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Abstract—Containers have become widely adopted in cloud
platforms due to their efficient deployment and high resource
utilization. However, their weak isolation has always posed a sig-
nificant security concern. In this paper, we propose RContainer,
a novel secure container architecture that protects containers
from untrusted operating systems and enforces strong isolation
among containers by extending ARM Confidential Computing
Architecture (CCA) hardware primitives. RContainer introduces
a small, trusted mini-OS that runs alongside the deprivileged OS,
responsible for monitoring the control flow between the operating
system and containers. Additionally, RContainer uses shim-style
isolation, creating an isolated physical address space called con-
shim for each container at the kernel layer through the Granule
Protection Check mechanism. We have implemented RContainer
on ARMv9-A Fixed Virtual Platform and ARMv8 hardware SoC
for security analysis and performance evaluation. Experimental
results demonstrate that RContainer can significantly enhance
container security with a modest performance overhead and a
minimal Trusted Computing Base (TCB).

I. INTRODUCTION

Containers are widely used in cloud-native environments
to provide a lightweight solution for packaging, distributing,
and running applications on shared cloud infrastructure. As
ARM-powered machines gain popularity in the cloud server
market, companies are exploring the use of containers on
ARM server platforms. However, the security of containers,
compared to traditional virtual machines (VMs) is questioned
due to inadequate isolation caused by the shared host Operating
System (OS) kernel. The shared OS kernel, often Linux,
contains numerous vulnerabilities that can be exploited by
compromised containers, risking disastrous security breaches
(e.g., data breaches, data manipulation) to all other contain-
ers. Even worse, the problem is beyond merely protecting a
container against a compromised host OS. It has been widely
recognized that the real problem is how to simultaneously
achieve the objective of strong isolation, the objective of being
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lightweight, and the objective of having minimum amount of
trusted code running with highest privileges.

Without taking the objective of being lightweight into
consideration, the objective of strong isolation can be achieved
by a hypervisor. These approaches enhance container isola-
tion by incorporating additional security mechanisms into the
hypervisor [1], [2], [3] or running the container within an
independent lightweight-VM [4], [5]. However, none of the
existing hypervisor-based VM security solutions achieve the
objective of being lightweight. Furthermore, these hypervisor-
based solutions often expand the system’s Trusted Computing
Base (TCB) due to the integration of virtualization layers,
thereby increasing the attack surface. In order to simulta-
neously achieve the objective of strong isolation and the
objective of being lightweight, researchers have been explor-
ing Trusted Execution Environment (TEE)-based mechanisms.
Without suffering from heavyweight virtualization caused by
a hypervisor, security-oriented hardware features of processor
chips, such as ARM TrustZone [6], can create two distinct
Physical Address Spaces (PAS), resulting in physical isolation
which is adequately strong for protecting an application from a
malicious OS. TZ-container [7] and TrustShadow [8] enhance
the security of containers (or applications) by adding a shield
or runtime system in TrustZone. However, such solutions
may suffer from at least two drawbacks. First, all containers
or trusted applications (TAs) running in the TrustZone have
the same permissions, enabling malicious containers to attack
other legitimate ones. Second, the increasing number of TAs as
well as containers and the growing complexity of trusted OS
(TOS) expands the attack surface of commercial TrustZone-
based systems [9].

Recently, ARM introduced Confidential Computing Ar-
chitecture (CCA) in ARMv9-A, which includes a new PAS
for confidential VMs (Here, each VM runs one OS and sev-
eral containers/applications). Although ARM CCA has great
potential, the existing CCA-based designs still fall short of
simultaneously achieving the aforementioned three objectives
(i.e., strong isolation, lightweight, tiny code running with
highest privileges). For example, Shelter [10] attempts to
extend ARM CCA to isolate one application from another (i.e.,
protect userspace isolation): they introduce the needed security
functionalities into EL3. However, although the performance
overhead of Shelter is significantly reduced compared to
hypervisor-based VMs, the amount of code running with
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highest privileges (note that EL3 is the highest exception level
in the ARM architecture) is unfortunately still substantial (e.g.,
the Shelter security monitor has 2K lines of code running
with EL3 privileges). The Shelter’s monitor possesses higher
privileges than any software in Normal World, Realm World,
or Secure World. Any issues occurring within EL3 could have
a disastrous impact on the entire platform. Therefore, it is
advisable to minimize the amount of new code introduced in
EL3 as much as possible.

To simultaneously achieve the three aforementioned objec-
tives, we introduce RContainer, a novel secure container ar-
chitecture based on the Realm Management Extension (RME)
hardware primitives of ARM CCA, to enable comprehensive
container protection against an untrusted OS while enforc-
ing strong isolation between containers. RContainer separates
critical resources from the host OS and introduces a trusted
mini-OS in Normal World EL1. This mini-OS, which logically
has higher privileges, is responsible for managing interactions
between containers and the deprivileged OS. The mini-OS
employs a novel mixed-pagetable approach to isolate itself
from the deprivileged OS, providing security capabilities like
memory isolation and control flow protection to safeguard the
containers. Leveraging mixed-pagetable isolation, RContainer
achieves strong isolation between the mini-OS and deprivi-
leged OS and makes it possible to securely move the majority
of the container isolation functionalities, which would usually
be running within EL3, into EL1. Furthermore, RContainer
adopts a shim-style isolation approach, which not only iso-
lates container userspace but also isolates kernel space by
instantiating the container-related data plane and monitoring
the control plane (through mini-OS) in the kernel. RContainer
establishes an isolated domain in EL1, termed con-shim, for
each container to isolate and limit the scope of different
containers in the kernel space. Isolation between different
con-shims (and their containers) is achieved by assigning a
separate Granule Protection Table (GPT) called Shim-GPT.
In each container’s Shim-GPT, RContainer restricts container
access by eliminating the current container’s access to extra-
neous memory, including the mini-OS, deprivileged OS, and
other containers. Through these methods, RContainer achieves
lightweight bidirectional isolation that safeguards the container
from the untrusted host OS while simultaneously strengthening
the isolation between multiple containers and minimizing the
amount of newly added code running within EL3.

We have implemented two prototypes of RContainer on
ARM Fixed Virtual Platform (FVP) [11] that support ARMv9-
A architecture and ARMv8 SoC development board [12],
respectively, for security and performance evaluation. RCon-
tainer introduces a TCB of 2.6K Source Lines of Code (SLoC)
without encryption (only 130 SLoC in EL3), and an additional
2.3K SLoC when encryption is enabled. We analyzed 30
vulnerabilities related to containers and Linux, including priv-
ilege escalation, information leakage, memory corruption, and
denial of service, and found that the important prerequisite for
exploiting these vulnerabilities is a system design with weak
memory isolation and unrestricted permissions. Our evaluation
results show that RContainer can defeat all the aforementioned
exploits with modest performance overhead.

Contributions. Our contributions are summarized as below:

• We designed RContainer, a novel secure container ar-

chitecture via ARM CCA hardware primitives, which
protects containers on untrusted OS while enforcing
strong isolation among containers both in userspace
and kernel space with minimal TCB.

• We proposed a novel mixed-pagetable approach that
isolates different components running at the same
exception level through extending RME, and moved
many security functionalities to the EL1 to balance
security, performance, and the amount of code running
with highest privileges.

• We implemented two prototypes of RContainer on
ARMv9-A FVP and ARMv8 hardware SoC, respec-
tively, and evaluated Rcontainer’s security features and
performance overhead.

II. PRELIMINARY

A. Security Insights

The security considerations of RContainer come from the
following three insights.

Security Insight 1: Isolation between containers in both
userspace and kernel space. It is crucial to have isolation in
not only userspace, but also kernel space between containers.
Different containers often have complex shared dependencies
on kernel data structures (e.g., abstract resources [13]). This
leads to the possibility of more widespread attacks between
containers by exploiting kernel space data resources.

Security Insight 2: Minimizing the highest-privilege
code. Running less code at a higher privilege level is a fun-
damental principle for enhancing system security and safety.
In modern systems, code running at the highest privilege
has extensive access and control over system resources (e.g.,
memory, CPU). Consequently, any issues that occur may have
a catastrophic impact on the whole system.

Security Insight 3: Scalable security features. Due to the
ever-evolving nature of attack methods, the design of security
systems should be scalable when new attack methods keep on
emerging, while avoiding violations of Security Insight 2 as
much as possible.

B. Introduction of ARM Confidential Computing Architecture

ARM Confidential Computing Architecture (CCA) [14] is
a novel security technique featured in ARMv9-A. It is designed
to protect data and code from leaking or being tampered with
during runtime. ARM CCA introduces a new trusted isolation
environment known as the Realm World, which allows ap-
plications to execute within a secure memory space, isolated
from the regular Normal World and Secure World. The Realm
World is more versatile than traditional confidential VMs,
supporting both the confidential VM and OS. Furthermore,
ARM CCA introduces a novel memory protection mechanism
called Granule Protection Check (GPC), which independently
checks the access permission of physical memory, separate
from the Memory Management Unit (MMU). ARM CCA
segregates all Physical Address Spaces (PAS) into four distinct
states: Normal PAS, Secure PAS, Realm PAS, and Root PAS,
corresponding to the memory in the four respective worlds.
The Normal World can only access the Normal PAS, while
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the Secure World and Realm World can access both their own
PAS and the Normal PAS. The Root World, however, can
access all PAS. Furthermore, ARM CCA maintains a table
called the Granule Protection Table (GPT) that manages the
security state of physical addresses in coordination with GPC.
Operations related to GPT can only be performed by EL3,
including loading GPT to GPTBR_EL3 and updating GPT.
Through the above mechanisms, ARM CCA has implemented
fine-grained strong isolation in a more flexible manner.

C. Challenges

Challenge 1 (C1): Containers are not really suitable
for deployment in Realm World. ARM CCA offers a new
confidential computing environment, known as the Realm VM,
to protect data and code running in it from any privileged soft-
ware or firmware. An intuitive idea is to directly use the Realm
VM to protect containers, either placing multiple containers in
one Realm VM or using a separate Realm VM to run each
container. However, both approaches are problematic. Since
multiple containers still share a single Realm OS kernel, the
first approach is unlikely to provide adequate isolation between
containers, thus violating Security Insight 1. The second
approach mirrors traditional hypervisor-based solutions (e.g.,
microVMs); accordingly, it encounters the same performance
issue faced by existing hypervisor-based TEEs. Moreover, both
approaches introduce a relatively large TCB, which includes
both OS and RMM in Realm World.

Challenge 2 (C2): It is very challenging to achieve
tamper-proof protection of the TCB when only a small
portion of the TCB is running with the highest privilege (i.e.,
EL3). Based on Security Insight 2 and Security Insight 3,
only a small portion of the TCB is running at the highest
privilege level, but how to ensure that the remaining parts
of the TCB are tamper-proof? An intuitive idea is to deploy
the TCB in Secure World or Realm World. However, this
approach has two limitations. First, the TCB complexity has
to increase. Taking Secure World as an example, the TCB will
either run in secure monitor (before ARMv8, secure monitor
and Secure World belonged to the same isolated domain) or
be integrated with TOS. In either way, the TCB complexity
will increase. Second, this approach may hurt compatibility.
The three Worlds in ARM architecture are designed to be in
parallel and have distinct software stacks, running different
programs and services. Since the containers are running in the
Normal World, this approach will inevitably introduce many
cross-world operations.

