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Abstract—The bootloader plays an important role during the
boot process, as it connects two crucial components: the firmware
and the operating system. After powering on, the bootloader takes
control from the firmware, prepares the early boot environment,
and then hands control over to the operating system. Modern
computers often use a feature called secure boot to prevent
malicious software from loading at startup. As a key part of the
secure boot chain, the bootloader is responsible for verifying the
operating system, loading its image into memory, and launching
it. Therefore, the bootloader must be designed and implemented
in a secure manner. However, bootloaders have increasingly
provided more features and functionalities for end users. As
the code base grows, bootloaders inevitably expose more attack
surfaces. In recent years, vulnerabilities, particularly memory
safety violations, have been discovered in various bootloaders.
Some of these vulnerabilities can lead to denial of service or even
bypass secure boot protections. Despite the bootloader’s critical
role in the secure boot chain, a comprehensive memory safety
analysis of bootloaders has yet to be conducted.

In this paper, we present the first comprehensive and system-
atic memory safety analysis of bootloaders, based on a survey
of previous bootloader vulnerabilities. We examine the potential
attack surfaces of various bootloaders and how these surfaces
lead to vulnerabilities. We observe that malicious input from
peripherals such as storage devices and networks is a primary
method attackers use to exploit bootloader vulnerabilities. To
assist bootloader developers in detecting vulnerabilities at scale,
we designed and implemented a bootloader fuzzing framework
based on our analysis. In our experiments, we discovered 39
vulnerabilities in nine bootloaders, of which 38 are new vulnera-
bilities. In particular, 14 vulnerabilities were found in the widely
used Linux standard bootloader GRUB, some of which can even
lead to secure boot bypass if properly exploited. So far, five CVEs
have been assigned to our findings.

I. INTRODUCTION

A bootloader is a program executed during the early stage
of system booting. Its purpose is to initialize a preparatory
environment for loading the operating system (OS) from a
storage device into memory. After powering on a computer, the
firmware is loaded first and performs the necessary power-on-
self-test tasks. Once the firmware completes its tasks, it hands
control to the next component—the bootloader. The bootloader

then continues setting up the remaining environment, including
the CPU, memory, and peripheral devices, for the next com-
ponent, usually the OS. As such, the bootloader is a crucial
element in the booting process given that it enables a bridge
between the firmware and the OS.

Modern computers commonly adopt a security mechanism
called secure boot [29] to prevent malicious or modified
software from being loaded. This mechanism functions as
a chain of trust: each component checks and verifies the
next component to ensure it is signed by a valid digital
signature. If a component fails this check, the next layer is
not loaded. During the booting process, the bootloader is
responsible for examining and validating the OS. A malicious
or tampered OS can break this security guarantee and make
the system vulnerable, hence secure boot plays a central role
when building trustworthy systems.

Due to the critical nature of the bootloader, it must be
designed and implemented securely. However, bootloaders are
gradually providing more features and functionalities for end
users. For instance, the Linux default bootloader GRUB [22]
supports more than 20 types of file systems. Additionally, it
allows users to customize the background image, font, and
keyboard layout, as well as download files from HTTP or
TFTP servers. Other bootloaders, such as Das U-Boot [16]
and barebox [5], face the same situation. The larger the code
base becomes, the more vulnerable it gets.

In recent years, memory corruption vulnerabilities have
been found in various bootloaders. Some of these vulnerabil-
ities can lead to denial of service or even bypass secure boot.
Roee [25] discovered a variety of vulnerabilities in Android
device bootloaders. Due to the limited physical access to
mobile devices, communication with the device is confined to
fast boot commands [1]. However, the command line parsing
logic has caused more than ten vulnerabilities in Android
bootloaders. While physically accessing a Personal Computer
(PC), such as plugging in an extra USB stick, is easier than
accessing mobile devices, PC bootloaders face more attack
surfaces. Researchers recently reported secure boot bypass
vulnerabilities in bootloaders affecting hundreds of consumer
and enterprise-grade x86 and ARM models from various ven-
dors, including Intel, Acer, and Lenovo [15]. The vulnerability
originates from an image-parsing library, giving the attacker
full control over the system. Similarly researchers reported
an HTTP implementation vulnerability [54] in shim [44]: an
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attacker can exploit an out-of-bound memory write to compro-
mise the entire system. Other bootloader vulnerabilities, such
as BootHole [18], CVE-2022-30790, CVE-2022-30552, and
CVE-2023-20064, continue to threaten system security.

Although bootloaders for desktop and server computers
play a security-sensitive role, a comprehensive and systematic
memory safety analysis of them is still missing. Existing
studies either do not address such bootloaders or only focus
on a single attack vector. For example, BootStomp [46]
and Roee [25] have only analyzed bootloaders for mobile
devices, with a specific focus: BootStomp analyzed storage
data controlled by the attacker that could compromise the
bootloader, while Roee focused exclusively on command line
inputs. Although bootloaders for desktop and server com-
puters expose more attack surfaces compared to bootloaders
for mobile devices, they have been less scrutinized so far.
Axtens [13] and Starke [39] have proposed fuzzing techniques
for GRUB [22] and Das U-Boot [16]. However, their analysis
was limited to command-line parsing logic. The attack surfaces
of bootloaders go far beyond command-line parsing.

In this paper, we perform the first comprehensive and
systematic memory safety analysis of bootloaders and focus
on the various attack surfaces that an attacker can exploit to
compromise them. We start with a survey of previous boot-
loader vulnerabilities, which shows that attacks can primarily
originate from peripheral inputs. Without the support of a
rich OS environment, bootloaders must implement their own
standalone infrastructures, including drivers, task schedulers,
timers, network protocol stacks, and more. For example,
the bootloader must perform storage device reads, partition
detection, file system parsing, file handler management, and
file parsing to support file parsing. Our analysis identified
three types of peripheral inputs with the most attack surfaces:
storage, network, and console.

Storage. To allow users to boot from different storage
devices and file systems and to support other custom features,
bootloaders implement a whole stack of file operations, includ-
ing block device drivers, file system operations, and different
types of file parsers. The implementation logic at each level is
complex and error-prone. An attacker can easily compromise
the bootloader by inserting a malicious storage device, such
as a USB flash drive.

Network. To support booting over the network, such as
PXE boot, bootloaders implement a complete network opera-
tions stack, including network controller drivers, the TCP/IP
protocol, and application layer protocols. Some bootloaders
even allow users to test the network status by sending ICMP
packets. An attacker can hijack and manipulate network traffic
or corrupt the server to send malicious packets to the boot-
loader. These network packets are processed by each layer of
the network protocol stack, again increasing the attack surface.

Console. Some bootloaders provide users with an interactive
interface, such as a command line console. An attacker who
has physical access to the bootloader can exploit console
parsing vulnerabilities by entering malicious command line
strings into the console.

In addition to these three main types of peripherals, boot-
loaders also support other peripherals, including LED lights,
power adapters, and video controllers. However, these periph-
erals usually do not have complex high-level parsing logic and
provide less attacker-controllable data compared to the three
main types discussed above.

To address the security challenges of bootloaders identi-
fied in our analysis, we developed an automated approach
to test them for potential vulnerabilities. More specifically,
we develop a fuzzing framework for bootloaders, building
on the proven effectiveness of fuzzing in detecting memory
corruption vulnerabilities. Unfortunately, no existing solutions
can be directly applied to bootloader fuzzing and we found
that two main challenges need to be solved:

1) Bootloaders run in a bare metal environment, which
means that simple fuzzing frameworks like AFL [37]
libFuzzer [34] cannot be directly deployed. Moreover,
existing sanitizers cannot be used due to compatibility
issues. Previous work [39] which compiles the bootloader
into a native application indicates that crashes cannot be
reproduced in the real bootloader because of environmen-
tal inconsistencies. Therefore, it is necessary to fuzz the
bootloader in a real environment.

2) In contrast to common user applications, bootloaders
offer numerous attack surfaces. Fuzzing some of these
interfaces requires dual operations. For example, when
fuzzing a file system, file operations are required to
trigger the parsing of the file system, while the fuzz input
must be fed by intercepting the storage device data access.

To address these challenges, we simulate a virtual machine
(VM) running in a hypervisor to create a real environment
for the bootloader. Using a consistent operating environment
helps to reduce false positives. We assume that the bootloader
source code is available. Based on this, we designed a custom
heap sanitizer specifically targeting bootloaders to detect heap
overflow vulnerabilities. In addition, the observation that the
malicious input origins are limited allows us to identify the
universal interfaces and operations to intercept peripheral
access and trigger device data processing. With the help of
the simulated environment, the customized heap sanitizer, and
the test harnesses, we can effectively fuzz the most important
attack surfaces of bootloaders.

