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Abstract—With the rapid advancement of diffusion-based
image-generative models, the quality of generated images has
become increasingly photorealistic. Moreover, with the release
of high-quality pre-trained image-generative models, a growing
number of users are downloading these pre-trained models to
fine-tune them with downstream datasets for various image-
generation tasks. However, employing such powerful pre-trained
models in downstream tasks presents significant privacy leakage
risks. In this paper, we propose the first scores-based member-
ship inference attack framework tailored for recent diffusion
models, and in the more stringent black-box access setting.
Considering four distinct attack scenarios and three types of
attacks, this framework is capable of targeting any popular
conditional generator model, achieving high precision, evidenced
by an impressive AUC of 0.95. Our code is accessible at
https://github.com/py85252876/Reconstruction-based-Attack.

I. INTRODUCTION

The recent developments in image-generative models have
been remarkably swift, and many applications based on these
models have appeared. Diffusion models [1]–[10] have come
to the forefront of image generation. These models generate
target images by progressive denoising a noisy sample from
an isotropic Gaussian distribution. In an effort to expedite the
training of diffusion models and reduce training expenses, Sta-
ble Diffusion [8] was introduced. Leveraging the extensive and
high-fidelity LAION-2B [11] dataset for training, the Stable
Diffusion pre-trained checkpoint, available on HuggingFace,
can be fine-tuned efficiently with just a few steps for effective
deployment in downstream tasks. This model’s efficiency has
spurred an increasing number of usages of Stable Diffusion.

At the same time, there has been a significant amount of
research focused on the privacy concerns associated with these
models, specifically those related to training data [12]–[16]
and those related to model outputs [17]–[19]. Among them,
membership inference attacks (MIAs) primarily investigate
whether a given sample x is included in the training set
of a specific target model. While this line of research was
traditionally directed toward classifier models [20]–[28], the

popularity of diffusion models has led to the application of
MIAs to examine potential abuses of privacy in their training
datasets. Depending on the level of access to the target model,
these attacks can be categorized into white-box attacks, gray-
box attacks, and black-box attacks.

In a white-box attack scenario, attackers have access to
all parameters of a model. Similar to membership inference
attack targeting classifiers, attacks against diffusion models
also utilize internal model information such as loss [13], [29],
[30] or gradients [15] as attack features. Hu et al. [13] and
Matsumoto et al. [30] have utilized losses at different timesteps
of querying the model as attack features. Similarly, Carlini et
al. [29] employed losses across various timesteps but incor-
porated the LiRA framework to construct two distributions
for inferring the membership of a sample x. Pang et al. [15]
took a different approach by using the model’s gradients at
different timesteps as the attack features, positing that gradient
information better reflects the model’s response to x.

Although white-box attacks can achieve high success rates,
their limitation lies in the requirement for complete access to
the target model’s information, which is often impractical in
real-world scenarios. Compared with white-box attack, gray-
box approaches do not require full access to the model’s
parameters; instead, they only necessitate the intermediate
outputs from the diffusion model during the denoising process
to serve as features for inference [12], [13], [31]–[35]. For
example, Duan et al. [12], and Kong et al. [32] have leveraged
the deterministic nature of DDIMs, using the approximated
posterior estimation error of intermediate outputs at different
timesteps as attack features. Hu et al. [13] have proposed using
intermediate outputs to estimate the log-likelihood of samples
as attack features. However, these attacks inevitably rely on the
intermediate images generated during the model’s operation.
In real-world scenarios, if a malicious model is trained using
private or unsafe images, typically only the final output image
is provided, with efforts made to conceal as many model
details as possible. Therefore, the more practical scenarios
would be black-box.

There are also black-box attacks for GANs [36], [37]
and VAEs [37]. These are based on unconditional generative
models and involve a highly stochastic generation process
that requires extensive sampling for inference, which becomes
inefficient when directly applied to diffusion models. The
other black-box attacks [14], [30], [38], [39], although more
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Fig. 1: Our attack takes the query sample x, which consists of an image Iq and a text component Tq , and applies Tq to query
the model to get generated image Ig for m times. Then, we compute the similarity score between Iq and each Ig with S(·, ·).
The m scores are then aggregated using f , and used to train the attack model to determine the membership.

tailored for diffusion models, focus on simulations and lack
the necessary conditions to be used in realistic scenarios. We
will discuss them in Section II-E.

In this paper, we present a black-box attack framework
suitable for state-of-the-art image generative models, as shown
in Figure 1. The framework was built on a careful analysis
of the objective function of the diffusion model as its the-
oretical foundation, and compares the generated image and
the query image. It also incorporates four potential attack
scenarios tailored for different settings of diffusion models.
We demonstrate the efficacy of our attack using the pre-trained
Stable Diffusion v1-5 and further validate it fine-tuned with
CelebA-Dialog [40], WIT [41], and MS COCO datasets [42].

Compared with existing black-box methods [30], [38],
our attack under four attack scenarios can achieve 87% ac-
curacy and outperform other methods by nearly 35%. We
systematically evaluate all components, including the image
encoder, distance metrics, inference steps, and training set
sizes. Our method is able to achieve high ROC-AUC across
three datasets: 0.95, 0.85, and 0.93. Even using different
types of generative models as shadow models to employ the
attack, our attack still can obtain at least 83% success rate
for four attack scenarios on three datasets. The results show
that our attack is robust and fit for real-world requirements.
To further comprehensively evaluate our attack, we employed
DP-SGD [43] as a defensive strategy to assess the attack’s
effectiveness. By reducing the model’s ability to memorize
training samples, DP-SGD defends against our attack. This
finding is consistent with the outcomes observed in other
attacks [12], [13], [29].

Contributions: We make the following contributions.

• Many prior black-box attacks [14], [30], [36]–[39] on
image-generative models are no longer practical for the cur-
rent generation of models and attack scenarios. We propose
a black-box membership inference attack framework that is
deployable against any generative model by leveraging the
model’s memorization of the training data.

• Consistent with the definition in Suya et al. [44], four attack
scenarios are considered in which an attacker can perform an
attack based on the query access as well as the quality of the
initial auxiliary data, and three different attack models are
used to determine the success rate of the attack, respectively.

• The efficacy of the attack is evaluated on the CelebA, WIT,
and MS COCO datasets using fine-tuned Stable Diffusion
v1-5 as the representative target model. The attack’s impact
is analyzed by considering various factors: image encoder
selection, distance metrics, fine-tuning steps, inference step
count, member set size, shadow model selection, and the
elimination of fine-tuning in the captioning model.

Roadmap. Section II reviews key works on denoising gener-
ative models and membership inference attacks, including their
application against diffusion models. Section III introduces
our score-based black-box attack on diffusion models, tailored
to four levels of attacker knowledge. Section IV describes
our experimental setup, and Section V compares our attack’s
effectiveness with existing methods and examines various
influencing factors. Section VI shows the effectiveness of our
attacks against common defenses. Section VII discusses some
other research related to our work. Section VIII concludes the
paper, summarizing our main findings and contributions.

II. BACKGROUND

A. Machine Learning

In general, we can classify a machine learning model into
discriminative (classification) models and generative models.

1) Classification Models: In the context of classification
model training, the objective is to map an input x to a
category y. The functional representation of the model can be
expressed as y =M(x), where x denotes the input (e.g., an
image), M represents the classification model, and y denotes
the corresponding label. The loss in the classification model,
which quantifies the discrepancy between the predicted and
true labels, can be articulated as follows:

L(θ) = Ex,y [− log(M(x)y)]

where θ denotes the parameters of M, M(x) denotes the
model’s output probability distribution over the possible cat-
egories, and M(x)y specifically denotes the probability as-
signed to the correct label y.

2) Generative Models: Generative models are designed to
generate x̂ = G(z), where z is the randomness not provided
by users but inherent to the server hosting the generator G.

Popular generative models include VAEs [45], GANs [46],
and diffusion models [2]. Recently, diffusion models have
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gained significant traction. Building on the classical DDPM
(Denoising Diffusion Probabilistic Models), a plethora of
models, such as Imagen [5], DALL·E 3 [47], GLIDE [3],
Stable Diffusion [8], have emerged and can generate high-
quality images based on prompt information. In this paper,
we mainly focus on diffusion models.

B. Diffusion Models

1) Foundation of Diffusion Models: The diffusion model
can be conceptualized as a process where a noisy image is
incrementally denoised to eventually yield a high-resolution
image. Given an image x0, the model initially imparts noise
via T forward (noisy-adding) processes. At timestep t, the
noisy image xt can be represented as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt (1)

where ᾱt =
∏t

i=1 αi, and αi is a predefined parameter that
decreases incrementally within the interval [0, 1]. The term ϵt
is a random Gaussian noise derived using the reparameteriza-
tion trick from multiple previous forward steps (more details
in Appendix A).

The reverse process serves an objective opposite to that of
the forward process. Starting from x̂T = xT , upon obtaining
the image x̂t at timestep t, the reverse process aims to denoise
it to retrieve the image x̂t−1. A neural network (e.g., U-Net) Uθ
is trained to predict the noise to be removed at each timestep.
The loss function in the training process is defined as:

Lt(θ) = Ex0,ϵt

[
∥ϵt − Uθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥22

]
(2)

Alternatively, this loss function can also be employed to
train DDIM [10], which has a deterministic reverse process.

2) Prompt Guided Diffusion Models: Diffusion models [3]–
[5], [8], [47] mentioned above are also capable of generat-
ing high-quality images conditional on prompt information
p, denoted as x̂ = G(z, p) (further details can be found
in Appendix B). Our experiments primarily utilize the current
publicly available state-of-the-art model, Stable Diffusion [8].
Distinct from other diffusion generative models [3]–[5], Stable
Diffusion uniquely conducts both the forward and reverse
processes within the latent space (images simplified into lower-
dimensional data). This approach offers advantages: the noise
addition and removal processes operate over a smaller dimen-
sionality, allowing for faster model training at lower computing
costs. Additionally, within the latent space, the model can
accommodate diverse prompt information to guide image
generation. Importantly, Stable Diffusion is open-sourced and
provides multiple high-quality pre-trained checkpoints online.
This aligns well with the focus of our study on potential
privacy concerns when fine-tuning pre-trained models for
downstream tasks.

C. Membership Inference Attacks

Membership inference attacks (MIAs) primarily aim to
determine whether a target data point x is within the training
dataset, often referred to as the member set, of a given target
model. The motivation behind these attacks is twofold: to

ensure that models are not trained in a manner that mis-
appropriates data and to safeguard against potential privacy
breaches. MIA’s underlying principle hinges on exploiting
machine learning models’ overfitting and memorization prop-
erties. Discerning the model’s different reactions to member
and non-member samples makes it feasible to infer the mem-
bership of the target point x.

