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Abstract—Bandwidth limitation is the major bottleneck that
hinders scaling throughput of proof-of-work blockchains. To
guarantee security, the mining rate of the blockchain is deter-
mined by the miners with the lowest bandwidth, resulting in an
inefficient bandwidth utilization among fast miners. We propose
Manifoldchain, an innovative blockchain sharding protocol that
alleviates the impact of slow miners to maximize blockchain
throughput. Manifoldchain utilizes a bandwidth-clustered shard
formation mechanism that groups miners with similar band-
widths into the same shard. Consequently, this approach enables
us to set an optimal mining rate for each shard based on
its bandwidth, effectively reducing the waiting time caused by
slow miners. Nevertheless, the adversary could corrupt miners
with similar bandwidths, thereby concentrating hashing power
and potentially creating an adversarial majority within a single
shard. To counter this adversarial strategy, we introduce sharing
mining, allowing the honest mining power of the entire network to
participate in the secure ledger formation of each shard, thereby
achieving the same level of security as an unsharded blockchain.
Additionally, we introduce an asynchronous atomic commitment
mechanism to ensure transaction atomicity across shards with
various mining rates. Our theoretical analysis demonstrates that
Manifoldchain scales linearly in throughput with the increase
in shard numbers and inversely with network delay in each
shard. We implement a full system prototype of Manifoldchain,
comprehensively evaluated on both simulated and real-world
testbeds. These experiments validate its vertical scalability with
network bandwidth and horizontal scalability with network size,
achieving a substantial improvement of 186 % in throughput over
baseline sharding protocols, for scenarios where bandwidths of
miners range from SMbps to 60Mbps.

I. INTRODUCTION

Blockchain technology, pioneered by Nakamoto’s proof-of-
work (PoW) longest-chain protocol [1]], has garnered sub-
stantial attention in recent years. PoW blockchains are dis-
tinct in offering unique properties like dynamic availability,
unpredictability, and security against adaptive adversaries —
merits that have been validated both theoretically [2], [3] and
practically [4]. However, a fundamental challenge remains its
inherent poor scalability, hindering its broader adoption and
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real-world applicability. A major impediment to scale PoW
blockchains lies in the necessity for every miner to replicate
the communication, storage, and state representation of the
entire ledger. Blockchain sharding protocols have emerged
as a promising solution to address this challenge. Shard-
ing protocols allocate miners to distinct shards, where they
independently mine separate chains within their respective
shards [Sl], (6], [7], [8], [9, [10]. This innovative approach
enables a linear scaling of system throughput in proportion to
the network size.

However, a noteworthy shortcoming of most existing shard-
ing protocols is the lack of attention to the bandwidth hetero-
geneity. Bandwidth variance can be substantial in real-world
scenarios. For example, some Bitcoin miners operate within
the Tor [[11] network to safeguard their privacy, where only half
of the available bandwidth in the Tor network is utilized [12],
[13], [[14], resulting in significantly smaller bandwidth com-
pared to normal miners. Miners with limited bandwidth re-
sources, often referred to as stragglers, contribute to increased
network delays, which result in forking of blockchains, i.e.,
two distinct blocks extend the same preceding block. Forking
significantly undermines blockchain security by diminishing
the effective hashing power of honest miners, and elevating
the probability of adversaries successfully tampering with
ledger information. Consequently, fast miners are compelled to
reduce their mining rates in order to mitigate forking, limiting
overall transaction throughput. Most of the existing sharding
protocols [S], (6], [8, [LS], [L6], [L7], [Z] typically employ
a uniform shard formation (USF) mechanism across shards,
resulting in each shard accommodating both stragglers and
fast miners. Therefore, the throughput in each shard is still
limited by bandwidths of stragglers.

We introduce Manifoldchain as a comprehensive solution
to tackle this challenge. The key insight behind Manifold-
chain is to cluster miners with similar bandwidths into the
same shard, thereby segregating fast miners from stragglers.
Consequently, an optimal mining rate can be set for each
shard, tailored to bandwidth resources of miners within.
This approach empowers fast miners to fully harness their
computation resources, enabling them to propose blocks at
a much higher rate without being impeded by stragglers.
Manifoldchain employs a bandwidth-clustered shard formation
(BCSF) mechanism. Specifically, miners package their band-



width information, public key, and IP address as a “Pseudo-
identity” (PID), and extend a credential chain with transac-
tions encapsulating these PIDs. PID owners confirmed on the
credential chain are subsequently distributed across distinct
shards corresponding to their bandwidths. Once distributed,
they begin processing transactions and growing ledgers within
their respective shards.

A pivotal challenge in realizing such a sharding protocol
is ensuring security within each shard in the presence of a
mildly adaptive adversary (a general adversary model adopted
by most sharding protocols). It may seek to corrupt miners
with similar bandwidths, thereby concentrating adversarial
hashing power within a single shard and potentially yielding
an adversarial ratio exceeding 50%. To tackle this challenge,
we introduce sharing mining, which utilizes cryptographic
sortition to determine whether a miner will produce an exclu-
sive block to a specific shard, or an inclusive block that can
be appended to chains in all shards. Sharing mining enables
Manifoldchain to aggregate the honest hashing power from
the entire network to secure each individual shard, while
simultaneously benefiting from boosted throughput due to
various mining rates across those shards.

Nevertheless, as our design avoids full blocks in one shard
from being sent to miners in other shards, it may lead to data
availability and validity issues. We utilize coded Merkle tree
(CMT) [18]] and fraud proof [19] to verify data availabili-
ty/validity without downloading the full blocks. Additionally,
sharing mining incorporates strategies like predictive mining
and fork pruning to parallelize mining and verification pro-
cesses. Particularly, predictive mining empowers miners to
mine on multiple unverified parent blocks while concurrently
requesting data availability and validity proofs. Subsequently,
miners can prune forks upon receiving unavailability or inva-
lidity proofs.

Another challenge arises from the various mining rates
across different shards when processing cross-shard transac-
tions (cross-txs), which may lead to inconsistent cross-shard
asset transfers. The standard atomic commitment protocol
Two-Phase Commit (2PC) [20] employed by existing sharding
protocols such as OmniLedger [6], is unsuitable for Manifold-
chain. For instance, 2PC requires the verification process of a
cross-tx to pause until confirmed vote messages are received
from all involved shards, introducing prohibitive latency for
confirming cross-txs. To address this challenge, we adopt
an asynchronous commitment mechanism by eliminating the
locking phase of 2PC. Specifically, coins are directly spent
instead of being locked. Upon any unsuccessful expenditure,
the coins are refunded to the payers.

We have conducted a comprehensive theoretical analysis of
Manifoldchain, emphasizing its security and overall system
throughput. Our analysis rigorously establishes the persistence
and liveness properties of Manifoldchain, offering a precise
upper bound on the error probability, a significant advance
over the asymptotic results commonly found in previous
works [21]], [22]]. This precise security characterization plays
a crucial role in guiding the optimal configuration of protocol

parameters. Notably, we address the determination of mining
rates across different shards through an optimization problem,
delivering an optimal solution for these settings. Finally, we
formally prove that the optimal configuration of mining rates
allows Manifoldchain to achieve a linear horizontal scaling
with the number of miners, and a linear vertical scaling with
the reciprocal of network delay in each shard.

Furthermore, to manifest the theoretical promise of Mani-
foldchain, we have implemented it concisely in about 15,000
lines of Rust code (available open source [23]]). Our implemen-
tation has undergone comprehensive evaluation across diverse
scenarios, encompassing a realistic testbed hosted on Amazon
EC2, as well as a simulated testbed on a local machine.
The experimental results from both realistic and simulated
testbeds demonstrate that Manifoldchain outperforms baseline
sharding protocols in several key aspects: (1) Manifoldchain
delivers approximately 5x throughput in the fastest shard
configured with the highest mining rate, and approximately 3 x
average throughput; (2) Manifoldchain achieves around a 3 x
increase in throughput with the same increase in the number
of miners; (3) Manifoldchain significantly boosts throughput
with increased bandwidth resources, while baseline sharding
protocols show no improvement.

II. RELATED WORK

Vertically scaling protocols. The majority of research ef-
forts focused on scaling blockchain performance vertically,
namely designing consensus protocols with inherently high
performance. Bitcoin-NG [24] achieves high throughput by
decoupling Bitcoin’s execution into two distinct primitives:
leader election and transaction proposal. It decouples a full
block into two parts: a key block for leader election and
a microblock that contains transactions. The protocol relies
on only key blocks with significantly reduced block size to
expedite leader election, while allowing the elected leader
to generate microblocks as fast as possible according to its
computing/network resource. Similarly, Prism [25] embraces
the same decoupling principle, allowing for concurrent leader
election and transaction proposal processes. However, these
protocols maintain a single ledger, making it difficult to scale
with the network size.

Horizontally scaling protocols. To overcome the constraint
encountered by vertically scaling protocols, several protocols
aim to improve performance through horizontal scaling, which
involves adding more nodes to distribute the load more effec-
tively, thus boosting the system’s throughput. Sharding stands
out as the principal method for achieving Horizontal scaling. It
divides the blockchain nodes into shards, each of which is only
responsible for processing a distinct subset of the transactions.
As a result, sharding enables the overall throughput to scale
with the number of nodes.