In an empirical investigation, we analyzed nine bootloaders,
including the Linux standard bootloader GRUB and two well-
known bootloaders for embedded systems (Das U-Boot and
barebox). We spent three weeks fuzzing each bootloader and
discovered 38 new vulnerabilities. Of these, 29 were confirmed
or patched by the developers, and 5 CVEs were assigned.

Contributions We make the following two key contributions:

• We perform a comprehensive analysis of bootloaders,
with a focus on memory safety violations. We find that
three types of peripheral inputs (storage, network, and
console) are the main attack surfaces that an attacker can
exploit to compromise the bootloader.
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• To detect bootloader vulnerabilities on a larger scale,
we developed and implemented a bootloader fuzzing
framework. Using this framework, we analyzed nine
bootloaders and found 38 novel vulnerabilities, 29 of
which were confirmed or patched by the developers. To
foster research in this area, we open-source our frame-
work prototype at https://github.com/wjqsec/bootloader.

II. BACKGROUND

In this section, we first introduce the two main types of
firmware from which the bootloader is started. We then explain
how the bootloader takes control of the system and also
discuss the typical workflow of a bootloader and the runtime
environment in which it operates, covering CPU state, memory
layout, library support, and peripheral access. Although we use
the Intel x86/x64 architecture as an example, the concepts for
the workflow and runtime environment apply similarly to other
architectures. Additionally, we describe the common features
provided by the bootloader, which either enable a user-defined
interface or assist in booting the OS.

A. Firmware

There are two main types of firmware implementations:
BIOS (Basic Input/Output System) and UEFI (Unified Exten-
sible Firmware Interface). Both perform similar tasks during
the initial boot phase: when the system is switched on,
the firmware flashed onto the board by the manufacturer is
executed by the processor. This firmware initializes and tests
the system hardware, a process known as power-on self-
test (POST), which includes components such as the CPU,
DRAM, motherboard, and GPU. The firmware then loads
the bootloader, usually from a storage device, which further
initializes the OS. The firmware adheres to either the BIOS or
UEFI standard to load and communicate with the bootloader.
We elaborate on the differences between these two types of
firmware.

BIOS. As a legacy boot design, BIOS offers a straightfor-
ward method for loading the bootloader. It enumerates the
storage devices and checks if the first sector matches the
signature 0x55AA [35]. If the firmware recognizes the first
sector as a boot sector, it reads the sector into memory at a
fixed address (0x7C00 on an IBM PC-compatible computer)
and then jumps to this address. The boot sector, also known as
the Master Boot Record (MBR), contains only the first stage
of the bootloader. The size of the MBR (512 bytes) is too
small for a bootloader to perform all its functions, so the
first stage bootloader loads additional sectors from the storage
device and continues execution from there. The BIOS provides
utilities for the bootloader, such as access to the hard disk via
interrupts [43]. Once the bootloader has initialized the OS,
the OS overwrites the interrupt table, and the firmware ends
its life cycle.

UEFI. UEFI is the successor to BIOS and overcomes sev-
eral of its limitations. For example, it supports GPT partition
tables, which enables the use of large storage devices. While
the BIOS firmware looks for the MBR, the UEFI firmware
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Fig. 1: Schematic overview of bootloader workflow

can recognize the partitions of storage devices and understand
the FAT file system. UEFI identifies the boot partition via
a specific GPT partition GUID [56] and tries to analyze the
partition as a FAT file system. When successful, it searches
for the boot application file [41] and loads it into memory. In
this scenario, the bootloader appears as a UEFI application.
While the bootloader is running, the firmware uses the EFI
System Table [55] (a set of function pointers) to provide boot
services [57], such as reading files and allocating memory.
After initialization of the OS, the firmware remains in memory
and provides the OS runtime services [58].

For the rest of the paper, we will refer to bootloaders
loaded and launched by BIOS firmware as “BIOS bootloaders”
and those loaded and launched by UEFI firmware as “UEFI
bootloaders”.

B. Bootloader Workflow

The bootloader typically consists of several runtime steps
to achieve its final goal—booting the OS. Although the
implementation may vary across different bootloaders, we
can generalize the workflow into the following five stages as
shown in Figure 1: 1) The MBR sets up a simple execution
environment, such as the stack and BSS segment, and then
loads the next stage data from the storage device into memory.
2) The temporary loader parses the storage device partitions to
find the bootloader image file. If the file exists, the bootloader
loads the image into memory and begins execution from there.
3) The UEFI firmware takes over the tasks of the first two
stages. Therefore, the UEFI bootloader has the same workflow
as the BIOS bootloader from the third stage onwards. In this
stage, the bootloader image has been loaded into the memory
and the bootloader initializes the entire execution environment.
Global data structures, necessary peripheral devices, and con-
figuration files are initialized in this phase. 4) In the fourth
stage, the bootloader provides the user with an interactive
shell, if available. The user can perform peripheral access
tasks such as reading files, sending network packets, and
changing OS parameters. In particular, the UEFI bootloader
can dynamically load drivers at this stage based on user
requests. These drivers can introduce additional features and
functions, e.g., support for additional file systems and different
types of file parsers. 5) In the final stage, the bootloader loads
the OS image into memory and prepares the configuration
parameters according to the user’s modifications. Finally, the
bootloader hands over control to the OS, thus concluding its
life cycle.
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C. Runtime Environment

Unlike the OS, the bootloader operates in a bare metal
environment after the firmware hands over system control.
Specifically, the bootloader runtime environment has the fol-
lowing characteristics:

CPU & Memory. The BIOS bootloader starts in real
mode [26]. It initializes a simple flat segmentation scheme and
keeps paging disabled throughout its life cycle [22, 32, 16].
Without paging support, the bootloader can access almost any
memory without crashing. In contrast, the UEFI firmware
provides the bootloader with a more complete environment.
Once the UEFI application is loaded by the firmware, paging
and segmentation are properly initialized. Consequently, any
invalid memory access directly leads to a CPU exception.

Library Support. In typical applications, several helper
functionalities such as the standard library [23], the operating
system, and drivers facilitate a simple Hello World printing
function. However, for a bootloader, achieving the same func-
tionality is more challenging: without support from libraries
and the OS, the bootloader must implement its own task
scheduling, file system, file parser, and utility functions such
as memory copying and string comparison. For instance, a file-
read operation requires the bootloader to implement the entire
stack of functions, including file path parsing, file handler
management, file system, block device access, and specific
storage device drivers. Although UEFI firmware provides a
richer environment, including FAT file system access and heap
memory management, making development easier, it is still
insufficient to implement the complex features described in
the following section. Due to the limited environment support,
the bootloader is designed and implemented as a self-contained
standalone application.

Peripheral Access. While the bootloader has limited library
support, it has high privileges to access peripherals. The Intel
x86/x64 architecture does not allow user space applications
to access IO ports. However, the bootloader runs entirely in
kernel space, granting it full access to all peripherals.

D. Bootloader Features

The main goal of the bootloader is to facilitate the booting
of the OS. While a simple bootloader may directly load the OS
image into memory and transfer control to it, modern boot-
loaders offer richer features and functionalities beyond basic
initialization. We summarize the end user features provided by
bootloaders into the following five categories:

UI Component Customization. The bootloader may pro-
vide end users with an interactive command line or a graphical
user interface. In both cases, the bootloader allows the user
to customize components such as background images, fonts,
icons, language, and other UI elements. To use a customized
UI component, the user usually has to place the file in a spe-
cific location specified by the bootloader. During initialization,
the bootloader automatically detects the components specified
by the user and displays them, improving the user interface.

Device Manipulation. The bootloader provides utilities
that allow the user to access peripheral devices, providing

important tools for performing early hardware and network
tests. For example, these utilities allow the user to access the
network card and send ICMP ping packets to test Internet
connectivity or read files to check the functionality of the hard
disk.

Authentication. For security reasons, certain bootloaders
may require identity authentication to access certain important
configuration options. When a user attempts to access sensitive
functions, the bootloader prompts the user to enter a password
or provide an access token for authentication.

Boot Environment Preparation. Before starting the OS
booting process, the bootloader prepares the booting environ-
ment. It needs to allocate suitable memory for the OS image,
prepare the kernel parameters, verify the image integrity, and
perform other necessary tasks. The behavior can be adjusted
according to the user’s requests, such as by adding additional
parameters to the kernel.

Boot Selection. Modern bootloaders support several boot
methods, allowing the OS image to be obtained from different
sources, such as remote servers or local storage devices.
Bootloaders that implement the multiboot protocol [40] allow
booting into different operating systems. Users have the option
to select a location or an image file from which to start the
boot process.

