
VulShield: Protecting Vulnerable Code Before
Deploying Patches

Yuan Li
Zhongguancun Laboratory,

Tsinghua University
lydorazoe@gmail.com

Chao Zhang†
Tsinghua University, JCSS,
Zhongguancun Laboratory

chaoz@tsinghua.edu.cn

Jinhao Zhu
UC Berkeley

jinhao.zhu@berkeley.edu

Penghui Li
Zhongguancun Laboratory
lipenghui315@gmail.com

Chenyang Li
Peking University

lcy2000@stu.pku.edu.cn

Songtao Yang
Zhongguancun Laboratory

onionyst@gmail.com

Wende Tan
Tsinghua University
twd2.me@gmail.com

Abstract—Despite the high frequency of vulnerabilities exposed
in software, patching these vulnerabilities remains slow and
challenging, which leaves a potential attack window. To mitigate
this threat, researchers seek temporary solutions to prevent
vulnerabilities from being exploited or triggered before they
are officially patched. However, prior approaches have limited
protection scope, often require code modification of the target
vulnerable programs, and rely on recent system features. These
limitations significantly reduce their usability and practicality.

In this work, we introduce VulShield, an automated temporary
protection system that addresses these limitations. VulShield
leverages sanitizer reports, and automatically generates security
policies that describe the vulnerability triggering conditions. The
policies are then enforced through a Linux kernel module that can
efficiently detect and prevent vulnerability from being triggered
or exploited at runtime. By carefully designing the kernel module,
VulShield is capable of protecting both vulnerable kernels, and
user-space programs running on them. It does not rely on
recent system features like eBPF and Linux security modules.
VulShield is also pluggable and non-invasive as it does not need
to modify the code of target vulnerable software. We evaluated
VulShield’s capability in a comprehensive set of vulnerabilities
in 9 different types and found that VulShield mitigated all cases
in an automated and effective manner. For Nginx, the latency
introduced per request does not exceed 0.001 ms, while the peak
performance overhead observed in UnixBench is 1.047%.

I. INTRODUCTION

Security vulnerabilities are a significant threat to software
systems. Every year, automated vulnerability detection meth-
ods like fuzzing [7], [8], [43] find a large number of memory
corruption vulnerabilities in real-world software systems like
Linux kernels and PHP interpreters. For example, in 2023, over

†Chao Zhang is the corresponding author. He is also affiliated with Joint
Research Center for System Security, Tsinghua University (INSC) - Science
City (Guangzhou) Digital Technology Group Co., Ltd.

28,000 new vulnerabilities were identified and assigned CVE
numbers, highlighting the ongoing and increasing challenges
in maintaining software security [1]. Attackers can exploit
these vulnerabilities to compromise the software systems, po-
tentially leading to severe consequences such as data breaches,
financial loss, etc. However, a significant number of vulnerable
software remains deployed and running in the wild even after
vulnerabilities have been discovered and reported [6]. This
creates an attack window for malicious attackers to exploit
them.

While hot-patching schemes [12], [16], [26], [31], [40], [57]
have been proposed to reduce the repair time, studies show
that about 25% of vulnerabilities remain unresolved even 30
days after disclosure [34]. This delay is mainly due to the
need for developers to analyze vulnerable programs, identify
root causes, and create patches, a time-consuming process.
Alternatively, implementing a ’quick and dirty patch’ can
result in unintended program behavior [52]. Therefore, there
is an urgent need to develop solutions to mitigate the threats
in unpatched programs.

To protect vulnerable software before vulnerability patches
are available, researchers have been seeking temporary protec-
tion mechanisms. Temporary protection solutions aim to miti-
gate the risks associated with vulnerabilities while permanent
(official) patches are being developed. These solutions provide
a stopgap measure to secure systems against potential exploits
during the interim period and have shown great promise in the
past [15], [27], [29], [55]. Prior solutions often monitor the
execution of vulnerable programs and take a series of actions
to remediate software vulnerabilities when they are triggered at
runtime. However, existing temporary protection mechanisms
fall short in three aspects:
• C1: Limited protection scope. They support a very lim-

ited range of vulnerabilities and programs. For instance,
PET [55] can support five classes of vulnerabilities in Linux
kernels, leaving many other prevalent vulnerabilities and
user-space programs unprotected.

• C2: Demand for code modification of vulnerable pro-
grams. Most of these approaches [27], [29], [52], [55]

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240298
www.ndss-symposium.org

require inserting and compiling helper code or patches
into the target vulnerable programs to achieve temporary
protection. This makes it challenging to automatically scale
these solutions across different software versions due to their
inherent differences.

• C3: Reliance of advanced features. Some prior solu-
tions [3], [56] rely on advanced features introduced recently,
such as the combination of eBPF and Linux Security Mod-
ules (LSM) introduced after Linux 5.7 [22]. This reliance
on advanced features makes them hardly compatible with
legacy software, which remains widely used in practice [46],
[47], [59].

Therefore, there is an urgent need to develop more versatile,
non-invasive, and backward-compatible temporary protection
mechanisms that can address a broader spectrum of vulnera-
bilities without requiring significant modifications to existing
software. In this work, we present VulShield, a novel, fully
automated approach that addresses the aforementioned limita-
tions and offers temporary mitigation for vulnerabilities before
patch releases. VulShield takes as input a sanitizer report,
generates a policy that describes the vulnerability triggering
conditions, and then takes a series of mitigation actions.

To resolve C1, VulShield leverages constraint expressions
to define the triggering conditions, which could cover a wider
range of vulnerability classes. This is based on the observation
that security patches mostly implement security measures
through the use of constraint expressions in conditional state-
ments, as outlined in various studies [16], [39], [57], [60]. Ad-
ditionally, we develop a standalone kernel module that probes
the executions of both the kernel and user-space programs
running on it, providing protection for both of them. This
also avoids customized modification of the target vulnerable
program (C2) and does not require any advanced system
features, making VulShield completely backward compatible
(C3).

It is worth noting that VulShield can protect already run-
ning programs on the fly without the need for recompiling
or reloading. This is particularly crucial for programs with
high service availability requirements, such as web servers
and kernels. In summary, VulShield overcomes the limita-
tions of previous work by providing proactive, scalable, and
non-intrusive protection without hardware or other advanced
dependencies. It mitigates a wide range of vulnerabilities
before they are exploited without the need for additional
instrumentation or manual preprocessing. VulShield’s design
ensures compatibility across different applications and kernel
versions, offering effective and practical security for both
running kernels and applications on the fly.

VulShield generates source-level policies based on source-
level vulnerability information derived from sanitizer reports.
The policies are then mapped to the binary level using the
DWARF [19] debug information of the target binary, so that
VulShield can generate the policy for vulnerable binaries
without sanitizer implementation. Then VulShield enforces
them using Policy Enforcer to provide protection. The policy
is flexible with modularization, expressive, and extensible,

well adapting to different vulnerability mitigation scenarios.
The Policy Enforcer consists of three components tailored to
address various vulnerabilities. 1) The perception component
collects various program runtime information for subsequent
decision and execution stages. It collects key data at specific
code addresses, including memory access parameters to mon-
itor for buffer overflows. 2) The decision component performs
security checks at particular locations following the policy
specification, and commands the subsequent stage to execute
mitigation measures accordingly. Based on the information
gathered from the perception component, it can make a va-
riety of logical judgments and a comprehensive decision on
the triggering condition of vulnerabilities. 3) The execution
component takes the mitigation actions specified in the policy.
For instance, this component may terminate the target user-
space process when a vulnerability is triggered. Note that the
mitigation actions are predefined and have limited capabilities,
and thus would not introduce unexpected security risks.

We conducted a comprehensive assessment of VulShield
in various aspects. We applied VulShield to a wide vari-
ety of vulnerabilities in real-world software, including user-
space programs, servers, and kernels. The results showed
that VulShield could effectively generate policies to protect
the software from nine types of vulnerabilities. Furthermore,
we performed an analysis on a large patch dataset from
SecretPatch [53], showing that VulShield has high usability for
temporary protection across a range of vulnerability types in
principle. To evaluate the performance overhead of VulShield
policies under high-frequency triggers, we used Nginx for
stress testing. The results indicate that, on average, each
request introduces up to 0.001 ms of latency due to the use of
the policies. We further used the UnixBench benchmark suite
to measure the impact of VulShield on overall system perfor-
mance and tested the performance cost of combining different
policies. The results show that the total performance overhead
introduced by VulShield is no more than 1.047%. We also
quantified the time required to generate VulShield policies.
The results show that policies for kernel vulnerabilities can
be generated within minutes, allowing VulShield to provide
fast and effective temporary protection. We will open-source
VulShield.*

In summary, we make the following contributions:

• We propose to leverage constraint expressions to describe
vulnerability-triggering conditions to cover a wider range
of vulnerabilities.

• We design and develop VulShield, an automated temporary
vulnerability mitigation framework that can prevent vulner-
abilities from being exploited or triggered. It can provide
protection on the fly, without code modification or restart
of the target program.

• Our evaluation demonstrated VulShield could protect more
types of vulnerabilities in both kernels and user-space pro-
grams.

*https://github.com/vul337/VulShield

2

• VulShield exhibits negligible runtime overhead to the target
programs.

II. BACKGROUND AND MOTIVATION

A. Program Tracing

Program tracing is a method used in software development
and debugging to monitor the execution of a program. It
involves tracking and recording the sequence of instructions or
operations performed by the program, often in real-time. There
are several tools widely used for both user-space programs and
OS kernels.
Uprobe/Kprobe. Linux Uprobe [32] and Kprobe [33] are
lightweight tracing tools integrated into the Linux kernel, facil-
itating the tracking of function execution status for debugging
and performance analysis. Uprobe (User-space Probes) enables
developers to trace user-space functions specified by them
without needing to recompile the binary, allowing dynamic
insertion of probes into running processes and triggering user-
defined handlers to collect data or perform actions. Kprobe
(Kernel Probes), on the other hand, targets the kernel space
by allowing the insertion of probe points into kernel func-
tions, gathering runtime information with minimal system
performance impact. Kprobes can be dynamically inserted and
removed without the need for recompilation or rebooting, and
are supported across multiple hardware architectures.
eBPF. The Berkeley Packet Filter (BPF) [44] is a tool
in Linux used to capture and filter network packets, pro-
viding a powerful mechanism for network traffic analysis.
The extended Berkeley Packet Filter (eBPF) [21] further
enhances BPF with tracing capabilities similar to dtrace [14],
enabling the execution of sandboxed programs within the
kernel. eBPF allows developers and analysts to run specific
functions without modifying the kernel, facilitating in-depth
performance monitoring, security enforcement, and network
troubleshooting. This extended functionality makes eBPF a
versatile tool for real-time analysis and dynamic tracing of
both user-space and kernel-space activities However, eBPF
has significant privileges within the system, which can pose
safety and security risks if not properly managed [41]. The
ability to execute code at such a low level requires stringent
validation and security measures to prevent potential misuse
or vulnerabilities [38].

