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Abstract—Model quantization has become a common practice
in machine learning (ML) to improve efficiency and reduce com-
putational/communicational overhead. However, adopting quan-
tization in privacy-preserving machine learning (PPML) remains
challenging due to the complex internal structure of quantized
operators, which leads to inefficient protocols under the existing
PPML frameworks.

In this work, we propose a new PPML paradigm that is
tailor-made for and can benefit from quantized models. Our
main observation is that lookup tables can ignore the complex
internal constructs of any functions which can be used to
simplify the quantized operator evaluation. We view the model
inference process as a sequence of quantized operators, and each
operator is implemented by a lookup table. We then develop an
efficient private lookup table evaluation protocol, and its online
communication cost is only logn, where n is the size of the lookup
table. On a single CPU core, our protocol can evaluate 226 tables
with 8-bit input and 8-bit output per second.

The resulting PPML framework for quantized models offers
extremely fast online performance. The experimental results
demonstrate that our quantization strategy achieves substantial
speedups over SOTA PPML solutions, improving the online
performance by 40 ∼ 60× w.r.t. convolutional neural network
(CNN) models, such as AlexNet, VGG16, and ResNet18, and by
10 ∼ 25× w.r.t. large language models (LLMs), such as GPT-2,
GPT-Neo, and Llama2.

I. INTRODUCTION

Machine Learning (ML) technology has reshaped the way
we analyze data, leading to breakthroughs in various sectors
such as healthcare, finance, transportation, and science.

At the same time, due to the nature of ML, extensive
datasets with sensitive information is collected and processed,
raising significant privacy concerns. This has led to an ur-
gent call for the development of Privacy-Preserving Machine
Learning (PPML) techniques. Secure Multi-Party Computation
(MPC) has emerged as a pivotal cryptographic primitive within
the realm of PPML. In a nutshell, MPC allows multiple parties
to jointly evaluate a function while keeping their inputs private.

In practice, the communication cost is often the performance
bottleneck of an MPC-based PPML. For instance, ResNet-
50 [27], with 50 convolution layers and 98MB parameters,
requires over 3.8 billion fix-point (or floating-point) MPC

operations to complete one model inference task, which pro-
duces nearly 2GB of communication, even adopting the most
efficient MPC protocols. Therefore, exploring the possibility
of reducing the communication cost is the key to speeding up
a PPML platform.

Quantization. The quantization technique [71], [16], [15],
[32] maps high-precision floating-point values to a smaller
set of discrete finite values, and it has been widely adopted
to speed up model inference in practice. For large models,
quantization is an essential compression technique that could
potentially reduce the model size by two to four times without
compromising its accuracy. This reduction in data size means
that a quantized model requires less memory bandwidth to
fetch and store the data, which can be a critical performance
bottleneck. Less memory usage also means that more of the
model can fit into faster caches, reducing the need to access
slower main memory. Therefore, the quantization technique is
particularly effective for accelerating model inference using
GPUs/NPUs with limited I/O bandwidth.

Difficulty of adopting quantization to PPML. Several at-
tempts have been made to adopt the quantization technique
to the context of PPML. However, none of the existing
solutions are quite successful, and naive adoption cannot save
the communication cost in general. The main reason is as
follows. Although the (intermediate) data between different
model operators is quantized in a more succinct representation
format, within each operator, the quantized data should be
first recovered to its original high-precision format before the
operation, and re-quantize back afterwards. Such a precision
recovery step typically requires secure multiplication with
the private scaler (with high-precision) as well as a module
switch operation from a smaller module, e.g., 28, to a bigger
module, e.g., 264. Note that the workload of the module switch
is usually equivalent to the expensive most significant bit
extraction in the MPC setting. For instance, Dalskov et. al [17]
propose an MPC-based platform that supports quantized model
inference, but the resulting PPML scheme needs even more
communication than the unquantized version.

As a toy example, suppose we want to perform the convo-
lution operation z ← Conv(x,w), where x,w and z consist
of `-bit fix-point variables. For `′-bit quantization, we choose
proper `-bit fix-point scale factor s0, s1, s2 and `′-bit offsets
b0, b1, b2 such that x = s0(x′ − b0), w = s1(w′ − b1),
and z = s2(z′ − b2). The quantized convolution operation
Conv∗ takes inputs as x′ and y′, and it shall output z′ :=
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s2
·Conv(s0(x′− b0), s1(w′− b1)) + b2. It is easy to see that

the operation Conv∗ requires extra steps on top of the original
Conv. If si are kept in private, Conv∗ usually costs more than
the unquantized convolution.

As another line of work, to speed up quantized model infer-
ence, Riazi et. al [57], Agrawal et. al [4] and Keller et. al [38]
propose to treat the quantization scalers as public variables,
and the value of those scalers is limited to the perfect power
of 2 to avoid secure multiplication. However, we emphasize
that this type of approach might cause severe privacy leakage,
also the restriction of the choices of quantization scalers has
a negative impact on overall model accuracy.

This prompts our main research question:
Does there exist an efficient PPML framework

that is tailor-made for and can benefit from quan-
tized models?

In this work, we answer this question affirmatively by
proposing a new PPML paradigm.

A new paradigm. As mentioned above, model quantization is
particularly effective for operators with limited I/O bandwidth;
that is, the input/output of the operators is encoded in some
compressed format. We observe that operators with such
characteristics can be efficiently evaluated by lookup tables.
For operators with n-bit input and m-bit output, the table size
is bounded by 2n · m bits. For common quantized models,
n = 4-bit or 8-bit. Our work focuses on the two-party (2PC)
privacy-preserving model inference setting, where one party,
called the server, holds the model in plaintext, and another
party, called the client, holds the data. Our paradigm lets the
model server prepare the lookup tables for each operator in
the offline phase, and then the client privately evaluates those
lookup tables in order to obtain the model inference result.

In the literature, several works [33], [26] use lookup tables
for the evaluation of non-linear functions, e.g. the activation
functions; whereas, in this work, we show that even linear
functions can be accelerated by lookup tables in the quanti-
zation setting. Take the multiplication operation y = x · w
as an example. Let x = s0(x′ − b0), w = s1(w′ − b1), and
y = s2(y′ − b2). In our setting, the model holder knows w′,
{si}i∈{0,1,2}, and {bi}i∈{0,1,2}; therefore, we can re-write the
operation as y′ = f(x′) := 1

s2
· s1(w′ − b1) · s0(x′ − b0)− b2,

where all variables besides x′ are hard-coded into the function
f . Since x′ is only 8 bits for 8-bit quantization, the lookup
table consists of 256 elements; as we will show later, the online
communication cost of this private lookup table evaluation
is only 8 bits, which is much less than the cost of the
conventional secure (quantized) multiplication.

While applying our technique to PPML, our framework sup-
ports lookup-based operator fusion, i.e., the multiple lookup
tables can be fused into a single lookup table, and thus the
overall cost only equals to single lookup table evaluation.

Private lookup table evaluation. There are several
works [31], [18], [19], [8] on lookup table evaluation and
their usage in the context of PPML. For instance, FLUTE [8]
utilizes a boolean circuit to represent the lookup table, and

their online communication only depends on the output length
of the function; more specifically, if the function output is `
bits, the online communication of FLUTE is 2` bits, regardless
the input length (or table size). However, those works assume
the lookup table is public to everyone, which is not suitable for
our case. As mentioned before the model holder will embed
the model weights/parameters into the lookup table; therefore,
in our work, we study the private lookup table evaluation
problem, where the lookup table is considered as a private
input. Another potential approach for constructing private
lookup table evaluation is through private function evaluation
(PFE) protocols [35], [63], [68], [25]. However, SOTA incurs
significant communication and computational overhead. Our
technique is based on the secret shifting protocol proposed by
Lu et.al [46], where their original protocol is only designed
for binary vectors. We extend the protocol to support vectors
over a large ring (or field), and apply this shift technique to
realize our private lookup evaluation scheme. Compared to
the SOTA PFE protocols [35], [63], [68], [25], our protocol is
more lightweight and efficient. Its online communication is as
low as log n bits, where n is the table size. On a single CPU
core, our protocol can evaluate 107 numbers of lookup tables
with 8-bit input and 8-bit output per second (See Appendix. D
for related work).

Performance. We apply our framework to various machine-
learning models. For the convolutional neural network (CNN)
models, such as AlexNet, VGG16, and ResNet18, our bench-
mark shows that our 8-bit quantized PPML framework (single-
core CPU only) is 40 ∼ 60× faster than the typical 2PC
SOTA – Cryptoflow2 [56], and 5 ∼ 15× faster than the typical
3PC SOTA – Falcon [65] and Bicoptor [69], even though they
use GPU acceleration. For the large language models, such as
GPT-2, GPT-Neo, and Llama2, our 8-bit quantized framework
(single-core CPU only) achieves 10 ∼ 25× performance
improvement compared to the SOTA works – CrypTen [40]
and Sigma [26].

II. PRELIMINARIES

Notation. The frequently used notations are shown in Table
I. We denote n-dimension vector as a := (a0, . . . , an−1),
and ai be the ith element of a. For notation simplicity, we
override the multiplication between a vector and a scalar as
a·b := (a0 ·b, . . . , an−1 ·b); similarly, we override the addition
between a vector and a scalar as a+b := (a0+b, . . . , an−1+b).
We denote [n] as the index set {0, . . . , n − 1}. We use
letters with the prime to represent the corresponding quantized
variables (x′ represents the quantized value of x). We denote
the matrix as the uppercase letter M := (mi,j)i∈[n1],j∈[n2]

with n1 × n2 dimension, and denote the element in the ith

row and jth column of M as m(i,j). It can also be represented
as M := (mj)j∈[n2] where mj is jth column vector, and
M := (mi)

T
i∈[n2] where mi is ith row vector. We define

shift(m, i) as the operation of right circular shifting the vector
m by i positions. We use T `x,`y := (t0, . . . , t2`x−1) to denote
a lookup table with `x bits input and `y bits output. When the
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semantics are clear, we omit the superscript of T . For the eval-
uation of T at position x, we represent it as T (x). We view the
lookup table as a vector and denote its rth item as tr ∈ Z2`y .
For an operator op, we denote its quantized operator as op∗.
Let (k, n)-OT denote the k-out-of-n oblivious transfer (OT).
We consider 2-out-of-2 secret shares and define the secret
share J·K` over ring Z2` as JxK` := (JxK`1 ∈ Z2` , JxK`2 ∈ Z2`)
where x = JxK`1 + JxK`2 (mod 2`). For simplicity, we use JxK
when the semantics are clear. We denote the shared vector as
JxK := (Jx0K, . . . , Jxn−1K).

TABLE I: Notations

Notations Descriptions
a The vector a := (a0, . . . , an−1).
M := (mi,j)i∈[n1],j∈[n2] The n1 × n2 dimension matrix M .

op∗ The quantized operator for op.

[n] The index set {0, . . . , n− 1}.

JxK` := (JxK`0, JxJ`1)
The 2PC secret shares of x over Z2` where
x = JxK`0 + JxK`1 (mod 2`).

shift(m, i) Circular shift the vector m by i positions.

T `x,`y The lookup table with `x-bit input and
`y-bit output.

T (x) Evaluate lookup table T at position x.
(k, n)-OT k-out-of-n OT.

