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Abstract—Recent advancements in synthetic speech genera-
tion, including text-to-speech (TTS) and voice conversion (VC)
models, allow the generation of convincing synthetic voices, often
referred to as audio deepfakes. These deepfakes pose a growing
threat as adversaries can use them to impersonate individuals,
particularly prominent figures, on social media or bypass voice
authentication systems, thus having a broad societal impact. The
inability of state-of-the-art verification systems to detect voice
deepfakes effectively is alarming.

We propose a novel audio deepfake detection method,
VoiceRadar, that augments machine learning with physical
models to approximate frequency dynamics and oscillations in
audio samples. This significantly enhances detection capabilities.
VoiceRadar leverages two main physical models: (i) the Doppler
effect to understand frequency changes in audio samples and (ii)
drumhead vibrations to decompose complex audio signals into
component frequencies. VoiceRadar identifies subtle variations,
or micro-frequencies, in the audio signals by applying these
models. These micro-frequencies are aggregated to compute the
observed frequency, capturing the unique signature of the audio.
This observed frequency is integrated into the machine learning
algorithm’s loss function, enabling the algorithm to recognize
distinct patterns that differentiate human-produced audio from
AI-generated audio.

We constructed a new diverse dataset to comprehensively eval-
uate VoiceRadar, featuring samples from leading TTS and VC
models. Our results demonstrate that VoiceRadar outperforms
existing methods in accurately identifying AI-generated audio
samples, showcasing its potential as a robust tool for audio
deepfake detection.

I. INTRODUCTION

Modern deep learning-based generative AI has demon-
strated astonishing capabilities to produce compelling and au-
thentic voices, often referred to as audio deepfakes [53]. Tools
for generating such audio deepfakes are publicly available and
relatively easy to deploy and execute on traditional computing
devices without significant technical know-how. Thus, their
usage, especially for harmful purposes such as disseminating
misinformation and propaganda [19], and defamation and
character assassination [59], [41], is rapidly growing. A recent
incident involved fraudsters who used AI-driven deep-fake

software to impersonate US President Joe Biden’s voice in
a robocall urging people not to vote [66]. The vast amount
of voice recordings that are shared online daily left individu-
als, organizations, politicians, and governments vulnerable to
targeted attacks by phony perpetrators [36]. Thus, developing
efficient and practical techniques for verifying the authenticity
of audio (voice) recordings to prevent such abuse by means
of audio deepfakes has become a crucial challenge [8].

Consequently, numerous techniques have been proposed in
the literature to distinguish audio deepfakes from authentic
human voice, which can be broadly categorized into machine
learning (ML) based approaches [63], [7], [70], [12], [78],
[52] and deep learning (DL) based approaches [71], [78], [9],
[43], [45], [23], [13], [87], [82]. However, these methods have
significant shortcomings and are not effective in determining
the authenticity of audio samples. One drawback of ML-based
approaches is that they require manual feature extraction and
extensive pre-processing for optimal performance. This time-
intensive and inconsistent nature of ML-based approaches has
led to the development of advanced DL methods for deepfake
detection. Although DL-based approaches eliminate manual
feature extraction and the need for lengthy training, they
require specific audio data transformations for algorithmic
compatibility. For example, input audio data is transformed
to speech log probabilities or the input audio is transferred
to scatter plot images of neighboring samples. However,
one of the main limitations of all existing audio deepfake
detectors is their limited adaptability and generalization to
detect a wide variety of deepfake audios. Bhagtani et al.
[11] compared several recently proposed detection tools on
their new dataset and demonstrated that synthetic speech
detectors show significant drops in accuracy compared to their
performance on training datasets. Similarly, Muller et al. [57]
evaluated the performance of various detection tools on in-
and out-of-domain test data. Their findings confirm that these
existing detection tools do not generalize well to unseen data.
Moreover, existing audio deepfake detection approaches show
insufficient performance, with an EER of at least 6.1%, as
we demonstrate in our evaluation (see Sect. V). Therefore,
further research is required to address these shortcomings and
to develop effective and practical audio deepfake detection
techniques.
Our goals and contributions: We propose VoiceRadar, a
versatile and, to the best of our knowledge, the first deep-
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fake audio detection technique inspired by the physical phe-
nomenon of wave propagation, precisely the Doppler effect
and drumhead vibrations, which are used to capture tiny
frequency changes (or micro-frequencies) caused by small,
subtle movements within an object.

The rationale behind our approach is twofold: First, by
augmenting the model training process with physical princi-
ples like the Doppler effect and drumhead vibration directly,
we leverage well-established knowledge to guide learning,
enabling the extraction of meaningful features that represent
dynamic frequency shifts in human voice. Despite advances
in state-of-the-art generative tools, AI-generated audio lacks
subtle yet important features that exist in the rich human voice,
such as temporal variability (e.g., timing, inconsistencies in
rhythm), micro-intonations, and pitch fluctuation influenced
by emotions, physical effort, or conversational dynamics,
and emotional nuances and contextual adaptability. These
features capture the continuous variability inherent in human-
generated audio, which is difficult for AI-generated audio to
replicate. Consequently, AI-generated audio vibrates at lower
frequency values compared to human-produced audio or does
not produce subtle frequency changes or properties observed in
human-generated audio. Using physical processes (mentioned
above) to model micro-frequencies of a given input audio,
VoiceRadar uncovers these distinct subtle properties of audio
waves, thus enhancing detection accuracy. Second, feeding
these features into machine learning models makes the model
learn the natural distribution of frequencies present in human-
generated audio and distinguish them from the more uniform
distribution in AI-generated audio.

In our approach, we simulate natural sound wave propa-
gation from a source to an observer to distinguish between
human- and AI-generated audio. Unique values in the audio
embedding are treated as discrete radii in a concentric circle
model, where the smallest values start at the source and
the largest reach the observer. Using the physical model of
the Doppler effect [58], we determine the frequency shift as
sound moves from the source (human or AI) to the observer
(VoiceRadar). We then use the physical model of drumhead
vibrations [65], [26] to model different micro-frequencies of
each radius (each unique value in the audio embedding) in
a concentric circle model. This captures the audio’s rhythmic
beats, subtle variations, and nuances, which differ for human-
and AI-generated audio. In essence, the source sends the
audio waves modulated with various frequencies (translation,
vibrational, and rotational) toward the observer, who perceives
the obtained waves with a modified frequency.

This observed frequency information is integrated into our
machine learning model as a regularization term, helping it
to learn natural audio patterns and distinguish them from
synthetic ones. By embedding physical knowledge into the
training process, our approach effectively bridges the gap
between human-like audio dynamics and AI-generated pat-
terns. This approach is rooted in incorporating prior physical
knowledge into machine learning models [46], [50], which is
crucial for their effectiveness.

In very recent work, Kumari et al. [40] utilized the princi-
ples of the Doppler effect and drumhead vibration to design
a ChatGPT detector, called DEMASQ tailored to distinguish
between ChatGPT-generated text and human-written content.
Their model cannot be employed in the audio domain, as
audio is a continuous, multidimensional waveform involving
time, frequency, and amplitude. Consequently, DEMASQ was
limited to approximating the Doppler effect to capture only
the translational biases in text generation, while our approach
captures the translational, rotational, and vibrational biases.
This difference in input complexity significantly influences
the methodologies used in the two approaches. Thus, we
take inspiration from this work and extend it substantially to
utilize the physical models of the Doppler effect and drumhead
vibration to integrate micro-frequencies which helps to classify
the deepfake audio efficiently.

To evaluate our proposed VoiceRadar technique and to
provide a benchmark dataset for future work, we created a
dataset incorporating the latest Generative AI tools for speech
synthesis. The dataset consists of more than 100 000 different
audio samples, generated using 8 text-to-speech (TTS) mod-
els [89], [4], [49], [2], [37], [3], [10] and 4 Voice Conversion
(VC) [16], [61], [44], [5] frameworks.

Our contributions in this paper can be summarized as
follows:

• We present the design and implementation of VoiceRadar,
a novel detection technique to accurately distinguish
between audio deepfakes and human-generated audio.

• Our approach approximates the physical models of the
Doppler effect and drumhead vibrations to capture inher-
ent audio signal variations. By integrating the frequency
signatures of audio waves’ translation, vibration, and rota-
tion frequencies, we model the observed frequency within
the Doppler effect framework. This captures translational
changes, rhythmic patterns, and subtle nuances within
the audio signal. The observed frequency is then used
in the loss function of a supervised learning algorithm to
classify audio signals accurately, as shown in Sect. IV.

• We create a comprehensive benchmark dataset com-
prising of over 500 000 audio samples, generated using
state-of-the-art TTS generators and VC modules, as out-
lined in Sect. V-B.

