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Abstract—To evade existing antivirus software and detection
systems, ransomware authors tend to obscure behavior differ-
ences with benign programs by imitating them or by weakening
malicious behaviors during encryption. Existing defense solutions
have limited effects on defending against evasive ransomware.
Fortunately, through extensive observation, we find I/O behaviors
of evasive ransomware exhibit a unique repetitiveness during
encryption. This is rarely observed in benign programs. Besides,
the χ2 test and the probability distribution of byte streams
can effectively distinguish encrypted files from benignly modified
files. Inspired by these, we first propose ERW-Radar, a detection
system, to detect evasive ransomware accurately and efficiently.
We make three breakthroughs: 1) a contextual Correlation mech-
anism to detect malicious behaviors; 2) a fine-grained content
Analysis mechanism to identify encrypted files; and 3) adaptive
mechanisms to achieve a better trade-off between accuracy and
efficiency. Experiments show that ERW-Radar detects evasive
ransomware with an accuracy of 96.18% while maintaining a
FPR of 5.36%. The average overhead of ERW-Radar is 5.09%
in CPU utilization and 3.80% in memory utilization.

I. INTRODUCTION

Crypto Ransomware is a type of malware that encrypts the
data of infected hosts. It demands ransom from victims in
exchange for decryption keys [1]. Over the past decade, it has
inflicted economic losses exceeding 20 billion dollars across
various sectors of society, such as governmental agencies [2],
healthcare institutions [3] and educational establishments [4].
Therefore, considerable efforts are devoted to detecting ran-
somware accurately to minimize economic losses [5], [6], [7],
[8], [9], [10], [11], [12]. Existing defense mechanisms mainly
focus on detecting anomalous I/O behaviors of ransomware
during encryption [13], [14], [15], [16], [17], [18]. Their
typical approaches include i) detecting anomalous behavior
features, such as the high frequency of I/O requests associated
with read, write, and other file access operations during
encryption, ii) detecting specific behavior patterns based on
predefined rules, such as a read-encrypt-overwrite behavior
pattern generated by a specific sequence of operations during
encryption, and iii) calculating and analyzing entropy values of
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written buffers based on the insight that encryption algorithms
result in encrypted content exhibiting high entropy values.

However, with the evolution of attack strategies, existing
defense mechanisms have limited effects on defending against
ransomware efficiently. Their limitations are manifested in
three aspects. a) They are vulnerable to evasive attackers,
who adjust I/O strategy to make operations less intensive
or regular [19], [20], [21]. Most of them rely heavily on
predefined features or specific patterns. However, attackers can
easily bypass them by keeping the operation frequency within
detection thresholds or avoiding operations exhibiting specific
patterns. For example, they split short-duration encryption
tasks and run these sub-tasks intermittently. b) They are power-
less to uncover hidden encryption behaviors of attackers who
achieve encryption goal by imitating benign programs [13],
[22]. They assume that ransomware behaves very differently
from benign programs due to frequently encrypting files and
erasing original content. However, the discrepancies between
the two can be obscured by encrypting files following benign
behavior patterns. c) They suffer from potential attacks target-
ing the high entropy values of encrypted content [23], [24],
[25]. Attackers can use partial encryption or pad low-entropy
data to reduce entropy values, thereby bypassing entropy-based
detection. Besides, some benignly modified files (compressed
files) also exhibit high entropy values. This compromises the
ability of detectors to distinguish malicious and benign writes.

In this paper, we aim to figure out how ransomware
successfully evades detection and fill the gap in defending
against evasive ransomware with advanced mechanisms. To
achieve this goal, we investigate and analyze the I/O be-
haviors and encrypted files of numerous evasive samples
both in the literature and the wild. We first observe that ①
the I/O behaviors of evasive ransomware exhibit a unique
repetitiveness characteristic over the long term, even though
they are dispersed or wrapped as benign behaviors. The
reason is that attackers evade detection by slowing down the
encryption speed or adjusting the encryption operations under
the guidance of their customized evasive strategies. It means
that fewer encryption tasks are completed by a process in the
short term. Consequently, attackers have to repetitively use
evasive strategies to encrypt numerous files. This ultimately
results in multiple sets of similar I/O behavior segments being
exhibited in the long term. We also observe that ② the χ2
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results of byte values for encrypted files and benignly modified
files show significant differences. Additionally, the probability
distribution of bytes is more uniform in encrypted files, yet
it slightly fluctuates in files padded with low-entropy data,
while it exhibits numerous peaks in benignly modified files.
This indicates the χ2 test and the probability distribution can
serve as reliable indicators of encrypted content.

Based on these observations, we make three main break-
throughs: First, motivated by observation ①, we propose a
Correlation mechanism to detect I/O behaviors of evasive ran-
somware. It analyzes behavioral correlations by combining the
operation details in local behaviors and contextual information
in global behaviors. Our insight is that if local behaviors and
global behaviors are highly correlated, this correlation can
reflect that similar behavior segments have repeatedly appeared
over the past period. Therefore, by targeting the unique be-
havioral repetitiveness and identifying it through correlation
analysis, we can detect evasive ransomware accurately. In
contrast, previous behavior-based detection mechanisms regard
predefined behavioral features/patterns as the main criteria for
decision-making. They fail to detect evasive attackers who
weaken features or disrupt specific patterns by distributing ma-
licious operations. Additionally, our detection mechanism ex-
hibits greater robustness in preventing adversaries who attempt
to tamper with the correlation, as its complex decision-making
process considers both local and global behavioral information
rather than relying solely on individual data points.

Second, inspired by observation ②, we propose a fine-
grained content analysis mechanism to detect whether mod-
ified files are encrypted. It considers the overall randomness
and the detailed probability distribution of byte streams to
classify modified files. Compared to previous detection which
is easily bypassed by low-entropy attacks, these indicators
enable a fine-grained analysis of whether data follows a
random distribution, so they can distinguish encrypted files
from benignly modified files more accurately. In addition, we
believe content analysis is necessary as it can resist potential
threats, since all ransomware encrypts files and even evasive
one is no exception.

Finally, we propose adaptive mechanisms to achieve a
better trade-off between detection accuracy and efficiency.
First, we adaptively adjust the behavior detection window
size based on the above two detection results. Compared to
existing detection systems with fixed-size detection windows,
this approach enables us to capture as many behaviors as
possible to provide richer contextual information for accurate
decision-making, especially when attackers weaken encryption
behaviors. Additionally, it avoids excessive decision delays
caused by analyzing overly long behavior sequences. Second,
we assess the I/O busyness in real-time and adaptively adjust
the start time of content analysis to ensure it runs during
idle I/O cycles. With adaptive mechanisms, we can seamlessly
integrate the two detection mechanisms into a hybrid detec-
tion system, thereby, reducing FPs/FNs, enhancing detection
accuracy, and reducing detection overhead.

Overall, we develop ERW-Radar, a hybrid detection system,

to detect evasive ransomware accurately and efficiently. To
implement it, we deploy a filesystem driver to collect I/O
behaviors in the kernel and perform behavior detection and
content analysis in user space. To evaluate ERW-Radar, we
collect 910 ransomware samples (132 evasive samples and
778 traditional samples) ranging from 2018 to 2024, and run
them in VMwares equipped with Windows 10. Results show
that ERW-Radar can successfully detect evasive ransomware
with an accuracy of 96.18% and traditional ransomware with
an accuracy of 96.12%. We also evaluate the overhead of
ERW-Radar. Results show that the average CPU and memory
utilization are 5.09% and 3.80%, respectively. Additionally,
we evaluate the resilience of ERW-Radar against adversaries
who attempt to overflow the detection system and tamper with
the behavioral correlation or the χ2 test.

In summary, this paper makes the following contributions:
• We explore the limitations of existing detection systems

in defending against evasive attacks. Through extensive
observation of evasive attacks, we find the unique be-
havioral repetitiveness exhibited over the long term is
an ideal candidate for characterizing evasive ransomware.
Motivated by this, we propose a Correlation mechanism,
which is a context-based approach, to detect ransomware
by analyzing the correlation of I/O behaviors.

• We also observe that the χ2 test results and the prob-
ability distribution of bytes are more reliable indicators
of encrypted files. Inspired by this, we develop a fine-
grained content analysis mechanism to precisely estimate
whether files are encrypted by ransomware.

• We propose adaptive mechanisms that dynamically adjust
the detection window and initiate content analysis. They
help seamlessly integrate the two detection mechanisms
into a hybrid detection system, achieving a better trade-
off between detection accuracy and efficiency. Results
show ERW-Radar detects evasive ransomware with an ac-
curacy of 96.18%. The overhead of running ERW-Radar
is 5.09% and 3.80% in CPU and memory utilization.

II. UNDERSTANDING OF EVASIVE RANSOMWARE

In this section, we detail how evasive ransomware is de-
signed and how prevalent the evasive techniques are in real
ransomware. Then we highlight the necessity of enhancing
existing solutions in defending against evasive ransomware.

Currently, the most widely used approach to detect ran-
somware is monitoring I/O behaviors and employing prede-
fined features or patterns to discriminate malicious behav-
iors [5], [7], [6], [8]. Because traditional ransomware performs
numerous operations to encrypt files and erase original con-
tents continuously and rapidly. It often writes high-entropy
content to files due to the nature of encryption algorithms. To
evade detection, attackers expend considerable efforts in en-
crypting covertly. They focus on obscuring discrepancies with
benign programs by imitating them or weakening malicious
behavioral features. In their designs, a series of instruction
lists, which define the types, orders, and time intervals of
operations, are needed to guide the encryption. They are

2



ingeniously pre-designed based on various evasive techniques
and can be applied to encrypting files of different types
and sizes. Typically, this is completed during the deployment
phase. During an attack, evasive ransomware spawns processes
according to the pre-designed instruction lists. The processes
then follow their instruction lists to access files and write
encrypted data.

