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Abstract—Previous works have shown that Bluetooth is sus-
ceptible to so-called Method Confusion attacks. These attacks
manipulate devices into conducting conflicting key establishment
methods, leading to compromised keys. An increasing amount
of security-sensitive applications, like payment terminals, orga-
nizational asset tracking systems and conferencing technologies
now rely on the availability of a technology like Bluetooth. It is
thus an urgent goal to find and validate a mitigation to these
attacks or to provide an appropriate replacement for Bluetooth
without introducing additional requirements that exclude device
or user groups. Despite recent solution proposals, existing threat
models overlook certain attack vectors or dismiss important
scenarios and consequently suffer under new variants of Method
Confusion.

We first propose an extended threat model that appreciates the
root issue of Method Confusion and also considers multiple pair-
ing attempts and one-sided pairings as security risks. Evaluating
existing solution proposals with our threat model, we are able
to detect known Method Confusion attacks, and identify new
vulnerabilities in previous solution proposals. We demonstrate
the viability of these attacks on real-world Bluetooth devices.
We further discuss a novel solution approach offering enhanced
security, while maintaining compatibility with existing hardware
and Bluetooth user behavior. We conduct a formal security proof
of our proposal and implement it on commonplace Bluetooth
hardware, positioning it as the currently most promising update
proposal for Bluetooth.

I. INTRODUCTION

In an era where devices become increasingly specialized
and mobile, the demand for ad hoc connectivity has grown
exponentially. Modern applications often rely on a network of
wireless devices from various vendors, replacing traditional
hardwired setups. For instance, cash registers are increasingly
replaced by simple wireless card readers paired with tablets. In
organizations, many more application scenarios in the context
of logistics, supply chain, manufacturing and transportation
have emerged. Likewise, with the trend towards mobile work-
ing and home office the organizational device landscape has
substantially broadened.

While new application contexts increase flexibility and
trigger innovative uses, they also raise concerns. Applications
transfer sensitive data over and expose device interfaces to

the wireless medium, leading to strict requirements for secure
communication and authentication between those different
devices. Meanwhile, threats have become more surgical and
persistent, in particular, in the organizational context.

Recognizing this challenge, the need for secure connectivity
frameworks, devoid of centralized control, has never been
greater. This issue of decentralized ad hoc key establishment
is known as the Ad Hoc Pairing Problem, posing the challenge
on how one may establish a secure key between two devices
that share no prior information or root of trust.

Bluetooth is – with an estimated 5.4 billion Bluetooth [1]
devices shipped in 2023 – the de facto standard for appli-
cations that require ad hoc pairing. We attribute this to its
ease of use and support of a large range of device types, even
those with limited interfaces. Addressing security, Bluetooth
leverages an Out-of-Band (OOB) channel, usually drawing on
some form of user interaction, to exchange a small amount of
data to facilitate secure key establishment.

Recently, a series of attacks on Bluetooth were uncovered
that are collectively known under the umbrella term Method
Confusions (MCs) [2], [3]. These attacks allow an adversary
to Man-in-the-Middle (MitM) a pairing by leading the pairing
entities into conducting different pairing protocols, which
causes them to mishandle OOB data and eventually accept
compromised keys. The potential for MC was overlooked
during the design of Bluetooth since it was common practice to
analyze pairing protocols in an isolated fashion instead of con-
sidering their interaction with other available protocols in the
same standard. These attacks thus differ from previous threat
scenarios, as they point out a conceptual issue in the design
of ad hoc connectivity frameworks. Due to the wide reliance
on Bluetooth, it is an urgent goal of the stakeholder research
community to develop a fix or replacement to Bluetooth that
remains easy to use and does not limit device compatibility,
but does not suffer from any kind of MCs. In particular, in
the organizational context, leaving the task to recognize a
targeted threat such as MC to employees, just serves to further
aggravate the burden of the so-called “weakest link” and is
unlikely to succeed as prior user studies have shown [2].

Recent work has deepened our understanding of specific
MC attacks in the Bluetooth context [3], [4] using amended
threat models. Shi et al. [4] also proposed a patch for Bluetooth
that aims to mitigate the MC-based attacks that were known at
this point. However, despite the urgent need, before deploying
any proposal to fix MC into the Bluetooth standard, it must
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be evaluated carefully whether the issue has been addressed
in its entirety.

Our paper demonstrates that while solving specific MC-
related attacks, previous works failed to appreciate the greater
principles of the MC problem space, and thus missed im-
portant attack vectors. For instance, the proposed models do
not consider the possibility of an attacker initiating multiple
pairings on one device. Furthermore, they do not acknowledge
attacks where the attacker succeeds in establishing a connec-
tion to just one of the devices (i.e., one-sided pairing) as a
threat. We do not see any reason why these scenarios and
threats should be dismissed as they are practically feasible,
relevant and thus must be expected from sophisticated threat
actors in organizational settings.

This motivates our first contribution, the proposal of an
extended and more realistic threat model that is based on
modeling the fundamental problem behind MC. Drawing on
this more holistic threat model, we formally identify multiple
novel MC issues that persist despite the previous solution
approaches, including the work of Shi et al. [4]. In particular,
we uncover multiple new paths for an attacker to gain a MitM
position. We demonstrate the feasibility of these new attacks
by implementing and evaluating the proposal of Shi et al. [4]
as well as our attacks on off-the-shelf Bluetooth hardware.

The shortcomings of existing solution approaches motivate
our second contribution, i.e., the proposal of two pairing
methods that can be used concurrently without risk of MC and
would be a suitable replacement for Bluetooth without requir-
ing new hardware or further user education. We further show
that our proposal remains secure even under consideration of
the extended threat model, exceeding the security guarantees
of previous works in crucial points. Eventually, we provide
an implementation of our proposal that runs on commonplace
Bluetooth hardware. We hope that our contributions will mo-
tivate an improved design for upcoming Bluetooth iterations
that plan to address the MC issue.

In summary, our contributions are as follows:

• We extend previous threat models by modeling the root
cause of MC instead of focusing only on the known MC-
based attacks.

• Using the new threat model, we show that the only
previous proposal that even considers MC suffers multiple
novel variants of MC attacks and demonstrate these
attacks on Bluetooth hardware.

• We design a new connectivity framework that supports
the same device and user pool as Bluetooth and reduces
user interactions compared to previous proposals.

• We provide a formal proof for the security of this
new connectivity framework under our extended threat
model, which makes it currently the only secure ad hoc
connectivity framework that is a suitable iteration for
Bluetooth.

• By implementing our proposal for commonplace Blue-
tooth hardware, we showcase its practical feasibility.

II. BACKGROUND

To set the stage, we begin by properly introducing the
challenge of ad hoc pairing and explain the methods used
by secure connectivity frameworks like Bluetooth, including
needed cryptographic primitives. Subsequently, we provide a
short overview over previous security models and proofs of
existing pairing methods, as well as relevant attacks on them.

A. The Ad Hoc Pairing Problem

An increasing amount of modern applications are centered
around the cooperation between physically separate device
units. Most of these devices are sold separately by various
vendors and are meant to be connected and disconnected an
arbitrary number of times [5].

When establishing a secure communication key between
such devices, the availability of a central authentication service
is not guaranteed or raises privacy issues. Further, any cen-
trally managed identity or ownership management promotes
dependency on a single vendor leading to vendor lock-in and
isolated ecosystems. Taken together, this results in a situation
where these devices cannot rely on any common root of trust.

However, a user who brings such devices into contact can
interact with them and support the pairing. Some protocol
designs have the user exchange a small amount of information
between the devices from which a Long-Term Key (LTK)
could be derived (e.g., WPA Passphrase, Bluetooth Passkey).
Other approaches require the user to bring the devices into
a situation where (only) these devices can simultaneously
observe an external signal like surrounding acoustic noise.
In any of these scenarios, the user is tasked with creating a
situation in which the devices have exclusive access to some
secure communication channel (OOB channel [6]). In other
words, the pairing protocol should assure that only devices that
have access to this channel (as selected by the user) know the
eventually derived shared key. This specific situation can be
referred to as the Ad Hoc Pairing Problem. In the following,
we will move away from the concept of physical devices and
will instead refer to entities to allow for the possibility of
virtual devices that may share the same physical hardware.

Since the interfaces of entities vary, different methods for
ad hoc pairing exist. For instance, an entity that has a display,
but offers no option for input, is supported by different pairing
methods than a device that only has a keyboard but no output
capabilities. Thus, a connectivity framework like Bluetooth
must support the coexistence of multiple communication pro-
tocols and pairing methods to be widely applicable and useful,
which, however, sets the stage for MC attacks.

B. Concept of Out of Band Communication

Next to the public insecure communication path, an OOB
channel is a secondary connection between two entities that
fulfills certain security properties. Each OOB is characterized
by the entities that can access it. In the context of device
pairing, we call those entities Legitimate Pairing Partners
(LPPs) referring to the partners that were selected by the user.
Two security properties of OOBs are relevant in this work.
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Confidentiality: Only the LPPs may receive information from
a confidential OOB channel. Authentic OOB Channels: Only
LPPs may enter information into such channels.

Typically, OOB channels are considered to have low ca-
pacity and, therefore, cannot be used to directly exchange
cryptographic key material. In the remainder of this work
and in accordance with the Bluetooth specification and related
proofs, we will assume authenticity for every mentioned OOB
channel and will point out when confidentiality is additionally
assumed. In the figures, we will mark authentic OOB com-
munication as blue dotted arrows. Confidential and authentic
OOB communication is highlighted with red dotted arrows.

C. Commitment Schemes
Many ad hoc pairing protocols utilize cryptographic com-

mitment schemes. The concept of commitment schemes gen-
erally allows one party to commit to a value and publish
a commitment without revealing the value itself. At a later
point, this party can reveal the committed upon value, which
can then be verified by others using the commitment. Com-
mitment schemes generally strive to guarantee two possible
properties [7]. Binding: After committing to a value, one
cannot deviate and reveal a different value without failing
the verification of the commitment. Hiding: By receiving
a commitment, the receiver gains no information about the
message. Furthermore, we can say that a commitment scheme
is computationally Binding or computationally Hiding when
the Hiding and Binding properties at least hold under the
assumption of an adversary that is limited to performing any
Probabilistic Polynomial Time (PPT) algorithm [7]. In the
following, we will formalize this through a function H that
can create the commitment C = H(N) for a value N . This
commitment can be shared. When N is revealed, C = H(N)
can be verified to assure that no deviation has occurred.

D. PAKE
A Password Authenticated Key Exchange (PAKE) is an

interactive two-party or multi-party protocol [8]. To participate
in the protocol, each party uses a short value, the password,
as input. Through its execution, the same cryptographically
strong key is yielded to each party that participated suc-
cessfully. Parties that did not successfully participate gain
no information about the value of that key. A party can
only participate successfully in a protocol execution if it uses
the same password as the others. Thus, the method assures
that only parties that know (or guess) the password learn
the derived shared key. Note that an attacker has only one
chance to guess a password in this setting as he otherwise
fails the protocol participation. Multiple PAKE protocols and
implementations have been proven secure [9]–[11]. In this
work, we will consider PAKE as a cryptographic primitive that
yields a secure key to the parties that use the same password.

E. Bluetooth Pairing
In Bluetooth, LPPs exchange public keys and perform a

Diffie-Hellman (DH) key exchange to establish a communica-
tion key. To protect this key establishment, Bluetooth offers to
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Fig. 1. NC fingerprint calculation phase.

verify the exchanged public keys through a so-called Authen-
tication Stage [12]. There are two protocols that can act in this
stage which claim to protect the pairing from an active MitM
attacker, Passkey Entry (PE) and Numeric Comparison (NC).
Which of those protocols is used is decided by the capabilities
of the devices. Note, those capabilities are advertised in an
unencrypted and thus insecure IOCapabilitiesExchange at the
start of the pairing and can be influenced by the attacker.

