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Abstract—A Software Bill of Materials (SBOM) is a detailed
inventory that lists the dependencies that make up a software
product. Accurate, complete, and up-to-date SBOMs are essen-
tial for vulnerability management, reducing license compliance
risks, and maintaining high software integrity. The US National
Institute of Standards and Technology (NTIA) has established
minimum requirements for SBOMs to comply with, especially the
correctness and completeness of listed dependencies in SBOMs.
However, these requirements remain unexamined in practice.
This paper presents the first systematic study on the landscape
of SBOMs, including their prevalence, release trends, and char-
acteristics in the Java ecosystem. We developed an end-to-end
tool to evaluate the completeness and accuracy of dependencies
in SBOMs. Our tool analyzed 25,882 SBOMs and associated
JAR files, identifying that 7,907 SBOMs failed to disclose direct
dependencies, highlighting the prevalence and severity of SBOM
noncompliance issues. Furthermore, 4.97% of these omitted
dependencies were vulnerable, leaving software susceptible to
potential exploits. Through detailed measurement studies and
analysis of root causes, this research uncovers significant security
implications of non-compliant SBOMs, especially concerning
vulnerability management. These findings, crucial for enhancing
SBOM compliance assurance, are being responsibly reported to
relevant stakeholders.

I. INTRODUCTION

Software supply chain attacks exploit vulnerabilities in soft-
ware dependencies, posing a significant threat to organizations
worldwide [59, 54, 51]. The recent XZ Utils backdoor inci-
dent [33], where malicious code was injected into the widely
used XZ Utils, highlights the severity of these risks. These de-
pendencies are often maintained by small teams yet are widely
used, making them attractive targets for attackers. Empirical
studies [34, 75, 64] highlight the challenges in managing
these dependencies, which exacerbate security vulnerabilities
within the supply chain. In response, Executive Order 14028
on Improving the Nation’s Cybersecurity, issued by President

Biden on May 12, 2021, mandates that software developers
provide a Software Bill of Materials (SBOM). An SBOM
is a nested inventory, a list of dependencies that make up
software components. The US National Telecommunications
and Information Administration (NTIA) [21] subsequently
released minimum requirements for SBOMs to comply with
(see § II-B). SBOMs are crucial for government agencies to
enhance software security by identifying and managing supply
chain risks [29]. However, without accurate and complete
information, an SBOM’s illumination and transparency may
become sources of consumer confusion and harm. Incorrect
or incomplete SBOMs can undermine the effectiveness of
vulnerability management tools, mislead security analysts,
waste maintenance resources, leave vulnerabilities overlooked,
and ultimately exaggerate security risks in the software supply
chain.

Extensive research [37, 39, 40, 80, 82, 38, 45, 8, 70,
58, 35, 58] has been conducted to understand the current
SBOM practices, including key topics, readiness, benefits,
challenges, and solutions. However, there has been little study
on the prevalence and characteristics of SBOMs distributed
by developers on a large scale over time. Although several
tools [27, 28] have been developed to evaluate SBOM qual-
ity, they focus primarily on SBOM format (e.g., whether
an SBOM includes certain fields like version or license).
These tools do not thoroughly analyze the internal quality
of SBOMs, such as the correctness and comprehensiveness
of the dependencies section, which has direct security
implications for vulnerability management tools that rely on
it. Balliu et al. [37] tried to address this issue to some
extent by manually cross-checking the results of six third-party
SBOM generators on 26 Java projects. Their findings showed
significant variations across the dependencies sections
in SBOMs. However, the manual examination of a limited
number of SBOMs does not provide a holistic and in-depth
insight into the quality of SBOM dependencies. In our study,
we systematically investigate official SBOMs that are released
by developers and distributed through Maven Central [18], a
widely used repository for Java packages. By analyzing these
official SBOMs, rather than those generated by third-party
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vendors and hosted in third-party databases [32, 23, 25], we
aim to provide more realistic insights into the current state of
Java SBOMs.

Research Questions. We thoroughly examine the following
unaddressed research questions:
RQ1: What are the current landscape and characteristics of
SBOMs distributed by developers in the Java ecosystem?
RQ2: How complete and correct are the dependency relation-
ships disclosed in SBOMs and to what extent do they comply
with NTIA requirements?
RQ3: What are the security implications of non-compliant
SBOMs for vulnerability management?
Methodology. To answer (RQ1), we collected all artifacts
released by developers from Maven Central. From there, we
collected 47,042 SBOMs which we analyzed to understand the
trends, scope, and characteristics of SBOMs (§ V). For (RQ2),
we collected the corresponding distributed code (i.e., JAR
files) associated with these SBOMs and employed JBomAudit
to automatically assess dependency inconsistencies between
SBOMs and the distributed code (§ VI). We began by defining
a consistency model through a qualitative analysis of 496
SBOM-related discussions, concentrating on the challenges,
risks and concerns developers encounter regarding SBOM
dependency issues. This analysis informed our adoption of
the NTIA’s minimum requirements for dependencies [2] and
helped us establish an inconsistency model for evaluating
SBOM dependency compliance (§ III). Based on our new
inconsistency model that formalizes six inconsistencies in
SBOM dependencies compliance, we designed and imple-
mented JBomAudit, an automated, end-to-end system by uti-
lizing program analysis techniques to unpack the dependencies
tree in distributed code and then compare with that listed
in SBOMs to output six types of inconsistencies (§ IV).
Our thorough evaluation shows that JBomAudit can detect
SBOM dependency non-compliance effectively and efficiently
(§ IV-E). For (RQ3), we assessed the security implications
of such non-compliant SBOMs by examining their impact on
subsequent vulnerability management (§ VII).
Measurement and findings. Our analysis using JBomAudit
revealed widespread SBOM non-compliance within the Java
ecosystem, with significant security implications for vulnera-
bility management across the software supply chain. Specif-
ically, 7,907 SBOMs omitted direct dependencies, averaging
6.18 missing dependencies per SBOM. Additionally, 19,404
SBOMs inaccurately listed an average of 4.45 dependencies.
Altogether, 13,394 SBOMs exhibited at least four types of
inconsistencies, with each SBOM containing an average of
3.56 inconsistencies (§ VI). These inconsistencies in SBOMs
can lead to vulnerabilities being overlooked, leaving software
susceptible to potential exploits, or result in the misallocation
of resources by addressing non-existent issues. On average,
4.97% of missing dependencies were vulnerable, leading to
507 vulnerabilities being overlooked by SBOM-based vulner-
ability management tools. Furthermore, 0.28% of incorrectly
listed dependencies were vulnerable, resulting in the wasteful

allocation of resources to address 105 vulnerabilities in non-
existent dependencies (§ VII). We also identified a set of root
causes contributing to these issues, including design flaws,
misuse of SBOM generators, and incomplete or erroneous
metadata (§ VI-B).
Responsible disclosure. We reported our findings to 13
project maintainers regarding 52 missing and 26 incor-
rect dependencies. So far, 7 maintainers have acknowl-
edged the issues, and 6 have already addressed them
in their latest SBOMs. Additionally, we are collaborating
with CycloneDX-Maven-plugin team to resolve non-
compliance issues caused by improper handling of certain
pom.xml configurations.
Contributions. Our key contributions are summarized below:
• We conducted the first large-scale study of the SBOM
landscape in the Java ecosystem, highlighting the prevalence,
release trends, and characteristics of official SBOMs.
• We designed and deployed JBomAudit, an end-to-end im-
plementation that automatically assesses the correctness and
completeness of dependencies in SBOMs. JBomAudit is
based on a formally defined inconsistency model derived from
a qualitative analysis of GitHub issue discussions. It can help
SBOM practitioners to meet compliance objectives and serve
as a resource for auditing purposes. We open source the code at
https://github.com/code-genome/jbomaudit.
• We conducted comprehensive measurement studies on
SBOM non-compliance issues, investigating root causes, and
analyzing their security implications. These insights can im-
prove SBOM quality and compliance requirements, helping
SBOM providers, consumers, and policymakers better achieve
their security and accountability goals.

II. BACKGROUND

A. Software Bill of Materials

A Software Bill of Materials (SBOM) is a detailed,
machine-readable document that lists the attributes, depen-
dencies, and licensing information of software components.
Presently, CycloneDX [24], Software Package Data Exchange
(SPDX) [30], and Software Identification (SWID) [22] are
the three universally recognized SBOM formats, with Cy-
cloneDX and SPDX being the most popular [14]. Listing 1
provides a CycloneDX json format snippet of an SBOM
for the org.apache.flink project’s flink-json component.
This SBOM is structured into three main sections: metadata,
components, and dependencies. The metadata section contains
essential details such as the timestamp, publisher, version, and
licenses. The components section enumerates the nodes, while
the dependencies section outlines the edges, representing the
dependency relationship graph. For example, flink-json’s
reliance on flink-table-common, which in turn depends
on the icu4j library, highlights the constructed dependency
tree.
SBOM Distribution. SBOMs are required to be decoupled
from the software and distributed separately [4]. In the Java
ecosystem, SBOMs are typically released separately from the
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Listing 1: SBOM Example of flink-json
{
"bomFormat" : "CycloneDX",
"specVersion" : "1.4",
"serialNumber" : "urn:uuid:3db22509-0440-45f0-9ebd...",
"version" : 1,
"metadata" : {
"timestamp" : "2024-03-06T14:55:56Z", ... }

"components": :[{
"group" : "com.ibm.icu",
"name" : "icu4j",
"version" : "73.2",
"purl":"pkg:maven/com.ibm.icu/icu4j@73.2?type=jar

"...]
"dependencies": [
{
"ref" : "pkg:maven/org.apache.flink/flink-json@1

.19.0?type=jar",
"dependsOn" : [

"pkg:maven/org.apache.flink/flink-table-common@1
.19.0?type=jar", ...]

}, {
"ref": "pkg:maven/org.apache.flink/flink-table-

common@1.19.0?type=jar",
"dependsOn": [

"pkg:maven/com.ibm.icu/icu4j@67.1?type=jar", ... ]
}, ... ]

}

JAR file but are located in the same project directory, rather
than being packed within the JAR file. In our study, we
collected SBOMs from Maven Central [18], a major repository
for Java projects, where developers release both the SBOM and
JAR in the project directory.

SBOM Usage Scenarios. SBOMs are crucial for enhancing
security and transparency throughout the software supply
chain. Vulnerability management is the primary use case for
SBOMs, as rated by 412 organizations [26]. For instance, soft-
ware developers use SBOMs to identify vulnerable software
dependencies promptly by matching software dependencies
against vulnerability databases and issuing warnings when
a vulnerable dependency is found. However, any incorrect
or missing dependencies in SBOMs can significantly affect
the effectiveness and efficiency of vulnerability management.
Our research systematically assesses the comprehensiveness
and correctness of SBOM dependencies (§ VI) and evaluates
the security risks associated with non-compliant SBOMs, as
detailed in Section § VII.

