
Structure

Security
Guarantees

Sharing
Scheme‡

User-server Server-Server (Offline)♮ Server-Server (Online) Selective
TraceabilityComp. Comm. Comm. Comp. Comm. Round⋄

AsynchroMix [22] r < n/3 Fairness Shamir O(1) O(ℓ) O(N log2 Nℓ) O(N log2 N) O(N log2 Nℓ) log2 N ✗

PowerMix [22] r < n/3 Fairness Shamir O(1) O(ℓ) O(Nℓ) O(N3) O(Nℓ) 2 ✗

Blinder [20] r < n/4 Robustness Shamir O(
√
N) O(

√
Nℓ) O(Nℓ) O(N2) O(Nℓ) 4 ✗

Rabbit-Mix [26] r < n/4 Robustness Shamir O(
√
N) O(

√
Nℓ) O(Nℓ) O(N2) O(Nℓ) 4 ✗

RPM-I [21] r < n/3 Robustness Shamir O(1) O(ℓ) O(N2ℓ) O(N2) O(Nℓ) 2 ✗

RPM-II [21] r < n/3 Robustness Shamir O(1) O(ℓ) O(N2ℓ) O(N2) O(Nℓ) 2 ✗

RPM-III [21] r < n/3 Robustness Shamir O(1) O(ℓ) O(N1.5ℓ) O(N1.5) O(Nℓ) q ✗
Ruffle [24] n=3;r=1 Robustness Replicated O(1) O(ℓ) O(Nℓ) O(1) O(Nℓ) 2 ✗

Clarion [11] n=2;r=1 Security with abort Additive O(1) O(ℓ) O(Nℓ) O(N) O(Nℓ) 6 ✗

Gyges n=4;r=1 Private robustness Replicated O(1) O(ℓ) O(N1.5) O(αN) 0 0 ✓
† Let n and r denote the number of computing parties and corrupted parties, respectively; N denote the message batch size; ℓ denote the bit length of each message; α represent

the non-zero element number in each column of a BPC matrix instance, which depends on how BPC is sampled from the unbiased (or biased) distribution of {0,1}; ✗ indicates
that the work does not explicitly consider the accountability issue, while ✓ indicates that our work does.

‡ Replicated refers to replicated secret sharing (RSS) [27]. Both Gyges and Ruffle leverage replicated sharing techniques over the finite ring in a small-party setting to achieve
lightweight robustness guarantees, though they employ very different sharing semantics and protocol specifications (details are discussed in §II and §VI).

♮ Inspired by Clarion’s use of a semi-honest helper party to facilitate shuffling, Gyges adopts a similar setup to boost the entire system. Compared to the traditional dealer, this
helper party is solely responsible for generating base materials, which are subsequently processed across relay parties as target correlations (see §V-A for details).

⋄ By definition, the online round (or communication) complexity typically excludes the message sharing and reconstruction phases. RPM-III requires q rounds, where q corresponds
to the depth of a square permutation network in its design. Clarion requires 2 rounds in the semi-honest setting and 6 rounds in the malicious setting. As a clear separation,
Gyges enables silent shuffling with zero inter-server communication/interaction in the online phase.

way anonymous message exchanging [10, 31], particularly in
the environment prioritizing communication efficiency.

In line with many prior anonymous communication systems,
we render a few rational trade-offs among system assumption,
performance, and security in Gyges. Importantly, we position
the accountability capability as a necessary mechanism to deter
the misuse of anonymity and promote responsible behavior,
rather than as a loophole to undermine anonymity itself. This
aligns with emerging research on content moderation [17, 32–
35]. Further discussions on the system limitations and ethical
considerations of Gyges are provided in §X.
Broader interest. The secret-shared shuffle protocol also acts
as a versatile building block applicable to other domains, such
as oblivious sorting [36], cryptocurrency tumblers [37], shuffle
differential privacy [38], and other metadata-sensitive applica-
tions where participants wish to hide their involvement [29].
The lightweight shuffling and tracing techniques developed in
Gyges may offer heuristic value for them.

II. RELATED WORK

Anonymous communication has come a long way, emerging
with foundational paradigms such as mix-nets or DC-nets [1,
2] and evolving significantly to deployed systems like Tor or
I2P [39, 40]. We next categorize and review a few systems
and techniques most relevant to Gyges.
Anonymity from MPS. The multi-party shuffle (MPS) pro-
tocol simulates the functionality of a mix-nets chain, securely
shuffling batched user messages while avoiding high computa-
tional overhead from public-key computations. Early designs,
such as MCMix [10] and AsynchroMix [22], adopt a switch-
ing network paradigm to obliviously swap elements multiple
times, typically requiring O(logN) interaction rounds and less
efficient when N is large. To reduce it, Clarion [11] draws on
a constant-round shuffle paradigm by Chase et al. [41] (aka
CGP protocol) and introduces a semi-honest assisting server
to facilitate shuffling. However, it obtains security with abort,

which is vulnerable to in-protocol DoS attacks – the adversary
can arbitrarily abort to prevent honest users from delivering
messages – and may be of other insecurity issues [42].

To obtain additional robustness guarantees against malicious
servers, we see another rich line of work, e.g., AsynchroMix
(PowerMix) [22], Blinder [20], and RPM [21], adopts standard
(n, t)-Shamir secret sharing. Despite featuring very succinct
forms and built-in robustness guarantees, these works over the
finite field Fp imply massive hidden computational costs in 1)
frequent modulo reductions with additional checks [43] and
2) frequent interpolations and polynomial degree reductions.
For better computational efficiency and simplicity, some MPC
deployers advocate for small-party setups over the finite ring.
For example, Ruffle [24] demonstrates a concrete three-server
solution with lightweight G.O.D. However, this is achieved by
utilizing a recent joint message passing primitive to identify a
non-malicious party and having it learn all secrets to perform
computations in the clear, which works well in the traditional
MPC context, yet risks violating anonymity guarantees. In par-
ticular, to prevent malicious users from submitting malformed
messages, many prior works generally assume the availability
of reliable broadcast channels [20–22, 24], which implies non-
negligible hidden costs yet are largely ignored.
Anonymity from PIR. The private information retrieval (PIR)
protocol allows users to obliviously read from or write some-
what virtual addresses, which functionally enables a DC-nets
and motivates another rich line of studies, such as Riffle [44],
XPIR [45], and Pung [46]. Recent solutions like Riposte [12],
Express [13], and Sabre [47] further utilize distributed point
function (DPF) [14] to lower communication costs.

Compared to MPS-based approaches, PIR systems usually
excel at handling individual messages but are vulnerable to se-
vere message collisions when multiple users are writing to the
same address. Techniques like Reed-Solomon coding [12, 48]
and large-domain virtual address sampling [13] can partially
mitigate collisions, but adversaries capable of compromising
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both servers and users can still exploit this weakness. Besides,
PIR systems usually impose much higher client-side costs and
are non-robust to server deviations.

Anonymity with scalability. Supporting a large user base is
essential for all anonymous communication systems to ensure
robust security, as encapsulated in the adage anonymity loves
company. Building on this principle, recent works Atom [23],
XRD [9], Trellis [8], and Streams [49] explored the horizontal
scaling of mix-nets by running multiple small mixing chains
in parallel to boost message shuffling throughput. Meanwhile,
Talek [50] and Blinder [20] employ vertical scaling strategies,
showcasing GPU acceleration in performance optimizations.

In contrast, MPC systems typically consider another flavor
of scalability notion for better flexibility and robustness against
malicious disruptions (or t-out-of-n adversary structure [20]).
However, the aforementioned “system scaling” and traditional
“MPC scaling” designs do not inherently comply. In the latter,
extending base protocols to an n-party variant also increases
the total share size and computational complexity, thus often
improving no service throughput. To bridge this gap, we thus
explore them both in our system contexts.2

Anonymity with accountability. A substantial body of litera-
ture has explored mitigating the potential misuse of anonymity
by integrating accountability mechanisms. Von Ahn et al. [51]
introduce the concept of selective traceability. Recent trace-
able mixnets [28] technically enable mapping encrypted egress
traffic back to its ingress source. Dissent [7] and its follow-
ups [52, 53] extend DC-nets to trace potential malicious actors.
Meanwhile, several works enable content moderation in end-
to-end encrypted messaging services [17, 33–35, 54], relying
on accountability strategies like threshold-based user reporting
or server auditing. In contrast to the above solutions relying on
costly public-key cryptography, Eskandarian [32] introduces a
shared message franking mechanism, demonstrating signifi-
cant performance improvements.

Inspired by them, we propose a secret-shared tracing proto-
col that can swiftly identify the origin of broadcast messages
containing highly inappropriate content. To mitigate the inher-
ent risks of accountability misuse, such as the false reporting
of benign users, we also introduce necessary pre- and post-
tracing safeguards (see details in §V-D).

III. BACKGROUND

Secure multi-party computation (MPC). Client-server MPC
allows multiple users Ci to secretly share their private data
xi with a group of servers Pj , who then jointly compute a
function f without revealing the inputs. While many MPC pro-
tocols operate over finite fields Fp, trading off interaction and
communication, recent protocols have increasingly focused
on the finite ring Z2ℓ due to better computational efficiency
on modern hardware [43, 55–57]. Additionally, many modern
MPC protocols adhere to the classic preprocessing model [58],

2To emphasize scalability designs in Gyges, we differentiate the term party
from server. Each party can host multiple computing servers. For simplicity,
however, we may use them interchangeably unless otherwise specified.

especially in small-party settings [11, 24], where a few servers
precompute some input-independent correlated randomness to
enhance concrete online efficiency and simplicity.