Numerous works are dedicated to designing general shard-
ing protocols in the permissionless setting. Elastico [S] uni-
formly partitions the mining network into small committees,
within which miners run pBFT [26] to reach consensus on
a disjoint set of transactions. Building upon this approach,



Omniledger [6] addresses Elastico’s limitations of not support-
ing cross-tx atomicity, by introducing a cross-tx verification
mechanism called Atomix, which enables miners to verify
cross-txs without storing the full blocks from foreign shards.
RapidChain [8] further enhances the fault tolerance threshold
from up to 1/4 in Omniledger to 1/3, boosts throughput within
each shard through block pipelining, and reduces communica-
tion overhead via efficient routing. Nonetheless, these pBFT-
based sharding protocols cannot achieve full sharding (as
formally defined in Definition [I). Specifically, the aforemen-
tioned sharding protocols necessitate that the number of honest
miners in each shard scales with the shard size. This scaling
demand requires a significantly larger shard size to ensure an
honest (super)majority within each shard, in accordance with
the law of large numbers. In contrast, a full sharding protocol
requires only a constant number of honest miners within each
shard to ensure security. Wang et al. introduced Monoxide [7]],
the first full sharding protocol, which employs Chu-ko-nu
mining to make attacking any specific shard as difficult as
targeting the entire network. In the best-case scenario, this
design can ensure security as long as each shard contains at
least one honest miner. Nevertheless, Monoxide has its own
shortcomings: (1) rigorous security analysis is not provided;
(2) its proposed cross-tx verification mechanism, eventual
atomicity, cannot support many-to-many transaction models.
Some other sharding solutions aim to tackle sub-problems
within a sharding system. GearBox [15] and Reticulum[16]]
aims to attain the smallest shard size, thereby maximiz-
ing parallelism. Haechi[l7] focuses on fortifying resilience
against front-running attacks, wherein adversaries manipu-
late transaction execution order to achieve unfair finalization.
ByShard[27] extends the system-specific specialized sharding
protocols to a application-agnostic solution. All these works
address various issues distinct from ours, yet Manifoldchain,
as a general sharding solution, is compatible with them to
address corresponding challenges.
Bandwidth considered protocols. It has been theoretically
demonstrated that the network delay, denoted by A, plays
an important role in determining an appropriate mining dif-
ficulty in synchronous blockchain protocols [28], [29], [30],
[31]. Specifically, the block generation rate is constrained
by A, as arbitrarily accelerating block generation can lead
to excessive forking, thereby wasting honest mining power
and compromising the network’s security. Bitcoin-NG and
Prism fundamentally enhance vertical scalability by mitigating
the impact of A via functionality decoupling. However, they
neglect the heterogeneity of blockchain nodes. Specifically,
stragglers contribute to higher A values and subsequently
become the bottlenecks for system throughput. To mitigate
this issue, Yang et al. proposed DispersedLedger [32], a
partial synchronous BFT protocol designed to achieve near-
optimal throughput even in scenarios with heterogeneous net-
work bandwidths. DispersedLedger enables nodes to agree on
proposals at a rapid rate without downloading the entire block.
Instead, nodes are able to retrieve the serialized transactions at
their own paces. For instance, DispersedLedger nodes agree on

Verifiable Information Dispersal blocks. These blocks utilizes
erasure codes to store transactions across N nodes, ensuring
that they can be retrieved later in the presence of Byzantine
behavior. However, these non-sharding solutions inherently
lack horizontal scalability.

Our protocol. We propose Manifoldchain, a permissionless
full sharding protocol with salient attributes as follows:

« Manifoldchain is the first sharding protocol that takes the
bandwidth heterogeneity into account. Other aforemen-
tioned protocols, either overlook the bandwidth hetero-
geneity in the sharding setup[S]], [6], [8], (130, [L6], [17],
or only consider them in the non-sharding setup[24], [32].

« Manifoldchain achieves the highest fault tolerance thresh-
old. Compared with pBFT-based sharding protocols[3],
[6], [8], [15], [IL6l], [17] whose fault tolerance threshold
is up to 1/3, Manifoldchain supports a fault tolerance
of up to 1/2 and achieves full sharding as Monoxide.
Furthermore, it only requires that there is at least one
honest miner in each shard. Compared with Monoxide,
it addresses remaining limitation by providing a tight
security analysis that guides the selection and optimiza-
tion of protocol parameters. Additionally, Manifoldchain
can support many-to-many cross-tx verification. Table [
provides an overview of Manifoldchain in comparison to
other sharding protocols.

o Manifoldchain is a general sharding principle that is com-
patible with many other sharding solutions. For instance,
while GearBox and Reticulum improve horizontal scal-
ability by maximizing number of shards, Manifoldchain
offers a new angle to boost throughput within individual
shards by allowing normal miners and stragglers to op-
erate independently. Insights from previous works can be
combined with ours to further improve both horizontal
and vertical scalability.

III. BACKGROUND AND MODEL

A. Nakamoto Consensus Protocol

Nakamoto consensus (NC), adopted by Bitcoin, operates
on the PoW mechanism and the longest chain rule. It can
be described succinctly as follows: at any moment, an honest
miner adopts the longest chain available to it and aims to
mine a new block extending this chain; a block is considered
confirmed once it is sufficiently deep within the chain.
Proof of Work. Finding a valid PoW solution necessitates
locating a nonce value to ensures the output of the SHA256
hash function is less than the preset mining difficulty o. We
adopt the standard random oracle model [21]], utilized by an
algorithm PoW? (parent_hash, info, nonce) for finding a
valid PoW solution. Here parent_hash and info are the
hash of the parent block and block content respectively. The
blockchain’s immutability stems from the fact that any attempt
to modify a single block within the chain inevitably triggers
alterations to its hash value as well as to the hash values of
all subsequent blocks.



TABLE I
COMPARISON OF MANIFOLDCHAIN WITH SOTA SHARDING PROTOCOLS

Elastico [5]  Omniledger [6] RapidChain [8]  Gearbox [15] Reticulum [16] Monoxide [7] Manifoldchain
1 3 3 2 2 2 1 1
Global honest threshold N N gN §N gN 5N 3N
Intra-shard honest threshold? % % % % % % % % % % >13 1
Supports many-to-many tx? Yes Yes Yes Yes Yes No Yes
Supports full sharding? No No No No No Yes Yes
Scalable with bandwidth? No No No No No No Yes

! The minimum number of honest miners necessary to ensure the security of the entire network, where IV is the total number of miners.
2 The minimum number of honest miners necessary to ensure the security of a specific shard, where m is the number of shards.
3 In best-case scenario, Monoxide can achieve the same intra-shard honest threshold as Manifoldchain, but it lacks a formal security analysis.

Unspent Transaction OQutput (UTXO). A Bitcoin transaction
consists of multiple inputs and outputs, each represented as an
UTXO. For a Bitcoin transaction tx : {I,...,Ix; Op, ..., On}
with Zi{zl A(ly) = Z?zl A(Oj)(where A(-) represents the
amount of coins), k inputs are consumed and h outputs are
generated. Transaction outputs may function as inputs for
subsequent transactions; however, an output can be utilized
only once. In other words, UTXOs embody the available
outputs that can be employed to generate new transactions,
effectively representing the user’s balance in Bitcoin network.

B. Blockchain Sharding Protocol

A blockchain sharding protocol partitions miners into dif-
ferent shards, each processing a disjoint set of transactions.
Overall, a specific sharding protocol involves two phases:
shard formation phase and ledger generation phase. In the
shard formation phase, sharding protocols utilize a shard
formation mechanism to partition miners into distinct shards.
A standard approach is the USF mechanism, which randomly
shuffles miners and uniformly distributes them into shards.
This initial design ensures that adversarial hashing power is
evenly distributed among multiple shards, thereby fortifying
each shard against targeted attacks. In the ledger generation
phase, an intra-shard consensus protocol like NC or pBFT is
employed by miners to reach agreement on the transaction
order and update the ledger state within each shard. The
choice between NC and pBFT is scenario-dependent: pBFT is
preferred for its faster transaction confirmation times, whereas
NC is favored for its adaptability to variable shard sizes. Ad-
ditionally, cross-shard atomicity must be ensured to guarantee
the atomic transfer of assets across shards. Specifically, the
outcome of a cross-shard transaction—whether committed or
aborted—is consistent across all involved shards.

Full Sharding Protocols. Let N represent the number of
miners and m represent the number of shards, we define a
full sharding protocol as follows:

Definition 1. A sharding protocol achieves full sharding if
there exists a constant ng, such that for all m and N satisfying
0 < m < N, security holds as long as each shard contains at
least ng honest miners.

Intuitively, a full sharding protocol requires only a constant
number of honest miners in each shard to ensure security.
Early sharding protocols, such as Elastico [3]], Omniledger [6],

and Rapidchain [8]], require a linearly scaling number of honest
miners in each shard (generally over two-thirds of the miners)
and are categorized as non-full sharding protocols. Wang et
al. introduced the first full sharding protocol Monoxide [7].
In the best-case scenario, it requires only one honest miner in
each shard. Our proposed protocol, Manifoldchain, is a more
complete full sharding protocol equipped with formal security
analysis and a many-to-many transaction design.

C. Network Model

Given that NC-style protocols are known to lack security
in a partial synchronous network [33]], [28]] where there is an
unknown bound on the network delays, we adopt the standard
synchronous model. This model constrains the adversary to
delaying messages from honest nodes by no more than a
known maximum delay, denoted as A. Previous works [21]],
[331], [28], [22], [3]] have consistently overlooked the network
heterogeneity, instead assuming the worst-case end-to-end
delay to be A. This simplification leads to an elegant trade-
off between security and throughput in NC, as shown by Pass
et al. [31]. Let p € (%, 1] be the fraction of honest hashing
power and N the total number of miners. Pass et al. have
theoretically established that to prevent consistency violations,
the difficulty parameter p must be set below m, where
p = /2256 is the probability of a successful outcome from
a single query to the random oracle PoW? (-). Consequently,
as the difficulty parameter p determines the block generation
rate, the throughput is directly proportional to p and inversely
affected by an increase in delay A.