System Architecture and Threat Model. As shown in Fig. 1.
Our PPML framework can be deployed in outsourcing and
client/server (C/S) settings. We assume all the participants are
semi-honest where the adversary may attempt to extract private
information from her views but she must follow the protocol.
In particular, our framework contains four participants, de-
noted by P := {C,S,P0,P1}. Among them, C is the data
client, S is the model server, P0 and P1 are the computing
nodes in the outsourcing setting.

In our settings, we assume that the machine learning model
is prepared in-prior. In other words, the model inference server
can quantize the model parameters in advance and use the
quantized models as input in the preprocessing phase. In
contrast, the user input will only be determined in the online
phase.

Without loss of generality, we define the machine
learning model as a sequence of operators: M :=
{op(0), . . . , op(N−1)} where op corresponds to the operator
of each layer, and the input vector (for the tensor which
is the high-dimension matrix, we convert it to vector) as
x. In our setting, the operator op is embedded with all the
model weights. For instance, the convolution can be written
as op(i)(x) := Conv(w,x), where w are the corresponding
model weights. We denote the evaluation of x in M as
y =M(x).
• In the outsourcing setting, the machine learning model

server S inputs the private model M, and the data client
C inputs the private data x. They employ two comput-
ing nodes {P0,P1} to perform secure model inference
M(x). The computing node Pj for j ∈ {0, 1} holds the
secret share JxKj and will not collude with other parties.

Fig. 1: Our system architecture.

• In the C/S setting, instead of employing the computing
nodes, the data client C and the model server S directly
perform secure model evaluation M(x), where C hold
the secret share JxK0 and S hold the secret share JxK1.

Oblivious transfer. The oblivious transfer is a fundamental
cryptographic primitive in which one party (the sender) inputs
a list of private messages and another party (the receiver)
inputs private indexes. The receiver obtains the messages cor-
responding to the indexes without any additional information.
We denote (k, n)-OT` as the OT with k-dimension input
indexes and n-dimension message list where each message
is `-bit length. We utilize Π(1,2)-OT` to denote the protocol of
(1, 2)-OT` [24], [22]. In Π(1,2)-OT` , the sender inputs message
m0 ∈ Z2` and m1 ∈ Z2` into Π(1,2)-OT` ; the receiver inputs
index i ∈ {0, 1} and receive mi from Π(1,2)-OT` . Random OT
(ROT) [7] is a special case of OT where the selective index is
randomly generated by protocol. In an (n − 1, n)-ROT`, the
sends holds a list of messages, and the receiver holds an index
j and all the messages except for the jth message. We utilize
Π(n−1,n)-ROT` [11] to denote the protocol of (n−1, n)-ROT`.
It sends (m0, . . . ,mn) to the sender and sends an index j ∈ [n]
with n− 1 messages mi for i ∈ [n]\{j} to the receiver.

lookup table. The lookup table T for operation op∗ :
{0, 1}`x → {0, 1}`y traverse all possible inputs of op∗. It
accepts `x bits input and output `y bits message. The rth item
of lookup table T stores the result of op∗ with input r.

Secure two-party computation. Our PPML framework fo-
cuses on secure two-party computation (2PC). We define the
addition on the secret share as JzK = JxK + JyK and it
holds that z = x + y with secret shared form. Pi locally
executes JzKi = JxKi + JyKi to obtain the shared result. We
use JzK = c · JxK to denote the scale of a public value, where
z = c·x. Pi locally executes JzKi = c·JxKi to obtain the shared
result. Each computing party can add a private input into the
secret share. Specifically, we use JzK = JxK + c to denote one
of parties add private value c to the secret share JxK, namely,
Pi locally sets JzKi = JxKi+c where P1−i sets JzKi = JxKi. We
define the secret share protocol and the reconstruct protocol
as follows.
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Input : x := (x0, . . . , xn−1) ∈ (Z2`)n input by C and
y ∈ Z2` input by S.
Output : C receives JzK0 := (Jz0K0, . . . , Jzn−1K0) ∈
(Z2`)n, S receives JzK1 := (Jz0K1, . . . , Jzn−1K1) ∈
(Z2`)n, where xi · y = zi for i ∈ [n].
Protocol:
- S bit-extract y as (yj)j∈[`] where
y =

∑`−1
j=0 2j · yj .

- For j ∈ [`], C and S invoke Π(1,2)-OT`·n :
– C picks rj := (ri,j)i∈[n] ∈ (Z2`)n, inputs
m0 = −r0,j || . . . || − rn−1,j and
m1 = x0 · 2j − r0,j || . . . ||xn−1 · 2j − rn−1,j .

– S inputs the chooes bit yj and receives output
r′j .

- C parses r′j as r′j = r′0,j || . . . ||r′n−1,j and computes
JziK0 =

∑`
j=1 r

′
i,j , S sets JziK1 =

∑`
j=0 ri,j .

Protocol Π`,n
vole(x, y)

Fig. 2: The VOLE protocol based on OT

• JxK` ← Π`
C/S(P, x): We define the secret share for C/S

setting as Π`
C/S(P, x), where P ∈ {C,S} holds x and

secret shares x to C and S. Before execution, C and S
generate a correlated seed η. If P = C, C and S pick
JxK`1 ← Z2` with the same seed η. C locally sets JxK`0 =
x− JxK`1. Similarly, If P = S, C and S pick JxK`0 ← Z2`

together. S locally sets JxK`1 = x− JxK`0.
• JxK` ← Π`

out(P, x): We define the secret share for
outsourcing setting as Π`

out(P, x), where P ∈ {C,S}
holds x and secret shares x to P0 and P1. Before
execution, P and P0 generate a correlated seed η. P and
P0 pick JxK`0 ← Z2` with same seed η. P calculates
JxK`1 = x− JxK`0 and sends it to P1.

• x← Π`
rec→P(JxK`). We define the reconstruction of JxK`

as Π`
rec→P(JxK`). P is the set of parties to receive x. The

holders of JxK0 and JxK1 send them to the parties in P.
The parties in P reconstruct x = JxK0 + JxK1.

Vector Oblivious Linear Evaluation. Oblivious Linear Eval-
uation (OLE)[6], [39] is a foundational component in various
secure 2PC [59], [55]. In the OLE protocol[6], one party inputs
value x and the other inputs value y. They jointly evaluate
z = x · y, and each party obtains the shared result JzK.
Considering the vector case, the primitive so-called Vector
Oblivious Linear Evaluation (VOLE) [59], accepts a vector
x := (x0, . . . , xn) input by one party and a value y by another
party, and output a shared vector of z := (x0 · y, . . . , xn · y).
The OLE can be viewed as a special case of VOLE. We follow
the OT-based multiplication protocol [37] to realize VOLE.
Fig. 2 depicts the procedure of VOLE protocol Πvole.

Fixed-point encoding. For the floating-point data used in
PPML, we first encode it to the fixed-point structure. Specif-
ically, for a fixed point value x with k-bit decimal and the
effective number of bits `, if x ≥ 0, we encode it as bx · 2kc;

1 1 1 1 1 10 00

1 00 0

1 00 0

1

11

11

1

1

11

0

x

[x]0

[x]0

k0

`′

=

+

Fig. 3: The case of cut protocol.

if x < 0, we encode it as 2`+ bx ·2kc. For a fixed-point value
x with decimal, we utilize encode to denote the procedure of
fixed-point encoding, and decode to denote the procedure of
decoding to the fixed-point value.

Significant bits extraction. For a shared value JxK`, it can be
locally extracted of partial significant bits to a lower-precision
value [69] with a probabilistic 1-bit carry error. For instance,
a fixed-point value with ` − `′ decimal bits can drop the
decimal bits to obtain an integer. More specifically, we use
the function cut(x, k, `′) to denote the procedure which drops
the first k bits and the last ` − `′ − k bits of x. Formally,
let x :=

∑`−1
i=0 xi · 2i, where xi is the ith bit of x from

small endian, we have cut(x, k, `′) :=
∑k+`′

i=k xi · 2i−k. Based
on cut function, we can construct significant bits extraction
protocol JxK`

′ ← Π`′

cut(JxK`, k) as follows (See Fig 4). P0 sets
JxK`

′

0 = cut(JxK`0, k, `′) and P1 sets JxK`
′

1 = cut(JxK`1, k, `′).
Fig. 3 illustrates the case of Πcut, the drop of the lower k bits
will introduce at most one bit of error (due to two number
addition at most case one bit carry), while the drop of higher
`− k − `′ bits will not cause any error.

Input : JxK0 ∈ Z2` input by C and JxK1 ∈ Z2` input
by S.
Output : C receives Jx′K`0 ∈ Z2`′ , S receives Jx′K`1 ∈
Z2`′ , where x′ = cut(x, k, `′).
Protocol:
• C locally calculates Jx′K`

′

0 = cut(JxK`0, k, `′).
• S locally calculates Jx′K`

′

1 = cut(JxK`1, k, `′).

Protocol Π`′

cut(JxK`, k)

Fig. 4: The low precision extraction protocol

III. OUR NEW FRAMEWORK

In this work, we design a new PPML framework. Our
framework achieves performance improvement through two
key points. On the one hand, we design our framework
tailored for model quantization scenarios. On the other hand,
we enable the model server to perform extra operations
based on the specific model to enhance the performance of
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privacy-preserving model evaluation. We address the potential
problems of quantized model evaluation in adopting the MPC
technique. Consequently, we introduce our PPML paradigm
which can evaluate the quantized PPML efficiently.

A. Quantization scheme.

Quantization is the process of mapping continuous infinite
values to a smaller set of discrete finite values. In the context of
simulation and embedded computing, it is about approximating
real-world values with a digital representation that introduces
limits on the precision and range of a value.

We formalize the quantization scheme. A quantization
scheme is a tuple Q := (G, E ,F ,D). Considering the function
f to be quantized, the calibration dataset d, and n-dimension
input vector x with `-bit precision, the quantization scheme
Qd,`,`′ for `′-bit quantization contains four steps:
• (F , E ,D) ← G(f, d): the quantization generation G

accept the function f , a calibration dataset d and generate
a quantized function f ′, an encode function E , and a
decode function D.

• x′ ← E(x): The encode function E encode the input
x ∈ Zn2` to quantized vector x′ ∈ Zn

2`′ .
• y′ ← f ′(x′): The quantized function f ′ is performed on

the quantized vector x′ and return a quantized output y′.
• y ← D(y′): The decode function D recover the quantized

vector y′ to the vector y which is lay on the original
precision.

The quantization scheme is designed for IO communication
and storage reduction. To measure the magnitude of the
reduction, we define the following properties:

Definition 1 (ρ-succinctness). We say the quantization scheme
Qd,`,`′ is ρ-succinct, if the precision bits ` of the original data
x and the precision bits `′ of its quantized data x′ hold that:

`′

`
= ρ.

Definition 2 (ε-accuracy-loss). We say the quantiza-
tion scheme Qd,`,`′ for the calibration dataset d :=
{x0, . . . ,xN−1} is ε-accuracy-loss, if the encode function E ,
the quantified function F and the decode function D hold that:

|{D(f ′(E(xi))) 6= f(xi); i ∈ [N ]}|
N

< ε;

where | · | denotes the number of elements in a collection.