Replicated secret sharing (RSS). A t-out-of-n RSS scheme
divides a secret x into n pieces, distributing them to n parties
such that any t of them can reconstruct the secret, while fewer
cannot [27]. A value x∈Z2ℓ is said to be (4, 2)-RSS or [·]-
shared, if there exist [x]i ∈ Z2ℓ , such that x=

∑
i[x]i and each

Pj holds [x]i where i, j∈{1, 2, 3, 4} and i ̸=j. To distinguish
between the arithmetic and Boolean sharing, the latter is said
to be ⟨x⟩i-shared, where xi ∈ Z2. Similarly, we say arithmetic
(4, 3)-RSS to be [[·]]-shared. For simplicity, we may slightly
abuse the sharing notations and will specify it when necessary.

Compared to the additive sharing scheme, RSS offers extra
robustness potential via redundancy. Unlike Shamir sharing,
RSS achieves much better computational efficiency, albeit with
increased storage and communication costs as n and t grow.

Four-server one-bit distribute point function (DPF). A DPF
scheme among n parties with 1-bit output, evaluated over the
full domain, consists of an algorithm pair (Gen,Evalall) [14],
where ki∈{1,...,n} ← Gen(m, 1) samples a tuple of DPF keys
for a binary point function and Evalall(ki, x) evaluates on
every point x in a full domain of size N . The result of
Evalall is the binary shares of an N -dimension one-hot vector
e(m)=[0, ..., 1, ..., 0]T , where m is the index of 1, denoted as,

e(m) =

i=4⊕
i=1

DPF.Evalall(ki, x)

The most efficient n-party DPF scheme for n > 2 remains
Boyle et al.’s original matrix-based construction [14], with the
compressed key size of O(

√
N). Gyges makes the black-box

use of a minimal 4-server 1-bit DPF to build BPC correlation.

IV. SYSTEM MODEL

A. Design Goals and Non-Goals

The system is expected to exhibit following key properties:
• Sender anonymity: The system must ensure that senders

remain securely unlinked from their messages within each
broadcast round, as defined by [59, 60]. In this process,
no external observer or system participant can attribute
specific mixed messages to their originators.

• Selective traceability: The system must enable authenti-
cated tracing of abuse messages back to their sources,
while maintaining the anonymity of others, following the
model in [28, 51]. This process should be confined to
moderation policies, ensuring traceability is not misused.

• Private robustness: The system must resist the in-protocol
DoS attack by malicious adversaries, ensuring guaranteed
output delivery. In doing so, this should also preserve
the anonymity of honest participants (both clients and
servers), in line with principles established in [25, 61].

• System scalability: To accommodate practical service de-
mands, the system must scale well to enhance throughput
and serve a large user base, as suggested by [9, 20].
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These goals, along with the ideal functionality of our system
Gyges, are formally described in §IV-C. It is important to note
that Gyges focuses primarily on preserving sender anonymity
within a single broadcast round. Addressing intersection at-
tacks, where adversaries correlate multiple broadcast rounds to
narrow the anonymity set, falls outside the scope of this work.
However, this limitation is not unique to Gyges; it is a common
constraint shared by similar systems [10, 11, 20–22, 24, 26].
Furthermore, as with most prior MPC systems, Gyges does not
aim to fully resist network-level failure attacks. Non-malicious
relay parties are expected to stay online and interact faithfully
throughout the protocol execution. To accommodate potential
failures, we allow each relay party to operate multiple servers,
requiring only that at least one relay server per party remains
consistently available (see §VII).

These proposed goals and non-goals generally outline the
operational contexts and ideal deployment scenarios of our
system. While a determined nation-state adversary could still
censor users or disrupt anonymous broadcast services by dis-
abling the relay server, addressing such a powerful adversary
is outside our scope. Instead, Gyges strikes a pragmatic bal-
ance between sender anonymity, misbehavior accountability,
and system availability, making it particularly well-suited for
social network platforms that seek to offer usable anonymity
guarantees while adhering to legal and ethical standards.

B. Threat Model and Security Assumption

We let Ci∈{1,2...,N}∈C be client, xi∈{1,2...,N}∈X be Ci’s
message, Pi∈{1,2,3,4} ∈ P be relay party, H be semi-honest
helper party, M∈ZN×N

2 denote a permutation matrix, S/S ′
be the input and output sharing schemes, specifically referring
to (4, 2)/(4, 3)-RSS in our work, X ′ denote mixed messages,
and A be malicious adversaries that can actively deviate.

We consider A capable of compromising both the user and
relay party in a rational honest-majority setting. Let Cc be the
corrupted user set and Pc be the corrupted party set. We as-
sume that the number of corrupted users satisfies |Cc|< |C|2 (for
a reasonable reporting threshold) and the number of corrupted
parties is |Pc| = 1 < |P|

2 (ensuring in-protocol robustness).
Following many prior MPC-based systems [11, 21, 22, 24],
we assume that relay parties do not collude with one another
or with the additional helper party. However, a corrupted relay
party may collude with (or control) multiple compromised
clients. Despite this, we note that neither the corrupted users
nor the corrupted relay server can successfully de-anonymize a
benign user by abusing the tracing function. In addition, unlike
some prior works that assume the availability of expensive
(reliable and consistent) broadcast channels, all client-server
and server-server communications in Gyges are conducted via
minimal point-to-point channels [62]. Further details regarding
the attacker’s capabilities and the de-anonymization attack
analysis can be found in Appendix C and Appendix D.

C. Shared Accountable Anonymous Broadcast Functionality

Definition 1 (SSAAB): Secret-shared accountable account-
able anonymous broadcast (SSAAB) functionality interacts

with clients C, relay parties P , helper party H , and malicious
adversary A, defined as a tuple of algorithms,
• SSAAB.Bpc(): Upon receiving the preprocessing signal,

– H generates a secret-shared random Boolean permuta-
tion matrix S(M′), sends corresponding shares to P .

– P agree on a common random permutation π and
compute correlation as S(M) = π(S(M′)).

• SSAAB.Msg(): Upon receiving the messaging signal,
– Ci sends message shares S(xi) to P .
– P collect, combine all S(xi) and generate consistent

secret-shared user message set S(X ).
• SSAAB.Mix(): Upon receiving the shuffling signal,

– P jointly evaluate the secure inner product on every
BPC row S(M(i)) with the message set S(X ), then set
results as the shuffled message set, denoted as S ′(X ′).

• SSAAB.Rec(): Upon receiving the reconstruction signal,
– Ci retrieves S ′(X ′) from P , and recovers X ′.

• SSAAB.Tra(): Upon receiving the tracking signal,
– C report the abuse message, denoted as x′a.
– P and H jointly audit the content of x′a under modera-

tion policy D, and if warranted, P trigger the tracking
process for the abuse message.

– P jointly recover the rowM(a), identify the misbehav-
ing user and perform appropriate management actions.

The SSAAB functionality can 1) unlink C from X (and X ′)
via secret-shared shuffling; and 2) relink specific, inappropriate
message x′a∈X ′ to its true sender Ci via secret-shared tracing.
Its correctness and security depend on the underlying MPC
specification and the inputs’ well-formedness. A protocol Π is
considered secure if, for any A, there exists an ideal simulator
Sim such that their views are computationally indistinguish-
able, denoted as REALΠ,A≈cIDEALF,Sim.

More formally, the probability that A can guess whether a
mixed message x′ was sent by a specific Ci should satisfy,

Pr[A(x′, Ci)=1]≈cPr[A(x′, Cj)=1], for i ̸=j.

The selective accountability goal mandates that P must deter-
ministically identify the sender of an inappropriate message x′

in accordance with policy set D, while ensuring the anonymity
of benign users is rigorously preserved. denoted as

Pr[D(x′a,M(a)) = p] ≈c p, for p∈{0, 1}.

To capture robustness guarantees, for any honest user Ci /∈Cc
and his/her message xi, the failure probability of delivering
its correctly processed output despite adversarial disruptions
should be negligible, denoted as below,

Pr[A(xi,Mi) =⊥] ≈c 0, for Ci /∈ Cc.

Let ni be the number of servers managed by party Pi, and bi
the computational capacity per server. As ni and bi increase,
the service throughput T scales polynomially:

T ∝ poly(min(ni),min(bi)), for i∈{1, 2, 3, 4}.

For more detailed system analysis, see §VIII and Appendix C.
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Fig. 2. Gyges’s BPC generation and BPC-based secret-shared shuffling.

V. FAST AND LEAN SHUFFLING AND TRACING

We first introduce our 4PS/4PT in the semi-honest setting
and extend them for robustness (§VI) and scalability (§VII).

A. Correlated Boolean Permutation Randomness

Definition 2 (BPC): Let M ∈ ZN×N
2 be a randomly, uni-

formly sampled Boolean permutation matrix of N -by-N size.
We define Boolean permutation correlation (BPC) as a tuple
of random Boolean matrix shares (⟨M⟩1,⟨M⟩2,⟨M⟩3,⟨M⟩4)
correlated via element-wise exclusive or, such that:

M=

i=4⊕
i=1

⟨M⟩i,

each row and column ofM has exactly one entry of 1, with all
others being 0. Formally, for all k∈{1, ..., N},

⊕j=N
j=1 Mj,k=

1 and for all j∈{1, ..., N},
⊕k=N

k=1 Mj,k=1.
Rationales behind BPC. Akin to the Beaver triples in secure
multiplications [63], BPC is specifically designed to facilitate
secure shuffling tasks. Notably, BPC depends only on message
number N and is independent of message size ℓ. This results
in compressed offline overhead, making it highly efficient for
mixing extremely large messages (e.g., 1 – 2 KB per chunk
in cryptocurrency transactions [64]). Additionally, BPC can
maintain somewhat inherent sparsity, comprising only 0s and
1s, which we further leverage to optimize online computational
performance (as detailed in §V).