B. Massive Vulnerabilities and Delayed Patching

With the success of automated vulnerability detection ap-
proaches, many new vulnerabilities are discovered on a daily
basis. However, patching these vulnerabilities has become a
significant problem. Many applications remain unpatched, cre-
ating a substantial attack window during which vulnerabilities
can be exploited. Frei et al. [23] found that a substantial
number of vulnerabilities are known to insiders before public
disclosure, with over 20% being known at least 20 days in
advance. Moreover, 21.2% of all CVEs were not promptly
fixed after their disclosure, and over 25% remained unresolved
even after 30 days [34]. Notably, about 30% of Windows
vulnerabilities were not patched at the time of disclosure,

with some remaining unpatched for over 180 days [23]. This
introduces the risks of both 0-day and 1-day vulnerability
exploitation. A fundamental reason for the prevalent use of
unpatched software is that official vulnerability patches are not
developed or released in a timely manner. Patching vulnera-
bilities is primarily a time-consuming process that demands
manual analysis of the vulnerable application to develop a
patch. The situation is even worse in today’s software supply
chain. For instance, a vulnerability found in the upstream
Linux kernel might also influence downstream Android kernels
from OEM vendors such as Samsung. These downstream
kernels often undergo heavy modifications or customizations
for their own products, further complicating and delaying the
patching process.

Due to the prolonged patch release time and the large
number of routinely discovered vulnerabilities, there is
an urgent need to design automated temporary solutions
to prevent unpatched vulnerabilities from being triggered
or exploited before patch releases. Such solutions could
provide protection during the attack window from vul-
nerability discovery to patch applications, safeguarding
the software and its users.

C. Existing Temporary Solutions

Existing works often monitor the execution of vulnerable
programs and take a series of actions to remediate software
vulnerabilities when they are triggered at runtime. We summa-
rize the most relevant works in Table I. Some works [27], [29]
use the Security Workarounds for Rapid Response (SWRR)
mechanism to insert a return instruction with an error-handling
code at the entry of the vulnerable function based on the
inherent error-handling mechanism of the program. Some
others [3], [55] utilize eBPF [21] to provide temporary pro-
tection for vulnerabilities. Additionally, InstaGuard [15] relies
on hardware features (breakpoint and watchpoint) to monitor
the target process. As introduced in Section I, existing works
present significant limitations that hinder their usability and
practicality.
C1: Limited protection scope. As we mentioned earlier,
PET [55] can support five classes of vulnerabilities in Linux
kernels, including integer underflow and overflow, out-of-
bound access, use-after-free, uninitialized access, and data
race, it cannot support prevalent vulnerabilities class such as
null pointer dereference and other undefined behavior bugs like
divide-by-zero. It does not support errors in user-space pro-
grams. The policies of eBPFGuard [3] are LSM hook scoped,
but lacks the capability to provide instruction-level vulnera-
bility detection and exploitation prevention. InstaGuard [15]
can only provide temporary protection for some kernel system
programs and is limited by the number of detection points
due to the constraints of hardware breakpoints; SWRR-based
solutions [27], [29] are unable to protect applications without
well-designed error-handling codes.

Bowknot [52] only undoes the effects of kernel bugs after
they are triggered and cannot proactively protects against
vulnerabilities.

3

TABLE I: Comparison with existing works. ✓: Yes; ✘: No.

Approach Category Patch Independence Protection Scope No Code Mod. No Adv. Features Automation

VULMET [57] Hot Patch ✘ Same as Official Patch ✓ ✓ ✓
KARMA [16] Hot Patch ✘ Same as Official Patch ✓ ✓ ✓
RapidPatch [26] Hot Patch ✘ Same as Official Patch ✘ eBPF ✘
SWRR-based tools [27], [29] Temporary Fix ✓ Error-Code-Returning Functions ✘ ✓ ✓
InstaGuard [15] Temporary Fix ✓ 7 Vul. Types in Kernel System Programs ✘ Hardware breakpoints/watchpoints ✓
eBPFGuard [3] Temporary Fix ✓ LSM Hooks Scope ✓ eBPF + LSM ✘
Bowknot [52] Temporary Fix ✓ Undoes the Effects of Kernel Bugs Post-trigger ✘ ✓ ✘
PET [55] Temporary Fix ✓ 5 Vul. Types in Linux Kernels ✘ eBPF + bpf_send_signal ✘

VulShield Temporary fix ✓ 9 Vul. Types in Linux Kernels and User-Space Programs ✓ ✓ ✓

C2: Demand for code modification Most of prior ap-
proaches [27], [29], [52], [55] require modification of the
target vulnerable programs, through methods like recompila-
tion and reloading. PET, in particular, requires modifications
to the kernel as it relies on a set of customized BPF helper
functions. InstaGuard [15] requires a library to be loaded in
each monitored process. SWRR-based tools [27], [29] use
configuration and also need to insert code to the vulnerable
functions. This need for modification adds complexity and
can introduce new potential points of failure. To maintain the
kernel’s functionality when bugs are triggered, Bowknot adds
extra code as a workaround to the kernel.
C3: Reliance of advanced features. Prior solutions [3],
[15], [56] rely on advanced system and hardware features
such as the combination of eBPF and LSM that are not
always available. InstaGuard [15] requires hardware features
(breakpoint and watchpoint) to monitor the target process,
which is not always feasible as well.
Difference against hot patching. Hot patching is a relevant
technique that can temporarily fix vulnerabilities. However, its
main goal is to ensure continuous software operation without
rebooting the software. It often involves dynamically injecting
or modifying code in the running program, e.g., loading new
code into memory and redirecting function calls to the updated
code. However, hot patching assumes the availability of the
official patches [16], [26], [57] and provides protection based
on the released patches. This work distinguishes itself from
hot patching solutions by neither assuming the availability of
a patch nor requiring the presence of one. On the other hand,
poorly designed hot patches, if not applied carefully, may
introduce new security issues such as new execution paths or
code permissions, posing a risk of misuse [30], disrupt system
functionality, or cause unpredictable behavior [52].

D. A Motivating Example

CVE-2021-42008 is an out-of-bounds access vulnerability
within the Linux kernel that has been present in the Linux ker-
nel for 16 years, affecting multiple versions prior to 5.13.13.
The vulnerability would trigger a slab out-of-bounds writing in
the decode_data function in lines 6, 7, and 8, as shown in
Listing 1. Developing a patch to fix the vulnerability needs to
consider all three locations, where inexperienced developers
might fail to cover all and a temporary protection tool is
still helpful. Existing temporary protection solutions could not
sufficiently handle this vulnerability. SWRR-based approaches
only allow the decode_data function to return immedi-

1 static void decode_data(struct sixpack *sp,
unsigned char inbyte)

2 {
3 unsigned char *buf;
4
5 buf = sp->raw_buf;
6 sp->cooked_buf[sp->rx_count_cooked++] = buf[0] |

((buf[1] << 2) & 0xc0);
7 sp->cooked_buf[sp->rx_count_cooked++] = (buf[1]

& 0x0f) | ((buf[2] << 2) & 0xf0);
8 sp->cooked_buf[sp->rx_count_cooked++] = (buf[2]

& 0x03) | (inbyte << 2);
9 sp->rx_count = 0;

10 }

Listing 1: The vulnerable code of CVE-2021-42008.

ately, thus disabling its normal operational functionality and
affecting related kernel features. InstaGuard is incapable of
providing temporary protection for the kernel. eBPFGuard can
only perform checks at the LSM hooks level and fails to
detect the vulnerability effectively. PET requires features (i.e.,
bpf_send_signal) introduced in newer kernel versions
(e.g., version 5.3). It thus could not protect the vulnerable
code before kernel version 5.3 due to the lack of features.
This is often infeasible in practice. In addition, PET performs
detection at the appropriate vulnerability trigger point based
on the sanitizer report and lacks data flow analysis. Therefore,
the temporary protection provided by PET for the vulnerability
is likely to cover only one of the vulnerability trigger points.

III. INSIGHTS

In this work, we address the above-mentioned limitations
and design VulShield. In this section, we present the key
insights.
Constraint expressions for describing vulnerability condi-
tions. We reviewed research on security patch characteriza-
tion and summarized two key features: 1) patches are often
small [53], and 2) they mostly use constraint expressions in
conditional statements [16], [39], [57], [60]. These expres-
sions encode logical constraints about program variables. For
example, to fix a buffer overflow, a patch would enforce an
access offset within the buffer’s size, e.g., 0 <= offset <
size (more details in Appendix A). Approximately 70% of
patches for memory corruption vulnerabilities rely on logical
expressions, using variables, operands, and logical operators
for vulnerability detection and resolution [60]. On the other
hand, vulnerability sanitizers (e.g., ASan [45] and UBSan [18])
have demonstrated the ability to detect vulnerabilities of

4

common vulnerability types using their detection logic. This
in return also suggests that we are able to similarly capture
and detect a vulnerability at runtime for temporary protection.
A kernel module using basic probes. To ensure VulShield’s
wide applicability, it only uses basic features present in both
recent and legacy software. VulShield utilizes basic program
tracing features for OS kernels and user-space programs to
monitor program states. Combined with predefined constraint
expressions, VulShield can detect vulnerabilities at runtime.
We implement this through a standalone kernel module that
can be pre-installed in the system. This module can be flexibly
enabled on the fly, providing protection for both kernel and
user-space programs, including those already running.

IV. METHODOLOGY

A. Overview

To effectively mitigate unpatched vulnerabilities, we pro-
pose VulShield, which implements pre-installed functional
components with information-gathering functions, generic de-
tection logic, and typical actions, to shield multiple vulner-
ability exploits by constructing the inputs to the functional
components. We use VulShield policies to construct these
inputs. Specifically, VulShield policies are used to describe
where and what information needs to be collected how to
use that information to perform a security check for multiple
vulnerabilities, and how to shield the vulnerability exploita-
tion. By decomposing the VulShield policy into individual
entries for each functional component and flexibly combining
and setting the entries, the VulShield policy has sufficient
expressiveness for multiple vulnerability types.