In PE, the two sides of the protocol, the sender SPE and
receiver RPE , establish a short secret through the OOB, the
Passkey. Subsequently, SPE and RPE use the exchanged
Passkey to authenticate the public keys through a round-based
commitment scheme. This concept assures that the authentica-
tion cannot be intercepted by an attacker that does not know
the Passkey. A more detailed explanation and diagrams of the
protocol can be found in the extended Appendix [13].

In NC, the two sides of the protocol, ANC and BNC ,
leverage the OOB to compare fingerprints of the public keys.
Note that different to the Passkey of PE this fingerprint is not
secret. The user compares the fingerprints and confirms on
both sides only if they are equal. Only upon confirmation, a
device trusts the public keys. The phase calculating the finger-
print is shown in Fig. 1. First, ANC and BNC each choose
nonces NA and NB . Then, BNC publishes a commitment
on NB . When ANC receives the commitment, it publishes
NA upon which BNC reveals NB , which is subsequently
verified by ANC using the commitment. The fingerprint is then
calculated by applying a cryptographic hash function to the
local and exchanged nonces (NA, NB , NA

′, NB
′) and public

keys (pubA, pubB , pubA′, pubB
′).

After the Authentication Stage, both sides conduct a so-
called LTK Validation stage. This is essentially a challenge
response exchange to verify that they have indeed derived
the same key. We refer to the extended Appendix [13] for
a detailed diagram. After successful completion of this stage,
the pairing is considered complete, session keys are derived
and the connection is encrypted.

III. RELATED WORK

Early attempts of showing security for ad hoc pairing
protocols [14]–[19] often disregard that in ad hoc scenarios the
LPPs have no basis to authenticate which protocol the other
side is actually performing in a pairing. Instead, these proofs
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blindly assume that both sides would each correctly perform
one side of the same protocol, thereby ignoring the possibility
of MC. Most recently, automated proofs that consider MC
were developed for the Bluetooth connectivity framework [4],
[20], [21] and were able to confirm multiple specific attacks
that relate to the MC issue. Note that our work targets the
general problem of MC and not certain specific attacks.

A. Known Method Confusion Attacks

The issue of MC was primarily considered by our prior
work [2], who show that an attacker is in principle able to
trick two pairing Bluetooth devices into conducting different
methods since the negotiation of the pairing protocol cannot
be authenticated in an ad hoc setting. Furthermore, they argue
that it is infeasible for the devices or the user to detect
this confusion. They further show that when NC and PE are
combined in a pairing the assumptions that usually provide
MitM protection in these modes do not hold anymore. Thus,
an attacker is able to gain a MitM position between the
unsuspecting devices. Follow-up research by Claverie et al. [3]
points out that Bluetooth also supports two legacy modes for
reasons of backwards compatibility to old devices. As previous
works [22], [23] have shown, these legacy methods leak
every value they receive or send on the OOB. Claverie et al.
demonstrate that when these legacy modes are confused in a
pairing with NC or PE, the security guarantees that ordinarily
should provide MitM protection are not fulfilled anymore
providing the attacker the opportunity to become MitM.

B. Solution Attempts Addressing MC

Since the discovery of MC attacks, there was no connectiv-
ity framework available that could be considered secure while
supporting a similar device diversity and user landscape as
Bluetooth. While in our prior work which discovered MC [2],
we proposed initial ideas on how the attack could be mitigated,
a detailed analysis of these mitigations by Shi et al. [4] found
that those suggestions either required additional hardware
functionality, severely reduced device connectivity or added
very strong assumptions about user behavior and interfaces.

Shi et al. [4] then made a proposal to extend Bluetooth
by the pairing methods Patched NC (PNC) and Patched PE
(PPE), thereby creating the first connectivity framework that
considered MC and did not increase hardware requirements or
reduced connectivity in comparison to Bluetooth. At the start
of their execution, those pairing protocols behave identically to
NC and PE, but then require another user interaction that aims
to detect MC. In the following, we will refer to the protocol
sides as APNC and BPNC for PNC and SPPE and RPPE

for PPE, respectively.
As shown in Fig. 2, in the second user interaction stage

of PPE each pairing partner calculates a 6-digit hash over
the Passkey s and messages exchanged earlier to determine
the conducted pairing protocol (req, rsp). After the value is
transferred by the user, this allows RPPE to verify their LPP
is indeed running SPPE .

RPPETPSPPE

PE authentication method

s2S = g3(s, req, rsp) s2R = g3(s, req, rsp)

display s2S enter s2S

check s2S == s2R

Fig. 2. PPE Method.

BPNCTPAPNC

NC authentication method

VA2 = g3(VA, req, rsp) VB2 = g3(VB , req, rsp)

display VA2 display VB2
compare

Fig. 3. PNC Method.

Similarly, in the second user interaction stage of PNC
(Fig. 3), each pairing partner calculates a 6-digit hash over the
previously displayed values (VA/B) and protocol determining
messages (req, rsp). Subsequently, both devices wait for
confirmation. Note, that this requires the user to interact
twice with each device, opposite to Bluetooth where just one
interaction is required, increasing opportunity for user errors.
Further note, that if an APNC or BPNC protocol side is
confused with a RPPE protocol side, their model states that
the user must always confirm on the PNC side. Their security
analysis disregards the threat of such single-sided pairings and
is instead only concerned with full MitM compromises.

C. Problems in Related Work Addressing MC

Despite these advances to accommodate the MC issue, the
threat models of previous works still overlook an important
aspect of ad hoc pairing. All current models assume that an
attacker can only confuse two pairings with each other in
order to gain a MitM position. Practically though, there is
no reason why an attacker could not initiate multiple pairing
executions on one entity during an attack. This consideration
offers malicious parties a whole variety of new attack paths.
In fact, we later demonstrate how this oversight already has
serious implications for proposed mitigations of Shi et al.
by describing two novel MitM attacks on their protocol. To
prevent those oversights in the future and to lay a foundation
for this demonstration, we propose a new threat model that
takes a broader view on the issue of Ad Hoc Pairing and shows
a new way to structure security proofs for Ad Hoc Pairing.

D. General Bluetooth Mitigations

Recent works also suggested general mitigation strategies
against Bluetooth attacks. While none of these apply to the
case of MC in ad hoc pairing scenarios, we still provide them
for purpose of contextual overview. Prior work [24] suggested
to introduce a secondary security layer to Bluetooth that relies
on a global Public Key Infrastructure (PKI) and a universal and
independent certification authority to verify device identities
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during or after the pairing. However, this assumes the existence
of such infrastructure, which moves beyond the ad hoc pairing
context and addresses a different problem space (cf. discussion
in II-A). Others [25] proposed a stateful monitoring layer to
detect ‘suspicious’ sequences of Bluetooth packets. This does
not apply to the issue of MC since there are no indicators for
the isolated party that an attack is occurring. We believe, this
is why their work does not consider MC in its analysis (see
Table 3; [25]).

IV. AD HOC ECOSYSTEM THREAT MODEL

We first define the concept of Ad Hoc Ecosystems. In
an Ad Hoc Ecosystem, the possible behavior of each entity
is clearly defined, multiple executions as well as MC are
considered, and OOB communication is modeled in a unified
and standardized way. We will introduce the core concepts of
Ad Hoc Ecosystems and then demonstrate how our approach
can help to drastically reduce the required amount of cases that
have to be considered in a security analysis. Consequently, this
approach allows us and fellow researchers to develop succinct
formal security proofs for connectivity frameworks.

First, we say that LPPs that could encounter each other
in ad hoc pairing are all considered to be part of the same
Ad Hoc Ecosystem. Every possible behavior of these partners
(e.g., which protocols they may perform) forms the Behavioral
Set of this Ad Hoc Ecosystem. Now, every entity in the Ad
Hoc Ecosystem must expect their pairing partner to show any
combination of behavior that is defined in the Behavioral Set
of their Ad Hoc Ecosystem.

The behavior of a LPP is naturally defined by its supported
Pairing Protocols. Each Pairing Protocol defines two roles, one
for each LPP. We call the full execution of one of these roles
a Role Execution (RE). The Behavioral Set is thus populated
by the possible REs of the supported pairing methods. We
consider REs as atomic and uninterruptible, i.e., once initiated
they will run until they decide to terminate (e.g., through
pairing failure).

A. Adversary

We model our adversary after the Dolev-Yao concept [26]
in which the attacker cannot access or manipulate data or
the program flow on the LPPs directly but can alter, delay
and read all messages that are transported over unprotected
channels (e.g., the public channel), thus potentially causing
certain events to be triggered on the LPPs. We assume that
the attacker is restricted to the use of PPT algorithms.

While we assume that no two REs can run concurrently
on one entity, we must consider that an attacker could cause
multiple REs to be performed in sequence. We will make the
practical assumption that there is an upper limit to the REs that
the attacker can initiate in sequence on an entity before a user
becomes suspicious or weary of the pairing process, which
we will consider as a terminal failure for the attacker. We
call this upper limit the Frustration Threshold. In preparation
to any security analysis, the Frustration Threshold needs to
be chosen with common sense criteria depending on the use

case in order to model the capabilities of the attacker. For
instance, this value could be chosen based on how long a user
is willing to wait for a pairing to complete, or how many OOB
interactions the user is willing to perform during the pairing.

This adversary model exceeds the definitions of previous
ones, which either did not consider MC at all [14], [15] or did
not consider a sequence of REs [3], [4]. We will see that this
caused in both cases an oversight of MCs.

B. Security Goal

The primary security goal of every RE is to establish an
LTK, if and only if it can verify that this key is exclusively
known to the LPPs. The attacker succeeds in breaking the
security of an RE, if she causes an LTK to be established
on the executing entity during the RE for which this does
not hold. We say that an RE is secure, if this probability is
lower than or equal to some security factor, which we denote
as µ. In this work, we only consider an Ad Hoc Ecosystem
secure to a factor µ if all REs in it are secure to a factor
µ. Note, this goal exceeds the definitions of the threat model
of Shi et al. [4] which only considers a pairing (and thus an
RE) as compromised if the attacker compromises both LPPs.
We argue against this restricted view, since even a single-
sided pairing may allow an attacker to use the services of the
paired device and to extract or insert information (e.g., cached
payment information, phone contacts, health data). Possible
security implications of single-sided pairing were already
discussed in [2]. We further provide step-by-step descriptions
of possible single-sided attack vectors in Appendix A-G. In
conclusion, we think that a connectivity framework should
avoid single-sided pairings by all means.

In sum, to show security for an RE in the Ad Hoc Ecosys-
tem, we need to evaluate all possible stackings of all the
possible REs of its Ad Hoc Ecosystem up to the considered
Frustration Threshold on both LPPs in which this RE may
occur. We then calculate the maximum probability of an
attacker to establish a compromised LTK during this RE on
the executing entity. The security of an Ad Hoc Ecosystem
is then determined by the highest security factor of any of
its REs.

C. Simplification of Security Analysis

There are a few practical assumptions which can be made to
make it more feasible to perform security proofs in our threat
model. We will now explain those assumptions and how they
can be used to simplify a security analysis.

First, for our simplification to apply we must be able to
assume that when an RE produces an LTK then it is kept
secret. Secondly, while an RE may use static information that
is inherent to the entity like UIDs or public keys, we assume
that no RE reuses data that was left in local memory from
previous REs. Note, that all REs used in this work fulfill these
assumptions.