So far, we’ve found hundreds of ransomware samples that
report successfully evading detection. They come not only
from novel evasive families [26], [27], [28], [29], [30], [31]
but also from well-known traditional families [32], [33], [34],
[35], [36] and academic papers [13], [19], [20], [37], [38],
[39]. This indicates evasive techniques are becoming more and
more prevalent both in the literature and in the wild. Currently,
there are four mainstream evasive techniques widely used by
ransomware authors. They are:

Splitting: Ransomware authors distribute malicious pay-
loads (encryption operations) across multiple processes. In this
way, none of the sub-payloads contain recognizable malicious
behavior features (high frequency and specific patterns) known
to single-process-based ransomware detectors, yet those sub-
payloads as a whole can still fulfill the original malicious
functionality [37], [39], [38], [19]. Such a splitting technique
is widely used in real ransomware such as Conti [35], [36]
and Ryuk [32]. They perform encryption in one process
and auxiliary tasks (e.g., collecting system information) in
other processes. Authors of a splitting attack [19] demonstrate
that the accuracy of ShieldFS [5] decreases after a single
split, going from 98.6% down to 65.5% on a two-process
ransomware. And by dividing 18 processes into 3 functional
groups: {directory list},{read, rename} and {write}, ran-
somware is able to completely evade RWGuard [7].

Intermittent: Attackers introduce idle operations, i.e.,
sleeping after encrypting for a certain period. By repeating
this work-sleep pattern during encryption, they reduce the
operation frequency within a period, thereby circumventing
detection. After developers of LockFile [40] adopted intermit-
tent encryption in 2019, novel families such as BlackCat [26],
BlackBasta [27] and PLAY [29] have successfully followed it.

Imitating: Attackers imitate benign programs to encrypt
files. They first extract behavioral templates from benign
programs. Then, they spawn processes according to the tem-
plates, and the processes follow their own instruction lists to
access files and write encrypted data. For example, Doppel-
Paymer [30], [31] and ANIMAGUS [13] evade detection by
imitating file operations and network traffic patterns of benign
programs during encryption. This eliminates the differences
between encryption and benign behaviors. With this technique,
ransomware can achieve its encryption goal while behaving
like a benign program.

Low-entropy [23]: Attackers implement distributed partial
encryption. They encrypt partial file content and distribute it
throughout the entire file to maximize file corruption while
incurring a smaller local entropy increase. For example,
attackers[23] reduce entropy values from 7.86 to 6.96, thereby
bypassing ShieldFS [5] with a detection threshold of 7.82.

We investigate the effectiveness of some evasive samples
against state-of-the-art defense mechanisms, including two
mainstream Antivirus (AV) software, MalwareBytes [12] and
Windows Defender [11], as well as two representative de-
tection systems in the literature, RWGuard [7] and ShieldFS
[5]. We summarize that samples using splitting or imitating
techniques evade all the defense mechanisms. A few intermit-
tent attacks are detected by AV software due to their binary
signatures. Additionally, by using low-entropy techniques,
attackers can fully evade the entropy indicators of RWGuard
and ShieldFS. This indicates both existing academic detec-
tion systems and AV software fail to defend against evasive
ransomware. So how to detect it effectively becomes an
urgent problem. We hope our preliminary study will stimulate
further discussion and research to enhance current ransomware
detectors, thereby addressing this potential threat before it
becomes a major security problem.
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Fig. 1: I/O behaviors and an instruction list of an imitating
attack, namely ANIMSOffice.

III. OBSERVATION & MOTIVATION

The evasive techniques have been well studied and summa-
rized in §II. They are implemented through a set of instruc-
tion lists. We exemplify one of them employed by imitating
attacks in Fig. 1 (b). We regard these instruction lists as
building blocks of evasive ransomware because they can be
combined to encrypt files and evade detection. For example,
attackers use a splitting instruction list to set four functional
groups: {directory list}, {read}, {write}, and {rename},
then apply the intermittent technique to introducing sleep into
operations. To explore the details of evasive ransomware, we
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collect 132 samples from public repositories [41], [42], [43]
and run them for ten minutes to collect their I/O behaviors.
To ensure that each sample encrypts effectively, we do not
collect its I/O behaviors until at least one file is observed
being encrypted. Then we analyze the frequency of various
I/O operations over time and show a representative imitating
attack ANIMSOffice (encrypting files by imitating Microsoft
Office) in Fig. 1 (a). This sample poses a great challenge
in accurately distinguishing it from benign programs because
they both perform intensive I/O operations.

We can intuitively observe a series of similar behavior
segments (marked with boxes ①②③) in Fig. 1 (a). Through
analyzing their behavioral details, we find processes within
these boxes follow the same instruction list, which is shown
in Template A in Fig. 1 (b). This demonstrates the sample
executes a series of similar operations over a period of time.
We also notice other different templates such as B and C in
this sample, with each one repetitively employed a various
number of times. The discrepancy arises from the differing
types and sizes of files encrypted with templates A, B and
C. Besides, repetitive behavior segments are also observed
in other samples of imitating attacks, splitting attacks and
intermittent attacks. We show them in Fig. 8 and Fig. 9 in
Appendix A. Therefore, we conclude that evasive ransomware
repetitively executes similar operations based on various tem-
plates, which results in its I/O behaviors exhibiting a unique
repetitiveness characteristic over the long term.

We then analyze the reason behind this and demonstrate that
the above behavioral repetitiveness is inevitable. As mentioned
in §II, evasive attackers rely on pre-designed instruction lists
to reduce encryption speed or operation types. However, this
would result in fewer encryption tasks being completed in the
short term. Meanwhile, the available lists are limited during
encryption, because they need to be cleverly designed to
evade detection and are usually packaged as a library before
malicious payloads are loaded onto victim systems. Therefore,
to encrypt numerous file blocks, attackers have to repetitively
utilize various instruction lists, which inevitably leads to
behaviors exhibiting a unique repetitiveness. For example,
in imitating attacks, considering that benign programs rarely
access files intensively and continuously, I/O operations are
relatively limited in instruction lists, so attackers have to
repetitively utilize them to encrypt files. In contrast, such a
behavior regularity is rarely observed in widely-used benign
programs (Chrome and Firefox). Because they are manipulated
by users who rarely perform repetitive tasks continuously and
intensively, e.g., users may utilize Chrome to perform actions
like browsing web pages, downloading files and so on. A few
benign programs with repetitive work patterns (WinRAR) can
be excluded easily by combining content analysis (§V-D).

We further collect 1,000 files of various types (jpg/png,
pdf, etc.) from well-known benchmarks[44], [45] to analyze
encrypted files. We use AES 256, a representative symmetric
encryption algorithm, to encrypt 50% of files and make benign
modifications to the others, e.g., compressing files into zip
formats. Then we extract segments of 512 bytes, 1024 bytes

and 2048 bytes in size from these files. For each segment size,
we randomly select 10,000 encrypted file segments and 10,000
other file segments. An obvious fact is that the encryption
algorithm results in byte streams exhibiting high randomness.
Therefore, we utilize χ2 to measure the deviation between the
distribution of byte streams in a file and a uniform discrete
distribution. We choose absolute values (Abs.) to represent
the χ2 results of the above segments and normalize them.
Results show that the differences in normalized Abs. between
encrypted and other segments of 512 bytes fall between 105.4
and 150.6; of 1024 bytes between 108.24 and 153.76, and
of 2048 bytes between 112.43 and 157.57. This indicates
the χ2 test results can distinguish between encrypted files
and benignly modified files to some extent. On the other
hand, since χ2 test ”compresses” the distribution of bytes
into a single scalar value, it loses detailed information of
the overall distribution shape, so if we pad some structured
data (low-randomness data) to encrypted files, the differences
in χ2 results can be reduced. Therefore, to capture its fine-
grained distribution regularity, we further analyze it as a whole
and find that the probability distribution of bytes is more
uniform in encrypted files, yet it slightly fluctuates in files
padded with low-entropy data, while it exhibits numerous
peaks in benignly modified files. This indicates that combining
the probability distribution of bytes with the χ2 test helps
distinguish encrypted files more accurately, especially when
the differences in the χ2 test are not significant.

In summary, we observe that evasive ransomware exhibits
inevitable characteristics both in long-term I/O behaviors and
in encrypted contents. These have not been found in previous
ransomware defense solutions, thus providing us with an
opportunity to defend against evasive ransomware.

IV. THREAT MODEL

In this paper, we focus on the encryption phase of ran-
somware because it is when actual malicious actions take
place and when permanent file losses occur. Therefore, we
mainly study defense solutions against ransomware that evades
detection during encryption. To ensure successful attacks,
ransomware needs to be developed following three condi-
tions: First, ransomware evades detection systems by adopting
mainstream evasive techniques in §II rather than simplifying
encryption operations, such as directly deleting files. Second,
it encrypts the majority of file content to ensure that files
cannot be read or recovered by victims, rather than using
non-encryption content hiding techniques, such as setting
passwords for files. Finally, it does not encrypt at extremely
slow speeds, e.g., a 1 byte/h speed, because this would be
considered harmless to systems.

A potential threat to ERW-Radar is that adversaries may
escalate privilege [46] and terminate detection in the user
space. This is an ongoing security problem. Since we rely on
it for ransomware defense, we need to ensure that it cannot
be maliciously shut down. Note that to address this problem,
several promising approaches have been proposed [47], [48],
[49]. They deny operations that attempt to disable the detection
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system by performing security authentication, access control,
integrity check, process isolation, memory protection and so
on. We detail them in §VII. Taking Active Security Processor
(ASP) [47] as an example, we can entrust the management of
ERW-Radar to the ASP, which has the highest privilege (Super
Root) of the system. In this way, the detection processes are
monitored and managed in a secure and isolated environment
which can prevent privileged attacks from terminating them.
Thus, by integrating such an approach into our system, we
ensure ERW-Radar’s resilience against termination.

V. DESIGN OF ERW-RADAR

A. Design Overview

In this paper, we aim to detect evasive ransomware accu-
rately. Traditional solutions rely heavily on predefined be-
havior features and patterns or file entropy, thus, they are
easily bypassed by evasive ransomware which breaks original
behavior patterns or reduces the entropy of encrypted content.
To tackle it, we design ERW-Radar, an adaptive detection
system against evasive ransomware. As Fig. 2 shows, it utilizes
I/O Monitor to extract behavioral information from I/O Re-
quests, Behavior Detector to detect I/O behaviors in real-time
and Content Analyzer to analyze modified files at idle time.
The insight behind our design is that the unique behavioral
repetitiveness is an ideal candidate for identifying evasive
ransomware. The χ2 tests and the probability distribution of
bytes values are also reliable indicators of encrypted files.

