
Density Boosts Everything: A One-stop Strategy for
Improving Performance, Robustness, and

Sustainability of Malware Detectors

Jianwen Tian∗, Wei Kong†, Debin Gao‡, Tong Wang∗, Taotao Gu∗, Kefan Qiu§, Zhi Wang¶, Xiaohui Kuang∗,
∗NKLSTISS, Institute of Systems Engineering, Academy of Military Sciences
†School of Information Science and Engineering, Zhejiang Sci-Tech University

‡School of Computing and Information Systems, Singapore Management University
§School of Cyberspace Science and Technology, Beijing Institute of Technology

¶DISSec, College of Cyber Science, Nankai University
Email: jianwentian1994@foxmail.com, kong wei@ieee.org, dbgao@smu.edu.sg

tongwss@foxmail.com, gutaotao1995@qq.com, kfqiu@bit.edu.cn
zwang@nankai.edu.cn, xiaohui-kuang@163.com

Abstract—In the contemporary landscape of cybersecurity,
AI-driven detectors have emerged as pivotal in the realm of
malware detection. However, existing AI-driven detectors en-
counter a myriad of challenges, including poisoning attacks,
evasion attacks, and concept drift, which stem from the inherent
characteristics of AI methodologies. While numerous solutions
have been proposed to address these issues, they often concentrate
on isolated problems, neglecting the broader implications for
other facets of malware detection.

This paper diverges from the conventional approach by not
targeting a singular issue but instead identifying one of the
fundamental causes of these challenges, sparsity. Sparsity refers to
a scenario where certain feature values occur with low frequency,
being represented only a minimal number of times across the
dataset. The authors elevate the significance of sparsity and link
it to core challenges in the domain of malware detection, and
then aim to improve performance, robustness, and sustainability
simultaneously by solving sparsity problems. To address the
sparsity problems, a novel compression technique is designed to
effectively alleviate the sparsity. Concurrently, a density boosting
training method is proposed to consistently fill sparse regions.
The proposed strategies are applied to PE, Android and PDF
datasets, respectively. Empirical results demonstrate that the
proposed methodologies not only successfully bolster the model’s
resilience against different attacks but also enhance the perfor-
mance and sustainability over time. For instance, on EMBER
(PE) dataset, the backdoor attack success rate decreased from
99.99% to 23.71% while the F1 score increased from 99.301%
to 99.488%; the AUT (a metric for evaluating sustainability)
increased from 92.850% to 95.135% on SOREL-20M dataset (a
larger and long spanning PE dataset). Moreover, the proposals are
complementary to existing defensive technologies and successfully
demonstrate practical classifiers with improved performance and
robustness to attacks. At last, such observation is verified to be
consistent on DREBIN (Android) and Contagio (PDF) datasets.

Xiaohui Kuang and Zhi Wang are corresponding authors.

I. INTRODUCTION

As machine learning techniques continue to evolve, many
Artificial Intelligence (AI) applications assume critical roles
across diverse domains [44], [67], [89]. However, due to the
inherent nature of machine learning, AI-based malware detec-
tors confront with significant challenges such as adversarial
attacks [26], [68] and concept drift [31]. Consequently, the
development of robust models is of paramount importance, par-
ticularly in security-critical domains of malware detection [7].

Adversarial attacks, including evasion and poisoning, pose
a considerable threat by introducing perturbations into the
target malware to evade detection or by corrupting training sets
with maliciously crafted samples [11], [26], [68]. Concept drift
represents another critical challenge, undermining the model’s
performance over time as new paradigms of malware emerge
and the incoming test distribution diverges from the original
training distribution [22], [31], [87], [91].

In response to these challenges, researchers have en-
deavored to fortify malware classifiers against adversarial
attacks [42], [45], [79] and to mitigate effects of concept
drift [22], [31], [60], [91]. The battle between attacks and
defenses has led to a proliferation of strategies [42] including
ensemble learning [9], weight regularization [19], adversarial
training [2], [41], verifiable learning [13], [30], robust fea-
tures [80], input transformation [10], classification random-
ization [34] and sanitizing examples [11], [72]. Despite these
efforts, a universal solution to the diverse attacks has yet to
be identified [42]. Similarly, addressing concept drift involves
three primary strategies: Model adaption through incremental
retraining or online learning [55], [85], Rejection of samples
that deviate from the training set’s distribution [22], [31], [87],
and Robust Features Designing to enhance intrinsic resilience
to drift [91]. Despite these achievements, there remains con-
siderable scope for improvement.

This paper diverges from the conventional focus on isolated
issues by highlighting the pervasive problem of sparsity within
security-related datasets. Sparsity refers to a scenario where
certain feature values or feature sub-regions occur with low

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240336
www.ndss-symposium.org

frequency, being represented only a minimal number of times
across the dataset. In such scenarios, a model can assign
excessively large weights to these sparse values or values
in sparse regions to reduce training loss without immediate
repercussions on performance. This can cause performance
degradation on the points with sparse regions represented or
be manipulated to implement attacks.

Intuitively, input transformation is the top priority in
solving the sparsity problem. Input transformation methods
have been widely discussed in other aspects, such as image
recognition [46], [58], [86]. However, existing methods in
image recognition regions only narrow the value range to limit
adversarial modifications [46], [86], but do not pay attention
to sparse regions, leaving certain values or regions still under-
represented [86]. In the domain of malware detection, input
transformation has not been extensively explored despite the
more severe sparsity [66], [79], [80]. Tong et al. [80] employed
a binarization mechanism for PDF datasets, converting non-
zero entries to ones, thereby limiting the adversaries’ capacity
to induce perturbations. In addition, Rudd et al. [66] applied a
logistic transformation to Windows PE datasets [5], mapping
values onto a finite interval to enhance the efficacy of neural
network training. However, both methods do not effectively
eliminate the sparsity, see illustrative examples in Appendix. A.
Tian et al. [79] are the first to introduce a pioneering approach
to sparsity elimination through a subspace compression (SC)
strategy. This method involves segmenting the feature space
and iteratively merging subspaces until the density within each
minimal subspace surpasses a predefined threshold. While the
SC strategy has demonstrated effectiveness against backdoor
attacks, it has been noted to result in significant performance
degradation and does not comprehensively evaluate the broader
implications of mitigating sparsity.

In this work, we introduce a novel subspace compression
strategy with value bundling, referred to as SCB, and propose
a density boosting strategy to consistently fill sparse regions
during training. We validate the efficacy of our methods across
three benchmark datasets: EMBER (PE) [5], DREBIN-2019
(Android) [22], and Contagio (PDF) [68]. Our experimental
results indicate that mitigating sparsity significantly improves
model performance and robustness. Specifically, on the EM-
BER testing dataset, the F1 scores increased from 99.301% to
99.488%, outperforming the state-of-the-art detector on EM-
BER testing set; and the AUT (a metric for evaluating sustain-
ability) increased from 92.850% to 95.135% on SOREL-20M,
which also outperforms other strategies. Meanwhile, the attack
success rate of VR-based backdoors (poisoning 1% benign set)
was substantially reduced from 99.99% to 23.710%. While
our proposal solely offers marginal defenses against evasions,
its combination with existing defensive methods demonstrates
markedly improved performance and resistance to evasion
attacks compared to the application of defensive methods in
isolation [18], [73]. At last, such observation is verified to be
consistent on DREBIN and Contagio datasets.

The contributions of this paper are as follows:

1) Elevating the sparsity problem: We associate spar-
sity with key issues in malware detection, such as
clean performance, backdoor robustness, evasion ro-
bustness, and model sustainability, and provide an

extensive evaluation demonstrating the severity of the
issue in widely-adopted datasets.

2) Novel subspace compression and density boost-
ing robust training: We propose a novel subspace
compression strategy and a density-boosting training
approach that effectively improve model robustness
by mitigating sparsity while further enhancing per-
formance and sustainability under concept drifts.

3) Practical solution for malware detection: We ex-
plore practical solutions by integrating our proposal
with state-of-the-art defensive methods, showcasing
its compatibility and the potential for improved ro-
bustness and superior clean performance compared
to using defensive methods alone.

II. BACKGROUND AND OUR PROBLEM SPACE

A. Background

1) Malware Detectors: In the domain of learning-based
malware detection, classifiers are primarily trained to discern
between malicious and benign inputs, leveraging two distinct
types of features: dynamic and static. Dynamic features en-
compass behavioral records indicative of suspicious activities,
harvested through the execution of binary files within con-
trolled virtual environments [4], [35], [83]. In contrast, static
features are derived directly from the binary code or associated
metadata, without the need for execution [7], [26], [57], [84].
Static feature-based methods can be further bifurcated into two
subcategories: feature-based detectors and raw-binary detec-
tors [5], [7], [15], [26], [57], [64]. Feature-based detectors [5],
[7], [26], [57] extract a vector of salient characteristics from the
binary, relying on expert knowledge to identify and quantify
relevant features. Conversely, raw-binary detectors [15], [36],
[64] process the raw binary data as input matrices, bypassing
the need for feature extraction based on expert knowledge.

To build malware detection models, a feature vector, de-
noted as x, is extracted from either a raw binary or an
Android application. After extraction, the input matrix, X
and its associated labels Y are utilized to train the model.
Within the conventional framework of malware detection, the
objective is to ascertain the label y ∈ C = {0, 1} for a
given input x ∈ X. The input-label pairs are assumed to be
independently and identically distributed (i.i.d.) samples drawn
from an underlying distribution D. The detection model is
formalized as a function Fθ : X → C, parameterized by
θ ∈ Rd. The classifier’s parameters, θ, are optimized by
minimizing a loss function L(x, y,θ) across a training set
D̂ = {(xi, yi)}ni=1 comprising labeled samples:

argmin
{θ}

L(x, y, θ) = −[y ∗ log(Prob(pred = y|x, θ))

+(1− y) ∗ log(Prob(pred = (1− y)|x, θ))] (1)

2) Adversarial Attacks: Adversarial machine learning at-
tacks are divided into evasion and poisoning. Evasion attacks
alter inputs to mislead classifiers at inference time [12], [18],
[24], [26], [73], disguising malicious intent and posing a
significant cybersecurity threat. Conversely, poisoning attacks
taint the training dataset with crafted examples [54], [75]. They
are categorized as: availability attacks reducing model effi-
cacy [54]; targeted attacks misclassifying specific targets [69],

2

[75]; and backdoor attacks embed a covert trigger during train-
ing, which induces misclassification upon activation during
inference [27], [68], [79].

Extensive research has explored adversarial attacks across
various malware types, including Android [20], [26], [68],
[79], PDF [50], [74], Windows (PE files) [2], [6], [28], [37],
[73], [76], IoT [1], and Flash [51]. Unlike image processing,
malware adversarial attacks require function-preserving mod-
ifications within file format constraints [73]. Minor changes
could disrupt the file or its malicious function. Adversaries
prioritize sample transformations that preserve functionality,
such as altering instruction sequences to equivalent ones,
appending redundant sections from other binaries, or adding
benign content [18], [47], [61], [73], [88].