• We extensively evaluate VoiceRadar using this new
benchmark dataset, showing the robustness and effective-
ness of our approach in detecting audio deepfakes. We
also compare VoiceRadar with existing state-of-the-art
deepfake detection frameworks and demonstrate its su-
perior detection performance, as shown in Section V.

II. BACKGROUND AND INTUITION

This section provides an overview of the essential back-
ground knowledge needed to understand the design of
VoiceRadar. We will explain the Doppler effect and drumhead
vibrations and how their approximate physical models are used
to analyze micro-frequencies in audio signals.
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Drumhead vibrations give us a model for how to break down
complex audio signals into their component micro-frequencies.
These micro-frequencies are then aggregated to compute the
observed frequency by employing the physical model of the
Doppler effect. The Doppler effect helps us understand how
the frequency of a wave changes relative to an observer when
the source of the wave is moving.

Feeding the extracted observed frequency into the training
of a machine-learning model helps the model to learn the
natural distribution of frequencies present in human-generated
audio and distinguish them from the more uniform distribution
in AI-generated audio.

A. Doppler Effect

The Doppler Effect [58] is a fundamental phenomenon
observed in wave physics, occurring when there is relative
motion between a wave source and an observer. This effect
applies to sound and light waves and to all types of waves. It
manifests as a change in the wave frequency as perceived by
the observer. When a wave source moves towards an observer,
there is an apparent increase in frequency, leading to a higher
perceived pitch in sound waves or a shift towards the blue end
of the spectrum in light waves. Analogously, the frequency
decreases when the source moves away from the observer,
resulting in a lower perceived pitch or a shift toward the red
end of the spectrum. Formally, the relationship between the
observed frequency (fo) and the emitted frequency (fs) is
described by the Doppler equation:

fo =

(
cv ± vo
cv ± vs

)
fs (1)

Here, cv represents the propagation speed of waves in
the medium, vo denotes the observer’s speed relative to the
medium, and vs represents the speed of the source relative
to the medium. Depending on the direction of motion, these
speeds are added or subtracted accordingly.

As we will show later, we model the audio signal as a
wave. The Doppler effect measures variations in the wave’s
frequencies due to the movements of the source. The source
can be human or AI-generated audio, while the movement is
caused by compositional biases between human and machine-
generated audio. Consequently, in modeling the audio em-
beddings, these compositional biases will be reflected in
each value of the audio embedding. Thus, to simulate the
outgoing circular pattern of the sound wave propagation from
a source to an observer, we treat the unique values (minimum
value originating at the source and maximum value reaching
the observer) in the audio embedding as discrete radii in a
concentric circle model.

Alternatively, these biases can be interpreted as different
rhythmic beats of the audio or subtle variations or nuances
in the audio wave. When the audio waves reach the observer
(VoiceRadar, in our case), the source’s movement causes the
waves’ frequency to change. The frequency that VoiceRadar
observes differs from the one originally emitted. This fre-
quency has been altered by the Doppler Effect.

In other words, the observed frequency of the audio wave
(at VoiceRadar) differs for a human-generated and an AI-
generated audio wave because human and AI voices have
distinct characteristics, leading to different modulations in the
emitted audio waves. In the next section, we study these
modulations using the Drumhead vibrations model, which
breaks down complex audio signals into their component
frequencies.

B. Drumhead vibrations to analyze audio signals

A drum skin, when hit, vibrates and creates sound. These
vibrations happen in patterns across the drum skin, known as
drumhead vibrations. The vibrations of an idealized drumhead
can be comprehended by examining the behavior of a two-
dimensional elastic membrane under tension [65], [26].

This membrane, conceptualized as a circular surface with
uniform thickness connected to a rigid frame, is used to
characterize the wave’s motion. The membrane can hold
and vibrate at certain frequencies, like a musical instrument
playing specific notes. This is called resonance. The movement
of the membrane’s surface creates patterns called standing
waves or normal modes, the specific patterns in which the
membrane can vibrate. For example, the simplest and lowest
frequency vibration pattern is known as the fundamental mode,
like the basic sound to hear when hitting the middle of the
drum.

The membrane possesses infinite normal modes (each char-
acterized by distinct vibrational patterns) modeled using two
quantum numbers: circular mode n and angular mode m.
The n mode is used to characterize how the wave travels
from the drum’s center to its outer boundary in a circular
fashion. For example, n = 1 mode represents a single wave
at the drum’s center going up and down. More precisely,
it has a single crest (a point where the drumhead is at its
maximum displacement in the positive direction, i.e., upward)
or trough (a point where the drumhead is at its maximum
displacement in the negative direction, i.e., downward). For
n > 1, the number of crests or troughs increases as the
waves travel to the drum’s outer boundary. If m = 1, the
membrane can be pictured as divided into two halves, with
one crest or trough on each side. These halves move up and
down alternately. For m > 1, the membrane keeps diving into
segments; each segment has one crest or trough moving up
and down alternately. The higher the circular/angular mode
numbers, the more complex the vibration pattern becomes.

To understand and describe the vibrations of a drumhead,
several mathematical concepts and methods are used: a two-
dimensional wave equation, which is the solution to a partial
differential equation that models how waves propagate across
a surface over time, is represented by u(x, y, t) where (x, y)
denotes the position of the drumhead displacement at time t.
Dirichlet Boundary Conditions constraints are applied to the
edges of the drumhead to reflect that the edges are fixed and do
not move, typically denoted by u(x, y, t) = 0, for all (x, y) on
the boundary “a” of the drumhead. Thus, u(x, y, t) describes
the height of the membrane at a certain (x, y) at time t.
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Fig. 1: The impact of different modes of the zeroth Bessel
function (J0(λ0nr)) affects the drumhead’s vibration fre-
quency. For example, we demonstrate the wave’s shape when
it travels in a drum with fixed m = 0 and varying n = 1,
n = 2, n = 3.

In this context, Jm(λmnr) are mathematical functions that
describe the radial part of vibration patterns where m denotes
the order of the Bessel function and r is the radial distance.
This paper focuses on the asymmetric case (with m = 0
and n being any integer) in which the zeroth order Bessel
function J0(λ0nr) describes the height of the drumhead as
it vibrates, with respect to the stationary membrane of the
drumhead. The values of λ0n · a = α0n, known as the zeros
(critical points where the wave transitions to a still drum) of
the Bessel function J0(λ0nr), determine the shape of the drum,
consequently influencing its vibrational frequencies, as shown
in Figure 1. In the following work, we will denote the Bessel
function Jm(λmnr) as Jm(m,n) throughout the rest of this
paper or the zeroth order Bessel function J0(λ0nr) will be
denoted as J0(0, n).
Analysis model for audio signals. As mentioned in Sect. I,
we approximate the physical model of drumhead vibrations
to model different micro-frequencies of each radius or each
unique value in the audio embedding in a concentric cir-
cle model. This captures the audio’s rhythmic beats, subtle
variations, and nuances, which differ for human- and AI-
generated audio. In essence, the source sends the audio waves
modulated with various frequencies (translation, vibrational,
and rotational) toward the observer, who perceives the obtained
waves with a modified frequency.

Specifically, we approximate drumhead vibration modes to
characterize the source wave’s translational, rotational, and
vibrational micro-frequencies. In Sect. IV, we will describe in
detail how the embeddings are modeled in a concentric circle
model and how different frequencies of each embedding are
modeled to characterize their compositional biases. Next, we
explain how we interpret a wave’s translational, rotational, and

vibrational micro-frequencies.
The Translational Frequency is moving up (crest) and down

(trough) uniformly along the axis of travel, as shown in
Figure 1. In this work, we have defined the axis of travel as
the x-axis (straight line between the source and the observer).
When the wave travels from the source to the observer in
translational motion, the critical points are assumed to cut
the x-axis; thus, the y-axis coordinate is zero in u(x, y, t).
Hence, the waves only travel (radially) straight along the x-
axis. In this work, each unique value in the audio embedding
will represent the critical points of the Bessel function.

Rotational Frequency reflects the angular motion of the
different segments of the audio signal. Each critical point may
have rotated by a certain angle from the axis of travel. Thus,
when the wave travels from the source to the observer in
rotational motion, the critical points are assumed to have both
the x-axis and the y-axis coordinates in u(x, y, t). Hence, the
radial waves travel at an angle θ from the axis of travel, i.e.,
the x-axis.

It also represents changes in the audio signal as it rotates
around the axis of travel, such as tone or pitch variations. This
can be compared to the intonation in speech, like the rising
and falling pitch when asking a question (“Where are you
going?”).

Vibrational Frequency in audio signals corresponds to the
complex oscillations of the critical points on the axis of
travel. Each critical point has a constant x-axis coordinate and
variating y-axis coordinate in u(x, y, t). Hence, this motion
adds rapid, fine changes to the wave.