In this work, we adopt a standard network model adopted
by many other works [24], [25], [32]], [34], [35]. Specifically,
miners have various bandwidths, represented as C; for miner 4.
The network delay consists of two components: transmission
delay A, and propagation delay A,,. Transmission delay refers
to the duration required to push all bits of a message into the
link, calculated as A; = % for a message of m bits and a
link bandwidth of C bits per second. Propagation delay A,
on the other hand, measures the time it takes for a bit to
travel from one end of the link to the other, dependent on the
distance and the speed of light or electrical signal propagation.
Consequently, let A¢ = B/C+ A, be the network delay for
a node with bandwidth C, where B is the maximum block
size. We denote by A = max; Ag, the maximum delay in



the network, primarily determined by the straggler with the
smallest bandwidth.
D. Threat Model

We consider both static and dynamic settings in this paper,
tailored to address distinct types of adversaries. In the static
setting, we consider a static adversary [36] who corrupts a
fixed set of miners when the protocol starts. In contrast, an
adaptive adversary can change which miners to corrupt during
protocol execution. In the dynamic setting, we consider a
mildly adaptive adversary[6], which requires a certain delay
to transfer corruption. Other types of adaptive adversaries,
including weakly and strongly adaptive adversaries [37], [38]],
[39], lack this delay and can corrupt all miners in a shard
at any time, are not considered in typical sharding protocol
designs [6], [8], [SM, [40]. A detailed comparison of the mildly
adaptive adversary with other adaptive adversaries is provided
in Appendix [A] We present the detailed adversary model as
follows:

« In the static setting, the set of participating miners, total-
ing N, remains unchanged with no new entries or exists
during the protocol’s operation. This scenario assumes
a static adversary who, prior to the protocol’s start, can
corrupt up to (1 — p)N miners. The adversary does not
have prior knowledge about the miners’ participation or
specific attributes (particularly their bandwidth informa-
tion). Once the protocol begins, the adversary cannot
modify the selection of corrupted miners.

o In the dynamic setting, miners can join or leave the
network during the shard formation phase, but their par-
ticipation stabilizes during the ledger generation phase.
Formally, we denote by «; the fraction of the new miners
among all miners in the ¢-th shard formation phase.
Specifically, in the initialization phase and each shard for-
mation phase, the adversary can corrupt up to 1 — p frac-
tion of participating miners or new miners without prior
knowledge of their bandwidth specifics. Additionally, the
adversary has the capability to dynamically change which
miners to corrupt but any transition to corrupt additional
miners demands a minimum time investment equivalent
to the duration of each ledger generation phase. Regard-
less of the adversary’s corruption strategy, the maximum
fraction of corrupted miners remains 1 — p.

Both static and adaptive adversary can arbitrarily deter-
mine the participating strategy of the corrupted miners, and
fully control their associated communication and computation
resources. We assume there exists an underlying bandwidth
distribution of honest miners, and the new honest miners join-
ing in each shard formation phase adhere to this distribution.
Prior to protocol execution, we conduct bandwidth estimation,
which can be achieved by leveraging existing techniques [41]],
[42], even under Byzantine settings [43].

IV. MANIFOLDCHAIN

Overview. We introduce Manifoldchain, the first blockchain
sharding protocol that simultaneously scales system through-

put vertically and horizontally. The key idea is using the BCSF
mechanism to allocate miners with similar bandwidths to the
same shard. This mechanism clusters stragglers into some
specific shards, mitigating their impact on the performance
of other shards. As a result, we can tailor the mining rate for
each shard based on its specific network delay, and fast miners
can create blocks and process transactions at an accelerated
pace, leading to an overall increase in throughput. Fig.
demonstrates our key insight. Here, we emphasize two primary
challenges that are intrinsic to the design of such a blockchain
sharding protocol.

The first challenge is to maintain security within each
shard. The corrupted miners may misstate similar bandwidths,
concentrating adversarial hashing power in a single shard,
resulting in an adversarial majority in that shard. We propose
sharing mining to ensure the security within those shards
with an adversarial majority. It is implemented by allowing
miners to simultaneously extend multiple longest chains in
all shards using a single PoW solution, which enables honest
miners to contribute their hashing power across all shards.
However, in sharing mining, only the block header - rather
than the full block - is sent to miners in other shards. The
adversary can potentially create equivocation on the highest
block through sending heads of invalid blocks to other shards,
splitting the honest hashing power within and outside of a
shard. We address this issue by employing predictive mining
and fork pruning. Predictive mining enables miners to mine on
multiple potential parents and try to request data availability
and validity proof at the same time, while fork pruning serves
to prune forks with invalid availability or validity proofs.

Another challenge is to develop an asynchronous atomic
commitment mechanism to ensure the atomic multi-input-
multi-output UTXO transfer across shards under various min-
ing rates. The standard atomic commitment 2PC [20] in-
corporates Voting Phase and Decision Phase to handle this
problem. Specifically, a coordinator node prompts participants
to vote, and if all vote to commit, broadcast a commit message;
otherwise, broadcast an abort message if any votes to abort.
In Manifoldchain, the coordinator node cannot begin Decision
Phase until all participants’ vote messages are confirmed. The
participants may be stragglers from slows shards, and their
long confirmation time results in an unacceptable cross-tx
latency. To address this challenge, we implement an asyn-
chronous commitment mechanism by eliminating the locking
phase. Initially, coins are expended directly rather than being
locked if input shards vote to commit. Upon receiving all
messages voting to commit, the corresponding coins will be
subsequently generated in the output shards. Conversely, if any
shard votes to abort or any vote message becomes outdated, the
associated coins will not be generated, and the coins will be
refunded to the input shards with prior successful expenditure.

A. Bandwidth-Clustered Shard Formation

We propose the BCSF protocol such that miners with similar
bandwidths are allocated into the same shard. In BCSF, all
miners maintain a credential-chain based on NC, incorporating
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Fig. 1. Basic insight of Manifoldchain. The hindrance imposed by bandwidth
heterogeneity is alleviated by gathering the stragglers.

miner PID in place of transactions into the chain. A PID
contains a miner’s public key, the signed bandwidth using
its secret key, and his IP address. The mining process of the
credential-chain mirrors that of NC: miners package identities
into blocks and strive to find a valid PoW solution. Upon
receiving a block, each miner undertakes two verification
processes: the first verifies the correctness of the PoW solution,
while the second verifies the signature of the bandwidth using
the public key provided in the identity. Given the liveness
parameter v of the credential-chain, which determines the
maximum time it takes for a transaction to be confirmed, and
the start time ¢ of the shard formation phase, we ensure that
all PIDs of honest miners are confirmed by ¢t + u. The owner
of a confirmed PID within the time interval [¢, ¢+ u) acquires
the authorization to participate in the ledger generation phase.

We represent the information of these authorized miners
in a two-dimensional space. The domain of the X-axis spans
from 0 to 22°6, while the Y-axis is defined within the range of
(Crnins Cmaz ), Where Cpip and Cppq, represent the minimum
and maximum bandwidth in the network respectively. The
coordinate of a miner, represented as (h,C), is composed of
the hash value of its PID h and bandwidth C. Subsequently,
different shard formation mechanisms specify how to partition
the space and distribute miners into different shards.
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Fig. 2. USF vs BCSF. The first one uniformly distributes miners across shards
while the second one clusters miners with similar bandwidths.

Shard formation mechanism. We abstract the USF mecha-
nism as follows: the space is divided into m regions along
the X-axis, each corresponding to one shard. Given that
hash values can be treated as random numbers, the USF
mechanism effectively ensures a uniform distribution of miners
across shards; BCSF incorporates an additional consideration
of nodes’ bandwidth information: the space is partitioned into
multiple regions along both the X-axis and Y-axis, facilitating
the grouping of miners with similar bandwidths. An example

for m = 6 shards is shown in Fig. 2]

Secure shard partition. We denote by Sx and Sy the
numbers of segmented regions along X-axis and Y-axis,
respectively. Increasing both Sy and Sy improves overall
throughput by generating more shards. However, it’s crucial
not to overly expand the number of shards, as doing so may
result in shards devoid of honest miners, especially if the
total shard count surpasses the number of honest participants.
Let Ry (y,7) represent a Y-region containing points with Y-
coordinates within the range (%,7%]. A shard formation mech-
anism segments the space into Sy Y-regions.

We can set the Y-region ranges to achieve a uniform dis-
tribution of miners across these regions. Particularly, given an
estimated bandwidth distribution, we select Sy — 1 separation
points 1, ...,Ys, —1, such that

P(yanl):P(yl,yQ):'”:P(ySyflaySY)? (D

where ¥o = Cumin, ¥Sy = Cmaxz, and P(a,b) denotes the
probability that a miner’s bandwidth is within (a, b].

During the ledger generation phase, miners with the au-
thorization sign the generated blocks using their secret keys
and subsequently broadcast these blocks to other miners. The
recipients validate the incoming blocks using the public keys
stored within the confirmed PIDs. For rotation, miners update
bandwidth information by broadcasting new PIDs during each
shard formation phase. They then access updated shard allo-
cation information from the credential chain and dynamically
re-shard the network.

Selection of Sy and Sy. We demonstrate how to select
appropriate values for Sx and Sy to ensure that each shard
contains at least one honest miner, as illustrated in Lemma [T}
Initially, we set Sy as large as possible to effectively separate
fast and slow miners, while minimizing bandwidth variance
within each Y-region. Given a fixed Sy, we set Sx as large
as possible to increase the number of shards, as long as the
error probability in (2) is negligible. For instance, if all miners
have either high or low bandwidth, we set Sy = 2 and increase
Sx until the error probability exceeds a predefined threshold.
Adversary-proofness of BCSF. Two malicious deviations can
occur during the shard formation phase. Firstly, a malicious
miner might attempt to enter a specific shard by manipulating
its PID, both the hash value and bandwidth information, sub-
mitted to the credential-chain. However, by carefully choosing
the values of Sx and Sy, BCSF ensures the presence of
at least one honest miner in every shard, irrespective of the
adversary’s choices of shards. This condition is sufficient
to establish the security of Manifoldchain, as elaborated in
Section [V] At a high level, the security and performance
of each shard remain intact despite the presence of mali-
cious miners with incompatible bandwidths, thanks to the
Byzantine fault tolerance inherent in our protocol. Secondly, a
malicious miner may submit multiple PIDs to the credential-
chain. However, during the ledger generation phase, such a
miner must either distribute its hashing power among various
PIDs or concentrate it on a single one. Either case does not



change the aggregate adversarial mining power across shards,
rendering the strategy ineffective. Note that we rely on the
liveness property of NC to ensure that all honest miners’
PIDs are confirmed on the credential-chain before the shard
formation phase concludes. Attacks at the network layer, such
as spamming, fall outside this paper’s scope.