III. BOOTLOADER MEMORY SAFETY ANALYSIS

In this section, we perform a comprehensive memory safety
analysis of bootloaders. We start with a survey of previous
bootloader vulnerabilities to understand the historical con-
text and patterns of exploitation. By analyzing these past
vulnerabilities, we identify the main attack surfaces that an
attacker can leverage to compromise a bootloader. Based on
these insights, we define the threat model for bootloaders.
Afterward, we present the nine bootloader targets selected
for our analysis, along with the criteria used to choose them.
Finally, we perform a concrete analysis of the attack surface
of these nine bootloaders and use our observations to assess
their security situation.

A. Survey and Lessons Learned

We exhaustively searched for all available bootloader vul-
nerabilities from the CVE database and manually inspected
their root causes. As shown in Figure 2, we categorize the 85
collected vulnerabilities based on the attacker’s capabilities
into three categories: physical access, remote access, and
context-dependent. With physical access, an attacker can mod-
ify local storage data, plug in extra devices such as LED lights
and USB sticks, input commands, etc. Remote access allows
an attacker to send the bootloader network packets, Bluetooth
messages, radio signals, etc. Context-dependent vulnerabilities
exist without specific access dependencies but still pose a
risk under certain conditions. Our analysis reveals that, with
physical or remote access to the bootloader, malicious inputs
primarily originate from three sources: storage, network, and
console, represented in Figure 2 in dark green, pink, and
yellow, respectively. For example, vulnerabilities related to
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Fig. 2: Number and root causes of collected CVEs

TABLE I: Number and distribution of collected CVEs

Storage Network Console Others Total

GRUB 18 2 10 3 33
barebox 0 3 0 2 5
shim 8 3 0 2 13
Das U-Boot 15 16 2 1 34

41 (48%) 24 (28%) 12 (14%) 8 (9%) 85

the file system and file parser are linked to storage, while
IP packet issues are associated with the network. As shown
in Table I, of the 85 CVEs from four bootloaders, 48% are
attributed to storage issues, 28% to network issues, and 14%
to console issues. Only 9% result from other factors such as
heap allocator bugs and side-channel timing attacks.

B. Threat Model

We assume that the attacker’s goal is to compromise the sys-
tem by exploiting memory corruption vulnerabilities, such as
buffer overflows or null-pointer dereference, in the bootloader
to cause it to crash or even bypass the secure boot process.
Specifically, we outline the following heuristics regarding what
attackers can and cannot utilize to achieve their goals.

Firmware. We always assume that the firmware flashed
on the board cannot be directly modified by the attacker.
Depending on the firmware implementation, modifying, re-
placing, or updating the firmware image typically requires it
to be signed with an authorized key. If the firmware image
is not properly signed, it will be immediately rejected. Given
that an attacker cannot forge a valid key, it is reasonable to
assume that the firmware remains intact. Furthermore, since
the firmware executes before the bootloader, an attacker who
could modify the firmware would be able to corrupt the system
without needing to exploit bootloader vulnerabilities. With this
assumption, the integrity of the bootloader can also be verified
and guaranteed, ensuring that the bootloader image cannot be
modified by the attacker.

CPU & Memory Access. We assume that the attacker
cannot directly modify the CPU state and memory, including
CPU register values, cache, and memory data. A bootloader

running inside a virtual machine that can be introspected
by a hypervisor might be susceptible to such an attack.
However, Trusted Execution Environments (TEEs) such as
Intel SGX [27], Intel TDX [28], and ARM TrustZone [2]
address this vulnerability. Finding vulnerabilities in TEE soft-
ware [10] [68] [60] is beyond the scope of this paper.

Persistent Storage Access. We assume that the attacker
cannot directly read or write to persistent storage, such as
NVRAM variables and the UEFI signature database, as these
are typically writable only by the manufacturers. Although
some attacks [51] can manipulate NVRAM variables from the
OS, we exclude them from our threat model. However, if the
bootloader implements an NVRAM [62] variable access func-
tion that can be exploited through malicious control hijacking,
we consider this a valid attack.

Peripheral Access. We assume that the attacker has limited
peripheral access to the system. An attacker can plug in extra
devices, such as a USB stick or hard drive, and can modify any
files on existing storage devices, except for the bootloader and
OS images, as we assume that their integrity has been verified
during the secure boot chain. However, if a memory corruption
vulnerability leads to the modification of the verification key
and subsequently allows the loading of a malicious image,
we consider this a valid attack. We assume that an attacker
can provide any input via the bootloader peripheral access,
such as malicious network packets to the network card or
keyboard input string to the console. However, the attacker
cannot signal an interrupt on behalf of the device, as this is
relatively difficult to manipulate. In addition, we assume that
the full disk encryption mechanism is not deployed. If it is
used, the bootloader is usually a proprietary and close-source
software to prevent physical attack. Since the decryption key
is not publicly available, we consider this situation outside the
scope of this paper.

C. Target Selection

In this paper, we analyze nine bootloaders selected from
a list of available bootloaders [63]. Our choice of targets is
based on the following criteria:

Availability. Since proprietary bootloaders can be chal-
lenging to access and deploy, we exclusively select open-
source bootloaders for our analysis. Bootloaders bundled with
operating systems, those lacking available source code, or
proprietary software are excluded from our targets.

Maintenance. We select only those bootloaders that have
been actively maintained over the past two years. Legacy
bootloaders, while still used by some users, are excluded
from our target selection due to potential compatibility issues
with modern machines and peripherals, as well as their lack
of updated security checks and patches. Therefore, we focus
solely on actively maintained bootloaders for our analysis.

Version. We select the latest version of each bootloader if
multiple versions exist (e.g., GRUB [22] has several versions,
but we specifically choose GRUB2 as our analysis target).

Based on these criteria, we collected nine bootloaders as
shown in Table II. These include widely used bootloaders
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TABLE II: Detailed overview of the nine bootloaders selected for assessment. The image size refers to the compiled bootloader’s
binary size, note that certain bootloaders may contain dynamic modules, which are excluded from the size. We only list the
operating systems explicitly claimed by the bootloader, though they might be compatible with other operating systems. CI
indicates whether the bootloader offers an interactive command line string input interface for end users. We only list the
features that are supported at the time of paper writing, developers might add more features after that.

Version # of
Source Files Image Size Supported Targets Firmware CI Last Update

GRUB [22] v2.02-beta2 5411 297KB Linux, GNU/Hurd, macOS, BSD
Solaris/illumos (x86 port), Windows BIOS,UEFI ✓ 2024.05

Limine [32] v7.x 442 105KB Linux BIOS - 2024.05

Das U-Boot [16] v2024.04-rc3 11048 1.0MB Linux, NetBSD, VxWorks, QNX
RTEMS, INTEGRITY BIOS ✓ 2024.05

barebox [5] v2024.01 4878 681KB RTOSes UEFI ✓ 2024.05

CloverBootloader [11] v2-5158 9048 1.6MB macOS UEFI - 2024.05

Easyboot [9] v1.0.0 47 69KB Linux, Windows, OpenBSD, FreeBSD, FreeDOS
ReactOS, MenuetOS, KolibriOS, SerenityOS, Haiku UEFI - 2024.04

rEFInd [47] v0.14.3 173 306KB Linux, Windows, macOS, TrueOS UEFI - 2024.04

systemd-boot [53] v256 92 213KB Linux UEFI - 2024.04

shim [44] v15.8 546 936KB GRUB UEFI - 2024.05

such as GRUB, Das U-Boot, and systemd-boot. They support
mainstream operating systems: Windows, Linux, and macOS,
and cover both BIOS and UEFI environments. All selected
bootloaders have been updated regularly up to the time of
writing this paper. We are confident that our selection is
representative for analyzing the memory safety of bootloaders.

D. Attack Surface Analysis in Practice

In this section, we conduct a detailed memory safety anal-
ysis of the three attack surfaces storage, network, and console
identified earlier for our nine selected targets. Although other
peripherals can also contribute to vulnerabilities, they do not
involve the complex processing logic found in these primary
three attack vectors. Thus, we summarize them as “others”
which will be further discussed in Section VI and focus on
the main three attack surfaces.

1) Storage: As shown in Table III, storage device data fol-
lows a layered design. A storage device is divided into several
partitions, each of which can be formatted with different file
systems. The file system organizes and places various types
of files in directories appropriately.