Figure 1 shows the overall system framework of VulShield.
The policy generator is used to automatically generate poli-
cies. Furthermore, the policy enforcer, which resides in the
kernel space of the target device, enforces the policies and
blocks security vulnerabilities. To ensure the security of the
communication, there is a userland process that receives the
policies and forwards them to the policy enforcer. Specifically,
VulShield analyzes the related source code files (or LLVM
Bitcode File) and error reports generated by sanitizers. This
process involves conducting both vulnerability and data flow
analyses to determine the vulnerability type and choose the
existing templates to generate a source-level mitigation policy.
Additionally, if using the expressions-based policy templates,
VulShield evaluates and generates the appropriate detection
points and corresponding expressions (such as the function
entry point or return points). The policy generated at this
point is at the source code level and the target machine
may be in production environments without sanitizers. So,
VulShield utilizes such source-level policies combined with
debug information from the target program to generate the
binary-level policy of the target binary, including the specific
binary address and register information. If the target binary
lacks DWARF debug information, developers can either pre-
compile binaries with identical configurations or install the
relevant kernel-debug package.

For the threat model, we assume that target applications and
kernels are benign but may contain exploitable vulnerabilities.
As a common practice [55], we assume the attackers are
under unprivileged user permissions since privileged users like
root already bypass most mitigation. Besides, considering the
possibility of attackers tampering with forged policies, we use
a signature verification mechanism for the policies used. The
developer signs the policies, and the policy enforcer verifies
the policies, thus ensuring that the policy enforced by the
module is not a malicious policy forged or tampered with by
an attacker. After the policy has been generated, signed, and
distributed to each target device, the userland process forwards
it to the kernel-state policy enforcer. After verification, the
policy enforcer extracts specific information from the validated
policy and uses this information to enforce various policies.
We also assume the authorized developers are trusted. During
the transmission from the developer to the VulShield enforcer
module, policies are signed by the authorized developers,
ensuring that only authorized developers can use VulShield
to generate a valid policy. Subsequently, prior to enforcing
any policy, the enforcer validates both the authenticity and in-
tegrity of the policy. Consequently, we can reasonably assume
that attackers are unable to exploit VulShield by installing
malicious policies. Note that VulShield’s automatic policy
generation relies on bug reports from sanitizers. In real-world
scenarios, developers typically perform vulnerability analysis
and remediation based on these reports. Therefore, we assume
that developers can obtain the appropriate sanitizer bug reports
when they discover a vulnerability or are notified by third-
party security experts.

B. Design Requirements

For security reasons, the capabilities of the policy enforcer
should be restricted to prevent abuse of the VulShield. Thus,
VulShield should be prevented from executing potentially
dangerous operations and meet the following requirements:

• Restricted memory write. The policies of VulShield should
not possess the capability to write to memory. Any write
operation could lead to unintended behaviors such as tam-
pering with critical data.

• Restricted code inclusion. The policies of VulShield should
not support dynamic code injection or parsing of executable
code, in order to prevent abuse. This might open an attack
surface to attackers.

• Restricted execution altering. In detecting anomalous
behavior, VulShield should restrict the execution of the
program rather than freely altering the code execution path.

• Support the normal execution. For kernels, stopping them
at random can be much more costly, so it is also a challenge
to be concerned about guaranteeing the proper execution of
such cases. To ensure normal kernel operation, VulShield
can use the following strategies: (1) check the function
parameters at function entry and return the appropriate error-
handling codes; (2) check error-handling codes returned by
the function on return; (3) utilize the error-handling basic

5

Developer Target Device

Policy Forwarder Vulnerable Program

Vulnerable Kernel

Verification Perception Decision Execution

Policy Enforcer

Kernel Space

Network

Policies Program

 Vulnerable ProgramUser Space

Sanitizer report

Source code

ELF files with
debug info

Bug Report &
Static Analysis

Policy
Lowering

Source-level
Policy

generation

VulShield Component Vulnerable Program Normal Program

Binary-level
policy

Figure 1: Overview of VulShield.

block in the vulnerable function; or (4) use mechanisms that
do not alter the control flow and data flow.

• Restricted information printing. Despite being able to read
memory, to prevent information leakage, VulShield should
not print or output any information other than warnings.

In subsequent sections, we will describe in detail how Vul-
Shield can be used as an effective vulnerability shield when
the above conditions are met.

C. VulShield Policy

To effectively shield vulnerability exploits while conforming
to the requirements listed in § IV-B, we present the VulShield
policies that can collect sufficient runtime information to
perform safety checks for various types of vulnerabilities.
List. 2 demonstrates an example of VulShield policy with a
detailed description of each component as follows.

• Perception points. Perception point is optional in the
policy. There could be no, one, or multiple perception
points depending on the vulnerabilities. offset specifies
the address where the perception point is inserted. Each
perception point must include at least one of value and
counter. value contains two entries: val represents the
register/memory value we need to collect at the perception
point and name is a label representing this value, which
we’ll refer to later in the Constraint section. counter
is specified when dealing with temporal vulnerabilities.
flag is a two bits value that represents: no counter used
(00), counter decremented (01), and counter incremented
(10). num is the increment/decrement value each time the
perception point is reached and name is the label of this
counter.

• Decision points and associated information. The de-
cision point is required for every policy. Similar to the
perception point, the decision point contains the offset,
and optional value entry(s). When the target program
reaches the decision point, the constraint will be checked

and the mitigation action will be enforced if the constraint
satisfies.

• Constraint expressions. The constraint expressions sec-
tion consists of variables, constants, logical judgments, arith-
metic operators, and a small number of whitelisted functions
(e.g., strlen). Note that if the mitigation action of the
policy is a safe and efficient mitigation mechanism, the
expression can be simply true, which means the mitigation
action will always be executed.

• Mitigation actions. Mitigation actions are divided into
two categories. The first category involves behavior chosen
when an exception is found, such as hanging the program,
interrupting it, issuing a warning, or returning an error-
handling code. The other category is safe and efficient
mitigation mechanisms, such as utilizing the QS (Quarantine
and Sweeper) mitigation, specified in § IV-E3.

D. Policy Generator

VulShield can parse bug reports generated from sanitizers
such as ASan. Subsequently, it generates policies automati-
cally. This capability empowers VulShield to rapidly furnish
users with provisional mitigation.

To make it easier to understand the policy design of Vul-
Shield, this section describes how to generate the required
security policy for the motivating example (CVE-2021-42008).
To simulate the situation when a vulnerability is initially dis-
covered, we compiled Linux with AddressSanitizer (KASan)
and utilized a Proof of Concept (PoC) to capture the call
stack when the vulnerability is detected. Initially, VulShield
is capable of parsing the bug report produced by ASan to
identify the nature of the vulnerability, additional vulnerable
information—encompassing pertinent variables—and the orig-
inal line of code where the vulnerability resides. Subsequently,
VulShield engages in a meticulous static analysis of the
vulnerable function’s source code, to identify the perception
point, and decision point at the source level and formulate
the corresponding mitigation measures. Then VulShield needs

6

to translate the source-level policy to adapt to the target
vmlinux. Thereafter, VulShield employs the debugging
information from the vmlinux to map the relevant source
lines—such as the decision point—to specific fragments of
binary code. Ultimately, VulShield applies the Capstone to
disassemble these particular binary code fragments, thereby
pinpointing the exact binary address associated with the deci-
sion point.

To make it easier to address common vulnerability types
and further reduce the burden on developers, we automate
the policy generation process by adapting each policy to
the specific vulnerability characteristics. For instance, in the
case of a buffer overflow vulnerability, we examine whether
the access instruction employs an out-of-bounds pointer. A
detailed overview of policy designs for distinct vulnerability
types can be found in Table II.

1) Source-level Policy Generation: VulShield is designed
to automatically analyze bug reports from sanitizers in or-
der to generate security policies. For user-space programs,
error reports from user-space sanitizers typically encompass
detailed source code information, including the specific line
where a crash occurs. VulShield can efficiently leverage this
information to conduct an in-depth analysis of the pertinent
source code details. In contrast, for kernel-space programs,
error reports from kernel sanitizers often include only binary-
level information. To address this, VulShield employs the
faddr2line or eu-addr2line tools to analyze and ex-
tract the corresponding source code information. Following
this initial analysis, VulShield proceeds to statically analyze
the relevant source code files (or LLVM bitcode files) along-
side the error reports generated by the sanitizers.

Based on these analyses, VulShield identifies the vulnerabil-
ity type and gathers information about related variables. Then,
VulShield evaluates whether a source-code-level mitigation
policy can be generated using existing templates. Additionally,

1---
2 Perception point:
3 - Offset: 0xdead
4 Value:
5 - {Val: reg, Name: val1}
6 Counter:
7 - {Flag: 10, Num: 1, Name: counter1}
8 - Offset: 0xbeef
9 Value:

10 - {Val: offset+reg, Name: val2}
11 Counter:
12 - {Flag: 01, Num: 1, Name: counter2}
13 Decision point:
14 - Func: func1
15 Offset: 0xaaaa
16 Value:
17 - {Val: [reg+offset], Name: val3}
18 - {Val: offset+[reg], Name: val4}
19 Constraint: (val1+val2)*val3==func1(val4)
20 Mitigation actions: hang/kill/warning/...
21---

Listing 2: The components of a policy.

if the mitigation policy involves expression-based detection,
and developers need to ensure the normal operation of the
target program—such as in cases of buffer overflow in the
kernel—VulShield will employ SVF (Static Value-Flow Anal-
ysis Framework) [49] to perform analysis on the vulnerable
function containing the targeted vulnerability. This analysis
generates the expressions used to detect vulnerabilities and
evaluates whether the expressions can be effectively placed at
the function entry or return points. Taking motivation example
(i.e., CVE-2021-42008) as an example, UBSan reports an
error of "array-index-out-of-bounds". VulShield first confirms
that the index is the value of the sp sub-object according
to the use-def chain, and confirms the offset of the sub-
object in the sp structure. In addition, VulShield utilizes SVF
to perform data flow analysis on the index and analyze the
changes in its value in the function. Taking this function
as an example, the index (i.e., sp->rx_count_cooked)
is incremented twice before the last use as the index in
the function. Therefore, if the vulnerability is detected at
the beginning of the function, it is necessary to compare
sp->rx_count_cooked+2 with the maximum value of
the array instead of sp->rx_count_cooked. In instances
where the expression instrumental in detecting the vulnerabil-
ity cannot be efficaciously positioned at the function’s entry
or return point, VulShield proceeds to analyze the exit basic
block in the function (such as the FunExitICFGNode in
SVF). It analyzes to ascertain the optimal detection point for
the expression and identifies the optimal function exit basic
block dominated by this detection point. This includes but
is not limited to, basic blocks about the function’s internal
exception-handling mechanisms (e.g., goto error).