To formalize membership inference attacks, assume there
is a data sample x, a model Mθ trained with dataset Dm.
The attack A will access Mθ, Dm and take data sample x
as input. It will then output a bit b← ADm(x,Mθ) ∈ {0, 1}
indicating whether x was used in training (i.e., x ∈ Dm) or
not. For simplicity, we use θ denoted model Mθ and omit
Dm.

Early MIAs predominantly target classification models and
use the outputs from classifiers as the data to train their
attack models [21], [23]–[25], [48]–[51]. Shokri et al. [25]
introduced a technique for training shadow models designed to
use shadow models to approximate the target model’s behavior.
By collecting information from these shadow models, such
as prediction vectors or training loss, as well as membership
labels (e.g., members vs. non-members), adversaries can sub-
sequently train a binary classifier. This classifier acts as an
attack model to predict the membership of x based on the
data derived from querying x on the target model.

Carlini et al. [52] argued that using loss as an attack feature
is inadequate and constitutes a non-membership inference
attack. Instead, the likelihood-ratio attack can serve as a better
method. They first created two distributions, Din and Dout,
based on the confidence scores of samples from the member
and non-member sets, respectively. Then, the distributions are
used to calculate the probability density function of query data
x in the member set and non-member set.

MIAs against Diffusion Models. In the context of MIA
against diffusion models, due to the structural differences
between diffusion models and classification models, as well as
the dissimilarities in their inputs and outputs, MIAs designed
for classification models cannot be directly applied to diffusion
models. The focus of the research lies in how to construct
features for MIA. We classify existing attacks against diffusion
models as white-box, gray-box, and black-box, and introduce
them separately. In white-box attacks, methods in this setting
exploit the loss (derived from each timestep using Equation 2)
and gradients (via backpropagation through the model). Gray-
box attacks typically necessitate access to a model’s intermedi-
ate outputs but do not require any internal model information.
For gray-box attacks targeting diffusion models, the model’s
denoising trajectory, particularly the noisy images, is utilized
as attack data. In contrast, black-box attacks operate without
knowledge of the model’s internal mechanics or process out-
puts, relying solely on the final generated images for analysis.
In Table I, we compare all existing attacks. Each type of
attack’s details is deferred to Section II-E1 and Section VII.
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TABLE I: The symbols and represent an attacker’s
fully authorized, partially authorized, and unauthorized data
access, respectively. Symbols ✓ and ✗ denote the use and
non-use of a technique, respectively. ‘HP’: stands for the
model’s parameter settings. ‘TD’: training data used to train
the target model. ‘IV’: model’s internal values, including loss
and gradient. ‘IO’: internal outputs (noisy images). ‘TSC’:
components (text and image) of the target sample. ‘SMs’:
whether the attack employs shadow models.

Method HP TD MIV IOs TSC SMs

W
hi

te

Loss-based [13] ✗

LiRA [29] ✓

LOGAN [30] ✗

GSA [15] ✓

G
ra

y

SecMI [12] ✓

PIA [32] ✗

PFAMI [31] ✓

DRC [34] ✗

CLiD [35] ✓

Structure-Based [33] ✗

B
la

ck

GAN-Leaks [30] ✗

Intuition-attack [14] ✗

Pixel-attack [39] ✗

Distribution-attack [38] ✗

Our Attack-I ✓

Our Attack-II ✓

Our Attack-III ✓

Our Attack-IV ✓

D. Problem Formulation

1) Threat Model: Given the query sample x and black-box
access to the target image-generative model G, the goal of the
attacker is to determine whether x was used to train G. More
specifically, we focus on the fine-tuning process, namely, we
care about the privacy of the fine-tuning dataset of G, and do
not care about the pre-training dataset. We focus on fine-tuning
because (1) the attacks will be similar for direct training,
while the computational cost for experiments on fine-tuning
MIA will be much smaller, and (2) the pretraining and fine-
tuning paradigm is more popular with modern large models,
and we will provide motivations for focusing on the fine-tuning
process later.

We categorize the threat model into four scenarios (as shown
in Table I) with two dimensions, namely:
• Target Sample Component. One distinct property of the

current image generator models is that there exists the
flexibility to input text prompt to guide model generation.
Two configurations for the attacker can be considered: First,
the query data x aligns with the training data as a text-image
pair (x = ⟨Tq, Iq⟩, where Tq denotes the text component and
Iq denotes the corresponding image component). Second,
the attacker only obtains a suspect image potentially re-
vealing private information without a corresponding caption
(x = ⟨Iq⟩). As our focus here is MIAs on text-to-image
generative models, the scenario where x solely consists of
text is not deemed practical and hence, is not discussed.

• Auxiliary Dataset. Similar to all other MIAs, we assume

TABLE II: Results of utilizing our attack as an auditing tool.
‘Member’ refers to the similarity between generated images
mimicking a specific artist or style and the actual works of that
artist or style. The ‘Non-member’ sample similarity score is
calculated by querying the model with samples not seen during
fine-tuning and comparing them to their ground-truth images.
‘Diff.’ refers to the difference in similarity scores between
member samples and non-member samples. Additionally, the
attack results demonstrate the effectiveness of the attack using
a shadow model trained on an auxiliary dataset. The similarity
scores are calculated as an average of 3 generated images. The
art style with the highest attack accuracy is highlighted in bold.

Art Style (Artist) Member Non-member Diff. ROC-AUC

Vincent van Gogh 0.92 0.44 0.48 0.91
Baishi Qi 0.77 0.40 0.37 0.88
Ukiyo-e 0.70 0.45 0.25 0.87

Uemura Shoen 0.88 0.41 0.47 0.89
Wanostyle 0.80 0.49 0.31 0.87
Ken Kelly 0.80 0.47 0.33 0.89

Shanshui Painting 0.88 0.47 0.41 0.86

an auxiliary dataset D′ is available. It is used to train the
shadow models Gs to mimic the behavior of the target
model. We consider two scenarios for D′, indicating whether
the auxiliary dataset overlaps with the training set of the
target model. In the case of the first scenario, D′ contains
50% real samples that were used to fine-tune the target
model. In contrast, the second scenario represents D′ is
sampled from the same distribution as the target model’s
training set but without any overlap.
2) Motivation: Our work aims to reveal privacy infringe-

ments in the datasets used for fine-tuning image generative
models. Given the full open-source nature of the Stable Dif-
fusion [8], and the extensive availability of pre-trained models
capable of generating photorealistic images from entities like
CompVis1 and Stability AI2, there has been an increasing trend
of leveraging these pre-trained models for fine-tuning to spe-
cific downstream tasks. Furthermore, an increasing number of
companies, such as Amazon3, OctoML4, and CoreWeave5, are
offering services in this domain. The data privacy issue during
the training of these downstream tasks has not been explicitly
studied. Our work seeks to uncover privacy violations in this
process and raise awareness of them.

3) Case Study: To better demonstrate the risks of data
misuse during the fine-tuning process and the ability of models
to steal artistic styles, we designed a simple case study in
this section. In the study, we collected seven models from
Civitai6, a website that shares fine-tuned models. These models
were utilized to generate images that mimic the styles of
specific artists. We define synthesized samples that mimic the

1https://huggingface.co/CompVis/stable-diffusion
2https://github.com/Stability-AI/generative-models
3https://aws.amazon.com/sagemaker/jumpstart/
4https://octoml.ai/blog/the-beginners-guide-to-fine-tuning-stable-diffusion/
5https://docs.coreweave.com/cloud-tools/argo
6https://civitai.com/
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same art style as the fine-tuning data as ‘Member’ and those
unrelated to the fine-tuning set as ‘Non-member’. The ‘Mem-
ber’ similarity score is calculated by comparing the generated
images with artworks by the same artists. In contrast, the
‘Non-member’ similarity score is computed by querying the
model with data not used during fine-tuning and measuring the
similarity between the generated and the ground-truth images.
We present the ‘Member’ and ‘Non-member’ similarity scores
for each of the seven models in Table II. In the case study,
Cosine similarity served as the distance metric, and DeiT was
employed to extract the features. For each model, we collected
60 samples for both member and non-member categories. Each
sample was queried three times, and the average of these three
similarity scores was used as the final similarity score for that
sample.

According to Table II, the similarity score of ‘Member’
is at least 0.25 higher than ‘Non-member’ samples. In some
cases, such as when imitating Vincent van Gogh’s works, the
difference in similarity between ‘Member’ and ‘Non-member’
samples can reach up to 0.48. The distinct difference in
similarity scores demonstrates that the model can copy the
relevant artistic style after being trained on an artist’s work.

4) Auditing Tool: From the perspective of artists, it is
concerning that models can steal their artistic styles after being
trained on their works. To protect their copyright, artists need
an auditing tool to detect suspicious models that may have
used their work without authorization. Such an auditing tool
is crucial today, as websites like Civitai already contain many
fine-tuned models capable of imitating artistic styles and anime
characters. Our work is based on the model’s memorization
of samples during training. By incorporating the objective
function of diffusion models (more details can be found in Sec-
tion III), we designed a score-based membership inference
attack. As observed in Table II, the significant difference
between the ‘Member’ and the ‘Non-member’ similarity score
suggests that our attack can serve as an auditing tool to detect
potential misuse of training data.

To evaluate the feasibility of our attack as an auditing
tool and ensure consistency with subsequent experiments, we
used the shadow model technique to attack each target model
(model from Civitai). We set the the auxiliary dataset does not
overlap with the member and non-member sets of the target
model. Additionally, the sizes of all member and non-member
sets are identical. Then, we trained an MLP as the attack model
using the shadow model’s member and non-member data, and
we present the attack ROC-AUC in Table II. The preliminary
results of these attacks undoubtedly demonstrate the feasibility
of our approach.

E. Existing Solutions

1) Black-box MIA against Traditional Image-generatve
Models: There are existing black-box MIAs targeting VAEs
and GANs. They share a similar underlying idea, which is that
if the target sample x was used during training, the generated
samples would be close to x. Monte-Carlo attack [37] invokes
the target model many times to generate many samples first.

Given x, it measures the number of generated samples within
a specific radius. The more samples there are, the higher the
likelihood that x is part of the member set.

GAN-Leaks [36] employs a similar intuition, using the
shortest distance of the generated samples from the target sam-
ple as the criterion. It also proposes another attack assuming
an extra ability to optimize the noise input z to the generator
(which is not strictly the black-box setting; we will describe
it and compare with it in the evaluation) so it can reduce the
number of generated samples. More formal details about these
attacks are deferred to Appendix D.

The reason we cannot apply Monte-Carlo attack [37] and
GAN-Leaks [36] to diffusion models is that both attack meth-
ods require the model to sample a large number of images.
Diffusion models progressively denoise during the inference
process, involving dozens of steps, unlike VAEs and GANs,
which require only a single step. Both Monte-Carlo attack
and GAN-Leaks need to construct 100K samples to achieve
optimal attack performance [36]. For the diffusion model, this
will take even hundreds of times longer in terms of computing
time. Furthermore, these attacks are unsuitable for conditional
generative models. Although GAN-Leaks proposed a partial-
black attack, conditional embedding (e.g., text embedding) in
diffusion models is significantly more complex than the initial
noise z in GANs and VAEs. Therefore, traditional black-box
MIAs are not feasible for current diffusion models.