Partition. The bootloader processes local storage data by
first identifying the partitions. The partition table contains
metadata that allows the bootloader to identify information
about each partition. MS-DOS and GPT are two widely used
partition schemes, both supported by four different bootloaders
in our targets. Some bootloaders depend on the UEFI firmware
to recognize partitions and operate directly on the partition.
As a result, some bootloaders do not support any partitions
themselves but allow file systems to be deployed. Among the
nine targets, GRUB supports the largest number of partition
types. If there is a vulnerability in the partition table processing
logic, the bootloader could be compromised. For instance,
CVE-2019-13103, targeting Das U-Boot, is an attack where
a crafted self-referential MS-DOS partition table can cause
infinite recursion, leading to an infinitely growing stack.

File System. After identifying the partitions, the bootloader
attempts to mount file systems on them. The file system
contains metadata, such as the superblock, inode tables, and
directory tables, to organize the files. Only after successfully
mounting a file system on a partition are subsequent file oper-
ations, such as opening, reading, and writing files, allowed.
The bootloader’s primary goal is to locate and launch the
OS image file, so supporting various file systems is essential.
Among the nine bootloaders, GRUB supports more than 20
types of file systems, the highest number. File systems are
complex and involve intricate processing logic, making their
implementation prone to bugs [64]. For instance, CVE-2023-
4692 targets GRUB’s NTFS driver and demonstrates an attack
where a specially crafted NTFS file system image that contains
a fragmented master file table can lead to a heap overflow.

Files. Like any other application, the bootloaders also need
to handle various types of files. These can be summarized into
the following three categories:

a) Multimedia: To provide users with tailored interfaces,
bootloaders allow customization of the user interface, includ-
ing fonts, background images, and even themes. As shown
in Table III, common image types supported by bootloaders
include PNG, JPEG, and BMP.

b) Environment Related Flies: A typical environment-
related file is the configuration file. This file can specify the
path of the OS image, extra command line parameters passed
to the kernel, the boot protocol, and more. Bootloaders that
provide an interactive interface may treat the configuration file
as a script and automatically execute it when the bootloader
starts. For instance, GRUB allows users to define variables
and execute GRUB shell commands within the configuration
file. Another environment-related file is the flat device tree
(FDT), which details the peripheral information. Users can
customize this file to change the bootloader’s behavior to suit
their preferences and requirements.
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TABLE III: Bootloader attack surface analysis for storage device input

File
config, jpeg, png

tga, font, mo
envblock, keymap

config, png, bmp
gif, psd, pic

jpeg, pnm, hdr
tga

fdt, slre base64, srec, fdt
bmp, png, qoi

base64, svg, png
icns, bmp, png config png, jpeg, bmp

icns bcd, config csv

File
system

zfs, affs, bfs
btrfs, cbfs, cpiofs
fatfs, ext2fs, f2fs

hfs, hfsplus, iso9660
jfs, minixfs, nilfs
ntfs, reiserfs, sfs

squashfs, udffs, ufs
xfs

fatfs, iso9660

btrfs, cbfs, cramfs
erofs, ext4fs, fatfs
reiserfs, squashfs
ubifs, yaffs2, zfs

jffs2

cramfs, ext4fs, fatfs
jffs2, squashfs, ubifs

bpkfs, nfs
hfs, iso9660, ext2fs
ext4fs, reiserfs, fatfs

afs, befs, exfatfs
ext234fs, minix3fs

ntfs, ufs, xfs
fatfs, fszfs

btrfs, ext2fs, ext4fs
hfs, iso9660, reiserfs

ntfs
- -

Partition

Linux/ADFS, amiga
disklabel64

macintosh, GPT
MS-DOS, SUN

SUN PC, BSDlabel

GPT, MS-DOS amiga, GPT
MS-DOS, macintosh GPT, MS-DOS - - - - -

GRUB Limine Das U-Boot barebox CloverBootloader Easyboot rEFInd systemd-boot shim

c) Other Files: We summarize other types of files in
this category. They are occasionally used by some specific
bootloaders. For instance, shim uses CSV format to parse the
executable SBAT section data.

Parsers for various file formats are frequent points of attack
in bootloaders. For instance, CVE-2022-2601 demonstrates
that a crafted, malicious font file with an attacker-controlled
size value can cause a heap overflow, ultimately circumventing
the secure boot mechanism.

2) Network: To support remote booting, such as PXE
network boot and other network-related features, bootloaders
might implement their own network protocol stack. As shown
in Table IV, among the nine targets, GRUB, Das U-Boot, and
barebox support a full-stack network protocol. Bootloaders
like Limine and shim rely on the firmware to provide basic
network protocol implementation. Limine and shim utilize
the firmware’s TFTP and HTTP, respectively, to download
images into local memory. Each layer of the network stack
could be a potentially vulnerable point. For instance, CVE-
2023-40547 represents a heap overflow vulnerability in shim’s
HTTP protocol implementation (application layer). A crafted
HTTP response containing a small value in the length field
leads to a small memory allocation, and the buffer is further
overwritten by the HTTP response content. Similarly, CVE-
2022-30552 demonstrates an attack in the network layer where
a specific range of values in the IP length field can result in
a buffer overflow.

3) Console: Bootloaders that provide an interactive inter-
face accept user input. Among the nine analyzed bootloaders,
GRUB, Das U-Boot, and barebox implement this functionality.
Note that some bootloaders provide the user with a selection
list to choose which OS to boot—we do not count it as an
interactive interface. User input can trigger various functions
in the bootloader, such as reading a file or sending network
packets. The bootloader typically accepts user input as a string
and parses it into several options. This process can lead to
vulnerabilities depending on the parsing implementation and
the functionalities involved. For instance, CVE-2020-27749
demonstrates such an attack: An attacker can invoke the i2c
command with a negative length value such as 0xffffffff (-1
when parsed as a 32-bit signed integer). This value is treated
as a signed integer, bypassing the security check. However, it
is later used as an unsigned integer, leading to a stack overflow.

Virtual Machine

Peripheral Data Access

File Operations Network Operations Console Input

Hypervisor

Bootloader

Intel-PT

Trace 

Decode
Fuzzing Engine

Coverage

Guide

Fuzz Input

Fig. 3: Bootloader fuzzing overview

IV. BOOTLOADER FUZZING DESIGN

Our bootloader memory safety analysis revealed a wide
variety of potential vulnerabilities. Based on these insights,
we now present the design and implementation of a fuzzing
framework to help developers detect new vulnerabilities at
scale. Figure 3 shows a high-level overview of the design.
Since the bootloader needs a real runtime environment, we
simulate a virtual machine where the bootloader runs and
guide the fuzzing via coverage feedback collected from Intel-
PT. Our attack surface analysis informs the bootloader harness
implementation. By identifying the primary attack surfaces
where malicious input can be fed to the bootloader, we
pinpoint the universal operations that trigger device access and
the interfaces through which input is fed to the bootloader.
We intercept peripheral access for three types of devices:
storage, network, and console. When the bootloader operates
and receives data from the device, our fuzz input is fed into
it. Additionally, we trigger different operations to prompt the
bootloader to read data from these devices and process it. In
the following, we elaborate on each component.

A. Harness

Since we focus exclusively on open-source bootloaders, we
implement the harness directly within the source code, which
we must have access to.

1) Operations: We perform various operations to trigger
peripheral access. The operations occur immediately after
the bootloader initializes its execution environment, which
typically happens in the main() function of each bootloader.
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TABLE IV: Bootloader attack surface analysis for network device input. The first column represents the OSI model layers.
Protocol wrapper means that the bootloader does not implement the whole protocol but processes the protocol payload data
directly.

Application HTTP, DNS
TFTP TFTP wrapper HTTP, TFTP, NFS

DNS, DHCP, SNTP
DHCP, DNS, NFS

SNTP - - - - HTTP wrapper

Transport TCP, UDP - TCP, UDP UDP - - - - -

Network IP, ICMP
ICMP64 - IP, ICMP

ICMP64, NDP IP, ICMP - - - - -

Data link ETH, ARP - ETH, ARP
CDP, RARP ETH, ARP - - - - -

GRUB Limine Das U-Boot barebox CloverBootloader Easyboot rEFInd systemd-boot shim

Our operations target all attack surfaces, summarized in the
following categories:

• To trigger storage data processing, we perform the fol-
lowing sequence of operations: 1) Discover new storage
devices. 2) Mount all supported file systems on the
partitions. 3) Open the root directory of the successfully
mounted partition. 4) Enumerate the files and directories
in the root directory. 5) Read and write a fixed length
of data in the files. 6) Close the opened files. 7) Delete
the files. 8) Unmount the file system. Note that some
bootloaders do not support writing operations, so we skip
those in such cases.

