
Welcome to Jurassic Park: A Comprehensive Study
of Security Risks in Deno and its Ecosystem

Abdullah AlHamdan
CISPA Helmholtz Center for Information Security

abdullah.alhamdan@cispa.de

Cristian-Alexandru Staicu
CISPA Helmholtz Center for Information Security

staicu@cispa.de

Abstract—Node.js and its ecosystem npm are notoriously
insecure, enabling the proliferation of supply chain attacks. Deno
is an emerging runtime that promises to offer a safer alternative
for running untrusted JavaScript code outside of the browser.
Learning from Node.js’s mistakes, Deno is written in Rust, a
memory-safe programming language, and it includes a strict
permission system that checks all accesses to sensitive APIs via
static or runtime permissions. Deno also allows the inclusion of
third-party code via URLs, which promises a more transparent
way of handling dependencies, advocating for a fully decentralized
software supply chain. In this paper, we study if Deno delivers on
its promise of increased security. We find that indeed Deno has
a smaller attack surface than Node.js, but there still are known
attacks that are not addressed (ReDoS) or only partially mitigated
(prototype pollution). Moreover, we find several weaknesses in
Deno’s permission system, which allow sophisticated supply
chain attacks. First, coarse-grained permissions allow attackers
to abuse the ambient authority of the operating system to
sidestep the permission system. Second, we find that URL imports
are exempted from the permission checks, allowing attackers
to perform unlawful network requests. We also identify time-
of-check to time-of-use issues when handling symbolic links,
making fine-grained file system access control ineffective. We then
perform an empirical study of Deno’s main ecosystem deno.land
to understand how developers consume third-party code and how
permissions are used and communicated. We identify classical
URL-related issues such as expired domains and reliance on
insecure transport protocols, but we also find that it is challenging
to guarantee uniform immutability and version control when
multiple domains are involved in code distribution. We also
provide initial evidence that developers poorly document required
permissions on deno.land and that they tend to abuse coarse-
grained permissions, reducing the benefits of the permission
system. Our findings resulted in two security advisories for Deno
and a redesign of its import mechanism. We also make concrete
recommendations for improving Deno’s security model to further
prevent supply chain attacks: add import permissions, additional
access control at file system level, support for compartmentaliza-
tion, and a manifest file that persists fine-grained permissions.

I. INTRODUCTION

JavaScript is arguably the most popular programming lan-
guage in the world, supporting a wide palette of use cases,
starting from simple client-side animations in the browser

to full-fledged, portable desktop applications. Node.js is a
popular, open-source, cross-platform runtime that enables de-
velopers to execute JavaScript code outside of a web browser.
Its package manager, npm, is the largest package collection in
the world, hosting more than two million packages. However,
this success also led to significant security issues, including
the high prevalence of vulnerabilities [1], [2], [3], [4], [5]
and the widespread distribution of malicious packages [6], [7].
As a result, both academic and developer communities have
been working to improve security by implementing stricter
package distribution guidelines [8], [9] and by restricting the
capabilities of consumed packages [10], [11].

Deno is a radically new JavaScript runtime for server-side
and standalone applications, designed with security in mind.
According to State of JS1, Deno is the second most used
server-side JavaScript runtime after Node.js, with 11.2% of
developers using it in 2022, a raise from 5.6% in 2021.
Additionally, it is one of the most starred open-source projects
(93k GitHub stars) along Node.js (105k stars). Deno provides
strong isolation and a restrictive permission system. The
authors of Deno argue that it is secure by default, allowing
developers to run untrusted code with confidence2, similar to
a web browser. The permission system empowers developers
to selectively grant either static or runtime permissions to
grant access to sensitive operations. One can grant either
coarse-grained permissions, e.g., allow all network operations,
or fine-grained ones, e.g., only allow reading a specific file
from the disk. Nonetheless, all permissions are granted at the
application level, so there is currently no built-in support for
compartmentalization [10], [11], i.e., reducing the privileges
of some parts of the code only. Moreover, certain permissions
like --allow-sys allow running binary code that is not
under the control of the permission system [12], rendering the
security mechanism ineffective in such cases.

Let us consider the example in Figure 1 to illustrate
how Deno’s permission system works. In this example, we
use earthstar, a package that implements a third-party
distributed storage protocol. We initialize a local database
(lines 3-7), add a local file into the database (lines 7-12),
and synchronize with a remote instance (lines 13-15). To
successfully execute this piece of code, we need to grant

1https://2022.stateofjs.com/en-US/other-tools/#runtimes
2https://docs.deno.com/runtime/manual/basics/permissions

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230284
www.ndss-symposium.org

https://2022.stateofjs.com/en-US/other-tools/#runtimes
https://docs.deno.com/runtime/manual/basics/permissions


1 import {Crypto, Replica, ReplicaDriverMemory, Peer
} from "https://deno.land/x/earthstar/mod.ts";

2
3 const p = await Crypto.generateShareKeypair("ab");
4 const replica = new Replica({
5 driver: new ReplicaDriverMemory(p.shareAddress),
6 shareSecret: p.secret,
7 });
8 await replica.set(p, {
9 path: "/img/leaf.jpg",

10 text: "A sample image",
11 attachment: await Deno.readFile("./leaf.jpeg"),
12 });
13 const peer = new Peer();
14 peer.addReplica(replica);
15 peer.sync("https://my.server");

(a) Example usage of the earthstar package to initialize a database
with a local image and synchronize it with a remote instance.

> deno run --allow-read=./leaf.jpeg --allow-net
sample.ts

(b) Permissions for the code above, passed as arguments to Deno.

Fig. 1: Sample TypeScript code and its Deno permissions.

Deno permissions to read the image file in line 9 and to
make a network request in line 15. We note that while
the file read operation is explicitly visible in line 11, the
actual network request is hidden in the implementation of
the sync() method invoked in line 15. If one attempts to
run the code in Figure 1a in Deno’s default configuration, the
execution will pause both at line 11 and line 15 to prompt
the user for consent to proceed with the sensitive operation.
If the user does not explicitly grant this runtime permission,
Deno will throw an exception instead of proceeding with the
operation. For convenience, users can also grant permissions
statically, as command line arguments to Deno. In Figure 1b
we show how one can grant coarse-grained permissions to the
network (--allow-net) or fine-grained permissions to read
a specific file (--allow-read=./leaf.jpeg).

Another peculiar feature of Deno is its mechanism for
consuming third-party code. While Node.js advocates for a
centralized solution, in which all packages are published on
npm or on private package repositories, Deno proposes a fully
decentralized approach. As seen in line 1 of Figure 1a, Deno
allows importing third-party code via unrestricted URLs, akin
to browsers. We argue that this results in a decentralized
software supply chain with multiple benefits, e.g., increased
resilience, but also with multiple challenges, e.g., non-uniform
security policies for the involved domains. Let us take a
closer look at the software supply chain of the earthstar
package, depicted in Figure 2. When importing this package
from deno.land, Deno makes 114 network requests to retrieve
all the transitive dependencies, from four different domains.
We note an inconsistent publishing policy among these do-
mains: while deno.land prevents published code from being
altered after release, the code included directly from GitHub
has no such restrictions. We believe that this can lead to

serious availability issues in the future, akin to the infamous
left-pad incident3, when the deletion of an npm package
lead to multiple build failures in dependant projects. This is
because the resilience of the entire supply chain depends on
its weakest node.

In this paper, we perform a comprehensive analysis of
Deno’s security risks, insisting on how the newly adopted
features like the permission system or the URL-based import
can influence the runtime’s security. We first perform (i) a
comparative study of Deno’s and Node.js’s attack surface.
We then (ii) explore ways to circumvent Deno’s permission
system, e.g., by exploiting the power of coarse-grained permis-
sions. Finally, (iii) we analyze Deno’s decentralised software
supply chain by performing an in-depth study of deno.land.

By analyzing the security model of Deno and known vulner-
abilities of Node.js, we find that indeed Deno’s attack surface
is reduced by the deployed mitigations. For example, by
using a memory-safe programming language for implementing
Deno, entire classes of low-level vulnerabilities are eliminated,
e.g., buffer overflows in binding code [13]. Nonetheless, we
find that Deno users can only benefit from the reduction in the
attack surface if they correctly configure the security mecha-
nisms, i.e., avoid giving too many (coarse-grained) permissions
to their applications and minimize careless code reuse. We also
note that there are important differences between Deno’s and
other widely-studied permission systems: (i) as opposed to
Android, Deno does not deploy additional file system access
control [14] to prevent access to sensitive OS resources, (ii) it
does not offer a way to persist the permissions in a manifest
file, and (iii) it allows context-based calls to sensitive APIs,
unchecked by the permission system, e.g., perform network
requests to import third-party code.

Next, inspired by prior work on Android [14], [15], [16],
[17], [18], we perform an in-depth security analysis of Deno
and discover unexpected ways to sidestep the permission
system. Concretely, we find that coarse-grained read permis-
sions allow unprivileged access to environmental variables via
internal operating system files, and write permissions allow
arbitrary code execution by modifying OS start-up scripts.
These attacks would not be possible if Deno would supplement
the permission checks with additional access control [14].
We also find that Deno’s fine-grained file system permissions
do not work correctly in the presence of symbolic links,
allowing attackers to escape directories for which permissions
were granted. Finally, leveraging the exemption of static code
imports from network permission checks, we show how
attackers can exfiltrate arbitrary data from the victim machine,
when only file system permissions are given. These attacks
show for the first time the feasibility of supply chain
attacks in Deno, in particular, when users carelessly grant
coarse-grained permissions. We disclosed all our findings
to Deno’s security team and to a third-party specialized in
vulnerability disclosure. At the time of writing, two CVEs

3https://arstechnica.com/information-technology/2016/03/rage-quit-coder
-unpublished-17-lines-of-javascript-and-broke-the-internet/

2

https://deno.land/x/earthstar@v10.2.2
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/
https://arstechnica.com/information-technology/2016/03/rage-quit-coder-unpublished-17-lines-of-javascript-and-broke-the-internet/


packages from deno.land

packages from esm.sh

packages from github.com

packages from skypack.dev

Fig. 2: Dependency graph for earthstar package on deno.land with its transitive dependencies, illustrating Deno’s
decentralized software supply chain. Each node is a different package and colored nodes are packages hosted outside deno.land.

were issued for our findings (CVE-2024-21486, CVE-2024-
21487) and the Deno team promised to deploy a permission
check for importing code from untrusted domains in Deno 2.0.