Due to these limitations, it is preferable to deploy the TCB
within Normal World. However, this strategy will result in the
TCB and the host OS running at the same exception/privilege
level, raising the problem of providing the TCB with tamper-
proof protection. Generally speaking, there are two straight-
forward solutions to isolate different environments at the same
exception level: (1) create separate pagetables for the TCB
and the host OS, and hook pagetable operations in EL3; (2)
use the same pagetable but set pagetable pages as read-only
[15], [16], [17], [18] in Normal World, and manipulate every
update of the pagetable in EL3. Unfortunately, both solutions
introduce a significant performance overhead due to frequent
pagetable and context switching (frequent refreshing of TLB
leads to slower memory access).

TABLE I: Threat Model Matrix.

Malicious
components

Steal/tamper
with container

Steal/tamper
with OS

DoS on
container

DoS on
OS

Self container #  # H#
Other container   H# H#

Con-shim #  # H#
Depriv OS  # H# #

 indicates fully-considered; #indicates not-considered; H#indicates partially-
considered (RContainer considers memory-related DoS [13], [20], e.g., memory
consumption, abstract resource attacks, and does not consider others).

D. Threat Model

We assume that attackers can exploit vulnerabilities to take
control of the system software in Secure World, Realm World,
and Normal World. Then, they can steal or tamper with the
private memory and register state of containers by hijacking
the control flow, remapping memory, controlling DMA-capable
devices, and launching Iago [19] or MUMA (Multi-User Multi-
Application) [7] attacks. Moreover, attackers could deliberately
deploy a malicious container on our platform and attempt
to attack the kernel and other containers through container
escalation and resource abuse. Table I presents the threat model
matrix of RContainer, where  indicates a fully-considered
threat, # indicates a not-considered threat, and H# indicates a
partially-considered threat.

A container deliberately leaking its sensitive data, side-
channel attacks (e.g., [21], [22]), cryptography attacks, Denial-
of-Service (DoS) attacks, and physical attacks are out of our
scope. Although DoS attacks are also out of our consideration,
RContainer can defend against memory-related DoS from ma-
licious containers (e.g., abstract resource attacks [13], memory
consumption). We also do not consider the vulnerabilities of
applications within a container. Our approach can be deployed
alongside existing side-channel attack defense solutions, e.g.,
[23], [24]. We assume that the system is benign during the
boot-up [25], which allows for secure storage of keys and
signatures. However, the system may be compromised during
runtime. We also assume that the security of container images
can be maintained through encryption [26], and the existing
attestation (e.g., [27], [28]) can be applied to our system.

III. SYSTEM DESIGN

A. Architecture

To address challenge C1, we introduce a novel secure
container architecture called RContainer within the Normal
World. RContainer explores and acknowledges the inherent
connections between userspace isolation and kernel space
isolation. Fig. 1 illustrates the architecture of RContainer,
which comprises a mini-OS in EL1 and a secure monitor
(native firmware) in EL3 as the TCB, and multiple con-
shims for container isolation. The mini-OS is a compact and
basic OS that provides memory management for container/con-
shim memory and control flow protection. Meanwhile, service
provisioning is still retained in the deprivileged OS. The
mini-OS and deprivileged OS coexist at the same exception
level but are isolated through a mixed-pagetable mechanism
(Section III-B). Each con-shim represents a lightweight iso-
lated instance allocated to each container in kernel space.
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Fig. 1: RContainer Architecture.

By combining con-shims, RContainer introduces a shim-style
isolation paradigm (Section III-C).

B. Mini-OS

In order to address the challenge C2, first, instead of
running the TCB in EL3, RContainer introduces a minimal
trusted mini-OS that runs in EL1 alongside the deprivileged
OS. Second, the isolation between the mini-OS and the de-
privileged OS is guaranteed by a mixed-pagetable protection
mechanism. Regarding why tamper-proof protection of the
mini-OS is achieved, it should be noted that the deprivileged
OS and the mini-OS utilize the same Memory Management
Unit (MMU) pagetable but different GPTs. We refer to this
approach as the mixed-pagetable.

Specifically, the pagetable shared by the mini-OS and the
deprivileged OS is maintained in the deprivileged OS, but the
pagetable pages related to the mini-OS are masked and isolated
from the deprivileged OS through the GPC mechanism. Two
EL1-related GPTs, called Priv-GPT and OS-GPT, respectively,
are maintained in the EL3 secure monitor. They record the
memory security attributes of the mini-OS and the deprivi-
leged OS, including runtime memory and the pagetable pages.
Pagetable pages in EL1 possess different security attributes
in the two GPTs. The Priv-GPT is the GPT of the mini-OS
and has full access permission. The OS-GPT is the GPT of
the deprivileged OS and can only access its own memory
and pagetable pages. As depicted in Fig. 2, the pagetable
pages (abbreviated as PTP in the figure) that maintain the
mini-OS mapping are marked as No-access PAS in the OS-
GPT. This ensures that when the deprivileged OS is running,
it cannot access the mini-OS related pagetable pages. The
pagetable pages that maintain the deprivileged OS mapping
are marked as Normal PAS in the OS-GPT, ensuring that the
deprivileged OS can update its own pagetable pages normally.
Any pagetable page (except L0) can either store mini-OS-
related or deprivileged OS-related mappings, but not both. It’s
worth noting that L0 is the only pagetable page that maps both
the mini-OS and deprivileged OS, so it needs to be protected
separately. We use shadow L0 to prevent deprivileged OS
from tampering with L0 page. Through the mixed-pagetable

Fig. 2: Mixed-pagetable.

isolation, RContainer places most of its security capabilities in
EL1 of Normal World in a lightweight manner.

The security capabilities of mini-OS mainly include two
aspects: memory management and control flow protection.

Memory Management. The mini-OS provides lightweight
memory management for memory protection, which includes
two security mechanisms. The first mechanism is the mainte-
nance of GPTs at the software level. The mini-OS manages
a GPT-routing table to maintain the mapping relationship
between each container and its own GPT. When a container
is created, the mini-OS notifies the secure monitor in EL3
to assign a specific GPT to the container and records the new
GPT index in the GPT-routing table. Before the container runs,
the mini-OS first locates the GPT index corresponding to the
current container in the GPT-routing table and then notifies
the secure monitor in EL3 to switch the GPT. The second
mechanism is fast memory allocation. The mini-OS has a
lightweight allocator for allocating the container memory and
handling pagefaults. Furthermore, to improve the performance
of allocation, the mini-OS maintains some continuous physical
memory areas [29] for fast memory allocation. These physical
memory areas are set to No-access PAS in the OS-GPT. The
specific container memory management is described in detail
in Section IV-C.

Control Flow Protection. The mini-OS provides control
flow protection through an exception interposer. The exception
interposer is utilized for exception-level switching protection.
Specifically, when a container executes a system call, the
control flow initially switches from the container to the mini-
OS. The mini-OS then copies the parameters of the system
call based on the requested information, clears the sensitive
CPU registers, and finally switches to the deprivileged OS for
processing. Once the processing is completed, the control flow
returns to the mini-OS. Here, the mini-OS checks the process-
ing results of the system call and, after verification, returns
to the container. In addition to system calls, exceptions, and
interrupts can also directly trigger exception-level switching
between the container and the deprivileged OS, which may
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lead to control flow hijacking. To prevent such attacks, when
an exception or interrupt occurs, RContainer forces the control
flow to first enter the EL3 monitor for GPT switching (from
Shim-GPT/OS-GPT to Priv-GPT) and then transfers the con-
trol flow to the mini-OS. The mini-OS distributes the exception
or interrupts to the specific handler in the deprivileged OS for
processing with EL3 GPT switching (from Priv-GPT to OS-
GPT). The mini-OS maintains a copy of the exception vector
table, which is protected from modification by the deprivileged
OS. After each exception handling, the mini-OS checks the
results and returns to the container. All entrypoints of handlers
are hard-coded.

C. Shim-style Isolation

Due to the complex dependencies, isolation is essential
not only in userspace but also in kernel space. Malicious
containers can exploit kernel vulnerabilities or shared resources
(e.g., global variables [13]), endangering other containers and
the kernel. Some works use dedicated kernels for individual
containers (e.g.,[5], [30]), but this may sacrifice lightweight
advantages and introduce TCB complexity. In RContainer,
we adopt a shim-style isolation paradigm for kernel space,
guided by two key observations: (1) While most container-
related attacks originate in the control plane (i.e.,hijacking
control flow, defective code, etc), they ultimately impact the
data plane (i.e., global variables, kernel data structures, etc).
(2) The data plane is accessed more frequently and requires
stronger isolation for containers.

Building upon the first observation, the shim-style isolation
approach involves two core concepts: First, containers are
instantiated within the kernel’s data plane. Second, Containers
are monitored (by mini-OS) from the control plane of the
kernel. Specifically, in the data plane, RContainer identifies
three critical types of kernel data that directly influence con-
tainer security: (1) Kernel boundary points: These serve as
switching points between container userspace and kernel space,
such as system call entry/exit points; (2) Container-specific
private data structures: These unique structures store container
context information (e.g., task_struct) and are specific to
each container; (3) Shared global variables: These variables
are allocated to multiple containers simultaneously and can
be controlled by containers (e.g., nr_files). To instantiate
the data plane, RContainer establishes an isolated environment
known as ‘con-shim’ (short for container shim) for each con-
tainer at EL1. Each con-shim represents a lightweight isolation
domain within kernel space, encompassing the aforementioned
data types, shared memory areas, and its own stacks.

Based on our second observation, each con-shim should
be exclusively associated with its own container and should
not be trusted by other containers. Therefore, all con-shims
are out of our TCB. To restrict memory access [31], RCon-
tainer maintains a separate GPT (Shim-GPT) for each con-
shim/container at EL3. Table II illustrates the memory access
attributes within each Shim-GPT. Each con-shim/container is
limited to accessing only its own memory, preventing access
to others’ memory (including other con-shims, containers,
deprivileged OS, mini-OS, and secure monitor). As a result,
each container’s direct impact on the kernel data plane is
confined to its respective con-shim. For the control plane,
the bidirectional control flow between the container and the

TABLE II: Memory Access Attributes in Each Shim-GPT.

Object Permission GPI encode in GPT
Self container Access permitted in Shim-GPT 1001 (Normal PAS)
Self con-shim Access permitted in Shim-GPT 1001 (Normal PAS)
Other container No access in Shim-GPT 0000 (No-access PAS)
Other con-shim No access in Shim-GPT 0000 (No-access PAS)
mini-OS No access in Shim-GPT 0000 (No-access PAS)
Deprivileged OS No access in Shim-GPT 0000 (No-access PAS)
Secure monitor No access in Shim-GPT 1010 (Root PAS)

deprivileged OS is monitored by mini-OS (as described in
Section III-B).