Quantization in machine learning. Previous work [71], [16],
[15], [32] has demonstrated the effectiveness of quantization
techniques in machine-learning scenarios. We give a toy ex-
ample to illustrate how the quantization scheme works on the
machine learning model. Cf. Appendix. E for the quantization
examples. We utilize a simple convolutional neural network
model f := (FC,ReLU,Conv), with input tensor x, the weight
w1 for the convolution Conv and w2 for the full connection
FC, where f(x) = FC(w2,ReLU(Conv(w1,x))). We define
its quantized model as f ′ := (FC∗,ReLU∗,Conv∗). We

show more details about the quantization scheme Qd,`,`
′

ML :=
(G, E ,F ,D) for the neural network model f .

Encode function E : Before input f ′, all the data will be en-
coded into the quantized data. In the typical ML quantization,
the encode function E is defined as x′ = E(x) = b 1

s · xc − b.
Considering the element xi in the vector x which is a high-
precision fixed-point value, it will be scaled by 1

s to a low-
precision integer. b is an offset which is the so-called zero-
point to shift the central value to zero. Note that each input
vector x utilizes the single scale factor s and offset b for all
elements it contains.

Quantized function f ′: To convert the original model f to a
quantized model f ′, we convert each operator of f to a quan-
tized operator. For the convolution operator y = Conv(w1,x),
the corresponding quantized operator Conv∗ inputs with the
quantized vector x′ and w′1 and output y′. Assume that s0

and b0 are the scale factor of x, s1 and b1 are the scale
factor of w1, s2 and b2 are the scale factor of y. We have
s2(y′ + b2) = Conv(s1(w′1 + b1), s0(x′ + b0)). From this,
the quantized operator for Conv can be deduced, namely,
y′ = Conv∗(w′1,x

′) = s1s0
s2
· Conv(w′1 + b1,x

′ + b0) − b2.
For the next layer, to evaluate y = ReLU(x), the quantized
vector holds that s2(y′ + b2) = ReLU(s1(x′ + b1)). The
quantized operator ReLU∗ can be calculated by ReLU∗(x′) =
1
s2
ReLU(s1(x′+b1))−b2. Similarly, we can infer the quantized

operator for full connection FC∗. Consequently, instead of
evaluating f := (Conv,ReLU,FC) with vector x, we evaluate
f ′ := (Conv∗,ReLU∗,FC∗) with the quantized vector x′ layer
by layer.

Decode functionD: All the quantized data will be de-quantized
(decode to the original precision) before output. It is the
inverse operator of the encode function, which is y = D(y′) =
s(y′ + b). Each integer element y′i in the vector y′ will scale
a high-precision fixed-point value s to obtain a high-precision
fixed-point value.

Quantization generation G: To measure the quantization ar-
guments {(s0, b0), . . . , (sm, bm)}, the model server needs to
evaluate the model in the calibration data-set d. This evaluation
is used to generate a priori data ranges for the intermediate
results of each operator in the model. These data ranges are
then used to determine the scale factor s and the offset b. We
formalize G as follows.
• Evaluate f with the calibration data-set d :=

(x0,x1, . . . ,xn−1). For each operator op, record the
maximum and minimum element of output, denoted by
tmax and tmin.

• For op with tmax and tmin, calculate s = tmax−tmin

2`′ and
b = tmax+tmin

2·s . Calculate s and b for each output wire of
the operators.

The challenge of adopting quantization in PPML. Although
the quantized model f ′ can significantly reduce the size of
input data and the temporary variables, it still can not speed up
privacy-preserving machine learning. The main reason is that
each quantized operator, e.g., Conv∗, contains a multiplication
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of s1s0
s2

which lies on the original precision (In practice,
equals dequantization and re-quantization). The overall cost
of evaluation quantization over typical MPC is even higher
than that of the evaluation of the original model. A line of
work [57], [4], [38], makes the scale factor public to avoid this
problem, which causes massive data leakage on the model.

B. Our PPML paradigm

Revisit the structure of the quantized operator, the input x′

and output y′ keep a small range (the low precision integer),
while s keeps a big range. The quantization scheme is designed
to reduce the data communication size of the IO, i.e., between
the GPU and memory. With this in mind, we ask whether there
exists an MPC operation whose cost depends solely on the
input and output sizes, without considering the intermediate
computational steps. Interestingly, we observe that if we view
the quantized operator as a lookup table, the scale factor
s will be hidden within it. For simplicity, we assume the
quantized operator op∗ acts independently on each element.
Next, we will discuss the operations based on single elements.
For vectorized operators, we will address them separately
within the context of specific operators. In particular, let
the quantized operator op∗ accept input x′ ∈ Z2`′ and its
hidden parameters s is known to the model server, the model
server can locally generate the lookup table as a vector
T := (op∗(0), . . . , op∗(2`

′−1)) by invoking 2`
′

times of op∗.

Quantization scheme in PPML. We propose the PPML-based
quantization scheme Q̂d,`,`

′

ML . The input vector is secret sharing
as JxK`, and the quantized function encodes JxK` to a much
succinct secret sharing JxK`

′
. Considering that PPML involves

fixed-point encoding and multiplication will introduce double
scaling (x̂ = x · 2k, ŷ = y · 2k, ẑ = x̂ · ŷ = x · y · 22k is double
scaled), more bits are needed to represent the fixed-point
secret sharing in PPML compared to plaintext. For example,
32-bit fixed-point numbers typically use 64-bit encoding to
accommodate a single multiplication. Intuitively, for a typical
64-bit PPML, our quantization scheme Q̂d,`,`

′

ML achieves 0.125-
succinctness under 8-bit quantization. Additionally, unlike
conventional PPML fixed-point computations that potentially
introduce fractional calculation errors, our PPML-based quan-
tization scheme achieves evaluation results identical to plain-
text, because the computations are performed on integers, with
internal fractional calculations encoded into the lookup table.
We test the accuracy loss of the 8-bit quantized convolutional
neural networks using the deep learning inference SDK –
TensorRT. As shown in Table II, our quantization scheme
Q̂d,`,`

′

ML holds 0.2%-accuracy-loss in 8-bit CNN model.

TABLE II: The accuracy of the 8-bit quantized model com-
pared to the original model.

Squeeze
Net ResNet AlexNet

CIFAR
AlexNet

Tiny
VGG

CIFAR
VGG
Tiny

Original
Accuracy 58.19 80.24 91.52 58.63 92.72 68.08

8-bit
Accuracy 58.10 80.39 91.53 58.46 92.73 68.18

Quantized model (lookup table) generation. The model
server S will first quantize the machine learning model with
the calibration data set, obtaining scale factors (si, bi) for each
layer. Then the S generates the lookup table for each quantized
operator. We observe that besides the scale factor s, S can also
embed the model weight into the lookup table, which makes
the dual-input operator, e.g., convolution, matrix multiplica-
tion, to single-input. Taking Mult∗(w′, x′) := 1

s2
Mult(s1(w′+

b1), s0(x′ + b0))− b2 as an example, the model server knows
about s1, w′, b1, s0, b0, s2 and b2, such that w′ can be part of
operator. The operator is converted to a single-input function
Mult∗(x′). To generate the lookup table, the model server
traverses all possible values of input and evaluates the operator
with such values. For x′ ∈ {0, . . . , 2`′−1}, the corresponding
lookup table is T `′,`′ := (Mult∗(w′, 0), . . . ,Mult∗(w′, 2`

′ −
1)). So far, the model server obtains the lookup table for
each model operator of f . We denote the overall lookup table
set for model f which contains m operators as the Q-model
M := (T (0), . . . , T (m−1)), and its ith lookup table represent
the ith quantized operator.

Q-model evaluation. Instead of evaluating the operator with
the white box function, the model evaluation turns to the
black box with the lookup table. In each layer of the ML
model, the model server inputs the private lookup table
T `′,`′ := (op∗(0), . . . , op∗(2`

′
)), and all parties input the

shared value Jx′K`
′

to query T , resulting in a new shared
index Jy′K`

′
= Jop∗(x′)K`

′
= JT (x′)K`

′
. We directly adopt the

lookup evaluation technique on the single-input-single-output
(SISO) operator, e.g., activate operator, batch normalization
operator, etc. These operators are performed on each element,
leading to a single input of the lookup table. For the multiple-
input-single-output (MISO) operator, e.g., convolution, and
matrix multiplication, we provide the construction in the next
section. By querying the lookup table of M layer by layer,
all parties finally obtain the shared output.

Lookup tables fusion. We observe that multiple lookup
tables can be fused into a single lookup table, resulting in
a single fused table rather than multiple table evaluation.
The lookup fusion technique is suitable for any SISO op-
erator, or an SISO operator connecting to an MISO op-
erator. Formally, considering a sequence of lookup table
x2 = T (1)(x1), x3 = T (2)(x2), . . . , xn+1 = T (n)(xn), it
holds that xn+1 = T (n)(. . . , T (2)(T (1)(x1)), . . .). All the
lookup tables can be combined by a single lookup table
xn+1 = T ∗(x) := T (n)(. . . , T (2)(T (1)(x)), . . .). If T (n) is
an MISO lookup table, the fusion concludes an overall MISO
lookup table. That is, T ∗(x, y) := T (n)(T (1)(x), T (2)(y)).
Notice that the fusion of SISO and MISO does not introduce
larger lookup tables, while the fusion of MISO and MISO will
exponentially increase the size of the lookup table.

Dequantization fusion. The other optimization is that we can
further reduce the de-quantify phase by fusing the dequan-
tization phase with the previous layer’s lookup table. If we
view the dequantization scheme as a lookup table, its input
range is Z2`′ and output range is Z2` , such that the lookup
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table size is 2`
′ · ` (Considering `′ is small, it is acceptable).

Similarly, we use the lookup fusion technique to combine the
de-quantify function with the last operator, resulting in a new
lookup table with Z2`′ input and Z2` output. Note that this
technique is not suitable for the quantization operator, as the
input of the quantizing function is `-bit, which would lead to
an unacceptably large lookup table of size 2` · `′.

IV. PRIVATE LOOKUP TABLE EVALUATION.
A. The Existing lookup Table Overview

Our PPML framework is based on secure lookup evaluation.
Looking forward to a suitable component, we review the ex-
isting lookup table evaluation scheme. In general, we classify
the lookup table evaluation into two types: i. the scheme where
online communication cost only depends on the output size of
lookup; ii. the scheme where online communication costs are
only dependent on the input size of the lookup.