We also perform a measurement study of deno.land, the
main software registry of Deno to study code reuse practices
and to understand how developers configure the permission
system. We analyze all the 5,400 packages hosted on this
registry, together with all their transitive dependencies, in-
cluding the ones stored outside deno.land. In total, during
dependency resolution we visited 10,544 URLs from 21 dif-
ferent domains. We show that decentralized software supply
chains introduce unique challenges: 39 packages include
code over insecure protocols (HTTP), more than 400 packages
transitively include unavailable URLs, and one of the 21 do-
mains involved in distributing the code was available for sale,
allowing attackers to take control of legitimate packages. We
also find that it is difficult to guarantee transitive immutability
and to perform version control of dependencies, in a decen-
tralized setup. Our measurements also highlight the limited
usability of Deno’s permission system. First, developers
tend to recommend granting coarse-grained permissions over
fine-grained ones, potentially amplifying the weaknesses of
the permission system. We believe that this is due to the
cumbersome way of granting permissions as command line
arguments. Similar to Android, we also note that Deno pack-
ages are overprivileged [15] and that unexpected permission
prompts may surface at runtime due to third-party code [17].

Based on our findings, we propose concrete improvements
to Deno’s ecosystem. First, with respect to the permission

system, we recommend to (i) add permission checks for static
imports, (ii) fix the faulty support of symbolic links, (iii) block
read/write access to sensitive operating system paths, (iv) use
compartmentalization to further reduce the privileges of un-
trusted code, and (v) add support for permission policy files.
Regarding code reuse practices on deno.land, we recommend
more redundancy in the distributed software supply chain via
immutable mirrors of packages, the discouraging of coarse-
grained permissions, and vetting and uniformizing security
practices of widely-used content delivery networks.

In summary, our contributions are the following:

• We are the first to perform a thorough analysis of Deno’s
security features, in particular of its permission system.
We find that coarse-grained permissions, unchecked static
imports, and faulty support for symbolic links enable
powerful supply chain attacks in Deno. Our findings
lead to a redesign of the import mechanism and to the
publication of two security advisories.

• We present the first measurement study of code reuse
practices in deno.land. We analyze 5,400 packages and
their dependencies, delivered by 21 distinct domains. We
note the fragility of this decentralized software supply
chain by uncovering packages that import code from
insecure domains, broken import URLs, or expired do-
mains. We also warn about the over-reliance on coarse-
grained permissions on deno.land, which might amplify
the weaknesses of Deno’s permission system.

• We discuss concrete improvements to Deno’s security
model that can mitigate most of the discovered issues.

3

https://deno.land/x/earthstar@v10.2.2


II. DENO’S FEATURES AND ATTACK SURFACE

In this section, we outline Deno’s threat model and other
security-relevant features. We then study whether known se-
curity concerns of Node.js also apply to Deno, or how the
deployed security controls reduce the attack surface.

A. Deno’s Security Model and Features

One of the main promises of Deno is to learn from Node.js’s
mistakes and significantly reduce the privileges of the executed
code4. Deno makes grandiose security promises like:

• Deno’s secure sandboxed environment means that you
can run untrusted code and party dependencies with
confidence.

• You no longer need to conduct audits on your dependen-
cies — simply run your program and see what access
your app and its dependencies require.

To do so, Deno implements a Rust-based wrapper around
the JavaScript engine, which promises full interposition for
all runtime I/O operations, e.g., file system accesses. That
is, whenever the code requires access to a privileged API,
it only proceeds after obtaining explicit consent from the user.
However, the permissions are granted for the entire applica-
tion, thus, there is no built-in support to compartmentalization,
i.e., only granting certain permissions for a subpart of the
application.

Deno supports eight types of permissions5: file system
(i) reads or (ii) writes, (iii) running subprocesses, (iv) network
requests, access to (v) environmental variables or (vi) system
information, (vii) perform high resolution timing measure-
ments, and (viii) loading dynamic libraries. Each permission
can be specified in two ways: as static or runtime permission.
Static permissions are predefined before the program’s execu-
tion and are provided as command line arguments to Deno.
When no static permissions are given or they are insufficient,
the runtime pauses the execution and asks for explicit consent
to proceed with each offending API calls. Once the consent is
given for a particular API, its associated runtime permission
becomes part of the policy and subsequent calls to the same
API will be granted access automatically. By default, all the
code executed on Deno is assumed to be untrusted and thus,
no permissions are automatically granted.

Both static and dynamic permissions can take two forms:
coarse-grained or fine-grained. Coarse-grained permissions
grant access to multiple resources at once, e.g., allow all
network requests, while fine-grained ones only grant access
for a specific resource, e.g., allow reading a single file from
the disk. Users can also grant all permissions at once, but the
documentation advises against this practice, since it drastically
reduces the benefits of using Deno in the first place.

While useful, Deno’s permission system is not very user-
friendly, in its current form. First, we are not aware of any
widely-used specification mechanism, similar to manifests in

4https://deno.com/learn/nodes-security-problem
5https://docs.deno.com/runtime/manual/basics/permissions

Android, where static permissions can be declared in a user-
friendly way, thus, users need to declare them as command-
line arguments, for each execution. Second, there is no mecha-
nism to persist the runtime permissions and use them as static
permissions in subsequent runs. Thus, when running the same
program multiple times, the user has to choose between the
following subpar options: (1) redundantly give consent via
runtime permissions, for each run, (2) provide intricate fine-
grained policies that can result in tens or even hundreds of
command line arguments, (3) giving excessive privileges to
their applications via coarse-grained permissions.

We note that traditional server-side runtimes, i.e., Node.js
or Python, consume packages from a single domain, i.e., npm,
through a package manager. This mechanism downloads the
entire source code of each package declared as a dependency
in a manifest file. Deno uses a radically-different approach to
manage third-party dependencies. Similar to client-side code,
it allows importing code from any domain via URLs, as seen
in Figure 1a. Any valid URL is considered a legitimate source
for fetching third-party code, e.g., CDNs, personal websites,
and local IP addresses. The only restriction is that the request
should either return a JavaScript, TypeScript, or a JSON file,
which will be directly loaded into the runtime, i.e., Deno
supports TypeScript natively, using on-the-fly compilation.
Moreover, Deno does not require the upfront declaration of
dependencies in a manifest file, and it does not force the user
to download and use entire packages. Instead, developers can
import only the functionality they need via URLs pointing to
the desired files. A peculiar aspect of Deno’s threat model
is that the fetching and parsing of third-party code is not
mediated by the permission system, only its execution is.

All in all, we argue that the unusual import mechanism pro-
posed by Deno enables one of the first decentralized software
supply chain for server-side code and the only case in which
this paradigm is deployed in conjunction with a permission
system. The smart contracts language Solidity and Golang
possess a similar URL-based import mechanisms, where code
can be imported from arbitrary third-party domains. However,
we argue that in the context of JavaScript, where software
supply chain problems are prevalent [19], [7], this is a radical
departure from the Node.js model. Moreover, we are not
aware of any other programming language or runtime where
URL-based imports are deployed together with a permission
system, as is the case in Deno. This combination can lead to
unexpected interferences, as discussed later in this work.

Decentralized software supply chains promise increased
flexibility and greater resilience, i.e., when central repositories
like npm are down, the entire ecosystem is down, while that
is not the case in Deno. While packages can be stored on any
domain, Deno also provides a centralized repository where
most of its packages are stored, i.e., deno.land. Similar to
npm, deno.land adopts a version immutability policy in the
sense that specific versions of packages cannot be altered,
once published in the repository. Additionally, Deno also

4

https://deno.com/learn/nodes-security-problem
https://docs.deno.com/runtime/manual/basics/permissions


Security Concern Affected Mitigated

Code injection [2] Yes No
Command injection [2] Yes Yes

ReDoS [5], [3], [4] Yes No
Prototype pollution [20], [21], [22] Partial No

Install-time hooks [23] No n/a
Native extensions [24] Yes Yes

Path traversal [22] Yes Yes
Malicious dependencies [1] Yes No

Low-level/binding bugs in the runtime [13] Partial No
WebAssembly bugs [25] Yes No

TABLE I: A detailed overview of Deno’s attack surface,
considering known security concerns of Node.js.

provides an integrity checking mechanism6, which guarantees
predictable application composition by ensuring that each
loaded dependency is locked at a specific version.

While creating a lock file, Deno collects all the imported
files and calculates a hash value for each one. On further
attempts to run the same application, for each imported file,
Deno will compute a hash and verify that it matches with
the one in the lock file. In this way, it ensures that no
inadvertent modifications occur in the depended-upon third-
party code. This feature exposes users to a well-known tension
between version locking and continuous security updates,
i.e., users need to explicitly update their dependency and
recompute their hashes, upon each release/commit. As we
discuss in Section IV-C, version management and the update of
dependencies is a very challenging task in Deno applications,
due to the decentralized software supply chain.

B. Deno’s Attack Surface

To study the attack surface of Deno, we surveyed related
work on Node.js security and attempted to implement proof-
of-concept payloads, for each known issue, to verify if Deno
is also affected by it. Concretely, we searched the proceedings
of the last 10 years (2014-2024) of top-tier conferences in
security and software engineering to identify papers that study
Node.js-specific security problems. In Table I, we show the
results of our investigation, highlighting for each problem
whether it affects Deno, and if so, to what degree it is mitigated
by the proposed permission system.

As seen in the table, most security issues are still affecting
Deno, with few notable exceptions. Due to the proposed
import mechanism, there is no installation phase for packages,
and hence, no install-time hooks that can run during this
phase. This is a worth-celebrating achievement, considering
that such hooks are infamous vehicles for supply chain at-
tacks [6] in Node.js. Also, due to the fact that Deno is
written in Rust, many memory-related issues like the ones
reported in Node.js’s binding code are rather improbable in
Deno. Nonetheless, the underlying JavaScript engine might
still contain such security problems, but this is a rather

6https://docs.deno.com/runtime/manual/basics/modules/integrity checking

–allow-run

–allow-ffi

–allow-read –allow-env –allow-hrtime –allow-write –allow-sys –allow-net

Fig. 3: Relations between coarse-grained permissions in Deno.
An arrow between two permissions means that granting
one implicitly grants the other as well. Solid arrows show
previously-documented relations, while dashed ones show
implications discovered by us.

small risk considering that the entire web threat model re-
lies on this assumption as well. Finally, while there are
efforts to make prototype pollution vulnerabilities impossi-
ble in Deno, we believe that these efforts are not com-
plete yet. While the runtime disallows certain pollution paths
(Object.prototype.__proto__), it still allows oth-
ers (Object.prototype.constructor.prototype).
Nonetheless, exploiting the latter is significantly harder, since
it requires attackers to pollute three nested property accesses
simultaneously.

For the remaining security problems affecting Deno, we
observe that the permission system directly targets many of
them. For example, to exploit a path traversal vulnerability,
attackers need to trick the users into granting too broad
file system permissions. The same applies to running native
extensions/libraries or executing operating system commands.
While the permission system reduces the attacker’s space of
manoeuvre for the other security issues, it does not aim to
prevent them directly. For example, there is no security control
available to restrict the provenance of the code executed
via eval, e.g., similar to script-src in CSP. Similarly,
resource exhaustion attacks like ReDoS are still possible on
Deno and there is no built-in mechanism to restrict the effect
of untrusted dependencies on the trusted code. Similarly, bugs
in WebAssembly modules or the low-level code could spill
into the Deno runtime unrestricted by the existing controls.