As illustrated in Fig. 2, we let Mk denote the k-th column
of a BPC matrix. The index of the value 1 in Mk indicates
the target virtual address to which message xk is shuffled.
Similarly,M(k) refers to the k-th row, where the index of the
value 1 represents the virtual address from which message x′k
was shuffled. For clarity, we refer to these as shuffle correlation
and trace correlation, respectively.
Well-formed BPC generation via DPF. Inspired by Clarion’s
use of a semi-honest assisting server that facilitates the offline
protocol [11], we employ a helper party H to generate and dis-
tribute required “well-formed” base BPC shares. This natural
yet effective approach significantly reduces the preprocessing
cost and eliminates potential message collisions [11, 12, 20],
which is crucial for ensuring the accountability goal.

Specifically, each column in BPC is a binary shared one-hot
vector ⟨e(k)⟩. To generate this, H can encode k into 4-party
1-bit DPF keys and distribute these keys to P in a (4, 2)-RSS
format, resulting in O(

√
N)-bit communication per column.

Pj ∈ P then evaluates these key tuples over the full domain
to obtain base BPC shares, with a computational complexity

Protocol ΠBPC[H,P]: BPC Generation

Input: Security parameter λ, message batch size N .
Output: ⟨M⟩-shared permutation matrix.

Protocol: Given a security parameter λ and batch size
N , the protocol proceeds as follows,
1) Base BPC generation:
• H generates a random N -by-N Boolean permu-

tation matrix M′ ← 1λ.
• For each i ∈ {1, ..., N}, H encodes i-th col-

umn of M′ into a DPF key tuple kij where
j ∈ {1, 2, 3, 4}, and distributes each key kij to
P , following the (4, 2)-RSS format.

• All Pj ∈P locally evaluate all received kij over
the full domain, obtain ⟨M ′⟩k for i∈{1, ..., N}
and j, k∈{1, 2, 3, 4}, where j ̸=k.

2) Non-linear BPC rotation:
• P sample a common permutation π←1λ.
• All Pj ∈ P compute local shares π(⟨M′⟩k) on
j, k∈{1, 2, 3, 4} where j ̸=k, and set it as ⟨Mk⟩.

Fig. 3. Offline BPC generation and non-linear rotation protocol.

of O(N). This arithmetic-to-one-hot sharing conversion effec-
tively compresses the communication costs.

Non-leaky BPC construction via non-linear rotation. The
BPC instance discussed above is, unfortunately, not private to
H . To mitigate this, we allow P to rotate each column with
different offsets (i.e., non-linear rotation), thus deriving a new
private BPC instance. This non-linear rotation is performed
by having P sample a random permutation π and apply it to
non-interactively switch local column identifiers, rather than
switching the real column shares themselves. This approach
ensures concretely efficient execution. As depicted in Fig. 3,
when ΠBPC terminates, each Pj holds well-formed ⟨M⟩.

Our BPC generation protocol relies on a helper party H for
DPF key tuple sampling and distribution. While Doerner and
Shelat [65] propose a distributed DPF key generation protocol
that eliminates the need for H , it introduces significant pre-
processing overhead and scalability challenges. Another line of
work [66–68] explores the use of trusted hardware for efficient
correlation generation, albeit at the cost of added complexity
and assumptions, which could also support our design. In this
work, we retain H , following a rationale similar to that of
Clarion [11], to prioritize system availability.

The correctness and security of ΠBPC can both be reduced
to those of the underlying DPF evaluation process (see [14]).

B. Secret-Shared Messages Collection

Once message xi is ready, Ci distributes it to P . Each Pj

learns three out of four shares. This sharing redundancy grants
robustness but brings message inflation: it requires 12ℓ bits
in total to represent per ℓ-bit message. Unlike conventional
MPC use cases, where repeated computations over the same
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shared data entry can amortize such sharing costs, messages in
anonymous communication are typically one-time and rarely
reused, limiting amortization opportunities.
Pseudorandom sharing. To compress such user-server com-
munication, we employ classic pseudorandom secret sharing
(PRSS) technique [27] (see Fig. 14 in Appendix A), allowing
most shares to be generated by servers, reducing the per-
message communication from the original 12ℓ to 3ℓ.
Chunking for long messages. Standard CPU and GPU plat-
forms can efficiently handle arithmetic modulo 2l, especially
for certain, small ℓ∈ {32, 64}. However, real-world systems,
such as X/Twitter and Zcash, often deal with larger message
sizes (e.g., up to 280 B per tweet [69] and 2 KB per Zcash
transaction [64]). To efficiently bridge this gap and support
messages with arbitrary lengths, we incorporate a chunking
mechanism that breaks down long messages into smaller, more
computation-friendly pieces. Computations are then uniformly
applied to all chunks of a message, ensuring efficiency and
flexibility across varying message sizes.

C. Sender Anonymity via Silent Shuffling

Once both the BPC and shared message set are prepared,
the relay servers can jointly execute secret-shared shuffling.
Detour: shuffling via multiplication over Fp or Z2ℓ . Rear-
ranging messages using a private permutation matrix can be
formulated as a secure dot product between a matrix rowM(i)
and the message vector X (see Fig. 2(b)). To accomplish this,
the elements of M(i), initially in Z2, need to be lifted to the
same domain as the messages, i.e., Z2ℓ .

Additionally, in (4, 2)-RSS, each single multiplication gate
can be expanded and evaluated as follows:

xy = (

i=4∑
i=1

[x]i)(

j=4∑
j=1

[y]j) =

subterms known to 3 servers︷ ︸︸ ︷∑
k∈{1,2,3,4}

[x]k[y]k

+

u̸=v∑
u,v∈{1,2,3,4}

([x]u[y]v + [x]v[y]u)︸ ︷︷ ︸
cross subterms known to 2 servers

.

Throughout this process, all subterms τ can be locally com-
puted, either by two or three servers. τ known to three
servers naturally adhere to (4, 2)-RSS, while τ known to
only two servers require one more resharing round to comply
with (4, 2)-RSS [25]. For example, P3 and P4 compute
τ = [x]1[y]2+[y]1[x]2 and reshare the result by setting [τ ]1
as a random r, known to P{2,3,4}, and sending [τ ]2 = τ−r
to P{1,3,4}, thereby converting (4, 3)-RSS subterms back to
(4, 2)-RSS ones to facilitate follow-up computations. Recent
advances have further demonstrated that secure dot products
can be performed within a single online interaction round
(independent of N ) by combining all linear subterms with
the same index into a larger subterm [20, 25].
Sparsity-aware optimization. Instead of lifting BPC elements
from Z2 to Z2ℓ and performing computations on all entries, we
focus exclusively on the non-zero entries. Specifically, each

Protocol Π4PS[P]: Message Shuffling

Input: [X ]-shared messages and ⟨M⟩-shared BPC.
Output: [[X ]]-shared shuffled messages X ′.

Protocol: The protocol works as follows,
1) LUT construction: For each row i ∈ {1, 2, ..., N},

Pj builds non-zero index LUT Tij for partial BPC
share ⟨M(i)⟩k where j, k ∈ {1, 2, 3, 4} and j ̸= k.

2) Sparsity-aware inner product: For l ∈ Tij ,
• Pj locally computes the term

∑
l([xl]u) where

u ∈ {1, 2, 3, 4} and u ̸= j as its local subterm
known to three parties.

• Pj locally computes the term
∑

l([xl]v + [xl]w)
where v, w ∈ {1, 2, 3, 4}, v ̸= w ̸= j, and v < w
as its cross-subterm known to two parties.

3) Silent shuffling: Repeat the step 2) for each row
i ∈ {1, 2, ..., N}.

Fig. 4. Silent and sparsity-aware online shuffling protocol.

column of a BPC share is represented using a lookup table
(LUT) that stores only the indices of the entries with a value of
1. At the same time, users should encode their ℓ-bit messages
in a bitwise Boolean-shared manner rather than the original
arithmetic-shared format. For simplicity and consistency, we
slightly abuse and retain the semantics of arithmetic sharing
(i.e., [·]) and addition (i.e.,

∑
,+) to denote de facto bitwise

Boolean sharing schemes and exclusive OR operations in later
sections and Fig. 4. The small LUT can be precomputed during
the offline phase, allowing its construction cost to be amortized
across chunking scenarios. For instance, when splitting ℓ-bit
messages into d chunks, the shuffling of all chunks X [i] (where
i ∈ {1, 2, . . . , d}) can leverage the same BPC, incurring no
additional offline overhead.

Silent execution and message reconstruction. In the vanilla
4-party multiplication protocol proposed by Dalskov et
al. [25], at least one interaction round is required to reshare [[·]]-
shared intermediate results into the same format as [·]-shared
inputs, i.e., converting (4, 3)-RSS to (4, 2)-RSS. This resharing
step is essential in generic MPC scenarios, as the output shares
are often used as inputs for subsequent computations. In our
anonymous broadcast setting, however, we observe that the
output of Π4PS only needs to be reconstructed, eliminating
the necessity for an additional round to ensure sharing format
consistency. For example, any three servers can jointly recon-
struct [[X ′]] directly, without first converting it into [X ′] before
performing reconstruction.

By doing so, we eventually derive a shuffling protocol that
requires no online interaction – termed the silent shuffling. This
customized approach reduces the online communication to an
optimal zero, significantly enhancing the system efficiency.

The correctness and security of Π4PS in Fig. 4 are grounded
in the underlying non-interactive multiplication protocol, we
also detail them in §VIII and Appendix C.
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Fig. 5. Gyges employs both 1) threshold-based user report, and 2) server
audit mechanisms to identify and flag inappropriate messages. The servers
then trace and manage misbehaving users in accordance with policy D.

D. Accountability via Information-Theoretic Tracing

In this section, we address the dual problem of the secure
shuffling protocol that achieves sender anonymity – a secure
tracing protocol that enables accountability.