SBOM Quality. Several existing tools aim to evaluate SBOM
quality, such as sbom-scorecard [27] and sbomqs [28].
However, these tools only assess format compliance with
standards like CycloneDX, SPDX, and SWID, ensuring the
inclusion of essential fields such as identifiers, licenses, and
versions, but they do not evaluate the accuracy or completeness
of the SBOM content. In this work, we go beyond format-level
compliance assessments by systematically investigating the
internal quality of SBOMs. Guided by the NTIA’s minimum
requirements for SBOM dependencies, we formally defined a
consistency model (§ III) that includes six minimum, atomic,
essential inconsistency types between the dependency tree
extracted from the code and the one disclosed in the SBOM.

B. Regulatory Compliance and Standards for SBOM

SBOMs are increasingly mandatory in various industries
and are considered a critical component of any organization’s
regulatory compliance strategy. A series of governing bodies
and regulators globally [10, 1, 6, 11, 7] have either mandated
or recommended organizations provide and maintain accurate
and up-to-date SBOMs and use them as a strategy to bolster
cybersecurity infrastructure.
NTIA Minimum Requirements. The US National Telecom-
munications and Information Administration (NTIA) [2] de-
fines a set of minimum requirements that SBOM should
comply with. These requirements are divided into two main
categories: format compliance and quality compliance. Format
compliance specifies that SBOMs must include all neces-
sary data fields, such as the package name, version, unique
identifier, licensing information, and dependencies for each
component. Additionally, the chosen data formats, like Cy-
cloneDX, should facilitate automatic generation while ensur-
ing machine readability and interoperability. We assess these
format requirements on our large-scale dataset in § V. Quality
compliance requires that the content listed in the SBOM be
accurate, complete, and up-to-date. In our study, we focus on
the quality of the dependencies section in SBOMs, specifically
assessing their correctness and completeness. If any incorrect
or missing dependencies are found in an SBOM, we consider
it non-compliant with NTIA requirements and flag the SBOM
as non-compliant. We systematically assess SBOM quality
compliance in § VI and its security implications in § VII.

C. Scope of Study

SBOM Auditing Tools. Our study introduces JBomAudit,
the first tool designed to audit SBOM compliance issues
specifically in the Java ecosystem. Currently, there are no off-
the-shelf SBOM auditing tools available for other ecosystems,
as SBOM adoption in other programming languages is still
in its early stages. Specifically, after manually examining
over 1,000 projects from mature dependency management
systems (e.g., Cargo for Rust, Go Modules for Go, pip for
Python, Conan for C/C++, npm for JavaScript), we found
no instances of developer-released SBOMs. Moreover, at the
time of this study, only four SBOMs had been released by
developers across 377,000 C/C++ projects on GitHub. The
lack of developer-released SBOMs for other languages limits
such study.

III. INCONSISTENCY MODEL

NTIA defines Dependency Relationship (denoted as D) as
characterizing the inclusion of an upstream component X
in software Y . This relationship is typically represented as
a hierarchical tree comprised of components that may have
sub-components. The dependencies section in an SBOM
discloses these Dependency Relationships within the software.
NTIA mandates that “an SBOM should contain all primary
(top-level) components, along with all their transitive depen-
dencies (second-level).” [21] Therefore, the D disclosed in an
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SBOM (Ts) should align with the actual D in the distributed
software (executable code, denoted as Tc), including both top-
level and second-level dependencies in the tree. Discrepancies
between Ts and Tc at these levels indicate non-compliance
with NTIA’s disclosure requirements. However, categorizing
these inconsistencies, which reflect various quality issues and
security risks, remains unclear and is a concern among SBOM
practitioners. Our research question focuses on identifying the
types of inconsistencies that violate NTIA requirements and
are significant to practitioners.

To this end, we conducted a qualitative study by analyzing
discussions related to SBOM dependency issues in public
GitHub projects to gain insights into the concerns, challenges,
and errors encountered in creating accurate and complete
dependency relationships within SBOMs. We identified two
general types of dependency issues causing non-compliance
and six specific types of dependency inconsistencies that
do not satisfy NTIA requirements, each reflecting a certain
granularity of discrepancy between the declared dependency
relationships in SBOMs and the actual dependency relation-
ships in code.

A. Study Procedure

This section outlines our approach to collecting and ana-
lyzing SBOM-related discussions to develop an inconsistency
model covering various types of inconsistencies.
Stage ➊: Data collection. We utilized a tag-based filtering
approach to identify GitHub repositories tagged with SBOM”,
ensuring relevance in our data sources. Our primary focus
was on discussions within GitHub issues, extracting relevant
Titles, Questions, and Answers using keywords like SBOM”,
dependency issues”, and quality.” These selected discussions
were centered around two main themes: (1) Internal SBOM
quality issues: This included reports of missing or incorrect
information within SBOMs, highlighting the potential negative
impacts of such inaccuracies on downstream users who rely
on SBOMs for security and compliance assessments. (2)
Challenges in tracking third-party components: Many con-
tributors discussed the difficulties associated with keeping an
accurate and up-to-date record of third-party components. This
method yielded 51 projects and 496 SBOM-related discussions
specifically focusing on dependency issues.
Stage ➋: Qualitative Analysis. Our qualitative analysis fol-
lowed the Grounded Theory methodology [72], suitable for
developing conceptual frameworks in new areas of study [44].
This consisted of three iterative steps:
• Open Coding: Conducted by the first two authors, this step
involved segmenting the collected discussions into manageable
concepts.
• Axial Coding: This phase refined the concepts into cate-
gories, identifying the main topics and subtopics, reviewed by
an additional author for comprehensiveness.
• Verification: The coding results were compared using Krip-
pendorff’s alpha coefficient, achieving a reliability score of
0.87, higher than the reliability threshold in social science [49].

B. Inconsistency in Dependency Complication
In general, we found developers raise concerns regarding

the accuracy and completeness of third-party dependencies
listed in SBOMs, given that software systems are typically
maintained by multiple developers and undergo a significant
volume of code and components changes on a daily basis.
Two types of dependency issues causing non-compliance:
We identified two general categories of dependency issues
causing non-compliance: missing dependencies and incorrect
dependencies, each posing distinct security implications.
• Missing dependencies are components used in the distributed
code but not listed in the SBOM, leading to potential security
oversights. If missing dependencies contain vulnerabilities
that are not tracked due to their absence in the SBOM, the
resulting security gaps can remain unpatched, leaving the
software open for exploitation.
• Incorrect dependencies are listed in the SBOM but not
used in the distributed code. Resources may be wasted while
trying to investigate and fix vulnerabilities for non-existent
components. This not only wastes time and resources but
also diverts attention and efforts away from real threats and
potentially delays the mitigation of critical security risks.
Six types of inconsistencies in dependency complication:
We identified three specific types of inconsistencies for each
of the two broad dependency issues, examining discrepancies
at both the node and edge levels within dependency trees.
Missing dependencies are categorized into three distinct types:
(1) missing direct dependency (M1), (2) missing transitive
dependency (M2), and (3) missing transitive relationship
(M3). M1 identifies direct dependencies omitted from the top
layer of Tc, while M2 refers to transitive dependencies that are
absent from the second layer. M3, defined at the edge level,
denotes the absence of a connection between dependencies
within Tc. Similarly, incorrect dependencies are divided into
three types: (1) incorrect direct dependency (N1),(2) incor-
rect transitive dependency (N2), and (3) incorrect transitive
relationship (N3). Each type reflects a different granularity
of discrepancy between the SBOM’s documented dependency
tree and the actual dependency relationships found in the dis-
tributed code. Detailed descriptions and visualization of these
SBOM inconsistency types are listed in the accompanying
Table I.
Discussion. Our thorough qualitative analysis ensures that all
fundamental issues developers encounter with dependencies in
SBOMs are covered. The categorization of six inconsistency
types captures the minimum, atomic, and essential aspects of
differences between two dependency trees. This consistency
model comprehensively covers all complex inconsistencies
through combinations of these six basic types and is extensible
to handle deeper layer inconsistencies (see Appendix § A).

IV. JBomAudit: DESIGN AND IMPLEMENTATION

A. Overview
As outlined in Figure 1, the design of JBomAudit includes

three major components: Data Collection (§ IV-B), Depen-
dency Tree Extraction (DTE, § IV-C), and Compliance check

4



TABLE I: Summary of Six Inconsistency Types in Dependency Complication with Visual Representations and Formal
Definitions. L1 means the top layer in dependency tree and L2 represents the second layer in dependency tree; u ≡ v
means their gid and aid are congruent, i.e., gidu = gidv and aidu = aidv where gid is groupId and aid is artifactId.

Type Description Figure Formal Definition Security Implication

M1

M1 occurs when a node v in L1 of
Tc lacks a corresponding node in L1 of
Ts. This inconsistency indicates that a
component, such as A3, used directly in
the code is not documented as a direct
dependency in the SBOM.

Inconsistency 1 ([⊮⃝] Missing
Direct Dependency).

∃v ∈ L1(Tc) : ∄u ∈ L1(Ts) :
u ≡ v
⇒ Ts ⊮⃝ v

The omission of direct dependencies,
such as A3, from the SBOM may result
in overlooking vulnerabilities in A3 (if
present) by security analysis tools that
depend on accurate SBOM data.

M2

M2 is identified when a transitive de-
pendency v, which is a node in L2 of
Tc, does not have a corresponding node
in L2 of Ts. For example, a library B1
required by another library A1 is missing
in the SBOM’s detailed dependency tree.

Inconsistency 2 ([⊭⃝] Missing
Transitive Dependency).

∃v ∈ L2(Tc) : ∄u ∈ L2(Ts) :
u ≡ v
⇒ Ts ⊭⃝ v

The omission of transitive dependencies
like B1 from the SBOM can also expose
systems to security risks by leaving
vulnerabilities in transitive components
unaddressed.

M3

M3 is detected when a transitive de-
pendency has multiple parents, but not
fully disclosed all dependent relationship
in SBOM. For example, the software has
direct dependencies A1 and A2 and A1
and A2 both have B2 as a transitive
dependency, then SBOM dependency tree
will describe B2 as only being a depen-
dency of A1 and will ignore it also being
a dependency of A2.

Inconsistency 3 ([⊬⃝] Missing
Transitive Relationship).