• Fuzzing different file parsers by feeding input from the
storage device generates large amounts of redundant data,
which is inefficient and unnecessary. Therefore, to test
file parsers, we directly invoke the target function in
our harness with the fuzz input as the argument. We
identify the parsing functions by searching through the
source code. Typically, these functions are located in
the lib directory. For instance, CloverBootloader uses the
function egDecodeBMP to parse BMP images. We call
this function directly in our harness, place the fuzz input
in memory, and pass its pointer to the function.

• To trigger network data processing, we perform the
following operations: 1) Discover network interfaces.
2) Assign static IP address, network mask, gateway ad-
dress, and remote server address to the available interface.
3) Send TFTP, HTTP, ICMP, and other supported network
packets to the remote server. 4) Receive and trigger the
callback functions for network packets. Note that for
some protocols such as TCP and IP, they usually make
up part of the network packet. When an application layer
packet is sent, they are automatically assembled and sent
together.

• To trigger console data processing, we locate the console
processing function for the bootloader. This function typ-
ically exists in an infinite loop within the main function
and usually accepts a string as a parameter. We directly
call this function with our fuzz input as the parameter. For
instance, Das U-Boot accepts and processes user input via
function run command repeatable.

With these operations, we are able to trigger input data
processing across all three attack surfaces.

2) Peripheral Data Access Hook: When the bootloader
reads from or writes to the peripheral, our fuzz input needs
to be fed instead of directly interacting with the simulated
devices. For storage data and network packets, the fuzz input
cannot be directly injected into a single function since mul-
tiple functions are involved in the processing logic. We have
observed that bootloaders commonly follow a layered design.
This layered design ensures that all data read from or written
to the devices passes through a single interface. We hook into
the block device and network interface access layers so that
when the bootloader tries to read from or write to the device,
our fuzz input replaces the original data.

A flag is used to control the feeding of the fuzz input.
When the flag is true, the fuzz input is fed; otherwise, the
original data is used, allowing the bootloader to initialize its
environment successfully. Once the fuzz input is exhausted,
we return an error code to the caller function to indicate
the end of the input, depending on the specific bootloader
implementation. Additionally, when the bootloader writes to
the device, we redirect the data to our fuzz input buffer. This
keeps the data read from the fuzz input buffer always updated.
Note that some bootloaders, such as Limine and shim, do
not support full-stack network protocols, thus the universal
interface does not exist. In these cases, we feed the fuzz
input by hooking the functions that the bootloaders use to
communicate with the firmware.

B. Fuzzing Engine
We implement our fuzzing framework based on kAFL [50,

48], which supports snapshot, fuzzing process control, and
various mutation strategies. kAFL is a hypervisor-based,
coverage-guided fuzzing tool designed for Intel x86 programs.
It can be used to fuzz different OS kernels and user-space
applications. Since kAFL relies on two important Intel CPU
features, Intel PT and Intel VT, it only supports programs
designed for the Intel x86 ISA. Consequently, we compiled
all our targets for the Intel x86 architecture. Note that the
handling of “high-level” data, such as file system or network
packets, remains consistent across different architectures, so
compiling the bootloader into a pure x86 architecture is
not a problem. However, this does not hold for the device
drivers, as the implementation of the device drivers is tightly
coupled to the specific devices, which can differ on different
architectures.
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C. Crash Detection

We aim to detect memory corruption vulnerabilities. Our
framework reports a potential vulnerability if an exception
occurs in the virtual machine. Since the bootloader operates
in a bare metal environment without the exception handling
mechanisms found in typical applications, we have imple-
mented and added the following features to observe crashes.

Paging. While UEFI bootloaders are executed in a paging-
enabled environment, accessing invalid memory immediately
triggers an exception. However, for BIOS bootloaders, paging
is disabled by default. Therefore, we implement a simple pag-
ing mechanism for BIOS bootloaders. From our experience,
the bootloader rarely accesses high-address memory. Thus, we
map a linear 0–2GB virtual address space to the same physical
address space, leaving other memory unmapped. When the
bootloader performs an arbitrary read or write operation, it
might access the unmapped memory and trigger an exception.

Interrupt. With the default interrupt handling mechanism,
the bootloader may enter an infinite loop or even shut down
the virtual machine when it encounters a crash. To address
this, we overwrite the first 16 interrupt gate vector entries with
our hook functions. These vectors handle exceptions such as
division-by-zero, segment faults, and invalid opcodes. When
an exception occurs, such as an invalid memory access, the
hook function reports the crash to the fuzzer. Afterward, the
fuzzer automatically restores the snapshot and continues with
the next fuzzing iteration.

Panic Hook. The bootloaders can detect invalid input by
performing sanity checks. When an explicit error occurs,
the bootloader may invoke a panic or hang function, which
typically shuts down the virtual machine. To prevent the
bootloader from terminating and to save fuzzing time, we hook
these functions to report a regular exit to the fuzzer, as these
errors do not lead to vulnerabilities.

Heap Sanitizer. Some vulnerabilities are caused by heap
buffer overflows. To detect such cases, we design and imple-
ment a straightforward yet effective heap sanitizer. Upon heap
allocation, we increase the allocation size by 8 bytes. These
extra 8 bytes are used to store a magic number, which is later
checked. If the magic number does not match, we report a heap
overflow. We implement the sanitizer by hooking the heap
allocation and deallocation functions. At the allocation stage,
we record the size and allocated pointer. The magic number
is stored immediately after the allocated memory, in a region
not supposed to be overwritten. During deallocation, we verify
if the pointer is recorded and if the magic number matches.
If either condition is not met, we report an invalid free or a
heap buffer overflow. Otherwise, we remove the heap memory
information from the recording. Additionally, we periodically
check the magic number for all allocated heap memory to
detect heap overflows that occur during execution.

V. EVALUATION

Next, we thoroughly evaluate our test framework and dis-
cuss the results. We aim to answer four research questions:

TABLE V: CVEs collected from Snyk vulnerability database
for reproduction

CVE Bootloader Category Reproduce

1 CVE-2023-4692 GRUB Storage ✓

2 CVE-2023-4693 GRUB Storage ✓

3 CVE-2020-8432 Das U-Boot Console ✓

4 CVE-2022-33103 Das U-Boot Storage ✓

5 CVE-2019-15937 barebox Network ✓

6 CVE-2019-15938 barebox Network ✓

7 CVE-2023-40547 shim Network ✓

RQ1: Can our bootloader fuzzing framework reproduce
previously identified bootloader vulnerabilities across the three
main attack surfaces?

RQ2: Can our bootloader fuzzing framework detect new
bootloader vulnerabilities?

RQ3: Compared to other vulnerability detection methods,
what are the advantages and drawbacks of our approach?

RQ4: How much effort is required to implement an exten-
sion to the framework for a bootloader?

A. Experiment Setup

We conducted the fuzzing experiments on three servers,
each equipped with a 104-core Intel Xeon Gold 5320 CPU
@ 2.20GHz and 252 GB of RAM, running Ubuntu 22.04.1
LTS. For each attack surface, we assigned CPU cores with
different weights. For instance, we assigned ten cores for
fuzzing the file system and only one core for a specific file
parser. This distribution was based on the input size–the file
system inputs are larger and thus require more computing
resources for exploration. In total, the fuzzing experiments
lasted three weeks.

B. RQ1 Reproducibility of Known Vulnerabilities

As shown in Table V, we collected seven recently available
bootloader vulnerabilities that can be compiled for the Intel
x86 architecture. These vulnerabilities span the three main
attack surfaces. The vulnerabilities detail can be found in AP-
PENDIX A. Our fuzzing framework was able to successfully
reproduce them within several hours. One of them, CVE-
2022-33103, can be triggered immediately when the initial
seed is sent during the fuzzing campaign. The exception,
however, is CVE-2020-8432. We found that a specially named
partition is required to trigger the crash. After naming the
partition accordingly, the crash could be triggered by fuzzing
the command line processing function.

C. RQ2 Finding New Vulnerabilities

During our evaluation, we found 39 vulnerabilities, of which
38 were previously unknown. Table VI provides an overview
of these vulnerabilities, which successfully cover all three
main attack surfaces. Somewhat surprisingly, we found no
vulnerabilities in the two bootloaders shim and systemd-boot.
We observed that these bootloaders are rather simple and offer
fewer attack surfaces compared to the other seven bootloaders.
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TABLE VI: Detected bootloader vulnerabilities information.
For those without status information, we reported them to the
developers. These vulnerabilities are still under their investi-
gation.