The workflow is as follows: When a process accesses the
filesystem, I/O requests are generated and encapsulated as
IRPs by the I/O manager. Subsequently, they are forwarded by
Filesystem Driver to I/O Monitor. I/O Monitor parses IRPs to
extract behavioral information and caches it in a queue located
in kernel space. The behavioral information is periodically sent
to Behavior Detector and Content Analyzer. After receiving it,
② Preprocessor first saves it as behavior logs, then embeds it
into a behavior sequence and sends it to ① Detector. An overly
long sequence needs to be compressed in ③ Compressor.
Finally, ① Detector encodes the behavior sequence to obtain
contextual information and analyzes it by combining the latest
behavior sequence and the whole sequence. Meanwhile, ⑤
Timer continuously evaluates the I/O busyness and triggers ④
Analyzer to analyze recently modified files at idle I/O cycles.

One solution to extract behavioral information is to parse
IRPs. However, there are over 30 types of filesystem-related
IRPs and the frequency of some IRPs often reaches up to
3,000/s. This indicates that parsing all IRPs incurs a huge over-
head. Furthermore, since behavioral information is extracted in
the kernel space, frequently transmitting it to user space results
in excessive context switching, heavily burdening the system.
Thus, We seek a lightweight and customized solution that
reduces the parsed IRPs to ensure extraction efficiency while
still providing the necessary ransomware-related behavioral
information. Additionally, we design a queue to temporarily
cache the information and send it periodically.

To achieve accurate behavior detection, there are two major
challenges to address. First, how we accurately detect the
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Fig. 2: Overview of ERW-Radar. The orange modules repre-
sent components designed to detect evasive ransomware; the
blue modules represent existing components in the system.

behavioral repetitiveness, which may be disrupted and lack
periodicity? Since other programs in the system, especially
those with heavy tasks may compete for system sources (e.g.,
CPU and I/O), I/O behaviors of ransomware may be disrupted.
This leads to repetitive behavior segments not always being
entirely consistent. Thus it’s not feasible to detect repetitive
behavioral segments by pre-defining their patterns or features,
which are widely used by existing solutions [7], [8]. Another
approach to detecting behavioral repetitiveness is determining
whether I/O operations exhibit periodicity. However, given that
time intervals are not always identical among various behavior
segments, behaviors of evasive ransomware do not exhibit
precise periodicity. This exceeds the analysis capabilities of
periodic functions [50], [51]. To address this challenge, we
propose a Correlation mechanism, a context-based detection
approach, to identify repetitiveness. It breaks down the latest
behavior sequence into progressive sub-sequences and con-
ducts sequence-wise analysis with historical sequences.

Second, how to determine a feasible size for the de-
tection window (the detected behavior sequence) to detect
repetitiveness? A short detection window fails to provide
enough contextual information for accurate decision-making,
especially when attackers weaken encryption behaviors to
evade detection. However, analyzing long sequences incurs
a high computational latency. This causes more file loss.
To precisely identify ransomware without causing too much
analysis latency, we propose a dynamic detection window,
which adaptively adjusts the window size based on recent
detection results.

Existing content-based detection targets the entropy of write
buffers of IRPs. It is typically performed in the kernel.
However, due to limited computing resources and storage
space, fine-grained content analysis in the kernel faces two
challenges. First, conducting the χ2 test and probability dis-
tribution evaluation for each write buffer requires substantial
computing resources, especially for I/O-intensive programs
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that generate numerous IRPs. This leads to excessive overload
of the kernel, impacting system stability and responsiveness.
Second, a larger content size allows for more accurate differen-
tiation of encrypted files. But it’s unfeasible to store excessive
content in limited kernel space. To tackle these, we conduct
content analysis in user space. We also propose a simple
but effective mechanism that assesses the I/O busyness and
adaptively triggers content analysis at idle I/O cycles.

Next, we present the implementation of behavioral infor-
mation extraction, behavior detection and content analysis in
§V-B, §V-C and §V-D, respectively.

B. Lightweight and Customized Information Extraction

The behavioral information extraction function of ERW-
Radar is located in I/O Monitor, which is built on a standard
kernel-based framework, Windows Filesystem Driver [52].
When users access the filesystem, their I/O requests will be
packed as I/O request packets (IRPs) in I/O manager and
forwarded to I/O Monitor. Then, by setting callbacks on IRPs,
we can parse their attributes to extract the detailed behavioral
information of these operations. Due to the asynchronous
nature of the callback mechanism in handling I/O requests,
it allows the CPU to handle other tasks without waiting for
I/O operations to complete. This makes it widely used for
extracting I/O information [5], [8], [13].

As mentioned in §V-A, parsing all IRPs and frequently
transmitting the extracted behavioral information result in sig-
nificant overhead. To tackle it, we lightweight and customize
the I/O monitor with two techniques: (1) We only parse IRPs
most relevant to ransomware behaviors to reduce the parsing
overhead. First, we let most IRPs pass through directly except
for file-related operations. Then we gradually filter out those
IRPs with low frequency due to their negligible impact on
characterizing ransomware behaviors, until we find a balance
between performance and overhead (see §VI-B). Ultimately,
only eight IRP types are retained, which can be considered
specific in characterizing ransomware (see Appendix B). Af-
terward, we extract behavioral information of these IRPs from
the FILE OBJECT structure, an open instance of a file [53]
containing the file-related information. We extract timestamp,
processID, type of IRP, full path of file/directory, and size of
write/read buffer from it, and employ them to construct I/O
behavior logs in user space.

(2) We cache the behavioral information in the queue to
reduce transmission overhead. Here are two problems that
need to be solved. One is how to transmit the cached informa-
tion efficiently. An asynchronous solution is transmitting data
upon specific events (e.g. when the queue is full). It reduces
overhead during idle periods but leads to more file loss because
behaviors cannot be detected timely. Thus, we choose the
polling mechanism with higher security. It enables behaviors
to be sent and detected timely even during idle periods (§VI-
B). To achieve this, the queue is set to transmit information
periodically. Meanwhile, it checks the status to avoid empty
transmissions. The other problem is how to make the queue
long enough to be resilient against overflow. We conduct stress

tests in scenarios where I/O-intensive applications are running
to determine the maximum length. Results show that, with a
sending interval of 16ms, a queue length value of 1000 ensures
that legitimate I/O operations will not cause overflow. Such a
setting is conservative because the actual length is usually half
of the maximum during runtime. Besides, such a queue also
ensures resilience against the DoS attack [54], which performs
dummy I/O to overflow the queue (§VI-E).

C. Efficient and Accurate Behavior Detection

Previous observations in §III demonstrate that I/O behaviors
exhibit distinctive repetitive patterns in the long term when the
OS suffers an evasive attack. Accordingly, ERW-Radar makes
full use of the contextual information of I/O behaviors to im-
plement efficient and accurate evasive ransomware detection.

1) Dynamic Detection Windows: Given that the unique
repetitive pattern of I/O behaviors is exhibited after a sufficient
accumulation of I/O behaviors, to identify it accurately, we
must expand the detection window to capture a long period of
I/O behaviors for enough behavioral information. However,
longer detection windows typically incur higher detection
overhead. For widely-used models such as Transformer [55],
its time complexity grows exponentially with the input size,
limiting its ability to analyze a large number of I/O behaviors
quickly for real-time detection.

Thus, we seek a balanced solution with acceptable costs and
strong security guarantees. To this end, we propose an adaptive
mechanism and embed it into Preprocessor to enable a dy-
namic detection window. It adjusts the window size according
to recent results from the Detector and Analyzer. The insight
behind our design is that: ① If both behavior detection and
content analysis prompt positive results consistently, it means
the current window size is sufficient to distinguish between
malicious and benign behaviors effectively. A shorter but more
feasible size is probably needed to detect ransomware. ② If the
two results remain inconsistent, it implies the current window
size is too small, either making malicious behaviors hard to
identify or resulting in too many false positives. Therefore, ex-
panding the detection window might capture more contextual
information to help identify ransomware accurately.

A concerning case is that to capture subtle malicious be-
haviors, the detection window will be too large, affecting the
detection efficiency. One solution to tackle this is compressing
excessive behavioral information. To this end, we design Com-
pressor to assist Preprocessor in implementing the dynamic
detection window. It is built on a decoder unit of the Trans-
former [55]. It can remove unimportant information and retain
key information by utilizing the cross-attention mechanism.
This is a practical solution for two reasons: First, benefiting
from the cross-attention mechanism, the decoder unit can
transform an m × C input sequence into an n × C output
sequence in O(n2C+nmC) time complexity, while retaining
key behavioral information. If n ≪ m, the time complexity is
linear to m, making it an ideal tool for compressing large
amounts of behavioral information [56], [57]. Second, the
decoder unit is lightweight; introducing it to pre-process the
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Fig. 3: Structure comparison of Detector. Input X represents the historical behavior sequence; Input Y represents the latest
behavior sequence; X represents the encoded behavior sequence. The orange modules represent modifications made to
Transformer; the blue modules represent existing components in Transformer.

input data does not make the system cumbersome and difficult
to maintain. The detailed implementation of Compressor is
provided in Appendix C.

Concretely, the dynamic detection window is implemented
as follows: The Preprocessor extracts timestamp, processID,
type of IRP and size of write/read buffer from the behavior
log and encodes them as behavior sequences. The sequence
length t is adjusted as follows in the above two cases, ① to
obtain a smaller t, it searches for the smallest length t′ from 0
to t, at which the Detector can still detect malicious behavior
sequences; ② otherwise, it increases t until results of Detector
and Analyzer are consistent. The behavior sequence will be
compressed if t exceeds 512. The upper limit of Compressor
is conservatively set to 2048, which is derived from large
amounts of real ransomware detection.