All in all, we believe that Deno is a step in the right
direction, exposing a smaller attack surface to its applications.
Nonetheless, the security of the runtime is highly dependent
on the specified permissions and their runtime enforcement,
which we study in detail in the next sections.

III. SECURITY OF DENO’S PERMISSION SYSTEM

As mentioned in Section II, out of the box, Deno is
supposedly as secure as a browser, since no permission is
granted to use the powerful Deno-specific APIs, e.g., file
system access or spawning of new processes. However, the

5

https://docs.deno.com/runtime/manual/basics/modules/integrity_checking


1 let _fname = new URL(’’, import.meta.url).pathname;
2 let oldContent = await Deno.readTextFile(_fname);
3 let passFl = await Deno.readTextFile(’/etc/passwd’);
4 let pre = ’import {foo} from "https://attacker.com?

val=’ + encodeURIComponent(passFl) + ’";\n’
5 await Deno.writeTextFile(_fname, pre + oldContent);

Fig. 4: A two-steps attack that overwrites the current file
to exfiltrate the content of /etc/passwd, without being
granted the network permission.

security of a Deno application is still highly dependent on
the correctness of the underlying permission system. A sound
permission system must ensure that (i) all critical functionality
is guarded by a permission check and that (ii) the functionality
guarded by a given permission should only be accessible when
users explicitly grant that permission. We found evidence
that Deno fails to enforce both these properties, enabling
powerful supply chain attacks in this ecosystem. Below, we
discuss our findings, grouped into three categories: unchecked
functionality that we believe should trigger a permission
check, capability leaks due to coarse-grained permissions, and
problems with enforcing fine-grained permissions.

A. Missing permission checks

Import statements allow Deno developers to use third-
party packages after loading them directly into the application
space, either via a given package URL or a path to the
package directory. Unfortunately, static imports, with all their
ability to make a network request and access local directories,
are exempted from the permission checks. This might open
the door to performing sophisticated attacks via abusing the
import mechanism. Deno’s security model7 states that this is
intended part of the design: the initial static module graph
that is constructed when doing deno run, does not have
any permission restrictions. We argue that this can be abused
in multiple ways by adversaries, as part of a supply chain
attack. The simplest payload is a tracking pixel-like import that
attackers place in their code to find out when developers use
the attacker-controlled code. Since URLs in imports can con-
tain GET parameters, attackers can generate different instances
of their code for the target users, each instance containing
a unique ID embedded in the import statement. Whenever
developers run deno run on an application containing the
malicious code, it will inform the attacker about this action,
enabling precise tracking. This tracking payload reveals the
time of the action and the unique application ID. It can be
used to infer important information about the user’s behavior,
e.g., when do they open their IDE or their crypto wallet.

When write permissions (--allow-write) are also
granted for the current folder, attackers can perform a sophis-
ticated metamorphic attack in which they overwrite files that
are typically loaded by the application with a static import that
includes a GET parameter with privacy-sensitive information

7https://deno.land/x/deno@v1.18.2/SECURITY.md

1 // equivalent with Deno.env.toObject();
2 ev = await Deno.readTextFile("/proc/self/environ");
3
4 // equivalent with Deno.systemMemoryInfo();
5 mi = await Deno.readTextFile("/proc/meminfo");

Fig. 5: An example showing how coarse-grained file system
read (--allow-read) permission allows access to sensitive
information, which is otherwise guarded by other permissions
(--allow-env,--allow-sys).

available in the runtime. When the application is run a second
time, the static import will send the data to the attacker’s
website. We show such an attack in Figure 4, where we also
assume a coarse-grained read permission (--allow-read).
The attacker first retrieves the path of the current file (line
1). They then read the old content of the file (line 2) and
of the password file (line 3). Subsequently, the password file
is encoded as an HTTP parameter and appended to the URL
pointing to the attacker’s website (line 4), which is then written
on the disk together with the old content of the file (line 5).
If this payload is executed twice in Deno with read and write
permissions, it exfiltrates the password file to the network,
even though the user never granted the network permission.

B. Risks of coarse-grained permissions

Deno’s documentation8 warns that certain permissions allow
running code outside the sandbox and hence, give attackers
the ability to directly access functionality that would other-
wise be controlled by a permission check. The documenta-
tion warns about two such permissions (--allow-run and
--allow-ffi), which allow escaping the otherwise con-
strained execution environment of Deno. Abbadini et al. [12]
study in detail this shortcoming of the security model and
propose a way to harden it.

While mindful users might be aware of such weak parts
of the permission system, they do not suspect that granting
other coarse-grained permissions like read or write access to
the file system, implies granting additional permissions, which
we term shadow permissions. In Figure 3, we show all the
shadow permissions we uncovered in our work. Most of them
are caused by over-permissioned code in conjunction with
quirks in the runtime or features of the underlying operating
system. We argue that shadow permissions might both surprise
users and enable future supply chain attacks in Deno. Below,
we discuss concrete cases of shadow permissions and their
potential impact.

First, we argue that in most cases, granting a coarse-grained
write permission (--allow-write) is equivalent with a full
bypass of the permission system. That is because when this
permission is granted, Deno allows unrestricted write access
to all files for which the current user has operating system
privileges. On UNIX systems, for example, attackers can

8https://docs.deno.com/runtime/manual/basics/permissions#permissions-lis
t

6

https://deno.land/x/deno@v1.18.2/SECURITY.md
https://docs.deno.com/runtime/manual/basics/permissions#permissions-list
https://docs.deno.com/runtime/manual/basics/permissions#permissions-list


1 // The symlink allows escaping the cache folder
2 let pwd = await Deno.readTextFile("./cache/root-

folder/etc/passwd");
3 console.log(pwd);

(a) Example code leveraging the symbolic link.

> deno run --allow-read=./cache --allow-write=./cache
poc.js

(b) Permissions granted to the malicious application. The cache folder
contains a symbolic link root-folder to the root of the operating
system.

Fig. 6: A proof of concept showing how symbolic links can be
used to escape a folder for which users granted fine-grained
file system permissions.

modify important scripts on the disk, e.g., .bashrc, to inject
arbitrary commands, which upon system restart, are further
executed outside Deno’s sandbox. Malicious code might also
try to overwrite important executables like the browser, e.g.,
firefox.exe, to be triggered the next time the users try
to use this functionality. We note that in other systems with
similar permission systems, e.g., Android, there are additional
access control mechanisms [14] to prevent altering sensitive
files of the operating system. Thus, coarse-grained writes
should be discouraged at all costs or Deno should limit the
power of its file system API by blocking certain file paths.

Similarly, coarse-grained file system reads
(--allow-read) allow reading sensitive files from
the disk, which reveal environmental variables or system
information, bypassing the corresponding Deno permissions.
In Figure 5, we show such an example, in which we read the
path environmental variable and the memory capacity of the
underlying system. This information is normally guarded by
--allow-env and --allow-sys, respectively.

C. Failures in enforcing fine-grained permissions

Fine-grained permissions allow to specify a single target
entity for which the permission is granted. For example, file
system permissions can be granted for a single file or folder,
process spawning for a particular command, and network
permissions for a specific domain and port. We note that there
is an indirection layer between the names developers use in
this fine-grained permissions and the actual resource they aim
to control. For example, attackers can abuse DNS resolution
to perform scans of local network9, i.e., they trick the user
into granting permission for an attacker-controlled domain
and redirect the traffic from that domain to the user’s local
network/IPs, for which no permission was granted. Similarly,
when permission is granted for a particular command like cat
on UNIX, attackers can abuse a write permission to add a
malicious binary on the user’s PATH and hence hijack the
execution of the builtin command.

9https://github.com/denoland/deno/issues/21227

We also found a more subtle indirection caused by sym-
bolic links. Assuming a user grants permission for a folder
containing a symbolic link, Deno incorrectly considers all the
files reached through that symbolic link as part of the folder’s
substructure. In Figure 6 we show how a malicious actor could
abuse this flaw in Deno’s enforcement. Let us assume a user
checks out an untrusted GitHub repository containing a Deno
application. The documentation specifies that the code should
be run with read and access permissions for the cache folder,
which is also part of the repository, thus, attacker-controlled.
Even the most security-conscious people would probably con-
sider this operation safe, considering Deno’s claim that it can
safely run untrusted code10. However, the attackers can create
inside the cache folder a symbolic link to the root folder of
the operating system. This link is automatically created when
the users clone the attacker-controlled-repository. At runtime,
the attacker-controlled code can navigate the symbolic link
and read or write any file on the disk, i.e., it obtained coarse-
grained read and write permissions, even though the user only
granted fine-grained ones for the cache folder. In Section III-B
we discuss how these coarse-grained permission enable more
powerful attacks such as unpriviledged network requests, read
of sensitive system data, or even arbitrary command execution.

We believe that the presented attacks show that Deno’s run-
time enforcement is far from perfect and that coarse-grained
permissions should be discouraged in Deno’s ecosystem. We
reported our findings to Deno’s security team and after a
reluctant initial answer, they decided to restrict the import
mechanism to a list of untrusted domains. Additionally, a third-
party company specialized in vulnerability disclosure issued
two security advisories for our findings. We provide more
information about the disclosure process in Section V. We now
proceed to study Deno’s ecosystem in detail, in particular, the
declared and used permissions in open-source packages.

IV. AN EMPIRICAL STUDY OF DENO.LAND

In this section, we present a measurement study of
code reuse in deno.land, emphasizing the potential security
implications of the current practices. The results of our
study are divided into three main parts. First, we present a
study of dependencies in deno.land, where we emphasize the
impact of URL-based importing in the proposed distributed
software supply chain. This helps us understand if security
risks associated with URLs on the client-side translate to
deno.land, e.g., expired or unavailable domains. Second,
we perform a study of package versioning, including both
quantitative and qualitative analysis of Deno packages’
immutability, the role of import maps, and the practice of
locking packages to a specific version. This helps us assess the
risk of security incidents like left-pad or eslint-scope
in deno.land. Finally, we perform a measurement study of
the documented and potentially required permissions in
deno.land and the accumulation of permissions due to

10https://docs.deno.com/runtime/manual/basics/permissions#run-untrusted
-code-with-confidence

7

https://github.com/denoland/deno/issues/21227
https://docs.deno.com/runtime/manual/basics/permissions#run-untrusted-code-with-confidence
https://docs.deno.com/runtime/manual/basics/permissions#run-untrusted-code-with-confidence


Domain #URLs Percentage of URLs Direct dependents Transitive dependents
deno.land 10892 %85.1536 2779 4088

esm.sh 904 %7.0675 221 837
cdn.skypack.dev 214 %1.6731 189 682
cdn.jsdelivr.net 148 %1.1571 15 126

raw.githubusercontent.com 125 %0.9772 159 608
jspm.dev 81 %0.6333 47 233

x.nest.land 51 %0.3987 19 83
unpkg.com 49 %0.3831 36 207
dev.jspm.io 46 %0.3596 30 188

denopkg.com 35 %0.2736 56 214
ghuc.cc 32 %0.2502 12 54

cdn.esm.sh 22 %0.1720 10 116
gist.githubusercontent.com 15 %0.1173 17 56

cdn.pika.dev 14 %0.1095 15 67
lib.deno.dev 10 %0.0782 12 60

cdn.pagic.org 10 %0.0782 2 27
crux.land 9 %0.0704 17 125

cdn.shopstic.com 8 %0.0625 4 28
x.lcas.dev 2 %0.0156 5 39

ghc.deno.dev 2 %0.0156 3 31
cdn.dreg.dev 1 %0.0078 3 15

TABLE II: The list of domains involved in delivering the code in our study, collected while resolving all the transitive
dependencies. For each domain, we show the number of URLs pointing to it and the percentage of URLs belonging to that
domain, out of all observed URLs. We also show how many packages directly or transitively import code from each domain.

transitive dependencies. This helps us quantify the number
of potentially-overprivileged packages, and the developers’
preference for coarse-grained or fine-grained permissions.