2) Black-box MIA against Recent Diffusion Models: Mat-
sumoto et al. [30] directly adopted the concept of GAN-
Leaks [36] to diffusion models. However, as diffusion models
are more complex, the attack is bottlenecked by the time
required to sample a large number of samples.

Wu et al. [14] leveraged the intuition that the generated
samples exhibit a higher degree of fidelity in replicating the
training samples, and demonstrate greater alignment with their
accompanying textual description. However, the authors did
not use the shadow model technique and only tested their
attack on off-the-shelf models with explicitly known training
sets. In the realistic setting where the training set is unknown
(which is the purpose of MIAs), their attack cannot work.

Dubinski et al. [39] designed their attack against API-based
generative machine learning services (e.g., Midjourney7) by
directly comparing the pixel-level error between generated
samples and known training samples. However, similar to Wu
et al. [14], they did not use the shadow model technique in the
black-box scenario (they trained shadow models in white-box
settings) and assumed the attacker already knew the training
dataset (LAION Aesthetics v2.5+), using it as the member
set. This attack assumes the attacker can access excessive
information, making it impractical in real-world scenarios.

Additionally, Zhang et al. [38] trained a classifier based
on samples generated by the target model (labeled 1) and
samples not used in training (labeled 0). The classifier can
then determine whether the target sample was used in training.
However, it needs to (1) know the non-training samples, and

7https://www.midjourney.com/home

5

https://www.midjourney.com/home


(2) ensure the two distributions (of generated samples and non-
training samples) are different enough. Both conditions are not
necessarily true in a realistic setting.

III. METHODOLOGY

In this section, we introduce our attack, which is based on
the model’s memorization of training samples. Current black-
box membership inference attacks on generative models, such
as GAN-Leaks [36] and Monte-Carlo attacks [37], also exploit
this characteristic. However, GAN-Leaks relies on Parzen
window density estimation to estimate the probability of query
samples [53] that belong to the training set. This method
often results in unstable probability estimates due to the large
sampling size, as we mentioned in Section II-E1. We propose
utilizing the intrinsic characteristics of diffusion models with
formal proofs to design a more efficient and suitable attack
for diffusion models. Specifically, we leverage the training
objective of diffusion models to more directly and intuitively
quantify the model’s memorization of query samples using
similarity scores. Based on the results of the similarity score
analysis, we determine the membership of query samples.

A. Theoretical Foundation

We aim to establish a detailed theory demonstrating the
similarity score between the query image Iq and generated
image Ig can be used as a metric to infer the membership
of x. It is important to note that a high similarity score
between Iq and Ig indicates a low distance between the two
images. We leverage the internal property of the diffusion
model, which is inherently structured to optimize the log-
likelihood: If x is in the training set, its likelihood of being
generated should be higher. However, due to the intractability
of calculating log-likelihood in diffusion models, these models
are designed to use the Evidence Lower Bound (ELBO)
as an approximation of log-likelihood [2], as shown later
in Equation 7. In Theorem 1, we first argue that ELBO of
the diffusion model can be interpreted as a chain of generating
images at any given timestep that approximates samples in the
training set. Then, in Theorem 2, based on the loss function of
the Stable Diffusion [8], we extend the result and demonstrate
that this argument remains valid. Therefore, we can reasonably
employ the similarity between the generated images and the
query image as our attack. Note that GAN-Leaks [36] also
shares this intuition of using similarity. However, it relies more
on intuition and lacks a solid foundation, as the training of
GANs is different (not a streamlined process as in diffusion).

From the perspective of the training process, we proposed
these two theorems that facilitate our attack.

Theorem 1. Assuming we have a pre-trained diffusion model
x̂θ

8 with its training set Dm, and use a bit b to represent the
membership of query sample x (1 for member and 0 for non-
member). The higher similarity scores between the query data

8We previously use Uθ to denote U-Net, now by slightly abusing notations
we use x̂θ for easier presentations.

x and its generated image x̂θ(xt, t), the higher the probability
of Pr [b = 1|x, θ].

Pr [b = 1|x, θ] ∝ −∥x0 − x̂θ(xt, t)∥22
where θ denotes the parameters of the model.

Proof: [Proof Sketch] We first demonstrate that diffusion
models use ELBO to approximate the log-likelihood of the
training dataset. By restructuring the optimization function, we
find that the diffusion model primarily focuses on predicting
the noise ϵt at t-th step. Using Equation 1, we show that the
objective function of the diffusion model can also be expressed
in terms of predicting x̂ at each step. Therefore, a data sample
from the diffusion model’s member set is expected to have
higher similarity with its replication x̂θ(xt, t) at each step.
As a result, the denoised sample from the diffusion model
should naturally exhibit higher similarity scores with member
set samples. The full proof can be found at Appendix C-A.

In the above, we have linked the probability of query
sample x belonging to the member set to its similarity score
with generated images in the unconditional diffusion model.
For this type of diffusion model, although we can prove the
training image has this property with its replica. We still cannot
design the black-box attack on it because the inference process
is random. We cannot control the unconditional diffusion
model to reconstruct the specific data sample. This generation
process is the same with VAEs and GANs. Hence, the existing
black box attacks are to sample a large number of images from
the models [30]. And then do the Monte Carlo [37] or GAN-
Leaks [36] attack.

However, we can employ this property to execute the
membership inference attack with conditional diffusion models
(e.g., Stable Diffusion). The main difference between condi-
tional and unconditional diffusion models is that the former
can perform conditional generation. According to the prompt
input, Stable Diffusion can generate an image that aligns with
it. Therefore, we can use prompts to guide the model and
synthesize images for a specific data sample. In Theorem 2,
we prove this property valid in the Stable Diffusion.

Theorem 2. For a well-trained Stable Diffusion model9,
ẑθ

10, the query sample is x, and the membership of x is
denoted as b (1/0 for member/non-member). D/E refers to
the decoder/encoder module of the VAE in Stable Diffusion.
A pre-trained text encoder, ϕθ, converts the input conditional
prompt p into the text embedding that guides image generation.
The similarity scores remain a viable metric for assessing
the membership of query data x. This relationship can be
expressed in the following mathematical formulation:

Pr [b = 1|x, θ] ∝ −∥D(z0)−D(ẑθ(zt, t, ϕθ(p)))∥22
Where zt represents the latent representation, z0 = E(x).

9In our work, we used the pre-trained Stable Diffusion-v1-5 from CompVis,
which was trained for 150, 000 A100 hours.

10ẑθ represents only the U-Net in Stable Diffusion, excluding the VAE and
text encoder.
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Proof: [Proof Sketch]To establish Theorem 2, we begin by
examining the loss function of Stable Diffusion. We find that
the optimization objective and the diffusion process in Stable
Diffusion remain consistent with the unconditional diffusion
model. However, the diffusion/denoising process is moving
from the pixel level to the latent space. Through reinterpreting
the noise prediction ϵt at each step, the optimization objective
of Stable Diffusion can also be viewed as predicting the
initial latent variable z0 at each step. By incorporating the
Decoder D, we prove that in Stable Diffusion, the member
sample D(z0) should have a higher similarity score with its
replicate D(ẑθ(zt, t, ϕθ(p))). The detailed proof of Theorem 2
is presented at Appendix C-B.

Considering the realistic situation and settings, we designed
four attacks (as shown in Section IV-C) to use this property
in different scenarios. However, for general representation, we
simplify denote the image generated by the model as Ig (which
also corresponds to x̂ in Section II-A2, x̂θ(xt, t) in Theorem 1,
and D(ẑθ(zt, t, ϕθ(p))) in Theorem 2). The similarity score
between Ig and Iq from the query data x can be represented as
S(Iq, Ig). Here, S is a distance metric (e.g., Cosine similarity,
ℓ1 or ℓ2 distance, or Hamming distance). Given that a higher
similarity score (low distance) indicates a higher probability
of the data being a training sample, the inference model can
be formulated accordingly.

Abase(x, θ) = 1 {S(Iq, Ig) ≥ τ} (3)

The base inference model relies on computing the similarity
scores between Ig and Iq . If the similarity score S(Iq, Ig)
exceeds a certain threshold, the inference model will determine
that the data record x associated with Iq comes from the
member set.

B. Attack Pipeline

According to Section III-A, our attack needs to calculate the
similarity between query image Iq and generated image Ig .
We choose to compute the image embedding similarity scores
by using image feature extractors. Also, to execute our attack
on query data that lacks text components, we incorporate the
captioning model in our work. Our work seeks to uncover
privacy violations in this process and raise awareness of them.

Image Feature Extractor. As we follow the high-level
intuition of GAN-Leaks and use image similarities to deter-
mine membership, we employ distance metrics (e.g., Cosine
similarity, ℓ1 or ℓ2 distance, or Hamming distance) to formally
quantify this similarity. It has been observed that the semantic-
level similarities are substantially more effective than pixel-
level similarities [14]. Therefore, we utilize a pre-trained im-
age encoder (i.e., DETR, BEiT, EfficientFormer, ViT,
DeiT) to extract semantic representations from the images.

Captioning Model. In our work, under certain scenarios,
the query data x may lack the text component Tq and only
include Iq . Consequently, we resort to a captioning model
to generate the corresponding text. For our experiments, we
utilize BLIP2 [54] as the captioning model. To ensure that

Algorithm 1 High-level Overview of Our Attack.

Input: Query sample x, target model G, distance metrics
S(·, ·), the image captioning model C, the instantiation of
attack A, the statistical function f , and the image feature
extractor E.

1: if Tq /∈ x then ▷ Check for text components in x.
2: Tq = C(Iq) ▷ Synthesize the text for G.
3: end if
4: for i = 1 to m do ▷ Perform m repetitive queries.
5: Iig = G(Tq)
6: end for

Output: A(f
[
⟨S(E(Iq), E(Iig))⟩mi=1

]
) ▷ MIA results.

the generated textual descriptions closely match the style of
the model’s training dataset, we also consider further use of
the auxiliary dataset to fine-tune the captioning model.

Attack Overview. Algorithm 1 gives the high-level overview
of our attack. The intuition is to compare the generated images
with the query image and compute a similarity score used
for MIAs (specific instantiations of A to be presented in
Section III-C). Depending on whether the text is available or
not, we might need the captioning model to synthesize the
text. Once the captioning is complete, we repeatedly query
the target model m times for each query image, then apply a
statistical function f (e.g., mean, median) to aggregate the
m similarity score vectors for each query image. Finally,
we return the aggregated similarity scores to determine the
target/query data’s membership.

Note that while the attack pipeline is perhaps straightfor-
ward, its intuition relies on the formal analysis of the diffusion
models. We first describe its theoretical foundation and then
instantiate it with different MIA paradigms based on the output
score in the following.