The description of source-level policy as illustrated in
List. 3: 1) The source file’s path, the name of the decision
point, and the specific line number. 2) A precise definition
of the constraints, comprising variable names, constants, op-
erators, logical evaluations, and a limited set of whitelisted
functions calls for constraint formulation. 3) Pertinent details
concerning impacted variables, constants, and counters are to
be supplied. For variables, it is essential to offer the source
details of their derivation. Furthermore, specific information
about the variable at that perception point is necessary; for
instance, whether it serves as a function call parameter at

1---
2 VulType: array-index-out-of-bounds
3 Variables:
4 - {Name: rx_count_cooked, Type: sub-object,

Index:10, ObjType: S.struct.sixpack, Value: {
Name: sp, Type: pointer, Value: 0th parameter}
}

5 Constraint: sp->rx_count_cooked + 2>=400
6 Decision point:
7 - {FuncName: decode_data, Type: func_entry,

Source: drivers/net/hamradio/6pack.c:832}
8 Mitigation action: return
9---

Listing 3: The source-level policy of CVE-2021-42008.

7

that specific source location. Concerning constants, precise
numeric data is required. In the case of counters, information
concerning their addition or subtraction within the source and
the counter’s index (representing its corresponding value) are
mandatory. For example, the counter index recording heap
allocations and releases corresponds to the heap variable’s base
address. 4) The developer’s selection of the mitigation action.

2) Policy Lowering for Binary-level Policy : In real-
world application scenarios, the vulnerable application and
kernel are without sanitizers. To adapt to the target vulnerable
application or kernel, VulShield needs to translate the source-
level policies to binary level accordingly. Therefore, the policy
that is read and enforced by the policy enforcer on the target
device should be binary-level information, as shown in List. 4.

The generator parses the debug information of the binary
and translates the vulnerability details from the source level to
the binary level. First, it maps the source code location to the
binary addresses. However, because the source code location
information may not have a one-to-one mapping to binary
addresses, one line of source code may correspond to multiple
sections of binary code. As a result, second, the generator
analyzes the target binary code fragment and further verifies
the binary address of the decision point based on the provided
vulnerability information. For inline functions, the generator
performs a thorough analysis of the call stack information
to identify the function containing the decision point. It then
refines its search for the code fragment containing the decision
point based on the source information of the inline function’s
call point in the call stack. In some cases, certain functions
may be inlined multiple times, resulting in multiple candidate
code fragments for the decision point.

E. Policy Enforcer

The module begins by receiving and verifying the signature
of the forwarded policy. Once verified, the module enforces
the designated policy, collecting required data from applica-
tions or the kernel. This data is then analyzed to detect any
potential attacks. If a potential attack is identified, the policy
enforcer activates a suitable mitigation action to prevent the
vulnerability from being triggered. The enforcer consists of
three core components: perception, decision, and execution,
each of which is detailed in the following subsections.

1) Perception: For certain vulnerabilities, only the runtime
information at the decision point is necessary to ascertain
the possibility of an attack, such as null pointer dereference

1---
2 Decision point:
3 - Func: decode_data
4 offset: 0x0
5 value:
6 - {val: [rdi+0x1cc], name: count}
7 Constraint: count+ 2>=400
8 Mitigation action: return
9---

Listing 4: The binary-level policy of CVE-2021-42008.

or division by zero. However, more intricate vulnerabilities
like heap buffer overflows, use after free, and race conditions
necessitate the amalgamation of data from multiple runtime
execution points to reach a valid determination. This requires
VulShield to gather process runtime information before the
decision points.
Value. For vulnerabilities such as heap overflows, VulShield
only needs to collect the value of registers or the value stored
at specific memory addresses when the program is executed
at a specific address.
Counter. For some vulnerabilities, such as double free and
race conditions, VulShield needs to collect state information.
For example, it needs to know whether the memory accessed
was freed for UAF (Use After Free). Therefore, for this
type of vulnerability, we use a counter scheme. For exam-
ple, VulShield assigns a counter to the target buffer for a
UAF vulnerability. When memory is allocated, the counter
is incremented by 1. When memory is freed, the counter
is decremented by 1. And VulShield will check the target
memory counter at the memory access point to see if the
counter is 0, thus determining if a UAF vulnerability is
triggered at that point.

2) Decision: The observation has shown that constraints
can be used to represent the detection logic. Such constraints
typically consist of variables, constants, operators, logical
judgments, and a small number of whitelisted function calls
(such as strlen). Buffer overflows, out-of-bounds accesses,
division by zero, NULL pointer dereference, integer overflows,
and partial logic vulnerabilities can all be represented by
such constraints. Therefore, most of the vulnerability detection
in this paper is performed by the mitigation action of such
constraints. Suppose a buffer overflow of a user-state program
generates a policy based on the vulnerability type. In this case,
we will insert the decision point before the vulnerability trigger
point, check the relationship between the value of the target
register and the target memory object, and interrupt or hang
the program execution or issue a warning if the boundary is
crossed. Some mitigation actions achieve mitigation through
trick implementations, such as utilizing the QS (Quarantine
and Sweeper) mitigation. In many cases, such mitigation
actions do not need constraints to detect anomalous behavior.
Therefore, for policies that use such mitigation actions, if they
do not require conditional execution using constraints, their
constraint results are true by default.

3) Execution: Note that the perception component focuses
solely on reading data, while the decision component returns
a boolean variable as a detection result for potential attacks.
These components work together to identify potential security
vulnerabilities. In the execution component, VulShield em-
ploys the mitigation action, which comes in two types: actions
for constraining program execution and actions for mitigation.
Program execution restriction. For common vulnerabili-
ties like buffer overflows and division by zero, maintaining
regular program functioning without relying on error-handling
codes necessitates modifying program control and data flow,
which could inadvertently introduce security risks. VulShield

8

TABLE II: Security policy design for common vulnerabilities. The Common Weakness Enumeration (CWE) is a classification
list of weaknesses and vulnerability types. The design details of Quarantine and Sweeper (QS) and Delayed Execution until
Completion (DEC) are in Section IV-E3.

Shield policyShield Mechanism Vulnerability Type CWE No. vulnerable source Shield Template
null pointer dereference CWE-476 *p p /∈ [0, PageSize)

divide-by-zero CWE-369 a÷ b b ̸= 0

buffer...

CWE-121
CWE-122
CWE-124
CWE-787

*p p+sizeof(p)<base(p)+size(p)
&& p>base(p)

array...

CWE-125
CWE-129
CWE-119
CWE-787

*(base(p)+offset) 0<=offset<size(p)buffer overflow

memcpy/strcpy/... CWE-119
CWE-120 memcpy(p,q,s) p>=base(p) &&

p+s<=base(p)+size(p)
integrity overflow CWE-190 a op b min=<a op b <=max

use-after-free CWE-416 malloc(p);free(p);use(p) account(malloc(p))==account(free(p))+1
double free CWE-415 free(p);free(p) account(malloc(p))==account(free(p))

Expression-based Detection

other vulnerability assert(C) C
use-after-free CWE-416 Quarantine+Sweeper
double free CWE-415 Quarantine+SweeperOther Mitigation

race condition CWE-362 Action Delay until Completion

addresses this by limiting program execution to avoid vulnera-
bility triggering. For generic programs, the options VulShield
provides to developers are to kill the process and to hang
the process. In the case of kernels, they tend to have a
robust error-handling mechanism and need to ensure the proper
operation of the program. Therefore, for such cases, VulShield
can set the decision point to the function entry or return
point and use its error-handling mechanism to ensure the
program’s normal operation. Furthermore, VulShield is also
endowed with the capability to goto the error-handling basic
block within the vulnerable function, thereby ensuring the
maintenance of the program’s normal operation. Developers
can also extend VulShield to choose the same mitigation action
for programs with a robust error-handling mechanism (such as
Nginx) as the kernel. Unlike Talos [27], VulShield will only
return error-handling codes when it detects a potential attack
and will not affect the functionality of the target function.
Also, for both cases, VulShield provides the option of issuing
warnings, from which developers can choose.
Other mitigation actions. For temporal memory vulner-
abilities or race conditions, a combination of expression
constraints and counter schemes is effective for detection.
However, high-frequency functions must consider performance
overhead. Therefore, VulShield also provides optional mitiga-
tion actions that do not alter program control or data flow,
delivering practical mitigation with reasonable overhead.

• Quarantine and Sweeper. According to the analysis and
summary of PUMM [58], an attacker can only exploit the
UAF vulnerability if the target memory region is reallocated.
Therefore, delaying the deallocation of the target memory
region is an effective mitigation. ASan [45] proposes the
quarantine mechanism, a list array to manage and delay the
release of memory objects about to be deallocated. Quar-
antine and Sweeper (QS), inspired by MarkUs [10] and
MineSweeper [20], uses a quarantine zone with a sweeper

to effectively address temporal memory vulnerabilities. When
an object is deallocated, it is first placed in the quarantine
zone rather than being released immediately, ensuring that the
object is not released prematurely. The sweeper is respon-
sible for a memory sweep to determine whether there are
pointers still pointing to each object in the quarantine zone,
especially when the number of objects awaiting processing
reaches a predetermined threshold. If no pointer still points
to an object, then this object is deallocated. Notably, a linear
scan of the memory is performed by an independent thread,
which increases efficiency. When the number of objects to be
processed exceeds a predefined threshold, the sweeper runs at a
fixed frequency. When the number of objects exceeds twice the
threshold, the sweep frequency is doubled. Both the threshold
and frequency are configurable, allowing users to tailor the
system to their specific needs. In the default configuration,
the threshold is set to a quarter of the maximum quarantine
size and the frequency is set to every 10 seconds. This adaptive
approach reduces the risk of system performance degradation
due to excessive accumulation of unprocessed objects. When
the number of objects queued for processing reaches the
quarantine’s maximum capacity, and these objects continue
to be referenced by dangling pointers, VulShield implements
a policy to randomly release some of these objects. The policy
is to reduce the risk of distributed denial of service (DDoS)
attacks and Heap Feng Shui. At the same time, the system
generates an alert warning of potential DDoS attacks or Heap
Feng Shui [54]. Upon receipt of this alert, it is imperative that
maintenance personnel perform a manual effort to assess and
address the specific circumstances. In addition, each execution
of deallocation, especially kfree, initiates a check to confirm
whether the target object is already in quarantine. If the object
is found in quarantine, this triggers an alert for a potential
double-free vulnerability.
• Delayed Execution until Completion. A race condition

9

vulnerability is triggered when multiple program flows interact
incorrectly. Attackers wishing to exploit such concurrency
bugs often need to manipulate execution sequences through the
exploit carefully. Completion is a mechanism embedded within
the Linux kernel that facilitates inter-thread communication,
enabling one thread to notify another of the completion of
a specified event. VulShield adopts the idea of Completion
to mitigate race conditions. This is achieved by enforcing
the sequential execution of events, wherein an event that is
scheduled to occur subsequently is only initiated following the
successful completion of a preceding event. If the preceding
event does not finish, the subsequent execution is deferred. To
prevent potential deadlocks, VulShield introduces a timeout.
Specifically, if the timeout is reached and the expected event
is not completed, VulShield activates a predefined mitigation
action. This predefined action is responsible for implementing
user-specified actions, such as emitting a warning or terminat-
ing the target process, thus ensuring the system’s robustness
and responsiveness.