B. Block & Chain Structures

Our block structure decouples the traditional Bitcoin full
block into two types of blocks: the consensus block and
the transaction block. A consensus block has a fixed size
of approximately 100 bytes, introducing negligible overhead
for both communication and storage. Consensus blocks are
broadcast to all miners in the network, while transaction blocks
are only transmitted within their own shards. To support the
implementation of sharing mining, we categorize consensus
blocks into exclusive blocks and inclusive blocks.

Distinct from a Bitcoin full block, a consensus block could
have multiple parents. More specifically, an exclusive block
extends chains within its affiliated shard and can have multiple
parents, whereas an inclusive block, with the ability to have
parents from multiple shards, extends chains of all shards.
This design, allowing for multiple parents, facilitates predictive
mining where miners may have to mine on multiple unverified
blocks. This will be further elaborated in Section [V-Cl We
employ the idea of 2-for-1 PoW [21] to mine both exclusive
and inclusive blocks concurrently. Initially, miners engage in
the process of mining a consensus block and they do not know
the type of the consensus block until the puzzle is solved.
When a consensus block is mined, it is considered mined
of either exclusive block or inclusive block depending on
the region the block hash falls. Specifically, A miner mines
a consensus block when it discovers a nonce that satisfies
PoW? (+,nonce) < o. Further, we can set a threshold ¢’ < o.
If PoW?(+,nonce) < o’, the consensus block is deemed an
inclusive block; otherwise, it is classified as an exclusive block.
We present all the segments of a consensus block as follows:

o shard_index: an index denoting the specific shard to
which the block is affiliated.

o verified_parent: hash of the highest verified block
within the affiliated shard.

e inter_parents: a set composed of all unverified blocks’
hashes extending the highest verified block within the
affiliated shard.

e global_parents: a set composed of all inter parents
across all shards.

e timestamp: the time when the block is generated.

« nonce: the resolved solution to a PoW puzzle within the
context of sharing mining.

e tx_merkle_root: the root of a Merkle tree generated
from all transactions in a transaction block.

e tmy_merkle_root: the root of a Merkle tree generated
from all testimonies in a transaction block.

Adopting the UTXO model, a transaction in Manifoldchain
consist of multiple inputs and outputs. Each input contains
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Fig. 3. Overview of sharing mining. An exclusive block extends the
blockchain within a specific shard, whereas an inclusive block extends all
blockchains across shards.

a data field called payer_addr, signifying the address of
the payer. Similarly, each output contains a data field named
receiver_addr, denoting the receiver’s address. Basically,
transactions are categorized into two main types: domestic
transactions (domestic-txs) and cross-txs. If all payers and
receivers involved in a transaction belong to the same shard,
the transaction is termed a domestic-tx; conversely, if partic-
ipants span multiple shards, it is referred to as a cross-tx.
A transaction block resembles transactions is referenced to
a consensus block through the tx_merkle_root. Within a
transaction block each cross-tx is accompanied by an addi-
tional testimony. This structure offers an efficient method for
verifying cross-txs, presented in Section
C. Sharing Mining

Using the BCSF shard formation mechanism, honest hash-
ing power is evenly distributed across all shards, but adversary
could concentrate its hashing power on specific shards. To
ensure security in shards with adversarial majority, we propose
sharing mining to allow honest miners to contribute their
hashing power to all shards. An initial design of sharing
mining, inspired by Chu-ko-nu mining, allows a miner to
extend chains in all shards simultaneously using a single PoW
solution. Instead of mining on one parent block, a miner works
on creating a consensus block using the hash of highest blocks
from all shards. Adopting 2-for-1 PoW, the consensus block
is then classified as either an exclusive block or an inclusive
block. In the case of an exclusive block, it extends the longest
chain within the miner’s corresponding shard. Conversely,
in the case of an inclusive block, it simultaneously extends
multiple longest chains across all shards. Honest miners treat
exclusive blocks and inclusive blocks equivalently, adhering
to the same verification and fork selection mechanisms. Fig.
shows how sharing mining works.
Hashing power splitting attack. As the transaction block
associated with a consensus block is not sent to miners outside
the shard, it causes the protocol vulnerable to a Hashing
Power Splitting Attack (HPSA). Specifically, an attacker with
overwhelming hashing power within a shard may mine a
longer chain, containing invalid transactions but appearing
valid from the perspective of honest miners in other shards,



as they cannot verify the validity of the block without the
transactions. This can cause honest miners to mine on different
consensus blocks, leading to split of honest mining power and
hence reduced security. A detailed description of HPSA is
given in the Appendix [B]

To counter HPSA, Manifoldchain requires each miner to
verify the following properties of each block from foreign
shards, without storing the corresponding transaction block.

« Transaction validity ensures that all transactions pack-
aged within a block adhere to the appropriate format and
preclude any double-spending events.

o Data availability requires a full block including both
consensus block and associated transaction block, appears
in each honest miner’s view within its shard.

We provide corresponding verification mechanisms for these
two properties in scenarios where there is at least one honest
miner in each shard. To ensure transaction validity, we employ
fraud proof [19] to enable in-shard miner to inform out-shard
miner of a block’s violation of validity rules. When an honest
in-shard miner encounters an invalid block, it generates a
fraud proof and broadcast it among all out-shard miners. Upon
receiving a valid fraud proof, honest out-shard miners reject
the block.

For data availability, we utilize CMT [18] to enable miners
to verify data availability without downloading the full block.
Specifically, CMT adds redundancy to transaction blocks via
erasure codes. Any honest miner can verify full data availabil-
ity through the mere download of a block hash commitment
with a size of O(1) byte, combined with a random sampling of
O(log(B)) bytes. Therefore, out-shard miners can validate the
data availability of an in-shard transaction block by requesting
just O(log(B)) samples. When an honest out-shard miner
receives a foreign block, it requests block samples from the
source shard. If it receives any error-coding proofs or fails
to receive all requested samples within the maximum network
delay A, it rejects the block. Detailed verification mechanisms
are provided in Appendix [C|

Verifying data availability and transaction validity can take
up to the maximum network delay A to complete, diminish-
ing the benefit of Manifoldchain by clustering miners with
similar bandwidths. To maintain the throughput gain from
downloading fraud and data availability proofs from foreign
shards, we further optimize sharing mining, by proposing
novel techniques of predictive mining and fork pruning. The
key idea is for the miner to simultaneously mine on multiple
blocks, with some of them waiting to be verified by messages
from other shards. By doing this, a miner can start mining on a
foreign block as soon as receiving the block, without needing
to wait for verification. Upon completion of the verification
process, a pruning procedure is conducted to maintain the
uniqueness of the ledger. Consequently, any forks that do not
extend the the longest verified chain are discarded.
Predictive mining. An exclusive block has multiple parents
within one shard, comprising the last blocks of the longest
verified chain and all unverified forks that extend on the
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Fig. 4. Key insight of predictive mining and fork pruning. Blocks can extend
potential parents and invalid forks are subsequently pruned.

longest verified chain. This exclusive block temporarily ex-
tends all chains that are possibly the longest verified chain. An
inclusive block has multiple parents across all shards. Within
each shard, similar to exclusive block, its parents comprise
the last blocks of the longest verified chain and all unverified
forks in that shard. As illustrated in Fig. [ three unverified
blocks extend from the second verified block. By employing
predictive mining, the subsequent block will consider all three
unverified blocks, along with the second verified block, as
parents and extend its chain on top of them.

We present the procedures for mining exclusive and inclu-
sive blocks, along with their verification process as follows:

e Mining: a miner gathers all requisite segments for
generating a consensus block. Initially, it package
valid transactions and testimonies into a transaction
block and generate the corresponding tx_merkle_root
and tmy_merkle root. As for other segments,
verified_parent is designated as the hash value of the
last block of the longest verified chain; inter_parents
is a vector containing verified_parent and the hashes
of the last blocks of all unverified forks that are at least as
long as the longest verified chain; The global_parents
is formed through the aggregation of the inter_parents
across all shards. The miner works on finding a solution
for PoOW? (parent_hash, info,nonce). In this context,
parent_hash refers to the hash of the three segments
comprising verified_parent, inter_parents, and
global_parents. All other segments, excluding nonce,
undergo hashing to formulate info. The generated
consensus block is subsequently categorized as an
exclusive block or inclusive block based on its hash
value, and it is linked to the transaction block. Both
exclusive blocks and inclusive blocks are sent to all
miners, while transactions blocks are only broadcast



within their corresponding shards.

« Verification: when a miner receives an exclusive or
inclusive block from other shards, it first checks the
correctness of the POW solution by recomputing the hash
value. If the solution is correct, the miner examines
each parent included in the block. If a parent is verified
invalid or does not exist in all possible forks, the miner
gives up extending the block on this parent. Otherwise,
it extends the block on the parent, even if it is not part
of the longest chain (storing an exclusive or inclusive
block incurs negligible storage as it does not contain any
transactions). Conversely, if a miner receives an exclusive
or inclusive block belonging to its shard, in addition to the
aforementioned verification procedure, it also verifies the
validity of the linked transaction block. For each domestic
transaction, it conducts standard verification akin to Bit-
coin’s process. For each cross-shard transaction, it follows
the verification method outlined in Section The
miner rejects blocks containing any invalid transactions.