A. Setup

Our experimental setup comprises three main steps: collect
all Deno packages from deno.land, build the dependency
graph, and monitor the observed URLs in the dependency
graph for several months. To obtain the list of all packages
on deno.land, we used deno.land’s official API11. We down-
loaded the latest version of each package and its transitive
dependencies, on 25th of November 2022. More specifically,
we used deno.land stateless API to collect and download
deno.land packages on our local server. Subsequently, we
employ a web crawler to visit the deno.land entry of each
package, based on the URL obtained from deno.land API.
The crawler attempts to visit the associated GitHub repository
and download the source code of each package. We used
Puppeteer and the official JavaScript package of GitHub
to implement our crawler. As a result, we collected 5,400
packages with associated repositories, which represent the
subject of our study.

To build the dependency graph, we harvest all URLs in the
import statements of each package. We resolve each URL to
the corresponding package, hosted either on deno.land or on
other domains. Concretely, we run deno info URL com-
mand to resolve all external dependencies. If this command
finds a package/URL not in our list, we first download that
package, then add it to the data set, and continue the process
until all transitive dependencies for each package are resolved.

11https://apiland.deno.dev/

To monitor the collected URLs, we built a script that runs
twice a day, once every twelve hours. This script visits each
URL and reports the HTTP status code for each visit. We
monitored the target URLs starting from 14th of December
2022 to 15th of December 2023. We used the request
package to visit each URL and log the response and the
time for each visit. We consider any status code other than
status_code=200 as a sign of unavailability.

To carry out our investigation of declared vs. used per-
missions, we collect the permissions from both code and
documentation. We also integrate this information with the de-
pendency graph to study the accumulation of permissions. To
extract associated permissions from code, we use ts_morph,
an open-source TypeScript parser. Using the produced syntac-
tic tree, we identify calls to standard Deno APIs and match
them with their corresponding permissions. We create the
mapping between APIs and permissions using the namespaces
in Deno’s official documentation12, i.e, to run Deno.Env()
API, the Deno runtime requires --allow-env permission to
access the environmental variables. To collect the permissions
from documentation, we parse the README.md file of all
packages to look for example command-line usages of the
package and extract the listed permissions. In some cases,
documentation files do not clearly mention the execution
command with the permissions, but they mention instead the
list of required permissions in natural language. To solve this
case, we also look for all Deno’s available permissions, using
regular expression matching of permission names.

B. Implications of URL-based importing

As mentioned earlier, Deno allows developers to import
code from arbitrary URLs. Hence, each such domain acts as

12https://deno.land/api@v1.38.4

8

https://apiland.deno.dev/
 https://deno.land/api@v1.38.4


a content delivery networks for software packages. We hy-
pothesize that there are non-uniform security practices among
these domains, which might incur a variety of security risks.
Below, we discuss several such threats, steaming from the
decentralised software supply chain model.

a) Insecure transport of the code: Deno does not
mandate the usage of secure transport protocol in package
imports, allowing powerful man-in-the-middle attacks that can
inject malicious code via hijacked dependencies. We find that
39 packages in our dataset are transmitted via HTTP, while
4,686 packages are imported via HTTPS protocol. For exam-
ple, outdent is a popular package that uses insecure HTTP
protocol in one of its import statements. However, outdent
is used directly by other packages, i.e., litre and ultra,
which in turn, might affect packages like mesozoic via
transitive dependencies. Thus, dependencies might exacerbate
the attack surface caused by insecure channels. To solve this
issue, Deno should disallow code imports via HTTP.

b) Domain takeover: Insecure and expired domains can
be hijacked by attackers to inject code via dangling URLs.
In Table II, we show all the domains involved in dependency
resolution for packages in our data set. While most of them
are reputable CDNs with sensible policies in place, we also
observe direct links to GitHub code, which can be easily
changed, or personal websites like https://lcas.dev/. Two of the
domains are permanently unavailable and we find that one of
these domains is even available for sale for a low price, since
early February 2023. This domain directly hosts three pack-
ages: denopack, deno-react-minimal-frontend,
and deno-react-minimal-fullstack, which in turn
can reach 12 other packages via transitive dependencies, e.g.,
pluginutils. We argue that attackers can probably hijack
these packages by registering the mentioned domain and
deploy malicious code in all applications relying on them.
To prevent this attack, Deno team decided to register the
problematic domain in response to our disclosure (V-A).

c) URL/package takeover: Some domains might allow
the owner of the packages to delete them, as well as deletion
of user accounts. This might give attackers the capability to
look for deleted users or packages of hardcoded packages
in the dependency chain and inject them with malicious
code. Moreover, deno.land allows to take over package names
under some conditions13. These conditions are connected to
the frequency of package updates, the use of that package,
and deno.land support team acceptance. Nonetheless, they
might not be fair to some packages with rarely-changing
functionality, e.g., fonction is a popular library whose last
update was more than two years ago. We argue that such
packages might be taken over, if an attacker uses sophisticated
social engineering techniques to convince the deno.land team
to replace the package with a malicious one. Nonetheless,
package takeover is more likely to happen due to careless
handover of maintainer rights14.

13Package takeover is allowed under the conditions mentioned in the Q&A
of https://deno.land/x

14https://github.com/denorg/qrcode/issues/7#issuecomment-1743566836

d) Unavailable URLs: In Figure 7, we show the avail-
ability of the URLs in our data set, over several months.
We find that the median number of unavailable links is 220,
directly impacting 380 packages. And in turn, unavailable
packages affect 462 packages via transitive dependency. The
more interesting part is that breaking changes are not limited
to third-party packages: we find 21 permanently broken URLs
redirecting to the standard library of Deno, std. We also
find anecdotal evidence for this, in bug reports of popular
packages15 caused by breaking URL changes to the standard
library. Figure 7 also shows that the transitive and direct de-
pendencies are very sensitive to small variations in the number
of unavailable URLs. For example, on 23rd of September
2023, 283 unavailable URLs resulted in 1,332 unavailable
packages. However, std was the major culprit for the increase
in unavailable packages on that date. We mention that we
manually verified the unavailability of this package in the
browser, on that day, so we are confident it was a short
deno.land fluke, rather than a methodological problem. We find
a bug report for deno.land16, in which others reported similar
problems with Deno’s code distribution. We also mention
that 59.44% of the total unavailable URLs on that day were
available the day before, so it was a rather unusual, but
coherent event, i.e., many other URLs were still available on
the problematic day. Another example is on 5th of March 2023,
when 276 unavailable URLs resulted in 1,015 unavailable
packages. Packages from denopkg.com – which went down
on that day – play a significant role in the ecosystem, with four
packages from that CDN causing an increase in unavailable
packages of 10.8%, versus the day before.

Let us now discuss a concrete example to illustrate how
permanently broken URLs can lead to serious availability
incidents. When attempting to install version 0.5.7 of snel,
a relatively popular package with hundreds of GitHub stars:

import { VERSION as svltVersion } from "https://deno
.land/x/snel@v0.5.7/compiler/build.ts";

Deno fails while trying to retrieve the dependency
deno-rollup from denopkg.com. This package distribu-
tion failure was fixed by migrating away from the third-party
domain back to deno.land17, for retrieving the problematic
dependency. While this failure would not be possible if the
dependent package would be hosted on deno.land, it appears
that denopkg.com has a more relaxed unpublishing policy
and its effect can propagate to packages hosted on deno.land.

Overall, from the above results, we can say that deno.land
packages play a major role on Deno’s software supply chain,
especially std as a standard library. Additionally, we note the
fragility of the entire ecosystem: certain domains can go down
on some days, making all packages that transitively depend
on them unavailable, a phenomenon we observed multiple
times. Thus, we recommend mirroring popular packages that
are hosted on flaky domains.

15https://github.com/eveningkid/denodb/issues/379
16https://github.com/denoland/deno/issues/24260
17https://github.com/crewdevio/Snel/pull/60

9

https://lcas.dev/
https://deno.land/x
https://github.com/denorg/qrcode/issues/7#issuecomment-1743566836
https://github.com/eveningkid/denodb/issues/379
https://github.com/denoland/deno/issues/24260
https://github.com/crewdevio/Snel/pull/60


C. Package versioning

There is a well-known tension between keeping depen-
dencies updated for security reasons and avoiding breaking
changes by locking them to a specific version. Below, we
measure code reuse that implements dependency locking.
Additionaly, drawing from npm’s lessons learned, deno.land
advocates for immutable package versions, i.e., once a version
is published on deno.land, it cannot be amended further.
However, as seen above, other domains involved in the code
distribution might not use such strict publication policies,
hence, packages on deno.land might still be mutated via
dependencies. Below, we aim to quantify this risk for the
packages in our data set.

a) Locked vs. unlocked dependencies: We first extract
the URL fragment corresponding to the locked version, from
all the 10,544 unique URLs in the data set. We craft specific
regular expression that identifies the packager versions, for
each of the domains in the dataset. For example, dependency
locking on deno.land, and denopkg.com can be indicated
by the presence of ”@” right after the package name and
followed by the package version, e.g., std@0.213.0. On other
domains like GitHub, it can be identified by a hash value
in the URL. We find that 13% of the total URLs are not
locked to specific package versions. This can lead to serious
availability issues when the latest version removes certain files.
For example, the fairly popular package casualdb imported
its dependencies using unlocked URLs, which led to build
failures18. In response, the developers locked the imports to a
specific package version. However, this might incur significant
delays in adopting critical security fixes. To the best of our
knowledge, Deno does not provide builtin support for semantic
versioning and tooling for automated dependency updating, as
npm does.