IV. CONTAINER LIFECYCLE PROTECTION

A. Boot Integrity

1) System bootup: Secure Boot [25] is a common system
secure bootup method that uses chain-verification of electronic
signatures to verify the reliability of crucial images in the sys-
tem, subsequently loading and running these verified images.
In the ARM architecture, the secure monitor in EL3 serves as
the security firmware responsible for booting the Bootloader,
Linux kernel, Trusted OS, RMM, and other important images.
In RContainer, the mini-OS and deprivileged OS are linked
into one binary file and located in a unified address space.
To reduce complexity, we employ a lazy loading approach for
secure bootup. Specifically, at boot time, the deprivileged OS
is loaded and measured by the secure monitor in EL3 and
continues booting up itself as usual until it starts launching
the mini-OS. The deprivileged OS in the early stage of system
bootup is considered secure, and at this time, network, serial
ports, and other services have not yet been initialized, so
attackers are unable to leverage any remote attacks. When the
mini-OS is launched, it first notifies the secure monitor in EL3
to initialize the OS-GPT (for deprivileged OS) and Priv-GPT
(for mini-OS) and sets the physical memory areas of the mini-
OS to No-access PAS in the OS-GPT. This ensures that when
the mini-OS is started, the deprivileged OS will no longer be
able to access the mini-OS’s memory. After the initialization
of the mini-OS is completed, the mini-OS notifies the secure
monitor to set the current GPT to OS-GPT and transfers control
to the deprivileged OS for subsequent tasks.

2) Container instance initialization: The entire process of
container initialization comprises two steps: con-shim initial-
ization and container initialization. When the deprivileged OS
intends to start a container, the control flow is transferred to
the mini-OS to create a con-shim by way of switching the
GPT to Priv-GPT. Initially, the mini-OS allocates memory
for the con-shim from the internal memory pool and records
the system call stack, shared memory, and private data areas
used by the container in the con-shim. Subsequently, the mini-
OS assigns a new identifier and notifies the secure monitor
to create a new Shim-GPT for the container and its con-
shim based on this identifier. Finally, the secure monitor sets
the container’s memory, the process’s pagetable pages, and
con-shim memory as No-access PAS in the OS-GPT and
Normal PAS in the newly created Shim-GPT. In this way,
the deprivileged OS will no longer be able to access these
container-related memory areas. Following the initialization of
the con-shim, RContainer then initializes the container. This
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process involves loading the container image and executing
the container’s init process from the deprivileged OS. For a
single container image, its confidentiality and integrity can be
ensured through remote authentication [27] or secure storage
[26]. The executable files in the container image are encrypted
through a rc_image_binary_crypto script. Although
the deprivileged OS can load these binaries, it cannot run them
without the mini-OS using their private keys to decrypt them.
The details of execution are introduced in the following.

B. Task

1) Task creation: The execution of tasks within a container
encompasses both their creation and termination. Task creation
within a container can occur under three circumstances. The
first scenario involves the creation of a process, where the
newly formed task possesses its own copy of the caller’s
address space. In this case, once the deprivileged OS has run
a child task and the task returns from the deprivileged OS,
the mini-OS verifies and records the addresses of the new task
structure and new pagetable in the container’s con-shim. It
then restricts the deprivileged OS’s access to the task’s CPU
state and memory by instructing the secure monitor to set the
relevant areas in the OS-GPT to No-access PAS. The second
scenario involves the creation of a thread, implying that the
newly formed task shares the same address space as its caller.
In this case, after returning from the deprivileged OS, the
mini-OS records the address of the new task structure and
the process identifier to which the new thread-level task is
associated. The new task’s pagetable is the same as its process,
so the mini-OS does not need to record the pagetable address
again. The third scenario involves the creation of a process
that replaces its caller’s address space. This situation bears
similarity to the first scenario, but with a key difference: it
necessitates the loading of binaries and the disassociation of
the old address space from the container. This includes erasing
these memory areas and setting the corresponding region in the
Shim-GPT to No-access PAS. Finally, the mini-OS confirms
the accuracy of the task, pagetable, Shim-GPT, and CPU state.
If these checks are passed, the mini-OS signals the secure
monitor to switch to the container’s Shim-GPT and resumes
task execution in the container.

2) Task termination: In the event of task termination,
the mini-OS eliminates the task structure information in the
container’s con-shim and purges the corresponding physical
memory. If there are no remaining tasks within this address
space, the mini-OS disassociates them from the container,
mirroring the process outlined in the second scenario. This
ensures a clean and efficient termination of tasks for containers.

C. Memory

1) Memory allocation: Typically, when a container or con-
shim requires memory allocation, the control flow is trans-
ferred to the deprivileged OS for this task. Once the allocation
is complete, the EL3 monitor adjusts both the Shim-GPT and
OS-GPT properties of the newly allocated physical pages,
returning the pages to the container or con-shim. However,
this process can lead to frequent exception switching and
significant performance overhead. To optimize this process,
RContainer introduces the concept of ‘reservation’. Specif-
ically, at the onset of system bootup, RContainer allocates

(a) Fast pagefault workflow

(b) Slow pagefault workflow

Fig. 3: RContainer Pagefault Workflow.

several contiguous physical memory areas managed by the
mini-OS. All physical pages within these memory areas are
initially marked as No-access PAS in the OS-GPT and No-
access in all Shim-GPTs. When a physical page is assigned
to a specific container or con-shim, the secure monitor in
EL3 marks the access properties of that page as Normal
PAS in the container’s Shim-GPT. The mini-OS maintains
metadata information of these allocated pages, including page
access permission, the container/con-shim to which the page
belongs, and the number of times the page has been mapped.
Additionally, the mini-OS features a lightweight pagefault
handler to swiftly construct container-related pagetables.

2) Pagefault handling: Fig. 3a shows the fast pagefault
workflow of RContainer. When a process within a container
triggers a pagefault event, the control flow is redirected to
the mini-OS by switching the current GPT to Priv-GPT in the
secure monitor. The mini-OS then selects a physical page from
the internal memory pool based on the pagefault address and
populates this page into the process’s pagetable. Subsequently,
the mini-OS notifies the secure monitor to modify the Shim-
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GPT where the process resides, marking the newly assigned
page as Normal PAS in this Shim-GPT. Upon completion of
these steps, the control flow is returned to the container by
switching the current GPT to the container’s Shim-GPT in the
secure monitor. In addition, if the free pages in the memory
pool are exhausted, RContainer employs the slow pagefault
workflow (shown in Fig. 3b). Specifically, if the mini-OS
detects a lack of free pages while handling pagefault events,
it switches to the deprivileged OS to acquire new memory
areas by way of switching the current GPT to OS-GPT in the
secure monitor. The deprivileged OS allocates a contiguous
physical memory area and passes the start address and size
to the secure monitor. The secure monitor then designates
these new pages as No-access in the OS-GPT. To safeguard
against the deprivileged OS intentionally assigning incorrect or
threatening addresses to the container, such as Iago attacks [19]
and ROP attacks [32], the mini-OS checks that this memory
area has not been mapped. Furthermore, RContainer focus on
known Iago attacks, such as mmap, mini-OS maintains lists of
processes’ mapping range and manages pagetable updates. For
virtual address (VA), mini-OS checks whether the VA belongs
to valid mapping. And for physical address, RContainer then
clears all physical pages in this memory area and populates
one page into the process’s pagetable. Finally, the mini-OS
notifies the secure monitor to set the page as Normal PAS in
the container’s Shim-GPT and returns to the container.

3) Shared memory: Containers typically require parameter
passing when executing system calls, often utilizing the appli-
cation’s memory buffers to transfer data between the container
and the deprivileged OS. To prevent the deprivileged OS
from directly accessing the container’s memory, RContainer
establishes a separate shared memory area for data transfer
in con-shim, which is designated as Normal PAS in the OS-
GPT. During the interposition of a system call exception, the
mini-OS examines the arguments and transfers this data from
the application’s memory to the shared memory buffer in con-
shim. Upon returning to the container, the mini-OS checks the
return values and transfers this data back to the application’s
memory buffer. Additionally, copy-on-write presents another
scenario that necessitates memory copying between containers
and the deprivileged OS. In this case, the mini-OS verifies
whether the source page belongs to the container and whether
the destination page belongs to the deprivileged OS. If these
checks are passed, the mini-OS notifies the secure monitor
to set the destination page in the container’s Shim-GPT to
Normal PAS. This process ensures secure and efficient data
transfer between the container and the OS.

D. Input/Output

1) Filesystem: A process within a container frequently ac-
cesses the file system via the I/O functions of the deprivileged
OS. To safeguard the files within containers, RContainer em-
ploys two strategies. For files located inside a container, RCon-
tainer relies on the application’s inherent encryption and de-
cryption mechanisms to ensure file security. For files that need
to be loaded and executed by the deprivileged OS, RContainer
utilizes a “scan-encrypt” method to pre-process images. Specif-
ically, RContainer offers a rc_image_binary_crypto
script that scans the image, identifies all executable files,
encrypts them using a public key, hashes these encrypted files,
and repackages the container image. The private key, which

pairs with the public key, is stored in the host’s secure storage
and can only be accessed by the mini-OS or the secure monitor.

During the pre-processing phase, all ELF files within a
container image are encrypted, with the exception of the ELF
headers. The ELF headers need to be parsed first by the
deprivileged OS to determine the loading of the entire ELF
file. When an executable binary file needs to be loaded and
executed through an exec system call, as mentioned in the
third case in Section IV-B, the mini-OS initially prompts the
secure monitor to set the loaded binary-related pages in the
process to No-access PAS in the OS-GPT and Normal PAS in
the container’s Shim-GPT. Subsequently, the mini-OS validates
the hash values for integrity checks and decrypts the encrypted
file. In this manner, when the deprivileged OS begins running
this task, it will no longer have access to the binary’s memory.
Additionally, some binaries may be dynamically linked, such
as libraries. These binaries need to be loaded by a loader
at runtime, which is part of the container image. The loader
typically mmaps these libraries through an FD-related system
call. The mini-OS records all FDs of the libraries in the
container’s con-shim during container creation, checks the
target encrypted library during loading, and finally decrypts
and mmaps it like regular binary files.

2) Network: RContainer does not offer additional system-
level protection for network I/O. The protection primarily re-
lies on secure network transmission protocols, such as HTTPS
[33], SSL/TLS [34].

E. Inter-process Communication

When a process initiates inter-process communication
(IPC) through a system call, there may be two situations:
shared memory and message passing. For the first situation, the
handling method is similar to section IV-C3, where a process
may use the shmget and shmat system calls to request
the deprivileged OS allocation or mapping of shared memory.
The mini-OS selects a page from the shared memory pages
within the container’s con-shim, ensuring that this physical
page can only be mapped to the relevant virtual memory areas.
For the second situation, a process may utilize a pipe, socket,
or message to invoke IPC. RContainer employs encryption to
safeguard IPC within a container. Under these circumstances,
a specific communication channel is established for data trans-
mission, associated with an IPC-related file descriptor (FDs).
The mini-OS interposes on these system calls and encrypts
these channels using the key employed during container ini-
tialization, based on its FD.