In audio signals, this is exemplified by speech with a tremor
or background noise, where the rapid, fine changes resemble
the complex vibrational behavior of the drumhead.

In Sect. IV, we show how translational, rotational, and
vibrational frequencies can be realized by approximating the
Bessel function’s circular mode n for each frequency while
keeping the angular mode m zero. More precisely, the Bessel
function will be used to calculate the micro-frequencies as
well as fs in the Doppler model (cf. Sect. II-A), being crucial
for calculating the observed frequency fo in the Doppler effect
(Equation 1). This process involves computing the zeros of the
Bessel function J0(0, n), which then allows us to derive the
aggregated source frequency (translational plus rotational plus
vibrational), as shown in Sect. IV.

C. Deep Neural Networks

A DNN can be expressed as a mathematical function (F :
Rn → R) denoted as F(X;W ), with X representing the
input data samples and W denoting the network’s parameters
(comprising weights and biases).

The process of training a neural network involves adjusting
its parameters (W ) to minimize a predefined loss (or cost)
function LR, typically achieved through optimization algo-
rithms such as gradient descent. These algorithms iteratively
update the network’s parameters in a direction that minimizes
the loss function, aiming to improve the network’s perfor-
mance on unseen data. One popular approach for training
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DNNs is the Stochastic Gradient Descent (SGD) [64], which
solves the following equation by iteratively updating the
parameters W :

Wt+1 = Wt − η∇LR(Wt)

where Wt represents the parameter vector at iteration t,
η is the learning rate which regularises the magnitude of
the parameter updates in each iteration. LR(Wt) denotes the
regularized loss function, where:

LR(Wt) = L(Wt) + γg(Wt)

L(Wt) is the original loss function (e.g., cross-entropy loss,
mean squared error) computed on the training data, γ is the
regularization parameter, and g(Wt) is the regularization term,
which penalizes certain properties of the model parameters
Wt.

In this work, we regularize L(Wt) of the model function
F with fo to penalize it when the actual label of E(−→x )
differs from the model prediction F(E(−→x )), where E(−→x ) is
the embedding of input audio sample −→x . In this work, we
handle the transformed embedding vector E(−→x ) as the input
to the model function F .

More details are discussed in Sect. IV.

III. ADVERSARY MODEL

In our model, the adversary A aims to generate an audio
deepfake (or fake voice) that resembles the voice of a victim.
There are different reasons for developing such deep audio
fakes, including using them to spread fake news, e.g., for
political campaigns or fraudulent actions such as phishing
attacks. For generating the (fake) audio, A can use a synthetic
voice generation tool trained with the (real) voice of the victim.
The input to such a tool can either be written text (in the case
text-to-speech or TTS tools) [89], [5], [4], [49], [37], [10], [3]
or an audio sample of a natural person speaking some text (in
case of voice conversion or VC tools) [16], [61], [44], [5].
A’s goals are two-fold. First, it must ensure that the

generated audio is consistent with the given text/audio input.
Therefore, the (output) spoken text must be related to the
given text. Secondly, the generated voice needs to sound as
natural as possible and indistinguishable from the actual (real)
voice of the victim. We assume that the adversary is aware
of any possibly deployed defense. However, especially for
trained detectors, such as DNN-based detectors, we assume
the adversary only has access to the used algorithm but not
the specific trained parameters of the DNN. To conduct the
adaptive attacks, A can utilize the knowledge of VoiceRadar
to compute the fo (observed frequency of the radar) and map it
to create adversarial audio samples. We consider an advanced
adversary with the working knowledge of VoiceRadar. How-
ever, we assume that A does not know the trained parameters
of VoiceRadar, as it does not have access to the used training
data. Notably, A can use a separate dataset to train its model
(shadow model), following the exact training algorithm of
VoiceRadar to approximate the used detector (see Sect. V-I).
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Fig. 2: Design of VoiceRadar.

On the other hand, we do not make any assumptions about
specific methods used for generating the audio. In particular,
we do not make any assumptions about the availability of
additional knowledge about the victim to the detection tool,
such as comparison data of the imitated voice.

IV. APPROACH

In this section, we provide a high-level description and the
details of our approach, particularly on how we approximate
the physical model of the Doppler effect and the drumhead
vibrations to design an effective framework to detect deep-
fake audio. The system comprises four main modules: (1)
Frequency Distribution Analysis, (2) Wave-Based Analysis,
(3) Physics-Augmented ML Training, and (4) Inference Phase.
Figure 2 shows the working of our scheme.

A. High-level Description

In our system model, VoiceRadar takes the role of an
observer of emitted waves from a source that can be human
or AI. After observing a wave, VoiceRadar should distinguish
effectively whether the audio source is a human or AI. To
realize this idea, we first conduct a frequency distribution
analysis (Step 1) to determine the unique characteristics or
signature of the audio waves. We deploy a physics-augmented
approach to approximate the physical model of drumhead
vibrations and the Doppler effect for audio waves (cf. Section
II). Here, given the input audio sample −→x , we handle the trans-
formed embedding E(−→x ) := [e1, e2, . . . , ek, . . . , el] vector of
the audio sample as waves. The intuition is that the distinct
values (we ignore repetitive values) in embedding E(−→x ) are
viewed as positions along the x-axis (assumed axis of travel)
akin to a wave’s movement. Alternatively, they are assumed
as the zeroes (or critical points) (α0n) of the Bessel function
J0(0, n) (Section II-B) which can cut the x-axis (translation
motion), rotate from the x-axis (rotational motion), or oscillate
along x-axis (vibrational motion).

Fig. 3 shows the modeling of three types of motions
by different interpretations of the unique values in E(−→x )
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Fig. 3: The computation of the circular mode (n) to determine
the frequency with which the drumhead vibrates. k represent
the number of unique values in E . The red lines in b) represent
the angles drawn by the rotation.

in a concentric circle model. Thus, we have identified the
following key micro-frequency components of the audio wave
(cf. Sect. II): i) Translational Frequency is shown by the
straight line path along the x-axis in Figure 3a), ii) Rotational
Frequency based on the rotation of the values ei ∈ E(−→x )
from the x-axis in Figure 3b), where the red lines represent
the rotation angels of the data points, and iii) Vibrational
Frequency based on the oscillations of data points along x-
axis.

Next, we conduct a wave-based analysis (Step 2) where
we approximate the physical model of the Doppler effect to
compute the frequency that the observer VoiceRadar measures,
i.e., the frequency fo in Equation 1, as described in Sect. II.
We assume the velocity of the audio sample vs is based
on the variance of the embedding string, where we presume
VoiceRadar being stationary vo = 0. Thus, we utilize all the
variables detailed above and aggregate the micro-frequencies
of these waves to compute fo. Consequently, this allows us to
capture the unique ”shape” of the audio signals.

Next, we run a physics-augmented ML training (Step 3)
where we incorporate the observed frequency fo into the
classification model by constraining the training process to
integrate this prior physics information in its loss function.
This enhancement establishes a connection between the input
audio signal and its output label (0 for human, 1 for AI-
generated). We can effectively identify features that distinguish
human audio from AI-generated audio by optimizing this loss
function. Unlike existing methods, our approach adapts to the

Algorithm 1 Drumhead Frequency Computation
1: Input: Number of angular mode (0), Number of circular

mode (k)
2: Output: Drumhead Frequency, fs
3: Initialize m← 0 ▷ Diametric nodes
4: Initialize n← k ▷ Circular nodes
5: Compute fundamental frequency FJ0(0, 1)
6: Compute FJ0(0, k)

7: Calculate Drumhead Frequency: fs ←
FJ0

(0,k)

FJ0
(0,1)

8: return fs

evolving nature of text-to-speech (TTS) and voice conversion
(VC) technologies.

Lastly, we do inference (Step 4) on the trained model F to
differentiate deepfakes from original audio samples effectively.

B. Design structure

In the following, we present the details of VoiceRadar’s
individual components.
Embedding Generation: To extract high-level speech repre-
sentations from raw audio samples, we utilize the pre-trained
HuBERT model [24]. HuBERT, which stands for Hidden-
Unit BERT, is similar to the BERT model [18] used in
Natural Language Processing (NLP). While BERT is based
on the Transformer architecture [79], HuBERT is based on
the Wav2Vec architecture [6] and is widely used for speech
representation learning and processing [55], [69], [14], [42],
[84], [15], [54], [17].