∃v ∈ L2(Tc), u ∈ L2(Ts) :
(u ≡ v)
∧(P (v) > P (u)) ⇒ Ts ⊬⃝ v

This cause a problem when B2 has a
vulnerability, and A1 has an available
update that includes a fixed version of
B2, while A2 does not. The dependency
graph might misleadingly suggest that
updating A1 alone is sufficient to ad-
dress the vulnerability. However, this is
not the case. Only after the upgrade is
complete and a new SBOM is gener-
ated, the dependency graph accurately
reflects A2’s reliance on B2.

N1

N1 denotes a node u in L1 of Ts that
does not correspond to any actual use in
L1 of Tc, often arising from outdated
or incorrect documentation. For example,
the listed component A3 is not utilized in
the distributed code.

Inconsistency 4 ([⊮△] Incor-
rect Direct Dependency).

∃u ∈ L1(Ts) : ∄v ∈ L1(Tc) :
u ≡ v
⇒ Ts ⊮△ u

Listing an incorrect direct dependency
such as u can cause security tools to
expend efforts on non-existent vulnera-
bilities, misdirecting focus from actual
security risks within the code.

N2

N2 denotes an incorrectly documented
transitive dependency u within L2 of Ts
that has no counterpart in L2 of Tc. For
instance, the SBOM erroneously lists B4
as a transitive dependency of A3, despite
there being no such dependency in the
distributed code.

Inconsistency 5 ([⊭△] Incor-
rect Transitive Dependency).

∃u ∈ L2(Ts) : ∄v ∈ L2(Tc) :
u ≡ v
⇒ Ts ⊭△ u

The inclusion of non-existent transitive
dependencies can also lead to a mis-
allocation of security efforts, neglect-
ing actual threats in the software and
impairing the integrity of vulnerability
management processes.

N3

N3 identifies when a transitive depen-
dency u in L2 of Ts is inaccurately doc-
umented with an dependency relationship
in the SBOM compared to its distributed
code in L2 of Tc. For instance, although
A3 does not depend on B3 in the actual
code, the SBOM erroneously documents
such a dependency.

Inconsistency 6 ([⊭△] Incor-
rect Transitive Relationship).

∃u ∈ L2(Ts), v ∈ L2(Tc) :
(u ≡ v)
∧(P (u) > P (v)) ⇒ Ts ⊭△ u

Over-claiming transitive relationships
can lead to insufficient vulnerability
management and patch application. Se-
curity analysts might expend unneces-
sary efforts seeking compatible versions
of B3 for A2 and A3, despite only
needing to address A2.

Fig. 1: Overview of JBomAudit.

(SCC, § IV-D). Particularly, in the Data Collection component,
JBomAudit first collects 25,882 SBOMs and corresponding

binaries (i.e., JARs) from Maven, spanning the period from
June 2023 to April 2024. After that, DTE extracts the depen-
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TABLE II: Summary of datasets and corpora (MC is short for
Maven Central)

Name Source Size Timestamp Usage
Stotal MC 47,042 SBOMs 2023-2024 Detection
Si MC 25,882 SBOMs 2023-2024 Detection
Ji MC 25,882 JARs 2023-2024 Detection
Mj MC 606,840 Maven Packages 2023-2024 Detection
Pj MC 25,882 POMs 2023-2024 Measurement
Gt MC 3,704 target profiles 202404 Measurement
Gd MC 1,315 dependency profiles 202404 Measurement
Nv NVD 719 vulnerabilities 202404 Measurement

dency tree (Tc) directly from the JAR files, using JarPkgTags
(a binary analysis tool detailed in § IV-C). Additionally,
DTE parses the corresponding SBOM to extract the claimed
dependency tree, represented as Ts. In the final analysis,
SCC performs a comparative evaluation between Tc and Ts,
identifying any inconsistencies as specified in Section III.
Example. To demonstrate the functionality of JBomAudit,
we analyze JAR file: env-var-0.0.2.jar. Initially, we
download the JAR file and its corresponding SBOM (env-
var-0.0.2-cyclonedx.json) from the Maven reposi-
tory. DTE then extracts the dependency tree from the binary
code, resulting in a tree that includes 1 direct node in the first
layer and 2 transitive nodes in the second layer. Concurrently,
DTE processes the dependencies section in the SBOM,
producing a dependency tree with 3 direct nodes in the first
layer and 17 transitive nodes in the second layer. Lastly, SCC
takes these two trees as input and applies a Breadth-First
Search (BFS) Layer Comparison to identify discrepancies. The
analysis outputs two incorrect direct dependencies (N2) and
one missing transitive dependency (M3).

B. Dataset collection

We summarize the dataset produced and consumed by each
stage of our detection pipeline as below. Table II shows
the datasets used in our study. In total, we collected 47,042
SBOMs (Stotal) provided by developers from Maven Cen-
tral [18], a major repository for Java projects. More specif-
ically, we downloaded the latest “nexus-maven-repository-
index.gz” from Maven, which indexes all artifacts within the
repository. Using index-cli-6.2.0, we unpacked this
index into a raw Lucene format and utilized PyLucene’s
IndexReader and IndexSearcher to efficiently query
for SBOMs. Our search employed keywords such as “Cy-
cloneDX”, “SPDX”, “sbom”, “cdx”, focusing on artifact
names containing these terms along with either a .json
or .xml extension. The total SBOMs (Stotal) were used to
measure their prevalence and characteristics within the SBOM
ecosystem (see measurement results in § V).

The JAR file, which the SBOM describes, is typically
released in the same project directory on Maven Central.
However, we observed that not all SBOMs (Stotal) had a
corresponding JAR file released by the developer on Maven.
We found that only 55% of the SBOMs (Si) had corresponding
JARs, resulting in 25,882 JARs (Ji). The Si and Ji further
served as inputs for dependency tree extraction (§ IV-C) and

SBOM compliance check (§ IV-D) to detect inconsistencies
(see measurement results in § VI). Furthermore, we collected
606,840 Maven packages (Mj) hosted on Maven to construct
the Package Name to Dependency Mapping database (§ IV-C).

C. Dependency Tree Extraction

The dependency tree T s is constructed from an SBOM
by traversing the dependencies section, which lists all edges.
This section focuses on Dependency Tree Extraction from the
distributed code. We developed JarPkgTags, which processes
JAR files to extract top-layer direct and second-layer transitive
dependencies, denoted as L1(T c) and L2(T c) respectively.
The tool then compares these layers with the SBOM to identify
inconsistencies as outlined in Section III.

1) Utilized Java Classes Extraction: A Java application
or library is encapsulated within a JAR file (Java ARchive),
which employs the standardized ZIP file format. The contents
of a JAR file typically include: (1) Metadata files such as
pom.xml and MANIFEST.MF, which provide critical in-
formation about the application, including dependencies. (2)
Compiled Java code, consisting of class files that execute
the application’s functionality. These metadata files are man-
ually curated by developers. Due to the frequency of code
updates and the extensive reliance on third-party libraries,
these files are susceptible to containing outdated, incomplete
or incorrect information, which is not a reliable source to
extract dependencies from. Conversely, the Java class files,
generated by the Java compiler, serve as a definitive source
of “ground truth.” They accurately reflect the actual code
utilization within the application, thereby providing a reliable
basis for extracting the actual dependencies. Our approach
analyzes Java bytecode to capture reference from external
classes, methods, annotations and also covers those introduced
by dynamic features. This process involves scanning the
bytecode to identify references that indicate the use of external
Java classes.
Source ➊: External classes. The primary category of uti-
lized Java classes that our analysis targets encompasses
those originating from external packages. These classes are
identified through their references within the constant pool
of the Java bytecode. Specifically, the constant pool stores
these references as fully qualified names, for example,
java.util.List, which uniquely identify each external
class. The Java class file constant pool consists of a table
of variable length tagged value entries. We scan the constant
pool looking for entries tagged as ClassReference. These
entries contain an index back into the constant pool to an entry
tagged as UTF8String, which is the fully qualified class
name.
Source ➋: Method parameters. Another source of utilized
external Java classes can be identified through method param-
eters. Specifically, if these parameters are never used except as
arguments to methods in classes that are external to the jar file,
then the constant pool will not have a class reference. Thus,
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we also scan all of the parameters for all methods defined in
the class to look for additional utilized classes.
Source ➌: Annotations. Annotations represent a critical
static source for class references within Java applications.
Java annotations are defined using Java classes and are han-
dled at compile time and are stored as attributes associated
with classes, fields, and methods. Because they are normally
handled at compile time, they are not normally a run-time
dependency. However, because annotations can generate code
at compile time, it is necessary that they be included in the
SBOM. At the class file level, examples of these annota-
tion attributes are RuntimeVisibleAnnotations, Run-
timeVisibleTypeAnnotations, and RuntimeVisi-
bileParameterAnnotations as well as the Invis-
ible counterparts. Our method examines all attributes to
identify and extract these annotations. We then decode each
annotation to obtain the fully qualified class name that defined
the annotation.
Source ➍: Dynamic features. The final step in our analysis
involves extracting classes accessed via Java’s dynamic class
loading API, which allows applications to load external classes
at runtime using Java strings to specify class names. While
these dynamically referenced classes do not appear in the
constant pool as external references, non-computed string
constants specifying class names do. Although scanning the
constant pool for string constants formatted as fully qualified
class names can lead to false positives, a more reliable
approach involves analyzing the usage of the Java reflection
API. Primarily, we focus on the dynamic loading APIs, such as
java.lang.Class.forName() method, which requires
a string containing the class name as its argument. Our method
considers 33 class loaders, catalogued in [20], detailing their
usage and parameter positions.

For each class file, we scan the constant pool for references
to these dynamic loading APIs. If found, we then examine the
Java bytecode of the class file, searching for invocations of
any dynamic loading APIs. Given that the JVM operates on
a stack-based mechanism, we simulate bytecode execution to
ascertain inputs to targeted methods. We assume that the input
value is pushed onto the stack shortly before the method call,
typically via the ldc or ldc_w instructions which transfer
constants from the constant pool to the stack. For calls to
dynamic loading APIs, we monitor the stack for these inputs,
discarding other non-essential data. When a target method call
is identified, and if preceded by an ldc or ldc_w instruction,
we extract the class name from the stack for further processing.

To improve the resolution rate, we also integrated state-
of-the-art dynamic feature resolution tools such as Soot [73]
and WALA [31]. The combination of Soot in CHA mode and
WALA in CFA mode has been validated against the most
challenging dynamic feature test cases as detailed in the study
by Reif et al. [66].