V. IMPLEMENTATION

A. FVP Prototype

We have implemented one prototype of RContainer on
an ARM64v9.4-A Fixed Virtual Platform (FVP) [11], which
supports ARMv9-A instruction set with RME hardware ex-
tension, GPT-supported ATF secure firmware, and ARM64
Linux kernel. Our system runs on Linux 6.2-rc2 with Trusted
Firmware-A v2.8.0, using Docker container at the user-level
with version 1.5. RContainer provides several interfaces which
are shown in Table III.
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TABLE III: RContainer Interfaces.

RContainer Call Description
rc_create_shim Create new con-shim for a container
rc_destroy_shim Destroy con-shim of a container
rc_create_container Create a new container
rc_destroy_container Destroy a container
rc_malloc_mm Allocate memory for container/con-shim
rc_set_pte Update PTE of a process/thread in container
rc_copy_page Copy page to a container
rc_set_vma Update vma of a process/thread in container
rc_set_iopte Update IO PTE of IO device
rc_ipc_in Handle ipc within a container
rc_ipc_out Handle ipc between containers
rc_task_clone Run a new process/thread in a container
rc_task_exec Run program in a new address space in a container
rc_task_exit Exit a process/thread in a container
rc_switch_to_depriv Switch contexts to Deprivileged OS
rc_switch_to_miniOS Switch contexts to mini-OS

The TCB of RContainer consists of ATF secure
firmware in EL3 and the mini-OS in EL1. The ATF se-
cure firmware is the native TCB in the ARM architec-
ture, running in Root mode. RContainer adds three SMC
calls in the ATF: SMC_GPT_SET_GPTBR_EL3 to switch
GPT, SMC_GPT_SET_GPI_BATCH to batch set the GPIs
of consecutive physical pages in the target GPT, and
SMC_GPT_READ_ANY_PHY_ADDR to obtain the GPI of a
physical page in the target GPT. In addition, in order to reduce
the performance overhead during GPT creation, RContainer
has set a Shim-GPT template, in which the mini-OS and
deprivileged OS memory regions have been set to No-access
PAS. For the mini-OS, RContainer defines a new section for
the mini-OS in kernel’s linker vmlinux.lds.S, and forces
this section to be loaded at a fixed address, which will use the
independent PTE in the L0 pagetable page. As we all know, as
long as the PTEs of the mini-OS and the deprivileged OS are
separated in the L0 pagetable page, their related L1, L2, and
L3 pagetable pages can automatically separate. Furthermore,
we leverage a shadow L0 solution, which means that a real
L0 (No-access in OS-GPT) is loaded into ttbr1 EL1 for the
mini-OS, and a shadow L0 is loaded into ttbr1 EL1 for the
deprivileged OS. These two L0 pages have the same mapping
content, so there is no need to flush the MMU TLB during
control flow switching. After the kernel pagetable is built,
RContainer sets the mini-OS’s section and related pagetable
pages (L1, L2, L3) to No-access PAS in deprivileged OS’s
GPT. L0 pagetable page is the only shared pagetable page
between the mini-OS and deprivileged OS, and based on our
observation experience, once the kernel pagetable is built, L0
is rarely modified. Therefore, RContainer copies the L0 in a
new physical page for mini-OS and sets the page to No-access
in OS-GPT. All physical pages in the Normal World are set to
Normal PAS in the mini-OS’s Priv-GPT.

The mini-OS interposes on all system calls, interrupts,
and exceptions. RContainer modifies all entry points in the
exception vector table, invoking rc_switch_to_depriv
before the processing of the exception, and calling
rc_switch_to_miniOS after the exception has been han-
dled. When an exception occurs while a container is running,
the control flow transfers to the exception vector table and

first calls rc_switch_to_depriv. During this process,
the mini-OS checks the corresponding parameters and, if
necessary, uses the shared memory in the container’s con-shim
to pass the parameters. It then switches to the deprivileged OS
with OS-GPT. After the exception processing is completed,
rc_switch_to_miniOS is invoked to validate the results
and switch to the container’s Shim-GPT. In this manner, even if
the deprivileged OS bypasses these two calls by modifying the
mapping or executing the instructions, it still cannot access the
container’s memory due to the GPT limitation. Additionally,
RContainer enforces the disabling of interrupts during the
running of the mini-OS.

RContainer uses GPT as the fundamental mechanism for
shim-style memory isolation. We make minor modifications to
Linux’s memory allocator. Specifically, RContainer introduces
a new flag to indicate that the currently allocated memory
is unique to con-shim and notify the mini-OS to modify the
GPT. Additionally, for specific global variables [13], RCon-
tainer allocates the fixed number within each con-shim and
maintains a summary table in the mini-OS to track and monitor
these variable allocations. In a multi-core scenario, each core
maintains its own GPT pagetable for the currently running
process, necessitating the consideration of synchronization and
bypass issues. Similar to [10], RContainer utilizes a spin lock
in ATF for GPT multi-core synchronization, thereby preventing
attacks that might use multi-cores to bypass GPT protection.
Additionally, RContainer invalidates GPT-related TLB entries
when switching or modifying the GPT, and disables the shared
TLB for containers by setting the CnP bit in the TTBR to
0. Furthermore, All other processes (unrelated to containers)
have a universal GPT that shields memory about mini-OS and
containers, and is used by cores by default. When scheduling
occurs, mini-OS validates whether the target task context be-
longs to containers/con-shim or deprivileged OS, and notifies
the secure monitor to switch the valid GPTs.

B. Hardware Prototype

Due to FVP’s lack of cycle-timing accuracy [11], we
implement another prototype of RContainer on a Firefly-
RK3399 ARMv8 SoC development board [12], with Linux-
firefly-4.4.149 as hostOS kernel. Furthermore, we simulate the
overhead of the GPT by flushing the TLB, modifying the
specified registers, and counting cycles for GPT management.
Specifically, we add the same three functions as in FVP to
ATF and maintain a GPT-multi structure for GPT management.
Then, for making subsequent performance tests closer to the
real situation, we use SCTRL_EL3 register for GPT-related
register (GPCCR_EL3 and GPTBR_EL3) access simulation,
and use tlbi for GPT-related flush. The implementation of
mini-OS is the same as the one in FVP. For IPC-related
implementation in Section IV-E, RContainer can protect IPC
in the same way as it protects shared memory (Section IV-C3),
or it can utilize encryption to safeguard IPC. To simplify
deployment, we consider IPC encryption as an optional feature.
Furthermore, we choose Advanced Encryption Standard (AES)
with Electronic Code Book (ECB) mode as encryption method
and use the native AES library in Linux to encrypt and decrypt
IPC channels. We use eMMC RPMB for storing private key.
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VI. SECURITY EVALUATION

A. Mini-OS as a Reference Monitor

The mini-OS is actually a reference monitor used to inter-
fere with the interaction between containers and the deprivi-
leged OS. Therefore, RContainer should ensure that the mini-
OS is tamper-proofed and non-bypassable during its lifetime.

Tamper-proofed. During system bootup, RContainer em-
ploys a secure boot to ensure the integrity of the mini-OS.
Post-boot, the secure monitor establishes Priv-GPT and OS-
GPT for the mini-OS and deprivileged OS, respectively, setting
the mini-OS related memory to No-access PAS in the OS-
GPT. Even if the deprivileged OS tampers with the mapping
of the mini-OS by modifying L0, when switching to the
mini-OS, the secure monitor checks the mini-OS related PTE
in L0 and detects the attacks immediately. In addition, the
deprivileged OS may leverage a peripheral to perform DMA
attacks. RContainer defends against these attacks by SMMU-
enforced GPT [35], which is described in Section VI-B3).

Non-bypassable. The deprivileged OS may attempt to
bypass the mini-OS in two ways: unmapping the switch to
the mini-OS and utilizing TLB. In the first scenario, only the
mini-OS has the capability to notify the secure monitor to
switch to Shim-GPTs. Therefore, even if the deprivileged OS
manages to bypass the mini-OS, it remains unable to access
any containers’ memory due to the limitations imposed by the
OS-GPT. For example, the deprivileged OS may attempt to
change the page table root (TTBR) or even disable paging to
bypass RContainer. However, in RContainer, access to physical
memory is controlled by GPTBR_EL3. Therefore, modifying
TTBRx_EL1 does not change access permissions. In the sec-
ond scenario, RContainer invalidates the GPT-related TLB and
disables global sharing. Furthermore, a malicious deprivileged
OS or con-shim may bypass the memory isolation of mini-OS
through GPT TLB. RContainer prevents this attack by flushing
the GPT TLB entries of the mini-OS when switching out of
the mini-OS. On the contrary, since the mini-OS is in our
TCB, there is no need to flush the GPT TLB when the system
switches from con-shim or deprivileged OS to mini-OS. As a
result, there is no feasible method for the deprivileged OS to
access the memory of the containers.

B. Defend against the Deprivileged OS

1) MUMA attacks: Compared to a single application, a
container may contain multiple applications, which makes it
possible for the deprivileged OS to leverage MUMA attacks
to compromise the container’s security [7].

Signal-related attacks. The deprivileged OS may forge
random signals and inject them into the container, introducing
race conditions. Additionally, the deprivileged OS may corrupt
the register context during signal handling, causing the con-
tainer to inadvertently leak secrets. RContainer defends against
these attacks by leveraging the shim-style isolation. Typically,
the deprivileged OS may inject a stack frame into the user
stack for signal handling, resulting in control-flow switching
upon function return. In RContainer, the shim-GPT safeguards
the user stack, making it inaccessible to the deprivileged OS.
Any access from the deprivileged OS will trigger a GPT fault,
prompting the mini-OS to verify the operation.

Futex-related attacks. The deprivileged OS may tamper
with futex locks to disrupt the synchronization mechanism
within the container. In RContainer, the mini-OS records
futex locks and their associated processes. Before control flow
returns to a process within the container, the mini-OS checks
if the process is waiting on any futex locks. If the process is
waiting on a futex lock variable, its execution is ignored unless
it is explicitly woken up.

IPC-related attacks. The deprivileged OS may compro-
mise the security of a container during IPC by tampering
with shared memory or communication channels. RContainer
defends against such threats by monitoring shared memory and
encrypting the channels, as described in Section IV-E.

2) Iago attacks: The deprivileged OS may attempt to
attack the container by maliciously altering system call return
values. In RContainer, the mini-OS provides control flow
protection between the container and the deprivileged OS,
ensuring verification of system call returns prior to container
entry. The existing Iago attacks [19] primarily involve system
calls related to memory (e.g., mmap). RContainer ensures the
address returned does not overlap any existing memory regions
(e.g., mmap in Section IV-C2). Compared to existing solutions
[10], [7], RContainer integrates its defenses into Normal EL1,
avoiding excessive code inflation in the highest privilege EL3
and frequent switches between different Worlds.