Lookup table with Output-length-dependent Cost.
Brüggemann [8] et. al propose a lookup table construction
named FLUTE where the online phase communication costs
are only dependent on the lookup table output size. The
FLUTE approach utilizes a boolean circuit to represent the
lookup table and adopts the ABY2.0 [53] protocol to evaluate
the boolean circuit securely. Since the online phase of ABY2.0
only depends on the output size `′, the lookup table evaluation
only requires concrete 2`′ bits communication. FLUTE pro-
vides a fast online phase when the output of the lookup table
is small. However, FLUTE is not suitable for our framework,
as its lookup table structure needs to be public. For our PPML
framework, the lookup table encoding the scale factor s, the
offset b and the weight w needs to be processed in secret.
Lookup table with Input-length-dependent Cost. Another
type of lookup evaluation schemes [31], [18], [19] holds the
property that the online phase communication costs are only
dependent on the lookup table input size, by introducing
an offset r on the lookup table. In particular, for a lookup
table T `x,`y whose input size is 2`x , the preprocessing phase
involving two parties jointly generating the shifted shared
lookup table JT ′K whose item is JtiK`y = JT (i + r)K`y for
i ∈ {0, . . . , 2`x − 1} ( Circular shifting T by r position to
obtain T ′) and the secret shared offset JrK`x . In the online
phase, given the secret shared input JxK, two parties recon-
struct δ = x−r and set result JyK`y = JtδK`y (it is easy to see
tδ = T (δ+r) = T (x)). The communication cost of the online
phase only contains 2`x bits communication of reconstruction
which corresponds to the input size. Coincidentally, similar
to the output depending on the scheme, these works [31],
[18], [19] are also incompatible with our PPML framework,
where their settings assume the lookup table is public in the
preprocessing phase to generate JtiK`y .
Lookup table with private function evaluation. The private
lookup table evaluation is essential for implementing the
quantization scheme. We observe that the private lookup table
is a special case of private function evaluation (PFE), and it
can be viewed as the distributed oblivious RAM(DORAM),
while the dataset is shared, and computing parties pick the

selected item using a shared index. Several works [35], [63],
[20] realize DORAM based on function secret sharing (FSS),
which can also be used to construct the private lookup table
evaluation. Specifically, two parties, P0 and P1, hold correlated
FSS keys that generate a shared one-hot list. To select an item
corresponding to the position of the one-hot from the lookup
table, all parties calculate the inner product of the one-hot list
and the lookup table. Doerner et al. [20] employ an encrypted
lookup table where the ciphertext is publicly known to both
parties, allowing the inner product computation to remain
local in the 2-party computation (2-PC) setting. However,
their approach yields the shared query result in ciphertext
form, necessitating an additional decryption phase in the MPC
setting to obtain the final result. Other attempts [35], [34],
[63] avoid using an encrypted lookup table by using replicated
secret shared lookup table, but their protocol requires at least
three or more computing parties. Moreover, the FSS keys need
to evaluate the O(2`x) times PRG in the online phase for the
lookup table size 2`x , leading to significant online running
time. An alternative approach for realizing the private lookup
table evaluation scheme is through the use of garbled circuits.
In this scenario, both the lookup table and the index are treated
as private inputs. A series of works [29], [28] have explored
the private lookup evaluation scheme based on garbled circuits.
To the best of our knowledge, David et al. [29] achieve SOTA
theoretical performance, requiring (`x − 1)λ+ `x`yλ+ 2`x`y
bits of communication cost, where `x is the input size, `y
is the output size, and λ is the security parameter (with 256
typically used in garbled circuits) which is still unacceptable
for our framework.

B. Our Private lookup Table Evaluation Scheme.
In this section, we aim to find more efficient and low-

communication lookup table evaluation protocols. In our set-
ting, one of the parties inputs the private lookup table T `x,`y ,
and all parties input a secret shared value JxK`x . As the lookup
table evaluation, all parties receive the shared result JT (x)K`y .

Our scheme is based on the aforementioned approach where
online communication cost only depends on the input size
of the lookup. We observe that this approach is partially
compatible with the private lookup table since the shifted
lookup table JT ′K in the online phase is secretly shared and
leaks no information about the original lookup table. The
remaining challenge is how to generate JT ′K`y and JrK`x with a
private lookup table T . Formally, we define the private lookup
table evaluation as two phases: (i) private shifted lookup table
pair generation, in the preprocessing phase, all parties jointly
generate the shifted shared lookup table pair where one of
the parties inputs the private lookup table. (ii) lookup table
evaluation, in the online phase, we follow the works [31],
[18], [19] where all parties are only required to perform 2 · `x
bits communication to reconstruction. Formally, we formally
define the circular shifted lookup pair. We give the definition
as follows.

Definition 3. Let T `x,`y be a lookup table with `x-bit input
and `y-bit output. We say a 2PC circular shift lookup pair for
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Fig. 5: Secure ML Operator Evaluation with lookup Table.

Input : S inputs a lookup table T `x,`y ∈ (Z2`y )2`x

in the preprocessing phase. S and C inputs a secret
shared index JxK`x in the online phase.
Output : The secret shared lookup table evaluation
result JT (x)K`y .
Preprocessing:
1) C and S invoke Π(2`x−1,2`x )-ROT:

• S receives (mi|i ∈ [2`x ],mi ∈ (Z2`y )2`x
).

• C receives JrK0 and (mi|i ∈ [2`x ]\{JrK0}).
2) C picks random mJrK0 ← (Z2`y )2`x .
3) C and S generate the matrix M ∈ (Z2`y )2`x×2`x

by setting mi as the ith column vectors.
4) C and S right circular shift the ith row of M by i

positions locally for i ∈ [2`x ].
5) S and C computes vi =

∑2`x−1
j=0 m(i,j) and

ui =
∑2`x−1
j=0 (−m(j,i)) for i ∈ [2`x ], and denotes

v := (v0, . . . , v2`x−1) and u := (u0, . . . , u2`x−1).
6) C computes wi = vi + uJrK0+i, and denotes
w := (w0, . . . , w2`x−1).

7) S picks random JrK1 ∈ Z2`x and right circular
shift T by JrK1 positions to obtain T̂ .

8) S sends s = T̂ + u to C and sets JT ′K1 := v.
9) C computes JT ′K0 := shift(s, JrK0)−w.
Online:
1) S and C calculates JδK`x = JxK`x − JrK`x .
2) C and S invoke δ ← Π`x

rec→{C,S}(JδK
`x).

3) C and S set output JT (x)K`y = JT ′(δ)K`y .

Protocol Π
`x,`y
lookup(T `x,`y , JxK`x)

Fig. 6: The lookup evaluation protocol Πlookup.

lookup table T `x,`y is (JT ′K`y , JrK`x), if it holds that T ′(x) =
T (x+ r).

Circular Shift Lookup Pair in Outsourcing Setting. The
circular shift lookup table pair can be generated easily in the
outsourcing setting. Since the employed computation parties
P0 and P1 will not collude with the model holder S, S can

directly generate r ∈ Z2`x−1 and locally circular shift T to r
position and obtain T ′. Consequantly, S secret share T ′ and
r to P0 and P1.
Circular Shift Lookup Pair in C/S Setting. The circular
shift lookup pair generation has more challenges in the C/S
setting. Recently, Lu [46] et. al propose a vector oblivious
shift evaluation (VOSE) scheme that can secure shift a n-
dimension binary vector T ∈ (Z2)n to a random position r
in the two-party setting. In VOSE, P0 inputs a binary vector
T := (t0, . . . , tn−1) ∈ (Z2)n and receives JT K1

0, P1 receives
JT K1

1 and offset r where JT K1
0 ⊕ JT K1

1 = shift(T , r). We
realize that applying their definition to the ring Z2`y satisfies
our requirements. We adopt the technique of Lu et. al to our
circular shift lookup pair generation. In our setting, we define
the VOSE in the arbitrary ring Z2` , namely, S inputs a vector
T ∈ (Z2`)n and receives JT K0, C receives JT K1 and offset r
where JT K0 + JT K1 = shift(T , r). Using VOSE, we realize
the circular shift lookup pair generation. We let S locally
circular shift T to r1 position and input the shifted lookup
table to VOSE. C input another position r0 to VOSE. Since S
locally shift T to r1 position and VOSE shift r0 position, the
overall shifted position is r0 + r1. After that C receive JT ′K0

and S receive JT ′K1 where T ′ = shift(T , r0 + r1). Setting
JrK0 = r0 and JrK1 = r1, we obtain the circular shift lookup
pair generation.

Our VOSE protocol is also inspired by Lu et. al [46], At
a high level, the VOSE protocol contains two parts. In the
first part, all parties generate a random VOSE, where T is a
random vector, rather than determined by P0. In the second
part, all parties construct VOSE based on random VOSE.
Random Vector Oblivious Shift Evaluation over Ring. In our
random VOSE scheme, C receives two n-dimension random
vectors u ∈ (Z2`)n and v ∈ (Z2`)n; S receives a offset r and
a vector w ∈ (Z2`)n, and it holds w = shift(u, r) + v. We
realize random VOSE from ` ·n length n−1 out of n random
OT. Specifically, we describe the process as follows.

• S and C invoke an instance of Π(n−1,n)-ROT. After the
protocol, S receives n messages (m0, . . . ,mN−1) and
mi ∈ (Z2`)n. C receives r and all messages except for
mr. We allow C pick random m̂r ← (Z2`)n. Viewing
(m0, . . . ,mn−1) as a n × n-dimension matrix M, S
obtains the complete M, while C can obtain the M̂ with
dummy rth column m̂r.

• S and C right circular shift the ith row of M (M̂ for C)
by i positions for i ∈ [n], and denote the new matrix as
M′ := (m′(i,j))i∈[n],j∈[n] (or M̂′ := (m̂′(i,j))i∈[n],j∈[n]).

• S sets vi =
∑n−1
j=0 m

′
(i,j) and ui =

∑n−1
j=0 (−m′(j,i))

for i ∈ [n] to generate v := (v0, . . . , vn−1) and u :=
(u0, . . . , un−1). Note that vi is the sum of ith row of M′

and ui is the sum of ith column of M′.
• Similarly, C calculates v̂i =

∑n−1
j=0 m̂

′
(i,j) and ûi =∑n−1

j=0 (−m̂′(j,i)) for i ∈ [n]. Let wi = v̂i+ûr+i mod 2`,
it holds that wi = v̂i − m̂′(i,i+r) + m′(i,i+r) + ûr+i +
m(i,i+r)−m′(i,i+r) = vi + ur+i. Considering m′(i,i+r) is
the only item shift by m′r which correspond to m̂′r of C,
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the calculation of wi eliminates the same item of m′r and
m̂′r so that S can correctly calculate wi. While any other
vi or ui is random to S. S set w := (w0, . . . , wn−1).

Obviously, w,u and v satisfy w = shift(u, r) + v.
Private lookup Evaluation from VOSE. Based on the random
VOSE, we construct our private lookup evaluation protocol
for T `x,`y . Fig. 6 illustrates the specific procedure of lookup
evaluation protocol Πlookup. Random VOSE output vectors u ∈
(Z2`y )2`x and v ∈ (Z2`y )2`x to S, r0 ∈ Z2`x and a vectorw ∈
(Z2`y )2`x to C, such that w = shift(u, r0)+v. We let S picks
random offset r1 ∈ Z2`x and locally shift T by r1 position
to obtain T̂ . Consequently, S sends s = T̂ + u to C. Then C
sets JT ′K1 = shift(s, r0)−w and S sets JT ′K0 = v. Clearly,
JT ′K1 + JT ′K0 = shift(s, r0) − shift(u, r0) = shift(T̂ , r0) =
shift(T , r1+r0). For the security proof of our protocol Πlookup,
we refer the reader to Appendix. A.

V. PPML FOR QUANTIZED MODELS.

In this section, we give a concrete construction for our
PPML framework. We first propose the general PPML frame-
work of our outsourcing setting and C/S setting, in which all
the operator is viewed as SISO operators. Next, we discuss
the special case of the MISO operators.