C. Instantiations

Utilizing the scores obtained from Algorithm 1, we instan-
tiate three different types of MIAs according to Section II-C.
In our evaluation, we try all three of them, and observe the
last one is usually the most effective one.

Threshold-based Membership Inference Attack. Since the
threshold-based MIA uses a scalar for comparison, the simi-
larity scores obtained after applying f are calculated for each
image patch (e.g., ViT generate 196 patches, more details
in Appendix E). Therefore, to compute the overall image
similarity, these similarity scores need to be averaged, i.e.,

1

k

k∑
j=1

f
[〈
S
(
E(Iq), E(Iig)

)〉m
i=1

]
j
≥ τ (4)

Where k refers to the patch size used by the image feature
extractors, S represents the distance metrics, and E denotes
the image feature extractor. It is important to note that τ is
determined in advance using member and non-member sam-
ples from the shadow model. Specifically, when the statistical
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function f is mean, we calculate each query sample’s average
feature similarity score, then average these scores across all
patches and scale them (using Min-Max scaling [55]) to the
range [0, 1]. After scaling, we use Youden’s index [56] to
determine the best threshold τ that yields the highest AUC.
This τ is then used to attack the target model.

Distribution-based Membership Inference Attack. Follow-
ing the work by Carlini et al. [52], we know we can also
use the likelihood ratio attack against diffusion models. In our
analysis, we leverage similarity scores derived from shadow
models to delineate two distinct distributions: Qin and Qout.
Specifically: For Qin, consider image I that belong to the
member set Dm. We then define Qin as

Qin =

{
f
[〈
S
(
E(I), E(Iig)

)〉m
i=1

] ∣∣∣∣ I ∈ Dm

}
.

Similarly, for Qout, when image I are part of the non-
member set Dnm, we have

Qout =

{
f
[〈
S
(
E(I), E(Iig)

)〉m
i=1

] ∣∣∣∣ I ∈ Dnm

}
.

For target query point Iq , membership inference can be
deduced by assessing:

Pr

[
f
[〈
S
(
E(Iq), E(Iig)

)〉m
i=1

] ∣∣∣∣Qin

]
and

Pr

[
f
[〈
S
(
E(Iq), E(Iig)

)〉m
i=1

] ∣∣∣∣Qout

]
Classifier-based Membership Inference Attack. Given
that the obtained similarity score is represented as a
high dimensional vector, the classifier-based MIA feeds
f
[〈
S
(
E(Iq), E(Iig)

)〉m
i=1

]
directly into a classifier (we use a

multilayer perceptron in our evaluation). This approach aligns
with the methods of Shokri et al. [25], leveraging the machine
learning model as the inference model to execute the attack.

In evaluation, although we can use different functions of f ,
we observe a simple f that takes the mean of all m similarity
scores performs pretty stable, so we just use the mean function
for all three MIAs throughout the evaluation.

IV. EXPERIMENT SETUP

A. Datasets

Stable Diffusion v1-5 is pre-trained on LAION-2B [11] and
LAION-Aesthetics. To guarantee the integrity and effective-
ness of our work, we utilize the MS COCO [42], CelebA-
Dialog [40], and WIT datasets [41] for evaluation, ensuring
that there is no overlap with the pre-training dataset. We label
the samples in the member set as the positive class and the
non-member samples as the negative class.

MS COCO is a large-scale dataset featuring a diverse array of
images, each accompanied by five similar captions, amounting
to a total of over 330k images. The MS COCO dataset [42]
has been extensively utilized in various image generation

TABLE III: The default parameters used in Section V.

Parameters Experiment setting for our work

Training data size 100
Epoch number 500

Resolution 512× 512
Batch size 4

Learning rate 5× 10−5

Gradient accumulation steps 4
Inference step 30

Image feature extractor DeiT
Captioning model BLIP2
Distance metrics Cosine similarity

Attack type Classifier-based

models, including experiments on DALL·E 2 [4], Imagen [5],
GLIDE [3], and VQ-Diffusion [57]. In this work, we randomly
selected 50k images along with their corresponding captions to
do the experiments. Each image is paired with a single caption
to fine-tune the model.

CelebA-Dialog is an extensive visual-language collection of
facial data. Each facial image is meticulously annotated and
encompasses over 10, 000 distinct entities. Given that each
face image is associated with multiple labels and a detailed
caption, the dataset is suitable for a range of tasks, including
text-based facial generation, manipulation, and face image
captioning. Facial information has consistently been regarded
as private; hence, utilizing CelebA-Dialog [40] in this study
aligns with our objective of detecting malicious users fine-
tuning the Stable Diffusion model [8] for simulating genuine
face generation.

WIT is a vast image-text dataset encompassing a diverse range
of languages and styles of images and textual descriptions. It
boasts 37.6 million image-text pairs and 11.5 million images,
showcasing remarkable diversity. We leverage this dataset
specifically to evaluate the robustness of our attack in handling
such heterogeneous data.

B. Evaluation Metrics

To systematically evaluate the efficacy of our proposed at-
tack, we opted for multiple evaluation metrics as performance
indicators. Similar to other comparable attacks [12]–[14], [29],
[30], [32], [52], we employ ASR (Accuracy of Membership
Inference), Area Under the ROC Curve (AUC), and True
Positive Rate (TPR) at low False Positive Rate (FPR) as our
evaluation metrics. In Section V, all experiments are evaluated
under the condition that the member set and non-member set
have the same size.

We opted to use Stable Diffusion v1-511 checkpoints as our
pre-trained models. The fine-tuning code script was modified
from the Huggingface Diffusers package12. All experiments
were carried out using two Nvidia A100 GPUs, and each fine-
tuning of the model required an average of three days. We pre-
sented the default fine-tuning and attack settings in Table III.

11https://huggingface.co/runwayml/stable-diffusion-v1-5
12https://huggingface.co/docs/diffusers/v0.9.0/en/training/text2image
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C. Baseline Attacks

For our evaluation, we first compare our work with existing
black-box attacks on diffusion models [30], [31]. For our
attack, based on the categorization provided in Section II-D1,
the attacker will obtain information of two distinct dimensions,
leading to four different scenarios. We call them Attack-I to
Attack-IV. Below we introduce them in more detail.

Matsumoto et al. [30] employed the full-black attack frame-
work from GAN-Leaks.

Zhang et al. [38] utilized a novel attack strategy involving a
pre-trained ResNet18 as a feature extractor. This approach fo-
cuses on discriminating between the target model’s generated
image distribution and a hold-out dataset, thereby fine-tuning
ResNet18 to become a binary classification model.

Attack-I (x = ⟨Tq, Iq⟩,D′∩Dm ̸= ∅) In this attack scenario,
we assume the attacker has access to partial samples from the
actual training (fine-tuning) set of the target model (attacker’s
auxiliary data D′ overlaps with the fine-tuning data Dm).
Furthermore, x includes both the image and the corresponding
text (caption information). An attacker can directly utilize Tq

to obtain Ig , then employ the similarity between Ig and Iq to
ascertain the membership of x.

Attack-II (x = ⟨Iq⟩,D′ ∩ Dm ̸= ∅) In this scenario, the
attacker does not possess a conditional prompt that can be
directly fed into the target model. The attacker needs to use
an image captioning model to produce a caption for Iq . This
caption is subsequently used as the input for G. The process
culminates in the computation of similarity between the query
image Iq and the image generated by G.

Attack-III (x = ⟨Tq, Iq⟩,D′∩Dm = ∅) is similar to the first
scenario (the difference is the attacker’s auxiliary dataset does
not intersect with the target training dataset). The attack (as
shown in Algorithm 1) is the same, but we expect a lower
effectiveness.

Attack-IV (x = ⟨Iq⟩,D′ ∩ Dm = ∅) is similar to the third
scenario (there is no overlap between the attacker’s auxiliary
dataset and the target member set). This attack represents the
hardest situation, and we think it will get the lowest accuracy.

V. EXPERIMENTS EVALUATION

A. Comparison with Baselines

Results are shown in Table IV. We ensure consistency
in simulating real-world scenarios, wherein the number of
images that a malicious publisher can sample from the target
generator is limited. Under the constraint of limited sample
size, we observe that the accuracy of both baseline attacks
nearly equates to random guessing. We conjecture that this is
due to their reliance on a large number of synthesis images for
decision-making. Specifically, Zhang et al. [38] requires learn-
ing the distributional differences between generated image
samples and non-member samples using ResNet18, based on a
substantial volume of images sampled from the target model,

TABLE IV: Comparison between the attacks by Zhang et
al. [38], Matsumoto et al. [30] (applying GAN-Leaks against
the diffusion model) versus our methods. The best attack result
is highlighted in bold.

Attack type CelebA-Dialog
ASR AUC TPR@FPR=1%

Matsumoto et al. [30] 0.52 0.50 0.01
Zhang et al. [38] 0.51 0.49 0.01

Attack-I 0.85 0.93 0.53
Attack-II 0.88 0.93 0.60
Attack-III 0.87 0.94 0.54
Attack-IV 0.87 0.93 0.57

and subsequently applying this knowledge to assess the input
query data. However, such an attack premise falters in realistic
scenarios where a malicious model publisher restricts the
number of images a user can obtain from the model, preventing
attackers from sampling a large volume of images to conduct
the attack. Under such constraints, the effectiveness of attacks
by Zhang et al. [38] and others is inevitably compromised, as
the insufficient sample size hampers the ability to accurately
discern the differences between the two data distributions.
Similarly, the approach by Matsumoto et al. [30] encounters
a hurdle; in scenarios of limited generative sample availabil-
ity, it becomes challenging to find a suitable reconstruction
counterpart and calculate its distance from the original data
record. Consequently, these methods fail to achieve high attack
success rates under sample-restricted conditions. In contrast,
the four attacks we propose still attain a high success rate
despite the limited number of generative samples. This is
attributed to our attacks being based on the similarity scores
as proposed in Section III-A, which, while influenced by the
quality of the model’s generated images, is not hindered by
the quantity of these images.

B. Impact of Different Thresholds

In our work, we introduced three different types of attacks:
threshold-based, distribution-based, and classifier-based at-
tacks. The threshold-based attack is the most straightforward
one. It does not require calculating means and variances to
form distributions or training a classification model. We can
directly use the τ obtained from the shadow model to deter-
mine the membership of samples in the target model. Since
the threshold-based attack uses a one-dimensional threshold
for judgment, it may reduce accuracy and become less stable
to some extent. Therefore, before exploring other influence
factors, we aim to validate whether the threshold obtained from
the shadow model can be effectively used to attack the target
model and to test the impact of different τ on attack accuracy.