3) DMA attacks: The deprivileged OS may try to access the
container or mini-OS memory by exploiting a peripheral (e.g.,
GPU) to perform DMA attacks. RContainer defends against
these attacks by using SMMU-enforced GPT [35]. Specifically,
RContainer employs a global SMMU-GPT (termed IOGPT)
for the deprivileged OS, with all memory attributes set to No-
access by default, blocking OS and peripherals from access-
ing arbitrary memory via DMA. When the deprivileged OS
allocates memory for DMA, the mini-OS records the VA-to-
PA mapping and sets the corresponding page in IOGPT to
Normal-access, ensuring only explicitly declared I/O memory
(e.g., data encrypted by the container user) is accessible.

C. Defend against Malicious Containers

RContainer has also considered attacks from malicious
containers. An attacker may leverage a malicious container
to attack the deprivileged OS or other containers by exploiting
vulnerabilities or abstract resources. RContainer ensures that
even if the container escapes to the deprivileged OS, it cannot
access the memory of other containers by creating an isolated
con-shim for each container. In addition, each con-shim limits
the stack, shared memory range, and global sensitive data of
the container, and works in conjunction with the mini-OS to
prevent partial DoS from the container, such as resource abuse.

D. Evaluation of Practical Attacks

We use the FVP prototype for security evaluation and
have evaluated 30 CVEs shown in Table IV. These CVEs
include vulnerabilities originating from the deprivileged OS
and containers (or container engines). Furthermore, based on
the harmful consequences of being exploited, these CVEs are
classified into four categories: privilege escalation, memory
corruption, information leakage, and denial-of-service.
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TABLE IV: Case Study.

CVE-* Description1

2024-21626 Internal file descriptor leak in runc
2022-23222 Pointer arithmetic availability via * OR NULL pointer
2021-32606 User-after-free in isotp setsockopt in net/can/isotp.c
2021-28972 User-tolerable buffer overflow during dev name entry
2020-14386 Kernel memory corruption due to arithmetic flaw
2020-8835 Out-of-bound access due to unrestricted register bound
2019-14271 Code injection occurs when the nsswitch loads a library
2019-10144 Do not isolate containers’ processes when ’rkt enter’
2019-5736 Mishandling of file descriptor in /proc/self/exe
2018-18955 Improper handling of nested user namespace in write
2018-15664 Improper archive operations on a frozen filesystem
2018-15514 Unverify the validity of the deserialized .NET objects
2017-1000112 Memory corruption from UFO/non-UFO path switch
2017-7308 Improperly validation of certain block-size data
2016-9962 Improper execution to file-descriptors
2016-7117 Use-after-free in sys recvmmsg in net/socket.c
2016-5195 Race condition in mm/gup.c for handling CoW
2016-3697 Improper treats a numeric UID as username
2016-1582 Improper rights when switching container privilege
2016-1581 Improper permissions for ZFS.img when loop setup
2016-1576 Improper restricted mount namespace
2015-3630 Use weak permission for /proc/ operation
2015-3629 Unverified symlink when respawning a container
2015-3627 Open unverified file descriptor before chroot
2015-1335 Improper directory traversal operation in lxc-start
2014-9357 Improper handling of untrusted archive extraction
2014-6407 Symlink and hardlink when pulling docker images
2013-6441 Use read-write permissions when mounting /sbin/init
2010-4258 Improper handling of KERNEL DS get fs value
2010-2959 Integer overflow to function pointer overwrite

1The causes, exploitation, and defense simulation of these CVEs are
detailed in Appendix Table XI.

Privilege escalation. Based on our observations of vulnera-
bility exploitation, the most common attack path for privilege
escalation is from the container to the host user-mode and
then to the host root-mode. In this attack path, the attacker
may exploit vulnerabilities in the container engine (e.g., CVE-
2024-21626) or in the kernel (e.g., CVE-2022-023222) to gain
higher privileges. Privilege escalation also serves as an inter-
mediate step toward compromising confidentiality or integrity.
In traditional systems, the root user typically possesses the
highest level of privilege and can perform any operation. In our
evaluation, we found that more than half of these CVEs result
in privilege escalation, enabling the attacker to successfully
perform root-user operations such as kernel module insmod
and arbitrary code execution. While RContainer does not pre-
vent attackers from gaining privileges, it effectively mitigates
further attacks, acting as a defense against malicious hosts in
our threat model. In RContainer, the host OS is out of our TCB
and operates with restricted permissions. Therefore, even if an
attacker obtains root-user privileges, they cannot compromise
the security of other containers. For instance, consider CVE-
2019-5736, which allows a malicious container to overwrite
host runc binaries and subsequently obtain host root privileges
through /proc/self. In our emulation of a deep attack, we
first deployed a normal container, used docker run exec
to write our /bash/bin to the container, and then tried to

access the kernel’s pagetable pages. As expected, since the
container’s Shim-GPT has no permission to access the kernel’s
pagetable pages, this operation triggered a GPT fault.

Memory corruption and information leakage. The pri-
mary objective of many attacks is to compromise the integrity
and confidentiality of memory. Memory corruption is often
caused by memory overflow (e.g., CVE-2021-28972) and
improper parameter handling (e.g., CVE-2010-4258). Informa-
tion leakage, on the other hand, can be attributed to improper
permission settings (e.g., CVE-2015-3630) and weak bound-
aries (e.g., CVE-2020-8835). These vulnerabilities enable at-
tackers to write to or read from memory that does not belong
to the compromised components. In RContainer, both the host
OS and each container have their own independent memory
regions with strong physical boundary isolation, ensuring non-
interference. Any attempt to perform out-of-bounds read or
write operations results in a GPT fault. To enhance the detec-
tion of such faults, we have modified the GPT fault handler to
generate warnings that identify the malicious components and
target addresses. For instance, let’s consider CVE-2020-8835.
This vulnerability arises from the incorrect calculation of value
ranges in the BPF_REG_STATE register by the BPF verifier
during the verification of the BPF_JMP32 instruction, leading
to out-of-bound access. An attacker can leverage this vulnera-
bility to locate the init_pid_ns, obtain the task_struct
of the target container using find_task_by_pid_ns, and
access the memory of any container. In our emulation of a deep
attack, we attempted to modify the pagetable pages based on
mm_struct pointer in the task_struct when the attacker
had gained access to the target container’s task_struct. As
expected, this operation triggered a GPT fault.

Denial-of-service. DoS attacks are typically aimed at dis-
rupting the availability and stability of containers or host
platforms. In our evaluation, the causes of such attacks include
various factors, such as memory overflow (CVE-2020-14386),
improper parameter handling (CVE-2018-18955), and out-of-
bound access (CVE-2017-1000112). The fundamental reason
why most of these attacks can succeed is that the system lacks
strong boundary isolation. In addition to the aforementioned
causes, resource abuse is also an important way for malicious
users or containers to perform DoS attacks. The main reason
why these attacks can succeed is mostly because the system
lacks restrictions on the resources or permissions that contain-
ers can use. In RContainer, through shim-style isolation, we
have limited the scope of each container in kernel-layer and to
some extent alleviated memory-related DoS attacks (e.g.,[13])
caused by compromised containers. The DoS attacks caused
by the compromised host are out of our consideration.

The causes, exploitation, and defense simulation of 30
CVEs are detailed in Appendix Table XI. Through the security
analysis and evaluation, we have found that regardless of the
type of vulnerability, the necessary conditions for its suc-
cessful exploitation are the problems of excessive permissions
and weak-boundary isolation in the native system design. In
RContainer, we have restricted some permissions of the host
OS and containers to ensure that they cannot perform non-
essential operations without monitoring. Furthermore, through
a hardware-enforced strong isolation mechanism, RContainer
effectively suppresses unexpected behavior of compromised
containers and host OS.
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Fig. 4: Lmbench Performance. (Lower is better)

VII. PERFORMANCE EVALUATION

This section evaluates the overall performance and scala-
bility of RContainer by answering the following questions:

Q1: What is the implementation complexity of RCon-
tainer? (§VII-B)

Q2: How many system calls does RContainer support?
(§VII-C)

Q3: How do microbenchmarks perform under RContainer?
(§VII-D)

Q4: How do real-world applications perform under RCon-
tainer? (§VII-E)

Q5: What is the lifecycle cost of containers under RCon-
tainer? (§VII-F)

Q6: How does RContainer perform when running multiple
containers? (§VII-G)

A. Methodology

Given the absence of publicly accessible servers or de-
velopment boards that support RME, we use the hardware
prototype for performance evaluation. Specifically, we use
Firefly-RK3399 ARMv8-A board featuring a 2-core Cortex-
A72 64-bit and 4-core Cortex-A53 64-bit, clocked at 1.8GHz,
with 4GB RAM, running on Linux-firefly-4.4.149, Trusted
Firmware-A-1.3, and Docker 25.0.0-beta.1. Our network con-
figuration utilizes an Intel I219 and a TL-SG2008D switch.
Based on these setups, we conducted performance evalua-
tion on the Firefly-RK3399. On this basis, we first evalu-
ated the complexity and system call coverage. Then, we ran
microbenchmarks and application workloads, as detailed in
Table V, across four distinct configurations: (1) Native Docker
(serving as the baseline); (2) RContainer; (3) RContainer
with encrypted IPC; and (4) Native Docker within KVM-
VM (container running in guest VM with ubuntu-server-18.04,
Linux 5.4.0, docker 25.0.0, 2 vcpus, and 512MB). Lastly, we
evaluated the lifecycle cost and the concurrent overhead.

B. Status Quo and Complexity

To answer the first question (Q1), we utilized CLOC [46]
to evaluate the complexity of RContainer. The results show
that RContainer has introduced a total of 2,647 lines of code,
including only 130 lines of C in ATF (running at EL3), 2,272
lines of C and 112 lines of assembly in Linux, and 133 lines
of Python in a user-level python-script for binary encryption
within images. In addition, we have chosen AES-ECB as the
IPC encryption algorithm and introduced optional 2,308 lines
of C. Table VI shows the breakdown of RContainer TCB.
In addition, RContainer uses approximately 200 SLoC patch

TABLE V: Benchmarks and Configuration.

Name Configuration
Lmbench lmbench v3.0-a9-1 [36] micro benchmark
Kernel build Linux longterm: 4.19.309 with defconfig, make -j2

Hackbench Hackbench in Linux test project-20240129 [37] with 25
groups, 40 pairs of sender and receiver, and 100 datasize

Apache Apache server v2.4.58 [38] handling 100 concurrent
requests from remote Apache Bench v2.3 [39], serving
from 4KB to 512KB pages with 1GB data per-page

Memcached Memcached v1.6.22 [40] using memtier benchmark
v2.0.0 [41] with default configuration, serving from
16Byte to 512Byte data

MySQL MySQL v8.2.0 [42] handling requests from sysbench
benchmarks v1.0.2 [43], running workload using six
types of operations with 5 tables, 1,000 counts per-table,
10 threads, and lasting for 30 seconds

Nginx Nginx v1.25.3 [44] handling requests from remote
ApacheBench v2.3 [39], serving from 4KB to 512KB
pages with 1GB data per-page, 500 requests, and 100
concurrency

Netperf Netperf 2.7 [45] testing TCP_STREAM, TCP_CRR,
TCP_RR, UDP_STREAM, UDP_RR five cases, with last-
ing for 60 seconds

in Linux for con-shim, which are out of TCB. Compared to
Shelter [10], RContainer provides a more scalable and stable
design. Firstly, Shelter’s existing security features do not cover
all potential Iago attacks or other threats. To defend against
more attacks, the newly added code in EL3 by Shelter would
rapidly increase. In contrast, RContainer centralizes most se-
curity functions in EL1. Even integrating new security features
in the future, RContainer will not significantly increase EL3’s
TCB. Secondly, security functions generally belong to runtime
code, as most attacks occur at runtime. Our analysis of ATF-
1.3 Code, shown in Table VII, indicates that only 2.7% (≈
11K SLoC) of code corresponds to runtime support. Focusing
strictly on runtime security, Shelter increases EL3 runtime code
by nearly 18%, while RContainer only by about 1.2%.