A multitude of defensive strategies have been proposed
to counter evasion attacks, as classified by Li et al. [42].
These include Ensemble Learning for robustness through
model diversity [9], Weight Regularization to limit sensitivity
to adversarial examples [19], Adversarial Training to bolster
resilience by incorporating such examples into training [2],
[39], [41], Verifiable Learning ensuring consistent model de-
cisions [13], [30], Robust Feature Selection based on inher-
ently resistant features [80], Input Transformation to reduce
adversarial impact [10], Classifier Randomization for unpre-
dictability through diverse classifier sets [34], and Sanitizing
Examples to refine samples using various metrics [43].

In contrast, defenses against poisoning attacks in malware
detection, while less prevalent, are an area of growing research.
Approaches include filtering based on similarity metrics or
SHAP value analysis [11], [49], [82], employing AutoEncoders
to neutralize backdoor poison attacks [56], and compressing
sparse regions to counteract sparsity-based backdoors [79].

3) Concept Drift: Concept drift, a pervasive phenomenon
in the domain of machine learning, also poses a significant
challenge to the applicability of classifiers. It occurs when
the joint distribution of inputs and outputs differs between
training and test phases [62]. The primary types of shift include
covariate shift (variation in feature distribution), label shift
(variation in label distribution), and concept shift (evolution in
class definitions). Given the complex and often simultaneous
nature of these shifts, the term concept drift is commonly
employed to encompass all such variations [21], [22], [31],
[65], [70]. This paper adopts this widely accepted terminology.

Addressing concept drift, three predominant strategies have
emerged. Model Adapting employs incremental retraining or
online learning to refine the model [55], [85]. Rejection dis-
cards samples identified as being from a distribution that has
shifted from the training data [22], [31], [87]. Robust Features
Designing develops features that confer intrinsic resilience to
the model or system against the effects of drift [91].

B. Our Problem Scope

The preceding discussion highlights a plethora of strategies
proposed to address a spectrum of issues in the domain
of machine learning and cybersecurity. Our work diverges
from the conventional approach of targeting specific prob-
lems, instead delving into the intrinsic mechanisms of model
vulnerability. While various elements can compromise model

robustness [24], [32], [79], this paper zeroes in on “sparsity”
as a key vulnerability factor. Despite recognizing sparsity’s
role in backdoor attacks [79] and evasion attack transferabil-
ity [92], prior work has mainly exploited sparsity to boost
attack potency. To date, no comprehensive evaluation has been
conducted to assess the pervasive impact of sparsity across all
dimensions. This paper posits that the detrimental effects of
sparsity have been grossly underestimated, especially consider-
ing the ubiquity of sparse feature subspaces in security-related
datasets, which can critically undermine detector efficacy.

In this study, we examine the correlation between sparsity
and prevalent challenges in machine learning and malware
detection, encompassing performance loss, evasion attacks,
poisoning attacks, and concept drift. We demonstrate the ef-
fects of various input transformation strategies on these issues,
specifically targeting low-density subspaces. These strategies
include subspace compression (SC) [79], logistic transforma-
tion (LT) [66], binarization [80], and histogram [33], alongside
our proposed method, subspace compression with bundling
(SCB). Furthermore, we introduce a density boosting training
strategy to further alleviate sparsity.

Our comprehensive evaluation concludes that addressing
sparsity is essential for enhancing the reliability and robustness
of malware detectors. Among the strategies considered, our
proposal, SCB, exhibits superior detection performance on
all datasets compared to other methods [5], [7], [79], [80].
Moreover, it demonstrates robust resilience against backdoor
attacks [68], [79] and concept drift [22]. While the standalone
robustness against evasion attacks is modest, our approach
significantly enhances the efficacy of existing defensive tech-
niques across the board [47], [73].

III. RELATED WORKS

A. Feature compression

In the context of image classification, the feature space is
considered excessively large. Studies have shown that shrunken
representations still retain sufficient information for training
models [8], [16], [16], [46], [52], [58], [86]. Xu et al. [86]
implemented defenses against evasion attacks by reducing the
color depth of images. Similarly, Lo et al. [46] leverage error
diffusion halftoning methods to project images into a 1-bit
space.

Despite widely mentioned in other domains, it is often
overlooked in malware detection tasks. Tong et al. [80] im-
proved evasion attack resilience with binarization. Narisada
et al. [56] used AutoEncoders against backdoors, but Tian
et al. [79] showed that this was ineffective for their attacks.
Rudd et al. [66] enhanced PE dataset [5] accuracy with
logistic transformation. Tree-based models like LightGBM [5]
naturally compress features, which likely contributes to top
EMBER dataset performance.

Beyond tree-based models, input transformations such as
histogram [33], logistic [66], and binarization [80] focus on
feature depth, not sparse regions. Tian et al. [79] introduced the
first subspace compression (SC) strategy to eliminate sparse
regions against backdoors. SC processes outliers, segments
feature values, and merges subspaces based on KL-divergence
until meeting a density threshold. While effective against
backdoors, it impacts performance.

3

(a) Actual distribution of the two class
data.

(b) Training data sampled from the
overall distribution.

(c) A sample warp the decision bound-
ary.

(d) testing samples are wrongly classi-
fied.

Fig. 1: A toy example of our motivation.

In response to these limitations, we introduce a novel
mechanism that incorporates value bundling into the subspace
compression process. Furthermore, we suggest merging sub-
spaces based solely on density rather than label distribution to
prevent unnecessary loss of classification capability.

B. Robust training

Robust training aims to strengthen machine learning mod-
els to improve generalization ability in disturbances or uncer-
tainties [17], [24], [38], [59], [77], [78], [81], [83], [90] Robust
training defenses have been proposed to strengthen malware
classifiers [19], [63], often targeting specific attacks [2], [30],
[63] or models [13], [19], [48]. Íncer et al. [30] use monotonic
classifiers for evasion resistance, relying on features with non-
simultaneous removable or addable properties and monotonic
functions like linear models. Chen et al. [13] introduce a
distance metric to bound robustness properties and train a
verifiable classifier. Huang et al. [29] explore certified defenses
for CNNs using random deletion inspired by random smooth-
ing [17]. Daniel et al. [23] use (De) randomized smoothing
to build a verifiable model based on binary segmentation and
majority voting. Despite certified robustness, these defenses
may fail against aggressive attacks like GAMMA [47].

Empirical adversarial training bolsters model robustness.
Quiring et al. [63] combine heuristic semantic-gap detectors
with an ensemble of classifiers to counter evasion attacks. Al-
Dujaili et al. [2] use randomized rounds in adversarial training
for API-based detectors, noting ineffectiveness against new
attacks. Tong et al. [80] propose iterative adversarial training
on PDF datasets. Li et al. [40] introduce AT-MaxMA, hardened
by mixed adversarial training, proving robust against Android
malware. PAD-SMA [39] furthers this with a convex outer
bound and a stepwise attack mixture, optimizing the worst-case
loss for provable robustness to any norm-bound attacks. PAD-
SMA shows the ability for defending against unseen evasion
attacks. Lucas et al. [48] show that using real adversarial PE
examples in training, combined with multiple attacks, results
in more robust models.

Our training approach diverges from the conventional focus
on hardening models against specific attacks. Instead, we try
to mitigate the pervasive issue of sparsity in malware detection
datasets, ameliorating the associated problems by filling in
sparse regions. By mitigating sparsity, we enhance both the
robustness and performance of models. More importantly, our
strategy is complementary to existing training methods.

IV. HOW DOES SPARSITY AFFECT MODELS?

A. Motivation

Low-density subspaces are deemed detrimental as they
represent regions of sparse data, potentially with minimal or no
points. A model can assign excessively large weights to these
sparse subspaces to reduce training loss without immediate
repercussions on performance. This could lead the model to
learn superficial classification rules, which are not indicative of
the underlying data distribution. To elucidate this motivation,
we present a hypothetical example in Figure 1.

Suppose Figure 1(a) illustrates the actual distribution of
a two-class dataset, upon which a robust classifier could be
trained where the classification mainly relies on feature X
(we refer to horizontal direction as feature X and vertical
direction as feature Y). However, in most practical cases,
the observable training data are sampled independently and
identically from this actual distribution, potentially resulting in
significant sparsity as depicted in Figure 1(b). Consequently, a
few samples within sparse regions, irrespective of whether they
are maliciously inserted or naturally occurring, can severely
distort the classifier’s decision boundary, as shown in Fig-
ure 1(c). Ultimately, this susceptibility to noise can result in
misclassification, as illustrated in Figure 1(d).

With this intuition, one can easily associate sparsity with
multiple threats to the model:

Backdoor attacks: The yellow dot in Figure 1(c) is
maliciously inserted as poison to warp the model boundary.
As a result, points with the trigger (large value in feature Y)
will be misclassified; see Figure 1(d).

Evasion attacks: The yellow dot in Figure 1(c) is naturally
occurring and it causes a distorted boundary. Adversaries
can increase the value of Y to achieve misclassification; see
Figure 1(d). Moreover, feature Y is less relevant to the classifi-
cation rule on actual distribution, which may be imperceptible.

Clean performance and Model sustainability: As long
as there are such warped boundaries, model decisions are
vulnerable in the sparse regions. Any examples present in
such sparse regions may be wrongly classified, leading to
degradation in clean performance. In particular, the scenarios
with serious concept drift where many unrepresented areas in
the training become densely filled in the testing stage can lead
to a drastic model aging phenomenon (degraded performance
on newly emerged points).

4

0 89 17
8

26
7

35
7

44
6

53
5

62
5

80
3

89
3

16
07

Feature values

0.0

0.2

0.4

0.6

0.8

1.0 % of Malware to Benign
% of Benign to Malware
% of samples existed

Fig. 2: The feature distribution of registry count in EMBER.

Two real-world examples are provided to demonstrate the
severity of sparsity threats, as shown in Figure 2. It displays
the distribution of a feature (registry count) from the EMBER
(PE) dataset [5], exhibiting a long-tail distribution where the
x-axis represents the value space and the y-axis denotes the
percentage of samples within that range (termed density). This
indicates a pronounced sparsity. Moreover, when these values
are introduced into the test set, they exert a significant influence
on the model’s predictions. Specifically, samples with more
than 1,607 registries are highly likely to be misclassified as
benign. This phenomenon is not confined to tabular datasets
such as EMBER feature sets [5]. In a Support Vector Machine
(SVM) trained on the DREBIN dataset [7], a prevalent Android
feature set with binary features, similar issues arise where less
frequent features in the dataset disproportionately influence the
model’s decisions, as shown in Figure 3.

In a more comprehensive way, we adopt variation ratio
to quantify the sparsity of a dataset, which had been used
by Tian et al. [79] to select backdoor triggers within sparse
regions. Variation ratio evaluates the dispersal level of data
(from 0 to 1). A low variation ratio indicates there is a value
with predominant density and comes with a series of sparse
regions. We calculate the variation ratio across all features on
different datasets including EMBER, DREBIN, Contagio and
other seven benchmark tabular datasets [25] (not for malware
detection) to show the severe status quo of malware detection-
related datasets, see Figure 4. As we can see, the datasets
for malware detection tasks demonstrate more severe sparsity
than other datasets, especially EMBER (PE) and DREBIN
(Android). In addition, the characterization of binaries typi-
cally requires a larger number of features (e.g. Contagio (153),
EMBER (2,381), and DREBIN (more than 630K)) than other
seven datasets whose feature numbers are extremely tiny from
8 to 54. More importantly, malware detection tasks are in a
highly adversarial scenario. All of this reinforces the necessity
of mitigating the sparsity in malware detection tasks.