HuBERT’s strength lies in its ability to learn from raw
audio data without relying on manually engineered features
like Mel-Frequency, Pitch, and Spectral Features. Instead,
it uses convolutional layers and a self-supervised learning
approach to extract distinctive features from the audio. This
process enables HuBERT to learn rich and robust speech
representations that are highly effective for various speech-
processing tasks.
Frequency Distribution Analysis: Next, we develop a
framework to configure the micro-motions of the input audio
embedding E(−→x ), differentiating human-produced audio from
deepfakes. We interpret the source’s translational frequency
(∆ft), the rotational frequency (∆fr), and the vibrational
frequency (∆fv) utilizing the Bessel function J0(λ0nr)
(Section II-B) and it’s value of n, as detailed below.

Translation motion: We determine the translational frequency
∆ft associated with the given audio embedding, E(−→x ), when
it is assumed that E(−→x ) travels along the x-axis (Figure 3a).
That is, the distinct (critical) points of E(−→x ) map to different
points on the x-axis, with no ei ∈ E(−→x ) having the y-axis
coordinates. Note that E(−→x ) can contain duplicate values.
Hence, our initial step involves computing the count of only
distinct values in E(−→x ), as well as the value of n. The reason
is that we do not want to consider multiple circles with the
same radius. If we consider the duplicate values, it will result
in redundant circles or information that needs to be transmitted
to VoiceRadar.
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The translational frequency is determined by calculating the
circular mode n used in J0(0, n) as follows: We assume each
value in E(−→x ) as the radius of a concentric circle, with the
center of each circle at the origin (0, 0) of the x−y coordinate
system. Next, we utilize the value of n to determine ∆ft of
E(−→x ). One critical factor to consider is that the frequency
at mode m = 0, n is expressed in terms of the roots of the
Bessel function J0(0, n), labeled as FJ0(0, n). As the specific
values that are needed to compute these frequencies (cd and a
in [30]) are unknown, we normalize the calculation of fs with
the fundamental frequency at J0(0, 1). This normalization is
done by computing fs =

FJ0
(0,n)

FJ0
(0,1) . Consequently, we only

need to measure n to determine different source frequen-
cies (translational, rotational, or vibrational). Thus, we use
(FJ0

(0, n)/FJ0
(0, 1)) to compute the relative frequency for

different zeroes of J0(0, n) with respect to fundamental mode
J0(0, 1) frequency, using the Algorithm 1.

First, we set the number of diametric nodes (m) to zero
and the number of circular nodes (n) to the number of unique
values in E(−→x ). This is passed to J0(0, 1) to compute the
Bessel function frequency. Algorithm 1 starts by setting m to
zero (line 3) and n to the number of unique values (k) in
E(−→x ) (line 4). Next, the drumhead’s fundamental frequency
(FJ0

(0, 1)) is computed on line 5, and the frequency at mode
m = 0, n = k (FJ0

(0, n)) is computed on line 6. Finally, the
drumhead frequency is computed by dividing FJ0(0, n) by
FJ0(0, 1) (line 7), with the algorithm returning this frequency
as the output (line 8).
Rotational motion: Here, our motivation is to determine the
rotational frequency (∆fr) associated with each audio em-
bedding, E(−→x ). The unique (critical) points of E(−→x ) have
corresponding x-axis and y-axis coordinates, and each value
in E(−→x ) may be rotated by an angle θ from the x-axis, as
shown in Figure 3b.

We again achieve this by computing the circular mode (n)
and using it in the Bessel function J0(0, n). When considering
the Doppler shift due to rotation, it’s essential to understand
the spatial distribution of the rotating components relative
to VoiceRadar’s position. Here, the spatial distribution is the
radial distance between the source and the observer (the
length of unique values in E(−→x ). Additionally, in the case of
rotation, the Doppler shift is also influenced by the tangential
velocity of the rotating components, which varies with the
angle θ between the direction of motion and the line of sight.
Hence, we consider the spatial distribution and the angular
information to determine n and thus the rotational frequency
∆fr of E(−→x ).

We utilize Algorithm 1 to determine ∆fr. Thus, by utilizing
(FJ0(0, n)/FJ0(0, 1)), we compute the relative frequency for
different zeroes of J0(0, n) with respect to the fundamental
mode J0(0, 1) frequency. When approximating the value of n,
we use k · r · sin(θ), where k is the number of unique values
in E(−→x ), r is the radial distance from the axis of rotation (the
last value in E(−→x ) sorted in ascending order), and θ is the
angle of rotation. By incorporating the radial distance (scaled

by k) and the angle θ into the Bessel function J0, we capture
the spatial distribution of rotation of the values of E(−→x ).

We use sin(θ) because it represents the tangential compo-
nent of the velocity, which is perpendicular to the line of sight
and directly affects the Doppler shift due to rotation. This
is crucial in capturing the rotational motion’s effect on the
frequency. In summary, by using k · r · sin(θ) as the argument
for the Bessel function J0, we account for the tangential
velocity component, which varies with the angle θ between
the direction of motion and the line of sight.
Vibrational motion: To compute the Doppler shift due to the
vibrational frequency ∆fv of the values in E(−→x ), we use a
similar methodology as for computing the rotational frequency,
with the key difference being that we only focus on the spatial
distribution of the vibrating components in E(−→x ). Different
values in E(−→x ) oscillate along the x-axis, and incorporate it
into the Bessel function J0(0, n). It is essential to factor in the
spatial arrangement of the vibrating elements when evaluating
the Doppler shift resulting from vibration. The following steps
outline the process to determine ∆fv and n.

We compute ∆fv using the Drumhead vibrations, following
a similar approach to Algorithm 1. For vibration, the radial
distance r from the vibration center (which is the origin
(0, 0) and the number of unique values k in E(−→x ) is used
as the argument for the Bessel function J0(0, n). Thus, n
becomes k · r, where k is the number of unique values and
r represents the radial distance. This formulation accounts
for the spatial distribution of vibrating components relative to
VoiceRadar and how their velocities contribute to the Doppler
shift observed by VoiceRadar.
Wave-Based Analysis: Next, we utilize the aggregated fre-
quency ∆ftotal(= fs) = ∆ft +∆fr +∆fv as the audio em-
bedding’s frequency in the Doppler effect formulation (defined
in Sect. II) to compute the observed frequency of VoiceRadar.
To obtain the respective variables in Equation 1, we perform
the following computations:

vo = 0

vs = y · abs(var(E(−→x )))

cv = var(E(−→x )) · FJ0
(0, 1)

The reasoning for determining the above values for the
velocities of the audio embedding (vs) and VoiceRadar (vo)
is as follows: Considering frequency indicates the rate of
change of a specific value within a given timeframe. Therefore,
to compute the audio embedding’s velocity, we consider the
variation of the input audio embedding multiplied by its label.
Thus, for the source’s audio embedding, the velocity (vs) is
computed as y ·abs(var(E(−→x ))), where y is the classification
label (0 or 1) assigned to input audio embedding. Since we
modeled VoiceRadar as a stationary body, we assume it moves
with a constant velocity of 0. Generally, in the Doppler effect,
the speed of the medium, denoted as cv , is constant (either the
speed of sound or light). Hence, in this paper, we integrate a
constant of fundamental frequency FJ0

(0, 1) by multiplying
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it with the variance of E(−→x ). This work assumes that the
medium represents a space where deepfake tries to imitate
content similar to human-produced audio.
Physics-Augmented ML Training: To implement the model,
we employ a neural network architecture consisting of six
fully connected layers with Rectified Linear Unit (ReLU)
activations. The sizes of the layers are set to 512, 256, 128,
64, 32, and 1, respectively. For the training, we used the Adam
optimizer with varying learning rates and training epochs to
prevent the overfitting problem. A batch size of 64 is used.

In the following, we define and utilize the observed
frequency of VoiceRadar to account for the relationship
between (E(−→x ), y) using the principles of the Doppler effect.
We define the loss of this model consisting of the Binary
Cross Entropy (BCE) loss and the regularized term fo as:

loss = BCE + 0.6 · (fo(−→x , y)− (fo(
−→x ,F(E(−→x ))))) (2)

where, fo(
−→x , y) represents the observed frequency for

the true label y of the audio embedding E(−→x ) and
fo(
−→x ,F(E(−→x ))) represents the observed frequency for the

output label F(E(−→x )) of the audio embedding E(−→x ), where F
is the classification model (Sect. II-C). Thus, we constrain the
loss function by the difference between the observed frequency
of the true label fo(−→x , y), and the observed frequency com-
puted using the label output by the model, fo(−→x ,F(E(−→x ))).
The hyperparameter for the regularizing term was empirically
determined to 0.6 to ensure convergence of the loss.
Inference Phase: Lastly, we do inference on the trained model
F to differentiate deepfakes from original audio samples
effectively.

V. EVALUATION

In this section we empirically demonstrate the efficacy of
VoiceRadar compared to the state-of-the-art detection mecha-
nisms for each TTS and VC framework. Further, we show
how the frequency values vary for the classification label
of 1 (machine-generated audio) and the classification label
of 0 (human-produced audio). Next, we showcase the gen-
eralizability of VoiceRadar across the TTS and VC. Lastly,
we demonstrate the efficacy of our VoiceRadar against the
adaptive attacks.