Now, consider a security analysis that is supposed to show
the security of an RE τ on an entity X pairing with an
entity Y (see Section IV-B). We just assumed that the LTK is
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securely stored after the pairing. To show that the LTK cannot
already be compromised during the RE itself, a security proof
must be conducted for τ to determine an upper limit for its
security factor µ. These proofs show that the LTK derived
in some RE τ is secure if certain data handling rules were
adhered to during the execution of the Pairing Protocol; for
instance rules on which functions are applied to data or when
data is published. Note, that these proofs may make further
assumptions (e.g., computational limitations of the attacker),
which we will not consider, since they are not concerning
the behavior of the LPPs. As discussed, a pairing protocol
execution is always distributed among multiple REs on X
and Y . Thus, we can partition every RE security proof’s data
handling assumptions into two categories:

• A1: Assumptions about data handling performed by the
analyzed RE τ itself (e.g., assuring nonces are uniformly
random, nonces are not revealed before some event).
Since X is performing τ locally and τ is strictly defined,
these assumptions can directly be verified by analysis of
the specification of τ .

• A2: Assumptions about data handling performed by other
REs running on X or Y that interact with τ (e.g.,
displayed Passkey is a secret, numeric comparison value
is a hash).

Furthermore, we can say that for any RE security proof any
assumption of type A2 only ever concerns the handling of data
that is exchanged between X and Y through OOB interactions.
This is generally true, since the public channel can be entirely
compromised by an attacker and no proof can ever make any
assumptions on how this data has been or is going to be
handled after being sent to or received from there. For instance,
a proof may be based on the assumption that a received
OOB value is the application of a specific hash function to a
public key which was received on the public channel. A proof
would never make any assumptions about data properties of
that unauthentically received public key. A proof may make
assumptions for a value to be kept secret by their LPP after
it was sent to it over OOB, but would never assume the same
for a value that it sent over the public channel. In summary,
these proofs never make assumptions about data that is sent
or received on the public channel by X or Y .

Since we assumed that no local data is reused between two
REs, we can now see that a single RE’s security is only
affected by other REs if they interact with it (directly or
indirectly) over OOB. To consider all relevant RE interactions
during analysis of τ , we must consider all possible ways on
how τ could be connected to other REs on X or Y through
OOB interactions. During analysis of τ we then must make
sure that all data handling assumptions of τ ’s proof are fulfilled
in each of these ‘puzzled-together’ building blocks. Each block
can be considered independently of any other REs. Note,
that the blocks we want to consider must never exceed the
Frustration Threshold on either LPP.

Fig. 4 shows a stack of REs between X and Y where
each building block stands for a single RE. The taps on the

X Y

Frustration
Thresholdt

Fig. 4. Two stacked blocks of REs.

pieces correlate to the sending of an OOB value whereas the
indentations depict an RE that receives a value over the OOB.
The REs are interlocking at the OOB interactions. The first
piece of X shows multiple OOB interactions in one RE. The
pieces are colored according to which REs are interacting with
one another: we call this grouping a block. Another block
is not allowed in this stack as it would pass the Frustration
Threshold.

To determine the security of an RE in an Ecosystem, we can
now consider all possible building blocks up to the Frustration
Threshold that it may be part of. The worst possible value for
an RE in any block is then the upper limit for the security
of this RE. Note, that in most REs there is only a single
OOB interaction, which in practice further severely limits the
necessary steps for analysis.

D. Third Party

Many pairing protocols require involvement of a locally
available third party to aid the pairing process. In most cases
the third party is the user that initiates the pairing. We adapt the
considerations that are commonly made in previous literature
for this third party and include it in our model. Previous
works [2]–[4] model the third party to deterministically follow
a predefined set of actions. To aid the LPPs the third party can
receive or forward OOB data between them, they can evaluate
OOB data on their behalf and directly inject the result of this
evaluation into the process of an LPP. We call the injection of
this result Feedback. Note that the third party can only operate
on data that is sent over the OOB and has otherwise no insights
into the internal processes of the LPPs. While we adopt the
assumption that third parties act as deterministic machines, it
is worth pointing out that there has been prior work [27] which
acknowledges that in practice third parties can make mistakes.
This becomes increasingly likely the more data they have to
process.

We also adapt the following possible third-party behaviors
from the threat models of previous works [2]–[4]:

• TP1: If each LPP provides a value and a ‘yes’/‘no’ option
for Feedback, then the third party compares the values
and feedbacks ‘yes’ on equality and ‘no’ otherwise.

• TP2: If one LPP provides a value and the other has an
input interface, the third party forwards the value and
provides, if possible, confirming feedback (‘yes’) to the
displaying side.

• TP3: If both LPPs offer input, then the third party
generates a random value and forwards it to both sides.
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To include these possible behaviors into our building block
model, we consider third-party actions to be building blocks
that are automatically inserted if they would fit between two
REs. Examples of blocks for TP1, TP2 and TP3 can be seen
in Appendix A-E.

V. METHOD CONFUSION DETECTION IN THE AD HOC
ECOSYSTEM THREAT MODEL

We now demonstrate that by using our Ad Hoc Ecosystem-
based threat model it is straightforward to spot MC issues.
We illustrate its application procedure by applying it first
to the suite of Bluetooth pairing protocols that claim MitM
protection. We will further show how our model allows us to
discover two novel MC attacks in the connectivity framework
proposed by Shi et al. [4]. This contribution demonstrates that
there is currently no suitable mitigation for the vulnerable
Bluetooth framework, despite an urgent need.

We will further argue that Bluetooth pairing cannot be
fixed merely by extending it with additional pairing protocols.
Instead, we propose novel pairing methods that are suitable to
supersede the current Bluetooth pairing protocols, cleaning up
with its current MC issues; all without increasing Bluetooth’s
requirements on hardware or user behavior. In the following,
we will use our threat model to formally proof the security
claims of that proposal.

A. Rediscovering Original Method Confusion

Let us now first consider the MitM protecting pairing
protocols of Bluetooth as Ad Hoc Ecosystem. In this case, the
Behavioral Set of the Ad Hoc Ecosystem would include: SPE ,
RPE , ANC , and BNC (cf. Section II-E). In our threat model
a security proof for some RE must hold for every possible
matching of OOB interactions to all other possible REs in the
Behavioral Set.

TP2 PENC

Fig. 5. Combination of NC and PE Role Executions.

Assume now we iterate through the possible matchings
between the identified REs. Applying our concept of simpli-
fication (cf. Section IV-C), we must only consider matchings
between REs where OOB data is exchanged. Since all REs
have only one OOB interaction in this Behavioral Set we can
simplify the analysis (cf. Section IV-C) to only 42 = 16 RE
pairings.

Eventually, we reach the case where RPE is performed on
one LPP, ANC is performed on the other LPP, and their
OOB interactions are matched through the TP2 third-party
element (see Fig. 5). In this case, RPE receives the display
value from ANC as s. Recall, that the security of RPE ,
relies on the confidentiality of s (cf. Section II-E). In this
case, however, s could be known by the attacker, since the
fingerprint itself is not secret. An attacker could, accordingly,
succeed in the round-based commitment scheme and RPE

would accept the attackers public key and the resulting DH
key (cf. Sections III-A and II-E).

Now, we consider the reverse case where ANC is matched
with RPE through TP2. In this case TP2 will always respond
with confirmatory feedback to ANC since it was able to
enter the provided value into the RPE RE. Following the
specification of ANC , no matter which value is displayed any
public key would be accepted as authentic, and the respective
DH key would be used as LTK. Since ANC and BNC are
functionally equivalent, the analogous reasoning applies to
BNC . Consequently, no reasonable security factor can be
proven for neither RPE , ANC or BNC and thus the original
Bluetooth Ad Hoc Ecosystem cannot be considered secure.
This demonstrates that would our threat model have been
applied to Bluetooth during its design phase, the issue of MC
would not have gone unnoticed.

B. PNC with PE Method Confusion
Let us now apply our model to the suggested solution

proposal of Shi et al. [4]. In this case the Bluetooth Ad Hoc
Ecosystem from the previous analysis is extended by APNC

and BPNC from PNC and SPPE and RPPE from PPE. So let
us now investigate their security by considering all possible
OOB interaction matchings between APNC , BPNC , SPPE

and RPPE and all regular Bluetooth REs.
This includes the case of APNC being executed on one

LPP and two instances of RPE being subsequently executed
on the other LPP. In this case each of the OOB interactions of
APNC could be matched to each one of the RPE REs through
TP2 elements (see Fig. 6). Again, we can argue that TP2 will

TP2

PNC

TP2 PE

PE

Fig. 6. Combination of PNC and two PE Role Executions.

always and in both interactions give confirming feedback to
APNC no matter which value is displayed. Thus, the attacker
can provide her own public key to the APNC execution and
will always succeed in having the resulting DH key accepted
as LTK.

We can further observe that each RPE execution receives
a value that is known to the attacker. Thus, both executions
can be compromised following the reasoning from the just dis-
cussed original MC. Meaning, in the case of APNC matched
with two RPE executions both sides can be compromised and
no security can be shown. Furthermore, no pairing failure will
occur on either side. The attacker effectively gains a full MitM
position. Since APNC and BPNC are functionally equivalent
the analogous reasoning applies to BPNC . This is the first and
most crucial attack on the work of Shi et al. [4].

C. PNC with PPE Method Confusion
One further possible pairing combination in the Shi et al.

extended Ad Hoc Ecosystem is the combination of APNC
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being executed on one LPP and RPPE on the other partner.
Both user interaction phases would then again be connected
through TP2 elements (see Fig. 7).

TP2

PNC PPE

TP2

Fig. 7. Combination of PNC and PPE Role Executions.

The first user interaction phase would be equivalent to
the original MC and would thus easily be completed by the
attacker on both sides as described in the original MC. The
second interaction stage would now display another value
on the first partner for comparison while the second partner
expects input. Again the third party would thus confirm the
interaction on the entity running PNC. While the pairing would
most likely fail on the PPE partner as it receives a value that
does not match the expected hash (cf. Section III-B), a single-
sided pairing would still be established (see implications
discussed in Appendix A-G).

D. Conclusion of the Analysis

Throughout this analysis we notice that a third party will
always confirm a comparison request when an input field is
presented by RPE . We conclude that no pairing protocol that
relies on comparisons (e.g., NC, PNC) can be proven secure
while RPE is present in the Behavioral Set of an Ad Hoc
Ecosystem. Furthermore, current Bluetooth implementations
can be forced into a legacy mode to support pairings between
old and new Bluetooth versions. The work of Claverie et al. [3]
vividly demonstrated that an entity operating in such legacy
mode leaks every value it receives or sends on the OOB to
the attacker. So as we consider interaction with legacy mode
devices in our threat model, we must also assume that secret
Passkey-based methods like PPE would be insecure.

We thus deem it a futile effort to keep adding to Bluetooth’s
pool of pairing protocols in order to create a secure connectiv-
ity framework. Instead we suggest to establish an independent
pool of pairing protocols that can be proven immune to MC
and can operate on the same device combinations as Bluetooth.
This new pool could then either be introduced as a new
hardware- and user-compatible version of Bluetooth or be
rolled out as completely independent framework. In either
case, this would mean that every pairing between patched
devices could be considered secure.

Later in this work we will thus propose two methods that
are similar to PPE and PNC but require less user interaction
and most importantly cannot be confused with each other and
as such are able to coexist securely in one Ad Hoc Ecosystem.