A. The Outsourcing Setting.

We first talk about how to apply our paradigm to the
outsourcing setting. Compared to the C/S structure, the offline
of our outsourcing structure is much cheaper. We define the
execution procedure of quantization, lookup table evaluation,
and de-quantization as follows. Fig. 7 formally illustrates our
quantization framework.
• Input Quantization. In the outsourcing setting, the data

client holds the input vector x ∈ (Z2`)n and inputs it
in the online phase, while the model server holds the
scale factor s ∈ Z2` , offset b ∈ Z2`′ and input in the
preprocessing phase. They would like to employ two
computation parties P0 and P1 to evaluate E(x) :=
1
s · x− b ∈ Z2`′ . At the preprocessing phase, we let the
model holder S first encode 1

s as the fixed-point encoding,
namely ŝ = enc( 1

s ) (Note that enc scale 1
s up to k bits),

and secret share the VOLE triple (JrK`, JŝK`, JrŝK`) to
P0 and P1. In the online phase, the data client encode x
as x̂ = enc(x) (Similarly, enc scale x up to k bits) and
secret share x̂ to P0 and P1. P0 and P1 reveal δ = x̂−r
and calculate Jx′K` = δ · JŝK` + JxŝK` which is equals
to Jx̂ · ŝK` := (x̂0 · ŝ, . . . , ˆxn−1 · ŝ). Consequently, we
apply Jx′iK`

′ ← Π`′

cut(Jx̂i · ŝK`, 2k) for i ∈ [n] to chop `′

significant bits (Note that the last 2k bits is the fractional
part introduced by the multiplication of x̂ and ŝ). For the
additive part of Jx′K`

′
+ JbK`

′
, it can be evaluated locally.

• Q-model Evaluation. For the lookup table evaluation of
each element x′ in the vector x′, i.e., the lookup table
T `′,`′ with input Jx′K`

′
and output JyK`

′
= JT (x′)K`

′
,

we adopt the aforementioned shift pair (The procedure
is shown in Fig. 5), we let the model server S shift T
with a random offset r, namely, T ′(i) = T (i + r) for

Input : The fractional precision k is common input;
the fixed-point encode of input x̂ = encode(x) ∈ Z2`

is input by C; the scale factor ŝ = encode( 1
s ) ∈

Z2` , b ∈ Z2`′ for encoding function E is input
by S; the quantized lookup table set for model
f ′ := (op0, . . . , opN−1, ôp) is input by S, where
ôp is the last lookup table which is combined with
the dequantization D.
Output : model evaluation result z := D(f ′(E(x))).
Input Quantization:
- (Preprocessing) S picks random vector
r ← (Z2`)n and invokes Π`

out(S, r) ,Π`
out(S, ŝ)

and Π`
out(S, r · ŝ), where the computing node Pi

for i ∈ {0, 1} holds (JrK`i , JŝK`i , Jr · ŝK`i);
- C invokes Π`

out(C, x̂) and the computing node Pi
for i ∈ {0, 1} holds Jx̂K`i ;

- Pi for i ∈ {0, 1} does:
– calculate JδK`i = Jx̂K`i − JrK`i and invoke

Π`
rec→{P0,P1}(JδK

`) to reconstruct δ.
– calculate Jx′K`i = δ · JŝK`i + Jr · ŝK`i .
– invoke cut function Jx′jK`

′ ← Π`′

cut(Jx′jK`, 2k) for
j ∈ [n], x′j ∈ x′ locally.

Model evaluation:
For the operators (op0, . . . , opN−1) with each
element Jx′K`

′
of input vector Jx′K`

′
and output

Jop∗j (x′)K`
′
,

- (Preprocessing) S invokes Π`′

out(S, op∗(j + r)) for
j ∈ {0, . . . , 2`′ − 1} and Π`

out(S, r), where Pi for
i ∈ {0, 1} holds the share of lookup table
(JT ′(0)Ki, . . . , JT ′(2`

′ − 1)Ki) and the offset JrKi.
- Pi for i ∈ {0, 1}does:

– calculate JδK`
′

i = Jx′Ki − JrKi and invoke
Π`′

rec→{P0,P1}(JδK) to reconstruct δ.
– set Jy′K`

′

i = JT ′(δ)Ki.

Output Dequantization:
For the operator ôp∗ which combines the dequantiza-
tion operator with the last operator and each element
x′ of input vector x′,
- (Preprocessing) S invokes

JT `′,`(j)K← Π`
out(S, op∗(j + r)) for

j ∈ {0, . . . , 2`′ − 1} and JrK`
′ ← Π`′

out(S, r).
- Pi for i ∈ {0, 1} does:

– calculate JδK`
′

i = Jx′K`
′

i − JrK`
′

i and invoke
Π`′

rec→{P0,P1}(JδK) to reconstruct δ.
– set JẑK`i = JT (δ)K`

′

i and send JẑK`i to C.
– C calculate z = decode(JẑK`0 + JẑK`1) and

combine all element to vector z.

Quantization scheme Πout
quantize(x, E , f ′,D)

Fig. 7: The quantization PPML scheme in the outsourcing
setting

i ∈ Z2`′ . In the preprocessing phase, S secret share T ′
and r to P0 and P1. In the online phase, Pj for i ∈ {0, 1}
calculates JδKj = Jx′Kj − JrKj and reconstruct ∆. Pj
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Input : The fractional precision k is common
input; x̂ = encode(x) ∈ Z2` input by C;
ŝ = encode( 1

s ) ∈ Z2` , b ∈ Z2`′ for encoding function
E input by S; f ′ := (op0, . . . , opN−1, ôp) input by
S, ôp is combined with the dequantization D.
Output : The model evaluation result z :=
D(f ′(E(x))).
Quantize:
- (Preprocessing) C picks random
r := (r0, . . . , rn−1)← (Z2`)n;

- (Preprocessing) S and invokes JŝK` ← ΠC/S(ŝ);
- (Preprocessing) S and C invokes

Jr′K := (Jr′0K, . . . , Jr′n−1K)i∈n ← Π`
vole(r, ŝ);

- C calculates δ = x− r := (δ0, δ1, . . . , δN−1) and
sends to S.

- C and S calculate Jx′iK` = δi · JŝK` + Jr′iK` for
i ∈ [n];

- C and S invoke cut function
Jx′iK`

′ ← Π`′

cut(Jx′iK`, 2k) for i ∈ [n] locally and set
Jx′K`

′
= (Jx′iK`

′
)i∈[n].

Model evaluation/De-quantization:
- For the quantized operator op∗ with input

Jx′K`
′

:= (Jx′iK`
′
)i∈[n] and output Jop∗(x′)K`

′
, C

and S invoke
JyiK`

′ ← Π`′,`′

lookup((op
∗(0), . . . , op∗(2`

′ − 1)), JxiK`
′
)

for i ∈ [n].
- For the last operator ôp∗ which is combined with

the de-quantization, C and S invoke
JẑiK` ← Π`′,`

lookup((op
∗(0), . . . , op∗(2`

′ − 1)), JxiK`
′
)

for i ∈ [n].
- S sends JẑK`1 := (Jẑ0K`1, . . . , Jẑn−1K`1) to C.
- C reconstruct ẑ = JẑK`0 + JẑK`1 and recover the

fixed-point value z = decode(ẑ).

Quantization scheme Π
C/S
quantize(x, E , f ′,D)

Fig. 8: The quantization PPML scheme in C/S setting

then locally sets output as JyK`
′

j = JT ′(δ)Kj . Obviously,
T ′(δ) = T (δ + r) = T (x′).

• Output De-quantization. As mentioned before, the de-
quantization function ŷ = E(y′) = s(y′ − b), where
y′ ∈ (Z2`′ )n and ŷ ∈ (Z2`)n, can be combined with the
previous operator ŷ = s(op∗(y′)−b). The model server S
generates the lookup table T ∈ Z2`′

2` and evaluate it as like
the model evaluation. Upon calculating the result JŷK`,
P0 and P1 reconstruct ŷ to the data client C. C invoke
decode function y = decode(ŷ) to obtain the fixed-point
result y.

B. Client/Server structure

Compared to outsourcing setting, the C/S setting has more
challenges. In the outsourcing setting, we assume that the
server and the computing nodes will not collude, such that
the revealed data δ = x − r will not leak information of x.
In contrast, in the C/S setting, no matter the multiplication
triple (r, ŝ, r · ŝ) or the shift pair (T ′, r) can not be directly

Fig. 9: A illustration example of lookup table evaluation for
matrix multiplication.

generated by server S , because the knowledge of r will lead
S learn x from δ. For this concern, we utilize the VOLE
protocol Πvole and our 2PC private lookup evaluation protocol
Πlookup to realize PPML inference.
• Input Quantization. In the C/S setting, the data client

holds the input vector x ∈ (Z2`)n and the model sever
holds the scale factor s ∈ Z2` and b ∈ Z2`′ . They directly
invoke a 2PC protocol to evaluate E(x) := 1

s · x − b ∈
Z2`′ . Similarly, the model holder encode ŝ = 1

s at first.
At the preprocessing phase, C generate random shared
vector r := (r0, . . . , rn−1). In particular, C picks random
value ri ∈ Z2` for i ∈ [n]. They adopt (Jŝ · riK`)i∈[n] ←
Πvole(ŝ, (r0, . . . , rn−1)), where C input (ri)i∈[n] and S
input ŝ. S secret share ŝ at the same round. In the online
phase, C sends δ = x−r to S. Similar to the outsourcing
setting, all parties calculate Jx′K` = δ · JŝK` + JxŝK` and
perform Π`′

cut to obtain Jx′K`
′
.

• Q-model Evaluation/Output De-quantization. We
adopt the private lookup table evaluation scheme for
the model evaluation in the C/S setting. For each op-
erator op∗ with input JxK`

′
. C and S invoke JyiK`

′ ←
Π`′,`′

lookup((op
∗(0), . . . , op∗(2`

′ − 1)), JxiK`
′
) for each i ∈

[n]. All parties set the output vector y := (y0, . . . , yn−1).
For the operator ôp∗ : Z2`′ → Z2` witch contains
both model operator and dequantization, C and S in-
voke JẑiK`

′ ← Π`′,`
lookup((ôp

∗(0), . . . , ôp∗(2`
′−1)), JxiK`

′
).

Consequently, S sends JẑiK1 to C. C reconstruct ẑ :=
(ẑ0, . . . , ẑn−1) and invoke decode to recover the fixed-
point value.