1 2 5 10 50 100 >100
Occurrences

0

200

400

600

Fe
at

ur
e

co
un

ts

Fig. 3: Top 1000 features with highest weights in DREBIN.

EMBER
DREBIN

Contagio

Electricity

Eyemove

Covertype

Albert
Credit

Road
Compas

Datasets

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

tio
n

Ra
tio

Fig. 4: The variation ratio distribution on different datasets.

B. Strategies for Addressing Sparsity

Intuitively, two principal methodologies present themselves
as potential solutions to the sparsity problem:

• Feature Compression: This technique involves the
reduction of the feature space, thereby mitigating
the impact of low-density regions. This concept is
illustrated in Figure 5(a).

• Filling Sparse Regions: Enhancing the density of
sparse regions within the training set can effectively
neutralize the influence of such spaces. This approach
is demonstrated in Figure 5(b).

In light of these considerations, we propose a novel feature
compression method designed to eradicate extremely sparse
regions. Furthermore, we introduce a density-boosting training
strategy. This training strategy consistently fills sparse regions,
with the objective of encouraging models to discern more
profound semantic patterns rather than relying on superficial
associations within sparsely populated feature spaces. Through
these interventions, our goal is to cultivate models that are not
only resilient to adversarial perturbations but are also capable
of making informed decisions based on a richer and more
nuanced understanding of the data.

(a) Compressing the sparse regions. (b) Filling the sparse regions.

Fig. 5: Solving sparsity problems.

V. SOLVING THE SPARSITY PROBLEM

In this section, we introduce our methods to solve the spar-
sity problems. We mainly propose two strategies in mitigating
this problem, including a subspace compression with value
bundling and a density-boosting robust training.

5

A. Subspace Compression with Bundling

We introduce a novel subspace compression that incorpo-
rates a value bundling mechanism. It merges subspaces based
exclusively on density criteria rather than label distribution.
Our experiments, detailed in Appendix B, demonstrate the
redundancy of considering label distribution.

Step 1 - Outlier Processing: Our methodology commences
with the processing of each feature in the training set using a
box plot (See formal algorithm in Appendix H). The 25th and
75th quartile values, Q1 and Q3, are calculated, representing
the points below which 25% and above which 75% of all
values fall, respectively. The interquartile range (IQR), defined
as Q3−Q1, is then determined. Values lying outside the range
of Q1−3×IQR and Q3+3×IQR are adjusted to the boundary
values. To address the potential elimination of information-rich
features, we implement a binarization mechanism for features
where Q3 equals Q1. The value with the highest density is
designated as 0, while all others are set to 1.

Step 2 - Subspace Combination: Subsequently, the pro-
cessed values are distributed into 100 bins using a histogram.
Bins with a density below a predefined threshold, H , are
iteratively merged with adjacent bins of lower density. This
process continues until the minimum density exceeds H or
only two bins remain, ensuring that critical information is
retained and not eliminated. Figure 6 shows the processing
of num_write_sections and export_libs_hash66.
Formal algorithm can be found in Appendix H.

Step 3 - Value Bundling: The final step achieves the
target density through value bundling across different features.
Features with densities below the threshold are bundled with
the sparsest values of other features that result in the fewest
conflicts. We define “conflicts” between Feature A and B
as occurrences where non-major values (values not with the
highest density) of Feature A are accompanied by the non-
major value of Feature B. For example, if a feature’s non-
major value always comes with another features’ major value,
they are “exclusive”. See Figure 7 for illustration of bundling
Feature A with Feature B. After bundling, the features are
merged. see formal algorithm in Appendix H.

This systematic approach ensures that our model navigates
the sparsity challenge by enhancing the density of feature
space, fostering a more robust and semantically rich training
process; see Figure 6. The initial distributions, depicted in the
two figures on the left column, exhibit extreme sparsity. Those
in the middle column represent the value distribution post-
outlier removal (Step 1), resulting in a significant reduction
in distinct values. Figures on the right column display the
outcome of subspace combination (Step 2), where sparse
values such as the value 5 in num_write_sections are
amalgamated with the adjacent bin. export_libs_hash66
is not further combined as it has only two values left.

Note that the original outlier processing (without binariza-
tion) and subspace combination [79] are directly applied, caus-
ing 73% sparse features to be removed. However, features of
high sparsity may contain critical information for classification.
Our proposal is different as it does not kill any features. The
outlier processing method has a novel binarization mechanism
which transforms dense values into 0 and sparse values into
1. The subspace combination does not kill any features either

0 9 18 27 37 46 55 65 74 83
0

50000

100000

150000

200000

N
u
m

b
e
r

o
f

s
a
m

p
le

s
 w

it
h
 t

h
e
 v

a
lu

e

Original(num_write_sections)

0 1 2 3 4 5
0

50000

100000

150000

200000

Outlier processed(num_write_sections)

0 1 2 3 4
0

50000

100000

150000

200000

Combined(num_write_sections)

-5
6

-4
7

-3
8

-2
9

-2
0

-1
1 -2 6 15 24

0

100000

200000

300000

400000

500000

600000
Original(export_libs_hash66)

0.0 0.5 1.0

Feature values

0

100000

200000

300000

400000

500000

600000
Outlier processed(export_libs_hash66)

0.0 0.5 1.0
0

100000

200000

300000

400000

500000

600000
Combined(export_libs_hash66)

Fig. 6: Outlier processing and subspace combining

with early termination. After the processing and combination,
features that do not meet the threshold requirement are bundled
(not removed). In this way, our proposal is expected to retain
more classification information while boosting the density. See
Section VII-A for more details.

Value A1 Value A2
0.0

0.2

0.4

0.6

0.8

1.0

D
e
n
s
it

y

Threshold:0.08

0.95

0.05

Feature A (Initial State)

Value B1 Value B2 Value B3
0.0

0.2

0.4

0.6

0.8

1.0

0.7

0.21

0.09

Feature B (Initial State)

Value B1 Value B2 Value B3
0.0

0.2

0.4

0.6

0.8

1.0

0.65

0.21

0.14

Feature B (After merging)

Fig. 7: Bundling values.

B. Filling the sparse regions

During training, we incorporate a density boosting strategy
aimed at consistently filling the sparse regions to enhance the
model’s resilience against sparsity-induced influences.

Density Boosting (DB): An intuitive and efficient method
is to replace existing feature values with the sparse ones. We
consider the value distribution to facilitate the selection of
sparse values in a manner that is inversely proportional to
their existing density, thereby making the final distribution
uniform, as illustrated in Figure 8. Specifically, for each sample
in the training stage, a subset of features is randomly selected,
and these features are all assigned sparse values which are
determined based on a probability distribution q defined as:

q =

[
1
d0∑K
i=1

1
di

,
1
d1∑K
i=1

1
di

, . . . ,
1
dK∑K
i=1

1
di

]
where di represents the density of the i-th value of the feature.

The optimization problem is formalized as:

min
{θ}

E(x,y)∈D̂ [L(x, y, θ) + L(db(x), y, θ)] (2)

where x represents the input sample, y is the corresponding
ground truth label, and db(x) denotes the sample x with the

6

Value 0 Value 1 Value 20.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

De
ns

ity

(a) The original distribution of values.

Value 0 Value 1 Value 20.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

(b) The distribution after density
boosting.

Fig. 8: An example of density boosting applied.

augmented sparse values. This approach trains the model on
both the original and augmented data.

Furthermore, we also experimented with alternative filling
strategies, such as assigning zeros or uniformly random values
to the features. However, these approaches led to diminished
backdoor robustness and did not yield improvements in other
performance metrics, see Appendix E for more details.

VI. EXPERIMENTAL EVALUATION

A. Preliminaries

1) Datasets: EMBER-v2 [5] is a labeled benchmark
dataset of Windows portable executable files, comprising
2,381-feature vectors extracted from 800K binary files: 600K
training samples (300K malicious, 300K benign) and 200K
testing samples (100K benign and 100K malicious). A sample
is labeled benign if no engines flag it as malicious, and is
labeled malicious if more than 40 engines flag it as such. The
dataset includes five groups of parsed features: General file in-
formation, Header information, Imported functions, Exported
functions, and Section information, and three groups of format-
agnostic features: Byte histogram, Byte-entropy histogram,
String information, and Data directory. Additionally, EMBER-
v2 gives consideration to temporal consistency [60]; for ex-
ample, all training samples are primarily collected between
January 2017 and October 2017, while all testing samples are
collected in November and December 2017.

SOREL-20M is the largest public PE dataset with the
same features as EMBER-v2. It contains 12,699,013 train-
ing samples (7,596,407 malware and 5,102,606 goodware),
2,495,822 validation samples (962,222 malware and 1,533,579
goodware), and 4,195,042 test samples (1,360,622 malware
and 2,834,441 goodware), where the labeling criteria are based
on 1 or fewer flags for benign and 5 or more for malicious. The
data was collected from January 1, 2017, to April 10, 2019.
We utilize SOREL samples from January 1, 2018, onwards for
evaluating the effects of concept drift because it has a large
scale and offers a realistic, yet distinct, distribution compared
to the EMBER-v2 dataset.

2) Models: We consider 10 models for evaluation as below:

VanillaNN [68]: In this case, we do not apply any com-
pressions and directly normalize the features to have a mean
of 0 and a variance of 1.

LightGBM [5]: We adopt LightGBM as it was originally
selected for the EMBER dataset and demonstrates the best

performance on it. Also, tree-based models naturally come
with a strong “subspace compression” effect.

LTNN [66]: Logistic Transformation was previously used
by ALOHA [66] and has demonstrated good performance on
SOREL-20M. We hence adopt it for preprocessing datasets.
Refer to the Equation below for details.

Xprocessed =

{
− ln(1−X), if X < 0

ln(1 +X), if X > 0
(3)

BinarizedNN [80]: It has been verified to improve the
robustness against PDF detectors; the operation replaces all
non-zero values with 1.

HistogramNN [33]: The histogram-based algorithm was
introduced to speed up the training of LightGBM, and its
ability to discretize continuous floating-point features into bins
may also help improve models’ robustness. We use a small
number of bins, specifically 6.

SCNN [79]: Subspace compression was proposed to de-
fend against backdoor attacks, although it degrades the models’
clean performance. This can also be seen as the counterpart of
SCB without binarization and value bundling.

SCBNN: This is our proposal in this paper and is used to
compare with the other strategies.

SCBNN-DB: We consider a varied perturbation to explore
more varieties by perturbing 1%-15% of random features
during training. For details of other settings, see Appendix E.

We delineate the specific metrics employed in this paper:

AUT (Area Under Time): AUT is a metric proposed
by Tesseract [60], which defines the area under the curve in
each figure to represent the model’s sustainability over time
as shown in Equation 4, where f in the performance metric
(e.g. F1 score, Precision, Recal, etc.), N is the number of test
slots, and f(k) is performance metric evaluated at the time k,
and in our case the final metric is the AUT (F1,M) where M
denotes the test samples’ spanning months. An AUT metric
that is closer to 1 means better performance over time.