Detour: traceability using public-key cryptography. A trac-
ing protocol aims to offer a mechanism to relink a user Ci with
an output message x′j accused of abuse, while preserving the
anonymity guarantees for all other participants. Traditionally,
this goal has been achieved using heavy public-key crypto-
graphic techniques like zero-knowledge proofs – either by en-
abling clients to prove their non-malicious participation [70] or
having servers jointly return the queries about the verification
of users’ behavior [28]. These approaches, while feasible, are
computationally very expensive in practice.

Secret-shared tracing. Building upon secret-shared shuffling
designs, we introduce a companion secret-shared tracing pro-
tocol that eliminates the need for public-key cryptography by
leveraging the BPC gadget introduced in §V-A. This design
significantly reduces the computational overhead typically
associated with traceability in prior systems. The core idea is
that each row in the BPC matrix uniquely corresponds to the
sender of a message. Specifically, tracing is accomplished by
partially reconstructing the relevant matrix row and identifying
the 1-index within the reconstructed row.

For example, as in Fig. 5, if a message x′i from the shuffled
set X ′ is flagged for tracing, the index of 1 entry in the M(i)

directly reveal the identity of its sender. This approach en-
sures computational efficiency and simplicity while preserving
sender anonymity for all other unflagged messages, aligning
with the selective traceability objective of Gyges. To ensure the
correctness and security of the tracing process, we note that
each row in the BPC matrix must be well-formed, containing
exactly one 1-entry. This property is inherently guaranteed
under the semi-honest assumption of the helper party H and is
maintained across the honest-majority assumption of the relay
parties P . A detailed analysis of security and system properties
is provided in §VIII and Appendix C.

Pre-tracing content moderation and post-tracing manage-
ment. The traceability mechanism must be carefully integrated
with complementary pre- and post-tracing designs to prevent
the potential misuse of accountability capability.

In this work, we adopt two widely used moderation strate-
gies [17, 32–34] to safeguard honest users against false accu-
sations: 1) threshold-based user reporting and 2) server-side

Protocol Π4PT[C,P, H]: Message Tracing

Input: [M]-shared of BPC, a shuffled message x′a,
moderation policy set D, and report threshold η.
Output: The identifier k of x′a’s sender or abort.

Protocol: The protocol proceeds as follows,
1) Users reporting and servers auditing: For a mes-

sage x′a that has been reported by users exceeding
a predefined threshold η,
• P and H audit x′a’s content according to D and

set an abuse flag flaga under majority consensus.
• If flaga = 1, Pj sends the share ⟨M(a)⟩k to Pk

where j, k∈{1, 2, 3, 4} and j < k. Else, abort.
2) Selective tracing: P reconstruct M(a) and return

the index of 1 entry under a majority consensus.
3) Misbehavior management: P jointly handle mis-

behaving clients according to D.

Fig. 6. Information-theoretic tracing and misbehavior management protocol.

auditing. A traceback request is triggered only after a prede-
fined reporting threshold η is reached, and the tracing process
proceeds only when the servers achieve consensus based on the
moderation policy set D (see Fig. 5(a)). This design ensures
that merely controlling multiple users or corrupting a single
server is insufficient to exploit the accountability mechanism.
Given the public nature of messages in (anonymous) broad-
cast applications, both user reporting and server auditing are
practical and straightforward to implement.

Importantly, the tracing functionality will only be invoked
for very inappropriate, illegal content (e.g., terrorist propa-
ganda) as defined in D. For less severe infractions, milder mea-
sures like message filtering would suffice. For identified misbe-
having users, standard responses typically include: 1) blocking
future participation [54, 71], or 2) revoking anonymity [72].
While the development of specific pre-tracing policies and
post-tracing management strategies lies beyond the scope of
this work, they are critical and warrant further investigation.

VI. PRIVATE ROBUSTNESS

We now explore robust shuffling and tracing in the presence
of malicious adversaries attempting to disrupt the system.
Private robustness [25], or its broader abstraction, MPC with
friends and foes [61], ensures output delivery without the need
to collaboratively identify or depend on a trusted party capable
of learning all secrets and performing computations in the clear
on behalf of others. Both privacy and robustness are of great
importance for anonymous communication systems.

Rationale behind [·]-sharing. The [·]-sharing or (4, 2)-RSS
offers the minimal redundancy required for our private robust-
ness. Each input share has three copies, and given that, at most,
one server may be malicious, we can apply a majority rule
to identify the correct share. The protocol output follows the
(4, 3)-RSS structure, where each output share has at least two
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Protocol ΠWCS[C,P, H]: Consistent Sharing

Input: A share [xi]j known to Ci ∈ C.
Output: Weak consistent [xi]j known to three servers
Pk, where j, k ∈ {1, 2, 3, 4} and j ̸= k.

Protocol: The protocol proceeds as follows,
1) Share commitment:
• Ci sends a commit δ = Hash([xi]j) to H and

sends [xi]jk to Pk, where [xi]jk denotes the copy
of [xi]j held by Pk.

• P and H set a complain counter flagc = 0.
2) Weak share consistency: For all j, k ∈ {1, 2, 3, 4}

and j ̸=k; Pk computes δk=Hash([xi]jk). If δk ̸=
δ, Pk complains and increases flagc by 1.
• If flagc ≥ 2, identify Ci as corrupted and set xi

as dummy default value.
• If flagc = 1, set [xi]jk = [xi]jl requested from a

non-complaining server Pl.

Fig. 7. Weak consistent user message sharing protocol.

Protocol ΠRMC[C,P]: Robust Recovering

Input: [[X ′]]-shared shuffled messages.
Output: X ′ known to C.

Protocol: The protocol works by letting a client Ci

pulling all [[X ′]] from P ,
1) Consistent reconstruction: If all shares are con-

sistent, recover X ′.
2) Inconsistent reconstruction:
• If subterm shares with three copies are inconsis-

tent, recover X ′ according to majority rule.
• If cross-subterm shares with two copies are in-

consistent, recover both X ′ and X ′′ according to
two share copies, respectively.

Fig. 8. Privately robust output message reconstruction protocol.

copies. This feature essentially facilitates the robust shuffling
and the robust reconstruction. In comparison, using (3, 2)-RSS
inputs in our silent execution paradigm would result in a non-
replicated (3, 3) additive output share, while larger (n, t)-RSS
schemes would introduce significant overhead [43].

From robust computation towards robust reconstruction.
Notably, our silent protocol execution is non-interactive, and
this indeed equally defers any potential online local deviation
to the reconstruction phase. As detailed in §V-C, the recon-
struction operates upon (4, 2)-RSS and/or (4, 3)-RSS message
shares. They both offer somewhat error correction capabilities
under the Q2 adversary structure [73]. This eliminates the need
– and associated costs – of identifying a non-malicious party,
a common requirement by traditional robustness [24], yet also
guarantees the correct output delivery for benign users.

Protocol ΠBlame[P, C]: Party Blaming

Input: [X ], [[X ]] or [X ′], [[X ′]]-shared messages.
Output: Possible corrupted party set Pc, honest party
set Ph, and corrupted client set Cc.

Protocol: The protocol proceeds as below,
1) Conflicting group initialization: Set Pc = P and
Ph = ∅, set Cc = ∅.

2) Corrupted entity set updating:
• Once an a party Pi complains and blames another

party Pj , set a conflicting group G={Pi, Pj}, set
Pc=Pc ∩ G and honest party set Ph=P−Pc.

• Once a party Pi blames a client Ck and Pi ∈ Ph,
set Cc = Cc ∪ {Ck}.

Fig. 9. Blaming game and conflicting group reduction protocol.

A. Enforcing Input Well-Formedness

To safeguard the system from malicious users, it is essential
to ensure that input message shares adhere to the (4, 2)-
RSS format. For example, if a corrupted client Cc sends a
malformed share [xi]4 to P{1,2,3}, a corrupted server could
further exploit this inconsistency to manipulate the shares,
potentially compromising the integrity of all other messages.
Weak secret sharing. To address this issue without resorting
to expensive verifiable secret sharing (VSS) [74] or Byzantine
reliable broadcast (BRC) [75] primitives like prior works, we
assume a public mailbox address managed by the helper party
H and tailor on the weak secret sharing (WSS) model by Ra-
bin and Ben-Or [76], which additionally grants honest servers
the capability to modify (potentially inconsistent) shares and
ensure minimal consistency at relatively low costs.
User commitment. When a user sends his/her message shares
to servers P , he/she also posts a collision-resistant hash (or
a sharing-friendly Carter-Wegman MAC) to a public mailbox
(maintained by H) as the commitment of share. Servers verify
the integrity of received shares via these commitments, raising
a complaint if inconsistencies are detected, as shown in Fig. 7.
Our approach rests on two critical observations: 1) honest
servers will never issue false complaints against honest users;
and 2) message integrity need not be guaranteed for malicious
users sending malformed shares. Rather than pinpointing the
malicious entity and excluding them, WSS allows us to achieve
a consensus by adjusting inconsistent shares to a consistent,
dummy value, ensuring no malicious client can disrupt the
protocol and no malicious server can impede honest client
participation. For BPC, its well-formedness is secured by H
and maintained across P under the majority rule.