TABLE VI: The Breakdown of RContainer TCB.

Component Functions Language SLoC

Mini-OS

Con-shim management C 373
Memory mapping protection C 511
Boot protection C 200
Context switch protection C and Assembly 350
Syscall Interposition C and Assembly 500
IPC encryption (optional) C 2,308
Others C 450

Image scan-encrypt
Image parse Python 35
Image encrypt Python 98

Secure monitor GPT management C 130
Total 4,955
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TABLE VII: The Breakdown of Native EL3 Code.

Function SLoC
Platform bootup 218,909 (51.92%)
TrustZone support 17,460 (4.14%)
Realm World support 17,408 (4.13%)
Normal runtime support 11,387 (2.70%)
multi-Platforms/drivers 156,457 (37.11%)
Total 421,621

C. System Call Coverage

To answer the second question (Q2), we utilized the Linux
Test Project (LTP)-v20240129 [37] system call test suite in
both native container and RContainer to test our system call
coverage. LTP consists of a total of 1,409 test cases. During
the testing process, 970 test cases succeed, 280 test cases were
skipped, and 159 test cases failed in both the native container
and RContainer. Except for some architecture-related cases,
due to our usage of kernel-firefly-4.4.194, some new features
are not supported like io_uring. Overall, the system call
coverage of RContainer is relatively the same as that of the
native container.

D. Microbenchmarks

To answer the third question (Q3), we utilized Lmbench
and the Performance Monitor Unit (PMU) in four configura-
tions mentioned in Section VII-A.

1) Lmbench: We ran Lmbench using a total of 12 use cases
of five types, including memory-related, process-related, file
system-related, and IPC-related. These tests are run 10,000
times to get the average values. Fig. 4 shows the results.
We normalized the results so that a value of 1.0 means the
same performance as the native container. Specifically, for
memory-related cases, such as lat_mem_rd, bw_mem_wr,
there is nearly no overhead since RContainer hardly inter-
cepts pagetable translation. For process-related cases, such as
fork+exec, produce call, RContainer introduces ap-
proximately 10% overhead. This is because it is necessary
to validate these parent-child processes’ task structures and
their address spaces, and further modify the GPT tables.
For file system-related tests, such as read and write, the
measurements show the highest overhead, about twice as much
as native Docker. This is because the deprivileged OS cannot
directly access containers’ memory. Consequently, RContainer
needs to copy system call parameters and data back and forth,
thereby incurring overhead. For IPC-related cases, such as
lat_pipe and lat_fcntl, the overhead of RContainer
with IPC encryption shows about 20%, which comes mainly
from encryption/decryption.

2) PMU: Further, we also counted GPT-related functions
through PMU. As shown in Table VIII, although initialization
introduces the most time because of the need to prepare
environment, including multi-GPT and mini-OS, it is per-
formed only once during system runtime. In addition, setting
GPI overhead is related to the size of the physical page as
well as GPT granularity. Our configuration is a 4K physical
page in 4K-level GPT and the result is about 530µs. Context
switch between deprivileged OS and mini-OS is about 492µs.
Creation of con-shim is about 530µs. Compared to creation,

TABLE VIII: GPT-related Microbenchmarks.

Function Description Times (µs)
Initialization Initialize the multi con-shim environment 45,607
OS switches Switch between OS and mini-OS 492
Creation Create a con-shim instance 530
Termination Destroy a con-shim instance 637
Set GPI (4KB) Set physical pages’ GPIs in target GPT 530

termination takes more time (about 637µs) because it requires
cleaning all con-shim-related memory to ensure that there is
no residual information.

TABLE IX: Kernbench Performance.

Native container RContainer RContainer+IPC Container+VM
3248.38s 3393.12s 3463.1s 8060.29s

E. Application Workloads

To answer the fourth question (Q4), we employed kernel
compilation using linux-4.19.309 with defconfig and six ap-
plication workloads, tailored for real-world scenarios, in four
configurations mentioned in Section VII-A.

1) Kernel build: We have conducted kernel compilation
using linux-4.19.309 with defconfig. We tested ten rounds
and took the average value. The results are shown in Ta-
ble IX. Overall, the performance overhead of RContainer
and RContainer with IPC-encrypted for kernel compilation
is approximately 4.5% and 6.6%, which is much better than
virtualization.

2) Real-world applications: We have utilized Apache,
Memcached, MySQL, Nginx, Netperf, and Hackbench to
evaluate RContainer’s real-world application workload. Each
workload underwent ten rounds of testing, adhering to the
configuration outlined in Table V. The average runtime for
each benchmark is depicted in Fig. 5. The results indicate
that the overhead of RContainer on real-world application
workloads is relatively lower compared to microbenchmarks.
Specifically, for Apache (Fig. 5a) and Nginx (Fig. 5b), we
tested from 4KB to 512KB with 1GB datasize per-page and
demonstrated the performance impact by measuring the time
taken for the requests. The overhead of RContainer compared
to native Docker is from 4%˜7%, with an average value of
5%, whereas for virtualization, it exceeds 50%. For Mem-
cached (Fig. 5d), we tested request data sizes ranging from
16Byte to 1024Byte with 2,000,000 ops and demonstrated the
performance impact through throughput measurements. From
the results, it can be seen that as the data size continues
to increase, the throughput increases almost proportionally.
The performance overhead of RContainer remains stable at
0.3%. For MySQL (Fig. 5e), we selected six commonly used
operations with 10 threads to test throughput. The result shows
that the overhead of RContainer is from 0.2%˜0.3%. Even
in IPC-encrypted mode, the overhead of RContainer is only
0.7%, which is much better than virtualization (about 34%).
For Netperf (Fig. 5f), to avoid excessive variance caused by
the previous connection not being released, we paused for 60
seconds after each test. The results show that the overhead of
RContainer is less than 3%.
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(a) Apache (b) Nginx (c) Hackbench

(d) Memcached (e) MySQL (f) Netperf

Fig. 5: Performance of Apache, Nginx, Hackbench, Memcached, MySQL, and Netperf. (For the first three workloads, lower is
better; for the last three workloads, higher is better)
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Fig. 6: Performance Comparison between RContainer and
Shelter. (Lower is better)

The results of Hackbench (Fig. 5c) are the worst perfor-
mance (nearly increased 1x) in all benchmarks. There may be
two main reasons. The first reason is that Hackbench creates a
large number of threads (even numbers) to serve as senders and
receivers of messages. This process involves frequent thread
creation, leading to frequent memory-attribute checks and GPT
modifications, resulting in an amount of context-switching.
The second reason is that the communication between senders
and receivers in Hackbench is done through IPC (mainly pipe
and local socket), which means that each message transfer
involves encryption and decryption operations, resulting in
increased overhead. However, the overhead of RContainer is
still reduced by nearly 70% compared to virtualization.

3) Performance Comparison: Furthermore, we compared
the overhead of real-world applications between RContainer
and Shelter. Since Shelter is not designed for container sce-
narios, we did our best to simulate its functionalities and
port it to our RK3399 development board. We ran six ap-
plication containers (shown in Appendix Table X). Fig 6
shows the normalized overhead results. Overall, for large-
scale applications (e.g., Apache, Nginx, Memcached, MySQL),
RContainer exhibits a smaller performance overhead (about
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Fig. 7: Lifecycle Cost in RContainer Compared to the Native
Docker. (Lower is better)

5.7% on average) than Shelter. According to Shelter’s open-
source project, as all security features are leveraged in EL3, we
need to add some context analysis of EL1 into EL3 to bridge
the semantic gap between different exception levels, increasing
the overhead. Additionally, both RContainer and Shelter show
the worst performance on Hackbench, likely due to frequent
process creation and IPC (as mentioned in Section VII-E2).

F. Container Lifecycle Cost

To answer the fifth question (Q5), we used busybox:1.36.1-
glibc image [47] to evaluate the lifecycle cost of RContainer.
Specifically, we measured the execution time of docker
create, docker start, docker pause, docker
unpause, docker kill, and docker rm, testing each
command 10 rounds and taking the average. Fig. 7 shows
the results. Overall, the time overhead for most commands
under RContainer is less than 5%, with the overhead for
docker create being 3.06%, docker start 1.17%,
docker pause 3.62%, docker unpause 0.21%, and
docker rm 2.41%. The docker kill command shows
the highest overhead, approximately 8.5%. This is because,
during the command execution, RContainer needs to clear the
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Fig. 8: Kbuild Overhead for Different Number of Containers.

container-related memory and modify the permissions of the
corresponding pages in GPTs (both shim-GPT and OS-GPT),
leading to increased overhead.

G. Performance of Multiple Containers

Finally, to answer the scalability question (Q6), we demon-
strated how RContainer performs by running kernbench under
different numbers of containers. We ran ten rounds and took
the average values both on native docker and RContainer. Fig.
8 shows the overhead of concurrently running kernel build
(Linux-4.19.309) with allnoconfig on different numbers
of containers. Due to the limitations of our development
board, when the number of concurrent containers exceeds 32,
neither native docker nor RContainer can run normally (out-of-
memory). In general, In RContainer, the overhead on multiple
containers introduced by RContainer is negligible because the
operations of each container are limited to its own regions
(con-shim and Shim-GPT), which are not shared by others. The
case of 8 containers shows the worst performance, considering
the overall results, it may be caused by runtime variation.

Performance issue. Due to the current inability to obtain
a real machine of ARMv9-A, the performance evaluation of
RContainer is mainly simulated on the ARMv8-A machine.
Although we have tried to simulate GPT-related operations
as much as possible, there is still a high probability of
performance deviation from a real ARMv9-A machine in the
future. Nevertheless, we believe the performance evaluation is
informative with our simulation work.

VIII. RELATED WORK

OS-based mechanism. Container technology relies heavily
on Linux Security Features (LSFs) or Linux Security Modules
(LSMs) [48], [49], such as Namespaces, CGroups, Capabili-
ties, and Seccomp. Some researchers have further expanded
these technologies to enhance isolation among containers.
ContainerDrone [50] uses CGroups and a MemGuard kernel
module to protect containers from CPU and memory DoS
attacks. Sun et al [51] present a novel approach to enable LSMs
called security namespace, allowing each container to have its
own security profiles. These methods can enhance the security
of containers but involve a fragile OS as the TCB. Therefore,
they cannot defend against threats from the untrusted OS.