AUT(f,N) =
1

N − 1

N−1∑
k=1

[f(k + 1) + f(k)]

2
(4)

ASR (Attack Success Rate): The ASR is defined as the
proportion of malware instances that were previously classified
correctly but are misidentified as benign by the target model
under adversarial conditions.

Research Questions: The experimental design is struc-
tured to address the following research questions:

1) RQ1: Analysis of Sparsity Effect on Performance
and Sustainability. Does addressing the sparsity in
data enhance the performance and sustainability of
malware detectors? (see Section VI-B)

2) RQ2: Analysis of Sparsity and Backdoor Attacks.
Does mitigating sparsity in feature spaces improve
the robustness of malware detectors against backdoor
attacks? (see Section VI-C)

7

3) RQ3: Analysis of Sparsity and Evasion Attacks. Does
addressing sparsity bolster the resilience of malware
detectors against evasion attacks? (see Section VI-D)

B. Effect of Sparsity on Performance and Sustainability

This section presents an evaluation of model performance
under clean conditions, devoid of adversarial interference.

Performance on the EMBER Testing Set Our analysis
begins with evaluating model performance at different com-
pression rates on the EMBER test set, shown in Figure 9.
Results show our compression preserves performance, with
SCBNN outperforming VanillaNN and original SC in F1
scores. The benefit of value bundling is clear, when compar-
ing SCBNN (without bundling). SCBNN still yield excellent
performance under high compression rates, reaching 99.456%
F1 score at 8% density. Thus, we chose 8% as the main
compression rate for further experiments.

0.01 0.02 0.04 0.08 0.16
Density

0.9920

0.9925

0.9930

0.9935

0.9940

0.9945

F1
 S

co
re

SCNN
VanillaNN
SCBNN (without bundling)
SCBNN

Fig. 9: Clean performance under different compression rates.

Table I compares final model performances, showing
LTNN, HistogramNN, and SCBNN generally outperform
vanilla NN. SCBNN excels over other compression methods,
supporting our hypothesis that handling sparse regions im-
proves performance. Density boosting further enhances this,
with SCBNN-DB reaching an F1 score of 99.488%. Light-
GBM surpasses other NN models without density boosting
due to tree-based models’ inherent feature compression, align-
ing with the prevalent performance superiority of tree-based
models on tabular datasets [25].

Performance on SOREL-20M: We then evaluated
model performance under concept drift using the SOREL-
20M dataset, with monthly F1 scores leading to the final
AUT (F1,16m) shown in Table I. Except for BinarizedNN,
compression improves performance, with SCBNN leading at
94.444% among NN models without density boosting. Density
boosting strategies further enhance performance, achieving an
AUT of 95.135%, outperforming even LightGBM.

Our strategies were also tested on the seven dense datasets
from Section IV-A. Results varied, with improvements in six
datasets and slight decline in one (that with the largest amount
of data). Sparsity mitigation may be less critical for such dense
datasets without attack considerations; see Appendix C.

TABLE I: Performance of different models

Model F1 score FP rate FN rate AUT (F1,16m) on SOREL

VanillaNN 0.99302 0.00442 0.00958 0.92850
LTNN 0.99311 0.00400 0.00977 0.93312

BinarizedNN 0.98942 0.00776 0.01339 0.91887
HistogramNN 0.99390 0.00323 0.00852 0.94148

SCNN 0.99225 0.00397 0.01148 0.93387
LightGBM 0.99470 0.00258 0.00799 0.94651

SCBNN 0.99456 0.00363 0.00721 0.94444
SCBNN-DB 0.99488 0.00381 0.00642 0.95135

Answer to RQ1:

Addressing sparse regions does improve performance and
sustainability. Our strategies present a promising approach
for training on tabular malware datasets.

C. Analysis of Sparsity and Backdoor Attacks

Here, we assess defense against two backdoor attacks: VR-
based backdoors [79] and EG-based backdoors [68].

1) Implementing backdoor attacks: Creating a model back-
door involves: 1) Choosing a feature combination as the
trigger, and 2) Selecting benign samples, known as “poisoning
seeds”, to mark with the trigger. These poisoned instances,
with the embedded trigger, are then merged into the training
set, training a model with a backdoor.

VR-based Trigger [79]: VR-based triggers excel in at-
tacking malware detectors by targeting sparse feature-value
regions, allowing substantial trigger weights without harming
clean data performance.

EG-based Trigger [68]: EG-based triggers encompass
three sub-variants, from which we select the greedy strategy.
This strategy prioritizes the selection of feature-value com-
binations that are more aligned with benign orientations, as
determined by SHAP values.

P-value-based Poison [79]: P-value-based poisons are
generated based on samples difficult to be classified, forcing
the model to rely on the trigger for classification. This ap-
proach is used for both VR- and EG-based triggers.

2) Settings: Given that knowing the feature set is quite
important for backdoor attacks, we assume strong, adaptive
attackers aware of the victim detectors’ feature set and com-
pression strategies for a fair comparison. Following the origi-
nal papers [68], [79], we consider 16 controllable, non-hashed
features, detailed in the Appendix F. In addition, adversaries
can access detector outputs for p-value computation, common
as vendors allow sample submission for detection. For EG-
based backdoors, we assume direct model access for calcu-
lating SHAP values. The adversary then introduces “poisons”
(watermarked benign samples) into the training set to implant
a backdoor in the model.

3) Experimental Results: We incrementally added poisoned
samples to evaluate our strategies’ backdoor attack efficacy,
with results in Figure 10(a) (VR-based) and Figure 10(b) (EG-
based). SCB strategy excels in enhancing robustness against
both backdoor attacks. With 3,000 poisons, the attack success
rates are only 29.139% (VR-based) and 11.002% (EG-based)

8

30 300 3000 30000
Number of poisons

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

a
c
k
 s

u
c
c
e
s
s
 r

a
te

VanillaNN

LightGBM

LTNN

BinarizedNN

HistogramNN

SCNN

SCBNN

SCBNN-DB

(a) VR-based Backdoor Attacks

30 300 3000 30000
Number of poisons

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

a
c
k
 s

u
c
c
e
s
s
 r

a
te

VanillaNN

LightGBM

LTNN

BinarizedNN

HistogramNN

SCNN

SCBNN

SCBNN-DB

(b) EG-based Backdoor Attacks

Fig. 10: Evaluation of backdoor attacks on different models.

on SCBNN. Even at 10% poisoning, VR-based backdoors’
attack success rate is only 65.226%, proving subspace com-
pression’s effectiveness. Other strategies, except original SC,
show less robustness, with ASR for VR attacks reaching 80%
at 300 poisons. Vanilla models are especially vulnerable, with
99.99% ASR for VR-based backdoors at just 30 poisons.
SCB’s slightly better robustness over SC is likely due to more
retained features, causing the trigger to be relatively smaller.
Density boosting strategies also moderately improve backdoor
robustness. For SCBNN-DB, VR attack rates are 23.710% (1%
poisons) and 50.352% (10% poisons). The results underscore
that addressing sparsity is key to enhancing malware detectors’
resilience against backdoor attacks.

4) Advanced attackers: Here, we examine SCBNN-DB’s
resilience against advanced adversaries capable of arbitrarily
manipulating feature values to assess the robustness under the
worst conditions. The quantity of poisons introduced is fixed
at 3,000 (1% of the benign set). Results are in Figure 11.

With arbitrary feature changes, both backdoor types show
increased efficacy. Yet, SCBNN-DB retains robustness at
trigger sizes below 64. For instance, VR-based backdoors,
utilizing 16 features, and EG-based backdoors demonstrate
attack success rates of 35.268% and 47.003% on SCBNN-
DB, respectively. Furthermore, as the trigger size expands to
128, the attack success rates increase to 99.952% for EG-based
backdoors and 93.646% for VR-based backdoors. Notably,
despite potent attacks, these features are all hash-based with
interrelated changes, complicating control.

16 32 64 128

Trigger size

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

a
c
k
 s

u
c
c
e
s
s
 r

a
te

EG-based

VR-based

Fig. 11: Backdoor attacks with arbitrary feature modification.

Answer to RQ2:

Mitigating sparsity largely enhances models’ robustness
against backdoor attacks. Within all strategies, our proposal
demonstrates the best robustness against backdoors.

D. Analysis of Sparsity and Evasion Attacks

This section evaluates model robustness against evasion
attacks, focusing on two potent black-box, query-based tech-
niques: GAMMA [29], [47] and MAB [73].

1) Implementing Evasion Attacks: We delineate the foun-
dational principles underlying the evasion attacks as follows.

GAMMA: Demetrio et al. [47] introduce a genetic pro-
gramming method for creating evasive PE malware examples.
The approach frames the evasion as a constrained minimization
task, balancing the evasion likelihood against payload size, The
process iteratively (i) extracting payloads from goodwares, (ii)
injecting them into target malware, and (iii) computing and
selecting variants based on the objective function.

MAB-malware: MAB-malware [73] employs Reinforce-
ment Learning (RL) for black-box evasion attacks under hard
labels using a one-state Markov decision process. It selects
from candidate actions like OA/SA (appending benign con-
tent/section), SP (appending random bytes), RC/RD/BC (clear-
ing cert/debug/checksum), SR (section rename), and CR (code
randomization) to explore and exploit reward likelihoods. After
finding an evasive sample, it refines actions to the minimized
version (details in Appendix D). MAB-malware aims to find
a set of influential actions.

Settings: We download 1,000 malwares from Virusshare1

to implement both attacks. To guarantee the quality of the mal-
ware, they are all labeled malicious by 40+ engines. We adopts
the settings in the original paper where the number of queries is
60 for MAB and 100 for GAMMA, and therefore GAMMA’s
population size is 10 while the iteration of generation is 10.

2) Experimental Results: GAMMA attack results are
shown in Figure 12. GAMMA is highly effective, surpass-
ing 60% ASR on all models. Most compression strategies

1https://virusshare.com/about

9

showed limited defense, except LightGBM and SCNN. No-
tably, SCBNN provided no improvement, as SCB integrates
sparse features to others, keeping their influence on model.
Instead, the removal of these sparse features, as seen in
the SCNN approach, does enhance robustness. Additionally,
Density boosting slightly improves resilience. To further prove
the effect of density boosting, we then combined density
boosting with SCNN, and GAMMA only demonstrates 61.8%
with F1 scores at 99.322%. Thus, mitigating sparsity does
enhance robustness against GAMMA.

0 2 4 6 8 10
Total number of attempts

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

s r
at

e

VanillaNN
LightGBM
LTNN
BinarizedNN

HistogramNN
SCNN
SCBNN
SCBNN-DB

Fig. 12: Attack success rate of GAMMA.

MAB-malware demonstrates greater attack potency than
GAMMA (see Figure 13) due to a wider range of actions.
While models like LTNN and SCBNN-DB show slower in-
creases in attack success, MAB-malware achieves over 90%
for most models, with LTNN reaching a maximum of 80%.

0 10 20 30 40 50 60
Total number of attempts

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 su

cc
es

s r
at

e

VanillaNN
LightGBM
LTNN
BinarizedNN

HistogramNN
SCNN
SCBNN
SCBNN-DB

Fig. 13: Attack success rate of MAB malware.