V. SYSTEM IMPLEMENTATION

The Policy Generator leverages sanitizer error reports
to extract vulnerability-related information, then utilizes
pyelftools for parsing and analyzing target ELF files
and DWARF debug information. It maps the source code
locations to binary code segments based on information from
the .debug_line section. Additionally, Capstone is em-
ployed to pinpoint the specific binary addresses of decision
points. The Policy Enforcer is implemented as a kernel module
that utilizes KProbe and Uprobe to gather runtime information,
enforce security checks, and implement developer-specified
mitigation actions. VulShield applies policies using KProbe
and Uprobe, which require the security policy to include
relative offsets of decision points. It analyzes the target ELF
file using pyelftools to extract program headers and
thereby determine the relative offset of the target address.
When calculating the internal offsets of structures, discrep-
ancies arise between the actual and theoretical offsets due
to memory alignment. Consequently, VulShield utilizes the ’-
fdump-record-layouts-simple’ flag to dump layout information
during source code analysis, facilitating subsequent analysis of
the actual offsets within structures.

VI. EVALUATION

This section evaluates the VulShield prototype in terms of
security and performance and answers the following questions:

• RQ1: Does VulShield introduce any security risk?
• RQ2: Is the policy of VulShield sufficiently expressive, and

is the enforcer flexible enough to effectively mitigate a wide
range of vulnerability types?

• RQ3: What is the overhead introduced by VulShield?
• RQ4:How long does VulShield take to automatically gen-

erate a security policy?

A. Security Risk Analysis

Fake policy. Suppose an attacker tries to exploit VulShield’s
mitigation on user processes or kernels. To prevent such
attacks, VulShield’s enforcer verifies the signature of each
policy before applying it. The threat model assumes that only
policies signed by authorized developers can be successfully
verified, effectively thwarting unauthorized attempts.
Incorrect policy. VulShield streamlines the policy gen-
eration process by automatically extracting and translating
vulnerability conditions from sanitizer reports into precise
expression constraints. So the correctness and effectiveness
of these policies are inherently dependent on the sanitizer’s
false positive rate. Fortunately, modern sanitizers like ASan
have zero false positive rates [35]. While VulShield can
restrict program execution, it does not introduce new code
or execution paths. This non-intrusive approach preserves the
original functionality and stability of the system. Even in the
case of a false positive, VulShield does not introduce any new
security risks. The impact of such a scenario is comparable to
the mitigations like Talos, which are generally acceptable.
Conflicting policy. VulShield configures unique probes for
each policy, ensuring that each policy operates independently
without interfering with others. During the execution of a
program protected by VulShield, multiple security policies are
applied sequentially. If a bug’s trigger requires an index
integer that exceeds a value that causes another overflow,
VulShield will intercept and address the first potential vulnera-
bility. It then proceeds to check for subsequent vulnerabilities.
This means that even if the application has multiple layered
vulnerabilities that are interconnected, VulShield systemati-
cally evaluates and enforces policies for each one.

B. Capability Analysis

Environments and test cases. Our security tests are run
in a virtual machine, and the kernel tests are performed
using QEMU. Since VulShield’s automatic policy generation
relies on bug reports from sanitizers, the only criterion for
selecting vulnerabilities for testing is the availability of a
public proof-of-concept (PoC) that can be effectively detected
by a sanitizer. Since the Magma test suite is all real-world
vulnerabilities with public PoCs, VulShield uses Magma’s
public PoC to filter CVEs that can be detected by ASan or
UBSan with effective bug reports. In addition, we have made
efforts to reproduce more vulnerabilities and obtain bug reports
to further evaluate the effectiveness of VulShield. In the end,
we successfully reproduced 32 vulnerabilities with valid bug
reports, covering a variety of vulnerabilities, including those
in user-space programs, service applications, and the kernel.
To collect more vulnerability information, KASan uses multi-
shot mode. During initial testing of CVE-2013-2028, ASan did
not report call stack information. We have improved ASan to
output call stack information.
Results. The results of our evaluations are detailed in Ta-
ble III, which demonstrates the effectiveness of VulShield
in addressing a comprehensive range of vulnerability types.
These results confirm that VulShield, using sanitizer bug

10

TABLE III: Security test results with 32 CVEs and 9 vulnerability types.

Target Binary CVE No. Vulnerability Type Policy Type Is it effective?

Magma

libpng CVE-2013-6954 NULL Pointer Dereference Expression-based ✓

libtiff CVE-2016-10270 Out-of-bounds Access Expression-based ✓
CVE-2019-7663 Invalid Address dereference Expression-based ✓

libxml CVE-2017-9047 Buffer Overflow Expression-based ✓
CVE-2016-1836 Use After Free Expression-based ✓

openssl
CVE-2016-2108 Buffer Underflow Expression-based ✓
CVE-2016-6309 Use After Free Expression-based ✓
CVE-2017-3735 Out-of-bounds Access Expression-based ✓

php CVE-2018-14883 Out-of-bounds Access Expression-based ✓
CVE-2019-11034 Out-of-bounds Access Expression-based ✓

poppler

CVE-2019-14494 Divide By Zero Expression-based ✓
CVE-2019-9959 Integer Overflow Expression-based ✓
CVE-2019-10873 NULL Pointer Dereference Expression-based ✓
CVE-2019-10872 Out-of-bounds Access Expression-based ✓
CVE-2019-7310 Out-of-bounds Access Expression-based ✓
CVE-2018-13988 NULL Pointer Dereference Expression-based ✓
CVE-2018-10768 NULL Pointer Dereference Expression-based ✓
CVE-2017-14617 Divide By Zero Expression-based ✓

sqlite3 CVE-2015-3414 NULL Pointer Dereference Expression-based ✓
libIEC61850 CVE-2018-18957 Buffer Overflow Expression-based ✓
LibreDWG CVE-2020-21813 Buffer Overflow Expression-based ✓

Nginx CVE-2013-2028 Integer Overflow Expression-based ✓
gpac CVE-2020-19488 NULL Pointer Dereference Expression-based ✓

libxml2 CVE-2021-3518 Use After Free Expression-based ✓

Linux kernel

CVE-2017-18344 Out-of-bounds Access Expression-based ✓
CVE-2021-42008 Out-of-bounds Access Expression-based ✓
CVE-2022-2588 Use After Free QS ✓
CVE-2021-3492 UAF+Double Free+Mising Release QS ✛

6dc9ae7 [50] Use After Free QS ✓
ca4463b [36] Race condition+UAF QS ✓
a834b99 [51] Data race DEC ✓

✓: effectively detect and prevent the triggering of reported vulnerabilities. ✛: only support partial the reported vulnerabilities

reports, can reasonably formulate robust policies, obviating
the need for extensive vulnerability analysis by developers.
However, it was observed that one automatically generated
policy cannot cover all vulnerabilities reported by sanitizer. For
CVE-2021-3492, the ASan bug report included vulnerability
information related to double free and use-after-free, while
the Kmemleak only reported an allocation point where the
object had no associated free, requiring manual effort by
developers to accurately identify the needed release point. In
addition, for CVE-2019-9959, ASan reported an "allocation-
size-too-big" error, while UBSan reported no issues. As a
result, the generated policy effectively detected the issue in
the ASan report and killed the target process. CVE-2013-
2028 also has only ASan bug reports and no UBSan bug
reports, but VulShield can provide robust protection through
analyzing the ASan bug reports. ca4463b [36] is a use-after-
free vulnerability triggered by race conditions. According to
the KASan bug report, the use of the QS execution mechanism
can prevent use-after-free from occurring, providing effective
mitigation. While Table III only evaluates 9 vulnerability
types, the effectiveness of VulShield is not limited to these
specific types. Vulnerabilities that can be effectively detected
using constraint expressions, such as logical vulnerabilities,
can also be mitigated using VulShield. This demonstrates the
flexibility and adaptability of VulShield in addressing a wider
range of vulnerability scenarios than those explicitly evaluated.

C. Usability Analysis

We further assess the usability of VulShield to understand
how many security patches can potentially be mitigated using
VulShield. We analyzed the patches of 1,458 vulnerabilities
provided by SecretPatch [53]. We are not able to apply
VulShield to all vulnerabilities/patches in the dataset because
it is not affordable to configure their compiling or running
environments, necessary for deploying VulShield. Therefore,
we choose to manually analyze the patches and check if they
can be supported by VulShield. To this end, we examine the
code patterns corresponding to the capability for expression in
VulShield. For example, we manually identify the patches that
use if statements for conditional assessments, followed by ei-
ther returning, invoking exception handling functions, or goto
the blocks within the same function for exit. We also check
patches that log information before performing jumps or calls
as the output of log information is ancillary to the processes of
vulnerability detection and handling. We then correlate these
patches to the different categories based on the vulnerability
types. The results demonstrated that VulShield has a high
usability. In particular, VulShield supported 825 (56.6%) out
of 1,458 vulnerabilities in the dataset. This includes 690
vulnerabilities corresponding to the vulnerability types listed
in Table II and 135 vulnerabilities in the other 26 vulnerability
types, delineated in Table IV. It is worth highlighting that all
the cases in the 26 vulnerability types could not be supported

11

TABLE IV: Result of security patch analysis.

Vulnerability Type CVE No. Vulnerability Type CVE No.

CWE-20 32 CWE-287 2
NVD-CWE-Other 21 CWE-617 2
CWE-264 13 CWE-255 1
CWE-189 12 CWE-320 1
CWE-200 9 CWE-404 1
CWE-399 8 CWE-682 1
CWE-834 6 CWE-704 1
NVD-CWE-noinfo 5 CWE-74 1
CWE-269 3 CWE-770 1
CWE-284 3 CWE-824 1
CWE-388 3 CWE-835 1
CWE-400 3 CWE-89 1
CWE-22 2 CWE-94 1

TABLE V: The performance overhead of Nginx is evaluated
based on the parameters n (total number of requests) and c
(number of concurrent requests).

Nginx
w/o VulShield w/ VulShield

Time per request Time per request

a concurrent
group

a single
request

a concurrent
group

a single
request

n=100000, c=10 0.130 ms 0.013 ms 0.140 ms 0.014 ms

n=100000, c=100 1.313 ms 0.013 ms 1.411 ms 0.014 ms

n=100000, c=1000 15.075 ms 0.015 ms 15.827 ms 0.016 ms

n=100000, c=10000 136.712 ms 0.014 ms 136.238 ms 0.014 ms

by the previous work [15], [55]. Note that we made our manual
analysis conservative and the actual supported vulnerabilities
could be even higher than the presented numbers. These results
not only underscore the scalability potential of VulShield, but
also provide empirical evidence in support of the resolution
of RQ2, highlighting VulShield’s exceptional ability to protect
against vulnerabilities.