2) Dependency Tree Construction: After retrieving the uti-
lized class files, our next goal is to identify the dependencies
that provided these files. Initially, we determine the package
containing the class file. If this package originates from an ex-

ternal dependency, we classify it as a directly used dependency,
constructing the node in the first layer of the dependency tree
(L1(Tc))). Subsequently, we recursively construct the second
layer (L2(Tc)).
Step ➊: Class Name to Package Name Transformation.
After identifying the utilized class name, we convert it to its
corresponding package name, which is crucial for pinpointing
any external dependency that provides it. Class file names
consist of a series of labels separated by dots (“.”), with the
class name typically being the last label in the sequence. To
isolate the package name, we remove this last label, thereby
retaining the sequence that represents the package name.
Step ➋: Internal vs. External Package Determination. We
then ascertain whether the package name is internally provided
by the current JAR or derived from external dependency.
This involves cataloging all packages contained within the
JAR under investigation. If the utilized class file does not
belong to any internally provided package, we conclude that
it corresponds to an external source.
Step ➌: Package Name to Dependency Mapping. To identify
which external dependency provides a utilized package, we
maintain a comprehensive Maven database mapping package
names to dependencies, denoted as M : K → V , where K
represents a dependency identified by PURL and V denotes the
set of package names it provides. This is necessary because at
the code level, we only extract package names, which cannot
be directly compared with SBOM dependencies represented
by PURL, a standardized URL format used to identify and
locate software packages in an SBOM. To bridge this gap,
we established a detailed mapping from package names to
PURL. We achieved this by collecting all Maven packages
currently hosted on Maven, each identifiable by PURL. Using
the JarPkgTags, we extracted package name details from these
artifacts. This process allowed us to establish a correlation
between package names and the PURL of the external depen-
dencies.
Step ➍: Dependency tree construction. Finally, we can obtain
all utilized direct dependencies (i.e., L1(Tc)). JarPkgTags
further analyzes these direct dependencies to identify second-
layer transitive dependencies (i.e., L2(Tc)), which are served
as inputs to the compliance check module.

D. SBOM Compliance Check

The dependencies section in an SBOM enumerates
edges, each representing a dependency relationship between
two components. We analyze this section to construct a
declared dependency tree for the first two layers. To identify
inconsistencies as defined in Section III, we employ a Breadth-
First Search (BFS) Layer Comparison approach between T c
and T s. Initially, we compare the first layer of both trees.
We identify missing direct dependencies (M1), which are
present in T c but absent in T s. Conversely, incorrect direct
dependencies (N1) are noted if they appear in T s but are
missing from T c. Next, we analyze the second layer by
extracting and comparing the subtrees, T ′c and T ′s, which
share the same parent node. We traverse the nodes within
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these two subtrees to identify discrepancies at both the node
and edge levels. (1) Node-Level Discrepancies: We check for
missing or incorrectly formed nodes in T ′s. If discrepancies
are identified, we categorize them as missing transitive de-
pendencies (M2) or incorrect transitive dependencies (N2),
based on whether they are absent or malformed, respectively.
(2) Edge-Level Discrepancies: For each node, we first retrieve
all inbound edges from the original trees. These edges are
then compared to identify any mismatches: missing edges
are classified as missing transitive dependencies (M2), and
incorrect edges as incorrect transitive dependencies (N2). It
is important to note that if any node in T s is identified as
an incorrect dependency, its subtree is not compared against
T c. This is because there is no corresponding subtree in Tc,
given that the root node is already marked as an incorrect
dependency.

E. Evaluation of the JBomAudit System

Experiment settings. We deployed JBomAudit on a server
running Ubuntu 20.04.6 LTS. The server was equipped with 20
CPU cores, 251 GB of RAM, and a storage capacity of 50 TB.
This experiment settings are used to evaluate the effectiveness
and performance of JBomAudit.

1) Ground truth dataset.: To evaluate JBomAudit’s efficacy
in detecting various inconsistency types, we established two
ground truth datasets: one featuring real-world Java projects
and another comprising specialized test cases designed to chal-
lenge JBomAudit across different Java development practices,
such as dynamic features, custom build scripts, and manual
dependency inclusion.
• Real-world java projects. We randomly selected 30 Java
projects in the wild. A team of three Java experts, boasting
development experience spanning three, five, and twenty-five
years, invested 100+ hours in total to construct a reliable
ground truth for dependencies. This comprehensive process
involved: (1) Decompiling .class files into Java source code
using a tool named jadx [12]; (2) Manually collating all
utilized classes from direct imports located in the header of
the class file, implicit reference or dynamically loaded classes
embedded in the code. (3) Manually mapping these classes
to the project’s dependency tree via the Maven Dependency
Plugin [19] or, if unmatched, searching the Maven repository
for any library providing those classes; (4) Searching for
manually included or custom-built JARs, WARs, and RARs
within the project; (5) Contrasting the identified dependency
graph against SBOMs to pinpoint inconsistencies. Overall,
the team annotated 259 direct dependencies and, through
recursive analysis, 432 transitive dependencies.
• Test cases. Our test suite consists of 21 test cases, each
crafted to assess JBomAudit’s capability in dealing with Java
development practices and language features. We segmented
our test cases into three categories: (1) Multiple-build Systems
(ST00-ST03): We constructed four test cases that can be built
under different build systems (e.g., OSGI, Maven) to investi-
gate whether JBomAudit is capable of detecting all dependen-
cies included by these various build systems; (2) Customized

TABLE III: Overall effectiveness of JBomAudit: Sg and Dg

are the manually identified non-compliant SBOMs and depen-
dencies, respectively. St and Dt are the outputs of JBomAudit.
Ra is the average recall, and Pa is the average precision.

Type Sg Dg St Dt Recall Precision Ra Pa

M1 9 60 9 59 91.66% 93.22%
92.30% 91.74%M2 19 132 22 132 91.66% 91.66%

M3 17 140 18 145 93.57% 90.34%

N1 14 58 15 57 79.31% 80.70%
81.31% 78.49%N2 8 20 9 21 80.00% 76.19%

N3 6 52 5 56 83.61% 78.57%

Build Settings (ST04-ST08): We created five cases to test the
tool’s proficiency in recognizing custom build configurations,
including manually included dependencies, multi-module de-
pendencies, and varied Maven plugin applications. (3) Dy-
namic Features (TR9-CFNE1): We built 13 cases that utilized
Java’s dynamic capabilities to load classes, like Classload-
ing, Dynamic Proxies, and reflection techniques, to verify if
JBomAudit can effectively identify dependencies used dynami-
cally. This diverse test suite aims to evaluation the capability or
potential insufficiency of JBomAudit in specific Java develop-
ment contexts. Details for each test case are provided in [20].

2) Evaluation results.: Running JBomAudit on 30 real-
world Java projects, the tool demonstrated an average precision
of 91.74% and a recall of 92.30% in detecting missing
dependencies and 78.49% and a recall of 81.31% in detecting
incorrect dependencies. Our tool shows strong performance in
detecting missing cases, which have significant security impli-
cations (see § VII). Additionally, when tested against 21 spe-
cific cases, JBomAudit successfully passed 16 of them, show-
casing its capability to handle the complicated dependencies.
Real-world Java projects evaluation. In this analysis, JBo-
mAudit identified 59, 132, and 145 missing dependencies
categorized as M1, M2, and M3 respectively; and 57, 21,
and 56 incorrect dependencies categorized as N1, N2, and
N3 respectively. The precision and recall for each type of
inconsistency are detailed in Table III. Notably, JBomAudit
demonstrated high performance in detecting missing depen-
dencies. However, it exhibited lower effectiveness in iden-
tifying incorrect dependencies. This challenge arises from
the difficulty in confirming that classes listed by incorrect
dependencies are truly not used in anywhere of the code,
unlike the more straightforward verification of used classes
when identifying missing dependencies.
• Falsely detected inconsistency. We observed 57 instances
of falsely detected inconsistencies. First, 28 of these were
instances where JBomAudit incorrectly flagged dependencies
as non-dependent, even though they were actually utilized in
the code. This is mainly because the challenges in resolving
dynamic features. Specifically, 17 dependencies used reflection
techniques across five Java projects for purposes like extensi-
bility, testing, and legacy issues. These dynamic features, often
context-sensitive, necessitate a complicated inter-procedural
control-/data-flow analysis for accurate resolution. Other errors
arose from the failure to resolve annotations or methods
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referenced in the constant pool. Second, in left 29 instances,
the tool incorrectly identified dependencies as missing from
the SBOM, although they were accurately disclosed. This was
due to those dependencies being non-public or unavailable,
which led to incomplete mappings in the Package Name to
Dependency Mapping process (step ➌ in § IV-C2). Conse-
quently, the utilized classes could not be correctly matched to
the dependencies that provided them.
• False negatives. We observed 49 instances of false negatives,
among which 25 were missing dependencies and 24 are
incorrect dependencies. False negatives of missing dependen-
cies detection means that although these dependencies were
actually utilized in the code, JBomAudit failed to detect them.
False negatives of incorrect dependencies detection means
that although these dependencies were incorrectly disclosed
in SBOM, JBomAudit failed to detect them. To investigate
the reasons, we found that inefficiencies in dynamic feature
resolution also led to missed detections. Similarly, failures
to correlate detected class names with dependencies in our
Package Name to Dependency Mapping contributed to these
false negatives.
• Discussion. To address the potential false positives and nega-
tives caused by unresolved dynamic features, JBomAudit flags
detection results as undetermined and labels the corre-
sponding class files that contain unresolved dynamic elements,
allowing developers to investigate them deeper. Additionally,
to handle errors resulting from the incompleteness of the
Package Name to Dependency Mapping database, JBomAudit
similarly flags the results as undetermined and identifies
the absent libraries, giving developers the option to manually
upload the absent libraries for further investigation. Overall,
JBomAudit flagged 95,835 results as undetermined, and
these cases were excluded from subsequent measurement
studies (§ V, § VI and § VII).
Test cases evaluation. JBomAudit’s performance on 21 test
cases revealed its capability to detect dependencies introduced
by multiple build systems and customized settings, as well as
partially resolve dynamic features. As indicated in Table IV,
JBomAudit fell short in five test cases involving complex,
context-sensitive reflection or dynamic loading scenarios that
require advanced analysis or runtime data retrieval.