Hypervisor-based mechanism. In order to defend against
an untrusted OS, researchers have deployed virtualization
technology to protect containers [52], [2], [1], [53], [54],
[55], [4], [3]. Inktag [2] splits an application into sensitive
and non-sensitive parts by using two nested page tables in
the virtualization, and enforces memory isolation based on
para-virtualization. Hosseinzadeh et al [55] first uses vTPM to

measure the integrity of the container. X-Container [4] aims to
enhance the security of containers in the cloud. It provides an
entire library OS for each container and uses Xen hypervisor to
achieve isolation. Compared to RContainer, X-Container has
a larger TCB (including Xen hypervisor and library OS) and
requires modifications to containers. BlackBox [3] involves a
container security monitor to provide fine-grained protection.
By extending the virtualization layer on ARM, it creates an
independent memory area for each container. Both RContainer
and Blackbox provide fine-grained container memory isola-
tion, but RContainer uses hardware-based security isolation
and introduces smaller TCB. gVisor runs a userspace kernel
for each container. Compared to these solutions, RContainer
employs the concept of “shim-style isolation” + “miniOS”. It
isolates the data plane not the whole kernel-plane, ensuring a
lightweight solution with a small TCB.

Hardware TEE-based mechanism. Various hardware-
based approaches [56], [7], [30], [57], [58], [59], [60] have
been explored to enhance container security, such as Intel SGX
[61], MPK, ARM TrustZone [6]. SCONE [30] presents Secure
Linux Container with Intel SGX to protect containers from
privileged software. By providing a customized thread and
new C library with SGX enclave, it achieves low-overhead
system call support. CubicleOS [56] provides a specialized
library OS to run inside the container, and isolates applications
by MPK. TZ-Container [7] leverages a container shield in
TrustZone, which interferes with pagetable updates and control
flow, to provide an isolated execution environment for each
container. TrustShadow [8] introduces a tiny system with
TrustZone to support sensitive application operations. Unlike
these approaches, RContainer does not need additional OS
libraries, which makes our TCB as small as possible and does
not limit the system calls that containers can use. SHELTER
[10] uses CCA [14] to provide a userspace isolation for
application security. Unlike SHELTER, RContainer uses a
secure EL1 component, called a mini-OS, instead of EL3 to
undertake most of the security functions. This mini-OS is used
as a security monitor between the container and the untrusted
OS, which can integrate more defense mechanisms (e.g., Iago
and MUMA protection) without expanding EL3 code. So the
isolation achieved by RContainer is as strong as Shelter and the
amount of newly added code running with EL3 privileges is
reduced by one order of magnitude. In addition, Shelter focuses
on isolation in userspace; in contrast, RContainer addresses the
isolation challenges which include not only how to isolate the
containers from each other, but also how to isolate the mini-OS
from the deprivileged OS and how to isolate kernel space.

IX. CONCLUSION

In this paper, we provide RContainer, a new secure con-
tainer architecture on the ARM platform, to protect containers
from untrusted OS and to enforce strong isolation among
containers. RContainer extracts a trusted tiny mini-OS, which
is at the same exception level as the deprivileged OS but
has higher privileges, responsible for interfering with the
interaction between the container and the deprivileged OS.
Furthermore, RContainer introduces a container shim for each
container to achieve strong isolation among containers in
kernel space. We implemented two prototypes of RContainer
and evaluated its security and performance. The results show
that RContainer is effective and efficient.
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APPENDIX

TABLE X: Application Workloads for Comparison.

Name Configuration
Apache Apache server v2.4.58 [38] handling 100 concurrent requests

from remote Apache Bench v2.3 [39], serving 4KB with default
index.html

Nginx Nginx v1.25.3 [44] handling requests from remote ApacheBench
v2.3 [39], serving 4KB with default index.html, 500 requests,
and 100 concurrency

Memcached Memcached v1.6.22 [40] using memtier benchmark v2.0.0 [41]
with default configuration, serving 16Byte

MySQL MySQL v8.2.0 [42] handling requests from sysbench benchmarks
v1.0.2 [43], running workload using otp_read_write with 5
tables, 1,000 counts per-table, 10 threads, and lasting 30 seconds

Netperf Netperf 2.7 [45] testing TCP_STREAM with lasting 60 seconds
Hackbench Hackbench in Linux test project-20240129 [37] with 25 groups,

40 pairs of sender and receiver, and 100 datasize
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TABLE XI: Detailed Case Study∗.

CVE Detail of the Cause, Exploitation, and Defense Simulation D RC
2010-
2959

This vulnerability is due to the Linux CAN subsystem (/net/can/bcm.c) not increasing restrictions when processing nframes about TX SETUP and
RX SETUP, resulting in an integer overflow that allows attackers to gain root privileges and execute arbitrary code. An attacker can leverage this
vulnerability to gain the root privilege and overwrite the kernel’s memory. In our emulation of a deep attack, we deployed a privileged container
with -- privileged=true to access the kernel’s bcd op and other containers’ pagetable pages (PTPs). As expected, it triggered a GPT fault.

No Yes

2010-
4258

This vulnerability is due to Linux passing the user controlled child tidptr directly to p->clear child tid during copy process, resulting in put user
writing 0 to any userspace during do exit. An attacker can leverage this vulnerability to write null pointers to any kernel address through calling
set fs() to set the process upper address as KERNEL DS and leverage DoS attacks. In our emulation of a deep attack, we deployed a privileged
container containing a malicious program that writes a null pointer to a pre-set kernel address. As expected, it triggered a GPT fault.

No Yes

2013-
6441

This vulnerability is due to LXC lxc-sshd template mistakenly opening access permissions in/var/lib/lxc/*/config when mounting /sbin/init, allowing
attackers to obtain root through the init script. Attackers can leverage this vulnerability to gain the root privilege and then execute arbitrary code.
In our emulation of a deep attack, we deployed a privileged container and accessed other containers’ PTPs. As expected, it triggered a GPT fault.

No Yes

2014-
6407

This vulnerability is since when executing the docker pull to pull an image, a malicious image can download arbitrary files to any path on
the host through symlink or hardlink, leading to remote code execution or privilege escalation. Attackers can leverage this vulnerability to extract
malicious files to the host OS and gain the root privilege. In our emulation of a deep attack, we deployed a privileged container and attempted to
execute our code to access the kernel’s PTPs. As expected, it triggered a GPT fault.

No Yes

2014-
9357

This vulnerability is due to Docker allowing the xz binary command to run in root mode to decompress files when image construction, resulting
in malicious images or files being able to obtain root privileges on the host through the xz command. An attacker can leverage this vulnerability
to extract malicious files to the host OS and gain the root privilege. In our emulation of a deep attack, we deployed a privileged container and
attempted to execute our code to access the kernel’s pagetable pages. As expected, this operation triggered a GPT fault.

No Yes

2015-
1335

This vulnerability is due to LXC’s failure to check for potential bad entries when mounting fstree during container startup, resulting in malicious
containers being able to change the mounting target through symbolic links to bypass AppArmor policies and gain higher privileges.An attacker
can leverage this vulnerability to bypass the AppArmor policies and mount the target directory to gain the root privilege. In our emulation of a
deep attack, we deployed privileged container mounted in the /root/bin directory and attempted to execute /bin/bash to access other containers’
pagetable pages. As expected, this operation triggered a GPT fault.

No Yes

2015-
3627

This vulnerability is due to libcontainer and Docker allowing any file descriptor to be passed to the pid-1 process before performing chroot, allowing
malicious images to carry out directory traversal attacks by creating symbolic links, thereby overwriting host files and gaining higher privileges.
An attacker can leverage this vulnerability to overwrite the host files and execute arbitrary code. In our emulation of a deep attack, we deployed a
privileged container within a malicious symlink to /bin/bash and attempted to access the kernel’s PTPs. As expected, it triggered a GPT fault.

No Yes

2015-
3629

This vulnerability is due to improper link parsing by Libcontainer before performing chroot operations during respawning a container, which
allows malicious images to carry out directory traversal attacks and elevate permissions by constructing symlink.s An attacker can leverage
this vulnerability to overwrite the host files and execute arbitrary code. In our emulation of a deep attack, we deployed a privileged container and
attempted to access the kernel’s pagetable pages. As expected, this operation triggered a GPT fault.

No Yes

2015-
3630

This vulnerability is due to Docker allowing containers to write to /proc/asound, /proc/timer stats, /proc/latency stats, and /proc/fs, allowing
malicious containers to modify the system’s global configuration and obtain sensitive information. Attackers can leverage this vulnerability to
change the global configuration and obtain sensitive information. In our emulation of a deep attack, we deployed a privileged container with
permission to write to /proc/* and attempted to access other containers’ image files. As expected, all images are encrypted.

No Yes

2016-
1576

This vulnerability is due to the lack of strict restrictions on setuid and other attributes when mounting overayFS, which allows attackers to mount
an overayFS filesystem on the FUSE and execute arbitrary custom setuid programs.Attackers can leverage this vulnerability to mount an overlayFS
filesystem on FUSE to gain higher privileges. In our emulation of a deep attack, we mounted a overlayFS filesystem with setting setuid as ‘s’(root
permission) and attempted to execute our code to access containers’ PTPs. As expected, it triggered a GPT fault.

No Yes

2016-
1581

This vulnerability is caused by setting the /var/lib/lxd/zfs.img permission attributes to 644 (readable by anyone) during lxd init, and setting the
/var/lib/lxd/containers/<container>. zfs and rootfs to 755, allowing anyone to read the contents of any container through the container’s name.An
attacker can leverage this vulnerability to get the target container’s rootfs and obtain the sensitive messages. In our emulation of a deep attack, we
deployed a container as the target by configuring its rootfs as 755 and then attempted to access the executable files inside the container from the
host OS. As expected, although these files can be accessed, sensitive content cannot be obtained due to encryption.

No Yes

2016-
1582

This vulnerability is due to the fact that when a container switches from non-privileged mode to privileged mode, its directory has a 755 attribute
instead of 700 and is still owned by the container uid/gid, causing host users to traverse the directory to find the root setuid path.An attacker can
leverage this vulnerability to get the target container’s rootfs and obtain the sensitive messages. In our emulation of a deep attack, we deployed a
container as the target by configuring its rootfs as 755 and then attempted to access the executable files inside the container from the host OS. As
expected, although these files can be accessed, sensitive content cannot be obtained due to encryption.

No Yes

2016-
3697

This vulnerability is due to /libcontainer/user/user.go in runc, which processes the --user function by treating the numeric UID as the username,
resulting in privilege escalation by modifying /etc/passwd and constructing a specific user id. Attackers can leverage this vulnerability to gain the
root and execute arbitrary code. In our emulation, we deployed a privileged container with host root id (the same number as in /etc/passed) as the
parameter for --user and attempted to access the kernel’s PTPs with root permission in the container. As expected, it triggered a GPT fault.