Despite potent attacks, model behaviors vary, with Fig-
ure 14 showing successful evasion action sets’ percentages.
Models like SCBNN-DB require more actions for evasion;
a single OA action achieves 37.44% evasion on SCBNN-
DB. LightGBM is highly vulnerable, with 80% of malware
undetectable by applying only one OA action. Notably, LTNN
and BinarizedNN are more susceptible to SR (Section Rename)
actions, with over 82% mislabeled benign by altering section
names. This reveals LTNN and BinarizedNN’s fragile decision-
making. Our observations also highlight a limitation within the
MAB-malware framework where the MAB-malware frame-
work disproportionately increases the likelihood of selecting
SR actions due to their high efficacy, leading to all subsequent
operations being derived from the SR set and hindering higher
evasion rates on LTNN models.

Unlike GAMMA’s sequential attacks, MAB-malware eval-
uates actions in parallel across samples, finding strongly

evasive sets. With limited queries and robust models, MAB-
malware might not identify sufficient actions for high efficacy.
As Table II shows, at 6,000 queries (100 samples, each with
60 queries), MAB-malware’s average success rate is 37.18%,
ranging from 8.53% to 85.621% on SCBNN-DB. This suggests
that the decision of SCBNN-DB is somewhat more complex
and robust to more actions than other strategies.

TABLE II: MAB-malware attacks at 6,000 queries.

Model Attack success rate

VanillaNN 1.0
LightGBM 0.9588

LTNN 0.8454
BinarizedNN 0.8980
HistogramNN 0.9375

SCNN 0.8854
SCBNN 0.8351

SCBNN-DB 0.3718

We see that both evasion attacks demonstrate strong attack
effectiveness. This is because that they are not one-off but
rather apply a range of actions persistently until the “malicious
signal” predominates. Mitigating sparsity, albeit to a limited
extent, does indicate an improvement in robustness against
such practical evasions. It is noteworthy that our proposed
method is complementary to other defensive strategies and can
be effectively integrated with them.

3) Combining with other defensive methods: This part
presents the integration of our methods with state-of-the-art
defensive techniques to demonstrate improvements in model
robustness. We primarily focus on PAD-SMA [39]. PAD-SMA
(Principled Adversarial Detection) constructs a convex outer
bound realized by a DNN-based malware detector and an
adversary detector, both enhanced by adversarial training
incorporating the Stepwise Mixture of Attacks. SMA selects
the strongest variant from all generated adversarial examples
in every attack step. Therefore, PAD-SMA computes and
optimizes the worst-case loss within the convex outer bound,
training a model that is provably robust to any norm-bounded
adversarial attacks [39]. PAD-SMA was originally verified on
an Android dataset with DREBIN features and demonstrated
state-of-the-art defensive effects. We adopted the same settings
as in the original paper. The logic is as follows: when a sample
arrives, it is classified by a malware detector. If classified
as benign, the adversary detector is then applied to check if
adversarial. If identified as benign and non-adversarial, then
returns a benign label (0); otherwise, returns 1 (detected as
malicious) or undetectable (detected as adversarial).

We evaluated three models, VanillaNN+PAD2,
SCBNN+PAD, and SCBNN-DB+PAD, on the clean F1
scores, attack success rates for VR-based and EG-based
backdoor attacks (3,000 poisons with 16 practical features),
and both GAMMA and MAB-malware evasion attacks. The
results are presented in Table III.

From the results, we draw several conclusions: firstly,
addressing sparsity remains crucial for EMBER datasets; with-
out compression, models exhibit significantly inferior clean

2The original feature values are standardized into continuous values between
0 and 1, and the trained model without PAD achieves 99.301% F1 score on
the testing set.

10

[OA]
[SR

]
[OA*2]

[OA,SR
]

[OA*2,
SR

]
[OA*3]

[SR
1]

[OA,SR
1]

[OA*4,
SR

]
[OA*4]

0
20
40
60
80

100
Pe

rc
en

ta
ge

 %

(a) VanillaNN

[OA]
[OA*2]

[OA*3]
[OA*4]

[OA*5]

[OA*4,
SR

1]

[OA*2,
SR

1]
[OA*6]

[OA,SR
]

[RD]0
20
40
60
80

100

(b) LightGBM

[SR
]

[SR
,SR

1]
[SR

*2]
[SR

1]

[SR
*2,

SR
1]

[SR
*3]

[SR
,SR

1*2
]

[SR
*3,

SR
1]

[SR
1*2

]
[SR

*5]
0

20
40
60
80

100

(c) LTNN

[SR
]

[SR
1]

[SR
*2]

[SR
,SR

1]
[SR

*3]

[SR
*2,

SR
1]

0
20
40
60
80

100

(d) BinarizedNN

[OA]

[OA,SR
]

[OA,SR
1]

[OA*2]

[OA*2,
SR

]
[OA*3]

[OA*2,
SR

1]

[OA*3,
SR

]
[SR

]

[OA,SR
,SR

1]
0

20
40
60
80

100

Pe
rc

en
ta

ge
 %

(e) HistogramNN

[OA]
[OA*2]

[OA*3]
[OA*4]

[OA*5]
[OA*7]

[OA*6]

[OA*4,
SR

]

[OA,SR
]

[OA*6,
SR

]0
20
40
60
80

100

(f) SCNN

[OA]
[OA*2]

[OA*3]
[OA*4]

[OA*2,
SR

1]
[OA*5]

[OA*2,
SR

]
[OA*6]

[OA,SR
]

[OA,SR
1]

0
20
40
60
80

100

(g) SCBNN

[OA]
[OA*2]

[OA*3]
[OA*4]

[OA*5]
[OA*6]

[OA*8]
[OA*7]

[OA,RC]
[RC]0

20
40
60
80

100

(h) SCBNN-DB

Fig. 14: Action combinations that cause evasions.

TABLE III: Evaluation on models with PAD.

Metric VanillaNN+PAD SCBNN+PAD SCBNN-DB+PAD

F1 score 0.97136 0.99240 0.99362
Rejected ratio 0.05 0.0235 0.0305
ASR on VRB 0.99021 0.13640 0.01883
ASR on EGB 0.63251 0.05210 0.00875

ASR on GAMMA 0.868 0.563 0.256
ASR on MAB 0.968 0.873 0.806

performance, with PAD offering no robustness improvement.
Secondly, density boosting consistently enhances performance
across different aspects. Thirdly, PAD further strengthens
robustness against backdoor attacks as PAD perturbs only
malicious examples for adversarial training, preventing exac-
erbation of the backdoor effect in goodwares. Lastly, while
MAB-malware consistently achieves high attack success rates
across models, SCBNN+PAD and SCBNN-DB+PAD demon-
strate robust to more actions, and therefore MAB-malware
have to explore stronger attack budgets, as shown in Figure 15.

Oblivious Attacks: In prior scenarios, the adversary could
adjust perturbations based on feedback from detectors to evade
both the malware detector and the adversary detector. In an
oblivious attack, only the malware detector’s prediction is
returned, yet the adversary detector still influences the final
decision. Under this, GAMMA and MAB-malware see reduced
success rates (19.8% and 76.2%) on SCBNN-DB+PAD. Fur-
ther exploration of defenses against MAB-malware is needed
but is beyond this paper’s scope.

Given that malware detectors often pay less attention
to perturbation size compared to image recognition [24],
[53], conventional robust and adversarial training may not
suffice [29], [39]. Our observations show that without an adver-
sary detector GAMMA achieves a 68.522% attack success rate
on SCBNN-DB+PAD without the adversary detector. Thus, in
malware detection, prioritizing adversary detection over robust
or adversarial training alone is advisable.

[OA]

[OA*2,
SR

]
[OA*2]

[OA,SR
]

[OA*2,
SR

1]

[OA,SR
1]

[OA*3,
SR

]

[OA*2,
SR

,SR
1]

[OA*3,
SR

1]

[OA*4,
SR

]0
20
40
60
80

100

(a) SCBNN+PAD

[OA*2] [OA]
[OA*3]

[OA*4]
[OA*5]

[OA*6] [RC]

[OA*7]

[OA*2,
RC]

[OA*2,
SR

1]
0

20
40
60
80

100

Pe
rc

en
ta

ge
 %

(b) SCBNN-DB+PAD

Fig. 15: Evasions on models with PAD.

Answer to RQ3:

Addressing sparsity bolsters the resilience (despite marginal)
against query-based evasion attacks, enhances the decision,
and increases attackers’ query budgets. More importantly,
our proposal is complementary to other defensive strategies.

E. Evaluation on PDF datasets

Our research expands to include an evaluation on the
Contagio PDF dataset3, which encompasses a collection of
9,109 benign and 11,106 malicious PDF files. Each PDF file
is decomposed into a 135-dimensional feature vector, derived
from the features outlined in PDFRate [71].

We considered six models for evaluation:

• Random Forest, configured with default settings as
presented in Mimicus [74],

• NN, a neural network trained on the original dataset,

• LTNN/BinarizedNN/HistogramNN, a neural net-
work trained on a dataset with the corresponding
processing method,

• SCNN/SCBNN, a neural network trained on a pro-
cessed dataset with minimum density threshold 16%,

• SCBNN-DB, a neural network trained with density
boosting on the aforementioned processed dataset.

3https://contagiodump.blogspot.com/2013/03/16800-clean-and-11960-
malicious-files.html

11

• SCBNN+PAD and SCBNN-DB+PAD, SCBNN and
SCBNN-DB integrated with PAD-SMA.

The dataset is divided into 70% training set and 30% test
set, with the training set further split into 90% training set
and 10% validation set. As shown in Table IV, SCBNN and
SCBNN-DB show no significant gains due to high perfor-
mance saturation. Models with PAD further improve perfor-
mance by rejecting about 4% of inputs.

TABLE IV: Attack success rate on PDF datasets.

F1 score VRB EGB Mimicry
×1

Mimicry
×10

Mimicry
×30

Random Forest 0.99863 0.99370 0.99201 0.743 1.0 1.0
NN 0.99852 0.99119 0.98690 0.575 0.995 1.0

LTNN 0.99874 0.74498 0.18952 0.475 0.910 0.970
BinarizedNN 0.99849 0.32736 0.56511 0.230 0.765 0.935
HistogramNN 0.99892 0.40286 0.25122 0.320 0.950 0.990

SCNN 0.99849 0.40023 0.14560 0.205 0.76 0.9750
SCBNN 0.99897 0.22615 0.14880 0.281 0.862 0.977

SCBNN-DB 0.99882 0.01061 0.00068 0.334 0.893 1.0
SCBNN+PAD 0.99904 0.02105 0.02280 0.02 0.053 0.075

SCBNN-DB+PAD 0.99939 0.00520 0.0 0.01 0.06 0.085

Backdoor Attacks: We consider an adaptive adversary
with access to the training set and model predictions, using
16 of 35 arbitrarily modifiable features and create 200 (1%)
poisons for backdoor attacks. Table IV shows SCBNN-DB’s
near-perfect resilience. Moreover, the attack success rates for
VR and EG backdoors minimal is at 8.136% and 5.136% even
with 2,000 poisons. We also note that PAD integration does
not compromise backdoor robustness.