Bootloader Category Type Status

1 GRUB Storage, file parser Logic bug, heap overflow Confirmed

2 GRUB Storage, file parser Integer overflow, heap overflow Confirmed

3 GRUB Storage, file parser Integer overflow, heap overflow Confirmed

4 GRUB Storage, file parser Integer overflow, heap overflow Confirmed

5 GRUB Storage, file parser Logic bug, use of uninitialized data Confirmed

6 GRUB Storage, file system Lack of boundary check, heap overflow Confirmed

7 GRUB Storage, file system Infinite loop, stack overflow Confirmed

8 GRUB Storage, file system Integer overflow, heap overflow Confirmed

9 GRUB Storage, file system Off-by-one access, heap overflow Confirmed

10 GRUB Storage, file system Integer overflow, heap overflow Confirmed

11 GRUB Console, command parsing Unlimited recursion, stack overflow Confirmed

12 GRUB Console, command parsing Missing sanity check, null-pointer dereference Confirmed

13 GRUB Console, command parsing Infinite loop, stack overflow Confirmed

14 GRUB Storage, file parser Off-by-one access, heap overflow Confirmed

15 Limine Storage, file parser Missing sanity check, null-pointer dereference Patched

16 Limine Storage, file parser Logic bug, heap overflow 1-day

17 Limine Storage, file system Missing sanity check, divide by zero Patched

18 Limine Storage, file system Missing sanity check, divide by zero Patched

19 barebox Network Lack of length check, heap overflow Patched

20 barebox Network Lack of length check, heap overflow Patched

21 barebox Network Lack of length check, heap overflow Patched

22 barebox Network Lack of length check, heap overflow Patched

23 barebox Network Lack of length check, heap overflow Patched

24 Easyboot Storage, file system Missing sanity check, global buffer overflow Patched

25 Easyboot Storage, file system Missing sanity check, stack overflow Patched

26 Easyboot Storage, file system Missing sanity check, divide by zero Patched

27 rEFInd Storage, file parser Lack of length check, heap overflow

28 rEFInd Storage, file system Logic bug, stack overflow

29 rEFInd Storage, file system Missing sanity check, divide by zero

30 rEFInd Storage, file system Missing sanity check, divide by zero

31 rEFInd Storage, file system Missing sanity check, divide by zero

32 rEFInd Storage, file system Missing sanity check, divide by zero

33 rEFInd Storage, file system Missing sanity check, divide by zero

34 Das U-Boot Storage, file system Implementation error, heap overflow Patched

35 Das U-Boot Storage, file system Missing sanity check, divide by zero

36 Das U-Boot Storage, file system Logic bug, heap overflow

37 Cloverbootloader Storage, file parser Lack of length check, null-pointer dereference Patched

38 Cloverbootloader Storage, file parser Lack of length check, heap overflow Patched

39 Cloverbootloader Storage, file parser Implementation error, use-after-free Patched

1) Vulnerability Disclosure: We followed coordinated dis-
closure best practices and responsibly disclosed the discovered
vulnerabilities to the developers. Out of the 39 vulnerabilities
we found, 29 have been confirmed or patched by the develop-
ers at the time of writing. Since we evaluate active bootloader
projects, the majority of the developers responded quickly to
our reports.

2) Case Study: We present three specific patched cases in
this section to illustrate different examples of the vulnerabili-
ties we have found. We refrain from discussing vulnerabilities
that have not yet been fixed by the developers.

#define PKTSIZE 1536
char *net_alloc_packet() {

return dma_alloc(PKTSIZE);
}
int ping_reply(...) {

...
packet = net_alloc_packet();
if (!packet) return 0;
// heap overflow here!

memcpy(packet, pkt, ETHER_HDR_SIZE + len);
}

Listing 1: A heap overflow in barebox
Listing 1 presents an out-of-bound write in the barebox

ARP implementation. The implementation copies the received
packet into a fixed-length buffer, the size of which is defined
by the PKTSIZE macro. However, the Ethernet packet could
be larger than that in rare cases, such as with jumbo frames.
In such cases, the pointer returned by net alloc packet could
be overwritten by the subsequent memcpy operation.

uint32_t inodes_per_group;
void loadinode(uint32_t inode) {

...
// divide by zero here!
uint32_t block_offs = ((inode - 1)
/ inodes_per_group) * desc_size;
uint32_t inode_offs = ((inode - 1)
% inodes_per_group) * inode_size;

}
void _start() {

...
inodes_per_group = sb->s_inodes_per_group;

}

Listing 2: A divide by zero in Easyboot
Listing 2 shows a divide-by-zero vulnerability in Easyboot.

The variable inodes per group is directly read from the EXT
file system superblock. However, without a proper sanity
check, this value could be zero. In the function loadinode, the
value is used as a divisor to calculate the value of block offs
and inode offs.

EG_IMAGE* egDecodeBMP(uint8_t *FileData,
size_t FileDataLength, bool WantAlpha) {

uint32_t RealPixelWidth;
...
RealPixelWidth = BmpHeader->PixelWidth
> 0 ? BmpHeader->PixelWidth
: -BmpHeader->PixelWidth;
...
uint32_t x = 0;
//RealPixelWidth might be smaller than 2!
for (; x <= RealPixelWidth - 2; x += 2)
{
...
PixelPtr->Blue = BmpColorMap[Index].Blue;
...
PixelPtr++;
}

}

Listing 3: A heap overflow in Cloverbootloader
Finally, Listing 3 shows an out-of-bound write caused by

an integer overflow in the BMP image decoder in Clover-
bootloader. The variable RealPixelWidth is calculated from the
metadata of a BMP image file. However, in the subsequent
loop, the value is subtracted by two and compared with an
unsigned integer x. If RealPixelWidth is smaller than two, the
calculated value will be huge and the loop will overwrite a
large amount of memory.
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D. RQ3 Comparison with Other Works
To the best of our knowledge, there is neither a compre-

hensive memory safety analysis of bootloaders nor ready-to-
use fuzzing tools that can be directly used to test different
bootloaders. To evaluate the vulnerability detection capability
of our fuzzing framework, we resort to two popular and
widely used static analysis tools: CodeQL [4] and Clang
Static Analyzer [33]. CodeQL is an industry-leading seman-
tic code analysis engine maintained by GitHub. It is now
integrated with many GitHub open-source projects and runs
as a Continuous Integration (CI) backend component. The
Clang Static Analyzer is part of the LLVM project. It uses
symbolic execution to explore bugs in C/C++/OC and has been
integrated into Xcode as a default security checker. They can
both target all the source code involved in the compilation. We
compare our fuzzing framework against the two static analysis
tools. Table VII shows the vulnerability detection result of the
nine bootloaders.

1) CodeQL: In total, CodeQL found three true positive
vulnerabilities among the 105 reports it generated. After
manually analyzing the true positives, we found that one
of them is a previously known heap overflow in the file
system in GRUB, while the other two are new vulnerabilities.
One of the two new vulnerabilities was caused by an out-
of-bound buffer read operation, while the other one resulted
from an attacker-controlled heap allocation size. They both
existed in the file system implementation of Das U-Boot. Our
fuzzing framework was also able to detect the file system
vulnerability in GRUB; however, it failed to detect the other
two vulnerabilities. This is because the out-of-bounds read
does not trigger any exception, and our fuzzing can only
detect crash vulnerabilities. The other reason is that we lack
a proper seed to trigger the memory allocation size control
vulnerability. We inspected the false positives reported by
CodeQL and found that the following reasons caused them:

Incomplete Control Flow. CodeQL does not work well in
inter-file and inter-procedure analysis. A value that is checked
in another file or another function would be ignored if the
value is used in the analyzing point, especially if the function
is invoked via a function pointer.

Missing Context Check. A typical false positive reported
by CodeQL is a call to the strcat function. Even though the size
of the destination buffer is correctly calculated and allocated,
the tool still reported a potential buffer overflow.

Wrong Attacker Controlled Data Identification. CodeQL
cannot identify which data can be controlled by an attacker.
For instance, it reported a false positive in shim where the data
is generated from a firmware-calculated string.

2) Clang Static Analyzer: In our experiment, the Clang
Static Analyzer found four true positives among the 151
reports generated by the tool. The true positives are not found
in the three main attack surfaces and, therefore, could not be
detected by our fuzzing framework. We manually inspected
their root causes and found that they are caused by hard code
null-pointer values and misuse of Unix-like APIs that do not
originate from attacker-controlled data. We investigated the

TABLE VII: Detected and reported vulnerabilities compared
with static analysis. CSA: Clang Static Analyzer. Fuzz: our
fuzzing framework. TP: True Positive.