b) Mutable package versions: We study the prevalence
of domains that allow the author to change the package version
after publishing it. We find that among the top 16 domains, five
domains allow to change the the exact version of a package. To
assess if a domain has this capability, we manually published
our test package on each domain, and subsequently tried to
change the code for a published version of our package. We
find that GitHub allows to host code and share it with other
domains and CDNs by representing the code as raw content
link. However, GitHub does not guarantee the immutability of
such URLs, since it allows the repository owners to change
and update the exact version by using amend and other similar
commands to rewrite history of a repository. Other domains
i.e., denopkg.com, ghc.deno.dev, and ghuc.cc are indirectly
affected by mutable package, since these domains act as
mirroring domains for GitHub with various reformatings of
packages’ source code to facilitate Deno to import specific
package files through them. cdn.jsdelivr.net allows the users
to import code from several domains, e.g., GitHub, npm,
esm.sh, skypack, unpkg. Although this CDN might interact
with domains which allow to change package versions after

18https://github.com/campvanilla/casualdb/issues/16

Jan-2023
Feb-2023

Mar-2023
Apr-2023

May-2023
Jun-2023

Jul-2023
Aug-2023

Sep-2023
Oct-2023

Nov-2023
Dec-2023

TIME

0

200

400

600

800

1000

1200

N
um

be
r 

of
 p

ac
ka

ge
s

Direct dependency
URL
Transitive dependency

Fig. 7: The number of unavailable URLs across time and
the number of affected packages at direct and transitive
dependency levels.

publication, it caches the package into their domain where it
maintains the code as it is without referring to its domain of
origin. This allows cdn.jsdelivr.net to be resistant to version
mutation, regardless of the domains which it delivers pack-
ages from. Unfortunately, we face issues with studying other
domains due to lack of documentation, e.g., cdn.pagic.org,
or main page not available, e.g., x.lcas.dev. However, we
argue that such domains probably allow version mutation as
well, since they are often personal pages, rather than content
delivery networks.

To study the impact of mutable package versions on the
entire software supply chain, we collect all packages in our
dataset, which are hosted on domains that allow package
mutability, and then, measure the influence of these packages
on their transitive dependencies. This can give an insight into
the amplification effect of reusing a mutable package version
on the client package, possibly resulting in breaking change
or security risks. We find that 224 packages are hosted by
one of the domains that allow package mutability. Moreover,
there are 807 packages that import one or more mutable
packages transitively. denopkg.com is one of the domains that
allow package mutability. This is because it acts as a GitHub
mirror, and GitHub does not guarantee immutable content
after publication. We found that out of 807 packages with
at least one mutable package in the dependency chain, 74
packages are affected by a transitive dependency hosted on
denopkg.com. For example, sha119, a popular package on
deno.land has a transitive dependency hosted on denopkg.com,
called chiefbiiko. This could affect the popular package,
sha1, since mutating chiefbiiko could cause breaking
changes on the dependency chain.

D. Declared vs. used permissions

To analyze possible usability issues of the security mech-
anism, we compare the permissions implied by the code
of Deno packages and the requested permissions in their

19https://deno.land/x/sha1@v1.0.3

10

https://github.com/campvanilla/casualdb/issues/16
https://deno.land/x/sha1@v1.0.3


documentation. This helps us estimate the number of poten-
tially over- or under-privileged packages. We also study how
permissions accumulate due to transitive dependencies.

a) Documented permissions: We remind the reader that
Deno requires users to explicitly grant permissions as com-
mand line arguments, for each privileged API invocation. In
the absence of such permissions, the runtime execution is
paused upon encountering a call to such an API and users
are prompted to obtain consent to proceed. We observe that
package creators often document the required permission for
their package to assist consumers of the library with running
the code with the necessary permissions. Thus, we perform a
measurement of all the declared permissions in the documen-
tation of the package. The main documentation format used
in deno.land are markdown readme files, thus, we first collect
all README.md files for each package in our dataset. If such
a file does not exist for a given package, we assume that that
package has no documented permission. Then, we parse each
documentation file and attempt to locate the permission flags
using regular expression matching. Since Deno permission
flags are highly-specific, we do not expect that they would
appear in the documentation of the packages by chance, i.e.,
for other purposes than to inform the clients about the required
permission. Nonetheless, to verify this hypothesis, we sampled
50 packages with documented permissions and verified that
indeed the documentation mentions that Deno should be run
with the documented permissions, when using the target pack-
age. We do not encounter any false positive or false negative
during our manual analysis. We distinguish between coarse-
grained permissions vs. fine-grained permissions by locating
the equal sign after the permission name, since all fine grained
permissions are specified using the target immediately after the
equal sign e.g., allow-write="./log.txt".

We show the inferred permissions from documentation in
column two and three of Table III. We find that 1,123 packages
document the required permissions, out of which 53 use fine-
grained permissions. 33 packages even instruct the user to run
deno with all permissions enable, which is a clear indication
of over-privileged packages. We believe that the tendency to
prefer coarse-grained permissions over finer-grained ones is
due to the poor usability of Deno’s permission system. That is,
when using fine-grained permissions, developers must provide
an explicit command line argument for each allowlisted re-
source, which might lead to tens or even hundreds of command
line arguments.

b) Inferred permissions from code: We collect the per-
missions from the source code of each package by inspecting
the source code and looking for calls to privileged APIs,
which trigger a permission check at runtime. Concretely, we
parse each TypeScript file of a package using ts-morph20,
and locate invocation nodes corresponding to Deno built-in
APIs, e.g., Deno.readTextFile(). We then map each
such API to the corresponding permission flag using Deno’s

20https://ts-morph.com/

1 import { Input, prompt,} from "https://deno.land/x/
cliffy@v0.25.4/prompt/mod.ts";

2
3 const result = await prompt([{
4 message: "What’s your name?",
5 suggestions: ["John", "Fritz"],
6 type: Input,
7 //files: true
8 }]);

Fig. 8: Example usage of the cliffy package, showing an
unexpected permission prompt. When uncommenting line 7,
Deno will ask the user to grant a runtime permission.

documentation [26]. In total, our static analysis maps 103 APIs
to eight corresponding permissions.

We present the inferred permissions from code in column
four of Table III. We find that both file system permissions
(--allow-read and --allow-write) are the most used
permissions, which is not entirely unexpected. However, the
relatively large number of permissions corresponding to run-
ning subprocesses (--allow-run) suggests that developers
often run code that is not mitigated by the permission sys-
tem [12], resulting again in over-privileged Deno applications.
We also note the large difference between permissions inferred
from code and documentation, suggesting that package de-
velopers often do not make explicit the required permissions
for their packages. This, in turn, might lead to decreased
usability, as Deno will then often pause at runtime to obtain
additional permissions for undeclared API calls in library code.
Let us consider the case of cliffy in Figure 8, a package
that allows developers to easily build complex command line
applications. It allows creating prompts with input suggestions
for each message. When the files option is enabled in
line 7, Deno requires a file system read permission. We did
not find this information anywhere in the documentation.
However, our code-based permission inference identified a
readDir() invocation in the package’s source code. Such
poorly-documented APIs can surprise users of Deno applica-
tion with runtime permission checks, even in production.

c) Accumulation of permissions: Building reusable
Deno packages often involves depending on other packages.
We hypothesize that this might have serious usability impli-
cations for the user, as illustrated by the example above. On
average, we measure that a typical package in our data set
depends on 2.94 packages directly and on 3.14 additional
ones transitively. We study the accumulation of permissions
through dependencies by aggregating for each package all the
permissions of all the transitive dependencies, either inferred
from code or documentation. Columns 5-7 in Table III show
the accumulation effect for each Deno permission. We find
that dependencies might use many privileged APIs, which are
rather rare in the actual code of the package. For example,
we only infer the presence of network-related API calls in
237 packages, but in the dependency code of 2,714 packages.
Even though our analysis is coarse-grained and certain parts of
the dependency code might not be used, we note the difficulty

11

https://ts-morph.com/


Permission
Package-only analysis Including transitive dependencies

Documentation Package Documentation Package
Coarse-grained Fine-grained Code analysis Coarse-grained Fine-grained Code analysis

–allow-all 33 N/A N/A 39 N/A N/A
–allow-write 246 30 1031 283 36 2729
–allow-read 409 36 1491 491 48 2743
–allow-env 177 18 574 213 18 2729
–allow-ffi 16 0 42 75 0 139
–allow-sys 1 0 20 1 0 30
–allow-run 148 12 532 178 13 2713
–allow-net 385 29 237 488 55 2714

–allow-hrtime 11 N/A 177 13 N/A 2721

TABLE III: Statistics about the usage of different permissions, for the packages in our data set. We infer the permissions
in two ways: by extracting Deno command line arguments from the documentation of the package or by static analysis of
the package’s code to infer calls to privileged APIs. We show results for both the number of packages directly requiring a
permission (columns 2-4) and for the number of packages whose dependencies require a given permission (columns 5-7).

in assessing if a particular third-party API call will trigger a
permission check at runtime or not. We see a similar effect
for documentation-inferred permissions, where we measure
that only 409 packages explicitly ask for a file system read,
even though, there are 82 more packages for which one of
their dependencies explicitly ask for this permission. Let us
consider the case of the open package21 to illustrate why this
might cause usability issues for users. This package advertises
itself as a solution for opening URLs or executables, using the
corresponding operating system functionality, e.g., a browser
for opening URLs. Since this package does not list the required
permissions in the documentation, users need to use their
best judgment when constructing static policies. A good guess
would be to grant an --allow-run permission, assuming
that the package’s code runs custom operating system com-
mands. This is indeed a valid hypothesis, and running the
following code example with the run permission executes
flawlessly on Windows:
import { open } from ’https://deno.land/x/open/index

.ts’;
await open(’https://google.com’);

However, when running the same code on Linux, it requires
an additional file system read permission, due to a call to
is_wsl package22. This package, in turn, properly docu-
ments the need for an --allow-read permission, but this
information is not propagated in the dependency chain to the
users of open. Thus, we advocate for better automated tools
that assist the users with constructing comprehensive security
policies that grant the necessary static permissions, for smooth
execution of third-party code.

V. DISCUSSION

Our results show that the two Deno promises listed in
Section II-A are partially broken. Running untrusted code
without code audit might result in total compromise of the
underlying system. In particular, supply chain attacks can

21https://deno.land/x/open@v0.0.6
22https://github.com/skoshx/deno-open/blob/7645fe0efdeabbcdeece24c8d

6159e4ab8447ff3/index.ts#L121

leverage careless file system permissions for executing code
outside of the sandbox (Section III-B) or for performing arbi-
trary network requests (Figure 4). While running Deno without
any permissions would indeed allow users to see any explicit
attempt to invoke sensitive APIs, due to shadow permissions,
users will have a hard time understanding the implications
of grading certain permissions, e.g., write permission to a
JavaScript file that is later loaded in the runtime.