Evasion Attacks: We adopt Mimicus [74] as evasion
attacks, altering PDFs by inserting string patterns between the
CRT and trailer, simulating benign behavior in all 68 modifi-
able features (see Appendix G). Mimicry×N denotes creating
N adversarial instances from distinct N benign PDFs. Table IV
shows that BinarizedNN, SCNN, SCBNN and SCBNN-DB
have slightly better robustness (below 30% at Mimicry× 1) at
lower mimicry levels, but all models fail beyond 30 instances.
After all, PAD integration maintains significant robustness,
confirming our method’s compatibility with PAD techniques.

F. Evaluation on Android datasets

For evaluation on Android dataset, we use Federico et
al. [22] provided dataset, which comprises 232,848 benign
and 26,387 malicious apps sourced from AndroZoo [3]. The
apps cover a time span of 5 years, ranging from January
2014 to December 2018. Specifically, training and validation
are conducted using apps from the year 2014, while testing
is performed over the remaining period. It is based on the
same feature rule as DREBIN [7] as it is widely-adopted
and demonstrates the best performance [22], [41], [60], [79].
DREBIN uses a binary feature space to abstract an app
where components (activities, permissions, URLs, etc) are
represented as present (1) or absent (0). The DREBIN feature
is with binary values and extremely sparse (only 0.1% features
appeared in at least 1% samples). While we are unable to apply
the subspace compression strategies, but the feature selection
and value bundling is still available. Therefore, we consider
1) a feature selection strategy which selects features whose
density is larger than 1% and 2) a value bundle strategies: we
first remove the features with occurrences less than 50, and
bundling feature values whose density is smaller than 4%.

We conducted a comparative analysis of seven models:

• SVM, a support vector machine leveraging the com-
plete set of 640,008 features for training [22],

• NN-Selected, a neural network trained on the 1,000
most “important” features identified through L1 regu-
larization [14], [68], [79],

• NN-Dense, a neural network trained on 682 selected
features exceeding 1% density threshold,

• NN-Bundle, a neural network trained on the remain-
ing 558 features post-bundling to 4% density,

• NN-DB, a neural network trained with density boost-
ing strategy on the remaining 558 bundled features,

• NN-Bundle+PAD and NN-DB+PAD, SCBNN and
SCBNN-DB integrated with PAD-SMA.

The evaluation framework encompasses three key metrics:
AUT(F1, 48m), backdoor robustness, and evasion robustness.
We also consider evaluation on advanced APIGraph fea-
tures [91], see Section VII-C.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Timeline

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

F1
 S

co
re

SVM (AUT:0.46915)
NN-DB (AUT:0.58345)
NN-Selected (AUT:0.47189)
NN-Density (AUT:0.51703)
NN-Bundle (AUT:0.52316)

Fig. 16: Performance under concept drift scenarios.

AUT Analysis: Figure 16 shows performance profiles with
NN-DB largely outperforming others, reaching an AUT (F1,
48m) of 58.345%. Models trained on dense features as NN-
Dense and NN-Bundle outperformed NN-Selected on L1-
regularized features and full-feature SVM. This supports the
hypothesis that sparsity hinders performance. Notably, density
boosting also enhances performance under PAD; see Table V.

Backdoor Attacks: Given DREBIN features’ malleabil-
ity [68], [79], we hypothesized an adaptive adversary with full
feature manipulation and access to dataset/model. The back-
door is based on a 16-feature trigger and 1% benign dataset
poisoning. Table V shows that backdoors significantly affected
most models (even NN-Bundle and NN-DB showing limited
resilience) with VR backdoors at a 91.523% success rate. A
higher bundle ratio (16%) on NN-DB reduced the feature set
to 176, lowering AUT to 52.253% and marginally improving
backdoor resistance to 81.240% for VR attacks. This vulner-
ability stems from DREBIN’s fully binarized and extremely
sparse features. Bundling alone provided marginal defense,
but combined with PAD, it mitigated backdoors substantially.
Notably, dense features remain essential for DREBIN; NN-
Selected with PAD achieved AUT of 49.852% and 74.812%
ASR for VR backdoors, indicating insufficient defense.

12

TABLE V: Attack success rate on Android datasets.

AUT(F1,48m) VRB EGB Mimicry
×1

Mimicry
×10

Mimicry
×30

SVM 0.46915 0.83671 0.00102 0.316 0.721 0.840
NN-Selected 0.47189 0.99075 0.98690 0.491 0.788 0.858
NN-Dense 0.51703 0.96760 0.97770 0.634 0.939 0.977
NN-Bundle 0.52316 0.85580 0.80251 0.374 0.848 0.966

NN-DB 0.58345 0.91523 0.85532 0.290 0.784 0.962
NN-Bundle+PAD 0.52709 0.13820 0.0535 0.086 0.182 0.256

NN-DB+PAD 0.55567 0.16556 0.0512 0.04 0.204 0.316

Evasion Attacks: We also examined mimicry attacks,
known for effectiveness against Android detectors [39].
Mimicry attackers [74] modify malware to mimic benign apps
without internal model knowledge, querying models instead.
Using Nben benign examples, the attacker creates Nben per-
turbed samples. Table V shows that while NN-Bundle and
NN-DB show some robustness, all models fail against mimicry
attacks at 30 steps (Mimicry×30). Combining with PAD-SMA
still markedly enhanced robustness against mimicry evasions.

VII. DISCUSSION

A. Ablation Study on Subspace Compression with Bundling

We delve into an ablation analysis of our strategy on
Subspace Compression with Bundling (SCB) by meticulously
examining each component’s removal and its impact; see
Figure 17. Notably, after incorporating outlier processing (Step
1), we observed a marked improvement in performance with
the F1 score on EMBER testing set rising from 99.302% to
99.417% and the AUT on Sorel-20M soaring from 92.850% to
94.003%. This enhancement underscores the detrimental effect
of extreme sparsity on performance. Our Step 1 incorporates
a binarization mechanism designed to preserve classification
information, the absence of which (as original SC’s outlier
processing) results in a lower F1 score of 99.228% and an
AUT of 93.188%.

Original Step 1 Step 2 Step 3
0.99300
0.99325
0.99350
0.99375
0.99400
0.99425
0.99450

F1
 S

co
re

Merging of sparse values

Fig. 17: Ablation study on Subspace Compression with
Bundling.

Subsequently, we explored the impact of subspace com-
bination (Step 2) which led to a minor fluctuation in perfor-
mance, with the F1 score dipping to 99.402% and the AUT
climbing to 94.422%. This outcome is attributed to the merging
of non-binary feature values to a density just above 8%, leaving
many binary features with sparse regions intact.

Ultimately, upon bundling all sparse features (Step 3), we
observed a further enhancement in performance, with the F1
score reaching 99.456% and the AUT increasing to 94.444%.
This outcome signifies that our SCB strategy effectively retains
classification information even at high compression rates. We

also tried directly merging sparse values instead of bundling,
which results in the F1 scores dropping to 99.385% and the
AUT decreasing to 93.788%.

B. Sparse Feature Elimination

We considered an alternative solution of removing features
with sparse regions and evaluated the performance. Specifi-
cally, we referred to the VR-based backdoor strategy to assess
sparsity, which involves dividing the feature value space into
five subsections and calculating the variation ratio. A low
variation ratio indicates that most values are concentrated
within a subspace while others are extremely sparse. In this
manner, we attempted to remove features with a variation ratio
lower than a threshold (e.g., 0.01, where 99% of samples
belong to a main subspace and only 1% of values exist
in other subspaces). The results showed that after removing
features with a variation ratio below 0.01, only 287 features
remained, and the F1 score decreased to 99.041%, while the
AUT on Sorel-20M decreased to 92.235%. We also considered
removing features with variation ratio lower than 0.1, with only
64 features left and the F1 scores decreased to 98.547% and
AUT decreased to 90.645%, see Table VI.

TABLE VI: Performance under Sparse feature elimination.

feture kept F1 score AUT(F1,16m)

Original 2,381 0.99302 0.92850
VR≥0.01 287 0.99041 0.92235
VR≥0.1 64 0.98547 0.90645

SCB (8% density) 1,239 0.99456 0.94444

More importantly, sparse subspaces still exist; see Fig-
ure 18 for illustration where x-axis indicates the corresponding
values, and we further verified that VR-based backdoors can
still achieve a 96.237% attack success rate with 4 features and
30 poisons. Therefore, directly dropping features with large
sparsity is not an effective solution.

0.0 0.0
4
0.0
8
0.1
2
0.1
6 0.2 0.2

3
0.2
7
0.3
1
0.3
50.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35

De
ns
ity

Fig. 18: Value distribution of ByteEntropyHistogram208.

C. Advanced API Features

In addition to processing the raw DREBIN feature set,
we also consider some advanced API features, namely API-
Graph [91], which associates and bundles all semantically-
equivalent or similar APIs to stabilize the feature spaces, thus
naturally slowing down classifier aging. We applied APIGraph
to DREBIN and retrieved 148 APIGraph features.

13

We considered three models: 1) NN-APIGraph-Selected,
trained on APIGraph-based features combined with another
1,000 important features selected using L1 regularization; 2)
NN-APIGraph-Dense, trained on APIGraph features com-
bined with 735 other features above 1% density; 3) NN-
APIGraph-Bundle, trained on a dataset with APIGraph and
our bundling applied sequentially (above 4% density) with
509 features left. Results show that NN-APIGraph-Selected
shows an improved AUT of 51.549%, NN-APIGraph-Dense
demonstrates an AUT of 52.963%, and NN-APIGraph-Bundle
achieves 54.039%. We see that mitigating sparsity achieves
better performance over APIGraph features, while our bundling
strategy is orthogonal to APIGraph and does not diminish the
performance gains provided by APIGraph. At last, we tried
density boosting on the dataset used by NN-APIGraph-Bundle
and the final AUT performance increased to 60.156%.

Given that APIGraph affects only API-based features, it
did not enhance robustness against attacks. For example, VR-
based backdoor still achieves 88.46% ASR, while Mimicry×
30 has 95.8% ASR.

VIII. CONCLUSION

This paper elucidates the detrimental effects of sparsity
on model performance and underscores its pervasiveness, and
introduces a novel subspace compression technique coupled
with density-boosting training, demonstrating that mitigating
sparsity can enhances model performance, robustness, and sus-
tainability simultaneously. The proposal is verified compatible
with existing defensive strategies.

ACKNOWLEDGMENT

This research / project is supported by the National Re-
search Foundation, Singapore, and the Cyber Security Agency
of Singapore under its National Cybersecurity R&D Pro-
gramme (Proposal ID: NCR25-DeSCEmT-SMU). Any opin-
ions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not reflect
the views of the National Research Foundation, Singapore, and
the Cyber Security Agency of Singapore.

REFERENCES

[1] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, U. Me-
teriz, and A. Mohaisen, “Examining adversarial learning against graph-
based iot malware detection systems,” arXiv, 2019.

[2] A. Al-Dujaili, A. Huang, E. Hemberg, and U. M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in Proc.
of SPW, 2018.

[3] K. Allix, T. Bissyandé, J. Klein, and Y. Traon, “Androzoo: collecting
millions of android apps for the research community,” in Proc. of MSR,
2016.

[4] B. Amos, H. Turner, and J. White, “Applying machine learning clas-
sifiers to dynamic android malware detection at scale,” in Proc. of
IWCMC, 2013.

[5] H. Anderson and P. Roth, “EMBER: an open dataset for training static
PE malware machine learning models,” CoRR, 2018.