CodeQL CSA Fuzz

TP Reported TP Reported TP Reported

GRUB 1 18 1 88 14 14
Limine 0 0 0 2 4 4

Das U-Boot 2 34 0 25 3 4
barebox 0 6 3 19 5 6

CloverBootloader 0 40 0 0 3 3
Easyboot 0 0 0 1 3 5
rEFInd 0 0 0 10 7 7

systemd-boot 0 0 0 6 0 0
shim 0 7 0 0 0 0

3 105 4 151 39 43

false positives reported by the Clang Static Analyzer, and
summarize our main findings below:

Broken Constraint. The Clang Static Analyzer could not
maintain a set of consistent constraints during the symbolic
execution. For instance, a value constraint to the value zero
can be assumed to be non-zero by the execution engine and
continues execution. This causes some impossible paths to be
reachable.

Broken Control Flow. Like CodeQL, the Clang Static
Analyzer cannot perform inter-file and function pointer anal-
ysis during the symbolic execution. When the control flow is
broken, it lacks enough knowledge to infer a value’s constraint.

Broken Value Tracking. Lastly, the Clang Static Analyzer
failed to track a field value in a struct. For instance, a pointer in
a struct is deallocated and then gets overwritten with another
value. The Clang Static Analyzer reported a double free when
the new value gets deallocated again.

3) False Positives in Fuzzing: In our experiments, the
fuzzer reported several false positives. These false positives
were primarily due to an incorrect harness implementation by
us. For instance, when fuzzing a device tree parser in Das
U-Boot, the fuzzer reported an arbitrary memory write while
parsing the device tree file header. Upon manual analysis of
our harness, we found that this issue was due to the absence of
a sanity check function: this sanity check function is supposed
to report an invalid header when it detects an out-of-range
value. However, in our implementation, the parser directly
used the value without invoking the sanity check function,
leading to an arbitrary memory write. Another false positive in
barebox exists because the buffer was assumed to be allocated
in the heap, however, we passed the fuzz input buffer to
the parsing function. The buffer was later deallocated, thus
reporting a crash.

Our framework reported in total four false positives due
to the harness implementation mistakes that we subsequently
fixed. We missed several necessary sanity checks or passed the
wrong type of memory to the parsing functions before calling
them. Nevertheless, we conclude that our fuzzing framework
performs better than the state-of-the-art static analysis tools in
both quantity (i.e., more new vulnerabilities) and quality (i.e.,
fewer false positives).
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TABLE VIII: Number of modified or added lines of code

Paging & Interrupt Heap Sanitizer Harness

GRUB 240 83 376
Limine 240 83 213

Das U-Boot 240 83 358
barebox 76 83 301

CloverBootloader 76 83 214
Easyboot 76 83 70
rEFInd 76 83 258

systemd-boot 76 83 53
shim 76 83 272

E. RQ4 Manual Effort

The additional manual effort required to extend our frame-
work to support a new bootloader consists mainly of three
parts: (i) a paging and interrupt handler hook, (ii) a heap
sanitizer, and (iii) a harness. Table VIII shows the number
of lines of code modified or added for each of the nine
bootloaders we evaluated. All bootloaders share the imple-
mentations of paging and interrupt handler hooking, and our
heap sanitizer. The harness for a specific bootloader depends
on the complexity of the bootloader implementation. Our goal
is to help bootloader developers identify the vulnerabilities,
assuming that they are able to implement the harness in an
efficient way. We recommend first recognizing the peripheral
data access interfaces (e.g., firmware calls or the hardware
abstraction layer) to feed the fuzz input to the bootloader
under test. Subsequently, the functions intended for the end
applications to trigger the peripheral access should be reused.
File parsers can be identified by enumerating the supported
file types and the corresponding parsing functions.

VI. DISCUSSION

In our evaluation, we have shown that our proposed ap-
proach has successfully uncovered a variety of bugs in differ-
ent bootloaders. However, there are also several shortcomings
that we discuss in this section.

Device Drivers. Despite the lack of complex processing
logic in some other peripheral inputs, their vulnerabilities
cannot be ignored. Bootloaders communicate with peripherals
through device drivers, e.g., Das U-Boot can manage more
than thirty types of peripherals, with the number of device
driver source code files exceeding 2,000. However, fuzzing
bootloader device drivers is a challenging task. With the
design of our fuzzing method, we compile all the bootloaders
into x86 architecture targets. While this does not pose a
problem for high-level data handling, it does not apply to
device driver fuzzing. There is no universal interface, such
as file operations, to manipulate different peripherals, and
there is no common layer, like a data access abstraction
layer, to intercept the device access. This requires a significant
amount of manual effort to implement the necessary harnesses.
Additionally, some peripherals rely on specific architectures
incompatible with the Intel extensions, so they cannot be
executed when compiled into the bootloader. Therefore, we
consider the fuzzing of device driver as a task for future work.

Beyond Peripherals. In addition to the peripheral input
processing logic, other components, such as data structures,

encoding and decoding algorithms, and boot management,
may also contain vulnerabilities. However, these components
are either implicitly used by the peripheral input processing or
cannot be directly controlled by the attacker, according to our
threat model. For instance, linked lists and heap management
are widely used by various file parsers. Therefore, we do not
consider them as an attack surface reachable via fuzzing.

Harness. In this paper, we do not consider file operations
as fuzzing input. A fixed sequence of file operations is used
to trigger the file system operation. However, Janus [64]
highlights that exploring the two-dimensional inputs (i.e.,
mutating file system metadata on a large image while emitting
image-directed file operations) is efficient and effective in file
system fuzzing. With our simple and fixed file operations, we
might miss some potential vulnerabilities. Nevertheless, in the
bootloader scenario, bootloaders typically only expose limited
file operations. For instance, some bootloaders only allow file
read operations, while file write and symbolic link access
operations are not possible. These limited file operations
confine our harness to a small range of potential actions.

Fuzzing Seeds. We have collected or generated our fuzzing
seeds from both open-source corpora and created them from
scratch using tools such as the mkfs utility. For certain com-
ponents, such as image parsers, it is sufficient to use open-
source corpora since they cover a wide range of corrupted
images. The diversity of fuzzing seeds significantly impacts
the efficiency of fuzzing. Some of our generated fuzzing seeds,
such as part of the file system images and network packets,
may not cover sufficient input space, potentially resulting
in false negatives. Consequently, we recognize the need to
generate a more diverse set of fuzzing seeds and consider this
as a future work.

Heap Sanitizer. Existing sanitizer frameworks designed
for bare-metal environments, such as SHiFT [36], cannot be
applied directly as they rely on a specific RTOS environment,
tool chain, runtime dependencies, compiler customization,
or architecture-related instructions that are not commonly
supported by bootloaders. Bootloaders such as GRUB and
Das U-Boot also tried to integrate sanitizers into their prod-
ucts [14, 17]. Even with the technical efforts of experienced
developers, they can only support native compilation (i.e.,
compile the bootloader as an ELF or EXE file that can be
executed natively). This conflicts with our goal of running the
bootloader in a real environment. Due to the complexity of
adapting existing frameworks to bootloader fuzzing, we im-
plemented a tailored heap sanitizer to detect out-of-bound heap
buffer write vulnerabilities. However, this canary-like heap
sanitizer cannot detect out-of-bound heap read vulnerabilities.
To accomplish the heap sanitizer task, we made a trade-
off between comprehensiveness and usability. Our method
is straightforward (i.e., the design is a canary-like sanitizer)
but effective given that we found many memory corruption
vulnerabilities. We believe that our approach is ideally suited
to sanitize heap memory for bootloader applications running
in a bare-metal environment, as there are almost no runtime
dependencies and compatibility issues.
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Mitigation. To mitigate memory corruption vulnerabilities
in bootloaders, some developers have already started to deploy
static analysis tools and fuzzing in their projects [12, 45].
However, they either do not focus on the entire attack surface
or cause too many false positives. To better mitigate mem-
ory corruption vulnerabilities in bootloaders, we propose the
following methods:

a) Debloating: As the bootloader code base grows, vul-
nerabilities may arise from the numerous features it contains.
To address this, we propose debloating the bootloader at the
source code or compilation level. For example, if a memory
corruption vulnerability solely happens in a specific file system
parsing logic, it can only compromise the bootloader when
the file system feature is enabled. While this may affect user
experience, a trade-off between security and user experience
is necessary to ensure a more secure system.

b) Fuzzing Comprehensive Attack Surfaces: Fuzzing has
proven to be an effective method for detecting vulnerabilities.
However, without a comprehensive analysis of the attack
surface and tailored testing harnesses, easily detectable vulner-
abilities may be missed by the fuzzer. Therefore, we propose to
include a comprehensive attack surface analysis, as discussed
in our paper, in the development of fuzzing strategies to guide
and improve them.