VI. ATTACK IMPLEMENTATION AND EVALUATION

The work of [4] proposed PPE and PNC only on a theoreti-
cal level. To our knowledge, there is still no actual implemen-
tation of their proposal. We implemented and published [28]

their proposals on actual Bluetooth devices and subsequently
verify the attacks described in Sections V-B and V-C using
this implementation (see Appendix B). This demonstrates that
our attacks are practically feasible and provides a test bed for
further research. Since PNC and PPE are proposed as patches
of the NC and PE methods, we decided to adapt an open-
source Bluetooth stack implementation according to the spec-
ifications made by [4]. We opted to use the well-established
BTstack [29]. BTstack is implemented in C, supports a variety
of hardware platforms, and is well documented. To equip the
Bluetooth stack with PNC and PPE operation, we extended the
state machine of the BTstack security manager, altering the
ordinary operation of NC and PE. For details on the concrete
modifications for PNC and PPE we refer to Appendix A-A.
We subsequently implemented the MitM attacks described in
Sections V-B and V-C using this modified stack. Details on
this implementation can be found in Appendix A-B.

A. Practical Evaluation

In our test setup, the victim Initiator and Responder roles
run on two Raspberry Pi 3Bs, each equipped with screens and
keyboards for user interaction and Cambridge Silicon Radio,
Ltd., Bluetooth USB Dongles for connectivity. A commonplace
Linux Intel(R) Core(TM) i7-8550U laptop with two of the
same dongles acts as attacker. The victims ran BTstack imple-
mentation samples, which we compiled with either the patched
or unpatched BTstack, depending on the attack scenario.

After confirming the pairing functionality, we began to
involve the MitM attacker. We launched victim Initiator and
Responder instances and triggered the victim Initiator to
establish a connection with the MitM’s Responder. Previous
work [2] has shown that this connection behavior can easily be
provoked if the MitM advertises a deceptive name that imitates
the true victim Responder while jamming the advertisements
of the true victim Responder. Our artifacts contain references
for such jamming tools.

When the connection was established, we conducted pairing
with both victims as the user model prescribes. When a
number was displayed on the victim Initiator while a number
was requested for input on the victim Responder, we followed
the user model in Section IV-D by transferring the number
and confirming it on the displaying side.

In the case of the PNC to twice PE attack, this led both
devices into a compromised connection with the MitM. In
the case of the PNC to PPE attack, the pairing was only
successful on the Initiator side, leading, as predicted, to a one-
sided pairing. As such, we were able to verify that both our
attacks are feasible in an end-to-end scenario with real-world
devices.

VII. PROPOSAL OF NOVEL PAIRING ECOSYSTEM

First we introduce a new pairing method which is called the
Extended Passkey Entry (XPE) method and is a functionally
extended version of the already discussed PE scheme. This
will be the first method in our new Ad Hoc Ecosystem.
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send pubS receive pubS
′

receive pubR
′ send pubR
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′) tk1
R = DH(pubS

′, privR)
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′
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′)
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S = PAKE(s) tk2
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′

verify
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′, pubR, NS

′, NR)

LTK = tk1
S ⊕ tk2

S LTK = tk1
R ⊕ tk2

R

wait for tR ≥ T

Fig. 8. XPE Method.

Secondly, we transform the general NC scheme into a new
pairing method called Extended Numeric Comparison (XNC).

Note, that we will keep the exact choice for the crypto-
graphic primitives and the exact choice for lengths of keys
in principle open to the implementer. We will instead make
commonplace assumptions for those primitives and show prop-
erties of our scheme in a general fashion (with dependency
on the length of keys and nonces). It is then the task of the
implementer to pick appropriate values and primitives.

a) Properties of g and H: In the following we will use
a cryptographic hash function g : {0, 1}m → {0, 1}l. In
accordance with prior works we will make the assumption that
g is a function that maps all distinct input values uniformly
onto the output space. This follows the Random Oracle
model for approximating cryptographic hash functions [30].
We further assume that the commitment function H fulfills
the requirements of a commitment scheme (cf. Section II-C).

We will now proceed in explaining the functionality of the
new methods. After defining the Behavioral Set of our Ad
Hoc Ecosystem we will continue by arguing that any possible
combination of these behaviors is secure against any PPT
adversary. This will show that the new Ad Hoc Ecosystem
consisting of XNC and XPE is secure even under MC. We
will use a global constant T that will specify a timeout and is
globally known to all devices in the Ad Hoc Ecosystem.

A. New XPE Method

In Fig. 8 we see a diagram of the proposed XPE Method.
We now describe the protocol run of XPE for both roles SXPE

and RXPE . Like Bluetooth [12, Vol. 2B B.1.1], we assume
availability of a local timer function on the RXPE role entity,
which is also a requirement of the Bluetooth specification.
Before they begin, the SXPE side verifies whether it is able

to assume for the OOB to be confidential (recall that an
OOB is always authentic in our model). How this decision
is made depends heavily on the implementation. For instance,
an implementer may trust a NFC connection or the third party
to provide confidentiality.

The first interactive step of the protocol is to generate
local asymmetric key pairs and to exchange the public key
material between SXPE and RXPE (pubS and pubR). Note,
that this exchange, in fact every exchange over the insecure
channel, can be manipulated and eavesdropped. Consequently,
we denote a value received over the public channel with V ′

for the sent value V .
After this public key exchange each side derives a primary

temporary key (tk1S and tk1R) by performing DH with the
received public key and their own private key. Subsequently,
they both choose fresh random nonces NS and NR. Now
SXPE computes a commit CS on its nonce and publishes
it. Only after receiving that commit, RXPE replies with its
own nonce and subsequently opens an input interface on the
OOB channel to receive a value s. SXPE now calculates and
transmits the OOB value s = g(pubS , pubR

′, NS , NR
′).

When RXPE has received s from the OOB, a local timer
tR is started and RXPE engages in a PAKE step with SXPE

using as password the just received s and as asymmetric key
material pubS ′ as well as its own asymmetric key pair pubR
and privR. It is important that the RE of RXPE does not
terminate before a time span of constant T has passed since the
receiving interface was closed, even if the pairing fails. Should
RXPE come to the point of opening the input interface, it then
effectively assures to occupy the entity until tR ≥ T, which
means no other REs can happen during this time.

Simultaneously, after SXPE has completed sending s it
awaits an engagement in a PAKE and thus readily participates
in the exchange with RXPE using as password s. As discussed
earlier, methods of PAKE assure that the participating parties
only derive the same key if they prove knowledge about the
same secret on the first attempt. They also notify the parties
if the key establishment has failed (cf. Section II-D).

Consequently, if we assume no tampering or malfunction,
SXPE and RXPE each now derive a secondary temporary key
tk2S and tk2R. SXPE immediately calculates tk1S ⊕ tk2S and
accepts it as its new LTK. It then publishes NS after which
the RE of SXPE terminates successfully. RXPE receives NS

′

and verifies whether it matches the commit received earlier:
CS

′ = H(NS
′). If this is the case, RXPE uses the remote

NS
′ and pubS

′ and the local NR and pubR to calculate a
comparison value and compare it with s. If this comparison
succeeds, RXPE considers tk1R ⊕ tk2R as the new LTK. Note,
an attacker would need to know both tks to derive the LTK.

In any case RXPE waits until tR ≥ T, upon which the
RE on RXPE terminates. Note, that secure communication is
already possible when the LTK is established. Any remaining
cryptographically relevant data is destroyed after the pairing
has ended by either side. If any RE derives and accepts a LTK
it is put in a secure key storage.
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send pubA receive pubA
′
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display VA2 display VB2compare

LTK = tkA if tA < T LTK = tkB if tB < T

Fig. 9. XNC Method.

B. New XNC Method

We also introduce a new method called XNC to our Ad Hoc
Ecosystem accommodating devices that offer no keyboard but
just a display and a yes/no option. It is inspired by the proposal
of PNC but extends it through timing guidelines which are
crucial for the security of this Ad Hoc Ecosystem against MC.
For that we assume local timers to be available on the entities.
We call the Roles of this Pairing Protocol AXNC and BXNC .
Fig. 9 shows a diagram of the proposed XNC Method.

As in XPE, they first exchange public key material of
their fresh local key pairs between AXNC and BXNC (pubA
and pubB). Again we denote the values received over the
public channel differently than their sent counterparts (e.g.,
pubA

′, pubB ′). Each side derives temporary keys, tkA and tkB
respectively, from the received public and own private keys.

Equivalently to NC then both sides calculate and display a
fingerprint as described in Section II-E and shown in Fig. 1
to authenticate pubA

′ and pubB
′ respectively. As soon as

the OOB output interface is opened in that process, a timer
is started on either side (tA and tB). If that authentication
phase fails the pairing is failed and the RE terminates. If it
succeeds, another fingerprint is calculated, again like in NC,
and displayed for user confirmation, again with pubA

′ and
pubB

′ as public keys. Should this second phase also succeed,
the pairing is successful and the temporary keys tkA and tkB
are accepted as LTKs. Should either timer tA or tB exceed
the constant value of T before the pairing has succeeded the
pairing is failed and the RE terminates.

Any remaining cryptographically relevant data is destroyed
after the pairing has ended, either successfully or not, by either
side. If any RE derives and accepts an LTK, it is put in a secure
key storage.

VIII. SECURITY OF NOVEL AD HOC ECOSYSTEM

We will prove for this new Ad Hoc Ecosystem that each
RE in it is at least secure to some security factor µ. Note, that
this exceeds the contributions of previous works which do
not consider single sided pairing as an issue (see discussion
Section IV-B). When analyzing a RE we will always refer
to the entity it is executed on as X and to the current LPP
of this entity as Y . We demonstrate that the probability of

establishing a compromised LTK on X never exceeds µ for
any RE. By showing that this µ holds for any RE of the Ad
Hoc Ecosystem we show the entire Ecosystem to be secure to
factor µ. We will proof security for factor µ = 1

2l−1 , where l
is the bit-length of the OOB value, i.e., Shannon entropy of
the OOB value.

We can observe two aspects for this Ad Hoc Ecosystem
that will simplify this task. First, any RE in our Ad Hoc
Ecosystem key material is stored securely. Second, no data
from previous executions is reused on any entity. Thus, our
simplification applies (cf. Section IV-C) and we must only
consider the behavior of REs that are connected over OOB
during analysis of one of these REs.

We refer to any data that is ever sent by X or Y either
through the public channel or non-confidential OOB as PDX

or PDY , respectively. We refer to any data that is ever sent
by X or Y over any OOB as Osent

X or Osent
Y respectively and

all data ever received by X or Y over their OOB as Oreceived
X ,

Oreceived
Y , respectively. If there are multiple OOB interactions

to be considered, we designate matched interactions with the
same subscript (e.g., Osent

X1
and Oreceived

Y1
).

a) Role Execution Blocks to Consider: Before we begin,
we want to consider how any REs of our Ad Hoc Ecosystem
can be combined with each other to make sure we cover
all possible blocks that an analyzed RE could occur in.
In principle we would have to consider all possible blocks
that could be composed of AXNC , BXNC , SXPE and RXPE

being executed on two LPPs X and Y . However, it is sufficient
to analyze security for ANC , BNC , SXPE and RXPE and
generalize the result to AXNC and BXNC . We now argue
why this generalization is possible under the assumption one
can additionally separately show the special case AXNC and
BXNC being secure when connected to RXPE . We will show
how our analysis can in fact be simplified by two simple obser-
vations. We first notice, that in the upper as well as in the lower
authentication phase of AXNC and BXNC , their OOB output
value is calculated in the exact same fashion. In both cases
the OOB data is generated by applying the NC authentication
scheme on the same input data (pubA, pubB , pubA′, pubB

′ of
the XNC scheme). In fact, for all data that is sent over the
OOB from AXNC or BXNC we can assume the same handling
as we would assume for any OOB value we would receive
from any NC RE (ANC or BNC). If we show that a RE
is secure when it is matched with OOB interaction from an
ANC or BNC RE, we can also assume it to remain secure
if it is matched with the OOB interactions of any AXNC or
BXNC . In the following sections we will proceed to show that
SXPE and RXPE are secure to some factor if their OOB is
matched to ANC or BNC . This then also shows that any RE
SXPE and RXPE that is matched with the OOB interaction
of either phase of AXNC or BXNC is secure to the same
factor no matter which other OOB interaction matchings exist
in this block.