From the results shown in Figure 2, it can be observed
that using the shadow model to determine the best threshold
τ allows for a successful attack on the target model. The
threshold τ , calculated using sample data from the shadow
model, is more effective at distinguishing between the target
model’s member and non-member samples compared to other
nearby values. This consistent result is evident across the
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Fig. 2: Impact of different threshold values on attack results using the ROC-AUC metric across three datasets. Here, τ represents
the best threshold selected for each attack from the shadow model based on the AUC scores.
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Fig. 3: AUC results on three datasets and four attack scenarios comparing five different image feature extractors.

TABLE V: The AUC scores of three attack types (threshold-based, distribution-based, classifier-based) across three datasets
in four scenarios (Attack-I, Attack-II, Attack-III, Attack-IV) highlighting Cosine similarity’s superior and stable performance
across all metrics and attack types. The best performance in each scenario is highlighted in bold.

Method CelebA WIT WIT
ℓ1 ℓ2 Hamming Cosine ℓ1 ℓ2 Hamming Cosine ℓ1 ℓ2 Hamming Cosine

T
hr

es
ho

ld

Attack-I 0.30 0.33 0.71 0.88 0.39 0.38 0.73 0.69 0.40 0.37 0.78 0.84
Attack-II 0.27 0.30 0.69 0.83 0.39 0.39 0.71 0.67 0.44 0.43 0.80 0.82
Attack-III 0.30 0.34 0.74 0.82 0.40 0.40 0.67 0.69 0.40 0.39 0.79 0.84
Attack-IV 0.41 0.43 0.48 0.82 0.43 0.47 0.77 0.66 0.37 0.38 0.77 0.74

D
is

tr
ib

ut
io

n Attack-I 0.79 0.83 0.86 0.93 0.82 0.82 0.79 0.84 0.81 0.81 0.79 0.82
Attack-II 0.83 0.82 0.83 0.93 0.80 0.83 0.77 0.82 0.82 0.81 0.78 0.81
Attack-III 0.68 0.67 0.75 0.94 0.67 0.67 0.56 0.70 0.65 0.66 0.59 0.72
Attack-IV 0.65 0.66 0.73 0.88 0.66 0.65 0.68 0.70 0.66 0.66 0.58 0.67

C
la

ss
ifi

er

Attack-I 0.74 0.84 0.85 0.93 0.73 0.75 0.78 0.82 0.73 0.77 0.76 0.86
Attack-II 0.79 0.76 0.86 0.93 0.73 0.73 0.79 0.82 0.77 0.78 0.74 0.91
Attack-III 0.81 0.75 0.83 0.94 0.70 0.71 0.78 0.79 0.53 0.73 0.80 0.83
Attack-IV 0.77 0.73 0.82 0.93 0.75 0.74 0.70 0.79 0.52 0.62 0.78 0.82

three datasets included in the experiment. The AUC of our
four attacks all exceeds 0.7, demonstrating the feasibility of
threshold-based attacks. Moreover, the impact of different
thresholds on attack performance is shown in Figure 2. We
found that even with a deviation (e.g., 0.02), the τ obtained
from the shadow model still achieves good attack accuracy on
the target model.

C. Impact of Different Image Encoder

As our attack is a similarity scores-based attack, and we
measure the distance between the query image Iq and the
image Ig generated by the target model using the embeddings
E(Ig) and E(Iq). However, due to the multitude of high-
performance image encoder models, each with its unique
pre-trained dataset and model architecture, we employed five
distinct image feature extractors: DETR [58], BEiT [59],
EfficientFormer [60], ViT [61], and DeiT [62]. Our
goal was to observe the impact of various image features on
the success rate of attacks by generating image embeddings
from these models. The extractor yielding the highest success

rate will be selected as the default image feature extractor for
subsequent experiments.

As depicted in Figure 3, our five image feature extractors ex-
cel across four different attack scenarios within the classifier-
based attack domain. Each maintains an AUC score exceeding
0.7, underscoring the robustness of our attack framework
across different feature extractors. Notably, the implementation
of DeiT [62] as the feature extraction model yielded a
marginally higher and more consistent success rate compared
to the other image encoders. Therefore, we selected DeiT as
the default image encoder for future experiments.

A more comprehensive comparison including threshold-
based and distribution-based of these five image encoders is
presented in Appendix G.

D. Impact of Different Distance Metrics

In the previous section, we picked DeiT [62] as the most
stable and efficient image feature extractor. However, our
attack framework also necessitates a reliable and consistent
distance metric to compute the similarity score between em-
beddings. We conducted systematic and extensive experiments,
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Fig. 4: Relationship between epoch progression and AUC score in Attack-I, Attack-II, Attack-III, and Attack-IV, indicating
increasing memorization within image generation models over fine-tuning epochs.
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Fig. 5: The inference steps of 30, 50, 100, and 200 showed no
noticeable differences in the overall structure of the generated
images. Only subtle details, such as hair, exhibited variations.

and as demonstrated in Table V, we thoroughly assessed
various attack scenarios and types across all datasets to test
their effects on Cosine similarity, ℓ1 distance, ℓ2 distance, and
Hamming distance.

From Table V, it is evident that using Cosine similarity as
the distance metric yields optimal results for the computed
distance vector, regardless of the attack scenario and type
employed. We hypothesize that this phenomenon can be
attributed to the focal point of our computation: the image
embedding vectors generated by the encoder for both Iq and
Ig . Cosine similarity is inherently adept at measuring the
similarity between two vectors. In contrast, ℓ1 and ℓ2 norms
are more suitable for quantifying pixel-level discrepancies
between Iq and Ig , making them less efficient for evaluating
the distance between two vectors.

E. Impact of Fine-tuning Steps

We then investigated the influence of the number of fine-
tuning steps on the success rate of attacks. Evaluations were
conducted at intervals of 100 epochs, ranging from 100 to
500 epochs, to measure the attack success rate. The default
image encoder and distance metrics are Deit and Cosine
similarity; all fine-tuning settings are aligned with Table III. As
the model’s memorization of the training data can be equated
to overfitting effects, it is anticipated that with an increased
number of fine-tuning steps, the model increasingly exhibits
a tendency towards overfitting and enhanced memorization of
the training samples. Consequently, when querying the model
with member set samples compared to non-member samples,
a more distinct similarity discrepancy should be observed.

TABLE VI: Alignment with DDIM [10] denoting ‘S’ as
inference steps; experimentation under Attack-III scenario
measuring FID at varying inference step counts. The results
show the inference steps did not affect attack performance.
For each type of attack, we highlight the optimal attack result
corresponding to each evaluation metric.

S Threshold-based Distribution-based Classifier-based FID
ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1%

30 0.75 0.8225 0.30 0.76 0.8816 0.50 0.865 0.93 0.54 8.77
50 0.765 0.8146 0.25 0.77 0.8920 0.37 0.85 0.93 0.58 7.835
100 0.74 0.8172 0.26 0.745 0.8818 0.40 0.855 0.94 0.61 7.527
200 0.745 0.8125 0.39 0.74 0.8869 0.49 0.87 0.94 0.58 7.472

In Figure 4, we present the results of the classifier-based at-
tacks under four attack scenarios: Attack-I, Attack-II, Attack-
III, and Attack-IV. The outcomes indicate that Attack-I
and Attack-III achieve higher success rates compared to the
other two scenarios. This can be attributed to the fact that when
utilizing the query data sample x, it inherently comprises the
text caption Tq . As a result, neither Attack-I nor Attack-III
require the employment of a caption model to generate corre-
sponding text descriptions based on Iq . This circumvents the
introduction of additional biases that could cause discrepancies
between the model-generated images and Iq itself.

We have also included the results for threshold-based
and distribution-based attacks under these four scenarios in
the Appendix H for reference.

F. Impact of Number of Inference Step

The quality of images generated by current diffusion mod-
els, including the Stable Diffusion [8] presented in our work,
is influenced not only by the number of fine-tuning steps
but also by the number of inference steps. These models
predominantly utilize DDIM [10] as their sampling method.
The Fréchet Inception Distance is able to shift moderately
from 13.36 to 4.04 when varying the sampling steps from
10 to 1000. This change highlights the capability of a higher
number of inference steps to produce images of superior
quality. Given that the foundation of our attack relies on
the distance between generated and original images, we posit
that an increased number of inference steps, which results in
images closely resembling the original and of better quality,
would correspondingly enhance the attack’s success rate.

As illustrated in Table VI, the variations in attack accuracy
are not immediately pronounced. However, upon a broader
examination, it becomes evident that as the number of S
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TABLE VII: Use of Kandinsky [63] as shadow model and
Stable Diffusion [8] as target model in conducting attacks,
demonstrating the maintained efficacy of all four attack sce-
narios. We use the ‘X’-‘Y’ format to represent different
experiment settings in the table, where ‘X’ means four attack
scenarios, ‘Y’ being ‘S’ or ‘A’ denotes whether the shadow
model is the same as or different from the target model. For
each comparison, the optimal result is marked in bold.

Dataset I-S I-A II-S II-A III-S III-A IV-S IV-A
CelebA 0.93 0.87 0.93 0.86 0.93 0.86 0.93 0.85

WIT 0.83 0.81 0.83 0.84 0.84 0.84 0.83 0.83
MS COCO 0.92 0.89 0.92 0.91 0.89 0.89 0.76 0.74

(inference steps) increases, there is a gradual uptrend in the
success rate of attacks. Notably, attacks based on classifiers
yield the highest accuracy. To delve deeper into the reason
why an increased number of inference steps does not lead
to a substantial boost in attack success rate, we present
samples generated at different inference steps in Figure 5.
It becomes apparent that as the number of inference steps
rises, only certain localized features of the generated images
are affected. The overall style remains largely undisturbed,
with no significant discrepancies observed. This observation
potentially explains why altering the inference steps does not
drastically impact the attack success rate.

The experimental results obtained from the additional two
datasets are presented in Appendix I.

G. Impact of Different Size of Auxiliary Dataset

From our observations across white-box [13], [29], [30],
gray-box [12], [13], [32], and black-box attacks [30], the
accuracy of these attacks is significantly influenced by the
size of training set. As the training set of the target model,
encompasses more samples, its “memorization” capability for
individual samples diminishes. This is attributed to the fact
that an increase in training data can decelerate the model’s
convergence rate, impacting its ability to fit all the training
sets accurately. As a result, many attacks do not demonstrate
effective performance as the dataset size expands. In this work,
we investigate how increasing the size of the dataset used
by the target model affects the success rate of our black-box
attack. Given that our work is predicated on leveraging pre-
trained models for downstream tasks, where the downstream
datasets usually do not contain a vast number of samples, we
have established our training dataset sizes at 100, 200, 500,
and 1000. Using the CelebA dataset, we aim to assess the
variations in the performance of the three attack types when
the attacker is privy to four distinct values of knowledge.

As illustrated in Figure 7, the attack success rate tends to
decrease as the number of images in the training set increases.
However, even when the users use 1, 000 samples to fine-tune
the target models, in the scenarios of Attack-I and Attack-III,
a classifier used as the attack model can still achieve a success
rate of over 60%.