D. Performance Analysis

In order to answer RQ3, we test the performance of
VulShield on an Inspiron 3910 Compact Desktop running the
Linux 5.15.0 kernel with the Ubuntu 20.04.1 release.

1) Stress Test: To test the performance of VulShield
under high-frequency triggering, we used CVE-2013-2028 in
Nginx 1.4.0 to showcase the overhead introduced by VulShield
for applications in real-world scenarios.
Test inputs and configuration. In the performance eval-
uation, we compiled Nginx with the default options. The
vulnerability is located in ngx_unix_recv function and
we use the Apache ab tool to send requests to reach it.
Note that to avoid the impact of network latency, the requests
were sent from the same machine as the Nginx server. Since
we need to evaluate the performance overhead of VulShield
when Nginx is functioning under normal conditions without
any active attacks, we carefully prepared the request data so
that it would only execute the vulnerable code but would not
trigger the vulnerability. In our evaluation, we sent a total
of 100000 requests with different concurrency to assess the

impacts of VulShield under realistic scenarios of concurrent
request handling. Specifically, we included four groups in the
concurrency of 10, 100, 1000, and 10000, respectively. To
enhance experimental accuracy, we conducted each test case
10 times, and the average was taken as the final result. This
aimed to minimize the impact of any potential fluctuations or
anomalies in the results.
Results. The results of the Nginx tests are shown in Table V.
As the level of concurrency increases, the difference in request
times between systems with and without VulShield decreases.
It reveals that VulShield is not adversely affected by program
concurrency and that the performance impact of VulShield de-
creases progressively. Furthermore, by examining the average
time cost per request, it is observed that the latency introduced
by VulShield per request is at most 0.001ms. Note that in real-
world situations with the network latency between the client
and the server, a request would take a much longer time, e.g.,
1500 ms [2], thus we believe the below 0.001 ms overhead
introduced by VulShield is negligible. At a concurrency level
of 10,000, the latency introduced by VulShield per request
is negligible. Considering these results, it is clear that the
performance overhead caused by VulShield is minimal. Even
when dealing with high-risk vulnerabilities in the service
program, the overhead caused by VulShield is negligible and
has no significant impact on the normal execution of the
program.
Concurrency. We simulated up to 10,000 concurrent re-
quests to mimic a high-load, multi-threaded environment. The
results demonstrated that VulShield effectively supports the
concurrent application of policies across multiple threads,
maintaining stability and performance even under extreme
conditions. This confirms that VulShield can reliably enforce
concurrent policies simultaneously in real-world scenarios.

2) System-Wide Performance Impact: We use
UnixBench [25] to test the performance impact of VulShield
for the kernel operation. In this experiment, the policy
of CVE-2017-18344 represents the use of expression-
based detection, the policy of CVE-2022-2588 represents
the use of the QS (Quarantine and Sweeper), and the
policy of a834b99 [51] represents the use of the DEC
(Delayed Execution until Completion). In addition, this
solution simultaneously measures the performance overhead
under multiple policy combinations. This experiment uses
UnixBench’s default options for testing, i.e., directly using the
./Run -c 1 command for testing. By default, UnixBench
runs several rounds of experiments and averages the results.
We use the configuration of 20 CPUs in the system and 1
parallel copy of tests. Additionally, we utilize the numactl
command to bind each execution run to the same CPU core.
Results. The results of the performance tests are presented
in Table VI. The table lists the scores for each sub-item under
each scenario and performance overhead. Based on the scores
of each case, it can be judged that the performance overhead
is negligible when no security policy is implemented or when
a policy based on expression detection is implemented. When
implementing a single policy, QS has a greater performance

12

TABLE VI: Performance testing based on UnixBench.

Test Items 0 policy 1 policy 2 policies 3 policy

w/o VulShield w/ VulShield Expression-based QS DEC Expression-based + QS Expression-based + DEC QS + DEC Expression-based + QS + DEC

Dhrystone 2 using
register variables 6502.0 6436.1 6411.4 6419.2 6416.2 6413.2 6364.9 6311.3 6419.9

Double-Precision
Whetstone 2028.8 2029.6 2028.8 2029.2 2030.0 2029.0 2030.3 2028.8 2030.2

Execl Throughput 2262.6 2270.1 2272.2 2261.6 2267.8 2257.4 2263.9 2263.5 2266.3
File Copy 1024 bufsize 7101.5 7097.5 7016.9 7086.5 7060.4 7063.7 7054.6 7111.6 6995.6
File Copy 256 bufsize 4687.1 4717.2 4723.8 4709.9 4729.6 4722.2 4728.0 4715.8 4718.3

File Copy 4096 bufsize 12954.1 12467.8 11974.8 11915.7 12513.3 12031.6 11824.6 12317.2 11646.3
Pipe Throughput 3356.5 3354.4 3369.3 3379.8 3361.5 3381.5 3366.6 3365.0 3397.7

Context Switching 1277.8 1293.6 1293.0 1297.2 1290.0 1290.0 1290.7 1293.4 1284.7
Process Creation 2612.1 2665.5 2632.6 2642.2 2642.7 2584.2 2542.9 2597.7 2612.6

Shell Scripts
(1 concurrent) 4338.5 4344.3 4348.1 4340.8 4334.4 4332.4 4333.8 4327.6 4337.6

Shell Scripts
(8 concurrent) 4054.0 4058.4 4058.5 4052.8 4053.8 4045.4 4044.5 4017.0 4043.3

SysCall Overhead 2478.1 2478.4 2476.9 2478.4 2479.6 2477.2 2478.6 2476.7 2471.6

System Benchmarks
Index Score 3685.7 3684.3 3665.4 3667.3 3679.7 3659.6 3647.1 3662.6 3651.2

Overhead - 0.038% 0.551% 0.499% 0.163% 0.708% 1.047% 0.627% 0.936%

TABLE VII: The latency of critical operations.

Policy Type Action Time

Expression Judgment 1138 ns
Counter ++ 130 nsExpression-based

Detection Counter – 104 ns

Put into quarantine 704 nsQuarantine&
Sweeping Sweep

(Total 13919700 KB) 2265ms

Init Completion 435 ns
Set Completion 428 nsDelayed Execution

until Completion Timeout For Completion User-defined
(default=1000us)

overhead than DEC. The performance overhead of composite
policies is not significantly different from that of individual
policies. Among the various sub-items, Dhrystone and
File Copy have the largest performance impact. The overall
average performance overhead is extremely low, with the
largest performance overhead being 1.047%. The test results
illustrate the lightweight, efficient, and flexible multi-policy
combination of VulShield.

3) Microbenchmark: In order to more accurately deter-
mine the performance overhead caused by VulShield, this work
sets up a microbenchmark test. Specifically, the measured tar-
get is executed 10 times, and the median of all measurements
is selected as the test result. To obtain accurate measurement
results, this work refers to the measurement method using
TSC [9] and uses tsc_khz to convert the number of clock
cycles into time units (such as nanoseconds and milliseconds)
to obtain more intuitive results.
Results. As shown in Table VII, the mitigation action is
remarkably lightweight, which enhances its applicability in
real-time systems. The expression-based detection mechanism
includes three actions: counter addition and subtraction, and
expression-based detection. The operations related to counter
addition and subtraction are particularly efficient, requiring
only about 100 nanoseconds. In contrast, expression-based
detection, which requires the manipulation of multiple vari-
ables, takes longer, about 1138 nanoseconds. Despite the
relative increase, this duration remains within acceptable limits
for timely processing. VulShield uses the Quarantine and

TABLE VIII: Policy Generation Time.

Example Step Time

CVE-2021-42008
Bug report Analysis 0.046s

Static Analysis 1.143s

Policy Lowering 8m41.869s

6dc9ae7 [50] Bug report Analysis 0.068s

Policy Lowering 6m53.238s

Sweeping (QS) mechanism to address temporal memory safety
violations, with two main actions. The first action verifies the
presence of memory objects in quarantine to detect duplicate
frees before placing them in quarantine. Then the sweeping
action scans the entire memory space, which, according to
the statistics, is 13,919,700 KB in total. The sweep process
is initiated only when the amount of space to be released
reaches a pre-defined threshold and is executed in a separate
thread to minimize disruption. Although the execution time
for this action is 2265 milliseconds, the performance overhead
is considered acceptable in the context of the overall system
operation. In addition, this work uses the Delayed Execution
until Completion (DEC) mechanism to mitigate the race
condition. The Init Completion and Set Completion actions
effectively act as lock and unlock operations, respectively.
The timeout threshold for the Wait For Completion function
is a user-defined parameter, which in this paper is set to 1000
microseconds by default. This flexibility allows for customized
settings that optimize the balance between security measures
and system performance.

E. Generation Time Analysis.

We further showcase the time demanded for generating
policies. In general, VulShield could automatically generate
policies effectively within several minutes. To validate it,
we selected CVE-2021-42008 to represent the generation of
policies based on expression and 6dc9ae7 to represent the
generation of policies using other mitigation. We then use the
Linux time command to measure the policy generation time.
The test results are shown in Table VIII. 6dc9ae7 does not
require analysis of expressions, so there is no static analysis

13

phase. The time to analyze the sanitizer reports is less than
0.1 ms, and since the static analysis is only in the target
function, it is completed within a few seconds. In addition,
since both vulnerabilities are kernel-related, VulShield use
pyelftools parses the kernel’s ELF and debug information,
which adds some time cost. Thus, the translation from source-
level policy to binary-level policy is the most time-consuming,
taking several minutes. Moreover, the policy for CVE-2021-
42008 incurs greater time demand due to the need to analyze
and obtain the actual offset of the target object within the
structure during the policy lowering. Because the kernel con-
tains more information and is considered more complicated,
parsing its ELF and debug information takes longer than what
is typically required for most user-space programs. As a result,
VulShield generates policies for user-space programs more
quickly. These experimental results indicate that the time cost
for VulShield to automatically generate policies is manageable,
which has significant benefits in temporary protection.

