
LeakLess: Selective Data Protection Against
Memory Leakage Attacks for Serverless Platforms

Maryam Rostamipoor
Stony Brook University

mrostamipoor@cs.stonybrook.edu

Seyedhamed Ghavamnia
University of Connecticut
sghavamnia@uconn.edu

Michalis Polychronakis
Stony Brook University

mikepo@cs.stonybrook.edu

Abstract—As the use of language-level sandboxing for run-
ning untrusted code grows, the risks associated with memory
disclosure vulnerabilities and transient execution attacks be-
come increasingly significant. Besides the execution of untrusted
JavaScript or WebAssembly code in web browsers, serverless en-
vironments have also started relying on language-level isolation to
improve scalability by running multiple functions from different
customers within a single process. Web browsers have adopted
process-level sandboxing to mitigate memory leakage attacks,
but this solution is not applicable in serverless environments,
as running each function as a separate process would negate the
performance benefits of language-level isolation.

In this paper we present LeakLess, a selective data protection
approach for serverless computing platforms. LeakLess alleviates
the limitations of previous selective data protection techniques
by combining in-memory encryption with a separate I/O module
to enable the safe transmission of the protected data between
serverless functions and external hosts. We implemented Leak-
Less on top of the Spin serverless platform, and evaluated it
with real-world serverless applications. Our results demonstrate
that LeakLess offers robust protection while incurring a minor
throughput decrease under stress-testing conditions of up to 2.8%
when the I/O module runs on a different host than the Spin
runtime, and up to 8.5% when it runs on the same host.

I. INTRODUCTION

Serverless computing [1] is an emerging cloud-based applica-
tion deployment model that abstracts server management from
application code. The key component of serverless platforms,
such as AWS Lambda [2] and Cloudflare Workers [3], is
a Function-as-a-Service (FaaS) architecture, complemented
by integrated database and storage services. FaaS enables
developers to focus on application logic by splitting it into
smaller functions, without worrying about operational issues
such as load balancing and scaling.

Traditionally, FaaS platforms [2], [4], [5] leverage hardware
or OS-level virtualization to isolate different tenants’ functions
into different containers or VMs, due to their strong isola-
tion guarantees. To improve scalability, however, serverless
platforms by Cloudflare [3], Fastly [6], and others [7], [8]
have gradually started leveraging language-level isolation based

on the JavaScript V8 engine [9] or the WebAssembly [10]
sandbox for running multiple functions within a single process.
Language-level isolation improves efficiency, enabling the
execution of orders of magnitude more functions with the
same number of processes and amount of hardware resources.
At the same time, however, the weaker language-level isolation
increases the risk of cross-tenant data leakage attacks.

Language-level sandboxing protects against memory dis-
closure vulnerabilities due to the memory safety guarantees
of Javascript and WebAssembly. Still, bugs in the language
runtime itself uphold the threat of memory leakage attacks,
as exemplified by the continuous discovery of out-of-bounds
memory access vulnerabilities in the V8 engine [11], [12] and
WebAssembly runtimes [13]–[15]. Researchers have explored
various methods to ensure the accuracy of memory isolation
checks in language-level sandboxes, by verifying the safety of
generated binaries [16], building verified compilers [17], and
fuzzing compilers [18].

In addition to memory disclosure vulnerabilities, the threat
of data leakage has been exacerbated by the recent spate
of transient execution attacks [19], [20], which can leak
otherwise inaccessible data from memory through residual
microarchitectural side effects. Transient execution attacks do
not violate memory boundaries or data flows enforced by
the process itself [19], making bounds checking, software
fault isolation, and even memory-safe languages inadequate for
protecting against them [21]. In FaaS platforms, a malicious
tenant can mount Spectre-like attacks to leak secrets from other
tenants. As an example, Schwarzl et al. [22] demonstrated how
a malicious function can leak sensitive data from a co-located
function in Cloudflare Workers [3] using a Spectre attack.