TABLE VIII: Impact of not fine-tuning the captioning model
on the success rates of Attack-II and Attack-IV across various
datasets. The best result for each dataset is marked in bold.

Dataset Attack-II Attack-IV
With tuning W/o tuning With tuning W/o tuning

CelebA 0.93 0.59 0.93 0.60
WIT 0.83 0.70 0.83 0.56

MS COCO 0.93 0.79 0.73 0.65

H. Impact of the Selection of Shadow Models

To examine the generalization and applicability of our attack
methodology in real-world scenarios, we propose to further
relax the assumptions pretraining to the attack environment.
In our prior experiments, all results were predicated on the
use of shadow models mirroring the target model’s structural
framework to generate training data for the attack inference
model. However, in practical settings, malicious model pub-
lishers may withhold any specific details about the model,
offering only a user interface. Under such circumstances, it
is not advisable to confine ourselves to a specific type of
shadow model. Instead, a more effective approach would be
to leverage the memorization properties of image generators
when creating training data for the attack, thus diversifying
and strengthening the attack strategy.

Therefore, we employed a conditional image generator,
Kandinsky [63], which has a different architectural design
from Stable Diffusion [8], as our shadow model. This model
was fine-tuned using the same auxiliary dataset mentioned
in Table III, and the results are displayed in Table VII.

In Table VII, we evaluate attackers with different knowledge
across three datasets, employing a classifier as the attack in-
ference model. The notation ‘*-S’ indicates attacks conducted
using a shadow model with the same architecture as the
target model. Conversely, ‘*-A’ denotes scenarios where the
target model is anonymous to the attacker. Hence, the shadow
model and the target model are architecturally dissimilar. The
experimental data indicate that altering the shadow model
has only a minimal effect on the success rate of the attacks,
with all attacks still capable of achieving a relatively high
level of success. This further substantiates the robustness and
generalizability of our attack framework.

I. Impact of Eliminating Fine-Tuning in Captioning Models

In our work, within the attack environments designed
for Attack-II and Attack-IV, the attacker does not have full
access to the query point x, but only a query image Iq . In
previous sections, for these two attack scenarios, we initially
used auxiliary data to fine-tune the image captioning model
before generating matching prompt information based on the
query image. However, this approach significantly increases
the time cost of the attack. Therefore, we use an image
captioning model that has not been fine-tuned to generate
image descriptions. We then carry out the attack based on
these generated descriptions.

From Table VIII, it is evident that without fine-tuning the
captioning model, there is a varying degree of reduction in
the success rates of attacks across different datasets. Notably,
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when using CelebA-Dialog as the test set, the success rate
of the attack drops by nearly 30%, leading to a marked
inconsistency in the attack outcomes. Unlike changing the
types of shadow models, a captioning model without tuning
more conspicuously diminishes the effectiveness of the attacks.
We posit the image captioning model may have introduced
biases in the generated text component Tq , adversely affecting
the quality of the resultant images.

Takeaways: We compared the four attack scenarios we
proposed with existing black-box attacks and found
that our accuracy significantly surpasses the established
baselines. Then, we tested the feasibility of implement-
ing the most straightforward threshold-based attack
using compressed high-dimensional similarity scores.
To thoroughly evaluate the accuracy and stability of
our attacks, we conducted tests employing various
image encoders, distance metrics, fine-tuning steps,
and inference procedures, as well as different sizes
of auxiliary datasets. Additionally, we experimented
with changing the types of shadow models and testing
without fine-tuning the image caption model to test
our attacks’ generalization and robustness. Our findings
reveal a strong correlation between the attacks’ success
rate and the generated images’ quality. Higher quality
images lead to increased attack success rates, which
aligns with the theory of similarity scores mentioned
in Section III-A.

VI. DEFENSE

In this part, we want to employ Differential Privacy Stochas-
tic Gradient Descent (DP-SGD) [43] to evaluate the robust-
ness of our attack. DP-SGD adds noise into the gradient
during the training phase and provides a guarantee that the
presence/absence of any single training sample only incurs
quantifiably limited differences [64] and thus diminishes the
model’s memorization of individual samples.

We tested our four attacks and employed a classifier as
the inference model against the MS COCO dataset. Due to
the limit of time and computing resources, we only selected
two different sizes of datasets, 100 and 200. For the DP-SGD
mechanism, we set clipping norm C = 1, δ = 1 × 10−3,
sampling rate q = 4/(dataset size), epoch number is 500,
and target privacy budget (with a slight abuse of notation)
ϵ ∈ {1, 4, 10} (different ϵ gives different noise multiplier σ).

The experimental results can be seen in Table IX. It illus-
trates that the attack success rate of four attacks significantly
decreases after implementing DP-SGD [43] as the defensive
method. When we use 100 samples to fine-tune the model and
set ϵ = 1, four attacks have been greatly impacted dropping
to around 50% (random guess). When we change the ϵ value
from 1 to 4 and 10, the attack accuracy increases but still
cannot show their effectiveness. From Table IX, we noticed
TPR at FPR=1% has dropped to 0.01. This phoneme further
demonstrates that Attack-I, Attack-II, Attack-III, and Attack-
IV all lose their functionality in these defense settings.

Fig. 6: Effect of adding DP-SGD [43] on model memorization.
‘Original’ represents the training samples, while ‘Vanilla’
denotes samples generated after fine-tuning without using DP-
SGD. ϵ = 1, 4, 10 indicate samples generated by the fine-tuned
model after applying DP-SGD at varying levels. ‘Untrained’
represents samples generated by the Stable Diffusion v1-5
without fine-tuning. The generated images in the same row
are from the same prompt.

To understand how DP-SGD mitigates our attack, we pre-
sented the generated images from different settings in Figure 6.
We observe that compared to the ‘Vanilla’ version (fine-tune
without DP-SGD), DP-SGD prevents the model’s memoriza-
tion of training samples. For instance, in the first row, it is clear
that DP-SGD omits detailed features of the training images,
such as pillows. This effect is observed regardless of the value
of ϵ. The generated images with defense remain very similar to
those produced by the untrained Stable Diffusion v1-5 model.
DP-SGD weakens the model’s memorization of the training
samples, thereby reducing the similarity score and rendering
our four attacks ineffective.

VII. RELATED WORK

We further review related work on white-box and gray-box
membership inference attacks against diffusion models.

A. White-Box MIA

In the white-box setting, the attacker has access to the
parameters of the victim model. Note that in MIA for classi-
fication tasks, it is observed that having black-box means can
sufficient enough information (e.g., predict vector [21], [25],
[50], [65]–[67], top-k confidence score [24], [25]); but in MIA
for generative models, because the model is more complicated
and directly applying existing MIAs is not successful, white-
box attacks are investigated.

Both Hu et al. [13] and Matsumoto et al. [30] adopt
approaches similar to that of Yeom et al. [28], determining
membership by comparing the loss at various timesteps to a
specific threshold. Carlini et al. [29] argue that mere threshold-
based determinations are insufficient and proposed training
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TABLE IX: Attack accuracy under DP-SGD defense. Our four attack methods’ accuracy declines. Experiments include two
different sizes of datasets and three ϵ values. ‘Vanilla’ means without DP-SGD. The highest accuracy is marked in bold.

Attack-I Attack-II Attack-III Attack-IV
ASR↑ AUC↑ T@1%F↑ ASR↑ AUC↑ T@1%F↑ ASR↑ AUC↑ T@1%F↑ ASR↑ AUC↑ T@1%F↑

100

ϵ = 1 0.581 0.646 0.01 0.532 0.654 0.01 0.495 0.498 0.00 0.522 0.524 0.00
ϵ = 4 0.592 0.651 0.01 0.575 0.647 0.01 0.515 0.514 0.01 0.535 0.534 0.01
ϵ = 10 0.595 0.641 0.02 0.560 0.644 0.02 0.56 0.522 0.01 0.545 0.522 0.01
Vanilla 0.843 0.911 0.58 0.845 0.909 0.51 0.831 0.893 0.38 0.765 0.813 0.19

200

ϵ = 1 0.593 0.632 0.01 0.628 0.676 0.01 0.493 0.502 0.00 0.548 0.524 0.01
ϵ = 4 0.601 0.652 0.01 0.618 0.670 0.01 0.523 0.516 0.01 0.515 0.506 0.01
ϵ = 10 0.585 0.632 0.03 0.643 0.655 0.02 0.535 0.504 0.01 0.542 0.541 0.02
Vanilla 0.767 0.863 0.30 0.730 0.812 0.11 0.695 0.728 0.09 0.773 0.800 0.14

multiple shadow models and utilizing the distribution of loss
across each timestep established by these shadow models to
execute an online LiRA attack [52]. Pang et al. [15] leveraged
the norm of gradient information computed from timesteps
uniformly sampled across total diffusion steps as attack data
to train their attack model.

B. Gray-box MIA

Gray-box access does not acquire any internal information
from the model. However, given that diffusion models generate
images through a progressive denoising process, attacks in
this setting assume the availability of intermediate outputs
during this process. In particular, several works leveraged the
deterministic properties of generative process in DDIM [10]
for their attack designs. Duan et al. [12] employed the ap-
proximated posterior estimation error as attack features, while
Kong et al. [32] used the magnitude difference ∥xt−t′−x′

t−t′∥p
from the denoising process as their attack criterion, where
xt−t′ represents the ground truth and x′

t−t′ denotes the pre-
dicted value. Fu et al. [31] use the intermediate output to
calculate the probabilistic fluctuations between target points
and neighboring points. Similarly, Zhai et al. [35] sampled
multiple times at different denoising steps, with the likelihood
discrepancy between the conditional and unconditional gener-
ations as the criterion. Fu et al. [34] based their approach on
the structural similarity between intermediate outputs and the
original images. Li et al. [33] found that the similarity between
reconstructed images and the original images after degradation
can also serve as a standard for evaluation.

VIII. CONCLUSION

In this work, we introduce a black-box membership infer-
ence attack framework specifically designed for contemporary
conditional diffusion models. Given the rapid development
of diffusion models and the abundance of open-source pre-
trained models available online, we focus on the potential
privacy issues arising from utilizing these pre-trained models
fine-tuned for downstream tasks. Recognizing the absence
of effective attacks against the current generation of condi-
tional image generators, we leverage the objective function
of diffusion models to propose a black-box similarity scores-
based membership inference attack. Our experiments not only
demonstrate the flexibility and effectiveness of this attack
but also highlight significant privacy vulnerabilities in image

generators, underscoring the need for increased attention to
these issues.