Below, we discuss ways of improving Deno to address the
identified shortcomings: we start with describing our respon-
sible disclosure process and the changes in Deno directly
triggered by our work, we then present additional suggestions
for improving the security of Deno’s ecosystem, and close
with a discussion of future work ideas.

A. Vulnerability disclosure and chances to the runtime

While some of our findings can be considered weak parts
of Deno’s design, which the security team might simply
embrace, we believe that others are clear implementation
bugs that should be fixed as soon as possible. Following
Deno’s security policy, we reported our import abuse attack
and shadow permission findings, in early 2023. We note that
these problems of the permission system are mostly Deno-
specific and were never discussed in the literature. However,
Barrera et al. [18] warned about the dangers of coarse-grained
permissions and the lack of expressiveness in permission
systems. Also, the dangers or URL-based code imports, e.g.,
expired domains [27], were previously reported in the client-
side, but never in the context of server-side code.

After a lively and positive exchange of emails with the
Deno team, in which we proposed ways of remedying the
discovered issues, e.g., adding a blocklist of sensitive resources
for file system operations, the Deno team stopped responding
to our messages. We then reached out to a third-party company
specializing in vulnerability disclosure, in the end of 2023,
to report the same findings plus the symbolic link attack.
They confirmed that the problems are reproducible and they
considered them as security issues. They also issued two
security advisories for our findings: CVE-2024-21487 – a

12

https://deno.land/x/open@v0.0.6
https://github.com/skoshx/deno-open/blob/7645fe0efdeabbcdeece24c8d6159e4ab8447ff3/index.ts#L121
https://github.com/skoshx/deno-open/blob/7645fe0efdeabbcdeece24c8d6159e4ab8447ff3/index.ts#L121


high severity advisory for the symbolic link findings, and
CVE-2024-21486 – a moderate severity advisory for the static
import issue. They also proceeded to disclose the findings to
Deno directly.

To our surprise, in this instance, the Deno team was more
cooperative, promising to restrict the unprivileged static im-
ports to a list of trusted domains in Deno version 2.0. More-
over, they also decided to purchase the problematic domain
described in Section IV-B to prevent package hijacking. We
also directly contacted the maintainers of the packages on
deno.land that transitively import code from this domain to
directly notify them about the risk of hijacking. However, at
the time of writing none of them responded to our request.
Thus, thanks to a successful disclosure process, our work has
a positive impact on all Deno users, leading to concrete fixes
and improvements in future versions of the runtime.

B. Further recommendations

Additionally, to make the associated network requests ex-
plicit, we recommend that Deno considers adding support for
fine-grained import permissions, as proposed for Node.js by
Vasilakis et al. [10]. However, we acknowledge that this might
be cumbersome to implement, and it can break backward
compatibility. A quick and dirty fix against the attack proposed
in Figure 4 is to somehow track what files changed and prevent
those from loading later in the runtime. Alternatively, Deno’s
cache could keep track of static imports for packages and
prevent new ones from showing up at execution time. Another
idea is to use the existing import maps as a contract between
package producers and consumers. That is, packages are only
allowed to import what is declared upfront in these files and
the files’ integrity is protected using hashes of the file content.

We also stress that Deno should consider the adoption of
compartmentalization [11], [10], [28] to separate code coming
from different domains and offering support for manifest files
that specify fine-grained permissions per module. We note that
there were several open issues for Deno asking for exactly
this feature23. Since Deno effectively advocates for a client-
side mindset in an out-of-browser JavaScript environment, we
believe that it is only natural that it also reuses some of the
well-known browser security mechanisms. Isolating untrusted
code from suspicious domains with an iframe-like primitive
is one of them, another being the adoption of a configurable
security policy akin to CSP to allow users to configure various
aspects of the runtime, e.g., trusted domains from which code
can be loaded.

While we salute Deno’s proposal of a fully decentralized
software supply chain, which promises increased resilience,
we note that in its current form, deno.land is quite fragile, as
shown in Section IV-B. It is especially concerning the reliance
on low-quality domains and the non-uniform version amend-
ing policy, across domains. We recommend that deno.land
employs vetting of domains, as promised by the Deno team
during the disclosure process, and warn users or even drop

23https://github.com/denoland/deno/issues/3675

the request when they attempt to use an unverified domain.
Efforts should also be invested in uniforming the (security)
policies of such domains, e.g., to prevent updates to published
package versions, across the ecosystem. Finally, for the most
depended-upon packages that are hosted outside deno.land, we
also recommend automatic mirroring to increase the resilience
of the supply chain. A similar proposal was made by the
community in the form of immutability proxy24, but it is still
to be adopted by the deno.land team, which considers it a
“userland issue”.

C. Future work

During our study, we observed poor tooling support in
Deno for certain security-relevant tasks. First, the proposed
decentralized software supply chain comes with big chal-
lenges for the widely-adopted practice of semantic versioning.
Pashchenko et al. [29] find that developers often struggle with
this task, in the context of modern software supply chains.
We could not find any good tool for Deno that assists the user
with automatically updating dependencies. As seen in Table I,
such a tool needs to support different domains, using different
URL fragments for marking the version of the imported
code. We also note in Section IV-D the challenge of building
meaningful security policies, when dealing with third-party
code. It is extremely challenging for users to understand which
permissions a particular API call needs. Hence, future work
should propose automatic tools for inferring such permissions,
e.g., using testing, and for documenting these permissions in
a way that IDEs can consume and communicate them to the
users. Wang et al. [17] perform a similar study for runtime
permissions in Android, but they do not target library code
in their testing. Finally, we also note that future work should
carry user studies with actual Deno users to understand how
developers use the permission system, potential pain points,
and whether their self-written policies result in over- or under-
privileged Deno applications, in particular, when reusing third-
party code from deno.land. Our results in Section IV-D suggest
that these packages are poorly documented and they might
lead to over-privileged applications, as Felt et al. [15] report
is often the case in Android.

VI. RELATED WORK

In this section, we survey related work on permission
systems and their limitations, followed by JavaScript isolation,
software supply chain security and client-side security.

a) Permission systems: Permission systems have been
implemented and successfully deployed in other programming
languages, for various security reasons, e.g., in C/C++ to
isolate the virtual memory [30]. Leontie et al. [31] propose a
permission system that consists of both hardware and software
support to make C++ compiler more secure, while assigning
pointers for private variables and functions in OPP setup.
Vasilakis et al. [32] proposes a permissions system to control
the communication of JavaScript programs with third-party

24https://github.com/denoland/deno/issues/3616

13

https://github.com/denoland/deno/issues/3675
https://github.com/denoland/deno/issues/3616


code hosted in a separate process. Heule et al. [33] proposes
a mandatory permission systems for browser extensions to
protect the users’ privacy from third-party code that could be
abused by the browser extensions, especially in the context of
over-permissioned extensions. Felt et al. [34] evaluate the ben-
efits of permission systems, in the context of Android applica-
tions and browser extensions. The study shows a net positive
benefit from adopting such a system, in both considered use
cases. Marouf et al. [35] proposes REM, a browser extension
implemented to monitor, at runtime, the used privileges by the
other browser extensions and report them to the user, so that
they can better control these extensions’ permissions. Zhang et
al. [36] proposes VetDroid, a dynamic analysis framework to
monitor the used permissions by the running app. Reardon
et al. [37] discusses another framework to monitor mobile
apps behaviour at the runtime, the key difference being the
support for monitoring the network activity alongside the
covert channels of the tested apps to look for mobile apps
permissions abuse. Finally, Scoccia et al. [38] show that bug
reports about the Android apps usability involving permission
violations are prevalent in open source projects, but that
developers tend to quickly address such issues. We believe
that Deno can adopt many of the features present in these
prior permission systems. In particular, the runtime should
adopt Android-style manifests to better manage fine-grained
permissions and import permissions, as proposed in MIR [10].

b) Shortcomings of permission systems: Davi et al. [16]
were the first to report that Android’s permission system allow
privilege escalation attacks via inter-app function invocations
of privileged functionality. Moreover, Orthacker et al. [39]
argue that Android’s permission system is ineffective in the
presence of colluding apps that join their permissions. This
is mainly enabled by permission redelegation, as defined by
Felt et al. [40]. Bugiel et al. [41] propose a solution to these
problems by interposing runtime monitors on inter-app calls
and by using mandatory access control at file system level.
Dawoud and Bugiel [28] propose an even stricted capability-
based model that isolates untrusted parts of an app at process
level. Other weak parts of the Android permission system that
can be exploited by attackers are custom permissions [42],
preinstalled apps [43], and extensions to the default access
control policy [14]. All this amendments of the standard
security model leave the door open to new attacks and require
a dedicated approach to detect their misuses. Felt et al. [15]
measure that most Android applications are overprivileged,
mainly due to poor documentation of certain features. Wang
et al. [17] show how unexpected runtime permissions can
cause crashes of Android apps or other usability issues.
Barrera et al. [18] measure permission usage in Android
and identify multiple expressiveness issues, e.g., too coarse-
grained permissions, lack of hierarchical permissions. Olejnik
et al. [44] propose improving Android’s availability by predict-
ing permission granting at runtime. Roesner et al. [45] propose
another improvement in which access control gadgets are
guarding UI-level actions. While a great source of inspiration
for our work, none of these papers target Deno or a similar

server-side runtime that allows URL-based code imports.
c) Isolation and compartmentalization: Multiple tech-

niques can be used to isolate JavaScript code, at various levels
of the software stack. For example, JSand [46], Ahmadpanah
et al. [47], NodeSentry [48], JaTE [49] implement isolation
at the language level. They use techniques like membranes,
shadow global functions, functions rewriting and wrappers. A
more relevant technique for Deno’s sandbox, is to combine
isolation with permission systems to implement both isolation
and communication control between the host and the untrusted
code. For example, DecentJS [50] supports security policies
on top of isolation to limit the functionality of JavaScript
code. Similarly, Ferreira et al. [51] show how permissions
systems and program rewriting can be used to defend against
supply chain attacks. However, recent work by AlHamdan
and Staicu [52] shows that these techniques are ineffective
in practice. There are also OS-level isolation techniques for
JavaScript, which are more generic, but they might incur a
larger overhead. Isolation at the OS level can be done by
running the guest code in a different runtime [53], compart-
mentalize the guest code by launching new web workers [54],
isolate the untrusted code in a different operating system
process [11], or intercept operations from the guest code
by modifying the browser [55]. Isolation of JavaScript code
can also be done at lower levels, e.g., sandboxing the x86
code with Native Client [56], isolating libraries in Firefox
browser in a lightweight sandbox [57] to reduce the impact
of component compromise, or even adding hardware support
for isolation by using both protection keys and binary in-
spection [58]. Preventing memory corruption attacks can be
done using memory-access permissions that implement in-
process memory isolation [59], or adding more programming
languages constructs to isolate untrusted code [60]. Moreover,
Wyss et al. [23] propose to monitor and limit the capabilities
of install-time hooks via system call filtering, to prevent supply
chain attacks. While related, none of this work concerns
Deno’s permission system. Abbadini et al. [12] is the only
prior work that follows this goal, by extending Deno’s per-
mission system with additional restrictions for subprocesses.
Concretely, they use Landlock and eBPF Linux kernel modules
to enforce low-level privilege reduction. However, they do not
study the security of Deno’s existing runtime enforcement, nor
the nature of code reuse in deno.land.