Furthermore, we observe that AXNC and BXNC only
derive a LTK if both NC authentication phases succeed. Each
phase will fail under the exact same conditions as NC would.
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If one can show that a RE of NC (ANC or BNC) only
continues with probability ≤ µ when under attack, the same
also applies for AXNC and BXNC . We will also proceed to
show that ANC and BNC are secure to factor µ if matched
to ANC , BNC or SXPE . This then also shows that AXNC

and BXNC are secure with the same factor when any of
their authentication phase’s OOB interaction is matched with
AXNC , BXNC or SXPE , no matter which other interactions
occur in this block. Note, we cannot use this approach for the
case of AXNC or BXNC matched with RXPE since we are
unable to show that ANC or BNC are secure with RXPE . We
will thus proof this case separately at the end of the following
argumentation.

Until then our analysis only has to consider OOB interaction
blocks consisting of ANC , BNC , SXPE and RXPE which
each have only one OOB interaction and from which we can
later transfer their positive results to AXNC and BXNC . This
means that all independent blocks we must now consider have
on either side only one RE. We will simply write role(X)
and role(Y ) in the following argumentation to express which
(single) RE is considered on the X , respective Y side.

A. S Role of XPE

We will start by investigating the cases role(X) = SXPE

and role(Y ) ∈ {ANC , BNC , SXPE , RXPE}. We can observe
for the behavior of the role SXPE that the probability of
an adversary successfully deriving a shared LTK with SXPE

depends on the knowledge of the attacker over both, tk1S and
tk2S . The likelihood of the attacker knowing tk2S is upper
bounded by the probability of guessing s correctly before the
PAKE step of SXPE has concluded. This limitation follows
from the properties of the PAKE function (cf. Section II-D).
Thus, we are further interested in how an adversary could
narrow down their guess for s before the PAKE step on SXPE

expects the guess as input.
First, we recall that an entity in role SXPE only communi-

cates s over an OOB for which confidentiality can be assumed
(cf. Section VII-A). The only other values that are revealed
during the pairing and stand in relationship with s are NS

and CS . NS is uniformly chosen and is not revealed until the
PAKE step has succeeded. CS is computationally Hiding NS

through the properties of the commitment scheme. Further,
it follows from the uniform distribution of g’s mapping and
the uniformity of NS that to an entity which has no prior
information about NS every value for s is equally likely.
So effectively, an adversary would receive no information
from X with role(X) = SXPE that allows deriving s
better than through random guessing, until after the PAKE
step has concluded. Considering the properties of PAKE (cf.
Section II-D) the attacker’s probability of success is:

Pr[p(PDS) = s] ≤ 1

2l

where p ∈ PPT any Probabilistic Polynomial Time Machine.
It remains for us to assess whether data that is sent to Y is

kept secret. Primarily, we can observe that in the case of SXPE

matching the OOB interaction no information whatsoever is
transferred to the SXPE role. Conclusively, SXPE is unable
to leak any information about s in this case. In the case of
ANC and BNC matching the OOB interaction the data is
also not received by the entity itself but by the third party
that aids the matching. The third party then compares the
received value with a value provided by ANC or BNC and
gives feedback about the equality. In those cases the only
information that can be revealed through ANC or BNC is
whether these values matched (continue pairing) or did not
match (pairing failed). By aborting or not aborting, the ANC

and BNC roles of NC provide a potential adversary just
enough information to eliminate one value from the set of
possible OOB values or, respectively, confirm one as the
correct one. Similarly, the abortion behavior of the RXPE

role of the XPE method, after execution of PAKE allows to
exclude or confirm exactly one value from the set of possible
OOB values. This is possible, since the attacker can attempt
the PAKE with the RXPE role once for one value of their
choice. Note, that if the PAKE step fails on Y the received
OOB value is discarded and no further information can be
gained about it. Consequently, the probability of an adversary
correctly guessing the value s = Oreceived

Y exclusively under
the knowledge of data published by the respective receiving
entity Y with role(Y ) ∈ {ANC , BNC , SXPE , RXPE} can be
described as the probability of Y not aborting and thus the
value of s being immediately known added to the probability
of Y not aborting and thus just reducing the guessable space
for s by one element:

Pr[p(PDY ) = s] ≤ Pr[“Y did not abort”]+
Pr[“Y did abort”] · Pr[p(PDY ) = s | “Y did abort”]

=
1

2l
+

2l − 1

2l
· 1

2l − 1
=

1

2l−1

where p ∈ PPT any Probabilistic Polynomial Time Machine.
We can now conclude that the probability of guessing the

value of s as input for the PAKE key derivation of SXPE is
always less than or equals to 1

2l−1 in our Ad Hoc Ecosystem.
Furthermore, it follows from the properties of PAKE that for
any PPT adversary that is unable to MitM the PAKE key estab-
lishment, the probability of deriving the established temporary
key and thus the eventual LTK is negligible. Conclusively, for
a security factor µ = 1

2l−1 the role(X) = SXPE is secure.

B. A, B Role of NC and R Role of XPE

We will continue in the next section by investigating
the cases role(X) = {ANC , BNC , RXPE} and role(Y ) ∈
{ANC , BNC , SXPE}. This deliberately leaves out the case
role(X) = RXPE and role(Y ) = RXPE . We can observe
though that in this case X will never complete pairing since
it waits indefinitely to receive a value on the OOB. Thus
we can already consider this combination as secure since it
will never yield a valid pairing key. It further ignores the
cases role(X) = {ANC , BNC} and role(Y ) = RXPE which
we will instead address later by directly showing security
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role(X) = {AXNC , BXNC} and role(Y ) = RXPE instead
of taking a ‘detour’ over ANC and BNC .

1) General Properties of Remaining Combinations:
We now discuss some properties that hold generally
for the remaining pairing combinations of role(X) ∈
{ANC , BNC , RXPE} and role(Y ) ∈ {ANC , BNC , SXPE}
and then demonstrate how these properties can be used to
argue security.

We observe that in all roles (ANC , BNC , SXPE , RXPE) the
pairing partners (X and Y ) pick nonces (NX , NY ). NX and
NY are always chosen fresh and uniformly at random . Further
it holds that X and Y each decide for values of pubX and
pubY independently from any external influence. Furthermore,
pubX and pubY are not chosen in any dependency to NX or
NY and of course NX and NY are also independent (⊥⊥) of
each other:

∀i, j ∈ {pubX , pubY , NX , NY }, i ̸= j : i ⊥⊥ j (1)

Now, we also observe that for all roles
(ANC , BNC , SXPE , RXPE) the ‘local’ nonce value of
an entity is unknown to remote entities (so only X knows
NX and Y knows NY ) before the remote nonce and remote
public keys (NY

′, pubY
′ resp. NX

′, pubX
′) have been fixed.

When we say a value is unknown to an entity, we express
that no PPT entity could guess this value better than with a
negligible advantage over ordinary random guessing.

The stated assumption holds for the roles SXPE and BNC

since their local nonce is chosen uniformly at random and
the only value released before the arrival of the remote public
key and remote nonce that is related with the local nonce is
a computationally Hiding (cf. Section II-C) commitment (CX

resp. CY ).
For the roles ANC and RXPE it holds that their local nonce

will not be revealed before a commit on the remote nonce (CY
′

resp. CX
′) and (pubY ′ resp. pubX ′) have been fixed. Note, that

in those cases the local entity is verifying with H whether
the later arriving remote nonce is a proper opening to the
previously received commitment. The computational Binding
property thus implies that when the commit on the remote
nonce is fixed the remote nonce itself is also fixed.

Thus, we can say that for every still considered combi-
nation (role(X) ∈ {ANC , BNC , RXPE} and role(Y ) ∈
{ANC , BNC , SXPE}) it holds that

• pubX
′, NX

′ must be fixed while NY unknown to any
entity besides Y

• pubY
′, NY

′ must be fixed while NX unknown to any
entity besides X

Further we can argue that an adversary who wants to pick
NX

′ or pubX ′ while under knowledge over the exact value of
NX must first fix NY

′ to gain knowledge over that NX . But
since he cannot know NY

′ before fixing NX
′ he then has to fix

NY
′ while NY is unknown to him. Analogously, an adversary

that would want to fix pubY
′ or NY

′ while under knowledge
over the exact value of NY will have to fix NX

′ first and
do so while the exact value of NX is unknown to him. Thus

we can say that the adversary can choose out of two different
limitations (L1 and L2) of knowledge when providing input
to the legitimate parties:

L1: Choose to pick pubX
′, pubY

′, NX
′, NY

′ while NX

unknown.
L2: Or, alternatively, pick pubX

′, pubY
′, NX

′, NY
′ while

NY unknown.
We will use this observation about the limitations of the
adversary in a moment.

2) Defining the Successful Attack: For any
remaining considered role assignment for X
(role(X) ∈ {ANC , BNC , RXPE}) and Y (role(Y ) ∈
{ANC , BNC , SXPE}) we can further observe that eventually
Y calculates Osent

Y by applying g to some arrangement of the
values {pubX ′, pubY , NX

′, NY }. X receives this value either
itself (in case of RXPE) or it is received by the third party.
In either case the received value is compared (by X itself
or through help by the third party) with g applied to some
arrangement of the values {pubX , pubY

′, NX , NY
′}. If this

comparison fails X will abort the pairing. We can abstract
all possible role assignments by writing that the comparison
that is executed here is in any case:

g(σX({pubX , pubY
′, NX , NY

′})) =
g(σY ({pubX ′, pubY , NX

′, NY })) (2)

where σX are all arrangements of parameters to g on X for
role(X) ∈ {ANC , BNC , RXPE} and σY are all arrangements
of parameters to g on Y for role(Y ) ∈ {ANC , BNC , SXPE}.
The adversary’s goal is thus to make this comparison succeed
and at the same time he must change at least some of the
inputs to inject his own public keys into the pairing, since
otherwise the properties of DH would make it infeasible to
find the established temporary key (tk1R, tkANC

, tkBNC
for

RXPE , ANC and BNC respectively). This would prevent the
attacker in any case from knowing the eventually derived LTK.
As we just discussed, the adversary can take two distinct
avenues when picking his inputs to the LPPs, and he must
achieve that this selection of values fulfills (2). We now want
to show that no matter which path he takes, the chances of
success for a PPT adversary at this selection process are not
greater than 1

2l
.

3) Upper Bound for Likelihood of Adversary Success: As
we discussed the adversary has to decide to have knowledge
over either NX or NY when picking any of the inputs to the
legitimate entities. If limitation L1 is picked we can write:

α = {pubX , pubY
′, NY

′}, r = NX , β =

g(σY ({pubX ′, pubY , NX
′, NY }))

If limitation L2 is picked we can write:

α = {pubX ′, pubY , NX
′}, r = NY , β =

g(σX({pubX , pubY
′, NX , NY

′}))

We will denote r in the following as bit string of length
k: r = {0, 1}k. Note, that in any case, r is unknown to the
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adversary when choosing any ′-annotated variable. Further,
we established earlier (cf. (1)) that the remaining variables
(not adversary controlled) are also chosen independently of r.

Now, even if we assume a stronger adversary that would
be able to pick the entire α and β, we show that he will not
succeed to make the equation

g(σ(α, r)) = β : ∀σ ∈ {σX , σY } (3)

hold more likely a negligible probability, if he has no precise
knowledge over r when picking α and β. By showing this, we
show that no matter the influence an attacker has on the choice
of values for α or β, he is unable to succeed in having (2)
fulfilled, no matter which knowledge limitation he picked as
his strategy.