Fork pruning. Once an unverified block is successfully veri-
fied with both transaction validity and data availability, some
forks are temporarily considered invalid and subsequently
excluded from the parent blocks during the mining of the next
block. Pruning is employed under the following two situations:

1) Verification failure. If a block fails the data availability
verification (a miner has not received enough samples to
complete the availability verification of a block within
2A seconds since receiving the block) or the transac-
tion validity verification fails (a miner receives a valid
proof_of_invalidity of that block within 2A seconds
since receiving the block), any forks extending from this
block are pruned.

2) Sibling block with lower hash value is verified. In
cases where multiple blocks on the same level attain
verification, the block possessing the lowest hash value
stays, while its sibling blocks are subsequently pruned.

Forking rate about sharing mining. Even though sharing
mining enables both exclusive blocks and inclusive blocks
to extend on multiple parents, it does not produce any extra
unexpected forks. (1) An exclusive block with multiple parents
results in extra forks, but these forks are expected and only
exist for a maximum interval of A seconds. After this interval,
only one fork remains, indicating that if we solely consider
the verified portion of a chain, our sharing mining protocol
aligns with the insights of the NC protocol. (2) An inclusive
block does not lead to any additional forks. Upon finding a
PoW solution for an inclusive block, a miner generates both
the inclusive block and its associated transaction blocks. The
inclusive block solely contains essential header information
and is negligibly small compared to the transaction block. Only
the inclusive block is transmitted to other shards, while the
transaction block remains within the shard. The transmission
delay for inclusive blocks is negligible, thereby preventing the
occurrence of extra forks when transmitting inclusive blocks

across shards.

D. Cross-tx Atomicity

In the context of a sharding protocol, miners across different
shards must collectively reach consensus on whether a cross-tx
should be committed or not. This scenario aligns with the clas-
sic atomic commitment problem in distributed databases [44],
[45]. As discussed in Section transactions are either
domestic-txs or cross-txs. A cross-tx involves multiple inputs
and outputs originating from different shards. Here “input”
signifies the expenditure of coins, while “output” denotes the
creation of coins. We refer to shards in which coins are spent
as “input shards”, and shards in which coins are created
as “output shards”. The atomic commitment across shards
requires that if all inputs are confirmed as spent, all outputs
should be successfully created. Conversely, if any input is
confirmed as invalid, all outputs should not be generated and
other inputs are not spent eventually. The most straightforward
and widely recognized approach for achieving atomic com-
mitment is 2PC, a method employed by existing blockchain
protocols such as RSCoin[46] and OmniLedger. Specifically,
the coordinator node prompts participants to vote, and if
all vote to commit, broadcast a commit message; otherwise,
broadcast an abort message if any votes to abort.

New challenge arises from sharding setting with various
mining rates when naively applying 2PC to Manifoldchain:
The vote messages may become outdated when forking occurs.
For instance, a shard initially votes to commit a cross-tx, but
the inputs may become invalid upon a forking occurrence.
An intuitive solution is to delay the decision phase until
the confirmation of all vote messages, which is adopted
by OmnilLedger. However, this solution requires miners in
fast shards to pause the decision phase before receiving all
confirmed vote messages, resulting in unacceptable cross-tx
latency and contradicting our initial motivation. To address
this challenge, we implement an asynchronous commitment
mechanism by eliminating the locking phase. Initially, coins
are expended directly rather than being locked if input shards
vote to commit. Upon the successful expenditure of all inputs,
the corresponding coins will be subsequently generated in the
output shards. Conversely, if any input shard votes to abort or
any vote message becomes outdated, the associated coins will
not be generated, and the coins will be refunded to the input
shards with prior successful expenditure.

We introduce testimony to enable miners within the output
shards to ascertain the successful expenditure of inputs. We
implement the execution of a cross-tx by broadcasting it to
each input shard and output shard. Cross-txs within the input
shards are designated as input-txs, whereas those situated
within the output shards are labeled as output-txs. Each output-
tx is associated with a testimony to enable miners to verify
the validity of its corresponding input-txs asynchronously. A
testimony is composed of multiple units, each correspond-
ing to an input. Essentially, each testimony unit maintains
a Merkle proof for corresponding input-tx that proves its



inclusion within the longest chain. Specifically, the structure
of a testimony unit is presented as follows:

Input hash. The hash of the corresponding input.

Originate block hash. The hash of the originate block where
the input-tx is packaged.

Transaction Merkle proof. A merkle proof which proves the
inclusion of the input-tx in the originate block.

Vote message. An additional bit indicates an acceptance or
rejection.

When a miner generates a new block, for each input-
tx, it generates the corresponding testimony and sends it to
all involved output shards. As the inputs of a cross-tx are
distributed among different shards, each shard can create a
partial testimony encompassing units for a portion of inputs.
After receiving all partial testimonies, miners in the output
shards combine them into one full testimony, composed of
corresponding units for all inputs. The full protocol is illus-
trated as follows:

1) Inmitialization. A user creates a cross-tx and gossips it to
all involved input shards and output shards.

Expenditure. When a miner in the input shards receive
an input-tx, it proceeds as follows. First, it decides
whether the coins can be spent based on the ledger infor-
mation. If the input-tx is valid, the miner labels this input-
tx as accepted and includes it in the mining pool. In the
case of an invalid input-tx, it is labeled as rejected but is
still placed in the mining pool. Upon successfully mining
a valid block, for each involved accepted or rejected
input-tx, the miner generates a testimony containing a
vote message of corresponding acceptance or rejection
and broadcasts it to all output shards. Aligning with its la-
bel, an input-tx is confirmed as either accepted or rejected
upon reaching a x-confirmation (the block containing the
input-tx is followed by x consensus blocks).

Receipt. When a miner in the output shards receives
an output-tx along with all associated testimonies for
all inputs, it is included in the mining pool. Output-txs
are subsequently packaged into blocks and appear in the
longest chain. For each output-tx in the longest chain, if
all associated inputs are confirmed in other shards, miners
validate their validity by verifying the corresponding
testimonies. If all input-txs are confirmed as accepted,
the output-tx is labeled as accepted. Conversely, if any
input-txs are confirmed as rejected or testimonies are
found to be invalid, the output-tx is labeled as rejected,
triggering the subsequent refunding process. When an
output-tx reaches a k-confirmation, it is confirmed as
either accepted or rejected in accordance with its label.
Refund. Upon the k-confirmation of a rejected output-tx
and all corresponding input-txs, miners generate a refund
transaction (refund-tx) along with an proof-of-rejection.
This proof-of-rejection contains two testimonies tes; and
tesp. tesp proves the rejected output-tx is included
in the corresponding output shard’s longest chain. tesy
testify either the inclusion of a rejected input-tx in the
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longest chain of the corresponding input shard, or the
inclusion of an input-tx in a deconfirmed block (where
another block at the same height is confirmed) of the input
shard. Subsequently, both the refund-tx and proof-of-
rejection are broadcast to all input shards. Upon receiving
a refund-tx and the proof-of-rejection from all output
shards, miners in the input shards can verify the validity
of the refund-tx through the proof-of-rejections. If all
output-txs are confirmed as rejected, the refund-tx is
labeled as accepted, miners include it in the blockchain to
refund the coins to the input shards. Similarly, a refund-
tx is confirmed as neither accepted or rejected based on
its label upon a x-confirmation.

This protocol ensures cross-tx atomicity across shards, and
the detailed proof is provided in Appendix Intuitively,
honest miners confirm an output-tx only if all input-txs are
confirmed. If an adversary attempts to disrupt the atomicity of
a cross-tx, they must target one of the input-txs and include a
malicious input-tx with a different decision in a block. They
must then ensure that this block is confirmed at the same
level as the block containing the original input-tx. However,
our sharing mining protocol ensures that, with overwhelming
probability, no two different blocks at the same level are
confirmed by honest miners, thereby preventing the adversary
from breaking atomicity.

We point out that cross-tx latency depends on the slowest
shard, as output-txs cannot be confirmed before all input-
txs are confirmed. This bottleneck, shared by other sharding
protocols, arises from the need for atomicity: decisions require
votes from all participants. However, when cross-txs are not
concentrated in the slowest shard, our protocol achieves lower
average latency than baseline sharding protocols, as shown in

Section

V. SECURITY AND SCALABILITY ANALYSIS
A. Honest Presence

The security of Manifoldchain relies on the presence of at
least one honest miner in each shard. Recall that a; represents
the fraction of new honest miners joining during the i-th
shard formation phase, the following lemma demonstrates that
Manifoldchain holds an honest presence within each shard.

Lemma 1. Let o = min; «;, i.e., the minimum fraction of
newly joined miners among all miners in a shard formation
phase. Given parameters 1 < Sy < max{apN, [ﬁ} -1}
and Sx > 1, our shard formation mechanism ensures that
each shard contains at least one honest miner, except with a
negligible error probability bounded by ¢, where

_ { (SxSy —DEFAZN Y Sy 2oy
xSy —1 -
(SxSy — (2= N-1 0 < Sy < 1L

The detailed proof of this lemma is available in Appendix
G of the complete paper [47], where we also show that
even under an imperfect bandwidth estimation with small
deviation, honest presence still holds in each shard except with
a negligible error probability for overwhelmingly large N.



We meticulously follow the selection strategy presented in
Section to choose Sx and Sy, ensuring that Lemma
holds—each shard contains at least one honest miner with
high probability. Specifically, in a scenario with a sufficient
number of new honest miners, i.e., apN > [1%;;1 — 1, our
shard partition mechanism ensures that each Y-region has
approximately % new honest miners, which are uniformly
distributed across Sx shards. Therefore, each shard averages
S év new honest miners, and Lemma |1 holds with high
probability, by Chebyshev’s inequality. Conversely, in a sce-
nario with few new honest miners, i.e., apN < [ﬁ} -1,
we set Sy = [ -] — 1 and uniformly distribute all honest
miners in each Yreglon across Sx shards. Similarly, each
shard averages S honest miners, and Lemmaholds with
high probability.