d) Software supply chain security: Code reuse allows
developers to cut their development cost by leveraging mas-
sive amounts of open-source code. However, widely-reused
code can also be a good target for adversaries to inject
malicious code, a security incident that was recently termed
supply chain attack. There exist recent studies on the software
supply chain security and attacks in several programming
and scripting languages, i.e., npm [61], [7], [1], PyPI [62],
and RubyGem [63]. So et al. [64] discuss key insights to
implement robust integrity for the software supply chain.
Zahan et al. [65] presents a method to study the weak links
in the npm software supply chain through package metadata,
which could help the developers to reduce the possibility of

14



failure in supply chain attacks. Zimmermann et al. [1] study
vulnerable code reuse, and supply chain attacks, and show that
the average npm package relies on tens of other packages and
maintainers, transitively. Considering that many of the code
in transitive dependencies is actually not used, Koishybayev
and Kapravelos [66] propose reducing the attack surface of
Node.js applications by removing dead code, a process they
term debloating. Rabe et al. [67] present a study on trivial
npm packages and measure the developers’ awareness of using
them in terms of benefits and challenges. Duan et al. [7]
perform an extensive study of the software package managers
for the interpreted languages and propose a hybrid program
analysis technique to detect malicious packages that perform
unwanted actions. Additionally, Ohm et al. [68] present a
study on a set of supply chain attack detection mechanisms
and where to employ each of them. Shcherbakov et al. [20]
show that prototype pollution is a serious security problem
in Node.js, which can be elevated to remote code execution.
Considering our results in Section II-B, we expect that this
is the case at least partially for Deno as well. Li et al. [21]
propose a sophisticated static analysis solution for detecting
prototype pollution, which they then generalize to other secu-
rity problems [22]. Recently, Rack et al. [69] present the first
large-scale study of JavaScript bundles prevalence and employ
static analysis to reverse engineer bundles and study code
provenance. They show that a typical bundle includes tens
of third-party dependencies, which should be separated and
reasoned about in isolation. None of this work considers the
possibility of supply chain attacks in Deno and the weaknesses
of the permission system that such an attack might exploit.

e) Client-side security: Lauinger et al. [27] show that do-
main takeover via malicious re-registration of expired domains
is common. In our work, we show that this problem also affects
Deno and it can lead to malicious code injection in otherwise
immutable packages. Browser security and extension security
are also related topics, with infamous attacks like XSS, XSRF
and attacker-controlled extensions. Stock et al. [70] present
a longitudinal study of the evolution of client-side security
vulnerabilities and CSP adoption. Agarwal et al. [71] perform
a study of how browser extensions temper security-relevant
HTTP headers. Fass et al. [72] present DoubleX, a static
analysis tool that aims to detect security and privacy threats
in browser extensions, by detecting suspicious data and con-
trol flows using a sophisticated extension dependence graph.
Roth et al. [73] perform a study of the subtle variations in
CSP policies based on factors like user agent or geographic
locations. Rautenstrauch et al. [74] developed an automated
approach to detect observable channels that lead to cross-site
leaks in web browsers. However, none of this work is directly
applicable beyond the client-side environment, e.g., to Deno.

VII. CONCLUSION

In this paper, we study Deno, a popular, emerging JavaScript
runtime that promises security by design. We show that
thanks to its default-on permission system, Deno has indeed
a lower attack surface than other runtimes for server-side

code. However, we find that, despite its promise, Deno still
allows certain supply chain attacks due to weaknesses in
its permission system. We also raise serious questions about
the utility and risks of the URL-based importing mechanism,
which led to restrictions of this feature in future versions of
Deno. Moreover, we identify multiple challenges posed by
decentralized software supply chains outside of a browser:
difficulty to guarantee transitive immutability for dependen-
cies, challenging version control, and availability issues due
to transient URLs. Finally, we highlight Deno’s usability
issues that prevents effective specification of policies and
the communication of required permissions for open-source
packages. We disclosed all our findings to Deno’s security
team, which lead to the publication of two security advisories
for Deno. We also provide concrete guidelines for remedying
the discovered security problems.

We recommend that Deno adds permission checks for third-
party code imports and fixes its support for symbolic links to
enable sound enforcement of fine-grained file system permis-
sions. We also recommend refining the coarse-grained permis-
sions to blocklist certain file paths or network URLs and thus,
prevent shadow permissions. While we believe that Deno’s de-
centralized software supply chain has a lot of potential, we also
think that the community should develop mirroring solutions
to deal with the problem of transient URLs. Considering the
many similarities between Deno and browser environments,
we advocate for adopting security mechanisms akin to the
ones in browsers: compartmentalizing application code with
iframe-like separation or fine-grained CSP-like policies that
allow configuring permissions per library or origin. All in all,
we hope that our work contributes to a better understanding
of Deno’s security model and provides a clear road map for
improving it.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their valuable feedback, and Snyk for assisting us with the
vulnerability disclosure. We also like to thank Deno team,
in particular, Luca, Alon Bonder, and Kaleigh Hedges, for
their support in proceeding with the project. This work was
conducted in the scope of a dissertation at the Saarbrücken
Graduate School of Computer Science.

REFERENCES

[1] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
USENIX Security Symposium, 2019.

[2] C. Staicu, M. Pradel, and B. Livshits, “SYNODE: understanding and
automatically preventing injection attacks on NODE.JS,” in Network
and Distributed System Security Symposium (NDSS), 2018.

[3] J. C. Davis, E. R. Williamson, and D. Lee, “A sense of time for javascript
and node.js: First-class timeouts as a cure for event handler poisoning,”
in USENIX Security Symposium, 2018.

[4] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee, “The impact of
regular expression denial of service (ReDoS) in practice: an empirical
study at the ecosystem scale,” in Joint Meeting on Foundations of
Software Engineering (ESEC/FSE), 2018.

[5] C. Staicu and M. Pradel, “Freezing the web: A study of ReDoS
vulnerabilities in JavaScript-based web servers,” in USENIX Security
Symposium, 2018.

15



[6] P. Ladisa, H. Plate, M. Martinez, and O. Barais, “Sok: Taxonomy
of attacks on open-source software supply chains,” in 44th IEEE
Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA,
May 21-25, 2023. IEEE, 2023, pp. 1509–1526. [Online]. Available:
https://doi.org/10.1109/SP46215.2023.10179304

[7] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and
W. Lee, “Towards measuring supply chain attacks on package managers
for interpreted languages,” in Network and Distributed System Security
Symposium (NDSS), 2021.

[8] D. L. Vu, F. Massacci, I. Pashchenko, H. Plate, and A. Sabetta,
“Lastpymile: identifying the discrepancy between sources and
packages,” in ESEC/FSE ’21: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, D. Spinellis,
G. Gousios, M. Chechik, and M. D. Penta, Eds. ACM, 2021, pp.
780–792. [Online]. Available: https://doi.org/10.1145/3468264.3468592

[9] Y. Gu, L. Ying, Y. Pu, X. Hu, H. Chai, R. Wang, X. Gao, and H. Duan,
“Investigating package related security threats in software registries,”
in 44th IEEE Symposium on Security and Privacy, SP 2023, San
Francisco, CA, USA, May 21-25, 2023. IEEE, 2023, pp. 1578–1595.
[Online]. Available: https://doi.org/10.1109/SP46215.2023.10179332

[10] N. Vasilakis, C.-A. Staicu, G. Ntousakis, K. Kallas, B. Karel, A. De-
Hon, and M. Pradel, “Mir: Automated Quantifiable Privilege Reduction
Against Dynamic Library Compromise in JavaScript,” in Conference on
Computer and Communications Security (CCS), 2021.

[11] N. Vasilakis, B. Karel, N. Roessler, N. Dautenhahn, A. DeHon, and J. M.
Smith, “BreakApp: Automated, Flexible Application Compartmentaliza-
tion,” in Network and Distributed System Security Symposium (NDSS),
2018.

[12] M. Abbadini, D. Facchinetti, G. Oldani, M. Rossi, and S. Paraboschi,
“Cage4deno: A fine-grained sandbox for deno subprocesses,” in
Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 149–162. [Online].
Available: https://doi.org/10.1145/3579856.3595799

[13] F. Brown, S. Narayan, R. S. Wahby, D. R. Engler, R. Jhala, and
D. Stefan, “Finding and preventing bugs in javascript bindings,” in
Symposium on Security and Privacy (S&P), 2017.

[14] Y. T. Lee, W. Enck, H. Chen, H. Vijayakumar, N. Li, Z. Qian, D. Wang,
G. Petracca, and T. Jaeger, “Polyscope: Multi-policy access control
analysis to compute authorized attack operations in android systems,”
in USENIX Security Symposium, 2021.

[15] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. A. Wagner, “Android per-
missions demystified,” in Conference on Computer and Communications
Security (CCS), 2011.

[16] L. Davi, A. Dmitrienko, A. Sadeghi, and M. Winandy, “Privilege esca-
lation attacks on android,” in International Conference on Information
Security (ISC), ser. Lecture Notes in Computer Science, vol. 6531.
Springer, 2010, pp. 346–360.

[17] S. Wang, Y. Wang, X. Zhan, Y. Wang, Y. Liu, X. Luo, and S. Che-
ung, “APER: evolution-aware runtime permission misuse detection for
Android apps,” in International Conference on Software Engineering
(ICSE), 2022.

[18] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to Android,” in Conference on Computer
and Communications Security (CCS), 2010.

[19] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,” in
Proceedings of the 28th USENIX Conference on Security Symposium,
ser. SEC’19. USENIX Association, 2019.

[20] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent spring: Prototype
pollution leads to remote code execution in Node.js,” in USENIX
Security Symposium, 2023.

[21] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting Node.js prototype
pollution vulnerabilities via object lookup analysis,” in Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2021.

[22] ——, “Mining Node.js vulnerabilities via object dependence graph and
query,” in USENIX Security Symposium, 2022.

[23] E. Wyss, A. Wittman, D. Davidson, and L. D. Carli, “Wolf at the door:
Preventing install-time attacks in npm with latch,” in Asia Conference
on Computer and Communications Security (ASIA CCS), 2022.

[24] C.-A. Staicu, S. Rahaman, Á. Kiss, and M. Backes, “Bilingual problems:
Studying the security risks incurred by native extensions in scripting
languages,” in USENIX Security Symposium 2023, 2023.

[25] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new again:
Binary security of WebAssembly,” in USENIX Security Symposium,
2020.