2) Behavior Detection Mechanism: To identify the repeti-
tive behavior segments, a straightforward solution is predefin-
ing their specific patterns or features. However, as mentioned
in §V-A, these behavior segments may be disrupted by other
programs, causing them not to match the patterns or features,
thus affecting the detection robustness in different environ-
ments. Another commonly utilized solution that detects the
periodicity of operations is also not feasible due to the lack
of precise periodicity. Therefore, we propose a Correlation
mechanism, which detects behavioral repetitiveness by an-
alyzing the contextual correlation between the latest and
historical behaviors. This is derived from the intuition that
behaviors observed recently provide precise information about
the ongoing operations, while behaviors over an extended
period offer contextual references for recent operations. If they
are highly correlated, this correlation can reflect that similar
behavior segments have repeatedly appeared in the past period.

We track global file access behaviors originating from mul-
tiple processes. The rationale is that analyzing the correlations
between historical and recent behaviors based on a single
process allows us to detect intermittent or traditional attacks,
where a process may repeat certain I/O operations. Analyzing
the correlations between different processes enables us to
identify splitting attacks or imitating attacks, where different
groups of processes may exhibit repetitive behavioral patterns.

Therefore, we first break down the latest behavior sequence
into a series of sub-sequences, which include behaviors from
both single processes and multiple process groups. Then, we
conduct a sequence-wise comparison between sub-sequences
and the historical behavior sequence. After that, each sub-
sequence is assigned a correlation score. A high score in-
dicates a suspicious sub-sequence. We then make decisions
by aggregating these scores. If the aggregated results show
a high correlation, it indicates that the majority of recent
operations have been repetitively occurring in the past period,
i.e., behaviors exhibit repetitiveness in the past period.

Since our detection mechanism targets the inevitable be-
havioral repetitiveness rather than the pre-defined behavioral
patterns or features, it maintains detection effectiveness even
when attackers weaken, confuse or distribute their encryption
behaviors. Additionally, it exhibits greater robustness in pre-
venting adversaries who attempt to tamper with the correlation.
This arises from its contextual and dynamic decision-making
process, which considers both local and global behavior infor-
mation rather than relying solely on individual data points.

Considering that the encoder-decoder structure of Trans-
former [55] is naturally suited to capture the relationships
between two behavior sequences, we can maximize the use
of its existing structures and avoid introducing excessive
components that would make the model ”fat” and difficult
to maintain. Therefore, we implement the Correlation mech-
anism by embedding it into the decoder. To achieve this, we
make the following modifications to the original structure:
First, as Fig. 3 (a) shows, one of the inputs of the decoder,
Y , is from the outputs at previous time steps. We set it to
be the latest behavior sequence to analyze the correlation
between the latest and historical behavior sequences. Second,
we replace the Attention mechanism with the Correlation
mechanism, as shown in Fig. 3 (b). Third, we add a Linear
Layer to classify the correlation results. Given that there
is no dependency between sub-sequences in the Correlation
mechanism, they can be analyzed in parallel, thereby greatly
improving analysis efficiency. Instead, outputs are generated
serially in Fig. 3 (a) because the outputs generated in previous
time steps need to be concatenated to form the input of the
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current time step, resulting in an efficiency bottleneck.
Specifically, behavior detection includes encoding and de-

coding phases. During encoding, ① the historical behavior
sequence X is encoded as contextual information X̄ and
sent to decoder units. This process is similar to that in the
Transformer. We take the first decoder unit as an example to
illustrate the decoding phase. It takes X̄ (the contextual infor-
mation) and Y (the latest behavior sequence) as inputs. During
decoding, ② Y is first mapped to Q, a high-dimensional
space, via the linear transformation matrix WQ (obtained
through model training). This aims to capture the internal
relationships within the latest I/O behaviors, because the multi-
head attention mechanism affords diverse representations for
behaviors, with each head focusing on distinct behavior fea-
tures in its dimensional subspace. Similarly, X̄ is mapped to
K and V via transformation matrices WK and WV . Then,
③ Q is broken down into a series of sub-sequences Qi, each
calculated with K in parallel to obtain the Correlation Score,
Si, represented as Si =

QiK
T

√
dk

,
√
dk is the dimension of Q and

K. Then, ④ weightedly averaging Si to obtain S, represented
as S =

∑n
i=1 αiSi, where αi are the weight coefficients, then

getting Correlation Weight Wij by Wij =
exp(Sij)∑
k exp(Sik)

. After
that, ⑤ obtaining the Correlation Output, Z, by Z = W · V .
Finally, ⑥ normalizing and applying a feedforward network
to Z. The output of the last decoder unit is processed by a
linear layer to obtain the detection result, i.e., the probability
of being benign or malicious.

D. Adaptive and Fine-grained Content Analysis
As mentioned in §II, existing entropy-based detection is

vulnerable to low-entropy attacks. Our observation in §III
shows that the χ2 tests and the probability distribution of
byte values can effectively distinguish encrypted files from
benignly modified ones. Accordingly, ERW-Radar conducts
content analysis based on them to detect these attacks.

1) Adaptive Adjusting Start Time: As illustrated in §V-A,
analyzing numerous write buffers of IRPs in kernel space
requires large amounts of computation and storage, which
overburdens the kernel and affects its stability. Therefore,
we perform content analysis in userspace. This mitigates the
kernel’s burden while allowing us to conduct a more flexible
and fine-grained analysis. Further, to lessen I/O traffic in a
busy system, we can trigger content analysis at idle I/O cycles.
Thus, we design Timer that adaptively adjusts the start time
according to the I/O busyness of the system.

Usually, sustained high intervals between I/O requests
imply the arrival of an appropriate analysis time. To
assess the I/O busyness, we define I/O Trend as
xt+(1−β)xt−1+(1−β)2xt−2+...+(1−β)nxt−n

1+(1−β)+(1−β)2+...+(1−β)n , where n, the
number of historical I/O request intervals, needs to
be considered; β is the exponential smoothing factor;
xi, i = t − n, t − n + 1, ..., t, is the interval between I/O
requests at time i and i − 1. Once I/O Trend is larger
than a defined threshold (10s in ERW-Radar derived from
statistical analysis), content analysis is started to check files.
Meanwhile, Timer resets the time. If it doesn’t work for

a long time (10 min in ERW-Radar), it will be forcefully
started to mitigate potential threats. Unlike other metrics
used to assess I/O traffic such as I/O Throughput, I/O Trend
does not simply reflect the average level over a period but
measures the trend of intervals over the past period of time.
Given that the latest values of time intervals carry greater
weight relative to historical values, we assign a series of
exponentially decreasing weights, (1 − β)i to the values.
Experiments (§VI-C) indicate that I/O Trend is more sensitive
to reflecting the recent trend of I/O busyness.

2) Targets of Content Analysis: Ransomware either over-
writes original files with encrypted data or writes encrypted
data to other files and destroys the original files. Thus, only
files newly created and recently modified are suspicious targets
that need to be analyzed. We select segments of different sizes
from these files as analysis targets distributively and randomly.
This makes the detection process more unpredictable, prevent-
ing adversaries from pinpointing the analyzed file segments
to tamper with the χ2 test or probability distribution, thus
ensuring the resilience of ERW-Radar. Additionally, it avoids
the significant overhead of analyzing all files.

3) Fine-grained Content Analysis: The content analysis
function lies in the Analyzer of ERW-Radar, which considers
both the χ2 test and the probability distribution of byte
values. The χ2 test is used to measure the deviation of
an observed distribution from an expected distribution. It is
defined as

∑k
i=0

(Ni−Ei)
2

Ei
, where Ni and Ei are the actual

number and expected number of samples assuming value i.
In content analysis, the samples are the byte values of file
content, thus i is the byte value, and k is 255. Typically,
encryption algorithms result in encrypted content exhibiting
high randomness. Therefore, we set the expected distribution
of byte values to a discrete uniform distribution, i.e., ∀i, Ei =
L
256 , where L is the file content length being considered.
Accordingly, the probability distribution of byte values is
defined as P (i) = Ni/L, i = 0, 1, ..., 255. The features fed to
Analyzer for training/classifying are derived from the χ2 test
results and a series of probability of byte values. Compared to
entropy value (a rough estimation of encrypted content’s disor-
derliness), these features are fine-grained indicators because
they consider both the overall randomness of file content and
the detailed probability distribution of its bytes. Analyzer is
trained as a simple binary classifier to distinguish encrypted
files from benignly modified ones. During runtime, it analyzes
the above suspicious targets and classifies their feature values
to determine whether they are encrypted. If more than half
of the classifying results are malicious, ERW-Radar informs
users that ransomware may have infected certain files.

E. Reduction of FP and FN cases of ERW-Radar

A common issue in detection systems is the frequent FP
cases caused by individual positive results. To tackle this,
we consider a delayed alert after receiving a certain number
of notifications about malicious behaviors or encrypted files.
Concretely, the Detector calculates the ratio of positive detec-
tion results over a period of time. Only when the ratio exceeds
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a certain value does it alert that an attack has occurred. We
define this value as a detection threshold, represented as α,
and evaluate it in §VI-B.

Further, integrating Detector and Analyzer also contributes
to reducing FP and FN cases. Particularly, Detector identifies
and terminates malicious processes promptly, but if their
behaviors are too subtle or too dispersed, they may be ignored.
However, Analyzer can mitigate such potential attacks, but the
fine-grained analysis limits its ability to analyze files timely.
Therefore, it is feasible to conduct content analysis during idle
time to complement the vulnerabilities of behavior detection.
We demonstrate it in § VI-B. The following details how to
reduce FP and FN cases by integrating them.

FP case: A common FP case is that some benign programs
compress files into a certain format continuously, making
their behavior segments highly similar. In this case, Detector
frequently reports FPs, causing an extra system overhead. To
mitigate the issue, we propose a solution that integrates the
two results. Concretely, when Detector continuously alerts, if
they are denied by users, Detector marks detected behaviors
in the behavior log. But if they are ignored for a long time,
Analyzer is forced to start to prevent potential file loss caused
by an unattended system. When continuous alerts reoccur,
ERW-Radar first queries whether the current behaviors match
the marked behaviors in the log. If they match, it ignores the
alerts; otherwise, it marks them. By doing so, ERW-Radar
avoids frequent false alerts.