B. Consistency and Liveness

Next, we demonstrate that given honest presence in each
shard, Manifoldchain attains three basic security properties:
Common Prefix (CP), Chain Quality (CQ), and Chain Growth
(CG), formally defined in Appendix [El The CP property im-
plies consistency, while the combined CQ and CG properties
imply liveness. Following the tradition set by Nakamoto [[1]],
we adopt a continuous-time model and represent POW mining
as a homogeneous Poisson point process. This model was also
used in several subsequent influential works [48]], [49], [SO],
[22]. Let X be the total mining rate of the network, specifically
denoting the number of blocks generated within one second.
Honest block arrivals and adversarial block arrivals as two
independent Poisson processes with rates pA and (1 — p)A,
respectively. We use \; to denote the mining rate of exclusive
blocks within shard ¢. As inclusive blocks extend on the
longest chains in all shards, there exists only one mining rate
for inclusive blocks spanning all shards, denoted as A;. We
denote p; as the honest participation ratio within shard ¢, and
A; as the maximum network delay observed within shard i.
Below we present the main security result of Manifoldchain.

Theorem 1. If there is at least one honest miner in each
shard, CP, CG, and CQ hold for Manifoldchain regardless of
the adversary’s attack strategy within each shard i, as long as
Aipi £ MAP _(x420)A 1

Ai + mAg ~ g

The CP property is hold except with a negligible error
probability (k) bounded by

e(k) <

For any 0; > 0, 8] > 0, the chain growth rate g; and chain
quality rate q; satisfy
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We present the roadmap of our proof in Fig. [5|and defer the
detailed proof to Appendix H of the complete version [47].
Specifically, we shift from a standard to a severe execution
environment, where any delivered full block experiences the
maximal network delay, and during the block delivery any
mining operation is considered adversarial. Achieving security
in severe environment is more challenging than in standard
environment. We then establish that the private-mining attack
is the optimal strategy in a severe execution environment.
Additionally, we calculate the upper bound on mining rates
necessary to maintain CP property against the private-mining
attack, serving as a constraint against all potential attacks in
all environments. Towards CG and CQ properties, we obtain
the upper bounds of chain growth speed and honest block
fraction based on these bounded mining rates. By leveraging
Lemmaﬂ] in conjunction with the CP, CG, and CQ properties,
we substantiate the proof of Theorem [1}

This theorem suggests that shards experiencing lower delays
can achieve faster mining rates compared to those with higher
delays, while still maintaining the same error probability.
Assuming all shards share the same £, according to Eq. ] there
exists a one-to-one mapping between (k) and p;. An increase
in A; also results in a decrease in p; and (k). Referring to
Eq. |3} the maximal values of A\s and \; are constrained by
(k). Therefore, shards with lower A; can be configured with
higher A\;+\;. With respect to the liveness, the longest chain in
shard ¢ achieves an average chain growth rate of %
and an average adversarial block ratio of w
Consequently, it can be deduced from this theorem "that the
longest chains in faster shards possesses higher chain growth
rates and chain quality ratios over slower shards.

C. Optimal Throughput

Throughput-security trade-off on bandwidth estimation. A
larger Sy helps to better distinguish between fast and slow
nodes, thereby enhancing throughput. However, increasing
Sy relies on a more accurate bandwidth estimation. A large



estimation error derived from the gap between realistic band-
width distribution and the estimated one can lead to unevenly
distributed honest miners across Y-regions, with some Y-
regions having a lower number of honest miners than the
average value. This uneven distribution may lead to a larger
error probability in Lemma [T]

Optimal mining rate configuration. A key question arises on
how to optimally configure A\ and A; to maximize throughput
while maintaining security established by Theorem [T} Assum-
ing (k) is regulated to less than ¢ (We do not consider £(J;)
and ¢(9;) here because they depend on the Chernoff bound
parameters d; and 0}, which are unrelated to the protocol)
and k is fixed to x’. The network delay within each shard
is computed based on the lowest bandwidth within that shard.
Specifically, A; = % + A,, where B denotes the block size,
C; represents the lowest bandwidth in shard 4, and Ay is a
constant denoting the propagation delay. As the exact honest
ratio in a specific shard is generally unknown, we consider the
worst case where p; = 0, Vi. Consequently, we construct the
following optimization problem.

s S0
) 6
s.t. pi = %;(Aiﬂsmi > 1 (6)
(2+2 1;071 )(4pi(1 — pi))nl <e.

—DPi

The key challenge to solve this optimization problem lies in
how to strike a balance between \;’s and A, given that both
contribute to the overall throughput. We present the algorithm
to find the optimal solution for this problem and the key
insight here, deferring the detailed proof to Appendix I of
the complete paper [47].

o Miners in the slowest shard only mine inclusive blocks
(i.e., A; = 0). According to Theorem there exist trade-
offs between \;/As; and the error probability e(x) within
each shard. Crucially, the trade-off between s and e(k)
is more favorable than that between \; and £(x). In other
words, for the same increment in A, or \;, the latter
results in a more pronounced increase in €(x). Therefore,
with a bounded e, A\s; can be set higher than A;. In
shard j, A; = A. Given all other known parameters, the
maximum value of ), denoted as AJ, is easily obtained
through binary search.

In other shard ¢ where A; < A, the first constraint of (6]
is relaxed, allowing us to set a non-zero A} to achieve an
improved throughput.

It is noteworthy that the slowest shard attains the same
throughput as Bitcoin. Denote the throughput of Bitcoin as 7',
we present the total throughput of Manifoldchain as follows:

As

Theorem 2 (Informal). Assuming Vi, m > {*, in a scenario
where Bitcoin achieves a throughput of T, Manifoldchain
attains a throughpb.tt of % ZZ" K-, while maintaining the
same level of security as Bitcoin.
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We present the proof roadmap in Figure [5] and defer the
detailed proof to Appendix F-C of the complete paper [47].
Specifically, we calculate the maximum throughput of Bitcoin
and Manifoldchain while maintaining identical error probabil-
ities as stated in Theorem [T] By benchmarking Manifoldchain
against Bitcoin, we substantiate the proof of Theorem [2]

Given m > i‘— in a general scenario where V p; = p, Mani-
foldchain can achieve a throughput of nearly A%T within shard
1. In an extreme scenario where the adversary concentrates its
hashing power within some shards, and in other shards p; = 1,
Manifoldchain can achieve a throughput of ﬁT.

VI. EXPERIMENTS

We implemented a prototype instantiation of a Manifold-
chain client in about 15,000 lines of Rust code [23]. In our
implementation, a Manifoldchain client employs two parallel
threads—one for mining (called Miner) and another for deliv-
ering incoming blocks from the network (called Networker).
Both threads have access to two core data structures: Mempool
and Multichain. Below, we outline the specific functionalities
of each module:

Mempool receives verified transactions and testimonies
from the network module and pairs testimonies with their
associated transactions. Upon requested by the Miner
module, returns matched transactions and testimonies.
Multichain provides the interface for reading and writ-
ing blockchains across all shards, with each individual
blockchain maintaining a ledger for a single shard.
Miner retrieves transactions and testimonies from the
Mempool, conducts double-spending check, and solves
PoW to generate a valid block. Once a valid block is
created, it is inserted into Multichain, and also immedi-
ately relayed to the Networker module for broadcasting.
Networker manages inter-node communications, em-
ploying the Gossip protocol to broadcast and deliver
messages. It handles three types of messages: transac-
tions, testimonies, and blocks. Upon receiving messages,
it validates their validity before further processing.

With this prototype, we conducted experimental evaluations
on the following two different testbeds:

e Real-world testbed: We deployed Manifoldchain on Ama-
zon Elastic Compute Cloud (EC2) to evaluate its perfor-
mance in a genuine geo-distributed environment. Each
miner operates within an EC2 t3.medium instance outfit-
ted with 2 CPU cores, 4GB of RAM, and a 20GB NVMe
SSD. Importantly, these EC2 instances are positioned
in 10 major cities geographically distributed worldwide,
spanning Sydney, London, Virginia, California, Canada,
Ireland, Mumbai, Sao Paulo, Stockholm, and Tokyo.
We deploy Manifoldchain in this real-world testbed to
evaluate its actual throughput and latency.

Simulated testbed: Due to the complexity of the real-
world testbed environment, we additionally deploy Mani-
foldchain in a simulated testbed to obtain an accurate and
reproducible evaluation of its throughput under various



bandwidth settings, while maintaining other configura-
tions unchanged. Specifically, we operate a Manifold-
chain system on a single machine with 4 CPU cores,
16GB of RAM, and a 100GB NVMe SSD. We simulate
the miners with different processes, adjusting the network
bandwidths and delays using tc commands. With this
fully controllable tested, we could easily and accurately
evaluate Manifoldchain’s performance under various net-
work scenarios.

We perform experiments on these testbeds to answer the
following questions.

e What is the throughput and the latency of Manifoldchain
in a realistic deployment?

o Is Manifoldchain able to achieve better throughput com-
pared with the SOTA full sharding protocol?

o« How does the system scale to more miners and higher
bandwidths?