[26] deno.land, “ Deno’s runtime APIs ,” https://deno.land/api@v1.39.1.
[27] T. Lauinger, A. Chaabane, A. S. Buyukkayhan, K. Onarlioglu, and

W. Robertson, “Game of registrars: An empirical analysis of post-
expiration domain name takeovers,” in USENIX Security Symposium,
2017.

[28] A. Dawoud and S. Bugiel, “Droidcap: OS support for capability-based
permissions in Android,” in Network and Distributed System Security
Symposium, (NDSS), 2019.

[29] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in Conference
on Computer and Communications Security (CCS), 2020.

[30] Y. Younan, W. Joosen, and F. Piessens, “Runtime countermeasures
for code injection attacks against c and c++ programs,” ACM
Comput. Surv., vol. 44, no. 3, jun 2012. [Online]. Available:
https://doi.org/10.1145/2187671.2187679

[31] E. Leontie, G. Bloom, and R. Simha, “Hardware and software
support for fine-grained memory access control and encapsulation
in c++,” in Proceedings of the 2013 Companion Publication for
Conference on Systems, Programming, & Applications: Software for
Humanity, ser. SPLASH ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 81–82. [Online]. Available:
https://doi.org/10.1145/2508075.2508091

[32] N. Vasilakis, C.-A. Staicu, G. Ntousakis, K. Kallas, B. Karel,
A. DeHon, and M. Pradel, “Preventing dynamic library compromise
on node.js via rwx-based privilege reduction,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1821–1838. [Online]. Available:
https://doi.org/10.1145/3460120.3484535

[33] S. Heule, D. Rifkin, A. Russo, and D. Stefan, “The most dangerous code
in the browser,” in 15th Workshop on Hot Topics in Operating Systems
(HotOS XV). Kartause Ittingen, Switzerland: USENIX Association,
May 2015. [Online]. Available: https://www.usenix.org/conference/hoto
s15/workshop-program/presentation/heule

[34] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of ap-
plication permissions,” in 2nd USENIX Conference on Web Application
Development (WebApps 11), 2011.

[35] S. Marouf and M. Shehab, “Towards improving browser extension
permission management and user awareness,” in 8th International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2012, pp. 695–702.

[36] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,
and B. Zang, “Vetting undesirable behaviors in android apps with
permission use analysis,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, ser. CCS ’13.
New York, NY, USA: Association for Computing Machinery, 2013, p.
611–622. [Online]. Available: https://doi.org/10.1145/2508859.2516689

[37] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 603–620. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/reardon

[38] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
“Permission issues in open-source android apps: An exploratory study,”
in 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2019, pp. 238–249.

[39] C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner, M. Gissing,
A. Marsalek, J. Leibetseder, and O. Prevenhueber, “Android security
permissions - can we trust them?” in Security and Privacy in Mobile
Information and Communication Systems (MobiSec), 2011.

[40] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission
re-delegation: Attacks and defenses,” in USENIX Security Symposium,
2011.

[41] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shas-
try, “Towards taming privilege-escalation attacks on Android,” in Net-
work and Distributed System Security Symposium, (NDSS), 2012.

16

https://doi.org/10.1109/SP46215.2023.10179304
https://doi.org/10.1145/3468264.3468592
https://doi.org/10.1109/SP46215.2023.10179332
https://doi.org/10.1145/3579856.3595799
https://deno.land/api@v1.39.1
https://doi.org/10.1145/2187671.2187679
https://doi.org/10.1145/2508075.2508091
https://doi.org/10.1145/3460120.3484535
https://www.usenix.org/conference/hotos15/workshop-program/presentation/heule
https://www.usenix.org/conference/hotos15/workshop-program/presentation/heule
https://doi.org/10.1145/2508859.2516689
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon


[42] R. Li, W. Diao, Z. Li, J. Du, and S. Guo, “Android custom permissions
demystified: From privilege escalation to design shortcomings,” in
Symposium on Security and Privacy (S&P), 2021.

[43] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-
Rodriguez, “An analysis of pre-installed android software,” in Sympo-
sium on Security and Privacy (S&P), 2020.

[44] K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and
J. Hubaux, “Smarper: Context-aware and automatic runtime-permissions
for mobile devices,” in Symposium on Security and Privacy (S&P), 2017.

[45] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-driven access control: Rethinking permission granting
in modern operating systems,” in Symposium on Security and Privacy
(S&P), 2012.

[46] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet,
and F. Piessens, “JSand: complete client-side sandboxing of third-party
JavaScript without browser modifications,” in Annual Computer Security
Applications Conference (ACSAC), 2012.

[47] M. M. Ahmadpanah, D. Hedin, M. Balliu, L. E. Olsson, and
A. Sabelfeld, “SandTrap: Securing JavaScript-driven Trigger-Action
Platforms,” in USENIX Security Symposium, 2021.

[48] W. D. Groef, F. Massacci, and F. Piessens, “Nodesentry: least-privilege
library integration for server-side javascript,” in Proceedings of the 30th
Annual Computer Security Applications Conference, (ACSAC), 2014.

[49] T. Tran, R. Pelizzi, and R. Sekar, “JaTE: Transparent and efficient
JavaScript confinement,” in Annual Computer Security Applications
Conference, (ACSAC), 2015.

[50] M. Keil and P. Thiemann, “Transaction-based sandboxing for
JavaScript,” CoRR, vol. abs/1612.00669, 2016.

[51] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner, “Containing malicious
package updates in npm with a lightweight permission system,” in
International Conference on Software Engineering (ICSE), 2021.

[52] A. AlHamdan and C.-A. Staicu, “SandDriller: A Fully-Automated
approach for testing Language-Based JavaScript sandboxes,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 3457–3474. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/alha
mdan

[53] X. Dong, M. Tran, Z. Liang, and X. Jiang, “AdSentry: comprehensive
and flexible confinement of JavaScript-based advertisements,” in Annual
Computer Security Applications Conference, (ACSAC), 2011.

[54] L. Ingram and M. Walfish, “Treehouse: JavaScript sandboxes to help web
developers help themselves,” in USENIX Annual Technical Conference
(ATC), 2012.

[55] M. Zhang and W. Meng, “JSISOLATE: lightweight in-browser
JavaScript isolation,” in Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), 2021.

[56] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in Symposium on Security and
Privacy (S&P), 2009.

[57] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting fine grain isolation in the
Firefox renderer,” in USENIX Security Symposium, 2020.

[58] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: secure, efficient in-process isolation
with protection keys (MPK),” in USENIX Security Symposium, 2019.

[59] T. Frassetto, P. Jauernig, C. Liebchen, and A. Sadeghi, “IMIX: in-process
memory isolation extension,” in USENIX Security Symposium, 2018.

[60] A. Ghosn, M. Kogias, and M. Payer, “Enclosure: Language-Based
Restriction of Untrusted Libraries,” in International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
(ASPLOS), 2021.

[61] S. Scalco, R. Paramitha, D.-L. Vu, and F. Massacci, “On the feasibility of
detecting injections in malicious npm packages,” in Proceedings of the
17th International Conference on Availability, Reliability and Security,
2022, pp. 1–8.

[62] D. L. Vu, I. Pashchenko, F. Massacci, H. Plate, and A. Sabetta,
“Towards using source code repositories to identify software supply
chain attacks,” in Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 2093–2095.
[Online]. Available: https://doi.org/10.1145/3372297.3420015

[63] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstabber’s knife
collection: A review of open source software supply chain attacks,”

in Detection of Intrusions and Malware, and Vulnerability Assessment:
17th International Conference, DIMVA 2020, Lisbon, Portugal, June
24–26, 2020, Proceedings 17. Springer, 2020, pp. 23–43.

[64] J. So, M. Ferdman, and N. Nikiforakis, “The more things change, the
more they stay the same: Integrity of modern javascript,” in Proceedings
of the ACM Web Conference 2023, ser. WWW ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 2295–2305.
[Online]. Available: https://doi.org/10.1145/3543507.3583395

[65] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy, C. Maddila, and
L. Williams, “What are weak links in the npm supply chain?” in 2022
IEEE/ACM 44th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE Computer
Society, 2022, pp. 331–340.

[66] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack
surface of node.js applications,” in 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2020.

[67] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 385–395. [Online].
Available: https://doi.org/10.1145/3106237.3106267

[68] M. Ohm and C. Stuke, “Sok: Practical detection of software supply
chain attacks,” in Proceedings of the 18th International Conference on
Availability, Reliability and Security, ser. ARES ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3600160.3600162

[69] J. Rack and C.-A. Staicu, “Jack-in-the-box: An empirical study of
javascript bundling on the web and its security implications,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 3198–3212. [Online].
Available: https://doi.org/10.1145/3576915.3623140

[70] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the web tangled
itself: Uncovering the history of Client-Side web (In)Security,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver, BC:
USENIX Association, Aug. 2017, pp. 971–987. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/
presentation/stock

[71] S. Agarwal, “Helping or hindering? how browser extensions undermine
security,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 23–37.
[Online]. Available: https://doi.org/10.1145/3548606.3560685

[72] A. Fass, D. F. Somé, M. Backes, and B. Stock, “Doublex: Statically
detecting vulnerable data flows in browser extensions at scale,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1789–1804. [Online].
Available: https://doi.org/10.1145/3460120.3484745

[73] S. Roth, S. Calzavara, M. Wilhelm, A. Rabitti, and B. Stock, “The
security lottery: Measuring Client-Side web security inconsistencies,” in
31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 2047–2064. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/roth

[74] J. Rautenstrauch, G. Pellegrino, and B. Stock, “The leaky web: Au-
tomated discovery of cross-site information leaks in browsers and the
web,” in 2023 IEEE Symposium on Security and Privacy (SP), 2023,
pp. 2744–2760.

17

https://www.usenix.org/conference/usenixsecurity23/presentation/alhamdan
https://www.usenix.org/conference/usenixsecurity23/presentation/alhamdan
https://doi.org/10.1145/3372297.3420015
https://doi.org/10.1145/3543507.3583395
https://doi.org/10.1145/3106237.3106267
https://doi.org/10.1145/3600160.3600162
https://doi.org/10.1145/3576915.3623140
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/stock
https://doi.org/10.1145/3548606.3560685
https://doi.org/10.1145/3460120.3484745
https://www.usenix.org/conference/usenixsecurity22/presentation/roth

	Introduction
	Deno's features and attack surface
	Deno's Security Model and Features
	Deno's Attack Surface

	Security of Deno's permission system
	Missing permission checks
	Risks of coarse-grained permissions
	Failures in enforcing fine-grained permissions

	An empirical study of deno.land
	Setup
	Implications of URL-based importing
	Package versioning
	Declared vs. used permissions

	Discussion
	Vulnerability disclosure and chances to the runtime
	Further recommendations
	Future work

	Related work
	Conclusion
	References