Serverless functions are a prime target for transient execution
attacks because they typically contain sensitive data as part
of their code, or are used to handle sensitive user-provided
data. For example, functions often contain secret keys for
making authenticated requests to external APIs and services,
or handle private user data such as passwords and credit card
numbers. Serverless platforms even provide specialized “secrets”
management services [23], [24]. Cloudflare recently announced
that about three million Workers scripts reference sensitive
data through the Secrets Store API [24].

Defending against transient execution attacks in FaaS
platforms is an open problem, with vendors deploying half-
measures, such as disallowing timer APIs and periodically

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230035
www.ndss-symposium.org



shuffling the whole memory [25]—full process isolation is
not applicable in this context, as running each workload in a
separate process would defeat the purpose of language-based
isolation. DyPrIs [22] does use process isolation to migrate
any suspiciously behaving functions into separate processes,
but the approach relies on anomaly detection, which suffers
from false positives and false negatives. Crucially, process-level
isolation is not a robust solution in the first place, as transient
execution attacks can leak secrets across processes [26]–[30]
and even SGX enclaves [31]. Swivel [32] uses a compiler-based
approach to harden WebAssembly modules against certain types
of Spectre attacks, but the numerous introduced runtime checks
incur a very high runtime overhead.

In this paper we propose LeakLess, a practical approach for
countering data leakage attacks in serverless platforms, which
relies on selective in-memory encryption of developer-annotated
sensitive data. Instead of trying to prevent the myriad ways in
which the CPU can be tricked into disclosing sensitive data
from memory (of the same or a different process), LeakLess
achieves future-proof protection by accepting the fact that
sensitive data may be leaked, and ensuring that it will remain
useless for the attacker—any leaked data from memory will
always be encrypted.

Prior works on selective data encryption [33], [34] and
isolation [35], [36] are not applicable in this setting, as they
are designed to protect only internal application data. LeakLess
introduces a separate I/O module that mediates communication
between external parties and the serverless runtime, and handles
all cryptographic operations for transmitting or receiving the
plaintext version of the sensitive data. The I/O module runs as
a separate process either on the same host, offering protection
against typical intra-process data leakage attacks due to i) out-
of-bounds memory disclosure vulnerabilities in the runtime or
ii) transient execution attacks, or on a separate VM or physical
host, offering additional protection against cross-process [26]–
[31], [37], [38] and user-to-kernel [39]–[43] attacks.

We implemented LeakLess on top of the Spin serverless
platform [44], which uses WebAssembly to run different
functions in the same language runtime. To assess the practical
applicability and compatibility of LeakLess with real-world
environments, we collected 1,074 publicly available serverless
applications from public repositories. Based on our assessment,
nearly half of them (449) contain at least one type of sensitive
data, including authentication secrets, request signing keys,
database credentials, and user passwords [45]–[47].

Our current implementation fully supports immutable data, as
well as certain types of mutable data that undergoes common
cryptographic operations, such as JSON web token (JWT)
signing and verification. Among the 449 applications that
contain sensitive data, LeakLess fully supports 407 of them
(91%), and partially supports 33 (7%), i.e., they contain at
least one secret that LeakLess can protect. We experimentally
evaluated our prototype implementation with six real-world
and widely-used serverless applications, and demonstrate its
effectiveness in preventing memory disclosure and transient
execution attacks with minimal performance impact.

In summary, we make the following main contributions:
• We propose LeakLess, a software architecture for selective

data protection in serverless platforms, which offers future-
proof protection against memory disclosure and transient
execution attacks.

• We alleviate the limitations of previous selective data pro-
tection approaches by combining in-memory encryption
with a separate I/O module to enable the safe transmission
of the protected data.

• We implemented LeakLess on top of Spin [44], a
serverless platform which relies on WebAssembly to run
functions written in various languages.

• We collected a set of 1,074 real-world serverless appli-
cations and provide a thorough analysis of the types of
sensitive data handled by them.

• We experimentally evaluated LeakLess with micro-
benchmarks and six real-world applications, and demon-
strate that it offers robust protection of secrets while
incurring a service throughput reduction of up to 2.8%
when the I/O module runs on a different host, and up to
8.5% when it runs on the same host as the Spin runtime,
under stress-testing conditions.