3) Comparison with other SCA tools.: To date, no publicly
available tools offer verification of the accuracy and complete-
ness of a dependency tree within an SBOM. We benchmarked
JBomAudit against three leading software composition analysis
(SCA) tools, referenced in our study as [3, 5, 9]. Notably,
JBomAudit specializes in the analysis of official SBOMs
during the Release & Deliver stage, utilizing binary-level
scrutiny. For a fair comparison, we ensured that the other three
tools also conducted binary scans. These scans encompass a
range of techniques, such as parsing manifest files, comparing
cryptographic hashes, and matching file names, to pinpoint
dependencies in the same stage of release and delivery.
• Effectiveness. To assess effectiveness, we utilized the three
SCA tools on a carefully curated ground-truth dataset to recon-
struct dependency trees from binaries. We then applied the in-

TABLE IV: Comparison of tools in test cases

Tests JBomAudit Dep-check Steady T1

ST00 ✓ ✗ ✗ ✗

ST01 ✓ ✗ ✓ ✗

ST02 ✓ ✗ ✓ ✗

ST03 ✓ ✓ ✓ ✗

ST04 ✓ ✗ ✗ ✗

ST05 ✓ ✓ ✗ ✓

ST06 ✓ ✓ ✓ ✓

ST07 ✓ ✗ ✓ ✗

ST08 ✓ ✓ ✗ ✓

TR9 ✓ ✗ ✗ ✗

LRR1 ✓ ✗ ✗ ✗

LRR2 ✗ ✗ ✗ ✗

CSR1 ✓ ✗ ✗ ✗

CSR2 ✗ ✗ ✗ ✗

CSR3 ✗ ✗ ✗ ✗

CSR4 ✗ ✗ ✗ ✗

CL1 ✓ ✗ ✗ ✗

CL2 ✓ ✗ ✗ ✗

CL3 ✓ ✗ ✗ ✗

CL4 ✗ ✗ ✗ ✗

CFNE1 ✓ ✗ ✗ ✗

TABLE V: Comparison effectiveness with three SCA tools.
Sg are the number of non-complaint SBOMs and Dg are non-
complaint SBOMs dependency.

Tools Sg Dg Precision Recall F1 Time
Dep-check 9 114 74.56% 24.67% 78.8% 5.36 s

Steady 17 286 81.81% 61.90% 70.48% 8.79 s
T1 13 232 75.86% 50.21% 60.43% 2.26 s

JBomAudit 22 470 87.87% 89.39% 88.62% 2.03 s

consistency definitions outlined in § III to identify six types of
inconsistencies. To provide a holistic view of effectiveness, we
aggregated the results across six inconsistencies and calculated
the average precision and recall for detecting non-compliant
dependencies. The comparative results are detailed in Table V.
At the non-compliant SBOM level, all three tools successfully
identified the majority of non-compliant SBOMs, each con-
taining at least one non-compliant dependency. However, at
the non-compliant dependency level, all tools demonstrated
lower recall, though they maintained comparable precision.
Among the three, Steady was the most effective, leveraging a
code-centric and usage-based detection method, whereas the
others primarily relied on parsing manifest files, which are
prone to errors and can become outdated.
• Performance Overhead. We evaluated the performance over-
head of JBomAudit against three other SCA tools. The com-
parative results, detailed in Table V, show average processing
times of 5.36 s for Dep-check, 8.79 s for Steady, 2.26 s
for T1, and 2.03 s for JBomAudit. These findings indicate
that all tools maintain a relatively low performance overhead,
with JBomAudit achieving the fastest processing time. To
demonstrate the scalability of JBomAudit, we ran JBomAudit
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across 300 select real-world Java projects of varying sizes and
complexities. Figure 6 illustrates the performance trend as tree
size increases, showing that the overhead grows linearly with
the number of nodes. This indicates that JBomAudit can handle
even complex projects in practice (see details in Appendix
§ B).

V. ECOSYSTEM OVERVIEW OF SBOM

In this section, we summarize the insights from our ex-
amination of official SBOMs for open-source Java projects,
discussing their prevalence and characteristics.

A. Pervasiveness of SBOM

We aim to investigate the scope and magnitude of current
SBOM implementation and adoption, and to provide insights
into trends or patterns in the release of SBOMs that could
inform future policy and practice.
Scope and magnitude. A CISA-backed study [71] advises
that SBOMs should be accessible in central repositories. We
assessed SBOM distribution on Maven, a key hub for Java
projects. As detailed in § IV-B, our approach identified 47,042
SBOMs, with 25,882 having corresponding JAR files.
Release timeline. Our investigation of the SBOM release time-
line seeks to understand the industry’s response to the cyberse-
curity executive order issued by the Biden Administration on
May 12, 2021 and subsequent NTIA guidelines on minimum
SBOM requirements. As depicted in Figure 2, SBOM release
activity before February 2022 was notably sparse, signifying a
considerable delay in the industry’s reaction to the May 2021
executive order. However, March 2022 saw a marked uptick in
activity corresponding with the introduction of the CycloneDX
1.4 format. The trend continued to show periodic expansion,
culminating in a notable peak in late 2023. This was subse-
quent to the OWASP Foundation’s collaboration with Ecma
International, emphasizing a global drive toward software
transparency and standardization. This increase suggests a
collective industry effort to comply with the new cybersecurity
standards. Another significant increase occurred in March
2024, following CISA’s SBOM-a-Rama event, which aided
the broader software and security community in understanding
and adopting SBOM practices. Overall, the trend shows an
increasing trend with some fluctuations, reflecting the evolving
landscape of SBOM release practices and showing that SBOM
practices are becoming increasingly common and established.

B. Characteristics of Official SBOMs

Earlier studies [80, 78, 70] have engaged in qualitative
research to gauge the benefits, challenges, and discussions sur-
rounding SBOMs from developer’s perspective. Nevertheless,
a void exists in the literature where quantitative analyses are
required to scrutinize the characteristics of SBOMs in depth.
Minimum SBOM requirements. The NTIA has delineated
the essential constituents [2] of an SBOM in its publication
“Minimum Elements for an SBOM”, formulated to fulfill the
objectives stipulated in Executive Order 14028. Below we

Fig. 2: SBOM release timeline. The y-axis represents the new
added SBOM monthly.

evaluate the extent to which current SBOMs align with these
minimum mandated requirements.

• Data fields. The NTIA specifies seven required fields as
foundational for SBOMs: Supplier Name, Component Name,
Component Version, Unique Identifiers, Dependency Relation-
ships, SBOM Data Author, and Timestamp. These fields con-
stitute the core information for tracking each software compo-
nent. Our analysis checks for the presence of these mandatory
fields in the SBOMs collected, thereby gauging compliance
with the minimum standards. Our analysis reveals compliance
rates for key fields: Supplier Name at 91.24%, Timestamp at
86.91%, and Dependency Relationship at 93.46%. All other
required fields met 100% compliance in the SBOMs analyzed,
as detailed in [20].

• Automation Support. The NTIA requires SBOMs to be
machine-readable, using formats such as SPDX, CycloneDX,
and SWID tags to support automation. Our evaluation verified
the adoption of these formats. All SBOMs in our study were
machine-readable, with 98.19% in CycloneDX format and
1.81% in SPDX.

SBOM characteristics. Dependency relationships and licens-
ing information are critical in SBOMs, facilitating effective
vulnerability management and minimizing licensing risks.

• Dependency Graph. Understanding the structure of depen-
dencies in SBOMs is essential for evaluating their complexity
and effective management. We analyzed SBOMs by con-
structing dependency graphs, measuring the size and levels of
transitive dependencies. The average number of dependencies
is 70.93 (SD = 115.64), and the average depth of dependency
chains is 9.46 (SD = 7.52).

• License Usage. License analysis within SBOMs sheds light
on the legal compliance of software usage. We collected
variety of licenses reported in the SBOMs and identified 222
distinct types of licenses. The five most common licenses
observed were Apache-2.0, EPL-1.0, EPL-2.0, MIT, and GPL-
2.0.
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Answer to RQ1: Our study identified 47,042 SBOMs
in Maven, showing an increasing trend in SBOM
releases and reflecting the evolving landscape of
SBOM practices. These SBOMs mostly comply with
NTIA’s minimum format requirements. The depen-
dency graphs vary significantly in size, and 222 distinct
licenses are used, highlighting the diversity of SBOMs.

VI. INCONSISTENCY ANALYSIS AND RESULTS

In this section, we analyze the landscape and characteristics
of the identified inconsistencies within SBOMs (§ VI-A) and
subsequently investigate their underlying root causes (§ VI-B).

A. Landscape

Scope and magnitude. Utilizing JBomAudit, we analyzed
25,882 JARs alongside their corresponding SBOMs, uncov-
ering widespread inconsistencies defined in § III. Table VI
summarizes our findings: 7,907 SBOMs failed to include direct
dependencies, averaging 6.18 dependencies per SBOM, while
19,404 SBOMs inaccurately reported an average of 4.45 de-
pendencies. The prevalence of errors in direct dependencies is
particularly concerning, as it directly compromises SBOM us-
ability and affects the performance of dependent downstream
tools. We also uncovered numerous inaccuracies within tran-
sitive dependencies; for instance, 23,362 SBOMs were found
to have missing at least one transitive dependency. In total,
13,394 SBOMs exhibited at least four types of inconsistencies,
with an average SBOM containing 3.56 inconsistencies, and a
standard deviation of 1.26. Remarkably, 918 SBOMs displayed
every category of inconsistency identified in our study. The
widespread nature of these issues underscores the critical need
for rigorous compliance checks and quality audits of SBOMs
to ensure their reliability. To understand the potential impact
of projects releasing non-compliant SBOMs, we analyzed their
profiles on the Maven repository [13], considering factors such
as rankings, categories/tags, and license usage (see [20] for
details).
Missing Dependencies in SBOMs. Inconsistencies such as
types M1, M2, and M3 highlight critical dependencies
that are utilized in the code but not listed in the SBOMs.
Such omissions pose significant security risks, potentially
allowing vulnerabilities to go undetected during SBOM-based
security assessments. Our analysis reveals that 88.57%
of JARs utilize these missed dependencies in multiple
locations within their codebase, with an average reference
count of 20.65 times per dependency. This frequent usage
underscores a substantial attack surface, which could be
exposed to security threats if vulnerabilities associated
with these dependencies are not recognized and addressed.
Figure 3 illustrates the top 15 missing dependencies, ranked
by their omission frequency across various Java projects.
Notably, com.google.guava:guava emerges as the
most frequently omitted direct dependency. Remarkably,
every version of this component released before June 09,

TABLE VI: Overall results of JBomAudit

Type #SBOMs #Dependencies Average Std

M1 7,907 48,931 6.18 10.95

M2 23,362 309,286 13.23 20.65

M3 21,665 365,897 16.88 36.33

N1 19,404 86,483 4.45 3.81

N2 6,140 14,830 2.41 2.02

N3 11,168 101,745 9.11 18.25

72,359

56,249

51,674

42,562

23,015

20,989

19,623

12,298

10,717

6,708

6,069

5,599

5,237

4,580

3,628

com.google.guava|guava,

com.google.code.findbugs|annotations,

org.eclipse.jdt|org.eclipse.jdt.annotation,

org.slf4j|slf4j-api,

org.opendaylight.yangtools|yang-common,

org.apache.logging.log4j|slf4j-impl,

com.google.guava|guava-annotations,

com.google.appengine|appengine-api-1.0-sdk,

com.google.guava|guava-concurrent,

org.opendaylight.mdsal.binding.model.ietf|rfc6991-ietf-inet-
types,

org.opendaylight.yangtools|concepts,

com.google.android|android,

org.opendaylight.jsonrpc|test-tool,

org.immutables|value,

org.checkerframework|checker-qual,

Missing Transitive Relationship
Missing Transitive Dependency
Missing Direct Dependency

.