[6] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static pe machine learning malware models via reinforcement
learning,” arXiv, 2018.

[7] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: effective and explainable detection of android malware in
your pocket,” in Proc. of NDSS, 2014.

[8] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing
robustness of machine learning systems via data transformations,” in
Proc. of CISS, 2018.

[9] B. Biggio, I. Corona, Z. He, P. P. K. Chan, G. Giacinto, D. S. Yeung,
and F. Roli, “One-and-a-half-class multiple classifier systems for secure
learning against evasion attacks at test time,” in Proc. of MCS, 2015.

[10] L. Chen, S. Hou, Y. Ye, and S. Xu, “Droideye: Fortifying security of
learning-based classifier against adversarial android malware attacks,”
in Proc. of ASONAM, 2018.

[11] S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” Computers and Security, 2018.

[12] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and
K. Ren, “Android HIV: A study of repackaging malware for evading
machine-learning detection,” IEEE Trans. Inf. Forensics Secur., 2020.

[13] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust PDF
malware classifiers,” in Proc. of USENIX Security, 2020.

[14] Z. Chen, Z. Zhang, Z. Kan, L. Yang, J. Cortellazzi, F. Pendlebury,
F. Pierazzi, L. Cavallaro, and G. Wang, “Is It Overkill? Analyzing
Feature-Space Concept Drift in Malware Detectors,” CoRR, 2023.

[15] Z. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in Proc. of USENIX Security,
2017.

[16] G. Chuan, R. Mayank, C. Moustapha, and V. Laurens, “Countering
adversarial images using input transformations,” Proc. of ICLR, 2018.

[17] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proc. of ICML, 2019.

[18] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and
F. Roli, “Adversarial exemples: A survey and experimental evaluation of
practical attacks on machine learning for windows malware detection,”
ACM Trans. Priv. and Secu., 2021.

[19] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be more
secure! A case study on android malware detection,” CoRR, 2017.

[20] A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Biggio, A. Oprea,
C. Nita-Rotaru, and F. Roli, “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks,” in Proc.
of USENIX Security, 2019.

[21] A. Deo, S. K. Dash, G. Suarez-Tangil, V. Vovk, and L. Cavallaro,
“Prescience: Probabilistic guidance on the retraining conundrum for
malware detection,” in Proc. of AISec, 2016.

[22] B. Federico, P. Feargus, P. Fabio, and C. Lorenzo, “Transcending Tran-
scend: Revisiting Malware Classification in the Presence of Concept
Drift,” Proc. of Usenic Security, 2020.

[23] D. Gibert, G. Zizzo, Q. Le, and J. Planes, “Adversarial robustness of
deep learning-based malware detectors via (de)randomized smoothing,”
IEEE Access, 2024.

[24] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. of ICLR, 2015.

[25] L. Grinsztajn, E. Oyallon, and G. Varoquaux, “Why do tree-based
models still outperform deep learning on typical tabular data?” in Proc.
of NeurIPS, 2022.

[26] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” CoRR, 2016.

[27] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabil-
ities in the machine learning model supply chain,” CoRR, 2017.

[28] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on gan,” in Proc. of ICDM, 2022.

[29] Z. Huang, N. G. Marchant, K. Lucas, L. Bauer, O. Ohrimenko, and
B. I. P. Rubinstein, “Rs-del: Edit distance robustness certificates for
sequence classifiers via randomized deletion,” Proc. of NeurIPS, 2023.

[30] I. Incer, M. Theodorides, S. Afroz, and D. A. Wagner, “Adversarially
robust malware detection using monotonic classification,” in Proc. of
IWSPA, 2018.

[31] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, “Transcend: Detecting concept drift in malware
classification models,” in Proc. of USENIX Security, 2017.

14

[32] Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Investigating
labelless drift adaptation for malware detection,” in Proc. of AISec,
2021.

[33] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
in Proc. of NeurIPS, 2017.

[34] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, “Rhmd:
Evasion-resilient hardware malware detectors,” in Proc. of MICRO,
2017.

[35] D. Kirat and G. Vigna, “Malgene: Automatic extraction of malware
analysis evasion signature,” in Proc. of CCS, 2015.

[36] M. Krcál, O. Svec, M. Bálek, and O. Jasek, “Deep convolutional
malware classifiers can learn from raw executables and labels only,”
Proc. of ICLR, 2018.

[37] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Deceiving end-to-end deep learning malware detectors using
adversarial examples,” arXiv, 2018.

[38] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in Proc.
of SP, 2019.

[39] D. Li, S. Cui, Y. Li, J. Xu, F. Xiao, and S. Xu, “PAD: Towards
Principled Adversarial Malware Detection Against Evasion Attacks,”
IEEE Transactions on Dependable and Secure Computing, 2023.

[40] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Transactions on Information
Forensics and Security, 2020.

[41] D. Li, Q. Li, Y. Ye, and S. Xu, “Enhancing robustness of deep neural
networks against adversarial malware samples: Principles, framework,
and aics’2019 challenge,” arXiv, 2018.

[42] D. Li, Q. Li, Y. F. Ye, and S. Xu, “Arms Race in Adversarial Malware
Detection: A Survey,” ACM Computing Surveys, 2023.

[43] H. Li, S. Zhou, W. Yuan, X. Luo, C. Gao, and S. Chen, “Robust android
malware detection against adversarial example attacks,” Proc. of WWW,
2021.

[44] J. Li et al., “Recent advances in end-to-end automatic speech recog-
nition,” APSIPA Transactions on Signal and Information Processing,
2022.

[45] X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen, Y. Qian, C. Wu,
S. Ji, T. Luo et al., “Adversarial attacks against windows pe malware
detection: A survey of the state-of-the-art,” Computers & Security, 2023.

[46] S. Lo and V. M. Patel, “Error diffusion halftoning against adversarial
examples,” in Proc. of ICIP, 2021.

[47] D. Luca, B. Battista, L. Giovanni, R. Fabio, and A. Alessandro,
“Functionality-preserving black-box optimization of adversarial win-
dows malware,” IEEE Trans. Inf. Fore. Secu., 2021.

[48] K. Lucas, S. Pai, W. Lin, L. Bauer, M. K. Reiter, and M. Sharif,
“Adversarial training for raw-binary malware classifiers,” in Proc. of
USENIX Security, 2023.

[49] S. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Proc. of NeurIPS, 2017.

[50] D. Maiorca, B. Biggio, and G. Giacinto, “Towards robust detection of
adversarial infection vectors: Lessons learned in pdf malware,” arXiv,
2018.

[51] D. Maiorca, A. Demontis, B. Biggio, F. Roli, and G. Giacinto, “Ad-
versarial detection of flash malware: Limitations and open issues,”
Computers & Security, 2020.

[52] D. Meng and H. Chen, “Magnet: A two-pronged defense against
adversarial examples,” in Proc. of CCS, 2017.

[53] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in Proc. of CVPR,
2016.

[54] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in Proc. of AISec, 2017.

[55] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “Context-
aware, adaptive, and scalable android malware detection through online
learning,” IEEE Trans. Emerg. Top. Comput. Intell., 2017.

[56] S. Narisada, Y. Matsumoto, S. Hidano, T. Uchibayashi, T. Suganuma,
M. Hiji, and S. Kiyomoto, “Countermeasures against backdoor attacks
towards malware detectors,” in Proc. of CANs, 2021.

[57] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. J. Ross,
and G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models (extended version),” ACM Trans.
Priv. Secur., 2019.

[58] M. Osadchy, J. C. Hernandez-Castro, S. J. Gibson, O. Dunkelman,
and D. Pérez-Cabo, “No bot expects the deepcaptcha! introducing
immutable adversarial examples, with applications to CAPTCHA gen-
eration,” IEEE Trans. Inf. Forensics Secur., 2017.

[59] M. Paknezhad, C. P. Ngo, A. A. Winarto, A. Cheong, C. Y. Beh, J. Wu,
and H. K. Lee, “Explaining adversarial vulnerability with a data sparsity
hypothesis,” Neurocomputing, 2022.

[60] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” in Proc. of Usenix Security, 2019.

[61] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ML attacks in the problem space,” in Proc. of
SP, 2020.

[62] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D.
Lawrence, Dataset shift in machine learning. Mit Press, 2008.

[63] E. Quiring, L. Pirch, M. Reimsbach, D. Arp, and K. Rieck, “Against
All Odds: Winning the Defense Challenge in an Evasion Competition
with Diversification,” CoRR, 2020.

[64] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole EXE,” in Proc. of
AAAI, 2018.

[65] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi,
“Microsoft malware classification challenge,” CoRR, 2018.

[66] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. Harang, “Aloha:
Auxiliary loss optimization for hypothesis augmentation,” in Proc. of
USENIX Security, 2019.

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” computer vision, 2015.

[68] G. Severi, J. Meyer, S. E. Coull, and A. Oprea, “Explanation-guided
backdoor poisoning attacks against malware classifiers,” in Proc. of
USENIX Security, 2021.

[69] T. Shapira, D. Berend, I. Rosenberg, Y. Liu, A. Shabtai, and Y. Elovici,
“Being single has benefits. instance poisoning to deceive malware
classifiers,” CoRR, 2020.

[70] A. Singh, A. Walenstein, and A. Lakhotia, “Tracking concept drift in
malware families,” in Proc. of AISec, 2012.

[71] C. Smutz and A. Stavrou, “Malicious PDF detection using metadata
and structural features,” in Proc. of ACSAC, 2012.

[72] ——, “When a tree falls: Using diversity in ensemble classifiers to
identify evasion in malware detectors.” in Proc. of NDSS, 2016.

[73] W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin,
“MAB-Malware: A Reinforcement Learning Framework for Blackbox
Generation of Adversarial Malware,” Proc. of Asia CCS, 2022.

[74] N. Srndic and P. Laskov, “Practical evasion of a learning-based classi-
fier: A case study,” in Proc. of SP, 2014.

[75] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitras, “When
does machine learning fail? generalized transferability for evasion and
poisoning attacks,” in Proc. of USENIX Security, 2018.

[76] O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples in
malware detection,” in Proc. of SPW, 2019.

[77] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
Proc. of ICLR, 2014.

[78] G. Tao, Y. Liu, G. Shen, Q. Xu, S. An, Z. Zhang, and X. Zhang, “Model
Orthogonalization: Class Distance Hardening in Neural Networks for
Better Security,” Proc. of SP, 2022.

[79] J. Tian, K. Qiu, D. Gao, Z. Wang, X. Kuang, and G. Zhao, “Sparsity
brings vulnerabilities: Exploring new metrics in backdoor attacks,” in
Proc. of USENIX Security, 2023.

15

TABLE VII: Description of Action set — Types and Abbreviations

Type Abbr Name Description

Macro

OA Overlay Append Appends benign contents at the end of a binary
SP Section Append Appends random bytes to the unused space between sections.
SA Section Add Adds a new section with benign contents.
SR Section Rename Change the section name to a name in benign binaries.
RC Remove Certificate Zero out the signed certificate of a binary.
RD RD Remove Debug Zero out the debug information in a binary.
BC Break Checksum Zero out the checksum value in the optional header.
CR Code Randomization Replace instruction sequence with semantically equivalent one.