Our implementation is publicly available as an open-source
project at https://github.com/mrostamipoor/LeakLess.

II. BACKGROUND AND MOTIVATION

A. WebAssembly

WebAssembly (Wasm) [48] is a portable binary instruction
format for a stack-based virtual machine. As a portable
compilation target, it allows programs written in different
languages (e.g., C, C++, and Rust) to be compiled directly into
Wasm. Wasm employs a linear memory model, structured as a
resizable byte array as its main storage. Access to this memory
is facilitated through specific load and store instructions,
with runtime bounds checks to ensure safety. Furthermore,
Wasm enforces strict control flow rules, effectively preventing
jumps to arbitrary memory locations. These mechanisms enable
Wasm runtimes [49], [50] to securely sandbox untrusted third-
party code within applications.

While WebAssembly was originally designed to be run
within web browsers, it has also become popular for server-
side applications. One notable example is Wasmtime [49], an
optimizing runtime for WebAssembly, designed to execute
Wasm programs either standalone or embedded in other
applications. Wasmtime leverages the WebAssembly System
Interface (WASI) [51], which augments Wasm’s capabilities by
providing access to essential operating system functionalities
like file and socket management.

B. Function-as-a-Service (FaaS) Platforms

Due to the large memory footprint and increased cold start
latency of VMs and containers when used in FaaS platforms,
language-based isolation [6], [44], [50], [52]–[54] has recently
emerged as a compelling alternative, and is already used by
popular platforms such as Cloudflare Workers [3] and Fastly [6].
In these environments, multiple functions by different customers

2

https://github.com/mrostamipoor/LeakLess


run within the same runtime instance, each isolated inside
a sandboxed execution environment [3], [6], [54]. However,
this isolation can be weakened due to bugs in the language
runtime [11]–[15], leading to out-of-bounds read capabilities
by malicious functions.

Even if we assume that the memory isolation guarantees of
Wasm effectively protect sensitive data within a function from
memory-related errors, this assumption does not hold true for
transient execution attacks such as Spectre [19], [55]. Given
that functions from different customers run within the same
process, a malicious function can mount Spectre-like attacks
to leak sensitive data from other co-located functions [22].

Sensitive data include user-provided information such as
passwords or credit card numbers, as well as developer-provided
secrets required for the operation of the application. The latter
are prevalent in serverless functions, which often interact
with various types of back-end services, including traditional
web servers, platform as a service providers [4], [56], other
serverless platforms [4], [57], and storage services [58]. These
services often use API keys for authentication and access
control, which are typically represented as immutable strings
set into custom headers in API calls. Additionally, some
platforms contain various types of secrets that are involved
in certain computational processes. These include secret keys
used data signing or JWT token verification. Functions must
retain these keys in memory to use them when communicating
with third-party services, making them a lucrative target for
data leakage attacks. Using LeakLess, developers can simply
annotate these keys as sensitive, ensuring that they will always
remain encrypted in the address space of the Wasm runtime.

C. Transient Execution Attacks

Transient execution attacks, such as Spectre [19] and Melt-
down [39], rely on exception or branch misprediction events
that have an effect on the CPU’s microarchitectural state [20].
Spectre attacks have various forms, with the first two variants
being the most well known. Variant 1 (Spectre-BCB), enables
speculative out-of-bound memory access. Variant 2 (Spectre-
BTI) takes advantage of unconditional indirect branches by
forcing the speculative execution of an incorrect branch target.
This is achieved by manipulating the branch target buffer with
attacker-controlled targets. This poisoning is possible across
different address spaces [19] and privilege boundaries [41].