Fig. 3: Top 15 missing dependencies

2023, is known to contain at least one vulnerability, posing
significant security risks if overlooked. Additionally,
com.google.code.findbugs:annotations,
org.eclipse.jdt:org.eclipse.jdt.annotation,
and org.slf4j :slf4j-api also show the high number
of missing transitive dependencies, suggesting a trend of
complexity or oversight in managing dependencies that are
not directly connected to the primary codebase. Detailed
analysis of these security implications will be presented in
§ VII.

Incorrect Dependencies in SBOMs. Types N1, N2, and N3

denote incorrect dependencies listed in the SBOMs but not
actually used within the codebase. Addressing these discrepan-
cies is essential for effective vulnerability management, patch-
ing processes, and license compliance check, as they can lead
to the misallocation of resources, unnecessary security efforts,
and inaccurate compliance results. Figure 4 displays the top
15 incorrectly listed dependencies, identified based on the
frequency of errors across Java projects. These dependencies
are commonly associated with categories such as Annotation
Libraries, Logging Frameworks, and Utilities. Often regarded
as auxiliary components that do not affect core functionality,
these categories are prone to mismanagement.
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org.gaul|modernizer-maven-annotations

org.osgi|org.osgi.annotation.versioning

org.osgi|org.osgi.annotation.bundle

org.slf4j|slf4j-api

com.github.spotbugs|spotbugs-annotations

org.osgi|org.osgi.namespace.extender

org.eclipse.jdt|org.eclipse.jdt.annotation

org.osgi|org.osgi.util.function

org.osgi|org.osgi.util.promise

org.kohsuke.metainf-services|metainf-services

org.opendaylight.mdsal.binding.model.ietf|rfc6991-ietf-inet-types

org.osgi|org.osgi.namespace.implementation

org.opendaylight.yangtools|concepts

org.osgi|org.osgi.service.component.annotations

org.opendaylight.yangtools|yang-data-impl

Incorrect Dependency
Incorrect Transitive Dependency
Incorrect Transitive Relationship

Fig. 4: Top 15 incorrect dependencies

B. Root Cause Analysis

In this section, we investigate the underlying reasons for the
non-compliance observed in SBOMs.
Insufficient Design in SBOM Generators. Among the 47,042
SBOMs analyzed, we found that 99.9% were produced by
CycloneDX Maven plugin and cyclonedx-gradle-plugin, with
only 43 SBOMs generated by other tools. A significant find-
ing is that these tools rely exclusively on a single specific
metadata file to generate SBOMs. The CycloneDX Maven
plugin utilizes pom.xml, while cyclonedx-gradle-plugin de-
pends on build.gradle. This design is well-suited for
projects solely utilizing a single building framework. However,
it proves inadequate for complex projects that may declare
dependencies across multiple metadata files, such as OSGi
manifests. In fact, our study identified that 7.29% of the
missing dependencies were OSGi bundles specified in OSGi
manifest files, which are overlooked by these tools.
Incomplete and Erroneous Metadata. Compounding the
challenges associated with reliance on a single metadata
source, the situation is further aggravated by the incomplete-
ness and errors found within the singular metadata file (e.g.,
pom.xml). Any inaccuracies or omissions in the metadata
files inevitably affect the quality of the resulting SBOMs.
To assess this impact, we examined the correlation between
identified missing or incorrect dependencies and their presence
in the POM file.
• Incomplete Metadata. The incomplete specification of de-
pendency relationships in pom.xml files directly leads to
omissions in SBOMs generated by metadata-dependent tools.
Our analysis revealed that 77.25% of direct dependencies,
39.86% of transitive dependencies, and 97.94% of transitive
relationships absent from SBOMs were also missing from the
corresponding POM files. These findings highlight a signifi-
cant deficiency in metadata provisioning, which substantially
contributes to the gaps observed in SBOM completeness.
• Erroneous Metadata. Further, our analysis identified that
85.34% of incorrect dependencies, 97.46% of incorrect tran-
sitive dependencies, and 98.04% of erroneous transitive rela-
tionships reported in SBOMs were also inaccurately listed in
the corresponding POM files. This strong correlation under-
scores the significant impact of inaccurate metadata on SBOM

accuracy, highlighting the importance of careful maintenance
of the pom.xml file to ensure its correctness.

Incorrect Usage of SBOM generators. Improper use of
SBOM tools by developers can also result in non-compliant
SBOMs. Typically, developers are expected to configure tools
like the CycloneDX Maven plugin as plugins in the main
pom.xml that governs the entire project. However, our anal-
ysis identified instances where developers mistakenly config-
ured SBOM tools within the pom.xml of a sub-module, rather
than the main project file. This results in SBOMs that only
reflect the dependencies of that sub-module, omitting others
and leading to incomplete SBOMs. To evaluate these discrep-
ancies, we ran the SBOM generator on the main pom.xml
within the JAR and compared the dependencies listed with
those in the initially collected SBOM. Differences between
these two SBOMs might suggest incorrect usage of the tool
and our analysis identified 1,236 instances of such cases.
Misunderstanding SBOM Requirements during the Ap-
plication Phase. We observed instances where developers
erroneously included Provided and Test dependencies
in SBOMs, which were not actually utilized in the final
distributed JAR. Such dependencies, irrelevant to the final
product, should not be featured in SBOMs at the application
phase for several reasons: (1) Provided dependencies are
supplied by the runtime environment of the project and there-
fore do not need to be included in the final artifact, and (2)
Test dependencies are not incorporated into the final JAR as
they are used solely during the testing phase. In our analysis, a
substantial 82.69% of the incorrectly listed dependencies were
Provided dependencies, while only 0.12% were associated
with Test dependencies.

Answer to RQ2: Our study reveals a significant num-
ber of SBOMs that misrepresent dependencies—both
by omitting dependencies used in the code and by
incorrectly listing dependencies that are never used.
This highlights serious internal quality issues within
the dependencies section of SBOMs, indicating non-
compliance with NTIA’s disclosure requirements. The
root causes of these issues are diverse, including in-
sufficient design in SBOM generators, incomplete and
erroneous metadata, incorrect usage of SBOM gener-
ators, and misunderstanding of SBOM requirements.

VII. SECURITY IMPLICATION

Non-compliant SBOMs can cause two types of security
consequences. Firstly, SBOMs lacking complete dependency
listings can lead to overlooked vulnerabilities, leaving software
susceptible to potential exploits. Secondly, incorrect depen-
dency listings may result in the misallocation of resources
towards addressing non-existent issues. In this section, we
assess the security implications of such non-compliant SBOMs
by examining their impacts on vulnerability management.
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A. Design

We selected Dependency-Track [16] for our evaluation,
an OWASP-endorsed vulnerability management tool known
for its comprehensive API and leadership in vulnerability
intelligence. Our method begins by submitting non-compliant
SBOMs to Dependency-Track to identify initial vulnerabilities,
denoted as V0. To gauge the impact of missing dependencies,
we update the SBOM to include these dependencies and
rerun the analysis, producing a revised vulnerability list, V1.
Vulnerabilities overlooked due to missing dependencies are
quantified by ∆Vmissed = V1 − V0. Similarly, we eliminate
incorrectly listed dependencies from the SBOM and conduct
another analysis to derive V2. The vulnerabilities erroneously
addressed, indicating resource misallocation, are captured by
∆Vfalse = V0 − V2.

B. Case Study

This section presents two real-world case studies to illustrate
the security implications of non-compliant SBOMs.
• ∆Vmissed. Consider the Apache project flight-sql-
jdbc-driver, which released SBOM (flight-sql-
jdbc-driver-12.0.0-cyclonedx.json) along
with a corresponding JAR (flight-sql-jdbc-
driver-12.0.0.jar). A critical missing direct
dependency (M1), named logback, was identified
within the JAR file. Specifically, the flight-sql-
jdbc-driver-12.0.0.jar utilizes the class
org.slf4j.impl.StaticLoggerBinder for
binding to a logging framework. This functionality is
provided by the logback dependency, identified by
the purl: pkg:maven/ch.qos.logback/logback-
classic@1.2.3?type=jar, however it is absent from
the SBOM. The absence of logback is significant: it
is associated with a direct vulnerability rated as “High”
severity (CVSS score: 7.5), and includes 20 additional
vulnerabilities from its dependencies, six of which are rated
as “Critical”. The omission of logback in the SBOM caused
Dependency-Track to overlook these vulnerabilities, posing
considerable security risk for vulnerability management.
• ∆Vfalse. Consider hbase-examples project
from org.apache.hbase, which released SBOM
hbase-examples- 2.5.3-cyclonedx.json
along with the JAR hbase-examples-2.5.3.jar.
We identified an incorrect direct dependency
(N1), named zookeeper, with the purl pkg:
maven/org.apache.zookeeper:zookeeper@3.5.7
?type=jar. None of the classes from zookeeper
were used in hbase-examples-2.5.3.jar, yet it was
incorrectly listed in the SBOM. This zookeeper dependency
contains a critical vulnerability with a CVSS score of 9.1.
Including this non-existent vulnerable dependency can
waste maintenance resources and reduce the efficiency of
vulnerability management.
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Fig. 5: The distribution of vulnerabilities severity within non-
compliant dependencies/SBOMs.