To our best knowledge, Monoxide is the only full sharding
protocol offering a comparable security level to ours, i.e., 1/2
fault tolerance. Other permissionless sharding protocols, like
Elastico, Omniledger, and RapidChain, have fault tolerance
less than 1/3 or even 1/4, rendering direct experimental com-
parisons unfair. We compare with Monoxide to highlight our
primary motivation: the throughput can be boost by clustering
miners with similar bandwidths. As Monoxide is not open
source, we implement it in Rust, and choose the UTXO model
instead of its original account/balance model as the transaction
model. In this case, Manifoldchain and Monoxide utilizes
the same verification scheme to verify both the domestic-
txs and cross-txs. Moreover, Manifoldchain and Monoxide
have different shard formation mechanisms. Manifoldchain
employs the innovative BCSF mechanism proposed in this
paper, while Monoxide employs the standard USF mechanism.
We evaluate performance of Monoxide on the same testbed as
Manifoldchain. In all experiments, all miners share a common
block size of approximately 547.14KB (with each block con-
taining 2048 transactions) and maintain a confirmation depth
of k = 6. The mining rates across shards are configured by
setting respective mining difficulties.

A. Results on Amazon EC2

Throughput. Our first experiment measures the throughput
of Manifoldchain on the realistic testbed. We run Manifold-
chain clients on 50 EC2 instances, each hosting a single miner.
These instances have been configured with various band-
width capacities. The available bandwidths are 5, 10, 20, 40, 60
Mbps, with each bandwidth being adopted by 10 miners. We
distribute these 50 miners into 5 shards, with 10 miners in
each shard. As Manifoldchain and Monoxide adopts different
shard formation mechanisms, they exhibit different bandwidth
distributions across shards. Specifically,

« Monoxide adopts USF mechanism:

— Shard 0: {5,5,10, 10, 20, 20, 40, 40, 60, 60}.
— Shard 1: {5,5,10, 10,20, 20, 40, 40, 60, 60}.
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Fig. 6. Throughputs of Manifoldchain and Monoxide in distinct shards.
Comprising stragglers, all shards in Monoxide and the slowest shard in Mani-
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Fig. 7. Average transaction latency for different cross-tx ratios. Manifoldchain
consistently exhibits lower latency than Monoxide. As the cross-tx ratio
increases, latency rises in both Manifoldchain and Monoxide.

- Shard 2: {5, 5,10, 10, 20, 20, 40, 40, 60, 60}.
- Shard 3: {5, 5,10, 10, 20, 20, 40, 40, 60, 60}.
- Shard 4: {5, 5,10, 10, 20, 20, 40, 40, 60, 60}.
Manifoldchain adopts BCSF mechanism:

Shard 0: {5,5,5,5,5,5,5,5,5,5}.

Shard 1: {10, 10, 10, 10, 10, 10, 10, 10, 10, 10}.
Shard 2: {20, 20, 20, 20, 20, 20, 20, 20, 20, 20}.
Shard 3: {40, 40, 40, 40, 40, 40, 40, 40, 40, 40}.
Shard 4: {60, 60, 60, 60, 60, 60, 60, 60, 60, 60}.

We set the mining rates A; and \; within each shard by
solving Optimization [6] with the same target error probability
for Manifoldchain and Monoxide. The comparable security
levels of these two sharding protocols are evidenced by
their similar forking rates, both measured at less than 3%
in the experiment. As shown in Figure [6] across all shards,
Manifoldchain achieves an average throughput of 30.41 tx/sec,
while Monoxide only achieves an average throughput of 10.62
tx/sec. The gain in throughput of Manifoldchain is attributed
to improved performance in the fast shards where miners are
not compromised by stragglers: the throughput in the fastest
shard is 5.11 times that of the slowest shard.

Latency. Under the same parameter setting, we evaluate the
confirmation latency of Manifoldchain and compare it with
Monoxide. We manually generate domestic-tx as well as cross-
txs and broadcast them within the corresponding shards. A
domestic-tx is randomly assigned to one shard, while a cross-
tx is randomly assigned to four shards. Setting x = 6 across
all shards, we evaluate the average latency of Manifoldchain
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demonstrates a more rapid increase in throughput compared with Monoxide.

and Monoxide over all shards under different cross-tx ratios
ranging from 0.1 to 0.9. Figure [/| shows that Manifoldchain
achieves an overall lower latency than Monoxide. It is because
that Manifoldchain generally has faster mining rates, and
reaches the target confirmation depth with less time. As cross-
txs rely on confirmations of all input-txs and output-txs which
may locate in slow shards, their confirmation time is longer
than that of domestic-txs. Consequently, as the cross-tx ratio
increases, the average latency also rises.

B. Results on Simulated Testbed

The following experiments are conducted on our simulated
testbed, to demonstrate the horizontal and vertical scalability
of Manifoldchain, and compare them with Monoxide.
Horizontal scalability. We set the size of each shard to 5 and
progressively increase the number of shards m. To simulate
a scenario with varying bandwidths, we have 5 miners con-
figured with a bandwidth configuration of {5, 10, 20, 40,60}
Mbps. For each increment in m, we add 5 miners with this
bandwidth configuration. Subsequently, we measure the max-
imum throughput achieved by Manifoldchain and Monoxide
under varying values of m.

Fig. demonstrates the horizontal scalability of Mani-
foldchain and Monoxide. Manifoldchain achieves an average
increase in throughput of 19.68 tx/sec for each increment in
m, while Monoxide can only achieve an average increase in
throughput of 6.83 tx/sec under the same increment. The rea-
son why Manifoldchain achieves better horizontal scalability is
that it fully utilizes the fast miners’ bandwidths through BCSF
mechanism for each shard increment. In Monoxide, the newly
joined miners contain both stragglers and fast miners. The
stragglers are uniformly distributed across shards. Therefore,
regardless of the shard to which the fast miners are allocated,
they are compromised by the presence of stragglers. In sharp
contrast, in Manifoldchain, the stragglers among the new
miners are assigned to the slow shards, while the fast miners
are allocated to the fast shards, admitting higher mining rates.
Therefore, the throughput increase results from each shard
increment depends on the overall bandwidths configured by all
the newly joined miners, which is larger than that in Monoxide.
Vertical scalability. The vertical scalability reflects in how the
throughput scales with the increase in the bandwidths of nor-
mal miners while considering the presence of stragglers. We
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Fig. 9. Throughput scaling with the average bandwidth of normal miners ().
Manifoldchain achieves higher throughput as p increases, whereas Monoxide
maintains nearly constant throughput across varying .

simulate this scenario by sampling bandwidths of stragglers
and normal miners from two distinct normal distributions.
Specifically, there are a total of 25 miners, with 20 being
normal miners and the remaining 5 miners being stragglers.
The stragglers follow a normal distribution A7 (10, 2), and the
normal miners follow a normal distribution N3 (pu, 7), where
varies from 35 to 54. These 25 miners are distributed across 5
shards, with 5 miners in each shard. In this scenario, we eval-
vate the maximum throughput achievable by Manifoldchain
and Monoxide under varying values of p.

As shown in Figure 0] Manifoldchain achieves an average
increase in throughput of 1.25 tx/sec for each increment in p,
while Monoxide merely achieves a constant throughput under
different ;. The absence of vertical scalability in Monoxide
can be attributed to the presence of stragglers within each
shard. Since the stragglers are uniformly distributed across
shards, they compromise nearly all the normal miners. Despite
the increase in the bandwidths of normal miners, the mining
rates cannot be correspondingly increased. In contrast, normal
miners in Manifoldchain are not compromised by the presence
of stragglers. If the bandwidths of normal miners increase, they
can be configured with a higher mining rate to achieve higher
throughput while keeping the error probability unchanged.

VII. CONCLUSION AND DISCUSSIONS

We propose Manifoldchain, a permissionless full sharding
protocol which boost vertical scalability within each shard via
clustering miners with similar bandwidths. This uneven shard
partition may introduce a new vulnerability: the adversary
could concentrate hashing power in one shard to establish an
adversarial majority. To counter this attack, we offer sharing
mining to diffuse the honest hashing power to the entire
network, thereby ensuring each shard attains the same level
of security as an unsharded blockchain. This design positions
Manifoldchain as the most robust sharding protocol, achieving
optimal fault tolerance within each shard: security is upheld
as long as there is at least one miner in each shard. Besides,
we provide a tight security analysis that guides us to set the
optimal mining rates across shards to maximize throughput.
Furthermore, we implement Manifoldchain, and evaluate its
performance on both realistic and simulated testbeds. The
experimental results not only validate our theoretical asser-



tions but also illustrate that Manifoldchain delivers a notable
improvement in throughput over SOTA full sharding protocols.
Adapting to non-PoW consensus. Manifoldchain’s core de-
sign principle is versatile, enabling straightforward extension
to non-PoW sharding protocols, notably Proof-of-Stake (PoS)
and permissioned settings. In PoS systems, uneven stake dis-
tribution poses a risk of adversarial dominance within shards.
Sharing mining can mitigate this by allowing miners to use
a single coin to mine across shards, thus dispersing their
power to secure potentially vulnerable shards. On the other
hand, incorporating sharing mining into permissioned shard-
ing protocols resemble the design of shared security in the
Cosmos ecosystem [51]], where different Cosmos chains share
a common set of validators. We defer a detailed comparison
and analysis to future work.

Achieving optimal vertical scalability. Manifoldchain im-
proves horizontal and vertical scalability by clustering nodes
with similar bandwidth within the same shard. This idea could
be synergistically integrated with protocols optimizing vertical
scalability, such as Prism [25] and recent DAG-based BFT
protocols [52], [S3]], [54], [55]. These protocols achieve high
throughput, approaching the network capacity, by decoupling
block proposal and transaction validation. Incorporating these
protocols as the intra-shard consensus, Manifoldchain stands to
optimize both vertical and horizontal scalability. Specifically,
integrating Prism into Manifoldchain is straightforward: the
proposer blocks in Prism can be substituted with exclusive/in-
clusive blocks, following the same mining and verification pro-
cesses as Manifoldchain. A detailed analysis of this integration
is earmarked for future exploration.
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APPENDIX A
ADAPTIVE ADVERSARY

Adaptive adversaries are further categorized into three types:

1y

2)

3)

Mildly adaptive [6]: When the adversary requests to
corrupt a miner, the corruption occurs after a certain
delay.