C. lookup for MISO.

Above we describe how to evaluate the quantized operator
with the lookup table and convert SISO operators of PPML,
e.g., activate function, to the lookup table. There remain some
operators which are the MISO structure. Since the lookup table
size grows exponentially as the input size increases, the lookup
scheme is not applicable for the multiple input function. We
analyze those MISO operators as follows.
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Multiple lookup table with a single index. For the convolu-
tion layer or the matrix multiplication layer, each private input
will multiplicate multiple weights, which can be viewed as a
query multiple lookup table with a single index. In particular,
as shown in Fig. 9, let W := (wi,j)i∈Z3,j∈Z4

be a 3 × 4
dimension matrix, and x := (x0, . . . , x3) be a 4 dimension
vector. In the calculation of W × x, x0 will multiplicate
both w0,0, w0,1 and w0,2. Naively, it can be realized by
performing Πlookup three times. Given f0(x0) = w0,0 · x0,
f1(x0) = w0,1 · x0 and f2(x0) = w0,2 · x0, we observe
that we can combine three functions to an overall function
F (x0) := f0(x0)||f1(x0)||f2(x0). Its corresponding lookup
table has `′ bits input and 3`′ bits output. Considering the
online phase of Πlookup only depends on the input size, the
online phase cost for N times query lookup table with a single
index equals the cost of a single query.
Addition. For the addition y = x0 + x1, where x0 = s0(x′0 +
b0) and x1 = s1(x′1 + b1) are the temporary variable from
two different wires which are unknown to both C and S , y =
s2(y′ + b2) is the output of addition, its quantized function
is y′ = s0

s2
(x′0 + b0) + s1

s2
(x′1 + b1) − b2. Addition can be

realized using two times invoking lookup table with f0(x′0) :=
s0
s2

(x′0 + b0) and f1(x′1) := s1
s2

(x′1 + b1)− b2.
Convert the dual-input operator to the SISO structure.
For the multiplication y = x0 · x1, its quantified function is
y′ = s0·s1

s2
(x′0 + b0)(x′1 + b1)− b2. A naive idea is to evaluate

x′ = (x′0 + b0)(x′1 + b1) using 2PC multiplication in Z2`′ ,
after that all parties evaluate y′ = s0·s1

s2
· x′ − b2 with lookup

table. Nevertheless, this approach will incur a significant error
caused by overflow of (x′0 + b0)(x′1 + b1). Considering (x′0 +
b0)(x′1 + b1) > 2`

′
, in lookup table, s0·s1

s2
will scale it back

to [0, 2`
′ −1] while separate calculation will lose the overflow

part, leading to a big error. The potential solution is to deal
(x′0 +b0)(x′1 +b1) in Z22`′ , however, it still enlarged the range
of lookup table input. Our solution is to convert the dual-input
operator to the SISO structure, and it can be used to deal with
arbitrary dual-input operators op∗. We set the previous layer of
op∗ to be `′/2 output, by encoding the corresponding `′/2-bit
into the previous lookup table. Before inputting two `′/2-bit
values to op∗, we combine them to `′-bit value.

For the other operators’ construction for CNN and Trans-
former, we refer the reader to Appendix. C.

VI. IMPLEMENTATION AND BENCHMARK.

In this section, we benchmark our lookup-based quanti-
zation PPML framework. We realize two types of machine
learning models – the convolutional neural network for image
classification models and the large language models.

A. Benchmark setting

We implement our protocols in C++. For the ΠOT, we utilize
the OT library – libOTe [1]. For our experiments, the CPU
version is performed in the server that runs Ubuntu 18.04.2
LTS with Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz,
48 CPUs, 128 GB Memory; the GPU version is performed
in the server with the CPU version with extra 4 × Nvidia

(a) 4-bit Quantization. (b) 8-bit Quantization.

Fig. 10: Lookup table evaluation in the LAN setting.

(a) 4bit Quantization. (b) 8bit Quantization.

Fig. 11: Lookup table evaluation in the WAN setting.

RTX 2080ti, 8GB; for the edge devices, we benchmark in the
Raspberry Pi 4B with 1.5GHz CPU and 4GB DDR4 Memory.
In our benchmark, we set the security parameter λ = 128.
Since most of the code is not available, as a baseline, we use
the data in CryptoFlow2 [56], Bicoptor [69], Piranha [67],
CrypTen [40], Sigma [26], and use the software to simulate
the operating environment in these papers. The benchmarks
of our private lookup table evaluation in both outsourcing and
C/S settings can be found in Appendix. B.

B. Private Look-up Table Evaluation.

We benchmark our private look-up table evaluation against
the function secret sharing-based private look-up table eval-

TABLE III: Online performance (for both C/S setting and
outsourcing setting) comparison with Piranha-Falcon [67],
[65] and Bicoptor [69] for CNN model. (We take ` = 64 and
`′ = 8. The bandwidth is 5Gbps/100Mbps in the LAN and
the WAN setting respectively and the latency is 0.2ms/40ms
respectively.)

Model Batch
Size Protocol LAN WAN Plaintext

Time

CIFAR10
AlexNet 1650

P-Falcon 16.72s 297.45s
0.32sBicoptor 5.00s 99.83s

Ours 0.98s 22.86s

Tiny
AlexNet 510

P-Falcon 30.47s 513.48s
0.10sBicoptor 7.12s 179.53s

Ours 1.02s 34.18s

CIFAR10
VGG16 240

P-Falcon 54.28s 968.43s
0.55sBicoptor 15.17s 336.64s

Ours 2.30s 22.32

Tiny
VGG16 60

P-Falcon 55.02s 967.74
0.15sBicoptor 15.35s 336.09s

Ours 3.12s 20.01s
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TABLE IV: Performance benchmark of our framework (8bit quantization) on the different device platforms.

Model
LAN WAN

Raspberry Pi GPU CPU(96
Threads)

Raspberry
Pi

GPU CPU(96
Threads)

LeNet 160.09 456.13 21.33 718.34 947.76 612.49
VGG16-Cirfar10 3956.11 1530.48 44.12 4968.66 2460.35 1413.11
ResNet18-Cirfar10 4047.35 1714.87 44.52 5187.35 2618.93 1488.55
GPT-2(8 input) 18306.62 3261.14 42.71 25461.80 8135.61 8384.51
GPT-2(16 input) 36825.99 5953.27 54.70 44286.03 12143.00 9141.99

LeNet VGG16 ResNet18 GPT2
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103

104

Model

Pe
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or
m
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ce
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s) LAN

Raspberry Pi GPU CPU(96 Threads)

LeNet VGG16 ResNet18 GPT2
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104
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m
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(m
s) WAN

Fig. 12: Performance benchmark of our framework (8bit
quantization) on the different device platforms.

Fig. 13: Online performance comparison with Sigma [26]
and CrypTen [40] for LLM (1.3B/2.7B/7B/13B corresponds
to GPT-Neo1.3B, GPT-Neo2.7B, Llama2-7B, Llama2-13B re-
spectively) in the LAN setting with 8-bit. The sequence length
of the input is 128 and the token output is 1.

uation scheme proposed by Ji [34]. For the 2PC setting of
FSS, we apply the technique proposed by Doerner et al [20]
and use the garbled circuit to evaluate the decryption circuit
of AES (CTR mode). For garbled circuits, we utilize the
code from the EMP-tool kit [66] to implement the evaluation.
All benchmarks are conducted in the single-threaded. Since
David et al. [29] do not provide the code, we directly employ

(a) LAN setting (b) WAN setting

Fig. 14: Online performance comparison for LLM with
Sigma [26] and CrypTen [40].(The bandwidth is 9.4 Gbps/293
Mbps in the LAN and the WAN setting respectively and the
latency is 0.05 ms / 60 ms respectively. The sequence length
of the input is 128 and the output is one token.)

the public lookup table, which compiles the entire lookup
table into a circuit and then uses the garbled circuit for
evaluation. This approach results in lower communication and
computational complexity compared to David et al.’s scheme.
Nevertheless, our solution remains two orders of magnitude
more efficient than both garbled circuits and FSS in the
LAN setting both in 4-bit and 8-bit quantization. Considering
the WAN setting, when the data size is sufficiently large,
the communication overhead becomes the dominant factor in
runtime. In this scenario, our protocol is 5 times more efficient
than the FSS protocol and over an order of magnitude more
efficient than garbled circuits.

C. Convolutional neural network evaluation.

For the CNN model, we realize the typical CNN model,
like SqueezeNet, ResNet50, AlexNet, and VGG16. We use
their 8-bit quantized version in ONNX Model Zoo [2](For
SqueezeNet, we manually generate its quantized model). We
compare SqueezeNet and ResNet50 with the 2PC frame-
work CryptoFlow2 [56]. We consider the same setting of
CryptoFlow2 which performs SqueezeNet and ResNet50 in
the ImageNet with the batch size 1 (The dimension of the
input image is 224× 224× 3). The performance is shown in
TABLE. V(Cf. Appendix. B). Our framework achieves more
than 40× performance improvement of the online phase com-
pared to CryptoFlow2 in the LAN setting for both SqueezeNet
and ResNet50; achieves over 60× performance improvement
in the WAN setting. As a trade-off, our protocol introduces a
heavy offline phase. Nevertheless, our framework is 2× faster
than CryptoFlow2 even adding the offline cost. We compare
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Fig. 15: Performance and Accuracy comparison of 4-bit/8-bit/16-bit quantization in LAN and WAN settings. VGG and LeNet
used the CIFAR-10 dataset, while for GPT, we fine-tuned the corresponding text classification model using the MRPC dataset.

the performance of the online phase with the Falcon [65] and
Bicoptor [69] for AlexNet and VGG. They are 3PC based on
the PPML GPU-platform Piranha [67]. It is worth mentioning
that Bicoptor utilizes 8-bit ReLU to realize CNN. We follow
their setting where the data set is CIFAR10 (32×32 input) and
Tiny ImageNet (64×64×3 input). Our CPU-based framework
realizes more than 5× performance improvement compared to
Bicoptor and more than 15× improvement compared to Falcon
in both LAN and WAN settings for both AlexNet and VGG16.

D. LLM model evaluation.

For the LLM model, we realize GPT-2-Base, GPT-Neo1.3B,
GPT-Neo2.7B, Llama2-7B and Llama2-13B. The 8-bit quan-
tized model for all of these can be found in Hugging Face [3].
We compare the online phase performance of our framework
with Sigma [26] and CrypTen [40]. All of their implemen-
tation is based on GPU. Fig. 13 illustrates the performance
comparison for GPT-Neo1.3B, GPT-Neo2.7B, Llama2-7B, and
Llama2-13B models in the LAN setting. Compared to the
CPU version of Sigma, our framework achieves more than 5×
performance improvement for all benchmarked LLM models.
Even though CrypTen uses GPU acceleration, our framework
is over 4× faster than CrypTen for GPT-Neo2.7B. The perfor-
mance of GPT-2 and GPT-Neo1.3B is depicted in Fig. 14. Our
multithreaded version achieves 3 times the performance of the
SigmaGPU version on a LAN and 5 times the performance on
a WAN. Our framework is 10× faster than the CPU version of
Sigma for both GPT-2 and GPT-Neo1.3B in the LAN setting.
This improvement will be further amplified over the WAN.

E. Performance evaluation on different devices.

Fig. 12 and Table. IV depict the performance evaluation
across different devices. We benchmark the Raspberry Pi,
GPU-equipped server, and the server with 96 threads CPU.
Using a multi-threaded CPU yields the best performance.
Interestingly, utilizing a GPU does not provide significant
performance gains, primarily due to the high time overhead
associated with data transfers between the GPU and the host.

In our protocol, data frequently moves in and out of the GPU,
resulting in memory access overhead dominating the runtime
rather than computational overhead. In such scenarios, multi-
threading offers better performance improvements. In WAN
environments, as the model size increases, network commu-
nication becomes the primary performance bottleneck, with
the performance of the CPU and GPU becoming comparable.
Given the performance limitations of the Raspberry Pi, its
model evaluation efficiency is lower than that of the CPU.
However, in WAN scenarios, its performance is competitive
with that of the CPU, especially for small-scale models.
Our results demonstrate that our protocol is highly suitable
for multi-threaded devices and exhibits scalability even on
resource-constrained devices.