In FaaS platforms that rely on language-based isolation, an
attacker can mount Spectre attacks to leak another tenant’s
sensitive data. To prevent them, platforms like Cloudflare [3]
disable all known timers and primitives that could be abused
to build timers. Moreover, low-level instructions that are used
in Spectre attacks are not exposed to Wasm code. Schwarzl et
al. [22], however, showed that attackers can still leak secrets
from co-located functions. Despite the lack of a precise timer,
attackers can rely on amplification techniques and leveraging
a remote timing server, while other works have shown that
side-channel attacks can be performed without the need for an
architectural timer at all [59]–[61].

III. THREAT MODEL

Our threat model includes data leakage threats due to
both memory disclosure vulnerabilities and transient execution
attacks, which give adversaries the capability to read (i.e.,
leak) arbitrary user-space and kernel-space memory and access
confidential data from the functions of other tenants. We
assume that the attacker is limited to just achieving data
leakage (instead of arbitrary code execution in the context
of a different function), either because of the nature of the
vulnerability, or due to the presence of mitigations against
arbitrary code execution. The attacker can be a legitimate user
of the FaaS platform, who can upload function code written in
any supported language, which the platform will then compile
and execute alongside other users’ functions.

Besides software memory disclosure vulnerabilities in the
serverless platform runtime, data leakage through transient
execution attacks is the main motivation of our work. Intra-
process attacks [19] bypass memory safety to leak data from the
same process. Cross-process attacks [26]–[30], [37], [38], [62],
[63] bypass process-level isolation to leak data from different
processes (or even enclaves [31]). User-to-kernel attacks [39]–
[42] mounted from user space bypass privilege levels and
leak data from the kernel or different processes (e.g., through
physmap [64]).

LeakLess offers flexibility in defending against all above
attacks, by choosing the appropriate isolation boundary between
the serverless runtime and the I/O module for the desired threat
model. If only same-process attacks are considered, then the
I/O module can run on the same host; if cross-process and
user-to-kernel attacks are considered, then the I/O module
can run on a separate virtual machine; if cross-VM attacks
are considered, then the I/O module can run on a separate
physical host. Inadvertent data exposure through computation
that impacts control flow, e.g., side channels that measure
execution timing, is outside our threat model.

IV. DESIGN

LeakLess uses a combination of in-memory encryption and
I/O brokering to protect sensitive data in Function-as-a-Service
(FaaS) platforms against memory disclosure vulnerabilities
and transient execution attacks. Prior works on selective data
encryption [33], [34] have demonstrated that by always keeping
sensitive data encrypted in memory, any attempt to leak
protected data through an arbitrary memory access capability
or microarchitectural side channel will effectively fail, as the
leaked data will always remain encrypted.

Although these approaches work well for internal application
data (e.g., private keys), they are not adequate for protecting
sensitive data that needs to cross the confines of the application,
as the data has to first be decrypted—at which point it becomes
vulnerable to leakage attacks. In serverless applications, outgo-
ing and incoming data is precisely the type of sensitive data
that needs protection. Due to their stateless nature, serverless
functions cannot retain information between invocations, and
thus rely on platform-provided or external services to store,
retrieve, and update data. Therefore, developer-provided secrets

3



Serverless
Runtime

LeakLess
I/O Process

Inter-process/Network
Communication

Tenant
Function

Malicious Tenant 
Function

Tenant
Function

Decryption

Encryption

Cryptographic Keys

Backend 
Server

End User

Encrypted
Sensitive Data

Decrypted
Sensitive Data

Operating System

Fig. 1: LeakLess protects sensitive data in FaaS platforms by always keeping the data encrypted in memory and managing its
cross-process flow. Cryptographic operations are handled by a separate I/O module, and thus the secret keys and plaintext
version of the data are never exposed in the memory of the serverless runtime. A malicious tenant can still leak the sensitive
data, but only in its encrypted form, without having access to the key. The I/O module can transparently run on a separate VM
or even physical host to offer additional protection against cross-process and user-to-kernel transient execution attacks.

(e.g., external API keys or authentication tokens) are routinely
transmitted to back-end or third-party services. Sensitive client-
provided data (e.g., credit card numbers) must also be protected
once entering the address space of a serverless function.