Weakly adaptive [37], [38]]: When the adversary requests
to corrupt a miner, the corruption occurs after the miner
sends all outgoing messages. Additionally, any messages
already sent by the miner cannot be erased by the
adversary.

Strongly adaptive [37], [39]: When the adversary requests
to corrupt a miner, the corruption occurs immediately.
Furthermore, any messages sent by the miner before the
corruption that have not yet been arrived can be erased
by the adversary.



Shard 1 miner

Shard 2 miner

Fig. 10. Hashing power splitting attack. The adversary mines an exclusive
block 3 with an associated invalid transaction block in shard 1. The exclusive
block is deemed invalid in shard 1 but regarded as valid in other shards.

APPENDIX B
HASHING POWER SPLITTING ATTACK

We define the hashing power splitting attack (HPSA) as
follows:

Definition 2. (Hashing Power Splitting Attack.) Adversary
mines an exclusive block with an invalid transaction block and
send the exclusive block to other shards, splitting the hashing
power of honest miners.

As shown in Fig a corrupted miner in shard 1 mines
an exclusive block 3 containing an invalid transaction block.
In the initial design of sharing mining, only block headers are
broadcast across shards, thus miners can only verify transac-
tions within their own shard. In shard 1, block 3 is invalid,
but the adversary sends it to shard 2, where it is deemed
valid because shard 2 miners do not verify the transaction.
If an inclusive block 5 is mined on top of block 3, shard 1
miners reject this chain and continue mining on blocks 2 and
4. This attack splits the hashing power of honest miners across
different chains.

Under the worst-case scenario, HPSA could lead to a
consensus failure in a shard with an adversarial majority. This
attack entails an adversary with overwhelming hashing power
mining a longer chain that consists of all invalid transaction
blocks and making it public to the global view. In this scenario,
honest miners would consider the adversarial chain as valid
because they are unable to verify the availability and validity
of transactions since only the block headers are accessible.
Therefore, other miners across shards cannot access and col-
laborate on the susceptible honest chain in the source shard,
resulting in their inability to contribute their hashing power to
the honest miners in that shard. Consequently, without honest
majority and validity/availability verification, the adversary
could arbitrarily cause double-spending failures.

APPENDIX C
TRANSACTION VALIDITY & BLOCK AVAILABILITY
VERIFICATION

Transaction validity verification. In a target shard where
the adversary aims to split hashing power, miners within the
shard are “in-shard miners”, and those outside are “out-shard
miners”. Out-shard miners rely on at least one honest in-shard
miner to verify transaction validity by sending a fraud proof,
denoted as proof,f;nvalidity, formatted as follows:
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proof_of_invalidity =

{(txo,block_hashg,tx_merkle_proof),

7
(tx1,block_hash;,tx_merkle_proof,), @

fault_type}

For double spending faults, the fraud proof shows the
invalidity of a transaction block by proving the existence of
two conflicting transactions using the same UTXOs. txg is a
transaction in the invalid block with block_hashg as the hash
of its consensus block, verifiable with tx_merkle_proof,,.
txo is another transaction conflicting with tx;, linked to
block_hash;, and verified with tx_merkle_proof,. For
incorrect formatting faults, such as invalid signatures, only the
inclusion proof of txg is required, and the second component
of the fraud proof is left empty. Out-shard miners verify the
fraud proof; if valid, they mark the block as verified; otherwise,
they mark it as invalid.

Data availability verification. We utilize Coded Merkle
Tree (CMT) proposed by Yu et al. [18] to facilitate the data
availability verification across shards. Specifically, different
miners’ behaviours are summarized as follows:

1) Block producer (in-shard miner): (a) Generates a consen-
sus block (which may be either an exclusive or inclusive
block) containing CMT and broadcasts this block to
all miners, while broadcasting the associated transaction
block exclusively to in-shard miners. (b) Responds to
sample requests received from out-shard miners.
Out-shard miner: (a) Upon receiving a new consensus
block from other shards, initiates separate, anonymous,
and intermittent sampling requests with replacement di-
rected at in-shard miners who claim the block is available.
(b) Broadcasts received samples to all connected in-shard
miners. (¢) Assumes block availability if all requested
samples are received. (d) Rejects the consensus block
if any requested samples are not received within the
bounded network delay A. (e) Rejects the block if
any error proofs, such as incorrect_coding_proof or
bad_code_proof, are received.

Other in-shard miner: (a) Upon receiving valid samples,
attempts to recover the data block through both down-
loading the associated transaction block from other in-
shard miners and collecting samples forwarded by out-
shard miners. (b) Rebroadcasts received valid samples.
(c) Sends corresponding proof and rejects the block if
adversarial behavior, such as incorrect coding or bad
code, is detected. (d) Declares the availability of the block
to all other miners and responds to sample requests from
out-shard miners upon successful receipt or full decoding
and verification of a data block.

2)

3)

APPENDIX D
CROSS-SHARD TRANSACTION ATOMICITY

In this section,we prove the cross-shard transaction atom-
icity of Manifoldchain. To facilitate the proof, we present the
following lemma:



Lemma 2. In Manifoldchain, all input-txs, output-txs, refund-
txs created by honest users will eventually be confirmed.

Proof. Honest users always faithfully follow the protocol to
broadcast input-txs, output-txs, and refund-txs in all involved
shards. Due to the liveness of Manifoldchain, these transac-
tions will eventually be confirmed. O

Formally, we have the following theorem:

Theorem 3 (Cross-shard transaction atomicity). In Manifold-
chain, for a cross-tx created by honest users, (1) if all input-txs
are confirmed as accepted, then all output-txs will eventually
be confirmed as accepted; (2) if any input-tx is confirmed as
rejected, then all output-txs will eventually be confirmed as
rejected, and all refund-txs will eventually be confirmed as
accepted.

Proof. We will prove statement (1) by contradiction. Suppose
that all input-txs are confirmed as accepted and Lemma [2]
holds. For (1) to be false, there must exist an output-tx that is
confirmed as rejected. However, according to the verification
mechanism described in Section a confirmed rejected
input-tx must exist in at least one input shard for an output-tx
to be confirmed as rejected. This directly contradicts the initial
condition that all input-txs are confirmed as accepted, as an
input-tx can only be confirmed as either accepted or rejected,
not both.

We will also prove statement (2) by contradiction. Suppose
that there exists an input-tx that is confirmed as rejected
and Lemma [2] holds. For (2) to be false, at least one of
the following events must occur: (i) at least one output-tx
is confirmed as accepted, or (ii) at least one refund-tx is
confirmed as rejected. Event (i) necessitates that all input-
txs are confirmed as accepted, which directly contradicts the
condition that one of the input-txs is confirmed as rejected,
as an input-tx can only be confirmed as either accepted or
rejected. Therefore, event (ii) must also be false, as it requires
at least one output-tx to be confirmed as accepted, which has
already been proven false. O

APPENDIX E
SECURITY PROPERTIES

In this section, we present the formal definitions of security
properties. We denote by C! the longest chain in miner i’s
view at time t.

A. Common Prefix

CP property stipulates that honest miners should agree on
the current chain, with the exception of a small number, &,
of unconfirmed blocks at the end of the chain. Prior to the
definition of CP, we introduce the following bad event E,:

Definition 3. (Consistency violation of a target transaction).
The consistency of a target transaction is violated when a
block containing the target transaction is confirmed, while
simultaneously, another distinct block (possibly containing or
not containing the target transaction) is confirmed at the same
height within the blockchain.
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We define CP property CP(k,e(k)) as follows:

Definition 4. A protocol [| holds common prefix property
CP(k,e(k)) in environment Env(A, p) if consistency viola-
tion events happen with an negligible probability €(k) when
employing k-confirmation rule in case that any message is
delayed for A seconds and the ratio of the adversarial hashing
power is p.

B. Chain Growth

CG property stipulates that in a honest miner’s view, the
length of the longest chain should grow at an average rate
g over a continuous time span of 7 seconds, except with an
exponentially small probability (7). Prior to the definition of
CG, we introduce the following bad event F:

Definition 5. We say the anticipated growth event Eg(t, A, T)
occurs, denoted by E (t,A,T) = 1, if the following two
events hold true:

o (Consistent Length.) Given the current time t, For any
timer <t—A, r+A <71’ <4, for every two miners i, j
such that i is hones at v and j is honest at 1/, len(C}l) >
len(C) holds.

e (Chain Growth.) For any time r < t — t, it holds that
r?ijn(len(C;H) —len(Cl)) > T.

The CG property is defined as follows:

Definition 6. A blockchain protocol ] holds chain growth
property CG(g,e(+)) in environment Env(A, p) if anticipated
growth event E, happens except with a negligible probability
e(T). Formally, there exists a constant ¢ such that for ever
T>candt> %—, the following holds:

PriE,(t,A,T)=1]>1—¢(T). (8)

C. Chain Quality

In essence, the CQ property necessitates that any longest
chain, as adopted by honest miners, must contain a certain
proportion of honest blocks. Prior to the definition of CQ, we
introduce the following bad event F:

Definition 7. We say the anticipated quality event E4(q,T)
occurs, denoted by E,(q,T) = 1, provided that for each
moment t and every honest miner i, within any continuous
sequence of T blocks in C!, the proportion of honest blocks
is at a minimum of q.

The CQ property is defined as follows:

Definition 8. A blockchain protocol [] holds chain quality
property CQ(q,e(+)) in environment Env(A, p) if anticipated
quality event E, occurs except with the negligible probability
e(T). Formally, there exists a constant ¢ such that for every
T > ¢ the following holds:

Pr(Ey(q, 7) =1] =1 —&(T). C)
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