F. Performance evaluation on quantization bits.

Fig. 15 illustrates the performance and accuracy evaluation
of our framework’s online phase under different quantization
bit settings. The experiments are conducted with 96 threads.
For CNN models, 8-bit quantization does not lead to signif-
icant accuracy loss (less than 1%), while 4-bit quantization
leads to an accuracy drop of under 5%. For transformer models
like GPT-2 and GPT-Neo, 16-bit quantization maintains low
accuracy loss (less than 1%), while 8-bit quantization results in
a more substantial accuracy decrease. In our experiments, the
accuracy loss observed in the transformer model is primarily
attributed to the layer normalization layer (when we utilize
a 16-bit quantized normalization layer, the accuracy loss is
close to the overall 16-bit quantization model). In practical
applications, it may be advisable to utilize 16-bit quantization
or adopt a mixed quantization approach, such as employing
16-bit quantization for the layer normalization layer and 8-
bit quantization for other layers. For small-scale models, the
choice of quantization bits had minimal impact on the results.
However, for transformer models such as GPT, the perfor-
mance overhead increased with higher quantization bits. In
the LAN environment, moving from 4-bit to 8-bit quantization
resulted in a 20% increase in runtime, and from 8-bit to 16-
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bit, it increased by 25%. In the WAN environment, there was
no significant performance difference between 4-bit and 8-bit
quantization, but the time overhead increased by 30% when
moving from 8-bit to 16-bit. Our results suggest that 8-bit
quantization is the optimal choice for balancing efficiency and
accuracy in our framework.
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[25] Daniel Günther, Ágnes Kiss, and Thomas Schneider. More efficient
universal circuit constructions. In ASIACRYPT, 2017.

[26] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran,
Divya Gupta, Ashish Panwar, and Rahul Sharma. SIGMA: Secure GPT
inference with function secret sharing. Cryptology ePrint Archive, Paper
2023/1269, 2023. https://eprint.iacr.org/2023/1269.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016.

[28] David Heath and Vladimir Kolesnikov. One hot garbling. In CCS, 2021.
[29] David Heath, Vladimir Kolesnikov, and Lucien K. L. Ng. Garbled circuit

lookup tables with logarithmic number of ciphertexts. In EUROCRYPT
2024, 2024.

[30] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. Cheetah:
Lean and fast secure {Two-Party} deep neural network inference. In
31st USENIX Security Symposium (USENIX Security 22), pages 809–
826, 2022.

[31] Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, Claudio Orlandi, and
Anat Paskin-Cherniavsky. On the power of correlated randomness in
secure computation. In Theory of Cryptography, 2013.

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In CVPR, 2018.

[33] Neha Jawalkar, Kanav Gupta, Arkaprava Basu, Nishanth Chandran,
Divya Gupta, and Rahul Sharma. Orca: FSS-based secure training and
inference with GPUs. In S&P, 2024.

[34] Keyu Ji, Bingsheng Zhang, Tianpei Lu, Lichun Li, and Kui Ren. Uc
secure private branching program and decision tree evaluation. TDSC,
2023.

[35] Keyu Ji, Bingsheng Zhang, Tianpei Lu, and Kui Ren. Multi-party private
function evaluation for RAM. TIFS, 2022.

[36] Wen jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong,
Kui Ren, Tao Wei, and WenGuang Chen. BumbleBee: Secure two-party
inference framework for large transformers. Cryptology ePrint Archive,
Paper 2023/1678, 2023.

[37] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster
malicious arithmetic secure computation with oblivious transfer. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016.

[38] Marcel Keller and Ke Sun. Secure quantized training for deep learning,
2022.

[39] Florian Kerschbaum, Erik-Oliver Blass, and Rasoul Akhavan Mahdavi.
Faster secure comparisons with offline phase for efficient private set
intersection. In NDSS, 2023.

[40] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta,
Mark Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party
computation meets machine learning, 2022.

[41] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,
Aseem Rastogi, and Rahul Sharma. Cryptflow: Secure tensorflow
inference. In S&P 2020, pages 336–353, 2020.

[42] Sudhakar Kumawat and Hajime Nagahara. Privacy-preserving action
recognition via motion difference quantization. In European Conference
on Computer Vision, pages 518–534. Springer Nature Switzerland,
Cham, 2022.

14



[43] Natalie Lang, Elad Sofer, Tomer Shaked, and Nir Shlezinger. Joint
privacy enhancement and quantization in federated learning. IEEE
Transactions on Signal Processing, 71:295–310, 2023.

[44] Dacheng Li, Rulin Shao, Hongyi Wang, Han Guo, Eric P. Xing, and Hao
Zhang. Mpcformer: fast, performant and private transformer inference
with mpc, 2023.

[45] Minghui Li, Sherman S. M. Chow, Shengshan Hu, Yuejing Yan, Chao
Shen, and Qian Wang. Optimizing privacy-preserving outsourced con-
volutional neural network predictions. IEEE Trans. Dependable Secur.
Comput., 19(3):1592–1604, 2022.

[46] Tianpei Lu, Xin Kang, Bingsheng Zhang, Zhuo Ma, Xiaoyuan Zhang,
Yang Liu, and Kui Ren. Efficient 2PC for constant round secure equality
testing and comparison. Cryptology ePrint Archive, Paper 2024/949,
2024.

[47] Yukui Luo, Nuo Xu, Hongwu Peng, Chenghong Wang, Shijin Duan,
Kaleel Mahmood, Wujie Wen, Caiwen Ding, and Xiaolin Xu. Aq2pnn:
Enabling two-party privacy-preserving deep neural network inference
with adaptive quantization. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 628–
640, 2023.

[48] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. Delphi: A cryptographic inference service
for neural networks. In USENIX Security 2020, pages 2505–2522, 2020.

[49] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’18,
page 35–52, New York, NY, USA, 2018. Association for Computing
Machinery.

[50] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable
privacy-preserving machine learning. In S&P 2017, pages 19–38, 2017.

[51] Arpita Patra Ajith Suresh Nishat Koti, Mahak Pancholi. Swift: Super-
fast and robust privacy-preserving machine learning. In USENIX, 2021.

[52] Qi Pang, Jinhao Zhu, Helen Möllering, Wenting Zheng, and Thomas
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APPENDIX

A. Security of Private lookup Table Evaluation

Universal Composability (UC). Our protocols ensure security
within the standard semi-honest setting. In this scenario, the
adversary may attempt to extract private information from
legitimate messages but must adhere strictly to the protocol’s
procedure. The security proof is based on the Universal Com-
posability (UC) framework [10], which follows the simulation-
based security paradigm. In the UC framework, protocols
are executed across multiple interconnected machines. The
network adversary Adv is allowed to partially control the
communication tapes of all uncorrupted machines, observing
messages sent to/from uncorrupted parties and influencing
message sequences. Then, a protocol Π is considered UC-
secure in realizing a functionality F if, for every probabilistic
polynomial-time (PPT) adversary Adv targeting an execution
of Π, there exists another PPT adversary known as a simulator
Sim attacking the ideal execution of F such that the executions
of Π with Adv and that of F with Sim are indistinguishable
to any PPT environment Z .
UC for private lookup evaluation. Next, we prove the
security of our private lookup table protocol Πlookup. We first
provide the functionality for the private lookup table evaluation
in Fig. 16.

The idea world execution IdealFlookup,Sim,Z(1λ). In the ideal
world, the parties P := {C,S} only communicate with the
ideal functionality Flookup with the executed function f . Both
parties send their private data to Flookup, and Flookup calculates
and output the result to C and S.

The real world execution RealΠlookup,Adv,Z(1λ). In the real
world, the parties P := {C,S} communicate with each other,
it executes the protocol Πlookup. Our protocols work in the
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Flookup interacts with C, S and the simulator Sim.
Let f denote the function encoded to the lookup
table.
Input:
• Upon receiving (Input, sid, (T `x,`y , x1)) from S,

record (T `x,`y , x1) and send (Input, sid,S) to Sim,
where T `x,`y ∈ (Z2`y )`x , x1 ∈ Z2`x .

• Upon receiving (Input, sid, x0) from C, record x0
and send (Input, sid, C) to Sim, where x0 ∈ Z2`x .

Execution:
• If both T `x,`y , x0, x1 are recorded, compute
y = T `x,`y (x0 + x1).

• Upon receiving (Output, sid, y′ ∈ Z2`y ) from Sim,
if S is corrupted calculate y0 = y− y′ and y1 = y′,
otherwise calculate y1 = y − y′ and y0 = y′.

• Send (Output, sid, y0) to C and (Output, sid, y1) to
S.

Functionality Flookup

Fig. 16: The Ideal Functionality Flookup for private lookup
table evaluation.

pre-processing model, but we analyze the offline and online
protocols together as a whole.

Theorem 1. Protocol Πlookup UC-secure realizes functionality
Flookup in the F(N−1,N)-OT-hybrid model against semi-honest
PPT adversaries with statical corruption, namely it holds:

RealΠlookup,Adv,Z(1λ) ≈ IdealFlookup,Sim,Z(1λ)

Proof. Before proving Theorem 1, we replace
Π(2`x−1,2`x )-ROT with functionality F(2`x−1,2`x )-ROT in
Chase et. al [11]. To prove Theorem 1, we construct a PPT
simulator S, such that no non-uniform PPT environment Z
can distinguish between the ideal world IdealFlookup,S,Z(1λ)
and the real world RealΠlookup,Adv,Z(1λ). We consider the
following cases:
Case 1: C is corrupted. We construct the simulator Sim

which internally runs Adv, forwarding messages to/from Z
and simulates the interface of honest S.
• Upon receiving (Input, sid) from Flookup, Sim starts sim-

ulation.
• Sim emulates F(N−1,N)-ROT and forward the output
mi ∈ (Z2`y )2`x for i ∈ [2`x ]\{JrK0} and JrK0 to C.

• Sim generates the matrix M by using the {mi}i∈[2`x ] as
the column vectors, and right circular shift the ith row of
M by i positions locally for i ∈ [2`x ].

• Sim computes vi =
∑2`x−1
j=0 m(i,j) and ui =∑2`x−1

j=0 −m(j,i) to generate u := (u0, . . . , u2`x−1) and
v := (v0, . . . , v2`x−1).

• Sim picks random vector s and acts as S to send s to C.
• Sim picks random JδK`x1 and acts as S to send it to C.
• Upon receiving JδK`x0 from C, Sim extracts JxK`x0 =

JδK`x0 + JrK`x0 .
• Sim calculate δ := JδK`x0 + JδK`x1 and JT ′K0 with the

values s, JrK`x0 ,w.

TABLE V: Online performance and offline performance
in C/S setting for CNN model comparison with
CryptoFlow2 [56].(We take ` = 64 and `′ = 8. The
bandwidth is 377 MBps and 40 MBps in the LAN and the
WAN setting respectively and the latency is 0.3ms and 80ms
respectively. )

Model Protocol LAN WAN Comm.

ImageNet
SqueezeNet

CryptoFlow2 44.3s 293.6s 26.07GB
Our Online 1.66s 5.88s 0.077GB
Our Offline 80.54s 440.20s 108.0GB

ImageNet
ResNet50

CryptoFlow2 619.4s 3611.6s 370.8GB
Our Online 7.32s 13.46s 0.45GB
Our Offline 352.40s 1586.59s 481.8GB

• Sim inputs (Input, sid, JxK`x0 ) to Flookup.
• Sim inputs (Output, sid, JT ′(δ)K0) to Flookup.

Informally, we discuss the indistinguishable. Obviously, in the
above simulation, considering S will input JxK`x1 to Flookup

calculates y = T (JxK`x0 + JxK`x1 ) and output y − JT ′(δ)K0 to
S. When C sets output as JT ′(δ)K0, we get the same output in
the real world. To illustrate the indistinguishable of temporary
value, we prove that the ideal world JδK`x1 , s are generated
randomly. For s, it is easy to see that it is uniform random
in the real world since the vector u can be viewed as a
random vector. So the values JδK`x1 , s both keep the same
distribution between the real world and ideal world and can
not be distinguished.