However, our attacks still face certain limitations. As dis-
cussed in Section V-I, both Attack-II and Attack-IV critically
rely on a captioning model that has been fine-tuned using an
auxiliary dataset. We hope future work can effectively address
this challenge.
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APPENDIX A
MORE DETAILS FOR DIFFUSION MODELS

Given noised sample xt and timestep t, the diffu-
sion model is trained to make the predicted distribution
N (xt−1;µθ(xt, t), σ

2
t I) approach the ground-truth distribution

N (xt−1; µ̃t(xt, x0), σ
2
t I). Applying Bayes’ rule to the ground-

truth distribution

µ̃t(xt, x0) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x0 (5)

The objective of the training process is to closely approxi-
mate µθ(xt, t) with µ̃t(xt, x0). Then, parameterize

µθ(xt, t) =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1(1− αt)

1− ᾱt
x̂θ(xt, t)

(6)
By deriving xt from x0 using Equation 1 and omitting the

weight term, the loss function is given in Equation 2.

APPENDIX B
MORE DETAILS FOR CLASSIFIER-FREE GUIDANCE

A conditional generation without an explicit classifier is
achieved using the denoising network Ūθ(xt, t, p), where

Ūθ(xt, t, p) = (w + 1) · Uθ(xt, t, p)− w · Uθ(xt, t).

The variable w is the guidance scale factor; a higher w
improves image-text alignment but may reduce image fidelity.

APPENDIX C
MORE DETAILS FOR THEORETICAL FOUNDATION

A. Proof for Theorem 1

Proof: Diffusion models employ the ELBO to approximate
the log-likelihood p(x) of the entire training dataset.

log p(x) ≥ Eq(x1:T |x0)

[
log

p(x0:T )

q(x1:T |x0)

]
· · ·

= Eq(x1|x0) [log pθ(x0|x1)]︸ ︷︷ ︸
L0

−DKL(q(xT |x0)∥p(xT ))︸ ︷︷ ︸
LT

−
T∑

t=2

Eq(xt|x0) [DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt))]︸ ︷︷ ︸
Lt−1

(7)

The primary focus of optimization is on Lt−1, as explicated
in the original work [2]. The other terms are treated as
constants and independent decoders. The objective function
can be rewritten as:

minDKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt)).

Based on the assumption in DDPM [2], to elucidate further:

argmin
θ
DKL(q(xt−1|xt, x0) ∥ pθ(xt−1|xt))

=argmin
θ
DKL(N (µ̃t(xt, x0), σ

2
t I) ∥ N (µθ(xt, t), σ

2
t I))

=argmin
θ

1

2σ2
t

[
∥µ̃t(xt, x0)− µθ(xt, t)∥22

]
(8)

In Equation 8, q(xt−1|xt, x0) represents the ground truth
distribution of xt−1 given xt and x0, while pθ(xt−1|xt)
denotes the predicted distribution of xt−1 parameterized by
θ. The term µ̃t(xt, x0) corresponds to the mean of the ground
truth distribution q(xt−1|xt, x0), and µθ(xt, t) corresponds to
the mean of the predicted distribution pθ(xt−1|xt).

From Equation 5 and Equation 6 in Appendix A
(which gives more details about diffusion models), we can
rewrite Equation 8 as:

argmin
θ

1

2σ2
t

ᾱt−1(1− αt)
2

(1− ᾱt)2

[
∥x0 − x̂θ(xt, t)∥22

]
(9)

Equation 9 can also be further developed by substituting
and expressing x0 using xt according to Equation 1, and
by introducing ϵt as the targeted prediction of the diffusion
model, aligning with the optimization objectives stated in
both DDPM [2] and DDIM [10]. However, our aim is to
demonstrate that the optimization goal of the diffusion model
supports the use of similarity scores as an indicator for
determining the membership of query data. Consequently,
the objective function is merely reformulated in the form
of Equation 9. Given that the likelihood of all training data
should be higher than that of data not in the training set, and
as inferred from Equation 7 and Equation 9, if a data point
x has a higher likelihood, the norm ∥x0 − x̂θ(xt, t)∥ at any
timestep in the model should be smaller, indicating that the
image generated by the model is closer to the original image.
This can be expressed as:

Pr [b = 1|x, θ] ∝ −∥x0 − x̂θ(xt, t)∥22 (10)

■
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B. Proof for Theorem 2
Proof: In the original paper [8], the loss function of the Stable
Diffusion model is described as follows:

LLDM = EE(x),ϵ∼N (0,1),t

[
∥ϵt − Uθ(zt, t, ϕθ(p))∥22

]
The latent code zt is of a much smaller dimension than that
of the original image. The denoising network Uθ predicts the
noise at timestep t based on zt and the embedding generated
by ϕθ, which takes p as its input. Given that the forward
process of the Stable Diffusion [8] is fixed, Equation 1 re-
mains applicable. Therefore, by substituting in the expression
ϵt = zt−

√
ᾱtz0√

1−ᾱt
and discarding other weight terms, we can

rederive the loss function of the Stable Diffusion model as:

LLDM = EE(x),t
[
∥z0 − ẑθ(zt, t, ϕθ(p))∥22

]
(11)

As seen from Equation 11, Stable Diffusion is essen-
tially trained to optimize image predictions at any given
timestep to closely approximate the original image D(z0),
where D is the decoder in Stable Diffusion. For the Stable
Diffusion model, we can still distinguish between member
samples and non-member samples by the similarity scores
∥D(z0)−D(ẑθ(zt, t, ϕθ(p)))∥22, which is expressed as:

Pr [b = 1|x, θ] ∝ −∥D(z0)−D(ẑθ(zt, t, ϕθ(p)))∥22 (12)

■

APPENDIX D
MORE DETAILS FOR TRADITIONAL BLACK-BOX ATTACKS

Monte Carlo Attack. Given a query sample x, attackers can
utilize the generative model to sample k images. Define an
ϵ-neighborhood set Uϵ(x) as Uϵ(x) = {x′ | d(x, x′) ≤ ϵ}.
Intuitively, if a larger number of gi are close to x, the
probability Pr [x′ ∈ Uϵ(x)] will also be greater. Through the
Monte Carlo Integration [69], the Monte Carlo attack can be
expressed as:

f̂MC−ϵ(x) =
1

k

k∑
i=1

1x′
i∈Uϵ(x) (13)

GAN-Leaks Attack. Chen et al. [36] posited that the closer
the generated data distribution pθ(x̂) is to the training data
distribution q(x), the more likely it is for G to generate a
query datapoint x. They employed the KDE method [53] and
sampled k times to estimate the likelihood of x. This can be
expressed as:

PrG(x|θ) =
1

k

k∑
i=1

K(x,G(zi)); zi ∼ Pz (14)

Here, K denotes the kernel function, and zi represents the
input to G, which sample from latent code distribution Pz .

APPENDIX E
MORE DETAILS ON THE ATTACK FRAMEWORK

We use an example to show how our attack works. Assume
we have a query image Iq and a generated image Ig . After

extracting features using an image feature extractor E, the
resulting vector has dimensions [patch size, latent size]. For
example, when using ViT as E, the height and width of the
image are first resized to 224 × 224, and then divided into
196 patches, each of size 16× 16, and a latent representation
typically of size 768 is calculated for each patch. Extract-
ing features from Iq and Ig results in two vectors of size
[196, 768].

We then calculate the patch-wise similarity score, resulting
in 196. Note that we can use patches of other granularities.
In the extreme case, we can just use the CLS token of ViT,
which gives 768 latent space features of the whole image.
But this may overlook some details. So we choose the most
fine-grained patches available.

If we query the target model m times, we obtain a similarity
score vector of size [m, 196] for all generated images. By
applying our defined statistical function f , we aggregate the
similarity scores from multiple generated images to produce
a final similarity score vector of size 196. This vector is
then used as input for threshold-based, distribution-based, and
classifier-based attack models.

APPENDIX F
MORE DETAILS FOR DIFFERENT SIZE OF AUXILIARY

DATASET

Figure 7 shows that in all attack scenarios, the attack per-
formance decreases as the size of the auxiliary data increases.
However, the classifier-based attack still maintains a ROC-
AUC above 0.6.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Attack-I-T

Attack-I-D

Attack-I-C

Attack-II-T

Attack-II-D

Attack-II-C

Attack-III-T

Attack-III-D

Attack-III-C

Attack-IV-T

Attack-IV-D

Attack-IV-C

100 200 500 1000

Fig. 7: Attack nomenclature and performance trends:‘T’
for threshold-based, ‘D’ for distribution-based, and ‘C’ for
classifier-based attacks, with accuracy inversely related to
training set size.
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APPENDIX G
MORE DETAILS FOR COMPARING FIVE DIFFERENT IMAGE ENCODERS

To comprehensively analyze the influence of various image feature extractors on attack success rates, we evaluated the
performance of five distinct image feature extractors across three types of attacks, within four attack scenarios obtained by the
attacker, on three datasets. For each attack, we highlighted the optimal results of each evaluation metric across different image
feature extractors. In Table X (and Tables XI and XII in Appendix G of the full paper [68]), DeiT is the most stable image
encoder and achieves the best attack performance.

TABLE X: Comparative analysis of five different image encoders using classifier-based attack across three datasets.

DETR BEiT EfficientFormer ViT DeiT
ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1%

CelebA

Attack-I 0.66 0.70 0.10 0.87 0.95 0.64 0.80 0.87 0.37 0.81 0.88 0.26 0.87 0.93 0.49
Attack-II 0.67 0.69 0.09 0.88 0.94 0.57 0.82 0.88 0.38 0.80 0.88 0.29 0.88 0.94 0.61
Attack-III 0.67 0.71 0.07 0.84 0.91 0.57 0.81 0.87 0.42 0.79 0.83 0.40 0.87 0.94 0.52
Attack-IV 0.67 0.71 0.10 0.84 0.91 0.58 0.78 0.84 0.44 0.78 0.83 0.38 0.88 0.93 0.60

WIT

Attack-I 0.74 0.79 0.11 0.70 0.80 0.30 0.76 0.81 0.13 0.77 0.83 0.06 0.79 0.84 0.22
Attack-II 0.73 0.77 0.10 0.69 0.77 0.27 0.71 0.78 0.11 0.74 0.80 0.16 0.78 0.85 0.15
Attack-III 0.65 0.72 0.07 0.71 0.78 0.17 0.78 0.82 0.22 0.78 0.82 0.21 0.77 0.83 0.29
Attack-IV 0.64 0.69 0.08 0.72 0.77 0.11 0.76 0.81 0.16 0.77 0.82 0.05 0.75 0.83 0.25

MS COCO

Attack-I 0.72 0.75 0.17 0.77 0.84 0.24 0.78 0.87 0.20 0.73 0.82 0.20 0.85 0.93 0.61
Attack-II 0.75 0.80 0.06 0.77 0.85 0.16 0.81 0.87 0.35 0.75 0.83 0.20 0.85 0.92 0.56
Attack-III 0.70 0.78 0.16 0.78 0.84 0.44 0.78 0.82 0.28 0.71 0.80 0.20 0.83 0.89 0.30
Attack-IV 0.70 0.76 0.20 0.80 0.83 0.40 0.76 0.83 0.27 0.75 0.82 0.31 0.69 0.74 0.16

APPENDIX H
MORE EXPERIMENTAL RESULTS FOR VARYING FINE-TUNING STEPS

In this part, we want to examine the impact of increasing fine-tuned steps on the outcomes of different types of attacks.
The distribution-based attack results can be found in Figure 8, and the threshold-based attack is illustrated in Figure 9 of full
paper [68]. All these experiment results show that attack accuracy increases with more fine-tuning steps.
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Fig. 8: Correlation between increased fine-tuning steps and enhanced accuracy of distribution-based attack.