A first option by an adversary to choose α and β is to pick
random values hoping a value for r will occur fulfilling (3).
The probability of a uniformly randomly mapped function to
map any random input value (α, r) to a specific output value is
the inverse size of the output space, so the attacker’s success
likelihood with random choice (Successrand) is

Pr[Successrand] =
1

2l

Since the mapping of g is chosen probabilistically it is of
course possible that in practice some output values get hit
more often than the expected value would imply. So instead
of picking random values for α and β it might be better for
the adversary to look at different α values and try multiple
possible values for r for those α. This way the adversary
could discover that for a certain α more than the expected
amount of possible r values hit the same output, which he
could then choose. This attack approach is the equivalent to
the birthday attack and the advantage gained by the attacker
is in fact negligible in face of the effort necessary to find
collisions. A detailed analysis of the attackers advantage can
be found in Appendix A-F.

C. A and B of XNC versus R of XPE

This leaves us with the RE of AXNC or BXNC matched on
any of their authentication phase’s OOBs with RXPE . As we
have already shown security if AXNC and BXNC are matched
in their first authentication phase to AXNC , BXNC or SXPE

we have to consider to either have this OOB to not interact
with any RE at all, which would cause pairing failure or have
it interact with RXPE . This is where the timing component
of our protocol proposals becomes important. We consider
them to be matched through the TP2 third-party behavior
since this is the only behavior that would match the two
sides (cf. Section IV-D). We then observe that when the third-
party feedback arrives at AXNC or BXNC , the RXPE RE has
already received their input and blocks its entity (Y ) for at least
time T. There are no further OOB or third-party interactions
possible during this time span. At the same time XNC enforces
a timer (tA and tB) to start counting when the first value in
the first authentication phase is displayed. We can see that
those timers will inevitably exceed the time span T before

the secondly displayed value can receive any feedback from
the third party, and so the pairing on either AXNC or BXNC

is aborted. Thus, a matching between AXNC or BXNC with
RXPE never establishes an LTK in this Ad Hoc Ecosystem.

Proof Conclusion: We have shown for all REs of the Ad Hoc
Ecosystem that they are secure for at least a security factor µ =

1
2l−1 . This holds true for any Frustration Threshold (F ≥ 1).
For comparison, the original Bluetooth system was assuming a
security factor of µ = 1

2l
but eventually was shown in multiple

instances to be insecure. Thus, we deem our proposal to be
generally suited for the same applications as Bluetooth for the
same value of l (bit length of OOB value). Furthermore, our
proposal supports pairing between the same device classes as
Bluetooth and can thus be deemed as an improved, seamless
and finally secure replacement.

IX. XNC AND XPE IMPLEMENTATION

To demonstrate the practical feasibility of our proposal and
enable further research, we also implemented and tested XNC
and XPE into BTstack. We submitted code and documentation
as artifacts (see Appendix B). See Appendix A-C for imple-
mentation details.

To demonstrate that our proposal runs on commonplace
Bluetooth and IoT hardware, we conducted macro-benchmarks
on network overhead, retired instructions and CPU cycle count
as well as memory usage. Additionally, we performed micro-
benchmarks of the cryptographic functions of each implemen-
tation. By using Raspberry Pi 3Bs, which lack crypto accel-
eration and optimized CPU features, our tests represent real-
world hardware and assure that all conclusions of performance
differences translate to IoT devices.

Interestingly, we found that XPE actually decreases net-
work load and computational overhead with equivalent mem-
ory usage compared to PE/PPE by eliminating the round-
based Passkey confirmation process. XNC, when compared
to NC/PNC, leads to a modest increase in network payload by
17/34 Bytes (13%/25% increase) on the Initiator/Responder
side and a slight increase in computational overhead (≤ 5%)
and memory usage (≤ 1%). Detailed results are in Ap-
pendix A-D. Since pairing has a one-time cost for connection
establishment, is infrequent in a device’s lifetime, and since we
did not optimize for production, we are confident that current
Bluetooth hardware can run XNC/XPE without significant
delay or decrease in usability. XNC and XPE require no
adjustment in user behavior, user experience, peripherals nor
do they require any additional hardware: the implementation
only modifies the host portion of the Bluetooth stack and thus
no firmware updates are required to deploy our patch.

X. DISCUSSION AND CONCLUSION

This work discusses the persistent issue of MC in the
Bluetooth connectivity framework and how even the most
recent mitigation proposals are still affected by MC. For that
purpose, we propose a threat model that is centered around the
core issue of MC and provide an application procedure that
is straightforward to execute and comprehensible. With this
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model, we rediscover MC issues in Bluetooth and find two
new MCs in the currently most prominently discussed solution
proposal from Shi et al. [4]. We implement those attacks on
off-the-shelf Bluetooth hardware. We thus demonstrate that
there is yet no satisfying solution to the issue of MC for
ad hoc pairing. In fact, our analysis suggests that a fresh
pool of pairing protocols is required in order to purge MC
from Bluetooth. Otherwise, it appears infeasible to avoid MC
between patched and legacy entities.

Subsequently, as an additional contribution we propose two
protocol candidates (XNC and XPE) that are able to fill this
gap. We use our model to proof that these protocols cannot
be confused with each other. Eventually, we implement our
solution proposal on regular Bluetooth hardware. Furthermore,
we argue that an Ad Hoc Ecosystem consisting of XNC and
XPE supports the exact same device landscape as an Ad Hoc
Ecosystem consisting of NC and PE. Our proposed Ad Hoc
Ecosystem is currently the only one that supports the same
device combinations and user profile as Bluetooth without
suffering from MC, thus making it the perfect candidate for
either a new iteration of Bluetooth’s pairing implementation
or alternatively a foundation for a competing framework that
seeks to implement secure ad hoc pairing.

Considering the case of applying our solution as iteration
for Bluetooth, one could argue that many Bluetooth devices
are difficult to update as those devices are often not actively
version-managed by their users nor receive regular updates by
their vendors. This is a general issue in consumer-device se-
curity. Therefore, we believe that organizational environments
and security-aware spaces (e.g., payment terminals) would
primarily profit from our proposal. In those settings, it is more
likely that vendors and users keep devices up-to-date and thus
it is more likely that both pairing partners run a secure version.

In the long term, it is certain that the remaining device land-
scape will also benefit from the introduction of our proposal
since more and more old devices are eventually replaced by
patched ones. We also suggest to implementers of our solution
proposal, organizational managers, as well as vendors, to make
patched devices clearly distinguishable from unpatched ones;
for instance by applying a logo or seal of approval. This
will prevent users from combining old and new devices and
motivate users to accelerate the replacement of old devices.

Until now, the work of Shi et al. was the only promising
candidate to mitigate MC in Bluetooth while supporting a
similar device diversity and user landscape as Bluetooth.
However, our findings show multiple flaws in their proposal.
Still, their proposal is at this point purely theoretical as we are
the first ones to provide an implementation. While currently
no actual devices are affected, this might change soon when
their proposals are adopted by the Bluetooth committee. Thus
our findings should be discussed openly. Consequently, after
review and publication of this work we plan to start a dialogue
with the respective groups and committees in the Bluetooth
standardization space. We deem it crucial that the next itera-
tion of Bluetooth (or connectivity frameworks superseding it)
considers our findings in order to grasp the issue of MC at its

root. Overall, we hope to contribute to the deeper appreciation
and understanding of MC and point out possible solution paths
for different scenarios.
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APPENDIX A
ADDITIONAL MATERIALS

A. Patched BTstack

We modified the functions that are called by the Initiator
and Responder after the LTK Validation stage has succeeded.
Instead of completing the pairing, our modification forces both
sides into a new second stage, as specified by [4]. In this
second stage, both sides calculate a function g3 that takes the
Passkey (PE) or the display value (NC) and hashes it with
the messages sent and received during the pairing request and
response phase. We implement g3 using the available crypto-
graphic primitives of BTstack. Subsequently, our modification
repurposes the user interaction API of BTstack to let the user

either compare or transfer the result values, depending on
whether the first stage was based on NC or PE. If a value
is transferred, the receiving side compares it with the local
result of g3. If that comparison is successful or the user
has confirmed a comparison, our modification returns to the
regular flow of the state machine to complete the pairing.

B. MitM Attack on PNC and PPE Implementations
In the attack from Section V-B, we assume one of the

victims (e.g., the Initiator) performs a PNC Role, while the
other victim (e.g., the Responder) performs (unpatched) PE.

To implement such an attack, we created a MitM attack
framework that can perform pairing with two victims of dif-
ferent patch-level simultaneously, on one side using a patched
PNC and on the other an unpatched PE authentication method,
For that purpose our framework consists of three memory-
independent processes. First, the master process (M ) initializes
POSIX pipes to coordinate pairing between the processes and
exchange data. M then spawns two processes: I (a Blue-
tooth device implementation compiled an unpatched BTstack
implementation) and R (a Bluetooth devices compiled with
the patched BTstack implementation). When all processes are
initialized, they enter a suspended state, waiting for incoming
connections.

When R is engaged in pairing by the initiating victim, it
enforces the PNC authentication method by sending carefully
chosen capabilities during the IOCapabilitiesExchange. It then
sends a signal to I , leading I to engage as displaying device
in a PE pairing with the victim Responder. I proceeds with
PE until it must choose a Passkey to display, then waits for
further data.

As soon as R calculates the first display value, it forwards
this value to I , which sets it as its chosen Passkey. Once
pairing between the victim Responder and I succeeds, I alerts
R, which confirms the comparison with the victim Initiator.
Simultaneously, I silently dissolves the established connection
with the victim Responder and requests a new PE pairing.
Again, I waits for R to report its display value and uses it as
the Passkey. As soon as the second PE authentication succeeds,
the second confirmation value is subsequently confirmed by R.
Note, the victim Initiator is unable to notice that the victim
Responder is performing the unpatched PE authentication
since they have no direct communication.

Similarly, we implement the attack from Section V-C. Here,
the initiating victim performs the (patched) PNC and the
responding victim the (patched) PPE authentication method.
Thus, this time, both I and R are compiled with a patched
version of BTstack. Again, I only engages with the Responder
victim when R is engaged. R leads the pairing to a PNC
authentication, while I enforces the PPE model, again, with I
as the displaying side. As in the other attack, R hands through
both values it calculates as display values to I , which uses
them as their passkey/display value.

C. XNC and XPE Implementation
1) XNC: For XNC, we modified the state machine of NC

to reset its state to the nonce exchange phase when the user
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confirms the first displayed value. This leads to a second
validation phase, as specified in our proposal. After a second
successful user interaction, the pairing is concluded as usual.
Additionally, we added a stopwatch that starts when the first
value is sent to the display of the device and is checked again
during the key validation phase. If the stopwatch exceeds our
timespan constant of T, the pairing fails. The constant T,
which determines the timestamp, can be set in the BTstack
configuration file and defaults to 20 seconds.

2) XPE: XPE required extensive modification of BTstack’s
state machine of PE. After public keys are exchanged, the
partner offering the user input is determined as the Receiver,
and the other as the Sender. According to their role defini-
tions, both sides decide on nonces, and the Sender shares a
commitment over its nonce. Subsequently, the Receiver reveals
its nonce, upon which the Sender calculates a hash over local
and remote nonces and public keys. To choose nonces and
calculate commits and hashes, we utilized functions that are
required in the Bluetooth specification and thus implemented
by BTstack. Next, the calculated value is displayed to the user
by the Sender and asked to be entered by the Receiver using
BTstack’s user interaction API. Once this step is completed,
the Receiver initiates PAKE.