A. Experimental Setup

Our experiments are conducted using the PyTorch [1] frame-
work on a server equipped with 4 NVIDIA RTX 8000 (each
with 48GB memory), an AMD EPYC 7742, and 1024 GB of
main memory.

Due to advancements in voice deepfake generation, exist-
ing datasets do not include voices generated with the latest
state-of-the-art voice generators. To ensure a realistic and
practical evaluation, we, therefore, leverage a new dataset that
consists of more than 500 000 deepfake samples created by 12
of the most recent generation approaches [2], [3], [4], [5], [10],
[16], [37], [44], [49], [61], [80], [89]. To ease the comparison

TABLE I: Dataset statistics for TTS and VC approaches.

T
T

S

Generation Approach #of samples
VALL-E-X [89] 32000
SpeechT5 TTS [5] 32000
Bark [4] 32000
StyleTTS2 [49] 32000
Jenny [2] 32040
Vits [37] 32040
XTTS [3] 32040
Tortoise [10] 32000

V
C

DiffHierVC [16] 145465
DiffVC [61] 145465
HierSpeech++ [44] 145483
SpeechT5 [5] 145483
Ground Truth [80] 16943

with existing literature, we repeated the comparison using
well-established datasets [86], [83], [56]. ASVspoof2019 [86]
and ASVspoof2021 [83] are benchmark datasets widely used
in existing work on deepfake detectors [22], [28], [48], [73],
[76], [74], [76], [34], [72], [51], [25], [47], created for the
Automatic Speaker Verification (ASV) spoofing challenge
series. These datasets contain a wide range of spoofing attacks
generated using various voice conversion and text-to-speech
technologies, based on the VCTK dataset, which contains data
from 107 different speakers, to test the robustness of ASV
systems. Additionally, Müller et al. created and published
an in-the-wild deepfake dataset consisting of 37.9 hours of
audio clips, with 17.2 hours being fake and 20.7 hours real,
to evaluate their models on realistic, unseen data [56].

B. Dataset Generation

Table I outlines the high-level statistics for our dataset
generated using different text-to-speech (TTS) and voice con-
version (VC) approaches and for the ground truth samples in
the dataset. Compared to classical and established benchmark
datasets that we also evaluate in Sect. V-E, our dataset is
created using the most recent audio generation tools. Thus,
it allows a more realistic evaluation on more challenging
samples, as the comparison of existing detectors shows (see
Sect. V-D). The ground truth samples within the dataset have
been generated using the VCTK dataset [80], composed of
109 native speakers of English with various accents, each
reading around 400 phrases. The selection of the speaker has
been made based on the characteristics of the speakers, e.g.,
age, gender, accent, and region of provenance. Out of the 109
speakers, 20 speakers were selected for training and further 20
speakers were selected for testing, such that the distribution
of gender, ages, and regions replicates the distribution of the
whole dataset, i.e., resulting in 10 male and 10 female speakers
for each dataset split. We generated the dataset’s synthetic
(or fake) voice samples using the latest TTS tools and VC
frameworks [89], [4], [49], [2], [37], [3], [10], [16], [61], [44],
[5], as outlined below.

1) Text-To-Speech: For generating synthetic (or fake) voice
samples using the TTS approach, we employedstate-of-the-art
models shown in Table I, all of which were proposed since
2021. The used VCTK dataset contains audio samples for 13K
unique phrases, while various sentences are spoken by multiple
speakers. For computational reasons, we focused on the first
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800 texts. In other words, our dataset contained synthetic voice
samples generated from 800 phrases using the above TTS
tools.

2) Voice Conversion: Voice Conversion (VC) approaches
convert the text that is spoken by a person into another voice
of a given reference sample (target voice). The VC modules
we utilized for synthetic speech generation in our dataset are
outlined in Table I.

To make the generation more generalized, the audio input
for the VC approaches was randomly selected. For each
speaker from the training/test sets, we used one sample as
a reference for the target voice and randomly selected input
audio samples from other speakers, which are neither part of
the training nor from the test set. Thus, to ensure a realistic and
general evaluation, the audio-generation is performed using
entirely new audio samples that were not used during any part
of the training1.

C. Evaluation Metrics

Aligned with existing work on deepfake detection [73], [28],
[22], [34], we employed the following metrics to assess and
compare the effectiveness of our approach:

• True Positive Rate (TPR) indicates the tool’s sensitivity in
detecting fake audio samples. Given the total number of
correctly identified fake samples (True Positive, TP) and
the number of incorrectly identified fake audio samples
(False Negative, FN), the TPR is given as: TPR = TP

TP+FN .
• True Negative Rate (TNR), also called specificity, indi-

cates the tool’s ability to correctly recognize human-voice
samples. Given the total number of correctly identified
non-fake samples that are plain recordings of a human
voice (True Negative, TN) and the non-fake samples that
are incorrectly classified as fake (False Positive, FP), the
FPR is given as: TNR = TN

TN+FP .
• Equal Error Rate (EER) is a combination of the False

Positive Rate (FPR = 1 − TNR) as well as the False
Negative Rate (FNR = 1 − TPR). Given the predicted
scores of a detection tool, the predicted labels are ob-
tained using a classification threshold. Therefore, FNR
and FPR depend on the classification threshold choice.
The EER threshold is determined where both FPR and
FNR are equal. The EER indicates the FNR and FPR
using this optimal threshold where both error rates (FPR
and FNR) are equal. Thus, the system makes an equal
number of errors in accepting fake audio and rejecting
original human-produced audio.

• F1-Score: The F1-score considers both precision (the
ratio of TP to the total number of positive predictions)
and recall (the ratio of TP to the total number of actual
positive instances) in its calculation, providing a balanced
measure of a classifier’s performance. It can be defined
in terms of TP, TN, FP, and FN as follows: F1-Score =

1To ensure a comprehensive evaluation, in Sect. V-I we evaluate
VoiceRadar’s ability to detect samples when the generator was trained on
audio-samples for the target voice.

TABLE II: Comparison of VoiceRadar with existing deepfake
detection approaches for text-to-speech (TTS) generated fake
samples.

Approach EER TPR TNR F1-Score
RawGAT-ST [73] 41.7 58.4 58.2 0.727
AASIST [28] 51.9 48.2 48.0 0.638
Raw PC-DARTS [22] 44.2 52.6 58.9 0.680
wav2vec 2.0 [76] 6.1 93.9 93.9 0.965
Whisper Features [34] 37.2 89.1 36.6 0.94
VoiceRadar 0.45 99.57 97.49 0.99

TABLE III: Comparison of VoiceRadar with existing deepfake
detection approaches for Voice Conversion (VC) generated
fake samples.

Approach EER TPR TNR F1-Score
RawGAT-ST [73] 48.3 51.7 51.8 0.679
AASIST [28] 49.7 50.3 50.3 0.667
Raw PC-DARTS [22] 43.1 56.7 57.1 0.723
wav2vec 2.0 [76] 20.5 79.1 79.8 0.881
Whisper Features [34] 21.4 78.4 78.7 0.876
VoiceRadar 1.6 99.9 91.8 0.99

2·TP
2·TP+FP+FN . The F1-score reaches its best value at 1 and
its worst at 0.

D. Baseline Evaluation

We compare our results with those of the following state-of-
the-art and open-source detection tools, which have provided
their checkpoints. We run these tools on our dataset (as
described above in Section V-B).

• RawGAT-ST-anti-spoofing [73] is a spectro-temporal
graph attention network (GAT) that fuses spectral and
temporal sub-graphs, employing a graph pooling strategy
to enhance accuracy.

• AASIST [28] builds upon RawGAT-ST and enhances it
by integrating two heterogeneous graphs, spectral and
temporal, using a novel layer called the heterogeneous
stacking graph attention layer (HS-GAL). This system
also employs max graph operation (MGO) and innovative
readout techniques to improve its performance.

• Raw PC-DARTS [22] is an end-to-end differentiable
architecture search (DAS) method is employed to au-
tomatically learn the network architecture for detecting
speech deepfakes and spoofing.

• Whisper Features [34] has significantly improved de-
tection rates by combining Whisper with well-established
front-ends (LCNN, SpecRNet, and MesoNet).

• Wav2vec 2.0 [76] could reduce equal error rates sig-
nificantly by combining wav2vec 2.0 with a new self-
attentive aggregation layer and data augmentation.

Tab. II and Tab. III show the results of existing deepfake
detection approaches for TTS tools and VC modules, respec-
tively. It can be observed that VoiceRadar outperforms all these
existing detection frameworks in accurately identifying the
deepfakes generated when testing the existing detectors and
VoiceRadar against the combined dataset from TTS tools and
VC modules.