FN case: To avoid the potential FNs of Detector, we
initiate the Analyzer if no behavioral alerts are triggered for
a sustained period. In the case above malicious behaviors are
too subtle or too dispersed to detect, Analyzer can tackle the
potential threat by identifying the encrypted files.

VI. EXPERIMENTS

A. Methodology

1) Experimental setup: The experiments are conducted on
a desktop with an 8-core AMD Ryzen 7 CPU and 16 GB
memory. Since ransomware encrypts user files for extortion,
we build a user document directory consisting of various types
of files, including JPGs, DOCs, XLSs, etc. To evaluate if ERW-
Radar can detect ransomware in the real world, we collect 910
ransomware samples ranging from 2018 to 2024. They include
132 evasive ransomware samples and 778 traditional ran-
somware samples from MalwareBazaar [41], VirusShare [42],
GitHub [43], [58] and Prototypes [19], [37], as shown in
Tab. I. Following the best practices for malware experiments
suggested by [59], each sample is tested in advance to ensure
its function to encrypt files. Then, each sample is identified
post-run. We let them run for minutes on virtual machines
(VMs) equipped with Windows 10 and assigned 4 cores and
8 GB memory to evaluate the detection performance of ERW-
Radar. Our evaluation is based on several metrics, including
Accuracy, False Positive Rate, Recall, Precision and F1-Score.
After a round of experiments, VMs are rolled back to a clean
state to prevent any interference across executions.

TABLE I: Details of ransomware samples.

Evasive Ransomware Samples Traditional Ransomware Samples
Family Number Rate Family Number Rate
• ANIMSOffice

10 1.10%

Revil 205 22.53%
• ANIWPS Cerber 201 22.09%
• ANIMSEdge Chaos 196 21.54%
• ANIFirefox Darkside 57 6.26%
• ANIChrome Mespinoza 24 2.64%
• ANIWinRAR Mountlocker 19 2.09%
• ANI7zip Wannacry 19 2.09%
• ANIGolang Xorist 9 0.99%
• ANIRustc HelloXD 9 0.99%
• ANIV S Virlock 7 0.77%
⋆ Blackcat 81 8.90% Diavol 6 0.66%
⋆ Blackbasta 14 1.54% Karma 5 0.55%
⋆ Lockfile 10 1.10% Voidcrypt 5 0.55%
⋆ P lay 5 0.55% Badrabbit 5 0.55%
⋆ Lockergoga 5 0.55% Zepplin 3 0.33%
⋄ Conti 3 0.33%

Other 8 families 8 0.88%⋄ Ryuk 2 0.22%
⋄ SplittingProto. 2 0.22%
Tot. 18 families 132 14.51% Tot. 23 families 778 85.49%
• refers to imitating attacks, e.g., ANIFirefox refers to a sample of the ANIMAGUS
family, which encrypts files by imitating Firefox; ⋆ and ⋄ refer to intermittent and
splitting attacks, respectively.

2) Models & Datasets: In behavior detection, we set the
feedforward dimension of Detector as 64, the attention head as
16, the input sequence feature as 16 and the activation function
as ReLU. We set search space for other hyper-parameters
and select the optimal through the security and feasibility
trade-off in §VI-B. We collect malicious I/O behaviors during
ransomware samples running. To gather benign behaviors, we
deploy I/O Monitor on 10 normally used host machines and
collect their I/O behaviors for one week. 80% of I/O behaviors
are used for training and 20% are reserved for testing. In
content analysis, we design Analyzer based on a ransom forest
model with 10 decision trees and a depth of 5. To build an
unbiased dataset, we partition the file dataset in §III into 80%
training and 20% test. To prevent over-fitting, we utilize a
10-fold cross-validation.

B. Evaluation of Behavior Detection of ERW-Radar

1) Effectiveness analysis: To evaluate the contribution of
each component to the overall performance improvement, we
compare ERW-Radar with four behavior detectors: (1) ERW-
Fixed, which shields the Compressor and sets the detection
window to a fixed size of 512. (2) ERW-Feat, which de-
tects ransomware based on behavior features in RWGuard
and Unveil [8], [9]. (3) ERW-Trans, which uses the original
Transformer [55] with the attention mechanism. (4) ERW-
ShieldFS, which replicates ShieldFS [5] with our dataset.
Table II presents the detection accuracy, recall and FPR.
Experiments show that ERW-Radar achieves high detection
accuracy for both evasive and traditional ransomware, with
accuracies of 96.18% and 96.12%, respectively. To measure
the FPR of ERW-Radar, we deploy it on 10 normally used host
machines and run it for a week. During this period, we receive
173 false alarts from Detector. The false positive behavior
segments account for 5.36%. The undetected samples account
for 3.76%. However, through content analysis, the number
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TABLE II: Performance comparison between the Detectors of ERW-Radar and other behavior detection tools.

Ransomware ERW-Radar ERW-Fixed ERW-Feat ERW-Trans ERW-ShieldFS

Families Recall Overall Recall Overall Recall Overall Recall Overall Recall Overall

Im
ita

tin
g

ANIMSEdge 94.25%

Averaged
detection

recall:
95.23%

94.03%

Averaged
detection

recall:
94.85%

69.88%

Averaged
detection

recall:
79.49%

88.35%

Averaged
detection

recall:
88.51%

37.38%

Averaged
detection

recall:
47.58%

ANIFirefox 91.01% 89.39% 64.65% 82.97% 27.21%
ANIChrome 94.21% 93.95% 77.77% 87.03% 42.34%
ANIMSOffice 97.98% 96.57% 82.98% 90.03% 42.99%

ANI7zip 93.79% Recall 94.02% Recall 80.20% Recall 88.87% Recall 50.82% Recall
ANIWinRAR 96.94% 96.24% 96.03% 94.98% 83.27% 88.82% 89.79% 91.10% 44.78% 73.85%
ANIV S 96.33% FPR 95.93% FPR 90.97% FPR 89.96% FPR 74.61% FPR
ANIRustc 97.00% 5.36% 95.79% 6.79% 79.38% 7.95% 88.53% 8.79% 51.87% 8.92%
ANIWPS 98.33% Accuracy 97.97% Accuracy 86.28% Accuracy 91.07% Accuracy 56.23% Accuracy

In
te

rm
itt

en
t

Play 96.07%

Averaged
detection

recall:
97.00%

96.65% 94.97%

Averaged
detection

recall:
95.59%

95.54% 97.12%

Averaged
detection

recall:
93.22%

88.36% 93.00%

Averaged
detection

recall:
92.21%

91.33% 89.23%

Averaged
detection

recall:
77.96%

74.49%
Blackcat 96.84% 94.35% 89.03% 89.13% 70.98%

Blackbasta 97.94% 96.44% 96.99% 92.65% 90.85%
Lockfile 96.85% 95.33% 87.61% 93.67% 69.63%

Lockergoga 97.28% 96.88% 95.36% 92.58% 69.12%

Sp
lit

tin
g Conti 96.16%

Avg. recall:
96.31%

94.23%
Avg. recall:

95.36%

90.85%
Avg. recall:

90.76%

91.95%
Avg. recall:

91.80%

86.43%
Avg. recall:

80.31%Ryuk 97.46% 96.75% 92.48% 93.21% 82.57%
SplittingProto. 95.30% 95.10% 88.96% 90.25% 71.94%

* Tradit. RW 96.12% 94.11% 91.79% 91.89% 89.56%

of false alerts is reduced to 17, an almost negligible FPR,
and the number of undetected samples is reduced to 0. This
demonstrates that integrating Detector and Analyzer (See §V-
E) is effective in reducing the FPs and FNs. Below we detail
why the four detectors are not as effective as ERW-Radar.

ERW-Fixed: We evaluate the impact of the dynamic de-
tection window on performance. Compared to ERW-Fixed,
ERW-Radar enhances recall by 1.26% and decreases the FPR
by 1.43%. It indicates when detection results of Detector and
Analyzer remain consistent, shortening the detection window
does not result in significant semantic loss or a decrease in
accuracy. Besides, expanding it allows for capturing more
malicious behaviors, thereby avoiding potential FNs and FPs.
This confirms the necessity of using a dynamic window to
adapt to varying malicious behaviors.

ERW-Trans: We evaluate the effectiveness of the Cor-
relation mechanism in identifying behavioral repetitiveness.
Compared to ERW-Trans, our Detector achieves an accu-
racy increase of 5.32%. This confirms our design in §V-C,
i.e., analyzing the contextual correlation of behaviors enables
more accurate detection of evasive ransomware. In contrast,
although Transformer is also a contextual analysis framework,
it only calculates relationships among scattered points to
discover point-level dependency, but fails to understand sub-
sequences as a whole. Thus, it’s not suitable for analyzing the
repetitiveness of behavior segments. Note that although using
DL models (ERW-Trans) obtains better results than using ML
models (ERW-ShieldFS), with recall increasing by 17.25%, it
is still insufficient to fully mitigate the threat of evasive attacks.

ERW-Feat & ERW-ShieldFS: We compare ERW-Radar
with three representative detection tools: ShieldFS [5], RW-
Guard [7] and Unveil [8]. We summarize their features used to
detect malicious behaviors, including the number of traversed
directories, the number of read/written/renamed files, the fre-
quency of file operations, the number of accessed file types and
the average entropy/length of written buffers. We extract these

feature values from the behavior log to form the dataset. Since
the authors of ShieldFS do not release its kernel driver nor its
trained model, we train a decision tree model, ERW-ShieldFS,
based on our dataset and regard it as an alternative to ShieldFS
to facilitate our in-depth analysis. We notice that compared
to ERW-ShieldFS, ERW-Radar exhibits a significant advan-
tage in identifying both traditional and evasive ransomware,
with recall increasing by 6.56% and 27.56%. Because ERW-
ShieldFS treats the number of renamed files and traversed
directories as essential criteria for decision-making. In terms
of these features, evasive ransomware behaves similarly to
benign programs. Therefore, the decision tree considers it
as a benign program. As a result, ERW-ShieldFS can only
distinguish traditional ransomware from benign programs but
fails to detect evasive ransomware. In contrast, analyzing the
behavioral correlation exhibits greater robustness.