LeakLess addresses this challenge by introducing a dedicated
I/O module running as a separate process that encrypts (or
decrypts) any sensitive incoming (or outgoing) data to (or
from) a serverless function, as shown in Figure 1. The main
runtime process is responsible for running serverless functions
that may handle sensitive data. Any attempt of a malicious
function to leak protected data from another function within the
same address space will still succeed, but the leaked data will
remain encrypted—and thus useless for the attacker, because
the cryptographic keys are not present in the address space of
the serverless runtime at all, and thus they cannot be leaked.

The I/O module acts as a proxy between LeakLess-protected
functions and back-end services or end users, and decrypts or
encrypts any sensitive data before forwarding it to the remote
party or the function. The I/O module does have access to the
encryption keys, and the plaintext form of the protected data is
exposed in its address space, but this does not pose any security
risk because the I/O module does not run any tenant-supplied
code. This is not the case for cross-process transient execution
attacks, which can be addressed by running the I/O module on
a separate VM or physical host, as we discuss in Section IV-D.

A key goal of LeakLess is to provide practical protection
without burdening developers, and thus it requires minimal
application changes. All handling of protected data is performed
transparently by the language runtime and the I/O module.
Developers just need to annotate in the function source code
or application configuration file (and if necessary, at the client-
side application logic) any variables that contain sensitive data.
For the rest of this section, we assume a FaaS platform that
relies on WebAssembly modules to run tenants’ functions.

A. Sensitive Data Annotation and Handling

We distinguish between two main types of sensitive data:
i) internal data, which originates from within a function, and
is either used only internally by the function, or may be
transmitted to external entities; and ii) external data, which
originates from external entities (e.g., end users or backend
servers) and is received by a function.

1) Internal Data Annotation: In FaaS platforms, secrets are
typically defined through one of the following methods: i) hard-
coded directly in the function’s source code, or ii) specified
in configuration files or through dedicated secret management
APIs. LeakLess supports the annotation of sensitive data for
both of these methods.

Source Code Annotation: For sensitive data hard-coded in the
source code, developers must annotate the respective variable’s
definition. Listings 1 and 2 present examples in Rust and Go,
respectively. The variable AUTH_TOKEN (line 2) holds a secret
authorization token for an external API, which can be protected
by simply annotating it as “secret” (line 1).

Listing 1: Simplified Rust code for sending a request with
sensitive data (an authorization token) to a backend server.

1 #[LEAKLESS_SECRET]
2 const AUTH_TOKEN: &str = "secret-token";
3 let mut res =
4 spin_sdk::outbound_http::send_request(
5 http::Request::builder()
6 .method("GET")
7 .header("Authorization",
8 HeaderValue::from_str(AUTH_TOKEN)?)
9 .uri("https://backend.com/image.jpg")

10 .body(None)?,
11 )?;

In both cases, the first line of code conveys that the following
line defines sensitive data. For Go, before compilation, the go

4



generate directive is used to scan for the special LeakLess
comment. In both languages, while parsing the second line,
the compiler or the directive fetches the variable’s name and
value and replaces it with the encrypted value. Our notation is
inspired by the data annotations used for model validation in
the ASP.NET MVC framework [65].

Listing 2: Simplified Go code for sending a request with
sensitive data (an authorization token) to a backend server.

1 //#[LEAKLESS_SECRET]
2 const AUTH_TOKEN = "secret-token"
3 req, _ := http.NewRequest("GET",

"https://backend.com/image.jpg", nil)
4 req.Header.Add("Authorization", "Bearer

"+AUTH_TOKEN)
5 resp, _ := spinhttp.Send(req)

Language-agnostic Annotation: Hard-coding secrets in the
source code increases the chances of inadvertent data leak-
age (e.g., through committing code to public repositories).
Instead, many FaaS platforms encourage developers to define
secrets through configuration files or securely store them
through “secrets” management APIs. To support this category
of sensitive data, LeakLess provides a language-agnostic
annotation. This is achieved through a simple extension to
the existing specifications for defining sensitive variables in
configuration files or secrets APIs. In the example of Listing 3,
the variable Authentication_Token (line 2) is defined
in a configuration file, and also has the platform-supported
secret option enabled, which specifies that it should be
treated as sensitive data. This protects it from unauthorized
access, exposure in logs, and accidental disclosure in code
repositories, but the variable will still exist in memory as
plaintext, remaining vulnerable to transient execution attacks.