C. Measurement

We conducted a comprehensive analysis to assess the extent
of security risks associated with non-compliant SBOMs from
multiple perspectives:
• SBOM-level Analysis. We categorized the non-compliance
issues into two groups: MISSING for missing dependencies
(M1,M2,M3) and INCORRECT for erroneously listed de-
pendencies (N1,N2,N3), which allows us to analyze the
prevalence and impact of each group to SBOM holistically.
Our result indicates that 14.75% of SBOMs involves miss-
ing dependencies that contains vulnerabilities, whereas only
2.19% of SBOMs list incorrect dependencies with vulnera-
bilities. Our findings indicate that missing dependencies pose
more substantial security risks than incorrect ones, underscor-
ing the need for SBOM practitioners to prioritize the com-
pleteness of dependency listings to enhance overall security.
• Dependency-level Analysis. Breaking down the security
risks by type of non-compliance at dependency level, we find
that missing transitive relationships (i.e., 13.88%) (M3) are
most likely to involve security risks. These omissions can
lead to a false sense of security, especially when a transitive
dependency is updated to a secure version in one direct
dependency but remains vulnerable in another dependency
due to their neglected dependent relationship in SBOM. In
contrast, incorrectly listed dependencies (N1,N2,N3) show a
lower incidence of associated vulnerabilities. More evaluation
details are listed in [20].
• Vulnerability-level Risk Assessment. We utilized a bubble
chart to illustrate the severity distribution of vulnerabilities
associated with non-compliant dependencies and their impact
on SBOMs. In this chart, each bubble represents a vulnerabil-
ity; the y-axis shows the CVSS severity score, and the x-axis
indicates the number of unique, non-compliant dependencies
linked to each CVE. The size of the bubbles reflects the
number of unique, non-compliant SBOMs affected by these
vulnerabilities. As depicted in Figure 5, a significant majority
of vulnerabilities (66.34%) are rated as ”High” or ”Critical,”
underscoring the severe security risks posed by non-compliant
dependencies. Each vulnerability, on average, impacts 3.5
dependencies and affects 42.75 SBOMs. A notable example is
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CVE-2023-6378, classified as ”High” severity (CVSS score:
7.5), which influences 41 dependencies and exposes 1,944
SBOMs to potential security breaches.

Answer to RQ3: Non-compliant SBOMs pose signif-
icant security implications for vulnerability manage-
ment by either overlooking vulnerabilities associated
with missing dependencies (14.75%) or causing false
alerts with vulnerabilities in incorrect dependencies
(2.19%). Additionally, the majority of these vulnerabil-
ities (66.34%) are severe, underscoring the substantial
security risks posed by non-compliant dependencies.

VIII. DISCUSSION

A. Limitations

Our approach, based on static analysis, faces inherent
challenges due to obfuscation techniques [17] and dynamic
language features [46, 52, 66] employed in Java code. First,
to assess the potential impact of obfuscation techniques on
our study, we ran Deobfuscator [15], a tool designed to
detect obfuscation in JAR files, on our dataset. Our results
indicated that none of the Java projects used obfuscation
techniques. This could be attributed to our focus on open-
source Java projects in Maven, where there is little motivation
to apply such techniques compared to their use in the Android
ecosystem [36, 77, 79] for intellectual property protection or
malware to evade detection [60, 67, 41, 42]. Second, regarding
dynamic feature resolution, although JBomAudit integrates
state-of-the-art techniques to address dynamic language fea-
tures, our evaluation revealed limitations in precisely identify-
ing dynamically loaded classes whose names are dynamically
computed (e.g., through string building), supplied as param-
eters, or require additional runtime external configurations.
Third, the incompleteness of our Package Name to Depen-
dency Mapping database, due to the absence of non-public
or unavailable dependencies, can lead to false positives or
negatives. To address these limitations, our tool flags detection
results as undetermined when dynamic features or non-
public dependencies remain unresolved, allowing developers
to investigate further (see discussion in § IV-E). Notably,
these undetermined results are excluded from the measurement
studies to ensure the soundness of our findings.

Furthermore, it is challenging to identify the version of
dependencies based solely on JAR binaries because the JVM
class loader does not support versioning, meaning Java class
files only contain package names without version informa-
tion. Version details are dynamically determined by the load-
ing environments of dependencies, which are managed by
downstream projects. As we do not have access to these
environments, this aspect is beyond the scope of our study.
However, to tackle this as much as possible, we downloaded
the specific-version dependency listed in the SBOM to ensure
the detected incorrect dependencies are version-specific. For
missing dependencies, we retrieved version information from
manifest files (e.g., pom.xml). We tied 47.75% of cases

(345,799) to specific versions, while the remaining 378,315
cases were compared only at package-level. These cases were
excluded from security analysis in § VII to ensure reliability,
making our results a lower bound of SBOM issues.

B. Recommendations for Stakeholders

Based on our findings, we suggest recommendations for
stakeholders to enhance the quality and utility of SBOMs.
• SBOM Generators and SCA Tools: The primary SBOM
generators in the Java ecosystem (e.g., CycloneDX Maven
plugin and CycloneDX Gradle plugin) mainly rely on metadata
to generate SBOMs, often neglecting code-level analysis. This
can lead to low quality of SBOMs due to erroneous metadata.
While existing SCA [3, 5, 9] tools analyze dependencies at the
code level, they often fail to incorporate advanced techniques
for resolving dynamic features. Therefore, it is desirable SCA
tools enhance their technical capabilities that can be integrated
into SBOM generators to produce higher-quality SBOMs.
• Developers: It is ideal all dependencies that are used
during development, including dynamic ones and manually
packaged classes, are accurately documented in the metadata.
Additionally, it is recommended to thoroughly review the
documentation of SBOM generators and follow the best prac-
tices to ensure proper usage and accurate SBOM generation.
Regular audits and updates of SBOMs can ensure maintaining
their accuracy over time.
• Downstream users: Incorrect and incomplete dependency
data in SBOMs can cause confusion and potential harm for
downstream users who rely on them for vulnerability manage-
ment. Therefore, it is crucial to audit the quality of SBOMs
before its usage. By integrating automated verification tools
like JBomAudit into the SBOM usage workflow, organizations
can validate and address low-quality SBOMs early. This
ensures more reliable and transparent dependency information,
enhancing the accuracy of vulnerability assessments.

IX. RELATED WORK

SBOM practice, design and deployment. Extensive research
has been conducted on the current state of SBOM prac-
tices [37, 39, 40, 82, 38, 45, 80, 8, 70, 58, 35, 58, 65], explor-
ing key topics, readiness, benefits, challenges, and solutions
through various methods. These include data mining of 4,786
SBOM-related discussions on GitHub [38], hosting security
summits with 30 industry and government organizations [45],
and conducting user studies with SBOM practitioners [80,
70, 8]. Recent studies have also focused on the design and
generation of SBOMs. Martin et al. [53] proposed a mini-
malistic SBOM format and Shripad et al. [57] introduced a
pipeline for micro-service application SBOMs before and after
building. Additionally, the lifecycle management of SBOMs
has been studied [55, 56], with a focus on integrating security
measures such as access control and encryption into the CI/CD
pipeline, and the application of SBOMs in risk assessment
processes [48, 74].

Balliu et al. [37] examined the quality of SBOMs produced
by six different Java SBOM producers on 26 Java projects. Yu
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et al. [81] perform differential analysis of the correctness of
four popular SBOM generators on projects written in Python,
Ruby, PHP, Java, etc. Our work differs from theirs in key
aspects, including (1) Data Source: [37, 81] studied third-
party-generated SBOMs while we analyzed developer-released
SBOMs; (2) Methodology: [37, 81] conducted differential
analysis between SBOMs without complete ground truth,
whereas we used program analysis to identify discrepancies
between code and SBOMs; (3) Analysis Depth: [37, 81]
combined all dependencies into a list for comparison, whereas
we analyzed six types of dependency inconsistencies at the
tree-level with formal definitions (§ III); (4) Results: [37, 81]
revealed significant variations in SBOM generators, whereas
we identified significant non-compliant SBOMs according to
NTIA requirements. Besides, Our study uncovers the root
causes of these inconsistencies (§ VI-B) and their security
implications (§ VII).
Dependency and vulnerability management. Vulnerable
dependencies can introduce serious problems in the software
ecosystems [34, 75, 64, 61, 47, 83, 63]. Studies provide
the evidence that developers often do not update software
dependencies in Java ecosystem [50, 76]. Soto-Valero, César,
et al. [69] conducted a detailed investigation into the preva-
lence of bloated dependencies in Maven artifacts, examining
how unused dependencies evolve over time in numerous
single-module Maven projects [68]. Chuang [43] introduced a
decision-making framework to aid developers in determining
whether to remove specific dependencies, based on results
from static analysis tools. Ponta et al. [62] evaluated the ability
of three debloating tools to distinguish which dependency
classes are necessary for an application to function correctly
from those that could be safely removed. Pashchenko et
al. [61] conducted a qualitative study through semi-structured
interviews with 25 developers to gain insights into their ap-
proaches to selecting, updating, and managing dependencies,
and their strategies for mitigating vulnerable dependencies.
Different from previous work, our study focuses on whether
SBOMs accurately declare dependency relationships for soft-
ware products and the extent of security implications brought
by incomplete or incorrect SBOMs when they are involved in
vulnerability management.

X. CONCLUSION

This paper presents the first systematic study to investigate
whether official SBOMs in open-source Java projects comply
with the NTIA’s minimum requirements for dependencies and
assess their quality in terms of accuracy and completeness.
By collecting and analyzing 25,882 SBOMs and associated
JARs from Maven, spanning from June 2023 to April 2024,
we revealed that 13,394 SBOMs exhibited at least four incon-
sistencies. This indicates widespread non-compliance issues
within these official SBOMs in open-source Java projects.
Our findings describe the landscape and characteristics of the
identified inconsistencies. We further uncover a set of root
causes, including design errors, misuse of SBOM generators,
and incomplete or erroneous metadata. Our study brings

new insights into the security implications of non-complaint
SBOMs, particularly vulnerability management, essential to
enhance SBOM compliance assurance.
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APPENDIX

A. Comprehensiveness and Extensibility

Our six inconsistency types capture fundamental differences
between dependency trees, with complex inconsistencies de-
composable into these atomic types. For example, in Figure 7a,
the correct tree shows B1 as a dependency of A1, but in
the SBOM tree (Figure 7b), it is incorrectly listed under A2.
This inconsistency can be broken into Incorrect Transitive
Dependency (N2) in Figure 7c and Missing Transitive De-
pendency (M2) in Figure 7d. The inconsistency model is

(a) Overhead trend for DTE (b) Overhead trend for SCC

Fig. 6: Performance overhead of JBomAudit

root

A1 A2 A3

B1 B2 B3

(a) Correct Dependency tree in
JAR (Tc)

root

A1 A2 A3

B1B2 B3

(b) Wrong Dependency tree in
SBOM (Ts)

root

A1 A2 A3

B1B2 B3

(c) Incorrect Transitive Depen-
dency (N2)

root

A1 A2 A3

B2 B3B1

(d) Missing Transitive Depen-
dency (M2)

Fig. 7: An example of complex inconsistency

extensible. Deeper-layer inconsistencies can be addressed by
making types like M2 and N2 layer-sensitive, e.g., M2i for
Layer i, enabling coverage at any tree depth.