Micro

OA1 Overlay Append 1 Byte Appends 1 byte at the end of a binary
SP1 Section Append 1 Byte Appends 1 byte to the unused space at the end of a section.
SA1 Section Add 1 Byte Adds a new section with 1 byte content.
SR1 SR1 Section Rename 1 Byte Change 1 byte of a section name.
CP1 Code Section Append 1 Byte Appends 1 byte to the unused space at the end of the code section.

[80] L. Tong, B. Li, C. Hajaj, C. Xiao, N. Zhang, and Y. Vorobeychik, “Im-
proving robustness of ml classifiers against realizable evasion attacks
using conserved features.” in Proc. of USENIX Security, 2019.

[81] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal
of Computational and Graphical Statistics, 2001.

[82] X. Wang, C. Liu, X. Hu, Z. Wang, J. Yin, and X. Cui, “Make data
reliable: An explanation-powered cleaning on malware dataset against
backdoor poisoning attacks,” in Proc. of ACSAC, 2022.

[83] E. Wong and Z. Kolter, “Provable defenses against adversarial examples
via the convex outer adversarial polytope,” in Proc. of ICML, 2018.

[84] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer
android malware detection system applying deep neural networks,” in
Proc. of EuroSP, 2018.

[85] K. Xu, Y. Li, R. Deng, K. Chen, and J. Xu, “Droidevolver: Self-evolving
android malware detection system,” in Proc. of EuroSP, 2019.

[86] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial
examples in deep neural networks,” in Proc. of NDSS, 2018.

[87] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for
security applications,” Proc. of USENIX Security, 2021.

[88] L. Yang, Z. Chen, J. Cortellazzi, F. Pendlebury, K. Tu, F. Pierazzi,
L. Cavallaro, and G. Wang, “Jigsaw Puzzle: Selective Backdoor Attack
to Subvert Malware Classifiers,” Proc. of SP, 2023.

[89] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, 2022.

[90] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth, B. Li, D. Boning,
and C.-J. Hsieh, “Towards stable and efficient training of verifiably
robust neural networks,” arXiv, 2019.

[91] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api semantics
to detect evolved android malware,” in Proc. of CCS, 2020.

[92] Y. Zhu, J. Sun, and Z. Li, “Rethinking adversarial transferability from
a data distribution perspective,” in Proc. of ICLR, 2022.

APPENDIX

A. Illustration of previous processing methods

Here we provide illustrative examples to explain why
previous processing methods (including feature squeezing with
4-bit depth [86], logistic transformation [66], histogram [33],
and binarization [80]) did not effectively eliminate sparse
regions, see Figure 19. We apply these processing methods on
the EMBER feature, num_write_sections. As observed,
only binarization mitigates the sparsity, and the others still
exhibit a clearly sparse area. However, binarization is not
effective for all features if a feature contains an extremely
large or small number of zeros; see export_libs_hash66
in Figure 6.

0 5 11 17 23 28 34 40 46 51 57 63 69 74 80 86

0.0

0.2

0.4

0.6

0.8

1.0

De
ns
ity

(a) Feature Squeezing

0.0 0.5 1.0
1
1.5
1
2.0
1
2.5
2
3.0
2
3.5
3
4.0
30.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

De
ns
ity

(b) Logistic Transformation

0.00.0
7
0.1
4
0.2
1
0.2
8
0.3
5
0.4
2
0.4
9
0.5
6
0.6
3
0.7
1
0.7
80.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

De
ns
ity

(c) Histogram

0 10.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

De
ns
ity

(d) Binarization

Fig. 19: Examples of applying different processing methods.

B. Performance Evaluation on Varied Level of Label Distri-
bution

Here, we demonstrate that considering label distribution
is unnecessary for subspace compression. Specifically, we
enforce a different combination rule that spaces whose density
lower than threshold 0.08 are iteratively combined with one
of its neighbour sections based on Jenson’s Shannon (JS)
divergence (calculated based on the label distribution) and the
density of the target section. We use the JS divergence instead
of KL divergence because JS divergence has a confined value
space (0-1), and therefore we can incorporates the density
of the subspace into consideration. In detail, the line 21 in
Algorithm 3, yl ≤ yr, is replaced with α× JSDiv(ym,yl)
+(1 − α) × yl

yl+yr
≤ α× JSDiv(ym,yr) +(1 − α) × yr

yl+yr
.

In this way, we can adjust α from 0 (density only) to 1
(label distribution only) to control the significance of label
distribution during the combination. The results can be found
in Figure 20 which shows that varied α demonstrate minimal
effect on the performance. To be noted, the model is trained
on dataset before value bundle stage.

16

0 0.1 0.3 0.6 0.9 1
Varied ®

0.9939
0.9940
0.9941
0.9942
0.9943
0.9944
0.9945

F1
 S

co
re

Fig. 20: Clean performance under varied α.

C. Applying our strategies on dense datasets

Given that our strategies are theoretically feasible to all
tabular datasets, we then apply them to the seven dense
datasets mentioned in Section sec:motivation. We consider a
small density (1%) since there is no attack consideration. The
results can be found in Table VIII. We can see that mitigating
sparsity does not consistently improve the performance on such
dense datasets. In detail, Covertype contains more than 420K
samples, indicating a higher density. Therefore, mitigating
sparsity may not be so important anymore especially when
there is no attack consideration.

VanillaNN SCBNN SCBNN-DB

Electricity 0.85728 0.88112 0.88832
Evemove 0.62529 0.65331 0.64433
Covertype 0.96525 0.96346 0.96186

Albert 0.67737 0.68006 0.69436
Credit 0.70210 0.70921 0.70731
Road 0.80214 0.79889 0.80235

Compas 0.67490 0.66728 0.68170

TABLE VIII: F1 scores on the seven dense datasets.

D. The action sets of MAB-malware framework

Table VII shows the action sets used in MAB-malware
framework.

E. Density Boosting with different settings

This section presents an evaluation of various density
boosting configurations based on the EMBER dataset. We
examined four distinct settings for comparison:

1) Zero-filled: Selected features are filled with zeros
instead of sparse values.

2) Random-filled: Selected features are filled with uni-
formly random values.

3) Fixed-filled: A fixed percentage, such as 10%, of
features are filled with sparse values.

4) Varied-filled: A variable percentage, ranging from 1%
to 15%, of features are filled with sparse values.

Our assessment was based on three metrics: F1 scores,
Attack Success Rate (ASR) for VR-based backdoors with

TABLE IX: Evaluation on density boosting strategies with
different settings.

F1 VRB GAMMA

Zero-filled 0.99481 0.52178 0.921
Random-filled 0.99476 0.33249 0.872

Fixed-filled 0.99479 0.22785 0.905
Varied-filled 0.99488 0.23710 0.869
More-filled 0.99458 0.12235 0.835

3,000 poisons utilizing a 16-feature practical trigger, and
GAMMA evasions. The results are summarized in Table IX,
leading to several conclusions:

1) Zero-filled settings improved F1 scores but exhibited
reduced robustness against backdoor and evasion at-
tacks, as detailed in Table IX.

2) Random-filled settings resulted in marginally lower
F1 scores and diminished robustness against back-
doors, as illustrated in Table IX.

3) Fixed-filled settings matched the robustness against
backdoors comparable to our current approach
but demonstrated slightly inferior performance and
lacked defense against GAMMA evasion, as ob-
served in Table IX. Moreover, when the poisoning
size increased to 10%, Fixed-filled underperformed
compared to Varied-filled, with VR-based backdoors
achieving an ASR of 60.124% for Fixed-filled versus
50.352% for Varied-filled.

Consequently, we selected the varied (1%-15%) perturbation
with sparse values as our final configuration. We also ex-
perimented with filling a larger proportion of features (1%-
30%) with sparse values; however, while this approach slightly
enhanced robustness against attacks, it led to a decrease in F1
scores to 99.458%, as indicated in Table IX.

F. The practical features under problem space consideration

Table X lists the 16 practical features used for implement-
ing backdoors.

TABLE X: The practical features under problem space
consideration.

Features

path count
url count

registry count
MZ count
timestamp

num write section
num execute section

num zero size sections
num unnamed sections
major image version
minor image version
major linker version
minor linker version

major operating system version
minor operating system version

minor subsystem version

17

G. The modifiable features for PDFRate features

Within the 135 disclosed features, Mimicus [74] allow for
modification on 68 features, where 33 is increment-only while
the other 35 are all editable. Table G lists the 68 modifiable
features in PDFRate [71] feature set.

Features with IncrementOnly Values
(33 in total)

Features with Editable Values (35 in
total)

count acroform author dot
count image xlarge author lc
count acroform obs author num
count image xsmall author oth
count action author uc
count javascript createdate ts
count js createdate tz
count objstm creator dot
count objstm obs creator lc
count page creator num
count stream creator oth
count trailer creator uc
count xref producer dot
size producer lc
count box a4 producer num
count box legal producer oth
count box letter producer uc
count box other version
count box overlap
count endobj
count endstream
count eof
count font
count font obs
count image large
count image med
count image small

TABLE XI: Supported features in the MIMICUS framework
for modification.

H. Algorithms for Subspace Compression with Bundling

We present algorithms for the outlier processing and sub-
space combination and value bundling, see Algorithm 1, 3
and 2.

Algorithm 1 Process outliers with binarization

Input: Feature values x;
1: p25, p50, p75 = Percentile(x, [25, 50, 75])
2: if p25 ̸= p75 then
3: iqr = p75 − p25
4: lb = p25 − 3× iqr
5: ub = p75 + 3× iqr
6: x[x < lb] = lb
7: x[x > ub] = ub
8: else
9: indicies = x == p25

10: x[indicies] = 0
11: x[∼ indicies] = 1
12: end if

Algorithm 2 Value Bundling Algorithm

Input: Dataset matrix X; Threshold H;
1: while True do
2: Find the feature with the lowest density, Fmin, in the

dataset
3: if The lowest density in feature Fmin is greater than

the threshold H then
4: Terminate the loop
5: end if
6: Find the feature Ftarget that has the least conflict with

feature Fmin

7: Bind feature Fmin to Ftarget

8: Delete feature Fmin

9: end while

Algorithm 3 Subspace Compression with Early Stop

Input: Feature values x; Labels Y ; Threshold H;
1: x = ProcessOutliers(x)
2: if len(set(x))> 100 then
3: x = Histogram(x, 100)
4: end if
5: valueset = sorted(set(x))
6: for v in valueset do
7: densities[m] = len(x[x==v])/len(x)
8: end for
9: md = min(densities)

10: index = valueset.index(md)
11: while md < H and len(densities)> 2 do
12: v = valueset[index]
13: if index == 0 then
14: target = index+ 1
15: else if index == len(densities)− 1 then
16: target = index− 1
17: else
18: yl = Y [x == valueset[index− 1]]
19: ym = Y [x == valueset[index]]
20: yr = Y [x == valueset[index+ 1]]
21: if len(yl) ≤ len(yr) then
22: target = index− 1
23: else
24: target = index+ 1
25: end if
26: x[x == valueset[index]] = valueset[target]
27: end if
28: densities[target]+ = densities[index]
29: del densities[index]
30: del valueset[index]
31: md = min(densities)
32: index = valueset.index(md)
33: end while

18