To protect it with LeakLess, developers can simply provide
the additional leakless_secret option in the configuration
file to annotate it as a LeakLess secret, while keeping the rest
of the code intact. The bottom of Listing 3 shows how this
variable is then retrieved in a function’s body in Rust and Go,
respectively (the rest of the code would be similar to Listing 1
and Listing 2).

Listing 3: Example of defining a sensitive variable in a
configuration file (top) and using it in the code (middle/bottom).

1 // Annotation of secrets in configuration file
2 Authentication_Token = {default = "secret-token",

secret = true, leakless_secret = true}
3 // Rust code
4 let authToken =

config::get("Authentication_Token")
5 .expect("could not get variable");
6 // Go code
7 authToken, err :=

config.Get("Authentication_Token")

Cross-process Flow of Sensitive data: When the Serverless
function containing the code of Listing 1 (and similarly of
Listing 3), is triggered by an HTTP request coming from an

end user, the function is executed and sends an HTTP GET
request. Listing 4 shows the generated HTTP GET request.

Listing 4: Request generated by the code of Listings 1 or 2.

1 GET /image.jpg HTTP/1.1
2 Host: backend.com
3 Authorization:
4 LEAKLESS_AfvUK704aQFsjnTCyfCTrA==

Instead of the plaintext value of the authorization token, the
“Authorization” HTTP header contains the encrypted value
of the token, prepended with the prefix LEAKLESS_ (which
denotes that the following data is encrypted1). When the I/O
module encounters such a sensitive value as part of an outgoing
request, it decrypts the value and replaces it with the plaintext
form of the data, before forwarding it to the actual recipient.

2) External Sensitive Data Annotation: External data is
handled similarly, but in the opposite direction. The developer
just needs to ensure that any client-supplied sensitive data is
distinguished from the rest of the data by marshaling it with
the LEAKLESS_ prefix. For the credit card number example,
the JavaScript code running in the user’s browser annotates
the user-supplied credit card number before transmitting it to
the function, as shown in Listing 5.

Listing 5: A client-originating HTTP POST request containing
two annotated (plaintext) sensitive values.

1 POST /updateInfo HTTP/1.1
2 Host: framework-domain
3 Authorization: LEAKLESS_HES6ZRVmB7fkLtd1Z
4 Content-Type: application/json
5

6 {
7 "cardNumber": "LEAKLESS_374245455400126",
8 "description": "CreditCardInfo"
9 }

In this example, the browser sends a POST request containing
sensitive data in both the HTTP headers (Authorization)
and in the request body (cardNumber). Once received by the
I/O module, both values will be recognized as sensitive due
to their LeakLess-specific marshaling, and will be encrypted
before the request is forwarded to the serverless function.

A critical detail here is that the encrypted values will still
maintain the LEAKLESS_ prefix. This design supports the
transparent flow of sensitive data in and out of a function.
Continuing with the same example, the function typically will
have to send the user-supplied credit card number to a third-
party payment processing service through an authenticated API.
The function’s code is oblivious to the fact that the credit card
number is marshaled (i.e., encrypted), and will handle it in the
same way as before. When the request towards the payment
processor is received by the I/O module, the LEAKLESS_
prefix will still be present, and thus the I/O module will decrypt
the value and transmit the plaintext version of the credit card
number to the payment processor.

1For illustration purposes only. Proper marshaling with a sufficiently long,
randomly generated prefix and suffix is a more appropriate choice.