APPENDIX I
MORE EXPERIMENTAL RESULTS FOR DIFFERENT NUMBER OF INFERENCE STEPS

To evaluate how inference steps affect attack performance, we conducted experiments on the WIT and MS COCO datasets,
with results detailed in Table XI. We highlighted the best attack results for each evaluation metric across different inference
steps. The results indicate that the inference steps do not affect attack accuracy.

TABLE XI: Experiment results for more inference steps on MS COCO and WIT. The best attack result is marked in bold.

S
MS COCO WIT

Threshold-based Distribution-based Classifier-based FID Threshold-based Distribution-based Classifier-based FID
ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1% ASR AUC T@F=1%

30 0.76 0.84 0.13 0.70 0.77 0.13 0.84 0.90 0.42 8.49 0.71 0.81 0.23 0.61 0.70 0.26 0.78 0.82 0.29 6.73
50 0.74 0.84 0.13 0.69 0.77 0.11 0.84 0.91 0.20 7.24 0.71 0.80 0.20 0.62 0.72 0.25 0.75 0.82 0.30 5.83
100 0.76 0.84 0.15 0.70 0.76 0.11 0.85 0.90 0.23 6.46 0.71 0.79 0.17 0.65 0.74 0.09 0.76 0.83 0.32 5.58
200 0.77 0.84 0.16 0.71 0.75 0.11 0.83 0.88 0.21 6.46 0.70 0.79 0.20 0.62 0.72 0.14 0.77 0.83 0.33 5.56
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APPENDIX J
ARTIFACT APPENDIX

A. Description & Requirements

Our work proposed a black-box membership inference
attack against fine-tuned diffusion models. The primary com-
ponents of our work are: 1) A dataset that the attacker wants
to use to fine-tune the model, 2) A pre-trained stable diffusion
model and the fine-tuned LoRA module, 3) A feature extractor
to obtain features from the generated images, and 4) An attack
model to examine the membership of the query data.

1) How to access: Users can access our code repository for
the experiment code at13. In this repository, we also provide
the bash commands to run our code. We included the fine-
tuned LoRA module, BLIP checkpoint, and the exemplary
dataset in the artifact package. Users can use this dataset
to fine-tune a new LoRA module or directly use the one
we have trained. Score vectors for each experiment are also
stored in the artifact package. These score vectors correspond
to target model member scores, target model non-member
scores, shadow model member scores, and shadow model non-
member scores. Users can use these four vectors as input to
test our attack’s accuracy. We have also uploaded the artifact
package with all of the experimental data to the Zenodo
repository at14.

2) Hardware dependencies:

• GPU: NVIDIA GTX A6000 or higher.
• RAM: 252 GB minimum.
• CPU: AMD Ryzen Threadripper PRO 5955WX 16-Cores

or equivalent.

3) Software dependencies:

• Anaconda: Anaconda3-2023.03
• Python: Python 3.10.14
• Pytorch: Pytorch 2.0.1
• Packages: The package dependencies are specified in
environment.yml at the code repository.

4) Benchmarks: None.

B. Artifact Installation & Configuration

All required model checkpoints and datasets are included
in the artifact package. Due to the settings of Attack-II
and Attack-IV in our work, we provided trained BLIP check-
points in the artifact package. Users can choose to fine-tune the
LoRA module and modify the default training configuration.
The scripts for image generation, similarity score calculation,
and attack accuracy calculation contain the default runtime
configurations.

In our work, we tested several variables that could influence
the accuracy of the attack. In each experiment, we set other
variables default to Table XII.

13https://github.com/py85252876/Reconstruction-based-Attack
14https://zenodo.org/records/13371475

TABLE XII: The default settings used in our experiments.

Parameters Experiment setting for our work

Inference step 30
Resolution 512× 512

Image encoder DeiT
Fine-tuning epochs 500

Distance metrics Cosine similarity
Size of dataset 100

C. Experiment Workflow

Our work workflow contains five parts.
• Collect Dataset: The first step of our work is to collect

the data that we want to fine-tune the model.
• Fine-tuned Model: Use the prepared dataset to fine-tune

the LoRA module. During this phase, the parameters of
U-Net, VAE, and the text encoder are frozen.

• Synthesized Images: Generate images based on the
dataset from the fine-tuned model.

• Generated Score Matrix: Calculate the similarity score
between the generated images and the query image, and
compute the average similarity score for each query
sample.

• Discriminate Member and Non-member Samples: Im-
plement attacks using threshold-based, distribution-based,
and classifier-based attack models based on the generated
score matrix.

D. Major Claims

• (C1): We consider four attack scenarios where an attacker
can execute an attack based on the level of query access
and the quality of the initial auxiliary data. Three dif-
ferent types of attack models are used to evaluate the
success rate of these attacks.

• (C2): The impact of the attack was analyzed by con-
sidering various factors: image encoder selection (E1),
distance metrics (E2), fine-tuning steps (E3), inference
step count (E4), dataset size (E5).

E. Evaluation

To evaluate our work, several preliminary steps are required,
including dataset pre-processing and model fine-tuning. We
have included the fine-tuned module and BLIP checkpoints in
the artifact package to facilitate quicker reproduction of the
results.

1) Impact of Different Image Encoder: E1 [E1] [12 hours
training + 40 minutes attack]: This part of the experiment
focuses on comparing the impact of different image encoders
on attack effectiveness. The image encoders included in the
experiment are DETR, BEiT, EfficientFormer, ViT, and DeiT.

[Preparation] After setting up the environment us-
ing the environment.yml file in the code reposi-
tory, the user can employ the provided dataset files
and the train_text_to_image_lora.py to train the
LoRA module. Once the training is finished, use the
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inference.py to generate images. By default, three images
are generated for each query data point.

[Execution] After generating images for each query data
point, use cal_embedding.py to extract image features
and calculate similarity scores. In this process, the user can use
the --image_encoder configuration to test the accuracy of
five different image encoders extracting image features for the
attack. Each attack will produce five different sets of similarity
score vectors. These five sets of similarity vectors, obtained
using different feature extractors, are then used as inputs for
the test_accuracy.py to execute the attack.

[Results] The experimental results should align with those
in Figure 3. This figure shows that among the five different
encoders, DeiT achieves the highest attack success rate.

2) Impact of Different Distance Metrics.: E2 [E2] [12 hours
training + 40 minutes attack]: In this section of the experiment,
we focus on determining the most effective distance metrics
for evaluating feature vectors extracted from generated images
and query data. The distance metrics tested in this experiment
include ℓ1, ℓ2, the Hamming distance, and the cosine similar-
ity.

[Preparation] Similar to E1, we need to fine-tune the
LoRA module and use the BLIP checkpoints for Attack-
II and Attack-IV. Subsequently, according to the definitions
of different attack scenarios, we will load the appropriate
checkpoints and run inference.py to generate images.

[Execution] After generating three images for each query
data point using the default configuration, we calculate sim-
ilarity scores with cal_embedding.py. It is important to
note that while E1 focused on selecting the image encoder,
this section compares different distance metrics. We control
the comparison using the --method parameter. Finally, we
input the similarity vectors obtained from the four distance
metrics into test_accuracy.py to test the accuracy of
the attacks.

[Results] The observed experimental results should align
with those in Section V-D. In that section, Cosine similarity
as a distance metric demonstrates superior attack performance.

3) Impact of Fine-tuning Steps: E3 [E3] [12 hours training
+ 40 minutes attack]: The foundation of our attack is the
hypothesis that the model retains the memorization of the
training data. However, the effectiveness of this memorization
is significantly influenced by the fine-tuning steps. In this
section, we perform attacks on the model at the 100, 200,
300, 400, and 500 epochs.

[Preparation] Similar to E1 and E2, we need to prepare
the fine-tuned LoRA module and BLIP checkpoints. In this
section, we use the DeiT image encoder and Cosine similarity
as the distance metric, as determined in E1 and E2, to yield
superior attack performance. These will be set as the default
settings for both the current and subsequent experiments.

[Execution] When storing the LoRA module checkpoints,
we save them at every 100 epoch. We then use these
five checkpoints to generate images and calculate similar-
ity score vectors. Finally, we perform the attacks using
test_accuracy.py.

[Results] The experimental results should align with Fig-
ure 4 in Section V-E. As the number of fine-tuning steps
increases, the model’s memorization of the training samples
strengthens, leading to improved attack accuracy.

4) Impact of Inference Step: E4 [E4] [12 hours training
+ 40 minutes attack]: According to DDIM [10], the quality
of generated images is influenced by the number of inference
steps. Therefore, in this experiment, we investigate the impact
of inference steps set to 30, 50, 100, and 200 on the attack
success rate.

[Preparation] As with the previous experiments, we need
to prepare the LoRA module and BLIP model checkpoints.
In this experiment, the image encoder, distance metrics, and
fine-tuning steps will all use the default settings specified
in Table III.

[Execution] This part of the experiment focuses on the im-
age generation stage. We control the inference steps by mod-
ifying the --inference parameter in inference.py.
After generating images with different inference steps, we use
cal_embedding.py to obtain the similarity score vectors
and test_accuracy.py to calculate the attack success
rate.

[Results] The results of the experiment should demonstrate
that varying the inference steps does not affect attack accuracy.

5) Impact of Different Size of Dataset: E5 [E5] [12 hours
training + 40 minutes attack]: In other membership inference
attacks, the size of the dataset significantly impacts the attack’s
effectiveness. In this section, we set the dataset sizes to 100,
200, 500, and 1000, keeping the number of fine-tuning epochs
constant, and then evaluate the attack effectiveness.

[Preparation] As with the previous experiments, we prepare
the trained LoRA module and BLIP checkpoints. Other attack
parameters are set according to Table III.

[Execution] This part of the experiment primarily distin-
guishes the fine-tuned LoRA modules using different dataset
sizes. Due to time constraints, larger datasets require more
time for training. Therefore, we have included the pre-trained
LoRA modules in the artifact package for immediate use.

[Results] The experimental results should align with Fig-
ure 7 in Section V-G, indicating that smaller datasets achieve
better attack accuracy when the number of training epochs is
consistent.

F. Customization

For customization, users can specify the fine-tuning epochs
and other relevant parameters, such as the learning rate.

G. Notes

Our future work will include the implementation of memo-
rization phenomena and additional literature supplementation.
These additions will not affect the final conclusions drawn
from the above experiments.
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