No Yes

2016-
5195

This vulnerability arises from a condition race issue within the get user pages() during Copy-on-Write. When executing the write(), there’s a lack
of atomic consistency protection for the sequence involving the follow page mask() and faultin page(), allowing the sequence to be interrupted
by madvise (MADV DONTNEED), resulting in the kernel’s dirty-writeback writing the page-cache page back to a high-privilege file.An attacker
can leverage this vulnerability to gain the host root privilege and execute arbitrary code. In our emulation of a deep attack, we added a user with
privileges by modifying the /etc/passwd, deployed a malicious privileged container with this user information, and then attempted to access the
kernel’s pagetable pages in the container. As expected, this operation triggered a GPT fault.

No Yes

2016-
7117

This vulnerability is due to the fact that when processing the exit path of recvmmsg(), the struct sock pointer may be released anywhere after
calling fput light(). However, when datagrams != 0 &&err != -EAGAIN, the struct sock pointer is used again at sock->sk->sk err=-err, resulting
in a user-after-free and privilege escalation.An attacker can leverage this vulnerability to gain the root privilege and execute arbitrary code. In our
emulation of a deep attack, we deployed a malicious privileged container as an attacker who has already obtained root privileges and attempted to
execute our code to access other containers’ pagetable pages. As expected, this operation triggered a GPT fault.

No Yes

2016-
9962

This vulnerability is due to an improper dumpable state configuration of the runc init process, allowing the pid-1 process of a container to ptrace
additional processes started with runc exec and obtain the file descriptors of these new processes in the container, resulting in container escalation
or runc state modification.An attacker can gain access to host machine files by executing malicious code in the interval between the runc init
function and the execve function. In our emulation of a deep attack, we deployed a malicious container, accessed host machine files by exploiting
relative paths ”../../..” through open file descriptors during the runc init process for gaining root privilege, and attempted to execute our code to
access the kernel’s pagetable pages. As expected, although the container gained the root permission, this operation still triggered a GPT fault.

No Yes

2017-
7308

This vulnerability is due to packet set ring() copying int type req u->req3.tp sizeof priv to unsigned short p1->blk sizeof priv through
init prb bdqc() when calculating block size within the kernel code net/packet/af packet.c, resulting in a hep overflow and out-of-write.An attacker
can leverage this vulnerability to gain higher privileges and execute arbitrary code by using malicious input to manipulate the kernel’s memory.
In our emulation of a deep attack, we deployed a malicious container with allocating the kernel’s circular buffer and packet sock object together
by leveraging the packet sock structure and memory blocks within the ring buffer, overwrited the packet sock->xmit function pointer to execute
commit creds(prepare kernel cred(0)) in container, and then attempted to access the kernel’s PTPs. As expected, it triggered a GPT fault.

No Yes
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2017-
1000112

This vulnerability is due to UFO allowing for the filling of skb larger than MTU, causing the value of maxfraglen-skb->len to become negative
during non-UFP execution, causing skbs to be reallocated and skb prev->len-maxfraglen to exceed MTU, resulting out-of-bounds write during the
skb copy and csum bits() execution.An attacker can leverage this vulnerability by using skb copy and csum bits() to overwrite the skb, resulting
in memory corruption or DoS in the kernel address. In our emulation of a deep attack, we deployed a malicious container, sent a buffer with
the MSG MORE flag set via the UFO path, constructed an ROP chain by transitioning to the non-UFO path to send a buffer of length 1, and
attempted to write into the kernel’s address space. As expected, this operation triggered a GPT fault.

No Yes

2018-
15514

This vulnerability arises from the HandleRequestAsync() function in Docker for Windows, which deserializes incoming requests via the .\pipe
\dockerBackend pipe, introducing potential .NET object deserialization vulnerabilities, resulting in executing arbitrary code on the host OS with
administrative permissions.An attacker can leverage this vulnerability to gain administrator privileges on the host OS and execute arbitrary code.
In our emulation of a deep attack, we created a test user account within the docker-users group, gained administrator privileges by using the
BinaryFormatter class as the formatter, loading malicious code, and deploying it via the TypeConfuseDelegate gadget chain, and finally executed
our malicious code to access other containers’ pagetable pages. As expected, this operation triggered a GPT fault.

No Yes

2018-
15664

This vulnerability is because during the execution of the docker cp command, the docker client does not immediately use the conversion
path, but instead sends it to the get/container/ID/archive interface of the daemon. This gap allows attackers to exploit the execution interval from
FollowSymlinkInScope() to addTarFile() to insert a malicious symlink, thereby gaining access to arbitrary files on the host.An attacker can leverage
this vulnerability to gain root access to arbitrary files on the host or other containers, achieved by substituting the copy path with another symbolic
link between parsing the file during the copy process and executing the copy action. In our emulation of a deep attack, we deployed a container
and initiated a continuous process that swapped the ‘/safe path’ file with a symbolic link to a malicious binary to access the other containers’
pagetable pages. We then continuously executed the docker cp command to simulate the scenario of copying files from the container to the
host machine. As expected, although the content of ‘/safe path’ has been modified, the execution of this binary still triggered a GPT fault.

No Yes

2018-
18955

This vulnerability arises from the mishandling of nested user namespaces in the map write() function when the number of UID or GID is more than
5, resulting in unrestricted kernel to namespace mapping, which allows attackers to gain root privileges by creating a new user namespace using a
non-privileged user.An attacker can leverage this vulnerability to gain unauthorized access by injecting malicious code with incorrect UID values
and gain the root privilege. In our emulation of a deep attack, we deployed a privileged container that has the permission to execute /bin/bash
and attempted to access other containers’ pagetable pages. As expected, this operation triggered a GPT fault.

No Yes

2019-
5736

This vulnerability is due to Docker’s mishandling of file descriptor /proc/self/exec, which allows attackers to overwrite the runc binary by executing
the docker exec command, enabling arbitrary code execution on the host OS. Attackers can leverage this vulnerability to overwrite the /bin/bash
in the host OS, and then execute their code with root privilege. In our emulation of a deep attack, we first deployed a normal container, used
docker run exec to write /bash/bin to the container, and then tried to access the kernel’s PTPs. As expected, it triggered a GPT fault.

No Yes

2019-
10144

This vulnerability arises from the improper isolation of processes within containers executed through the rkt enter command. It allows malicious
processes to have all capabilities when the applications are running within the container, and then to gain unauthorized access to host resources.
Attackers can leverage this vulnerability to gain unauthorized root access to the host system by exploiting the rkt enter to execute a binary. In
our emulation of a deep attack, we deployed a malicious container and used the rkt enter command to execute a malicious binary to access
the kernel’s PTPs within a container with elevated privileges, bypassing the cgroup isolation. As expected, this operation triggered a GPT fault.

No Yes

2019-
14271

This vulnerability stems from docker-tar mistakenly loading the libnss dynamic library from the container’s filesystem instead of the host’s filesystem
when executing the docker cp command. This allows malicious containers to bypass the isolation between the container and the host system by
constructing the libnss files.so libraryAn attacker can leverage this vulnerability to execute arbitrary code with root privileges on the host system
by crafting a Docker container that includes a malicious NSS library. In our emulation of a deep attack, we added a function to the source code of
libnss files.so.2 for accessing other containers’ pagetable page and defined the execution function, the newly compiled libnss files.so.2 was sent
to the container, triggering malicious code. As expected, this operation triggered a GPT fault.

No Yes

2020-
8835

This vulnerability arises from the incorrect calculation of value ranges in the BPF REG STATE register by the BPF verifier during the verification
of the BPF JMP32 instruction, leading to out-of-bounds access.An attacker can leverage this vulnerability to locate the init pid ns struct, obtain
the task struct structure of the target container using find task by pid ns, and ultimately access the memory of any container. In our emulation
of a deep attack, we attempted to modify the pagetable pages based on mm struct pointer in the task struct when the attacker had gained access
to the target container’s task struct. As expected, this operation triggered a GPT fault in RContainer.

No Yes

2020-
14386

This vulnerability is caused by the tpacket rcv function, which converts and assigns unsigned int type tp reserve and unsigned short type netoff
when calling skd network offset to calculate the header offset, resulting in integer overflow Attackers can leverage this vulnerability to control
the netoff variable in tp reserve(), thereby further controlling the macoff variable and achieving out-of-bounds kernel heap write when calling
virtio net hdr from skb to allocate a ring buffer. In our emulation of a deep attack, we deployed a privileged container to write to the kernel’s
memory. As expected, this action triggered a GPT fault.

No Yes

2021-
28972

This vulnerability is due to memory overflow caused by the incorrect handling of the variable ‘\0’ by add slot store and remove slot store in
RPA PCI Hotplug driver when the user writes drc name data from userspace to the kernel, allowing the user to control drc name to overwrite the
kernel stack and heap.An attacker can leverage this vulnerability to write arbitrary data to the kernel stack, and corrupt the kernel memory. In our
emulation of a deep attack, we modified the add slot store() to incorrectly handle drc name, and then deployed a malicious container to construct
a malicious device name to achieve kernel memory corruption. As excepted, this action triggered a GPT fault.

No Yes

2021-
32606

This vulnerability arises from the system’s ability to modify the socket option to CAN ISOTP SF BROADCAST through isotp setsockopt after
socket binding. As a result, it becomes impossible to unregister the CAN receiver, bypassing isotp release and leading to potential UAF (Use-After-
Free) issues when messages are sent to the previous socket by other sockets.An attacker can leverage this vulnerability to overwrite the function
pointer by spraying struct isotp sock, and then achieve arbitrary kernel execution. In our emulation of a deep attack, we deployed a privileged
container that has a root shell, and then tried to execute code to traverse pagetable pages of other containers. As expected, it triggered a GPT fault.

No Yes

2022-
23222

This vulnerability arises from the incomplete inclusion of *OR NULL pointer types by the eBPF verifier when disabling arithmetic addition and
subtraction operations for certain pointer types in adjust ptr min max vals(). This allows attackers to obtain PTR TO MEM OR NULL type
pointers through BPF FUNC ringbuf reserve(), further leaking the kernel address.An attacker can leverage this vulnerability to overwrite stack
pointers with crafted data by utilizing the bpf skb load bytes * series of functions, and further obtain leaked address information. In our emulation
of a deep attack, we deployed a privileged container which has obtained permission to access host filesystem like /sys/fs/bpf, and further accessed
the target process cred using ebpf program. As expected, this operation triggered a GPT fault in RContainer.

No Yes

2024-
21626

This vulnerability is caused by runc not closing the file descriptor of /sys/fs/cgroup on time before calling setcwd(2). This allows malicious
containers to access the host filesystem by setting the working directory to the symbolic link /proc/self/fd/7 during docker run or docker
exec, and further overwrite binary files by tracing back to /bin/bash through relative paths. One possible method of exploiting this attack
involves the utilization of /proc/self/fd/7/../../../bin/bash as a means for the attacker to overwrite binary files, such as /bin/bash, by employing
it as a binary parameter for ”process.args”. This manipulation allows the attacker to execute arbitrary code on the host. In our emulation of a deep
attack, we deployed a privileged container, where we wrote a bash script to attempt to traverse and access the pagetables of other containers. As
expected, this operation triggered a GPT fault in RContainer.

No Yes

∗ RC means RContainer; D means native Docker
∗ Yes means that the CVE can be mitigated by the system; No means that the CVE cannot be mitigated by the system.
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