We opted to use CPACE as the PAKE primitive. CPACE has
undergone multiple review cycles in academic [31] and stan-
dardization settings [32], and most importantly, it offers a long-
standing C implementation based on the portable libsodium
library 1. Note, that this choice of PAKE method is preliminary
and targeted at creating this PoC. Nevertheless, production
implementations should consider the current availability of
PAKE methods and implementations to find the best fit for
their use case. Our code is thus structured to accommodate any
choice of PAKE primitive. Generally, a PAKE request is first
calculated by the chosen implementation on the Receiver using
the entered s value as a password. When the request arrives
at the Sender, the Sender conducts a PAKE step yielding
key tk2S and a response packet. When the response packet
arrives at the Receiver, the Receiver can now calculate its
key tk2R. The primitive ensures that the Receiver and Sender
only calculate the same key if they use the same s. To verify
that both sides were able to establish the same key, we added
a challenge-response exchange between Sender and Receiver
that verifies that tk2S == tk2R. After that verification, the
PAKE step of our protocol is concluded and the assumptions
of our protocol are fulfilled. Now the Sender can reveal the
nonce that was earlier committed, upon which the Receiver
verifies the commitment as well as the value of s. Again, we
can utilize built-in functions of BTstack for that. Eventually,
both sides calculate the LTK as the XORed result of their DH-
keys that were established before the authentication phase and
their PAKE keys.

To implement the timing requirements of our protocol, the
XPE state machine sets a flag when the Receiving side opens a
user input. It then uses the system timer to ensure that this Role

1https://github.com/jedisct1/cpace

TABLE I
NETWORK PERFORMANCE COMPARISON OF NC METHODS IN BYTES.

Device Unpatched NC PNC XNC

Initiator 128 128 170
Responder 101 101 122

TABLE II
NETWORK PERFORMANCE COMPARISON OF PE METHODS IN BYTES.

Device Unpatched PE PPE XPE

Initiator 926 905 133
Responder 920 899 132

Execution will not terminate until the timespan T has passed
after user input was received. Note that, for this purpose, we
also placed hooks in the error and abortion handlers of BTstack
to prevent an attacker from sending failure messages to shorten
the targeted wait timespan.

D. Performance Evaluation

In order to assess the practicability of the proposals of XNC
and XPE to replace the current state of Bluetooth without
requiring any changes to hardware we conducted performance
measurements and compared modified and unmodified Blue-
tooth stacks. The tests were conducted on two Raspberry
Pi 3Bs, each equipped with screens and keyboards for user
interaction and Cambridge Silicon Radio, Ltd., Bluetooth USB
Dongles for connectivity and no crypto acceleration of special
instruction sets.

In order to compare the network loads created by the
proposals, we collected packet traces using BTstacks built-in
packet logging functionality. Table I and Table II summarize
all payload sizes sent and received by the partners during the
pairing procedure.

We observe a slight increase in network load when compar-
ing XNC with NC and PNC. We attribute this to the additional
exchange of nonces needed for the second comparison. On
the other hand, when we look at XPE, PPE, and PE we
can see that XPE reduces network load significantly while
PPE shows a slight increase. This is the case since XPE
replaces the multi-round commit and reveal phase of PE with
the much less network intensive CPace exchange, while PPE
introduces additional signaling messages to let the displaying
device know when to proceed to the next phase.

In order to assess the computational overhead we con-
ducted two types of benchmarks. First, we performed micro-
benchmarks by using the perf Linux-kernel instrumentation
to measure the CPU-cycle and retired instruction count of the
cryptographic libraries involved. We assume that cryptographic
primitives are the main culprit when it comes to generating
computational overhead and profiling just those functions
allows us to eliminate overhead caused by network and user
interaction delays. In order to assure though that we did
not overlook any other sources of overhead we additionally
conducted macro-benchmarks that measure CPU and retired
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TABLE III
MICRO-BENCHMARK RESULTS FOR NC/PNC/XNC (JUST CRYPTO);

RETIRED INSTRUCTIONS (TOP) AND CPU CYCLES (BOTTOM) COUNT IN
UNITS OF THOUSANDS.

Device Unpatched NC PNC XNC

Initiator 179,904 (49) 180,010 (51) 180,335 (48)
239,404 (148) 239,894 (155) 240,516 (214)

Responder 135,139 (45) 135,252 (45) 135,583 (47)
180,290 (122) 180,463 (131) 181,172 (282)

TABLE IV
MICRO-BENCHMARK RESULTS PE/PPE/XPE (JUST CRYPTO); RETIRED
INSTRUCTIONS (TOP) AND CPU CYCLES (BOTTOM) COUNT IN UNITS OF

THOUSANDS.

Device Unpatched PE PPE XPE

Initiator 188,134 (2,449) 187,492 (54) 183,640 (50)
258,291 (3,257) 257,015 (393) 243,300 (137)

Responder 135,139 (45) 142,806 (66) 137,105 (66)
180,290,118 (122) 197,558 (684) 182,130 (115)

instruction count as well as memory usage of the whole stack
execution.

All benchmarks were run 1000 times for each protocol
implementation (PE/NC, PPE/PNC, and XPE/XNC). The av-
erage of each measurement set is posted in the respective
table and the standard deviation is included. The micro-
benchmark results are in Table III and Table IV. The macro-
benchmark results can be found in Tables V, VI, VII, VIII. As
mentioned earlier, we cannot find any significant increase in
computational overhead when comparing XNC and XPE with
the other methods and thus think that our proposed methods
will perform well on existing Bluetooth hardware.

TABLE V
MACRO-BENCHMARK RESULTS NC/PNC/XNC (WHOLE STACK);

RETIRED INSTRUCTIONS (TOP) AND CPU CYCLES (BOTTOM) COUNT IN
UNITS OF THOUSANDS.

Device Unpatched NC PNC XNC

Initiator 145,187 (68) 145,304 (59) 145,975 (65)
195,416 (247) 196,082 (409) 198,014 (250)

Responder 100,750 (44) 100,841 (65) 101,444 (44)
136,668 (225) 137,408 (377) 138,635 (227)

TABLE VI
MACRO-BENCHMARK RESULTS PE/PPE/XPE (WHOLE STACK); RETIRED
INSTRUCTIONS (TOP) AND CPU CYCLES (BOTTOM) COUNT IN UNITS OF

THOUSANDS.

Device Unpatched PE PPE XPE

Initiator 156,871 (1,992) 156,105 (64) 149,250 (57)
219,850 (2,680) 218,302 (564) 200,151 (184)

Responder 112,390 (54) 111,576 (52) 104,518 (45)
160,746 (639) 159,212, (526) 141,142 (476)

TABLE VII
MEMORY USAGE OF WHOLE STACK OF NC/PNC/XNC IN KILOBYTES.

Device Unpatched NC PNC XNC

Initiator 2, 752, (37) 2, 752, (37) 2, 753, (35)
Responder 2, 739, (37) 2, 742, (34) 2, 741, (35)

TABLE VIII
MEMORY USAGE OF WHOLE STACK OF PE/PPE/XPE IN KILOBYTES.

Device Unpatched PE PPE XPE

Initiator 2, 752, (36) 2, 764, (0) 2, 753, (35)
Responder 2, 741, (35) 2, 703, (63) 2, 742, (34)

E. Third-Party Building Block Model

(a) TP1. (b) TP2. (c) TP3.

X Y

Frustration
Threshouldt

TP

(d) Example with TP2 and TP3.

Fig. 10. Third-Party Building Blocks.

Fig. 10 shows the different third-party behaviors described
in Section IV-D. It showcases two blocks and how the third
party interacts with them. The red block requires two OOB
interactions, similar to a PPE block where the X side is the
displaying device. The arrows on the TP pieces symbolize
injecting the confirmation as feedback into the displaying
device. The blue block uses one OOB interaction and requires
an input on both devices.

F. Analysis of Advantage of Bruteforce Attacker

We now want to estimate how feasible it would be for a PPT
adversary to find an accumulation of collisions of r values
for a fixed α in comparison to the advantage an adversary
would gain through this effort. First let us consider that the
adversary chooses with α a part of the input to g. Since we
assumed uniform distribution for g, every possible value for r
will cause the output of g to be uniformly distributed in the
output space (for any r each possible β is hit with 1

2l
). The

adversary now wants to run this experiment for a fixed α and
many different values for r to see if one of the values for β
occurs exceedingly often.

This exact experiment has already been discussed exten-
sively as the “balls in bins” problem [33] where balls are

17



thrown (uniformly) into a set of buckets. From the respective
literature it is well known that the maximum load of any of i
buckets after j balls have been thrown is bounded through
Θ( ji ) for j ≥ i log(i) which we will assume in favor of
the adversary using brute force. A note to the interested
reader may be that even tighter bounds have been found and
extensively proven by Raab and Steger [33] for the same
restrictions on j and i. For our purposes though this loose
bound is sufficient.

Thus we can say for the maximum accumulation of hits B
for any output value to occur is bounded by: B = Θ( a

2l
)

where a is the amount of possible values for r that were
sampled in the brute force effort. We note that in practice
a ≤ 2k (recall that k is the bit-length of nonce r) but we
can ignore this restriction in the following as this would only
limit the attacker’s abilities, so we assume a stronger adversary
by ignoring it. We can thus now say for the probability of the
attacker succeeding within a many brute force steps (Successa)

Pr[Successa] = Θ(
a

2l
) · 1

2k

=⇒ ∃c > 0 : Pr[Successa] ≤
c · a
2l

· 1

2k
= c · a 1

2(k+l)

Following the standard practice of security proofs [34,
Section 3.11] we now model the effort a that the adversary
can feasibly afford as computationally asymptotically. For that
we simply say that a is the result of any PPT function applied
to some security parameter n. We further define the security
parameter dependent on the length of r and β such that
n = k + l. We can now write that the probability of success
of any PPT adversary (SuccessPPT ) is

∃c > 0∀p ∈ PPT : Pr[SuccessPPT ] ≤ c · p(n) 1

2n

Now we can further observe that

∀p, p′ ∈ PPT∀c > 0∃N∀i > N : c · p(i) 1
2i

≤ 1

p′(i)

Thus we can say that c · p(n) 1
2n is negligible for

all c > 0 and for all p ∈ PPT [34, 3.1.1] and
thus Pr[’Succ with brute force of PPT adv.’] is negligible for
large enough values for n. Since in common implementations
(e.g., Bluetooth [12]) k + l ≈ 148 we assume the security
parameter to be sufficiently large.

This finding is intuitively explained by considering that an
adversary that follows the brute force approach has to find
at least m

2l
collisions in the mapping for it to certainly bring

success with probability at least m
2k

. When either k or l grow
the adversary also has to find exponentially more collisions to
maintain a certain probability of success. With growing k or
l the PPT adversary is thus eventually overpowered.

We have shown that the best probability of success for the
adversary to fulfill (3) (with his own public key injected) is
random guessing, since any brute force effort is not computa-
tionally feasible.

G. Security Implications of Single-Sided Pairing

To clarify the potential security implications of single-sided
pairing, we present two practical scenarios where device X
and Y attempt to pair, but pairing only succeeds with X.

Scenario 1: Immediate Detection by the User
1) Pairing Attempt: X and Y initiate a pairing process,

but only X completes the pairing successfully. Y fails to
connect, and the user notices this failure.

2) User Reaction: The user, realizing that Y has not paired,
decides to disconnect X manually. However, by the time
the user reacts (even within seconds), significant damage
can already occur.