B. Robust Reconstruction and Blame Game

We then extend our design to incorporate robust reconstruc-
tion capabilities for [[X ]]-shared shuffled messages, ensuring
G.O.D even in the presence of malicious server disruptions.
The key insight is to avoid the explicit identification of exact
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Fig. 10. System scaling of basic 4PS/4PT protocols in both horizontal and
vertical directions for better system throughput and performance.

cross subterms prior to reconstruction. Instead, ΠRMC detailed
in Fig. 8 will generate two potential shuffled message batches,
denoted as X ′ and X ′′, whenever inconsistencies are detected.
Among these two batches, one – typically the one containing
meaningful content – is guaranteed to be valid and correct.
This streamlined mechanism efficiently addresses inconsisten-
cies arising from malicious deviations while maintaining full
anonymity guarantees for honest participants.
Blaming and conflict group updating. As shown in Fig. 9,
any inconsistencies detected during earlier steps lead to the
formation of a conflict group. Two critical observations will
guide this process: 1) at least one entity in a conflict group
is malicious, and 2) honest parties never blame honest users.
These properties enable the iterative reduction of group size
via set intersections, ultimately isolating the malicious party.
This approach is analogous to the player elimination tech-
nique [77] employed in Shamir sharing but requires neither
interpolation nor recomputation. Detailed rules for this process
are shown in Appendix B (see Fig. 15).
Computing with a known cheater. Recent work by Brugge-
mann et al. [78] highlights MPC systems can retain a known
cheater for better performance. Based on this insight, we adopt
a similar technique: once conflicting group Pc is reduced to a
single entity, the system can then directly replace malformed
messages with consistent dummy values. This transformation
effectively neutralizes the impact of the malicious contribution,
treating the dummy message as somewhat cover traffic against
external network observers rather than directly excluding it.

VII. SYSTEM SCALING

Aligned with numerous prior studies [8, 9, 20, 23, 31, 50],
we anticipate that our secret-shared accountable anonymous
broadcast techniques can scale effectively, thereby enhancing
mixing service throughput to better accommodate a broader
user base with stronger anonymity.
Viability of MPC-style scaling. Conventionally, MPC deploy-
ers may often consider scaling their basic small-party solutions
to n-party variants for better deployment flexibility. By using
generalized (n, t)-RSS techniques, as outlined by Baccarini
et al. [43] and Dalskov et al. [56], our four-party shuffling
and tracing schemes could theoretically expand to the n-party
setting. However, this also incurs proportional increases in
total share size and computational overhead, offering no tan-
gible server throughput improvements. Instead, we adopt two
alternative scaling strategies to enhance protocol execution,
ensuring that the number of messages processed per party

Protocol ΠScale[P]: Protocol Scaling

Input: The same as protocol Π4PS and Π4PT.
Output: The same as protocol Π4PS and Π4PT.

Protocol: Let each party Pi ∈P hold a management
server and multiple computing servers, denoted as Pm

i

and Pih. The GPU server held by party Pi is denoted
as P g

i . Then the protocol proceeds as follows,
1) Horizontal scaling: Pm

i coordinates and distributes
local computation to different Pih servers.

2) Vertical scaling: Pm
i coordinates and loads local

computation to P g
i server.

3) Results aggregation: All computing devices (i.e.,
Pih and P g

i ) return locally computed results to Pm
i

for aggregation and reconstruction.

Fig. 11. Scaling execution of core four-party shuffling and tracing protocols.

grows polynomially with the addition of servers (horizontal
scaling) or enhancements in per-server computational capacity
(vertical scaling), as illustrated in Fig. 11.
Horizontal scaling. Inspired by recent high-throughput mix-
net designs such as Atom [23], XRD [9], and Stadium [79],
which employ parallelized small mix chains, we take a similar
approach in our relay group. Specifically, one relay party man-
ages multiple computing servers, with tasks distributed and
performed across these smaller, parallelized units. Our silent
protocols are well-suited to horizontal scaling, as the online
phases are dominated by computational workload rather than
communication or interaction. Adding more servers per party
reduces the computational load per server while preserving the
appealing small-party structure that is widely regarded as more
practical for real-world MPC deployment [24, 80]. Notably,
all connections between Pm

i and Pih operate exclusively over
intra-network channels, incurring less internal overhead.
Vertical scaling. Building on techniques from Blinder [20]
and Talek [50], our protocol also benefits from recent advance-
ments in GPU-accelerated cryptography for MPC [81, 82]. As
shown in Fig. 10(b), the silent, parallel-friendly nature of our
protocols allows for efficient GPU deployment, significantly
speeding up protocol execution. To accommodate modern
GPU architectures, we further chunk large messages (e.g.,
ℓ=1 KB) into smaller pieces (e.g., ℓ′=64 bits), as described
in §V-B, enabling more efficient GPU processing.
Somewhat network-level robustness. One primary limitation
of our basic four-party protocols is the inbuilt rigid structure,
which makes it less resilient to network-level attacks and poor
in service flexibility. While important, this issue is generally
regarded as orthogonal in theoretical MPC studies. Horizontal
scaling within the small-party framework offers a practical
solution. By harnessing multiple servers per party, horizontal
scaling enhances somewhat robustness against network-level
DoS attacks. Specifically, the system remains operational as
long as at least one server per party stays online, obviating the
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need for all servers to be continuously active. This capability is
particularly advantageous in scenarios involving server churn,
such as temporary server downtime for maintenance, ensuring
greater system reliability without compromising efficiency.

VIII. APPLICATION AND ANALYSIS

Integrating all components, we present Gyges, a lightweight,
secret-shared accountable anonymous broadcast system. The
complete protocol stack is illustrated in Fig. 12. In Gyges,
users are responsible for submitting message shares, retrieving
shuffled messages, and reporting abusive content when neces-
sary. Relay parties collaborate to play several logical roles: 1)
secure shuffler, 2) content distributor, 3) content moderator, 4)
abuse tracker, 5) misbehaving client handler, and 6) scalable
resource allocator. These roles must be carefully assigned to
separate trust domains to safeguard sender anonymity and
prevent misuse of accountability functionality.
Communication metadata protection, intersection attacks,
and Sybil attacks. Gyges inherently protects communication
metadata within a given broadcast round by hiding the pattern
of messages and shuffling them in synchronous batches. To
further reduce censorship risks, users are encouraged to partic-
ipate in multiple broadcast rounds, either by sending meaning-
ful messages or dummy cover traffic. This strategy helps pre-
vent adversaries from executing intersection attacks [31, 83].
Regarding Sybil attacks [84], where the adversary can control
numerous nodes to shrink the anonymity set, this remains a
significant challenge for anonymous communication systems.
To counteract this, we recommend integrating other orthogonal
defenses, such as CAPTCHAs [85] or reputation-based access
control mechanisms [86], to limit adversaries’ ability to flood
the network with fake identities effectively.
Realistic applications: anonymous microblogging and mes-
sage exchanging. One primary application of Gyges is anony-
mous microblogging platforms, similar to Yik Yak [16], where
users can publish messages anonymously while concealing
their identities. Additionally, Gyges supports two-way anony-
mous message exchange applications.3 Consider two clients,
Ci and Cj , communicating through synchronous message
exchanging. This process can be abstracted as writing to and
reading from their own virtual addresses. Suppose Ci and Cj

3Messaging services typically involve two phases: 1) dialing to establish
the communication pair and 2) message sending and fetching to exchange
messages. In this work, we mainly focus on the latter process.

have pre-shared a symmetric encryption key k (e.g., Enck(xi)
and Enck(xj)) and their virtual addresses through an out-
of-band dialing protocol, as in prior works [13, 21]. After
shuffling, Ci and Cj can retrieve and decrypt messages from
their respective addresses in X ′, completing the exchange.
Security analysis and proof sketch. We say Gyges is secure if
no one can learn private X andM during protocol executions
(see §IV). We now clarify how Gyges achieves its main goals.

Theorem 1: Gyges correctly and securely realizes a privately
robust, accountable anonymous broadcast functionality in the
presence of an active PPT adversary A defined in §IV-B.
PROOF SKETCH: The correctness of Gyges’s core protocols
has been outlined in prior sections. Their security and output
guarantees can be examined below (detailed in Appendix C).
• Case 1: Cc = ∅ and Pc = ∅. Here, all relay servers only

receive information-theoretic shares instead of the input
message batch and BPC matrix themselves, as discussed
in §V. Thus, the privacy of Gyges’s core shuffling and
tracing protocols can always be preserved.

• Case 2: Cc ̸=∅ or Pc ̸=∅, or both. The well-formedness
of inputs in the presence of malicious clients Cc and/or
server Pc can be enforced as in §VI (via weak consistent
sharing and robust reconstruction). Following this, the
analysis reduces to Case 1, and the message integrity for
any honest client can always be preserved.

In both aforementioned cases, Gyges can ensure the input
privacy and the G.O.D of shuffled messages for honest users.
Given thatM is private to all participants (including H). The
probability that A can successfully guess whether a shuffled
message x′j originated from Ci indistinguishably approximate
1
|X ′| . Meanwhile, Gyges enables relay servers to deterministi-
cally track down a (or a set of) misbehaving user(s) by opening
certain M(a) under established moderation policy D.

IX. EVALUATION

System parameters. We built a prototype in Python/C++ and
evaluated on machines running Ubuntu 20.04 LTS, equipped
with Intel i7-9700K processors, 32 GB of RAM, and NVIDIA
RTX 3080 GPUs. For the vertical scaling, we integrated the
Piranha framework [82], particularly its P-FantasticFour layer
and 64-bit integer kernel. To simulate the horizontal scaling,
additional servers were modeled by proportionally reducing
workloads across the server per party. Synthetic strings were
used as test data, consistent with prior designs in this domain,
which can represent realistic scenarios such as microblogging
on X/Twitter and transactions in Zcash. The performance of
our core techniques was benchmarked against other systems
operating in the comparable small-party setting [11, 21, 28].
Specifically, our evaluation spanned a wide range of system
parameters, including message batch size N (from 104 to 106),
message length ℓ (from 8 B to 1 KB), the number of computing
servers per party (from 1 to 4), and the experiment results
are mainly obtained under two different network settings: 1)
a LAN environment with a round-trip time (RTT) of 0.4 ms
and bandwidth of 1 Gbps; and 2) a WAN environment with
an RTT of 120 ms and bandwidth of 100 - 200 Mbps.
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Preprocessing performance. To generate a fresh, valid BPC,
relay servers should evaluate N independent four-party one-bit
DPF key tuples, which results in total offline communication
complexity of O(N1.5). As demonstrated in Table II, Gyges
generally reports lower communication overhead compared to
prior systems Clarion [11] and RPM [21]. A notable advantage
of Gyges lies in its Boolean representation of target corre-
lations, which ensures offline communication scales linearly
with the batch N only and remains independent of the message
length ℓ. This independence makes Gyges particularly well-
suited for scenarios involving very large messages, overcoming
a critical limitation of prior approaches where communica-
tion scales proportionally with both parameters. For instance,
RPM [21] (variant-I) adopts a similar random permutation
matrix representation in Shamir’s sharing. However, it requires
significant overhead due to extensive matrix multiplications,
leading to O(N2ℓ) communication and O(N3) computational
complexity per shuffle in its offline phase. These inefficiencies
become particularly pronounced in large-scale deployments.