For the TTS tools, VoiceRadar obtained an EER, TPR, TNR,
and F1-score of 0.45, 99.57%, 97.49%, and 0.99, respectively,
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Fig. 4: Illustration of the distribution of observed frequency fo for different TTS generation approaches for deep-fake generated
samples (label 1) and natural samples (label 0).

TABLE IV: Comparison for state-of-the-art detection tools
of performance reported in the paper, the performance we
reproduced for respective dataset and VoiceRadar on the
dataset.

Detector Dataset Reported
EER

Measured
EER

VoiceRadar
EER

RawGAT-ST [73] ASVspoof 2019 1.06 1.05 0.10
AASIST [28] ASVspoof 2019 0.83 0.83 0.10
Raw PC-DARTS [22] ASVspoof 2019 2.10 2.04 0.10
wav2vec 2.0 [76] ASVspoof 2021 0.82 0.82 0.06
Whisper Features [34] DeepFake In-The-Wild 26.72 26.72 0.0
Channel Gated Res2Net [48] ASVspoof 2019 1.78 1.78 0.10

compared to the lowest EER of 6.1, maximum TPR of 93.9%,
maximum TNR of 93.9%, and the highest F1-Score of 0.965
obtained by the existing detection frameworks (all by wav2vec
2.0 in this case). We obtained similar results for the VC
modules where VoiceRadar outperformed existing detection
frameworks, as demonstrated in Tab. III. In summary, our
results show that VoiceRadar performs much better compared
to these existing detection systems.

E. Benchmark Comparison

The dataset that was introduced in Sect. V-B consists of
audio samples generated using most recent deepfake tools.
Notably, existing detector were mostly unable to detect these
audio samples. To allow a more comprehensive comparison of
VoiceRadar with existing detectors, we compare VoiceRadar
with each detection approach using the dataset that was used in
the respective publication. Tab. IV shows the performance of
each evaluated detection approach, the performance that the
authors of the detection approach reported, the performance
that we reproduced, as well as VoiceRadar’s performance on
the respective dataset.

F. TTS Evaluation

In this section, we evaluate the efficacy of VoiceRadar
utilizing the samples collected from the TTS tools, VC
modules, and the ground truth dataset. First, we illustrate
the distribution of the observed frequency values (fo) by

TABLE V: Effectiveness of VoiceRadar for the individual text-
to-speach (TTS) and voice conversion (VC) approaches.

T
T

S

Generation Approach EER TPR TNR F1-Score
VALL-E-X [89] 0.0071 99.79% 99.12% 0.99
SpeechT5 TTS [5] 0.0004 99.60% 98.51% 0.99
Bark [4] 0.00096 99.56% 98.46% 0.99
StyleTTS2 [49] 0.00 99.98% 98.55% 0.99
Jenny [2] 0.0002 99.90% 98.60% 0.99
Vits [37] 0.0002 99.96% 98.61% 0.99
XTTS [3] 0.0008 99.06% 98.58% 0.99
Tortoise [10] 0.0085 98.76% 97.57% 0.99
Combined 0.0045 99.57% 97.49% 0.99

V
C

DiffHierVC [16] 0.0072 99.78% 96.72% 0.99
DiffVC [61] 0.014 99.77% 93.51% 0.99
HierSpeech++ [44] 0.0056 99.96% 96.81% 0.9979
SpeechT5 [5] 0.0 100% 98.69% 0.99
Combined 0.016 99.88% 91.80% 0.99

VoiceRadar for each TTS tool and VC tool. Then, we detail
the efficacy of VoiceRadar in detecting the fake samples
from each TTS tool and the combined samples of all TTS
tools in terms of the EER, TPR, TNR, and F1-Score metrics.
Similarly, we do the same for the VC tools.

Illustration of Frequency values: Figure 4 illustrates the
distribution of the observed frequency values (fo) obtained
by VoiceRadar. In the inference phase, we stored fo for each
dataset and each label. Then, it was discerned that for label 0,
i.e., for the deepfake audio embeddings, the fo values realized
were below the threshold of 7.5, and for label 1, fo values
realized were above the threshold of 7.5, except some mis-
classification. This trend in the frequency values demonstrates
the discriminatory power of the micro-DE, which efficiently
penalized the loss function (Equation 2) to differentiate the
fake samples from the original ones. In Figure 4, we just
demonstrated the distribution of frequency values for a batch
of 64 samples. Thus, in each plot of Figure 4, number of 1’s
and 0’s varies.
VoiceRadar statistics for TTS: To study the efficacy of the
trained model F(E(−→x ) in classifying the deepfake samples
and the ground truth samples accurately, we compute TPR,
TNR, EER, and F1-score metrics. For each TTS tool, we
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individually train our model (described in Section IV) and
analyze the frequency spread for the ground truth audio and
TTS-generated samples. Table V details TPR, TNR, EER, and
F1-Score metrics statistics. As can be seen from Table V,
VoiceRadar obtains the very low value of 0.0045 EER for
the combined TTS dataset. Moreover, it obtains a TPR of
99.57% and a TNR of 97.49% on the dataset that consists
of all VC-generated samples. For the F1-score metric, a value
of 0.99 is achieved for all the datasets. These results show
that VoiceRadar effectively discerns TTS-generated deepfakes
from the original audio samples.

Additionally, since we train various models for individual
datasets, we generate unique detectors for diverse fields using
the same foundational model by just integrating the observed
frequency of VoiceRadar (fo). Thus, our work provides a
generic detector that can be deployed in any field to detect
whether the audio is machine or human-produced.

G. VC Evaluation

In this section, we evaluate the efficacy of VoiceRadar
utilizing the samples collected from different VC algorithms
and the ground truth dataset. First, we illustrate the distribution
of the observed frequency values (fo) by VoiceRadar. Then,
we detail the efficacy of VoiceRadar in detecting the fake
samples from each VC framework and the combination of the
samples from each VC module in terms of the TPR, TNR,
EER, and F1-Score metrics.

Illustration of Frequency values: Figure 5 illustrates the
distribution of the observed frequency values (fo) obtained
by VoiceRadar. In the inference phase, we stored fo for each
dataset for each label. For VC also, it was discerned that for
label 0, i.e., for the deepfake audio samples, the fo values
realized were below the threshold of 7.5, and for label 1,
fo values realized were above the threshold of 7.5, except
few misclassifications. These results highlight the micro-DE
discriminatory performance on different datasets, allowing for
a comparative analysis of their ability to identify the fake
samples from the original ones accurately. Hence, fo values
effectively efficiently penalized the loss function (Equation 2)
to increase the classification accuracy (as shown in Table V).
Figure 5 demonstrates the distribution of frequency values for
a batch of 64 samples. Thus, in each plot of Figure 4, the
number of 1’s and 0’s varies.
VoiceRadar statistics for VC: We individually train our
model, as outlined in Section IV, for each VC framework. Uti-
lizing the distribution of frequencies in both ground truth and
VC-generated samples, we effectively penalized F(E(−→x )) for
incorrect predictions. As Table V shows, VoiceRadar obtains
a very low value of 0.016 EER for the combined VC dataset.
For TPR and TNR, it obtains 99.88% and 91.8%, respectively.
Again, for the F1-score metric, a value of 0.99 is observed for
all the datasets. Hence, VoiceRadar effectively discerns VC-
generated deepfakes from the original audio samples.