VII. DISCUSSION

Scalability of VulShield. As analyzed in Section VI-C, the
underlying framework of VulShield is capable of supporting
a broader range of vulnerabilities. However, the detection
capabilities of existing sanitizers limit the types of vulnera-
bilities for which VulShield can automatically generate poli-
cies. Developers who wish to extend VulShield’s support for
additional vulnerabilities can manually compose source-level
policies, thereby achieving a semi-automated policy generation
process. Alternatively, VulShield could be adapted to support
more sanitizers, thereby enhancing its ability to automatically
generate policies. In summary, the potential of VulShield for
temporary protection is positive and promising.
Policy generation limitations. When the sanitizer report is
incomplete, such as one lacking crucial details like call stack
information, VulShield cannot generate a policy. Sanitizer
reports provide detailed insights into detected vulnerabilities,
including the exact locations in the source code where issues
occur and the conditions under which they are triggered. This
information is necessary for VulShield to generate a policy.
Future work. VulShield provides temporary protection
against vulnerability exploitation based on sanitizer reports.
The solution might not completely stop all possible ways
of triggering the vulnerability if not covered in the sanitizer
reports. However, the goal of VulShield is not to completely fix
a vulnerability— official patch releases should do that—but to
automatically and quickly provide vulnerability remediation.
In the future, we plan to integrate VulShield with automated
vulnerability root cause analysis tools [13] to generate more
comprehensive temporary protection policies.

VIII. RELATED WORK

Live kernel patching. Several live patching tools have
been proposed by industry engineers for the Linux kernel.
For instance, Ksplice [11] and kpatch [5] apply patches at
the instruction or function level, while kGraft [4] maintains
both vulnerable and patched versions of target functions and

dynamically selects which version to execute. However, using
these tools requires developers to determine the appropriate
hot patch, which is unnecessary in the case of VulShield.
Patch migration. Some work has focused on adapting of-
ficial patches to different kernel or application versions. For
example, KARMA [16] and VULMET [57] generate adaptive
source or binary patches for different versions. patchDroid [40]
uses a dynamic code injector to apply binary patches in mem-
ory. RapidPatch [26] uses eBPF for device-specific patches.
VulShield does not focus on the same problem; it can mitigate
vulnerabilities before official patches are released.
Automatic detection and repair. Some research efforts
attempt to automatically detect and repair certain vulnerabil-
ities. First-Aid [24] is designed to detect memory bugs in
applications and can generate and apply runtime patches for
such memory bugs. DIRA [48] focuses primarily on detecting
and repairing control flow hijacking attacks. It removes the
associated control flow hijacking vulnerabilities from the pro-
gram by recompiling it. These studies are limited to detecting
and fixing specific vulnerabilities and are not intended to
temporarily mitigate real-world vulnerabilities. First-Aid pri-
marily verifies the consistency effect of generated patches and
generates diagnostic reports to accelerate patch development
by developers. DIRA, with a 25% performance overhead in its
repair process, is better suited for identifying vulnerabilities in
development rather than providing temporary protection. Thus,
these works are more focused on streamlining the development
of official patches, which is outside the scope of VulShield.
Input filtering. Another line of work tries to filter or alter
the input that can trigger the vulnerability. Bouncer [17] imple-
ments input filters by combining static analysis and dynamic
symbolic execution to filter malicious inputs; VSEF [42] is
a similar idea to prevent malicious attacks by filtering out
specific inputs. SOAP [37] is an automatic input rectifica-
tion system designed specifically for overflow vulnerabilities.
These studies mainly target vulnerabilities activated by func-
tion inputs. However, certain complex vulnerabilities, such as
Use-After-Free (UAF) and data races, cannot be prevented by
merely filtering function inputs. Additionally, changing func-
tion inputs could lead to unforeseen side effects. Therefore,
VulShield avoids altering function inputs, concentrating on
detecting and blocking the exploitation of vulnerabilities.
Temporary protection. InstaGuard [15] determines whether
an attack exists by combining the data collected by the
watchpoints and kills the process or logs the attack if detected.
VulShield is similar to InstaGuard in that it supports temporary
protection of vulnerabilities by providing patching policies
rather than patching code directly. However, InstaGuard re-
quires the target application to load the libraries in advance and
therefore increases the attack surface besides failing to protect
applications already running. Besides, InstaGuard’s detection
points are limited in the number of hardware breakpoints,
resulting in limited policies that InstaGuard can deploy. Vul-
Shield does not rely on hardware breakpoints or watchpoints,
allowing it to scale efficiently and monitor numerous processes
and threads. Talos [28] and RVM [29] avoid the execution

14

of vulnerable functions by returning with an error code,
regardless of whether this vulnerability is triggered or not.
Unlike these two works, VulShield only uses the error handling
mechanism when a potential attack is detected. Bowknot [52]
undoes the effects of kernel bugs after they’re triggered. Unlike
Bowknot, VulShield proactively protects against vulnerabilities
in both userspace programs and the kernel before exploitation.
Bowknot also requires additional code instrumentation and
manual preprocessing that VulShield does not. PET [55] uses
kernel sanitizer reports to identify the conditions that trigger
vulnerabilities of the targeted kernel, applying eBPF during
runtime to monitor and react if these conditions occur. Com-
pared to PET, VulShield offers broader coverage, addressing
additional vulnerability types, including those in user space,
which PET cannot cover. Moreover, PET’s dependence on
eBPF’s newer version limits its applicability. PET also requires
custom BPF helper functions that require modification of the
kernel source code, which prevents its deployment on kernels
already in use. VulShield operates without kernel modifica-
tions and can be applied across different kernel versions.

IX. CONCLUSION

VulShield provides a fast and efficient temporary solution to
mitigate vulnerability exploitation. VulShield utilizes policies
for effective mitigation. It comprises a policy generation
engine that rapidly generates effective mitigation policies and
a runtime mitigation component that efficiently detects and
prevents vulnerability exploitation during runtime processes.
Our experiments show that VulShield can effectively mitigate
at least 9 different types of vulnerabilities. Specifically, for
Nginx, each request introduces up to 0.001 ms of latency,
and the maximum performance overhead of UnixBench is
1.047%. These results show that VulShield can effectively
shield against various vulnerabilities without interfering with
the normal execution of applications and kernels.

ACKNOWLEDGEMENT

We would like to thank our shepherd and anonymous re-
viewers for their insightful comments and feedback. This work
was supported, in part, by the National Natural Science Foun-
dation of China (U24A20337), National Key R&D Program
of China (2021YFB2701000), the Joint Research Center for
System Security, Tsinghua University (Institute for Network
Sciences and Cyberspace) - Science City (Guangzhou) Digital
Technology Group Co., Ltd., and HUAWEI Technologies.

REFERENCES

[1] “2023 cve data review,” https://jerrygamblin.com/2024/01/03/
2023-cve-data-review/.

[2] “How long does an http request take?” https://decadecity.net/blog/2012/
09/15/how-long-does-an-http-request-take.

[3] “Introducing ebpfguard: A library for inline mitigation of
threats using lsm hooks,” https://www.deepfence.io/blog/
ebpfguard-a-library-for-inline-mitigation-of-threats/.

[4] “kgraft: Live patching of the linux kernel.” https://documentation.suse.
com/sles/12-SP5/html/SLES-kgraft/index.html.

[5] “kpatch: Dynamic kernel patching,” https://www.redhat.com/zh/blog/
introducing-kpatch-dynamic-kernel-patching/.

[6] “Open reports in syzbot,” https://syzkaller.appspot.com/upstream/open.

[7] “American fuzzy lop,” https://github.com/google/AFL, 2014.
[8] “syzkaller - kernel fuzzer,” https://github.com/google/syzkaller, 2016.
[9] (2022) Measuring time. [Online]. Available: https://cseweb.ucsd.edu/

classes/wi22/cse221-a/timing.html
[10] S. Ainsworth and T. M. Jones, “Markus: Drop-in use-after-free

prevention for low-level languages,” 2020 IEEE Symposium on
Security and Privacy (SP), pp. 578–591, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:212425000

[11] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless kernel
updates,” in Proceedings of the 4th ACM European conference on
Computer systems, 2009, pp. 187–198.

[12] M. T. Azim, I. Neamtiu, and L. M. Marvel, “Towards self-healing
smartphone software via automated patching,” in Proceedings of the
29th ACM/IEEE international conference on Automated software engi-
neering, 2014, pp. 623–628.

[13] T. Blazytko, M. Schlögel, C. Aschermann, A. Abbasi, J. Frank,
S. Wörner, and T. Holz, “{AURORA}: Statistical crash analysis for
automated root cause explanation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 235–252.

[14] B. Cantrill, M. W. Shapiro, A. H. Leventhal et al., “Dynamic instrumen-
tation of production systems.” in USENIX Annual Technical Conference,
General Track, 2004, pp. 15–28.

[15] Y. Chen, Y. Li, L. Lu, Y.-H. Lin, H. Vijayakumar, Z. Wang, and
X. Ou, “Instaguard: Instantly deployable hot-patches for vulnerable
system programs on android,” in 2018 Network and Distributed System
Security Symposium (NDSS’18), 2018.

[16] Y. Chen, Y. Zhang, Z. Wang, L. Xia, C. Bao, and T. Wei, “Adaptive
android kernel live patching,” in 26th {USENIX} Security Symposium
({USENIX} Security 17), 2017, pp. 1253–1270.

[17] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado, “Bouncer:
Securing software by blocking bad input,” in Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, 2007, pp.
117–130.

[18] L. Developers, “Undefined behavior sanitizer,” 2017.
[19] DWARF Committee. (2023) Dwarf debugging information format.

[Online]. Available: https://dwarfstd.org/
[20] M. Erdős, S. Ainsworth, and T. M. Jones, “Minesweeper: a “clean

sweep” for drop-in use-after-free prevention,” in Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2022, pp. 212–225.

[21] M. Fleming, “A thorough introduction to ebpf,” Linux Weekly News,
vol. 3, 2017.

[22] Frederick Lawler. Live-patching security vulnerabilities inside the linux
kernel with ebpf linux security module. [Online]. Available: https:
//blog.cloudflare.com/live-patch-security-vulnerabilities-with-ebpf-lsm/

[23] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in Proceedings of the 2006 SIGCOMM workshop on Large-
scale attack defense, 2006, pp. 131–138.

[24] Q. Gao, W. Zhang, Y. Tang, and F. Qin, “First-aid: surviving and prevent-
ing memory management bugs during production runs,” in Proceedings
of the 4th ACM European Conference on Computer systems, 2009, pp.
159–172.

[25] Google. byte-unixbench. [Online]. Available: https://code.google.com/
archive/p/byte-unixbench/

[26] Y. He, Z. Zou, K. Sun, Z. Liu, K. Xu, Q. Wang, C. Shen, Z. Wang,
and Q. Li, “{RapidPatch}: Firmware hotpatching for {Real-Time}
embedded devices,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 2225–2242.

[27] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutralizing
vulnerabilities with security workarounds for rapid response,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 618–
635.

[28] ——, “Talos: Neutralizing vulnerabilities with security workarounds for
rapid response,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 618–635.

[29] Z. Huang and G. Tan, “Rapid vulnerability mitigation with security
workarounds,” in Proceedings of the Workshop on Binary Analysis
Research (BAR’19), 2019.