Importantly, both the shuffle correlation (i.e., BPC column)
and the trace correlation (i.e., BPC row) are captured simul-
taneously within the preprocessing cost, as shown in Table II.
No additional overhead is required to enable traceability.

Silent shuffling performance. In contrast to prior anonymous
broadcast systems, such as RPM [21] and Clarion [11], the
silent execution of Gyges significantly reduces online commu-
nication and interaction complexity. Specifically, Clarion re-
quires two rounds for secret-shared shuffling and an additional
four rounds for verification in malicious settings, resulting in
a total of six rounds per shuffle. RPM’s variant-I, although
more efficient in round complexity, incurs substantially higher
computational costs and communication overhead in both the
offline and online phases.

As summarized in Table III, Gyges outperforms Clarion by
3.4× and the three RPM variants by 9.6×, 3.7×, and 3.6× in
shuffle protocol execution time. This performance advantage is
particularly pronounced for relatively smaller batch sizes (e.g.,
N ≤ 104), where Gyges’s reduced communication overhead
plays a pivotal role, making it especially suited for bandwidth-
sensitive scenarios. The minimal interaction nature of the silent
protocol enables faster execution compared to all other com-
petitors, effectively leveraging its streamlined communication
model. For larger batch sizes at the N ≥ 106 scale, however,
Gyges encounters challenges due to memory limitations and
increased computational complexity, which lead to higher
latency in the online shuffling phase. These challenges can be
addressed through horizontal and vertical scaling strategies, as
detailed in Table V and Table VI, enabling Gyges to maintain
its performance edge even in large-scale deployments.

Secret-shared tracing performance. Compared to traditional
verifiable shuffle-and-trace solutions relying on public-key
cryptography, such as state-of-the-art traceable mixnets [28],
Gyges’s secret-shared tracing mechanism offers substantial
improvements in both simplicity and efficiency. As highlighted
in Table IV, our lightweight tracing protocol delivers several

TABLE II
COMPARISON OF OFFLINE PREPROCESSING PERFORMANCE.

Ref. N ℓ Clarion [11] RPM-I [21]† Gyges‡

Comm.[MB]

103
8 B 0.198 16

0.04532 B 0.258 64
160 B 0.575 320

104
8 B 1.983 1600

1.43132 B 2.578 6400
160 B 5.751 32000

† RPM [21] introduces three different variants. This table picks RPM-I for comparison,
as its computation paradigm is the closest to Gyges. RPM-III reports a relatively better
offline communication cost of 240 MB for shuffling 104 messages of 8 B length at
the cost of more online overhead. Gyges still outperforms it regarding communication
overhead and computation latency.

‡ Gyges and Clarion [11] both adopt a semi-honest helper party H to prepare the
predecessor for constructing their shuffle correlations. Note it is slightly different
from the traditional dealer model, as H doesn’t learn the final correlation directly. In
our case and Clarion, such a party also helps enforce the well-formedness of shuffle
correlation for better system availability.

TABLE III
COMPARISON OF ONLINE SHUFFLING PROCESS PERFORMANCE.

Ref.†, ‡, ♮ N Clarion [11] RPM-I, II, III [21] Gyges

Shuffle

Comm. [MB]

103 0.228 0.485 0.097 - 0
104 2.289 0.742 0.961 2.763 0
105 22.888 - - 27.632 0
106 228.881 - - - 0

Time [s]

103 0.075 0.051 0.022 - 0.013
104 0.718 1.485 0.581 0.556 0.155
105 7.629 - - 13.681 1.774
106 95.089 - - - 27.945

Trace Time [s] 105 - - - - 0.035
† This table shows the results in LAN settings where ℓ = 8 B.
‡ As estimated by Table II, RPM-I/II requires over 320 GB of offline communication

to mix 105 8 B messages, making it less practical than others. Here, we mark its
online performance as unavailable accordingly, denoted as “–”. Also, since no prior
works provide traceability mechanisms, we mark them as unavailable as well.

♮ As a fair comparison, this table only reflects the costs of shuffling protocol execution
(excluding the message sharing and reconstruction phases). In Fig 13, we further
report the end-to-end performance in the WAN setting.

orders of magnitude performance improvement in comparable
settings. The efficiency of tracing remains nearly independent
of the total message batch size N and message length ℓ, as
the search operates directly on the Boolean one-hot vector.

In typical scenarios, a tracing request can be completed
in less than one second. Notably, the security assumptions
underlying the tracing for accountability are aligned with those
of shuffling for anonymity, both relying on a distributed trust
model across multiple non-colluding entities.

Private robustness overhead. The results in Table III already
account for the amortized costs of private robustness against
malicious adversaries. Specifically, Gyges’s robustness over-
head arises from two components: 1) weak consistent sharing,
and 2) private robust reconstruction. These costs can be further
amortized over the execution of the blame game and the re-

TABLE IV
COMPARISON OF ONLINE TRACING PROCESS PERFORMANCE.

Ref.† Traceable mixnets [28] Gyges
Shuffle

n = 4
N = 104

Time [s] 343 0.155

Trace Comm. [MB] 4.1 0.005
Time [s] 681.6 0.134

† For a fair comparison, here we report the tracing latency, which measures the time
from initiating a tracing request to identifying the abusive senders in a WAN setting.
This metric excludes the costs associated with pre- and post-tracing actions, such as
content moderation enforcement and management of misbehaving users.
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TABLE V
EFFICIENCY OF Gyges UNDER DIFFERENT DOMAIN-SPECIFIC

COMPUTATIONAL OPTIMIZATIONS.

Ref.†, ‡ Env. w/o Sparsity w/ Sparsity

Time [s] Gyges-CPU 70.144 27.945
Gyges-GPU 19.813 -

† GPU architectures do not natively support operations on elements with differing bit
lengths (e.g., between the 1-bit and 64-bit operands). As a result, we simply lift the
BPC element to 64-bit, thus foregoing the sparsity-aware optimizations so far.

‡ To support an arbitrary large size of messages in the GPU variant, we combine the
message chunking mechanism (as discussed in §V-B) with silent shuffling techniques.

TABLE VI
THROUGHPUT OF Gyges’S DIFFERENT SCALING VARIANTS.

Ref.† Env. # servers per party
1 2 3

Throughput
[107 entry/min]

Gyges-CPU (w/ sparsity) 1.266 2.531 3.797
Gyges-GPU (w/o sparsity) 1.546 3.092 4.639

† The results are under the LAN setting for mixing 105 8 B messages. Inter-party
communication and interaction remain optimal.

duction of conflicting groups for long-term broadcast services
(see Appendix B). In Gyges, misbehaving clients are classified
into two categories: 1) those sending malformed shares (i.e.,
malicious users), and 2) those submitting inappropriate content
(i.e., abusive users). The former is captured by our private
robustness technique. For the latter, tracing evaluation results
are provided in Table IV.

Domain-specific optimizations and scaling designs. Gyges’s
sparsity-aware optimization improves the protocol execution
by eliminating the physical execution of multiplication and any
computations involving 0. This proves particularly effective in
the case that message sizes are very large, such as ℓ=1 KB.
As shown in Table V, when shuffling 105 messages of 8 B
length, Gyges with (w/) outperforms without (w/o) sparsity-
aware optimization by 2.4× on average regarding the online
time. Moreover, Gyges leverages vertical scaling through GPU
acceleration, achieving up to a 3.5× performance improvement
over the CPU-based implementation. Additionally, as shown
in Table VI, horizontal scaling design allows Gyges to improve
throughput by increasing the number of servers per party,
further boosting its practical performance.

According to Table VI, we estimate that Gyges can mix be-
tween 4.22×105 and 1.54×106 messages of 30×8 B size per
minute, while a real-world platform like Twitter/X generates
approximately 3.5 × 105 tweets (up to 240 B in length) per
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Fig. 13. Comparison of execution time for 1) one-way microblogging; and 2)
two-way message exchanging services over Gyges and Clarion over the WAN
setting. N = 105, ℓ ∈ {32 B, 160 B, 1 KB}. G off/G on and C off/C on
mean the offline and online execution time of Gyges and Clarion, respectively.

minute in total [69]. Although these results were obtained in
a LAN environment, we note the interaction/communication
complexity in Gyges is optimal and does not pose a bottleneck.
In this sense, it is fair to assume Gyges has the potential to
scale effectively and serve real-world applications.

End-to-end applications. In all cases, users C are responsible
for encoding and submitting their [X ]-shared messages to relay
parties P . The meaningful messages sent by real users will be
anonymized, while the dummy messages sent by volunteers
will play as somewhat cover traffic.

As depicted in Fig. 13, in the typical WAN setting, Gyges
can anonymously broadcast 105 microblog messages of 1 KB
length each in an end-to-end latency of 88.19 seconds, which
outperforms Clarion [11] by 2.32×. Notably, the offline costs
for Gyges remain constant regardless of message size ℓ, pro-
viding significant efficiency benefits, especially when ℓ is very
large. In the (two-way) message-exchanging service, users
can obtain target addresses and notify their peers via out-of-
band communication beforehand, enabling efficient message
retrieval without linear scans, which results in only slightly
higher costs than the (one-way) broadcast scenario.