Besides, we train ERW-Feat based on the above statisti-
cal features but adopt our contextual approach for decision-
making rather than threshold/pattern-based judgment. Com-
pared to ERW-Feat, ERW-Radar does improve the recall of
evasive attacks by 8.36%. This improvement can be attributed
to the repetitive characteristic. In contrast to features such
as I/O frequency and patterns used by other detection tools,
the repetitiveness characteristic used by ERW-Radar better
distinguishes evasive ransomware from benign programs. We
show the visualization comparison between the repetitiveness
and these features in Fig. 11 in Appendix A.

2) Detection Cost of ERW-Radar: To evaluate the detection
cost, first, we start ERW-Radar after the ransomware begins
encrypting files and measure the time taken to detect it; then,
to evaluate the detection delay, we measure the number of
substantively encrypted files (see Note of Tab. III), encrypted
bytes and IRP MJ WRITE requests generated during this
period. We also conduct the same tests on another representa-
tive detector, ERW-ShieldFS. As Tab. III shows, the average
detection time of traditional samples for ERW-Radar is 0.24s.
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TABLE III: Detection time as well as the number of substantively encrypted files, encrypted bytes and IRP MJ WRITE
requests generated during the detection of ERW-Radar and ERW-ShieldFS.

Evasive RW. Time(ms) IRPs(Num.) Files(Num.) Bytes(KB) Traditional RW. Time(ms) IRPs(Num.) Files(Num.) Bytes(KB)
ERW-Radar ERW-Radar vs. ERW-ShieldFS

ANIMSOffice 383 5 1 4 Badrabbit 370 vs. 290 65 vs. 40 3 vs. 3 67 vs. 42
ANIWPS 392 3 1 3 Darkside 27 vs. 135 1 vs. 27 1 vs. 2 1 vs. 27

ANIMSEdge 690 10 3 9 Diavol 400 vs. 269 963 vs. 599 8 vs. 5 1009 vs. 628
ANIFirefox 695 4 1 4 HelloXD 137 vs. 970 1 vs. 175 1 vs. 10 1 vs. 175
ANIChrome 625 4 1 6 Karma 132 vs. 367 10 vs. 54 1 vs. 3 9 vs. 49
ANIWinRAR 855 10 3 9 Mespinoza 101 vs. 189 34 vs. 67 3 vs. 4 37 vs. 73
ANI7zip 847 120 6 131 Mountlocker 57 vs. 340 18 vs. 79 2 vs. 4 20 vs. 88

ANIGolang 820 45 4 40 Revil 135 vs. 450 5 vs. 98 1 vs. 4 3 vs. 59
ANIRustc 945 9 3 12 Cerber 104 vs. 378 1 vs. 47 1 vs. 3 1 vs. 47
ANIV S 1918 6 1 12 Virlock 398 vs. 279 890 vs. 563 8 vs. 5 874 vs. 553

Lockergoga 1350 1290 8 1252 Voidcrypt 126 vs. 568 17 vs. 124 2 vs. 5 35 vs. 255
Blackcat 1 410 17 1(+3) 27(+0.009) Xorist 1600 vs. 1879 703 vs. 862 11 vs. 16 726 vs. 890
Blackbasta 752 789 6 680 Zeppelin 1536 vs. 2075 693 vs. 839 6 vs. 9 712 vs. 862

Play 1 260 19 1(+2) 20(+0.006) Wannacry 121 vs. 561 1 vs. 130 1 vs. 10 1 vs. 130
Lockfile 320 34 2 33 Chaos 79 vs. 138 4 vs. 167 1 vs. 3 2 vs. 84

Conti 475 990 7 1249
others 154 vs. 223 21 vs. 79 2 vs. 3 34 vs. 128Ryuk 325 895 7 800

SplittingProto 255 85 2 62
Note: Since ERW-shieldFS cannot detect evasive ransomware, only its detection cost for traditional ransomware is evaluated. As for the number of substantively
encrypted files, we examine each file and perform content similarity evaluations between the corrupted and original versions. For corrupted files with a similarity
to the original file of less than 99%, we consider them to be substantively encrypted and count them. For corrupted files with a similarity of more than 99%, we
confirm the location of the tampered bytes and exclude files that are essentially unencrypted (i.e., only structural bytes are damaged). The rest of these files are
also considered as substantively encrypted and are included in the statistics.

During this period, an average of 149.00 IRP MJ WRITE
requests are generated. The average detection delay is about
2.26 encrypted files with 0.15M of encrypted content. In
contrast, ERW-ShieldFS detects traditional samples with an
average detection time of 0.40s and an average delay of 3.87
encrypted files with 0.17M of encrypted content. During this
period, an average of 171.74 IRP MJ WRITE requests are
generated. It can be observed that the detection cost of ERW-
ShieldFS is higher than that of ERW-Radar.

For evasive samples, some of them (ANIWPS) encrypt
only one file with 0.003M of encrypted content before being
detected by ERW-Radar. Even the samples from the Lock-
ergoga family encrypt up to 8 files, they encrypt less than
1.22M of file content. Overall, ERW-Radar detects evasive
samples with an average detection delay of 3.22 encrypted files
and 0.24M of encrypted content, an average detection time of
0.40s, and an average of 240.83 IRP MJ WRITE requests
generated. Such a low detection delay indicates that ERW-
Radar can detect evasive attacks timely. In contrast, ERW-
ShieldFS fails to detect them.

An interesting conclusion can be drawn from Tab. III:
The detection time of samples imitating similar applications
(e.g., ANIMSOffice and ANIWPS) is relatively close, while
it varies significantly across samples imitating different ap-
plications. That is because these samples behave identically

1“1(+3) and 27(+0.009)” refers to an average of one file with 27 KB of data
being substantively encrypted before samples are detected by ERW-Radar,
and 3 other PDF files with only 9 structure-related bytes encrypted. So it
is with “1(+2) and 20(+0.006)”. While these structure-related bytes (0.009
KB/0.006 KB) are encrypted, the object content remains intact, indicating that
the original data may be obtained from these PDF objects. Thus, they are not
considered to be substantively encrypted. Note that the data recovery discussed
here is only possible in such extremely specific cases. General recovery of
data from partially encrypted files is not the focus of this paper and will be
left for future work.

due to employing similar behavior templates, which differ
significantly among different applications. We demonstrate the
behavioral similarity in Appendix A.

3) Sensitivity Analysis: To determine the optimal config-
uration, we conduct sensitivity analysis for different hyper-
parameters based on partial dataset. As Fig. 4 (a) shows,
a low α leads to a high FPR due to occasional repetitive
behavior segments of benign programs, but a high α indicates
a delayed alert, i.e., requiring more positive results to trigger
an alert. We recommend α = 0.75 as detection threshold as
it’s the turning point and accuracy levels off afterward. In
Fig. 4 (b), generally, the detection accuracy increases with
scom but decreases with sde. This indicates that the accuracy
of Detector benefits from larger values of scom and smaller
values of sde. We recommend choosing 1536 : 16 (i.e., 96:1)
as the ratio of behavior sequence lengths. In Fig. 4 (c), larger
len leads to higher accuracy while smaller lde contributes to
lower inference latency. This can be attributed to the fact
that deep encoder is better at capturing contextual information
while shallow decoder benefits the computational efficiency.
Accordingly, a structure of 9 − 3 is a good choice. In Fig. 4
(d), we sort IRP types by frequency and gradually remove
the lowest one. We observe that fewer IRPs contribute to
lower CPU utilization, but lead to lower detection accuracy.
An optimal balance is achieved at the inflection point, t = 8,
where ERW-Radar sacrifices little in terms of accuracy but
results in significantly lower overhead.

To demonstrate the safety of our polling queue (§V-B), we
compare it with an asynchronous one that transmits informa-
tion only when it is full. We test accuracies, detection delays
and transmission overheads of ERW-Radar equipped with the
two queues respectively. Results show their detection accura-
cies are similar, with the polling one of 96.65% and the other
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Layers of Detector(len-lde) Detection Threshold(α)(%)

α=75%
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t=8

Fig. 4: Performance of Detector with varying parameters. (a) Impact of detection threshold, α, on performance. (b) Impact of
the ratio of input sequence lengths on performance. scom:sde refers to the ratio of the historical behavior sequence length to
the latest behavior sequence length. (c) Impact of Detector layers on performance. len and lde denote the layers of the Encoder
and Decoder respectively. (d) Impact of the number of IRP types, t, on performance.

one of 96.23%. Additionally, compared to the asynchronous
one, which has an average detection delay of 0.97M and a
transmission overhead of 1.21%, the polling queue reduces
the former to 0.20M while only increasing the latter by 0.47%,
It indicates the polling queue ensures more timely detection
(higher security) without incurring significant overhead.

C. Evaluation of Content Analysis of ERW-Radar

1) Effectiveness: We utilize file dataset in §III to evaluate
the effectiveness of content analysis. Results show that the
Analyzer distinguishes encrypted files effectively, with all of
them detected and the FPR being 3.00%. The FP files are
misclassified because most of their analyzed segments are
smaller than 1K. The dataset is constructed by randomly
selecting segments of different sizes from various files, which
results in the under-sampling of larger segments in some files.
Fortunately, during runtime, the Analyzer samples segments of
various sizes from each target file distributively, which avoids
misclassifications due to the lack of large-sized segments.

2) Sensitivity Analysis: We conduct sensitivity analysis for
the exponential smoothing parameter β and the number of
historical time intervals n. Fig. 5 shows the trend curves with
varying parameters. It can be observed that different values of
β all exhibit a certain degree of lag when measuring the trend
in time interval changes. The curve with β = 0.2 reflects
changes in trends more quickly, mainly because its weight
coefficients decay faster over time. The curve with n = 25 fits
the actual data curve more accurately. Thus, we recommend a
configuration of β = 0.2 and n = 25.