[30] Isaac Casanova. (2017) Apple rolls back roll-
out.io. [Online]. Available: https://medium.com/@isaacacasanova/
apple-rolls-back-rollout-io-6a9a6cd9702f

[31] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen, “Detecting past
and present intrusions through vulnerability-specific predicates,” ACM
SIGOPS Operating Systems Review, vol. 39, no. 5, pp. 91–104, 2005.

15

[32] J. Keniston and S. Dronamraju, “Uprobes: User-space probes,” Linux
Foundation Collaboration Summit, 2010.

[33] J. Keniston, P. S. Panchamukhi, and M. Hiramatsu, “Kernel probes
(kprobes),” Documentation provided with the Linux kernel sources (v2.
6.29), 2016.

[34] F. Li and V. Paxson, “A large-scale empirical study of security patches,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 2201–2215.

[35] Y. Li, W. Tan, Z. Lv, S. Yang, M. Payer, Y. Liu, and C. Zhang,
“Pacmem: Enforcing spatial and temporal memory safety via arm pointer
authentication,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, 2022, pp. 1901–1915.

[36] linux kernel. (2020) Vt_disallocate freeing in-use virtual console. [On-
line]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/commit/?id=ca4463bf8438b403596edd0ec961ca0d4fbe0220

[37] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard, “Au-
tomatic input rectification,” in 2012 34th International Conference on
Software Engineering (ICSE). IEEE, 2012, pp. 80–90.

[38] H. Lu, S. Wang, Y. Wu, W. He, and F. Zhang, “Moat: Towards safe bpf
kernel extension,” arXiv preprint arXiv:2301.13421, 2023.

[39] S. A. Mokhov, M.-A. Laverdiere, and D. Benredjem, “Taxonomy of
linux kernel vulnerability solutions,” in Innovative Techniques in Instruc-
tion Technology, E-learning, E-assessment, and Education. Springer,
2008, pp. 485–493.

[40] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, “Patchdroid:
Scalable third-party security patches for android devices,” in Proceed-
ings of the 29th Annual Computer Security Applications Conference,
2013, pp. 259–268.

[41] National Vulnerability Database. (2021) Cve-2021-3490. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2021-3490

[42] J. Newsome, D. Brumley, D. Song, J. Chamcham, and X. Kovah,
“Vulnerability-specific execution filtering for exploit prevention on com-
modity software.” in NDSS, 2006.

[43] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “parmesan:
Sanitizer-guided greybox fuzzing,” in Proceedings of the 29th USENIX
Security Symposium (Security), Boston, MA, Aug. 2020.

[44] J. Schulist, D. Borkmann, and A. Starovoitov, “Linux socket filtering
aka berkeley packet filter (bpf),” Documentation/networking/filter. txt,
2018.

[45] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Presented as part of the
2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12),
2012, pp. 309–318.

[46] R. Shariffdeen, X. Gao, G. J. Duck, S. H. Tan, J. Lawall, and A. Roy-
choudhury, “Automated patch backporting in linux (experience paper),”
in Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021, pp. 633–645.

[47] Y. Shi, Y. Zhang, T. Luo, X. Mao, Y. Cao, Z. Wang, Y. Zhao, Z. Huang,
and M. Yang, “Backporting security patches of web applications: A
prototype design and implementation on injection vulnerability patches,”
in 31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1993–2010.

[48] A. Smirnov and T.-c. Chiueh, “Dira: Automatic detection, identification
and repair of control-hijacking attacks.” in NDSS. Citeseer, 2005.

[49] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th international conference on compiler
construction. ACM, 2016, pp. 265–266.

[50] syzbot. (2023) Kasan: use-after-free read in mad-
vise_update_vma. [Online]. Available: https://syzkaller.appspot.com/
bug?id=6dc9ae7ccfcf2d2e5237d4e68f1c9f63e866d0ef

[51] ——. (2023) Kcsan: data-race in netlink_getname / netlink_insert
(4). [Online]. Available: https://syzkaller.appspot.com/bug?id=
a834b993b63ed43938194af3accb08c0a5042877

[52] S. M. S. Talebi, Z. Yao, A. A. Sani, Z. Qian, and D. Austin, “Undo
workarounds for kernel bugs,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 2381–2398.

[53] X. Wang, K. Sun, A. Batcheller, and S. Jajodia, “Detecting" 0-day"
vulnerability: An empirical study of secret security patch in oss,” in

2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2019, pp. 485–492.

[54] Y. Wang, C. Zhang, Z. Zhao, B. Zhang, X. Gong, and W. Zou,
“{MAZE}: Towards automated heap feng shui,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 1647–1664.

[55] Z. Wang, Y. Chen, and Q. Zeng, “{PET}: Prevent discovered errors
from being triggered in the linux kernel,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023, pp. 4193–4210.

[56] ——, “{PET}: Prevent discovered errors from being triggered in the
linux kernel,” in 32nd USENIX Security Symposium (USENIX Security
23), 2023, pp. 4193–4210.

[57] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and Y. Liu,
“Automatic hot patch generation for android kernels,” in 29th {USENIX}
Security Symposium ({USENIX} Security 20), 2020, pp. 2397–2414.

[58] C. Yagemann, S. P. Chung, B. Saltaformaggio, and W. Lee,
“PUMM: Preventing Use-After-Free using execution unit partitioning,”
in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
823–840. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/yagemann

[59] S. Yang, Y. Xiao, Z. Xu, C. Sun, C. Ji, and Y. Zhang, “Enhancing oss
patch backporting with semantics,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 2366–2380.

[60] L. Zhao, Y. Zhu, J. Ming, Y. Zhang, H. Zhang, and H. Yin,
“Patchscope: Memory object centric patch diffing,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 149–165. [Online]. Available: https:
//doi.org/10.1145/3372297.3423342

APPENDIX

Wang et al. [53] characterized the security patches in open-
source software (OSS). They revealed that security patches
tend to modify a smaller amount of code compared to non-
security patches. Additionally, security patches were observed
to have a higher likelihood of modifying operators and
operands.

Mokhov [39] identified that approximately 25% of Linux
kernel security patches addressed vulnerabilities by ensuring
the validity of function input parameters. Moreover, over 18%
of security patches involve checking the error status of certain
functions, i.e., the return value. These observations align with
similar findings from VULMET [57] and KARMA [16], which
propose that most Linux kernel security vulnerabilities stem
from malicious inputs, and protection can be achieved through
filtering these inputs. Furthermore, PatchScope [60] found
that 43.5% of official patches for such vulnerabilities utilize
security checks similar to dynamic vulnerability detection
mechanisms. Additionally, 25.1% of official patches modify
existing security checks to address the vulnerabilities. These
security checks can often be expressed using expressions,
resulting in approximately 70% of official patches for such
vulnerabilities being expressible in this manner.

The extensive analysis of security patches outlined above
indicates the central role played by expressions in delineating
security patches for the majority of vulnerabilities.

16

TABLE A.9: Security patch analysis details.

Vulnerability Type CVE No. Vulnerability Type CVE No.

CWE-20

CVE-2011-2518, CVE-2012-2136, CVE-2012-6647, CVE-2012-6696, CVE-2013-1763,
CVE-2013-1819, CVE-2013-4254, CVE-2013-4587, CVE-2013-6380, CVE-2013-7015,
CVE-2014-0038, CVE-2014-1874, CVE-2014-4611, CVE-2014-8323, CVE-2014-8324,
CVE-2014-9584, CVE-2015-3288, CVE-2015-5685, CVE-2015-7509, CVE-2016-4809,

CVE-2016-5351, CVE-2016-6515, CVE-2016-9390, CVE-2017-1000252,
CVE-2017-14169, CVE-2017-14230, CVE-2017-15868, CVE-2017-5226,
CVE-2017-6837, CVE-2018-10087, CVE-2018-14361, CVE-2018-8050

CWE-287 CVE-2016-7144,
CVE-2016-7145

NVD-CWE-Other

CVE-2012-1013, CVE-2013-2130, CVE-2013-4265, CVE-2014-3631, CVE-2014-9491,
CVE-2015-4692, CVE-2015-7566, CVE-2015-8543, CVE-2015-8630, CVE-2015-8812,
CVE-2016-2186, CVE-2016-2187, CVE-2016-2188, CVE-2016-3136, CVE-2016-3137,
CVE-2016-3138, CVE-2016-3140, CVE-2016-3689, CVE-2016-4817, CVE-2016-4951,

CVE-2017-7273

CWE-617 CVE-2017-9499,
CVE-2018-15822

CWE-264
CVE-2011-0006, CVE-2011-0989, CVE-2011-1477, CVE-2011-2495, CVE-2011-4080,
CVE-2012-2319, CVE-2013-0268, CVE-2013-1774, CVE-2013-6383, CVE-2014-9922,

CVE-2015-2686, CVE-2015-9004, CVE-2016-10318
CWE-255 CVE-2011-4966

CWE-189
CVE-2011-2496, CVE-2012-2383, CVE-2012-2384, CVE-2012-2673,
CVE-2012-2674, CVE-2012-2675, CVE-2013-6367, CVE-2014-0791,
CVE-2014-3587, CVE-2015-4167, CVE-2016-2070, CVE-2016-3135

CWE-320 CVE-2016-10011

CWE-200 CVE-2011-2707, CVE-2013-1928, CVE-2013-1944, CVE-2014-2038, CVE-2015-8569,
CVE-2015-8575, CVE-2016-0823, CVE-2017-14954, CVE-2018-16658 CWE-404 CVE-2017-7472

CWE-399 CVE-2011-2479, CVE-2011-4326, CVE-2012-1583, CVE-2012-6697,
CVE-2013-2015, CVE-2013-5634, CVE-2013-7021, CVE-2014-9420 CWE-682 CVE-2017-8326

CWE-834 CVE-2017-14054, CVE-2017-14055, CVE-2017-14056, CVE-2017-14059,
CVE-2017-14170, CVE-2017-14171 CWE-704 CVE-2018-12453

NVD-CWE-noinfo CVE-2011-1182, CVE-2014-3480, CVE-2016-9842, CVE-2017-10662, CVE-2017-7184 CWE-74 CVE-2016-3695
CWE-269 CVE-2014-3153, CVE-2014-3534, CVE-2014-4943 CWE-770 CVE-2018-16645
CWE-284 CVE-2015-8845, CVE-2016-3713, CVE-2016-6198 CWE-824 CVE-2018-14356
CWE-388 CVE-2017-5577, CVE-2017-7616, CVE-2017-8072 CWE-835 CVE-2018-1999012
CWE-400 CVE-2011-2906, CVE-2012-6638, CVE-2017-14223 CWE-89 CVE-2013-7262
CWE-22 CVE-2011-3602, CVE-2018-14355 CWE-94 CVE-2017-8284

17