B. Scalability of JBomAudit

We evaluated JBomAudit’s scalability for complex Java
projects through theoretical analysis and empirical testing.
JBomAudit includes two components: Dependency Tree Ex-
traction (DTE) and SBOM Compliance Check (SCC). DTE
uses JarPkgTagsto generate direct dependencies and construct
the dependency tree Tc via Breadth-First Search (BFS) with
time complexity O(V1), where V1 is the number of nodes in
Tc. SCC performs BFS Layer Comparison between Tc and
Ts, with complexity O(V1 + V2), where V2 is the number of
nodes in Ts. Both components scale linearly with the number
of nodes. Empirical testing on 300 real-world Java projects
showed a linear increase in execution time with node count, as
illustrated in Figure 6. For 47,042 SBOMs, the median node
size of Ts is 30, taking 2.67 seconds to analyze. First and
third quartile node sizes are 17 and 82, with analysis times
of 1.56 seconds and 7.75 seconds, respectively, confirming
manageable overhead for most projects.
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APPENDIX A
ARTIFACT APPENDIX

Executive Order 14028 requires software developers to
provide a Software Bill of Materials (SBOM)—a detailed
inventory of a software product’s dependencies-to support
vulnerability management, reduce compliance risks, and en-
hance supply chain transparency. However, the accuracy and
completeness of SBOMs are unclear, potentially undermining
security tools, misleading analysts, and increasing risks. To
assess the quality of these SBOMs, we developed JBomAudit,
a tool for evaluating the completeness and accuracy of Java
SBOMs. It takes an SBOM and its corresponding JAR file,
extracts the dependency tree from the binary, and compares
it to the SBOM. Discrepancies fall into two categories: (1)
Missing dependencies, further divided into M1, M2, and
M3; and (2) Incorrect dependencies, categorized as N1,
N2, and N3. The artifact includes JBomAudit, environment
setup instructions, sample SBOMs, JAR files for testing, and
measurement results for validating the main claims of the
paper. The workflow involves running the tool, detecting
inconsistencies, and verifying the key measurement claims
outlined in the paper.

A. Description & Requirements

This section provides all the necessary information to recre-
ate the experimental setup for running JBomAudit.

1) Accessing the Artifact: You can download the artifact,
which includes the code, documentation, sample projects for
testing, and large-scale measurement results, via this https:
//zenodo.org/records/14278840.

2) Hardware Requirements: The artifact can be tested on
a Linux server or a MacBook. Please note that reproducing
the results requires significant memory due to the size of
the files involved. The compressed SBOM dataset (sbom -
json files.pkl) is 6.94 GB, and intermediate results, such
as total miss deps.json, are 18.22 GB. We recommend a
minimum of 32 GB of RAM (64 GB preferred) to process
these files efficiently, along with 30 GB of available disk
space for temporary files. For systems with less memory,
splitting large files into smaller chunks may help, but this could
limit the ability to fully reproduce the results. The following
experiments are running on MacBook Apple M3 Max 64 GB.

3) Software Requirements: Install the Python dependencies
listed in the provided functionality/code/jbomaudit

/jarpkginfo/requirements.txt file. We have tested
compatibility with Python versions 3.12.3 and 3.10.14.

4) Benchmarks: None.

B. Artifact Installation & Configuration

Step ➊: Create a Python Virtual Environment:
# Install virtualenv (if needed)
pip3 install virtualenv
# Create & Activate environment
virtualenv venv
source venv/bin/activate

Step ➋: Install JarPkgTags & Dependencies

# Navigate to target directory
cd ./AE/functionality/code/jbomaudit/jarpkginfo

# Install jarpkginfo
pip install .

# Test jarpkginfo
jarpkgtags tests/my-app-1.0-SNAPSHOT.jar

C. Experiment Workflow

In this section, we describe how to test the functionality
of JBomAudit. The core functionality of JBomAudit is to
compare an SBOM with its associated JAR binary to detect
any inconsistencies between the actual dependencies used in
the binary and those listed in the SBOM. These discrepancies
are categorized as M1, M2, M3, N1, N2, and N3.

We provide five projects under the directory ./AE/func-
tionality/metaDB/maven_asset_sbom/, each con-
taining an SBOM file and a corresponding JAR file. Reviewers
can specify the paths to the SBOM and JAR files to test the
functionality on each project.

For example, the following is the command to run the tool
for the org.opendaylight.aaa project. The detected inconsisten-
cies are printed as a table in the command line and are also
saved as a JSON file in ../../results/audit_resu
lts/org.opendaylight.aaa/aaa-cli-jar/0.1
5.2/compliance_result.json.The expected runtime
is 5s. Reviewers can substitute the paths to test other projects
accordingly.
#navigate to target directory
cd ./AE/functionality/code/jbomaudit

python3 main.py --sbom_path \
../../metaDB/maven_asset_sbom/org.opendaylight.aaa

/aaa-cli-jar/0.15.2/aaa-cli-jar-0.15.2-
cyclonedx.json \

--jar_path \
../../metaDB/maven_asset_sbom/org.opendaylight.aaa

/aaa-cli-jar/0.15.2/aaa-cli-jar-0.15.2.jar

D. Major Claims

Our study conducts a large-scale SBOM assessment by run-
ning JBomAudit. Specifically, we perform three measurement
studies to address three key research questions: (➊) the current
landscape and characteristics of SBOMs (Section V); (➋)
the inconsistency analysis of SBOM dependencies (Section
VI); and (➌) the security implications of these inconsistencies
(Section VII).

• (C1): We identified 47,042 SBOMs in Maven, revealing
an upward trend in releases and the evolving SBOM
landscape. Most SBOMs comply with NTIA’s minimum
requirements. Dependency graphs vary significantly in
size, and 222 distinct licenses are used, highlighting the
diversity of SBOMs. This is proven by Experiment (➊),
which reproduces Figure 2, Table VII (see Appendix),
and other statistics in Section V of the paper.

• (C2): Our study found a substantial number of SBOMs
misrepresent dependencies—either by omitting depen-
dencies used in the code or by incorrectly listing unused
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dependencies. This is proven by Experiment (➋), which
reproduces the results in Table VI, as well as the top 15
missing and incorrect dependencies in Figures 3 and 4,
respectively, in Section VI.

• (C3): Our study demonstrate that non-compliant SBOMs
pose significant security risks, either by overlooking
vulnerabilities associated with missing dependencies
(14.75%) or triggering false alerts due to vulnerabilities in
incorrect dependencies (2.19%). Additionally, 66.34% of
these vulnerabilities are severe. This is proven by Exper-
iment (➌), which reproduces Table VIII in Appendix and
Figure 5 in Section VII, showcasing security implications
from SBOM-level, Dependency-level, and Vulnerability-
level perspectives.

E. Evaluation

This section outlines the operational steps and experiments
used to validate the claims (C1, C2, C3) through experiments
(➊, ➋, ➌) to demonstrate the reproducibility of our study. We
have organized and preserved the intermediate results in the
corresponding data sections under the reproducibility folder
for easy and quick validation

Experiment(➊): SBOM Ecosystem Overview: [0 human-
minutes + 3-5 compute-min]: These experiments demon-
strates(1) the scope and trend of SBOM releases by plotting
the SBOM release timeline, as described in Section V.A of
the paper; (2) evaluation of to what extent the SBOMs meet
the NTIA minimum requirements and analysis of SBOM
characteristics, as described in Section V.B of the paper.
• [Preparation] Navigate to target directory:
cd ./AE/reproducibility/Section_V/

• [Execution] [Approximate Running Time: 1s ]
python3 get_sbom_timeline.py

• [Results] The script will generate a figure at ./Sectio
n_V/figure/timeline_per_sbom.png, illustrating
the SBOM release timeline and the number of SBOMs added
monthly. This corresponds to Figure 2 in Section V of the
paper.
• [Execution] [Approximate Running Time: 25s ]
python3 check_min_requirements.py --task NTIA

• [Results] This will generate Table VII (see Appendix)
for Section V.B from the paper, showing the number and
percentage of SBOMs that contain the required fields (e.g.,
Supplier Name, Component Name, etc).
• [Execution] [Approximate Running Time: 45s ]
python3 check_min_requirements.py --task Dep

• [Results] This will show statistics about the Dependency
Graph from collected SBOMs, as detailed in Section V.B:
Dependency Graph.
• [Execution] [Approximate Running Time: 25s ]
python3 check_min_requirements.py --task License

• [Results] This will show statistics about the License Usage
from collected SBOMs, as detailed in Section V.B: License
Usage.

Experiment(➋): Inconsistency Analysis: [0 human-minutes
+ 1 compute-min]: This experiment evaluates SBOM depen-
dency inconsistencies across 25,882 JARs and their corre-
sponding SBOMs. It reproduces the results for Table VI, as
well as Figures 3 and 4 from Section VI of the paper.
• [Preparation] Navigate to target directory:
cd ./AE/reproducibility/Section_VI/

• [Execution] [Approximate Running Time: 1s ]
python3 stats_noncompliance.py --task landscape

• [Results] This command will reproduce the results shown
in Table VI in Section VI, detailing the overall dependency
inconsistencies detected by JBomAudit.
• [Execution] [Approximate Running Time: 1s ]
python3 stats_noncompliance.py --task missing

• [Results] This will reproduce the results for the top 15
missing dependencies, as shown in Figure 3 of Section VI.
• [Execution] [Approximate Running Time: 1s ]
python3 stats_noncompliance.py --task incorrect

• [Results] This will reproduce the results for the top 15
incorrect dependencies, as shown in Figure 4 of Section VI.

Experiment(➌): SBOM Security Implication : [0 human-
minutes + 1 compute-min]: This experiment assesses
the security risks associated with non-compliant SBOMs
from three perspectives: SBOM-level, Dependency-level, and
Vulnerability-level, as described in Section VII.C of the paper.
• [Preparation] Navigate to target directory:
cd ./AE/reproducibility/Section_VII/

• [Execution] [Approximate Running Time: 5s ]
python3 analyze_security_risk.py --task SBOM_level

• [Results] This script will reproduce the SBOM-level analysis
results from Section VII.C, showing the percentage of SBOMs
that involve missing or incorrect dependencies containing
vulnerabilities.
• [Execution] [Approximate Running Time: 4s ]
python3 analyze_security_risk.py --task Deps_level

• [Results] This will reproduce the results for Table VIII (see
Appendix) for Section VII.C, breaking down the security risks
by type of non-compliance at the dependency level.
• [Execution] [Approximate Running Time: 4s ]
python3 analyze_security_risk.py --task Vul_level

• [Results] This script will reproduce the raw data for Figure
5 in Section VII.C, showing the CVE IDs and severity
scores of vulnerabilities associated with missing and incorrect
dependencies, and their impact on SBOMs. Please note that
the figure itself is not generated by the Python code, hence
the raw data will be provided for validation.
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