Discussions. Due to the minimal online communication (and
interaction) complexity, ℓ-independent offline costs, sparsity-
aware optimizations, and parallel-friendly features, Gyges can
perform well when 1) ℓ is large, 2) network latency is high,
3) inter-server bandwidth is limited. Although optimizations
in Gyges are initially tailored for anonymous broadcasts, the
communication-efficient BPC and silent shuffling may be of
other independent interest in MPC settings with no honest
majority [11], thus eliminating inherent inefficiencies rooted in
RSS schemes. Also, for other situations where the consistency
of input and output sharing semantics is not necessary, one
may optimize protocols by saving one round of interaction.

X. LIMITATIONS AND ETHICAL CONSIDERATIONS

We now discuss limitations regarding system assumptions,
our countermeasures and trade-offs, and ethical considerations
surrounding accountability in Gyges. This highlights potential
areas for refinement and provides a broader context for under-
standing responsible use of our design.

Honest-majority setup. In-protocol robustness is crucial for
(anonymous) communication systems, ensuring that the ser-
vice can withstand disruptions and guarantee message delivery.
To achieve this beyond security with abort [11], we adopt an
honest-majority assumption – as justified by Cleve [87], any
robust MPC protocol (including Gyges) must operate under
this assumption. Building on this, we further customize new,
lightweight private robustness techniques, ensuring message
delivery without sacrificing sender anonymity.

Small-party setup. Compared to systems relying on Shamir
sharing [20–22], Gyges follows a more rigid adversarial struc-
ture. However, MPC deployers show that small-party setups
are often more practical and easier to correctly instantiate
within distributed trust domains [80]. As a countermeasure, we
explore the possibility of scaling Gyges in a traditional MPC
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sense via generic RSS techniques (see §VII) and examine other
scaling notions for better throughput. While MPC protocols,
especially in small-party settings, are typically less focused
on mitigating essential but orthogonal network-level attacks,
Gyges’s horizontal scaling approach offers some flexibility in
this regard, enabling server churn and enhancing robustness
against certain network-level disruptions.
Computational bottleneck and countermeasures. As shown
in Table I, Gyges reports a higher computational complexity.
However, we note our protocol execution requires information-
theoretical additions only. By Amdahl’s law and Gustafson’s
law [88], such parallel-friendly protocols allow scaling Gyges
up and out easily and can concretely accelerate their execu-
tions. In addition, our silent protocol technique minimizes the
inter-server interaction, making the system scale well in terms
of N and ℓ from the communication perspective.
Ethical considerations. The enduring tension between user
privacy and network governance has long-defined debates over
the Internet ethics. An illustrative case is Yik Yak [16], a once-
popular anonymous online community that ultimately faced
significant backlash due to pervasive cyberbullying and abuse.
This underscores how unfettered anonymity can undermine
the very values it seeks to protect. In this context, we envi-
sion Gyges as a promising tool for such anonymous online
platforms, offering a nuanced balance between anonymity and
accountability while maintaining robust availability.

Tracing can identify the source of harmful message content
but risks misuse for censorship or privacy infringement. To
mitigate this, well-defined pre-tracing policies and post-tracing
management are essential to safeguard against the abuse of
accountability mechanisms. A conventional human moderation
pipeline can serve as a foundation, with advancements in large
language models [89, 90] offering opportunities to automate
and enhance moderation efforts. Notably, in Gyges, a traceback
request will be initiated only after a predefined user-reporting
threshold is met, and the process will proceed only upon
careful consensus among the servers. This restricts the tracing
function to very inappropriate or illegal cases, such as terrorist
propaganda or child exploitation, while less critical violations
are addressed with milder actions like filtering.

XI. CONCLUSION

This work introduces Gyges, a lightweight secret-shared ac-
countable anonymous broadcast scheme that tackles the long-
standing challenge of reconciling anonymity, accountability,
performance, robustness, and scalability in secure communi-
cation systems. Through innovative silent protocol techniques,
Gyges achieves optimal communication efficiency, optimizes
computational overhead, ensures private robustness, and scales
effectively to enhance system throughput. Moreover, it strikes
a careful balance between preserving sender anonymity and
enabling accountability for misbehaving users within the MPC
framework. Looking ahead, several exciting research direc-
tions arise: 1) reducing offline costs by eliminating the need
for an assisting party and 2) further optimizing computational
complexity to improve overall performance.
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[27] R. Cramer, I. Damgård, and Y. Ishai, “Share conversion,
pseudorandom secret-sharing and applications to secure
computation,” in Proc. of TCC, 2005.

[28] P. Agrawal, A. Nakarmi, M. P. Jhawar, S. Sharma, and
S. Banerjee, “Traceable mixnets,” in Proc. of PETs, 2024.

[29] W. Chen and R. A. Popa, “Metal: A metadata-hiding file-
sharing system,” in Proc. of NDSS, 2020.

[30] Z. Newman, S. Servan-Schreiber, and S. Devadas, “Spec-
trum: High-bandwidth anonymous broadcast,” in Proc. of
USENIX NSDI, 2022.

[31] P. Jiang, Q. Wang, J. Cheng, C. Wang, L. Xu, X. Wang,
Y. Wu, X. Li, and K. Ren, “Boomerang: Metadata-private
messaging under hardware trust,” in Proc. of USENIX
NSDI, 2023.

[32] S. Eskandarian, “Abuse reporting for metadata-hiding
communication based on secret sharing,” in Proc. of
Usenix Security, 2024.

[33] R. Issa, N. Alhaddad, and M. Varia, “Hecate: Abuse
reporting in secure messengers with sealed sender,” in

Proc. of USENIX Security, 2022.
[34] N. Tyagi, I. Miers, and T. Ristenpart, “Traceback for

E2EE messaging,” in Proc. of ACM CCS, 2019.
[35] J. Bartusek, S. Garg, A. Jain, and G.-V. Policharla, “End-

to-end secure messaging with traceability only for illegal
content,” in Proc. of EUROCRYPT, 2023.

[36] D. Mardi, S. Tanwar, and J. Howlader, “Multiparty pro-
tocol that usually shuffles,” Security and Privacy, vol. 4,
no. 6, p. e176, 2021.

[37] N. Glaeser, M. Maffei, G. Malavolta, P. Moreno-Sanchez,
E. Tairi, and S. A. K. Thyagarajan, “Foundations of coin
mixing services,” in Proc. of ACM CCS, 2022.

[38] A. Cheu, A. Smith, J. Ullman, D. Zeber, and M. Zhilyaev,
“Distributed differential privacy via shuffling,” in Proc.
of EUROCRYPT, 2019.

[39] R. Dingledine, N. Mathewson, and P. Syverson, “Tor:
The second-generation onion router,” in Proc. of USENIX
Security, 2004.

[40] jrandom (Pseudonym), “Invisible internet project (I2P)
project overview,” 2003, https://geti2p.net/en/.

[41] M. Chase, E. Ghosh, and O. Poburinnaya, “Secret-shared
shuffle,” in Proc. of ASIACRYPT, 2020.

[42] X. Song, D. Yin, J. Bai, C. Dong, and E.-C. Chang,
“Secret-shared shuffle with malicious security,” in Proc.
of NDSS, 2024.

[43] A. Baccarini, M. Blanton, and C. Yuan, “Multi-party
replicated secret sharing over a ring with applications
to secure machine learning,” in Proc. of PETs, 2023.

[44] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle: An
efficient communication system with strong anonymity,”
in Proc. of PETs, 2016.

[45] C. A. Melchor, J. Barrier, L. Fousse, and M.-O. Killijian,
“XPIR: Private information retrieval for everyone,” in
Proc. of PETs, 2016.

[46] S. Angel and S. T. Setty, “Unobservable communication
over fully untrusted infrastructure.” in Proc. of USENIX
OSDI, 2016.

[47] A. Vadapalli, K. Storrier, and R. Henry, “Sabre: Sender-
anonymous messaging with fast audits,” in Proc. of IEEE
S&P, 2022.

[48] I. S. Reed and G. Solomon, “Polynomial codes over
certain finite fields,” Journal of society for industrial and
applied mathematics, vol. 8, no. 2, pp. 300–304, 1960.

[49] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Divide
and funnel: a scaling technique for mix-networks,” in
Proc. of IEEE CSF, 2024.

[50] R. Cheng, W. Scott, E. Masserova, I. Zhang, V. Goyal,
T. Anderson, A. Krishnamurthy, and B. Parno, “Talek:
Private group messaging with hidden access patterns,” in
Proc. of IEEE ACSAC, 2020.

[51] L. Von Ahn, A. Bortz, N. J. Hopper, and K. O’Neill,
“Traceable anonymity,” in Proc. of PETs, 2006.

[52] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-
son, “Dissent in numbers: Making strong anonymity
scale,” in Proc. of USENIX OSDI, 2012.

[53] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford, “Proac-

15

https://geti2p.net/en/


tively accountable anonymous messaging in verdict,” in
Proc. of USENIX Security, S. T. King, Ed., 2013.

[54] N. Tyagi, J. Len, I. Miers, and T. Ristenpart, “Orca:
Blocklisting in sender-anonymous messaging,” in Proc.
of USENIX Security, 2022.
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APPENDIX

A. Pseudorandom Message Sharing

We now outline the pseudorandom message-sharing pro-
tocol ΠMSG between clients and servers (see Fig. 14). Most
shares can be locally generated by servers, and for each client
and message, only three duplicated [xi]4 need to be sent to
P1, P2, P3, along with the corresponding commitment δ to H .
Notably, our protocol does not rely on the broadcast channel.
As a result, each client must send 3ℓ bits for the shares and |δ|
bits for the commitment per message. However, if a reliable
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Protocol ΠMSG[C,P]: Message Sharing

Input: Message xi ∈ Z2ℓ known to Ci ∈ C.
Output: [xi]-shared user message known to P .