TABLE VI: Cross-evaluation of VoiceRadar for TTS datasets.
Trained Tested EER TPR TNR F1-Score
Bark, Jenny,
SpeechT5,
StyleTTS2

Tortoise,
VALL-E-X,
XTTS, Vits

0.0006 99.68% 98.29% 0.99

StyleTTS2,
Tortoise,
VALL-E-X,
Vits

Bark, Jenny,
SpeechT5,
XTTS

0.0069 99.64% 96.89% 0.99

TABLE VII: Cross-evaluation of VoiceRadar for VC datasets.
Trained Tested EER TPR TNR F1-Score
DiffVC,
DiffHierVC

HierSpeech++,
SpeechT5 0.019 99.80% 89.73% 0.99

HierSpeech++,
SpeechT5

DiffVC,
DiffHierVC 0.0043 99.97% 97.11% 0.99

H. Generalization Evaluation

This section demonstrates the generalizability capability of
VoiceRadar across the TTS, VC, and the cross of TTS and
VC samples.
VoiceRadar statistics for TTS: Table VI illustrates the
generalization of VoiceRadar across the TTS dataset. In this
experiment, we conducted two sets of experiments randomly
dividing the TTS tools (thus, their dataset) into two categories,
such that one category of tools was used for training and
another for inference. In the first experiment, we used Bark,
Jenny, SpeechT5, StyleTTS2, and ground truth datasets to
train the model, and Tortoise, VALL-E-X, XTTS, and Vits
were used for inference. As one can observe from Tab. VI,
VoiceRadar achieved a low EER of 0.0006, a TPR of 99.68%,
TNR of 98.29%, and an F1-score of 0.99. In the second
experiment, we used StyleTTS2, Tortoise, VALL-E-X, Vits,
and ground truth datasets for training, and Bark, Jenny,
SpeechT5, XTTS for the inference. We got an EER, TPR,
TNR, and F1-score of 0.0069, 99.64%, 96.89%, and 0.99,
respectively. Thus, VoiceRadar efficiency is much better than
that of the existing detectors (Table II) when comparing
the generalizability capability of VoiceRadar across the TTS
dataset.
VoiceRadar statistics for VC: Table VII illustrates the
generalization of VoiceRadar across the VC dataset. Again,
in this experiment, we conducted two sets of experiments
randomly dividing the VC modules (thus, their dataset) into
two categories: one category of tools was used for training and
another for inference. In the first experiment, we used DiffVC,
DiffHierVC, and ground truth datasets to train the model, and
HierSpeech++ and SpeechT5 were used for inference. We got
an EER, TPR, TNR, and F1-score of 0.019, 99.80%, 89.73%,
and 0.99, respectively. In the second experiment, we used
HierSpeech++, SpeechT5, and ground truth datasets model
training, and DiffVC, and DiffHierVC for model inference. In
this case, we got an EER, TPR, TNR, and F1-score of 0.0043,
99.97%, 97.11%, and 0.99, respectively. Again, VoiceRadar
surpassed the existing detectors where they could only achieve
a low EER of 0.21, a high TPR of 78.4%, a high TNR of
78.7%, and a maximum F1-score of 0.88.

As mentioned, we train various models for individual
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datasets (and the combined), and each trained model behaves
as a unique detector. Thus, these detectors can be deployed in
diverse fields using the same foundational model by integrating
the observed frequency of VoiceRadar (fo) to detect whether
the audio is machine or human-produced. Hence, the obtained
results for the generalization demonstrate that, given the high
accuracy of VoiceRadar, we can have two detectors for the
TTS tools and VC frameworks to efficiently discern the
deepfakes generated using either a TTS or a VC.

I. Adaptive Attacks

In this section, we evaluate the efficacy of VoiceRadar
against the adaptive attacks that A can launch to compromise
VoiceRadar. We conducted two types of adaptive attacks based
on the knowledge of A: First, a projected gradient descent
(PGD) attack, in which A has the working knowledge of
VoiceRadar. Thus, A can use this knowledge to generate
audio-deepfake samples similar to the original ones. Second,
an overfitting attack in which a model was used for the
generation task, which is fine-tuned, focusing on the target
voice to improve the naturalness of the imitated voice.
PGD attack: The PGD attack is an iterative method used to
generate adversarial examples. It aims to find an adversarial
example x∗ close to the original input x ∈ X but causes
the model to make an incorrect prediction. In this work, A
trains a model on the combined datasets of Bark [4], Jenny
[2], SpeechT5 [5], and StyleTTS2 [49] using the loss function
defined in Sect. IV. Then, using this pre-trained model, A
generates adversarial examples of the Vits [37] dataset by
projecting them into the ϵ-ball around the original input. ϵ
was set to 0.01 and the number of iterations to 50.

To evaluate the robustness of VoiceRadar against this attack,
we tested the generated adversarial examples against our
combined pre-trained model for the TTS samples. We achieved
an efficacy of 100% TPR and 0.0% EER. That is, VoiceRadar
was perfectly able to detect all the adversarial examples.
Overfitting attack: In the previous experiments, we used
general models to create deepfakes. Neither target voice nor
source text nor source voice was used for training the generator
(see Sect. III). Especially considering the abuse of deepfakes
for criminal purposes, it is impractical to train every victim
in their model. For a comprehensive evaluation, we evaluated
VoiceRadar also for deepfakes created using generators specif-
ically fine-tuned for the target person. For these experiments,
we utilized the DiffVC [61] approach. We loaded the already
trained weights for the voice conversion task and continued
training them with a ten times reduced learning rate for 40
epochs. The dataset consists of sample speeches from the
target person extracted from different videos.

We utilized our combined pre-trained model for the TTS
samples to evaluate the robustness of VoiceRadar against this
attack. We achieved an efficacy of 97% TPR and 0.0% EER.
That is, VoiceRadar was robust against such types of attacks
as well.

VI. SECURITY ANALYSIS

In this section, we analyze the security of VoiceRadar in our
adversary model (Section III), even in the face of an adap-
tive adversary with the working knowledge of VoiceRadar.
To bypass VoiceRadar, the adversary A has to ensure that
VoiceRadar cannot distinguish between deepfake audio and
human-generated audio. The critical factor in VoiceRadar is
the choice of the method to generate the embeddings (E(−→x )).
We analyzed different micro-motions (translation, rotational,
and vibrational) to determine the “shape/signature” of E−→x .
Hence, we assume the adversary’s goal is to evade VoiceRadar
by utilizing E(−→x ). We identify the following four adversarial
settings:

First, A can manipulate the translational motion of E(−→x ),
i.e., can modify the unique values k of E(−→x ). Then, map
this information to train a model by constraining its loss
and creating adversarial examples. However, since k varies
for each audio embedding, creating the same embeddings
as we obtained using the pre-trained HuBERT model [24]
(Section IV), to obtain the same model as VoiceRadar is
unlikely. The reason is that E(−→x ) is a large tensor filled
with arbitrary values. It also depends on the type of the
model used to create E(−→x ). Thus, even though A has the
working knowledge of our approach (Section III), there is less
chance the adversarial examples created by A can prevent the
detection from VoiceRadar, as demonstrated in Section V-I.

Second, A can manipulate the rotational motion of E(−→x ),
i.e., operate on the spatial (r), angular orientation (θ) of
E(−→x ), and again on the unique values k of E(−→x ), to map
this information generate adversarial examples. With the same
reasoning as above, it is improbable to have the same values
r and θ to obtain the same model as VoiceRadar to generate
adversarial examples.

Third, A can manipulate the vibrational motion of E(−→x ),
i.e., operate only on the spatial (r) of E(−→x ). Again, it’s
improbable to reflect the manipulation of all these variables to
generate adversarial examples for the reasons detailed above.

Furthermore, an adversary may attempt to create an in-
conspicuous pattern that distracts VoiceRadar without being
detectable by human ears. In this scenario, the adversary has
two strategies. The first is a general attack, which involves
fine-tuning the generator specifically for the target individ-
ual, thereby enhancing the authenticity of the generated fake
samples against various detectors by improving the quality
of the deep fake. The second strategy is a targeted attack,
designed for the specific deployed model, which involves
overlaying a pattern similar to an adversarial example to
mislead VoiceRadar. Both attack strategies were implemented
and evaluated as part of our extensive evaluation, showing that
neither approach is capable of bypassing VoiceRadar.

VII. RELATED WORK

This section reviews state-of-the-art deep learning-based
voice synthesis tools and detection methods proposed to
identify such deepfake voices.
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Fig. 5: Illustration of the distribution of frequency values for different VC deep-fake generated samples (label 1) and natural
samples (label 0).

A. AI-Driven Voice Generation

Text-to-speech (TTS) and Voice Conversion (VC) are the
two main (human) speech synthesis techniques found in the
research literature. Concatenative Speech Synthesis and Statis-
tical Parametric Speech Synthesis are two early TTS models.
The former concatenates acoustic units to create synthetic
speech, while the latter uses vocoders to extract and synthesize
speech parameters from a training database [33]. Modern deep
learning-based approaches, however, outperform these meth-
ods in terms of performance and naturalness. WaveNet[60]
is designed for generating raw audio. It synthesizes audio
by processing spectrograms and has been widely adopted in
various tools.