3) Attacker Exploitation: Once X is paired, the con-
nection with the attacker is encrypted and trusted, the
attacker gains access to various interfaces (so called
Bluetooth Profiles) exposed by X. These Profiles may
include sensitive data like the user’s call history, text
messages (including 2FA codes), phonebook contacts,
and even health-related data. Some Profiles also per-
mit to alter the device configuration and also enable
keyboard or pointing device input. A list of globally
standardized interfaces can be found here: [35]. Often
the vendor supplies their own app with the device to
specify additional custom interfaces for data transfer
between app and device. This information like GPX
tracking data or fitness measurements are especially
interesting for the attacker. Scripts to discover these
custom interfaces and to download this information are
already available (e.g., [36], [37]).

Scenario 2: Inability to Detect/React
1) Hidden Pairing Failure: Many devices provide limited

feedback on pairing success. In this case, X successfully
pairs, but the user only notices that the intended applica-
tion on Y does not work as expected. There is no clear
indication that X has completed pairing.

2) Missing Option to Disconnect/Awareness: Some de-
vices do not provide clear menus or options for manag-
ing Bluetooth connections. In cases where pairing slots
are limited, older connections may be silently overwrit-
ten instead. The user thus may not be able to manage
connections appropriately. We must also consider that
the average user is not experienced in interpreting errors
of the Bluetooth state machine and thus would not spend
effort to disconnect X.

3) Full MitM: The user, attempting to resolve the issue,
may retry pairing with Y. However, during this second
attempt, the attacker could now also establish a single-
sided pairing with Y, completing their goal of achieving
a full MitM attack.
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APPENDIX B
ARTIFACT APPENDIX

The AdvancedMC artifact allows readers to test our im-
plementations and attacks on actual Bluetooth hardware, thus
confirming that the proposed protocols function as expected on
real-world hardware. We further provide tools to conduct per-
formance comparisons between the various implementations.
Reproduction requires up to four Bluetooth USB devices that
are compatible with the BTstack implementation2.

A. Description & Requirements

The README file provides instructions on building and
running the protocol implementations. We also summarize the
necessary steps in the following.

1) Access: The artifact is published and available (see https:
//doi.org/10.5281/zenodo.14214999).

2) Hardware Dependencies: Any attack setup consists, in
principle, of two victim devices and one MitM device. All
of them should run a Linux operating system. The victims
should each be connected to one Bluetooth chipset (see list
in footnote2) and the MitM to two devices with a supported
Bluetooth chipset.

3) Software Dependencies & Benchmarks: The following
dependencies should be pre-installed on the Linux machine(s):
pkg-config, make, libsodium-dev, libusb-dev, tshark.

B. Artifact Installation & Configuration

Install the software dependencies and connect the USB
dongles. Make sure they are recognized by the system using
lsusb. Peruse the README file (see artifact root directory).
The original Bluetooth design supports two separate ‘secure’
pairing methods. The first is based on comparing numbers
(NC), the second relies on transferring numbers (PE). The
artifact also contains three improved implementations:

1) MBTstack: Standard Bluetooth stack extended with de-
bug hooks for debugging

2) PatchedMBTstack: MBTstack patched according to Shi
et al. [4]; PE replaced with PPE and NC with PNC

3) XMBTstack: MBTstack patched according to our pro-
posal; PE replaced with XPE and NC with XNC

Subdirectories include sample Bluetooth applications: in
‘unpatched victims’ for MBTstack; ‘patched victims’ for
PatchedMBTstack; ‘x victims’ for XMBTstack. To build those
samples, simply run make in the sample directory.

C. Major Claims

• (C1): We implemented PNC and PPE as proposed in [4],
which can be verified through experiment E1.

• (C2): We implemented XNC and XPE as we proposed in
our paper, which can be verified through experiment E2.

• (C3): We implemented the PNC-on-PE attack and the
PNC-on-PPE attack, verifiable through experiment E3.

• (C4): Implementation overheads of XNC and XPE are
not unreasonably higher then regular Bluetooth (E4).

2https://github.com/bluekitchen/btstack?tab=readme-ov-file#supported-
chipsets

D. Evaluation

We will first guide through the steps for evaluating that
each of our pairing implementations functions correctly on
commodity Bluetooth hardware. Make sure to run all binaries
as root user. This is necessary to have the appropriate permis-
sions to access the USB device. To avoid running the examples
as root, please make sure to set the udev rules appropriately
according to your individual system configuration.

1) Experiment (E1): [PNC and PPE Pairing] [20 human-
minutes]: We establish a pairing on real Bluetooth hardware
using the PNC and PPE methods as proposed by Shi et al. [4].

[Preparation] Enter the ‘patched victims’ directory and
build using make.

[Execution] Run sudo ./responder.bin <
USB_BUS>:<USB_DEVICE#> in one terminal (use
‘lsusb’ to gather the USB information of the dongles). This
will initialize the stack and output the Bluetooth address
of the ready Responder: e.g. “RESP(GEN): BThack up and
running on 01:AA:BB:CC:DD:EE.”

Now, use the second terminal to run the Initiator
and start pairing with a running Responder: sudo ./
pnc_initiator.bin <USB_BUS>:<USB_DEVICE#>
<TARGET_RESPONDER_MAC_ADDRESS> using a different
USB dongle than for the Responder. Pairing should now
initialize; follow the pairing process by acting like a user
from the widely accepted Bluetooth user behavior model.
That means, whenever you are asked to press yes/no when
a number is displayed, you confirm if either the same number
is displayed on the other side or an input field is provided.
When asked to transfer a number, do so if an input field is
supplied on the other side. Subsequently, kill the applications
and repeat the experiment using ‘ppe initiator.bin’ instead of
‘pnc initiator.bin’ on the Initiator side.

[Results] Following the instructions to compare or transfer
numbers should assure that PNC and PPE pairing works. You
may also try to transfer the wrong numbers or not confirm the
comparison, this should block or abort the pairing.

2) Experiment (E2): [XNC and XPE Pairing] [20 human-
minutes]: We establish a pairing on real Bluetooth hardware
using the XNC and XPE methods as proposed in our work.

[Preparation] Enter the ‘x victims’ directory and build
using make. Open two terminals in this directory and verify
that two Bluetooth USB dongles are connected.

[Execution] Repeat the procedures from E1 and only
alter the names of the binaries in the commands to
‘xnc initiator.bin’ or ‘xpe initiator.bin’, respectively.

[Results] Following the instructions to compare or transfer
numbers should assure that XNC and XPE pairing works. You
may also try to transfer the wrong numbers or not confirm the
comparison, this should block or abort the pairing.

3) Experiment (E3): [Attack tests] [30 human-minutes]: We
demonstrate how the first attack on the PNC and PPE methods
work in practice as we describe them in Section V-B.

[Preparation] Build the examples in the ‘patched victims’
and ‘unpatched victims’ directories. Open three terminals in
the root directory and run make to build ‘pnc mitm pe.bin’
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and ‘pnc mitm ppe.bin’. Verify that four Bluetooth USB
dongles are connected.

[Execution] Run sudo ./unpatched_victims/
responder.bin <USB_BUS>:<USB_DEVICE#> in one
terminal using ‘lsusb’ to gather the USB information of the
dongles. This will output the Bluetooth address of the ready
Responder.

Now, run in another terminal sudo ./
pnc_mitm_pe.bin <USB_BUS>:<USB_DEVICE
#> <USB_BUS2>:<USB_DEVICE#2> <
TARGET_RESPONDER_MAC_ADDRESS> using two of
the still unused dongles. The MitM example will then also
display its own Responder MAC address. Now, use the
remaining terminal to run the Initiator and start pairing with a
running MitM-Responder: sudo ./patched_victims/
pnc_initiator.bin <USB_BUS>:<USB_DEVICE#>
<MITM_RESPONDER_MAC_ADDRESS> using the remaining
USB dongle. Pairing should now initialize. Follow the pairing
process by acting like a user from the widely accepted
Bluetooth user behavior model. That means, whenever you
are asked to press yes/no when a number is displayed, you
confirm if either the same number is displayed on the other
side, or if an input field is provided. When you are asked to
transfer a number, do so if an input field is supplied on the
other side.

Subsequently, kill the applications and repeat the
experiment using ‘pnc mitm ppe.bin’ instead of
‘pnc mitm pe.bin’ and ‘patched victims/responder.bin’
instead of ‘unpatched victims/responder.bin’.

[Results] In the first experiment, both sides should success-
fully establish a pairing as long as user interaction followed
the user model described in Section IV-D; demonstrating a
full MitM compromise. In the second experiment, the pairing
should succeed on the PNC side of the pairing.

4) Experiment (E4): [Performance Measurements] [1.5
human-hours]: We supply two types of performance measure-
ment tool sets. The macro benchmark measures the instruction
and cycle count as well as memory overhead of the entire
pairing execution. This includes network and user-induced
latencies. The micro benchmark measures only cycles and
instructions of the cryptographic primitives, thus excluding
those latencies. We recommend performing both types of tests
with each implementation to confirm that XNC and XPE
have no unreasonable overhead in comparison to the original
Bluetooth methods or PNC and PPE. Our own results for this
experiment can be found in Tables III–VIII.

[Preparation] We now give the instructions to profile
Bluetooth samples in the directory d, which could be either
‘unpatched victims’ ‘patched victims’ or ‘x victims’.

To profile using the micro benchmark, enter directory d
and run: make clean && MEASURE=1 make; to profile
using the macro benchmark, enter directory d and run: make
clean &&QUIT_ON_SUCCESS=1 make.
[Execution] Benchmarking can be performed using two

Bluetooth devices connected to the same or to separate ma-
chines. For that reason, the benchmarking applications operate

in a server-client fashion. First, the benchmarking application
is launched in server mode, specifying an available TCP
port, the USB ID of a Bluetooth device and the Responder
binary to be benchmarked. Next, the application is launched
in client mode on the same or a separate device, providing the
corresponding Initiator binary, USB ID, the server’s port and
IP address.

For instance, open two terminals in the root directory of the
artifact, one for the Initiator and one for Responder device. Let
us assume d=‘unpatched victims’ and one wants to profile the
combination ‘responder.bin’ and ‘pe initiator.bin’. We always
begin by conducting one regular pairing between the Initiator
and Responder to test functionality and gather the Bluetooth
address of the Responder.

Subsequently, a benchmark (e.g., in this case macro)
can be run as follows. On the Responder side (from
the root directory): sudo ./measure-macro.py -
s <LISTENING_PORT> ./unpatched_victims/
responder.bin <USB_BUS>:<USB_DEVICE#>
And on the Initiator side (root directory): sudo ./measure
-macro.py -c <RESPONDER_DEVICE_IP> <
RESPONDER_DEVICE_PORT> ./unpatched_victims
/pe_initiator.bin <USB_BUS>:<USB_DEVICE#>
<TARGET_RESPONDER_MAC_ADDRESS>

To perform a micro benchmark, compile the samples ac-
cordingly (MEASURE=1) and use the same syntax and pro-
cedure, only replacing ‘measure-macro.py’ with ‘measure.py’.

[Results] These scripts perform pairing repeatedly, measur-
ing the overall performance and writing the observations to a
‘.msmt’ file. Run for as many iterations as deemed necessary
to confirm validity. The ‘msmt’ files can be evaluated using
the scripts in the ‘eval’ folder. Further, our implementations
produce network logs (‘*.pklg’) in the ‘/tmp’ directory. The
‘eval’ folder contains a script to evaluate the payload sizes of
these logs. Comments in the script detail the packet format
and provide further evaluation details. We already collected
a full network measurement set in the artifact folder ‘net-
work measurements’.

E. Notes

Pairing is under normal circumstances a rare process in
the lifetime of a device. Performing hundreds of pairings for
profiling reasons can cause devices to reset themselves and the
new USB address needs to be fetched through lsusb.
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