Protocol: the protocol runs as follows,
1) PRF setup: Ci samples seeds sij←1λ, sends sij

to Pk where j∈{1,2,3}, k∈{1,2,3,4}, and j ̸=k.
2) PRSS execution: Both Ci and Pj∈{1,2,3} compute

[xi]j=PRFj(sj) locally. Ci computes [xi]4=xi −∑i=3
i=1[xi]j and sends it to Pj∈{1,2,3}.

Fig. 14. Pseudorandom user message sharing protocol.

broadcast channel is available, Gyges can still benefit from it
– the client-server communication cost can further be reduced
to an optimal ℓ per message, on an amortized basis.

B. Blaming Game

The blaming game operates via two core functions: 1) server
blaming and 2) reduction. Within a static adversary structure,
this process progressively narrows down Pc, ultimately isolat-
ing the malicious one. The procedure is executed during two
main processes: 1) server-client interactions (as in Fig.15(a) -
15(d)); 2) server-server interactions (as in Fig.15(e) - 15(h)).
For instance, if Pi detects and accuses client Cj of sending
inconsistent shares, Cj , Pi forms a conflict pair. Similarly, if
server Pi accuses server Pk of inconsistent sharing, Pi, Pk

is identified as a conflicting group, with at least one entity
assumed honest. Over time, the honest parties in P can reliably
identify any malicious participant, whether server Pc or client
Cc, based on repeated protocol deviations. The computational
and communication overhead introduced by the accusation
and reduction processes is amortized over the overall protocol
execution, ensuring minimal performance impact.

C. System Analysis

In this section, we extend the arguments in Theorem 1 to
justify the security and design goals of our proposed protocols.
In the next, we consider all relay parties to be symmetric and
take P1 as an example. The cases for {P2, P3, P4} are similar.
❶ Message sharing phase. We first consider protocol ΠMSG

and ΠWCS across C, P , and H .
Theorem 2: Assuming the availability of cryptographically

secure pseudorandom functions and collision-resistant hash
functions, protocol ΠMSG and ΠWCS securely realize the weak
consistent message sharing functionality, even in the presence
of a potentially malicious client and/or one corrupted party.

PROOF: In protocols ΠMSG and ΠWCS, the four participating
parties consist of honest and potentially corrupted individuals,
with the client Ci either being honest or adversarial. We
analyze the security under various cases:
• Case 1: Both P1 and Ci are semi-honest. The protocol

can operate securely and privately in this setting, consis-
tent with traditional semi-honest MPC security. Since P1
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Fig. 15. Gyges’s blaming game execution and conflict reduction rules.

receives only information-theoretic shares of the input x
and the commitments, it learns nothing about the plaintext
message. The views in the ideal world and the real world
remain computationally indistinguishable.

• Case 2: P1 is malicious and Ci is semi-honest. This case
aligns with traditional malicious security in MPC. If P1

falsely accuses Ci of sending inconsistent shares [xi] that
don’t match its commitment H([xi]), P1 can still acquire
the correct share from other honest parties, ensuring the
well-formedness of the (4, 2)-RSS sharing scheme. Even
in the false accusation, P1 gains no knowledge of x. If
P1 persists in blaming others, the blame and reduction
mechanism will iteratively reduce the conflicting group
and reveal the malicious server (see Appendix B).

• Case 3: P1 is semi-honest and Ci is malicious. This is
common in the traditional verifiable secret-sharing con-
text. For our cases, P1 can always correctly blame the in-
consistent [xi] sent by Ci and ensure the well-formedness
via ΠWCS, during which P1 learns nothing about xi, so
the joint distribution of P’s view and messaging sharing
functionality’s outputs should be indistinguishable to the
adversary A’s view and the ΠMSG.

• Case 4: P1 is malicious and Ci is malicious. Even if
P1 and Ci collude to pass off malformed, inconsistent
message shares as valid, if Ci sends inconsistent shares to
the remaining honest servers, they will correctly identify
Ci as malicious. Otherwise, the remaining honest parties
will reach a consensus on a dummy, consistent message to
substitute the malformed message via ΠWCS, or identify
the malicious entity via ΠBlame. During this process, P1

gains no other information about xi, and A’s view is
indistinguishable from the ideal world.
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Across all cases, we ensure that an adversary can neither
compromise the privacy, nor violate the message integrity of
the messages of honest users under the majority rule.

❷ Offline preprocessing phase. We then examine protocol
ΠBPC between P and H .

Theorem 3: Assuming the availability of cryptographically
secure pseudorandom functions and collision-resistant hash
functions, ΠBPC securely realizes the preprocessing function-
ality, even in the presence of up to one corrupted party.

PROOF: Similar to the above, ΠBPC also divides the four
relay parties into honest and corrupted ones, with the helper
party H assumed to be semi-honest.
• Case 1: P1 is semi-honest. P1 only receives information-

theoretic shares ⟨M′⟩2, ⟨M′⟩3, ⟨M′⟩4 from H and the
non-linear offset permutation π from P . Even after lo-
cally shifting ⟨M′⟩ to obtain ⟨M⟩, P1 learns nothing
aboutM. The adversary’s view remains indistinguishable
from the ideal world.

• Case 2: P1 is malicious Even if P1 uses a random offset
or permutation π to compromise M, the silent execution
equally defers the deviation to the reconstruction phase.
That is, the server can neither infer BPC privacy nor
deviate from the protocol to compromise the integrity of
BPC under the honest-majority rule.

❸ Online shuffling and tracing phase. We next proceed to
examine protocol Π4PS, ΠRMC, and Π4PT across P and C.

Theorem 4: Π4PS and ΠRMC securely realize privately robust
shuffling functionality and achieve sender anonymity, against
one possibly malicious party.

PROOF: Again, we consider a division of the four parties
into honest and corrupted ones.
• Case 1: P1 is semi-honest. In this case, P1 only learns the
(4, 2)-RSS shares of ⟨M⟩2, ⟨M⟩3, ⟨M⟩4, and the (4, 3)-
RSS shares of X ′. The adversary gains no additional
information about the underlying data or shuffle process,
preserving the robustness and anonymity guarantees.

• Case 2: P1 is malicious. If P1 attempts to substitute the
input/output shares in prior steps, due to the silent feature
of Π4PS, all deviations will be deferred to the reconstruc-
tion phase. For inconsistent output shares, ΠRMC generate
both X ′ and X ′′. One of them is guaranteed to be correct,
and the other plays cover traffic.

In all cases, the correct batch of shuffled messages will be
reconstructed without compromising sender anonymity.

Theorem 5: Given the public moderation policy D, Π4PT se-
curely realizes traceability while preserving others’ anonymity,
against malicious users and up to one malicious party.

PROOF We examine the selective traceability properties of
the Π4PT protocol as below,
• Case 1: P1 is semi-honest. If x′a is reported as abuse

by C over the threshold and audited across P , then P1

will request ⟨M(a)⟩1 from P2, P3, P4, reconstruct it, and
search the index of 1 entry to reveal the abuse sender,
without compromising the anonymity of others.

• Case 2: P1 is malicious. If P1 maliciously requests partial
shares from other parties that violate the moderation
policy D, the blame mechanism will directly reveal P1

as the malicious entity (see Fig 15(e)), all while ensuring
no anonymity of honest users is compromised.

D. De-anonymization Attacks
In prior sections, we discuss the anonymity goal under the

standard MPC security model, where adversary A has no prior
knowledge of X and M. However, a skillful A in the real
world could attempt to narrow the anonymity set. Its capability
via de-anonymization attacks can be examined below,
• Case 1: If A can compromise ρ clients out of a shuffle

batch of size N but knows nothing about M (for sim-
plicity, we assume the first ρ clients are compromised),
the anonymity set reduces to N−ρ. The probability that
A can correctly guess whether a message xi was sent by
a non-corrupted client Ci would be reduced to:

Pr∃xi←Ci
[A(xc

1, ..., x
c
ρ) = 1] =

1

N − ρ
,

and the probability of correctly identifying all messages
xi sent by the remaining clients becomes:

Pr∀xi←Ci
[A(xc

1, ..., x
c
ρ) = 1] =

1

(N − ρ)!
.

• Case 2: If A cannot compromise any clients but pos-
sesses some partial knowledge η about the permutation
matrix M, which helps de-anonymize ϕ clients from the
shuffle batch of size N , the anonymity set is reduced to
N − ϕ. In this case, the probability of guessing whether
a message xi was sent by a specific client Ci is:

Pr∃xi←Ci
[A(xc

1, ..., x
c
ρ) = 1] =

1

N − ϕ
,

and the probability of de-anonymizing all messages sent
by the remaining clients becomes:

Pr∀xi←Ci [A(xc
1, ..., x

c
ρ) = 1] =

1

(N − ϕ)!
.

Case 3: If A can compromise ρ clients and also has
partial knowledge η about M (where we assume these
two factors are independent), the combined probability of
correctly identifying a specific client Ci is:

Pr∃xi←Ci [A(xc
1, ..., x

c
ρ) = 1] =

1

N − ρ
+

1

N − ϕ
,

and the probability he can guess all xi in the remaining
anonymity set is sent by which user Ci is reduced to:

Pr∀xi←Ci
[A(xc

1, ..., x
c
ρ) = 1] =

1

(N − ρ)!
+

1

(N − ϕ)!
.

These cases lead to a key yet common observation: a
practical anonymous broadcast system should integrate access
control mechanisms, such as reputation-based techniques [86]
or CAPTCHA [85], to restrict A’s influence to a limited
subset of clients in each broadcast round, thereby maintaining
robust system availability and strong sender anonymity. This
highlights the need for careful system design, private random
permutation selection, and trust domain separation.
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