D. Overhead of ERW-Radar

To evaluate the impact on storage, CPU and memory perfor-
mance, we perform benchmarks and real-world scenario tests
(also performed in other ransomware defense solutions [60],
[7], [61], [62], [63], [5]). We compare the overhead of ERW-
Radar with that of four commonly used applications: Microsoft
Word, WinRAR, PyCharm, and Firefox. Additionally, we
also investigate the overheads of two representative defense
solutions, ShieldFS [5] and RansomTag [60], and compare
their overheads with that of ERW-Radar.
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Fig. 5: Trend curves with varying parameters. ’Raw Data’
refers to the original time intervals of IRPs. The ’0.2-25’ curve
refers to calculating the I/O trend with β = 0.2, n = 25.

1) Benchmarks: We utilize IOZone [64], a popular stor-
age performance tool, to test I/O throughput under sequen-
tial/random read and write. We set the system where the
CPU is running IOZone at full load as the baseline and
measure the decrease in I/O throughput caused by running
ERW-Radar and other applications. As Fig. 6 (a) shows,
for workloads of sequential read/write, the I/O throughput
does not change greatly after running ERW-Radar, only de-
creasing by 0.81%/0.42%. However, for other applications,
it decreases by 14.11%/8.36%. This indicates that the I/O
overhead introduced by ERW-Radar is negligible. Even though
the I/O throughput decreases by 1.29%/2.44% under random
read/write after running ERW-Radar, it is much lower than
that of RansomTag [60] which reports an I/O overhead of
about 3.77%/4.00%, and other applications with an average
I/O overhead of 23.21%/13.96% under random read/write.

We also employ SPEC-CPU 2017 [65] (Perlbench-
mark, Blender) and Phoronix-test-suits [66] (Compress-7zip,
OpenSSL) to evaluate the impact of ERW-Radar and other
applications on CPU performance. We measure the execution
time, MIPS, and Signs/S variations compared to running
benchmarks alone. As Fig. 6 (b) shows, ERW-Radar causes
an average of 3.08% performance decrease in processing com-
putational tasks, as evaluating behavioral correlations and χ2

tests consume computational resources. Even so, its overhead
is similar to that of ShieldFS which reports an overhead
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of 3.8%, and is significantly lower than that of Microsoft
Word, WinRAR, PyCharm, and Firefox, whose overheads are
11.33%, 10.60%, 9.75%, and 10.25%, respectively.
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Fig. 6: Overhead of ERW-Radar and other applications.

2) Real-world scenarios: We also evaluate the overhead of
ERW-Radar in real-world scenarios. We set up four scenarios
with different workloads, each consisting of commonly used
Windows applications. They are (1) a CPU-Intensive scenario
where compilers, e.g., Microsoft Visual C++, are running; (2)
an I/O-Intensive scenario where file editors, e.g., WPS, are
running; (3) an interactive scenario where web browsers, e.g.,
Chrome, are running; (4) an idle scenario where no application
is running. We test the CPU and memory utilization of the sys-
tem in different scenarios as baselines. Then, we measure their
increases after running ERW-Radar and the four applications
for overhead comparison.

In Fig. 6 (c), we observe that CPU utilization increases
by 4.21% in idle scenarios and 5.22%-5.51% in busy scenar-
ios after running ERW-Radar, similar to RansomTag, which
reports a CPU overhead of 4.00%–6.00%. However, this is
obviously lower than the CPU overheads caused by other
applications, which range from 8.12% to 27.11%. As Fig.
6 (d) shows, the memory utilization of ERW-Radar is about
3.30%–4.07%. It indicates that ERW-Radar is of moderate size
and does not impose a heavy burden on various real-world
systems during running. Compared to ShieldFS which reports
a memory overhead of 0.95%–8.53%, and other applications
with memory overheads ranging from 5.11% to 7.75%, ERW-
Radar maintains its overhead within an acceptable range.

Acc. of encrypted files

Reducing
files

Sleep
operations

(a) (b) (c)

(d) (e)

512B
512B+1024B
512B+1024B+2048B

Fig. 7: Impact of various adaptive attacks on accuracy.

E. Evaluation Against Adaptive Attackers

It’s important to investigate if attackers can make a simple
modification to evade ERW-Radar. Theoretically, based on
its functions and components, ERW-Radar faces three attack
vectors: targeted attacks on the I/O monitor module, behavior
detection mechanism and content analysis mechanism. Next,
we evaluate their resilience against them.

1) Targeted Attacks on the I/O Monitor Module: The po-
tential attack on this module is the DoS attack, where an ad-
versary may perform dummy I/O access to overflow the queue.
This probably results in legitimate I/O requests not being
detected, thereby affecting detection performance. To evaluate
the resilience against it, we make processes continuously send
numerous I/O requests to access the target files, aiming to
overload the system. Meanwhile, we also run ransomware.
Then we test average accuracies and detection delays before
and after executing the DoS attack. Results show the DoS
attack does not affect the detection accuracy (96.23% before
and 96.17% after). Instead, it reduces the detection delay from
0.2M to 0.13M, because performing dummy I/O access leads
to a sustained high frequency of similar I/O operations, which
exhibits remarkable behavioral correlation and makes it easier
to detect before exhausting system resources. This proves the
resilience of our proposal against the DoS attack.

2) Targeted Attacks on Behavior Detection Mechanism:
Since ERW-Radar detects the behavioral repetitiveness of ran-
somware by analyzing the behavioral correlation, adversaries
may tamper with it by weakening the correlation. There are
four evasive techniques that they might adopt. Accordingly,
we develop four prototypes by modifying an open-source
project [67]: ① slowing down the attack speed by reducing
the encrypted files or randomly introducing sleep operations
during encryption, ② interfering with I/O behaviors by running
ransomware samples in §VI-A with 4 benign programs, Win-
RAR, VS, MSEdge and MSOffice respectively, ③ employing
new encryption templates by evaluating ERW-Radar with new
variants of intermittent attacks, ④ creating symbolic links for
files and designing multi-process attacks to access the same
files via different paths. The impact of the four prototypes on
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detection accuracy is shown in Fig. 7 (a)-(d) respectively.
Results show that prototypes ②③ have negligible impact

on detection accuracy, with an average decrease of 1.50%
and 0.93%. Because in ②, competition for I/O resources
weakens encryption behaviors, making the behavior segments
not as similar as before, and in ③, employing new encryption
strategies diversifies the behavior segments. Since each be-
havior template is still repetitively utilized, ②③ do not affect
the behavioral correlation. In ④, ERW-Radar detects multi-
process attacks with an average accuracy of up to 96.80%.
Because ERW-Radar analyzes the correlation of file access
operations across global processes, it can identify similar
file access patterns in multiple processes or detect multiple
process groups repetitively working on different stages of
the encryption chain. Path fooling does not change these
operations, thus not affecting the behavioral correlation. In
contrast, slowing down the attack speed affects the accuracy
significantly. Fig. 7 (a) shows that, as the ratio of sleep
operations increases or the encrypted files decreases by 10%,
the detection accuracy only decreases by 2.91% and 2.10%.
But in a worse case of more than 60%, the repetitiveness
becomes hard to identify (decreases by 31.92% and 28.81%).
Mainly because fewer repetitive behavior segments remain
within the detected behavior sequences, thus disrupting the
repetitiveness. In such cases, even if Detector hardly identifies
these attacks, we can still rely on Analyzer to evaluate whether
files are encrypted.

3) Targeted Attacks on Content Analysis Mechanism: As
the χ2 test targets the intrinsic characteristic, high randomness,
of encrypted files, adversaries may evade it by reducing the
randomness of encrypted file segments deliberately. Typically,
they tend to pad structured data consisting of null characters,
e.g., character ’0’. Based on this, we develop prototype ⑤
to evaluate the resilience against such attacks. It encrypts files
and pads low-randomness data to them. We extract segments of
various sizes from the padded files and evaluate the detection
accuracy. The detection accuracy of encrypted files is obtained
by aggregating segment detection results. Fig. 7 (e) shows that
detecting file segments of various sizes ensures significant
resilience against such attacks, with accuracy decreasing by
less than 3.56%. Even if some of the encrypted segments are
not detected, it does not affect the detection of the whole
encrypted files because the majority of their segments can
be detected. While adversaries can evade the χ2 test by
padding data, the probabilities of the padded data significantly
increases, making the padded files easy to detect. Moreover,
ERW-Radar randomly analyzes file segments of various sizes
from different positions, so adversaries cannot predict or
pinpoint all the analyzed segments for tampering.

VII. DISCUSSION

First, we are committed to developing a novel ransomware
detection system in this paper. In our design, behavioral
information is extracted from IRPs. We choose IRPs as targets
because they are located at the closest layer to the filesystem,
with access to nearly all objects of the OS. This makes it hard

for adversaries to evade. While the information can also be
extracted by hooking APIs, this approach may be bypassed
by using customized encryption algorithms. What’s more, the
types of IRPs involved in the encryption process are much
fewer than those of APIs, which can number in the hundreds.
This avoids constructing a large-scale API encoding space to
characterize behaviors, which would result in high analysis
overhead. We have demonstrated that our chosen IRPs are
able to detect malicious behaviors (see §VI-B).

Second, our detection system employs the behavior infor-
mation extracted in the kernel to precisely detect ransomware
in the user space. As mentioned in §IV, it may be ineffective
when adversaries attack the OS and terminate detection. For-
tunately, several promising approaches have been proposed to
mitigate this issue, e.g., (1) delegating the process manage-
ment of ERW-Radar to the ASP which can manage security
mechanisms and is physically isolated from CPU [47], (2)
building trust area with fine-grained memory protection, then
performing behavior detection and content analysis in it [48],
or (3) detecting OS inconsistencies over the lifetime [49].
Thus, by adopting such an approach, we can mitigate the
threats posed by privileged attacks on ERW-Radar.

Third, our work is focused on the Windows system, as it’s
the most popular targeted OS of ransomware authors [68],
[69], [70]. Since our detection system presented here is out-of-
the-box, it can be readily deployed and configured on desktop
PCs, servers, or modern cloud platforms as it is user-friendly
and only requires a few computational resources. Similarly,
we focus our study on software cases, as they are prevalent.
Note that nothing prevents the deployment of the techniques
presented here in hardware as modern hardware also embeds
detection algorithms to enhance threat detection capabilities.