Case 2: S is corrupted. We construct the simulator Sim
which internally runs Adv, forwarding messages to/from Z
and simulates the interface of honest C.
• Upon receiving (Input, sid) from Flookup, Sim starts sim-

ulation.
• Sim emulates F(N−1,N)-ROT and forward the output
mi ∈ (Z2`y )2`x for i ∈ [2`x ] to C.

• Sim calculate v,u,w using the output of F(N−1,N)-ROT.
• Upon receiving s for S, Sim extracts T̂ = s− u.
• Sim picks random JδK`x0 and acts as C to send it to S.
• Upon receiving JδK`x1 from S, Sim calculates δ = JδK`x0 +

JδK`x1 .
• Sim inputs (Input, sid, (T̂ , JδK`x1 )) as like S to Flookup.
• Sim inputs (Output, sid, vδ) to Flookup.

Informally, we discuss the indistinguishable. For the output, in
above simulation, Flookup will calculate y = T̂ (JδK`x1 +JxK`x0 ).
Since T̂ (x) = T (x + JrK`x1 ) and JδK`x1 = JxK`x1 − JrK`x1 , it
equals to T (JxK`x1 −JrK`x1 +JxK`x0 +JrK`x1 ), which is y = T (x).
Flookup sends y − vδ to C, while the corrupted S hold vδ due
to δ received from Sim. Furthermore, JδK`x0 in the ideal world
is randomly generated which is indistinguishable from the real
world.

This concludes the proof.

B. Other benchmarks

In this section, we give more benchmarks. We set bandwidth
5Gbps/40Mbps for the LAN and the WAN settings respec-
tively and the latency 0.05 ms / 60 ms respectively.
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Performance for C/S setting Compared to CrypT-
Flow2 [56]. Table V depicts the performance comparison be-
tween our framework and CrypTFlow2. Our framework online
phase is 300× faster than that ofCrypTFlow2 on ResNet50.
Offline performance for C/S setting. Figure 17 shows the
offline performance for the C/S setting with different element
sizes in LAN and WAN settings. The element size in the
legend represents the number of elements in each line of
the lookup table. While the element size is 1, the lookup
table can be used to compute functions such as ReLU or
Maxpool for individual elements. However, when the element
size is 10, 100, or higher, these lookup tables are employed for
matrix multiplication with dimensions of 10, 100, or higher.
During matrix multiplication, the same input is multiplied with
multiple elements in one row or column, allowing these tables
to be efficiently combined into a single table line for offline
processing. As the number of tables and the element size
increase, the corresponding runtime also increases. Despite
some fluctuations, the growth in time is largely linearly related
to the increase in the number of tables. Additionally, the time
used for WAN does not exhibit a significant increase compared
to LAN time. This means that during this runtime process,
network communication does not significantly contribute to
the overall time consumption. Given our device and code
limitations, there is theoretically room for further improvement
in runtime, especially considering that many computations can
be parallelized and better memory management.

(a) LAN (b) WAN

Fig. 17: The running time of offline phase for C/S setting
compared with different element sizes in LAN and WAN
setting.
Offline performance for outsourcing setting. Figure 18
shows the offline performance for outsourcing settings with
different element sizes in LAN and WAN settings. Due to
the impact of factors such as network and memory, the
initial part of the curve exhibits slight fluctuations. However,
it still demonstrates a linear relationship. In the context of
outsourcing, two computational nodes primarily handle the
lookup table from the server, while the server providing the
machine learning model performs relatively less complex com-
putations compared with the C/S setting. Notably, the impact
of network communication restrictions is more pronounced in
this scenario, as the WAN time significantly exceeds the LAN
time.

C. Operator for CNN and Transformer
Convolutional Neural Network. We implemented typical
convolutional neural network (CNN) models in our framework,

(a) LAN (b) WAN

Fig. 18: The running time of offline phase for outsourcing
setting compared with different element sizes in LAN and
WAN setting.

including LeNet, VGG16, and ResNet18. All SISO-type oper-
ators, such as batch normalization, ReLU, sigmoid, and so on,
can be directly evaluated using our paradigm. For the MISO-
type operators, we discuss their implementation as follows.
• Convolution(Conv)/Fully Connection(FC)/General Ma-

trix Multiplication(GeMM): The convolution operator can
be transferred to the general matrix multiplication. For in-
stance, the naive method explicitly lowers the convolution
to GeMM, commonly known as im2col. Furthermore, the
full connection can also be represented as the GeMM
form. As mentioned before, viewing the weight as part
of the lookup table, our framework can deal with GeMM
as a “multiple lookup table query with a single index”.
For the sum part of GeMM, due to each item keeping
the same scale factor, it can be calculated by the sum
of each quantized value. In particular, we take two-
dimensional multiplication as an example. Considering
z = z1 + z2 = x1 · y1 + x2 · y2, where x1, x2 are in the
same vector so that they keep the same scale factor s1, b1,
the same to y1, y2 with scale factor s2, b2. It holds that
z′ = s1·s2

s3
((x′1− b1)(y′1− b2) + (x′2− b1)(y′2− b2)) + b3.

Considering z′1 = s1·s2
s3

(x′1 − b1)(y′1 − b2) + b3 and z′2 =
s1·s2
s3

(x′2− b1)(y′2− b2) + b3, we have z′ = z′1 + z′2− b3.
Without loss of generality, for n-dimension inner product,
the quantized output holds z′ =

∑N−1
i=0 z′i−(n−1)·b3. For

the secret form [z′]`
′

=
∑N−1
i=0 [z′i]

`′−(n−1) ·b3, the part
minus (n−1)·b3 can be evaluated locally by S. Note that
since matrix multiplication requires summing during the
output process and considering the precision requirements
after summing, we use higher precision outputs, such as
16-bit, to generate the lookup tables when performing
matrix multiplication.

• Max Pooling or Average Pooling: The max pooling is
an expensive operator in our framework since evaluating
n-dimensional max pooling is equivalent to performing
n − 1 comparisons. We must convert the dual-input
operator to a SISO structure to evaluate the comparison.
For example, for 8-dimension max pooling with 8-bit
output, we let the previous layer output 4-bit vector,
such as [x0]4, . . . , [x7]4. We evaluate the comparison
between each share and obtain 4-dimension 4-bit shared
vector. We perform comparison layer by layer until the
dimension is reduced to 1. In the last layer, we utilize the
8-bit output lookup table to recover 8-bit quantization.
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The average pooling is much cheaper, the sum part of it
can be evaluated by locally adding the quantized value
since all the elements are in the same vector, which keeps
the same scale factor. To avoid a wrap-around of the
secret, we need to perform division before summation(
with higher precision output). For the division, we use
the SISO lookup table.

Large Language Models. For the Large Language Models
(LLM), we implement GPT-2 models. In LLM, the GeLU
operator is SISO-type, allowing us to apply our paradigm
directly. For the matrix multiplication which all the input
is unknown to the model server, we convert the dual-input
operator to the SISO structure. For the softmax and layer
normalization, we discuss the implementation as follows.
• Softmax: For the softmax operator Softmax(x) :=

( exi∑n−1
i=0 exi

)i∈[n] (The scale factor of x is ŝ and b̂), we fol-
low the typical PPML implementation [21] and modify it
for quantization scheme. We first perform max(x) to find
out the max element of x, denoted by x̂. After that we
define temporary variable yi = exi−x̂ = es(x

′
i−b−x̂+b).

Considering ex
′
i−x̂ ≤ 1, we can take the scale factor

ŝ and b̂ for y := (y0, . . . , yn−1) as ŝ · 2`
′
/n = 1

and b̂ = 0, such that
∑n−1
i=0 y

′
i will not wrap around.

We have ŝ · y′i = es(x
′
i−x̂) and exi∑n−1

i=0 exi
=

y′i∑n−1
i=0 y′i

.
Based on these logics, we evaluate the Softmax(x) as
follows. i. evaluate y′i = 1

ŝ · e
s(x′i−x̂) with lookup table.

ii. calculate ŷ =
∑n−1
i=0 y

′
i in quantized value. iii. perform

z′i = 1
s2
· y
′
i

ŷ + b2 with lookup table to obtain the
quantized output, where s2, b2 is the scale factor for
z := (z0, . . . , zn−1).

• Word2Vec/Gather: Word2Vec is used for LLM tasks
to produce word embeddings, which are dense vector
representations of words. The Word2Vec is realized by
the operator Gather, which picks a row vector from
a matrix. For GPT-2, the word matrix has 50257 row
vectors for each potential word. Each row vector involves
768 quantized elements in GPT-2-base or 1600 quantized
elements in GPT-2-XL. We utilize our lookup table to
evaluate Gather, where the lookup table input is in Z50257

and the output is in Z2`′ .

D. Related Works

The current works on secure multi-party computation in
PPML mainly focus on two-party, three-party, and four-
party settings. The representative works for two-party setting
are SecureML [50], Delphi [48], Chameleon [58], Crypt-
Flow2 [56], ABY2.0 [53], Cheetah [30], and Li et al. [45].
For three-party setting, there are SecureNN [64], Falcon [65],
ABY3 [49], ASTRA [12], BLAZE [54], CryptFlow [41].
SWIFT [51], FLASH [9], and Trident [13] are considering
four-party setting. Recently, Orca [33] applied function secret
sharing on the PPML where the three parties share the function
secret share key in the offline phase. and the two parties
perform secure computation in the online phase. Edabits [23]
implements PPML in multiparty settings and supports the

Fig. 19: Case of quantization.

security against malicious adversaries. For the GPU setting,
CryptGPU [62],CrypTen [40], Piranha [40] and Orca [33]
construct the GPU platform for PPML. Recently, THE-X [14],
MPCformer [44], Privformer [5], BOLT [52], BumbleBee [36]
and Sigma [26], Grotto [61] focus on the large language
models and also use GPU to accelerate performance. Note
that Sigma utilizes the lookup table evaluation to perform non-
linear function evaluation.

Using quantization techniques in the field of PPML [72],
[42], [47], [70], [43], [60] is a promising approach to im-
proving PPML performance, with the most typical application
being in distributed machine learning, primarily constructed
based on federated learning. Currently, the use of quantization
techniques for evaluating PPML in MPC scenarios is still in its
early stages. A series of studies employ traditional MPC meth-
ods to evaluate quantized models (Riazi et. al [57], Agrawal et.
al [4] and Keller et. al [38]). To ensure performance, they use
public and fixed quantization parameters set as powers of 2,
which sacrifices model accuracy, and the public quantization
parameters can potentially leak model information.”

E. Quantization Model Diagram

Fig. 19 illustrates a quantization workflow for a neural
network model. On the left, we have an unquantized model,
which takes an input x and processes it through convolution,
ReLU and Fully Connection layers. On the right, the quantized
model is shown in detail:

1) The input x is quantized into x′ using a quantization
function with scale s0 and offset b0.

2) Unquantized weights w1 and w2 are processed with
additional quantization parameters s4, b4, s5, and b5.

3) The quantized input x′ is passed through quantized ver-
sions of the layers: Conv*, ReLU*, and FC*, and generate
the output y′.

4) The output of the quantized model, y′, is de-quantized
using parameters s3 and b3 to obtain the final output y.
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