Comparison with Existing Works The two fuzzing tools
introduced by Axtens [13] and Starke [39] aim to fuzz the
command-line parsing logic in GRUB and Das U-Boot. How-
ever, the reasons why we did not directly compare our work to
their tools are as follows: 1) They focused solely on console
input, while we considered a broader range of attack surfaces.
2) They compiled the bootloader into a native application,
whereas we compiled it into an x86 loader, targeting different
binaries. In addition, they used AFL as fuzzing backend, while
we used kAFL, which implements more advanced fuzzing
mechanisms such as mutators and scheduling policies. 3) They
did not publish many implementation details.

VII. RELATED WORK

Compared to normal applications, low-level software is
more closely integrated with the hardware. Due to its intrinsic
nature of directly manipulating hardware, significant security
issues can arise, potentially compromising the entire system.
In recent years, the security of low-level software has garnered
increasing attention.

Firmware is usually the first component executed during
the system boot process. Modern UEFI firmware provides
the OS with runtime services to manage hardware. While
these richer features bring convenience, they also introduce
potential vulnerabilities. Spender [67] applies static analysis
to the System Management Mode (SMM) service, which
operates at ring -2, a higher privilege level than the OS.
Spender constructs a comprehensive inter-driver call graph
based on the protocol producer and consumer implemen-
tations. By tracking the value flow within the call graph,
SPENDER identifies privilege escalation vulnerabilities in the
UEFI firmware. Yang et al. [65] proposed the first fuzzing

framework for UEFI firmware. They leverage the SIMICS
virtual platform to emulate an environment for running UEFI
firmware. This framework forces the CPU counter to point
to the System Management Interrupt (SMI) handler function
and directly places the fuzz input in the simulator memory
to detect SMI out-of-bound memory access vulnerabilities.
However, different SMI handlers may communicate with each
other via variables, a complexity prior fuzzing tools could
not handle, limiting their ability to test deeper logic. This
issue was addressed by RSFuzzer [66]. RSFuzzer employs
a two-stage fuzzing process. It begins by fuzzing a single
SMI handler with randomly generated inputs. Before adding
any new seed to the corpus, it extracts knowledge to infer
the input structure. Cross-handler variables are identified by
recording their handling behaviors. In the second stage, RS-
Fuzzer performs cross-handler fuzzing using the knowledge
extracted in the first stage. Bazhaniuk et al. [6] targeted SMM
interrupt handler variables using symbolic execution, but faced
common challenges such as path explosion. Surve et al. [52]
summarized the attack surfaces that UEFI firmware faces.

The bootloader is launched after the firmware. As discussed
in this paper, it faces a wide array of attack surfaces. Previ-
ous research targeting bootloaders has primarily focused on
mobile devices, e.g., Android devices allow users to enter an
interactive fastboot interface. An attacker with physical access
to the device can boot it into fastboot mode by pressing a key
combination upon boot or by connecting the device to a PC
via ADB. The interactive command line interface accepts user
input and processes requests accordingly. Roee [25] identified
several command line parser vulnerabilities in commercial
Android devices. BootStomp [46] performs taint analysis on
bootloader binaries of mobile device. Unlike Roee, BootStomp
aims to find vulnerabilities caused by the use of attacker-
controlled storage data. In addition to identifying vulnera-
bilities, BootStomp designs and implements a framework for
analyzing closed-source Android bootloaders. In comparison,
our work presents a comprehensive attack surface analysis of
PC bootloaders, along with a fuzzing tool. Unlike the studies
by Roee and BootStomp, which focused solely on mobile
devices and a single attack surface, our research covers a
broader range of vulnerabilities in PC bootloaders.

Before the OS gains control of the system, another op-
tional component, the hypervisor, may come into play. The
hypervisor can introspect the OS, and if compromised by
an attacker, it can lead to virtual machine escape or even
full system control. Fuzzing techniques have been applied
to the hypervisor to identify vulnerabilities. Hyper-Cube [49]
designs a custom mini OS running inside the virtual machine
that can feed fuzz inputs to the hypervisor. V-shuttle [42]
addresses the DMA access problem in hypervisor fuzzing,
while MundoFuzz [38] filters out noise from coverage feed-
back and infers input structures. Morphuzz [8] infers the I/O
behaviors of real-world virtual devices and discovered new
vulnerabilities in both QEMU and bhyve. In another threat
model, the hypervisor itself may not be trusted: since it has
higher privileges than the OS, a hardware mechanism such
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as a Trusted Execution Environment (TEE) is used to protect
the OS data. Despite efforts to design and implement secure
TEEs such as VirTEE [59], Penglai [19], and Keystone [31],
memory corruption vulnerabilities persist. SEnFuzzer [68],
SGXFuzz [10], and SyzTrust [60] apply fuzzing to both open-
source and commercial TEEs. Since TEE memory cannot
be directly accessed, these tools propose various methods to
extract coverage feedback to guide the fuzzing process.

From various low-level software security analyses, we have
learned that fuzzing has been widely adopted and has proven
effective in detecting new vulnerabilities. General fuzzing
tools such as AFL [37] and LibAFL [21] are continuously
integrating more techniques, including cmplog [3], coverage
accounting [61], weighted scheduling [20], and power schedul-
ing [7]. These techniques and methods apply for both specific
domain and general application fuzzing. They focus on solving
the common problems such as hard-to-bypass control flow
obstacles and seed selection. Generating harnesses, such as
Winnie [30] and FAST [24], are also beneficial in fuzzing
new targets.

VIII. CONCLUSION

In this paper, we have presented a comprehensive memory
safety analysis of bootloaders. Our study identified the three
main attack surfaces (storage, network, and console) in boot-
loaders based on a survey of 85 CVEs. We also introduced a
fuzzing framework, which we used to analyze nine bootloaders
in detail. To facilitate this process, we intercepted peripheral
access at the source code level, enabling us to feed fuzz inputs
and manipulate peripheral operations to effectively trigger the
fuzzing process. Our experiments uncovered 39 vulnerabilities,
with 29 of these being confirmed or patched by the developers.
Additionally, we have been assigned five CVEs so far. Overall,
our findings highlight critical areas of concern in bootloader
security and demonstrate the effectiveness of our fuzzing
approach in identifying vulnerabilities.
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APPENDIX

A. CVE details
CVE-2023-4692 and CVE-2023-4693 The two vulnerabil-

ities demonstrate that a crafted NTFS file system could lead to
heap overwrite and potentially bypass secure boot in GRUB.
The vulnerabilities exist in the NTFS attribute list parsing
logic, where the end of the attribute buffer is not checked,
allowing the buffer to be accessed out of bounds.

CVE-2020-8432 This bug demonstrates a double-free vul-
nerability in the Das U-Boot gpt rename command. Das U-
Boot allows users to change the GPT partition name via this
command. Before changing the partition name, it collects the
storage device partition information and stores it in a heap
buffer. However, if the rename operation fails and returns -1,
it deallocates the buffer and jumps to the cleanup code where
the buffer is deallocated again. To trigger this vulnerability, we
crafted a GPT partition table and named one of the partitions
with an environment variable-like string. Das U-Boot expands
this to the environment variable value, causing a sanity check
failure in the rename function. Fuzzing the command line
parsing logic made it easy to find the crash input by defining
a specific environment string in advance.

CVE-2022-33103 This bug represents a buffer overflow
vulnerability in the Das U-Boot squash file system implemen-
tation. While the regular file name for most file systems is less
than 255 bytes long, the squash file system defines a two-byte-
long length field for the path. When reading from a directory,
Das U-Boot allocates a fixed-length buffer for the returned
file name. Although the mksquashfs tool prevents users from
generating a long file name, the fuzzer can mutate and generate
such a file.

CVE-2019-15937 and CVE-2019-15938 These CVEs show
two buffer overwrite vulnerabilities in the network file system
implementation in barebox. When barebox tries to read a
symbolic link file from a remote server, a packet that contains
a length field indicating the original file path followed by the
actual file name is sent to the the client. However, barebox
did not check the length of the reply packet from the server
and directly copied the path to a fixed-length global buffer,
assuming the path length is always less than 2048 bytes.
The length field is 4 bytes long in the network packet and
can theoretically be large enough to overwrite the whole
bootloader’s physical memory.

CVE-2023-40547 This vulnerability presents a heap over-
write vulnerability in shim’s HTTP content processing. Al-
though shim does not implement a full-stack network protocol,
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it receives remote bootable images via HTTP. A length field
in the HTTP header indicates the length of the following
HTTP content, but shim did not correctly check this field and
allocated a buffer of the exact length specified in the packet.
While copying HTTP content from the UEFI firmware API,
the actual content could exceed the allocated buffer. In our
experiments, while the heap overwrite did not directly cause
a crash, it modified the magic number of the heap sanitizer,
causing our sanitizer to report a crash.
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