VIII. RELATED WORK

Crypto Ransomware is a type of malware that inflicts signif-
icant economic loss [1], [71], [3], [4]. Many defense solutions
have been proposed to mitigate loss [23], [7], [72], [9]. Tradi-
tional signature-based detection techniques [73], [74], such as
binary feature engineering [75] and signature matching [76]
have difficulty in detecting the latest ransomware and are
easily bypassed by the code obfuscation technique [77], [8].
Thus, studies on ransomware detection [5], [9], [7] focus
more on analyzing it dynamically. For example, PayBreak [63]
strives to hook specific cryptographic APIs during encryption.
Given that they fail to detect ransomware which utilizes cus-
tomized cryptographic libraries, I/O behavior-based detection
systems are developed [6], [78], [79], [7], [5], [72], [80],
[81], [82], [83]. They rely on predefined behavioral features
or patterns to model individual malicious processes, thus may
be bypassed by multi-process attacks as mentioned in §II. By
analyzing the behavioral correlation and the randomness of
encrypted content, we find an opportunity to detect this evasive
ransomware and develop a novel detection system.

Since privileged attacks may disable the detection systems,
some researchers propose SSD-based solutions [84], [61]
which monitor the low-level I/O behavior of disk hardware.
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These solutions can deal with privileged attacks with better
transparency due to isolating from the OS. However, they are
vulnerable to variants that modify I/O behaviors beyond their
limited observable semantics, and are difficult to deploy due to
relying on customized non-commercial SSDs. In contrast, our
off-the-shelf mechanism can observe rich behavioral semantics
on a variety of platforms and effectively detect evasive attacks.

With the development of parallelism techniques, attackers
attempt to distribute their malicious payloads into multiple
small processes in a system. Each process looks unsuspicious
for detectors but is malicious when acting in cooperation [37],
[38], [39]. This compromises the capability of behavior-
based detection by breaking the original malicious patterns
of ransomware. This also makes SSD-based solutions unable
to determine how long they need to retain files, thereby
complicating the data recovery process. We observe that it
is possible to detect such distributed attacks by collecting
dispersed malicious behaviors from multiple processes and
identifying correlations between behavior segments. In the
future, such distributed ransomware is likely to evolve towards
distributing malicious payloads across different systems/nodes
within a local area network [85], [36]. In such cases, only
monitoring a single node cannot detect the attack due to the
lack of a full scope of attack behaviors. Therefore, we can
expand our detection system by adopting a client-server model.
This model deploys the detection system on a central server,
which collects behavioral information from different nodes.
After analyzing it, the server promptly provides feedback to
each node. This solution is feasible for two reasons: First,
only a minimal amount of behavioral information needs to
be transmitted across the network; Second, the server has the
computational power to support real-time behavior analysis.

IX. CONCLUSION

Evasive ransomware has successfully evaded existing detec-
tion systems. In this paper, we first discover I/O behaviors of
evasive ransomware exhibit a unique repetitiveness character-
istic. Besides, the χ2 test and the probability distribution of
byte streams can be used to identify encrypted files. Inspired
by this, we design a hybrid detection system called ERW-
Radar. To detect malicious behaviors robustly and accurately,
we propose a Correlation mechanism and design a dynamic
detection window. Besides, we also design a content analyzer
embedded with an adaptive mechanism to start it at idle I/O
cycles. Experiments show that ERW-Radar can detect evasive
ransomware with an accuracy of 96.18% while maintaining a
FPR of 5.36%. The overhead of running ERW-Radar is only
5.09% in CPU utilization and 3.80% in memory utilization.
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APPENDIX A
BEHAVIOR ANALYSIS AND FEATURE VISUALIZATION.

A. Behaviors of splitting attacks and intermittent attacks

In Section III, we choose one sample from imitating attacks
to conduct observations and find the unique repetitiveness
characteristic in its I/O behaviors. To prove it, we also choose
one sample from splitting attacks and one sample, Lockergoga
from intermittent attacks. We display their I/O behaviors in
Fig. 8 and Fig. 9. It can be intuitively observed in Fig. 8
that each group exhibits repetitive segments of I/O behaviors,
which are delineated by dashed rectangles. This is because
the authors of splitting attacks divide encryption operations
into four groups: Group a: {DirectoryControl}, Group b:
{DirectoryControl}, Group c: {Read}, and Group d: {Read,
Write, SetInformation}. Each group executes only specific
operations repetitively, leading to the observed repetitiveness
in I/O behaviors. Note that the repetitive segments between
different groups are not consistent due to the varying types
and frequencies of operations within each group. However,
this does not impact the overall behavioral repetitiveness.

The behavioral repetitiveness is also obvious in intermittent
attacks, as is shown in Fig. 9. We can visually observe that
attackers repeat the work-sleep patterns during encryption.
This indicates the intermittent technique adopted in the evasive
ransomware also results in repetitive I/O behaviors.

B. Similarity of Ransomware Families

We conduct experiments on samples randomly chosen from
each family to analyze their behavioral characteristics, as
samples from the same family typically exhibit nearly identical
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Fig. 9: I/O behaviors of an intermittent attack: Lockergoga.

behavioral patterns during runtime. To prove it, we randomly
choose four samples from an Imitating Attack family AN-
IMAGUS, one sample from an Intermittent Attack family
Lockergoga and one sample from the Splitting Attack family
Conti. We evaluate the similarity of their runtime I/O behaviors
using the Ratcliff-Obershelp Algorithm. As Fig. 10 shows, the
similarity between four imitating samples ranges from 0.76 to
0.85. In contrast, it ranges from 0.18 to 0.43 between samples
from different families. This indicates samples from a family
behave identically at runtime, and samples from different
family exhibit significant behavioral differences.

Fig. 10: Runtime behavior similarity of ransomware samples
from different families.
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C. Visualization of Feature Differences

We apply t-Distributed Stochastic Neighbor Embedding (t-
SNE) to quantify the differences between various features in
identifying evasive ransomware. We choose the features of
ShieldFS and the Correlation Weight of ERW-Radar as the
metrics. we choose two samples from the Imitating Attack
family ANIMAGUS, two benign programs, Microsoft Office
and WPS, and two samples from traditional ransomware
family, Cerber and Diavol. t-SNE is used to transform the
features into a two-dimensional space for visualization. In Fig.
11 (a), the difference between evasive samples and imitated
benign programs is much smaller than that between traditional
ransomware samples and benign programs. Thus, detection
tools cannot make a correct decision based on the features of
ShieldFS. In contrast, in Fig. 11 (b), the difference between
evasion samples and benign programs is much longer. There-
fore, ERW-Radar can detect evasion ransomware accurately
based on the unique behavioral repetitiveness.

ANIMSOffice

ANIWPS

MSOffice

WPS

Cerber

Virlock

(a) (b)

Fig. 11: Visualization of behavior features of different pro-
grams. The features used here are in line with ShieldFS and
ERW-Radar. The dimension reduction is performed by t-SNE.

APPENDIX B
SUPPLEMENTARY FOR THE MONITORED IRPS.

In this section, we provide the description of IRPs which
are parsed by the I/O Monitor. We analyze all IRPs generated
during the encryption and filter them out following the steps
in §V-B. After that, we obtain 8 types of IRPs. They are:

•IRP MJ CREATE: when a user attempts to open or create
a file or directory.

•IRP MJ READ: when a user attempts to read a file.
•IRP MJ WRITE: when a user attempts to write to a file.
•IRP MJ CLEANUP: when a user attempts to close the last

file handle.
•IRP MJ QUERY INFORMATION: when a user endeav-

ors to retrieve information about a file or directory.
•IRP MJ SET INFORMATION: when a user attempts to

modify the security attributes of a file or directory.
•IRP MJ QUERY VOLUME INFORMATION: when a

user attempts to retrieve information about a volume.
•IRP MJ DIRECTORY CONTROL: when a user performs

directory operations.

APPENDIX C
DETAILS OF COMPRESSOR

The decoder of traditional Transformer architecture is typi-
cally used to create a context that helps to predict the next
element in the sequence by combining the input sequence
(from the encoder) and the previously generated output ele-
ments. This process is facilitated by mechanisms like attention,
which weighs the relevance of different parts of the input and
output sequences to generate accurate predictions. Therefore,
the cross-attention mechanism in the decoder can be utilized
to compress a sequence. It focuses on the most relevant parts
of the input sequence, filters out redundant or less important
information and effectively summarizes the input into a more
compact representation. It is useful in cases where essential
features need to be captured from a large amount of data.

As Fig. 3 shows, there are two attention layers of a decoder
unit. The lower layer uses multi-head attention to calculate
the self-attention of the input Y , which provides a compressed
vector representation with dimensions n ∗ c. The calculation
process is as follows:

Q = (Y + P )WQ, K = (Y + P )WK , V = (Y + P )WV

Y+ = Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

(1)
where WQ,WK ,WV are weight matrices for the queries,
keys and values, respectively. P is the position vector.

√
dk

represents the scaling factor. Next, the upper cross-attention
layer integrates the encoder’s output (X̄) with the output from
the lower multi-head attention layer (Y+) as follows:

Q′ = Y+W
Q′
, K ′ = (X̄ + PL)W

K′
, V ′ = (X̄ + PL)W

V ′

Y ′ = CrossAttention(Q′,K ′, V ′) = softmax
(
Q′K ′T
√
dk

)
V ′

(2)
where WQ′

,WK′
,WV ′

are new weight matrices. PL is the
position vector. Then, the output of the upper cross-attention
layer, Y ′, is calculated as follows:

Y ′′ = FFN(W2ReLU(W1Y
′ + b1) + b2)

Y ′′ = LayerNorm(Y ′′ + Y+)

Y ′′ = LayerNorm(Y ′′ + Y ′)

Z = LayerNorm(Y ′′ + FFN(Y ′′))

(3)

where W1 and W2 are weight matrices, b1 and b2 are bias
terms, and ReLU is the activation function. Note that since
Y remains constant during compression and some historical
results can be reused, we can reduce redundant computation
at each time step by pre-computing Y in advance and caching
the historical compressed data.
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