End-to-end models like Tacotron2 [67], an autoregressive
model, have architectures consisting of convolutional and
LSTM layers. However, Tacotron2’s autoregressive nature
results in long output production times and thus suffers
from slow inference speed. Additionally, generated speech
is inaccurate. As a result, FastSpeech[62], a feed-forward
network based on self-attention in the Transformer that is
non-autoregressive and operates in parallel for TTS to reduce
the inference speed. Meanwhile, MelGAN [39], a generative
adversarial network (GAN) model, addresses the need for large
datasets in voice synthesis, generating high-quality voices. Its
generator uses a fully convolutional architecture with trans-
posed convolutional layers and residual blocks. The discrim-
inator employs a multi-scale architecture with three discrimi-
nators: one for raw audio and two for audio downsampled by
factors of 2 and 4. As a result of introducing new and sophisti-
cated deep learning and diffusion models, more powerful tools
are introduced. VALL-E [81] is a zero-shot text-to-speech syn-
thesizer with outstanding performance when faced with unseen
voices without prior training. The NaturalSpeech [77] tools se-
ries also offers significant advancements in the quality of TTS
tools. NaturalSpeech targets single-speaker synthesis using
flow-based generative models, NaturalSpeech2[68] expands to
zero-shot diverse multi-speaker scenarios and leverages latent
diffusion models, and NaturalSpeech3[27] achieves human-
level naturalness with multiple speakers using factorized diffu-
sion models. The StyleTTS2[49] employs non-autoregressive
modeling and adversarial training to achieve human-level TTS
synthesis using large speech language models (SLMs) like
WavLM.

In VC, an input speech waveform is transformed into the
voice of a different speaker while maintaining the linguistic

content. GANs, particularly the CycleGAN architecture, have
shown proficiency in capturing the general characteristics of
speech waveforms, making them highly suitable for voice
conversion tasks[31], [32]. SpeechT5[5] was introduced as the
first unified encoder-decoder framework for diverse spoken
language processing tasks. It employs cross-modal vector
quantization to effectively align acoustic and textual data.
HierSpeech++[44] achieves human-level TTS and VC both
on single and multi-speaker datasets, illustrating the benefits
of style diffusion and adversarial training on large SLMs.
Diff-HierVC[16] proposed a hierarchical voice conversion tool
that utilizes diffusion-based technology to resolve the pitch
inaccuracies that previous VC tools usually faced. The trend
of creating human-like deepfake voice generation continues,
with more powerful TTS and VC tools that surpass previous
works in accuracy and performance.

B. DeepFake Voice Detection

As AI voice synthesis tools continue to improve, researchers
have proposed new tools and approaches for such synthetic or
deepfake voice detection. Tak et al. [74] proposed a Graph
Attention model incorporating temporal attention (GAT-T)
and spectral attention (GAT-S) networks for detecting speech
spoofing attacks, achieving an Equal Error Rate (EER) of
4.71 and a minimum Detection Cost Function (DCF) of 4.48
for GAT-T, and an EER of approximately 0.0894 and a
minimum DCF of 0.0914 for GAT-S. In another work, Tak
et al. [75] developed an end-to-end electro-temporal Graph
Attention Network [73] for deepfake detection, achieving a
notable 1.06% EER and 0.0335 minimum t-DCF on the
ASVspoof 2019 database by integrating spectral and temporal
cues. Jung et al. [28] introduced AASIST, a deepfake detection
tool utilizing an integrated spectro-temporal Graph Attention
Network This method enabled them to achieve an EER of
0.83 and a minimum t-DCF of 0.0275. Ge et al.[22] proposed
an end-to-end differentiable architecture search methodology
for speech deepfake and spoofing detection, achieving a t-
DCT score of 0.0517 on the ASVspoof 2019. Kawa et
al.[35] introduced SpecRNet, a novel architecture inspired
by RawNet2 [29] (a CNN-GRU speaker recognition system)
based on spectrogram representation, which demonstrated im-
proved EERs and performance onVoxCeleb1 dataset. Liu et
al.[51] improved deepfake detection accuracy by identifying
audio authenticity cues during the mono-to-stereo conver-
sion. Sun et al. [72] analyzed vocoder artifacts and acoustic
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anomalies added to voices due to voice synthesis and used a
multi-task classifier to detect deepfake voices. Yadav et al.
[85] introduced the Patched Spectrogram Synthetic Speech
Detection Transformer (PS3DT), a synthetic speech detection
system. This detector converts a time-domain speech signal
into a mel-spectrogram and processes it in patches using a
transformer neural network. PS3DT was evaluated using the
ASVspoof2019 dataset and achieved an EER of 4.54%. As
AI voice synthesis evolves, introducing new security risks,
the development of additional online detection tools[38], [21],
[20], [88] continues to address these challenges. Most previous
works conducted their evaluations on ASVspoof2019 and
ASVspoof2021. Muller et al. [57] performed a comparison
study using various deep fake detectors. They showed that
while increasing model capacity helps in-domain scenarios
where the testing data is from the same dataset, it does not
effectively address generalization challenges across unseen
datasets. Bhagtani et al. [11] generated a new synthetic dataset
using five diffusion model-based synthetic speech generators.
They evaluated six top-performing synthetic speech detectors
based on their error rates on the ASVspoof2019. Their findings
indicate that these detection tools perform well on the training
dataset but show poor performance and lack of generalization
when tested on unseen speech samples. In this work, we
provide a new dataset generated by recent Text-to-Speech
and Voice Conversion tools and propose a more generalized
detector.

In another work, Kumari et al. proposed DEMASQ, inspired
by the Doppler effect and drumhead vibration principles
to distinguish AI-generated from human-produced text [40].
However, the approach is restricted to detecting AI-generated
text. Inspired by their approach, we significantly extend their
solution by integrating micro-frequency compositional analy-
sis to determine the deepfake audio samples.

VIII. CONCLUSION

This paper introduces VoiceRadar, a novel method to ac-
curately differentiate between audio deepfakes and human-
generated audio. Our approach addresses variations (micro-
frequencies) in audio signals by approximating the Doppler
effect and drumhead vibrations. By integrating these micro-
Doppler signatures into the loss function of a supervised learn-
ing algorithm, VoiceRadar effectively classifies deepfakes. We
curated a benchmark dataset with samples from the latest TTS
tools and VC frameworks. Extensive evaluations demonstrate
VoiceRadar’s robustness and effectiveness in detecting audio
deepfakes.
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APPENDIX

A. Detailed Detection Results of Whisper Features

The approach Whisper Features [34] uses a DNN for
detecting fake audio samples and provides different options
for the used DNN. While in Tab. III and Tab. II we provided,
for the sake of clarity, only the results for the best approach,
Tab. VIII shows the results for all approaches.

TABLE VIII: Effectiveness of different DNN models that are
provided by the Whisper Features [34] approach.

Approach EER TPR TNR F1-Score
LCNN 43.6 56.4 56.4 0.72
LCNN (Finetuned) 43.3 56.7 56.7 0.72
LFCC LCNN 30.7 89.3 49.4 0.94
LFCC LCNN (Finetuned) 30.7 89.3 49.4 0.94
LFCC Mesonet 24.8 75.1 75.3 0.86
LFCC Mesonet (Finetuned) 23.1 76.2 77.6 0.86
LFCC Specrnet 36.6 63.0 63.7 0.77
LFCC Specrnet (Finetuned) 34.9 64.3 65.9 0.78
MFCC LCNN 35.8 69.7 58.8 0.82
MFCC LCNN (Finetuned) 37.2 89.1 36.6 0.94
MFCC Mesonet 29.1 71.1 70.7 0.83
MFCC Mesonet (Finetuned) 33.5 66.5 66.5 0.80
MFCC Specrnet 38.3 61.7 61.7 0.76
MFCC Specrnet (Finetuned) 38.0 62.1 62.0 0.76
Mesonet 44.6 55.5 55.3 0.71
Mesonet (Finetuned) 40.4 59.6 59.6 0.74
Specrnet 42.8 57.2 57.2 0.72
Specrnet (Finetuned) 40.8 59.2 59.2 0.74
VoiceRadar 0.0 99.8 99.9 99.9

B. Detailed Detection Results for Dataset

In Tab. III and Tab. II, we showed the effectiveness of
existing detection approaches using all generated deep fake
samples. Tab. VIII shows the results the different models here
were provided by the Whisper Features [34] scheme. Tab. IX
shows the results for each tool separated.
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TABLE IX: Equal-Error-Rate (EER) of the individual
state-of-the-art detection approaches for each utilized deep
fake generation tool.
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Jenny [2] 34.4 46.5 23.1 4.3 27.8
VALL-E-X [89] 33.0 32.0 43.8 4.4 19.7
SpeechT5 TTS [5] 35.8 47.6 35.9 1.8 4.6
StyleTTS2 [49] 30.3 24.3 42.7 13.6 43.2
Bark [4] 41.7 37.1 44.6 1.3 12.0
Tortoise [10] 48.6 38.3 42.1 5.7 34.9
Vits [37] 8.0 31.2 24.0 2.5 46.5
XTTS [3] 21.5 41.2 29.8 1.4 27.9

V
C

DiffHierVC [16] 19.6 24.6 48.3 13.5 23.6
DiffVC [61] 21.1 26.0 49.5 5.5 15.0
HierSpeech++ [44] 38.9 24.7 42.3 40.1 22.9
SpeechT5 [5] 42.2 33.3 38.2 5.5 22.4
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