5



B. Supported Types of Sensitive Data and Operations

LeakLess currently supports only immutable data, i.e., we
assume that sensitive data will not be altered by a function.
This is not a limitation of our design, but of our current
implementation. More complex computations on sensitive data
can be performed by employing register-based encryption [34].
Despite this limitation, some common operations can still be
performed, including comparing encrypted values and con-
catenating encrypted with non-encrypted strings. This enables
LeakLess to support the majority of real-world applications
that handle sensitive data, as discussed in Section VI-A.

To expand the range of supported applications even further,
LeakLess also supports some common cryptographic operations,
such as signing and verification, which are often performed
by serverless functions when communicating with external
services. While most back-end services use API keys and
OAuth tokens for authentication (which LeakLess directly sup-
ports), others, such as the above object storage services, require
request signing with a secret key as part of the authentication
process. Another common case involves verifying or signing
JWT tokens for end users. However, if the relevant secret keys
are encrypted by LeakLess, verification and signing would not
be able to proceed.

To support these common scenarios, we have outsourced
these operations to the I/O module, which does have access to
the secret keys used for verification or signing. Developers just
need to specify the type of operation that must be performed in
a configuration file, as commonly done in cloud platforms for
other operations as well. For example, in Cloudflare Workers,
developers similarly identify external services and secrets
required for their Workers as part of a configuration file or
through environment variables [66].

Listing 6: Example of enabling signing by the I/O module for
an outgoing Amazon S3 request (top) and enabling verification
by the I/O module for a JWT token (bottom).

1 //Annotation for signing requests
2 S3_sign_key = { default = "7IhhnziifKKdcf0",

leakless_secret = true, leakless_operation =
"request-sign" }

3

4 //Annotation for verifying JWT tokens
5 JWT_secret = { default = "secret_key",

leakless_secret = true, leakless_operation =
"verify-jwt" }

When the leakless_operation attribute is defined
for a LeakLess-protected secret (Listing 6), the I/O module
performs the requested operation on behalf of the function. In
this example, the function communicates with Amazon S3, and
the developer has specified that the secret is used for request
signing. When the I/O module receives the request from the
function, it signs the request and updates the signature value in
the respective field of the authorization header (specifically, the
“Signature” field) Similarly, in the case of JWT verification,
the I/O process verifies the received JWT token from incoming
requests using the previously shared JWT secret key.

C. Key Management

After startup, the serverless runtime listens for incoming
requests, which can come either through the I/O process or
directly from end users—if an application does not contain
or handle sensitive data, its communication does not have to
involve the I/O module. Once a function is called, an instance
of the pre-compiled Wasm code with its own memory and
global variables is created to handle the incoming request in
an isolated environment.

For sensitive data annotated in a function’s code, the data
is pre-encrypted during the compilation of the Wasm module.
This ensures that LeakLess’ encryption keys are not exposed in
the runtime’s process memory. Encryption keys are generated
by the compiler and are stored in a separate file on disk, along
with their associated function identifiers. When modules are
parsed during the runtime’s initialization, only the encrypted
data is transferred in memory (and not the key), while the I/O
module reads the keys directly from the file.

For sensitive data defined in configuration files, the data is
encrypted during the initialization of the serverless runtime, as
the configuration file must be loaded first. Any annotated secrets
specified by the configuration are encrypted using a newly
created AES-128 key, associated with the module’s identifier.
If the leakless_operation attribute is set for a secret,
the secret and the type of cryptographic operation that needs to
be performed on it are shared with the I/O process. All plaintext
sensitive data loaded in memory before encryption, along with
the keys used for encryption, are immediately erased from
memory and are evicted from the cache. This step occurs before
any serverless function is instantiated in memory, preventing
potentially malicious functions from accessing them.

When generating and assigning encryption keys to serverless
applications, LeakLess uses shared keys for functions within
the same application, but unique keys for each application. By
doing so, functions within the same application can access
shared sensitive data, but a malicious tenant cannot decipher
others’ encrypted data by sharing the same encryption key.
If the same key were used across all serverless applications,
malicious tenants could gain access to sensitive data in its
plaintext form after leaking another tenant’s encrypted secret
and sending it through the I/O process to an attacker-controlled
external service. In this scenario, since the leaked encrypted
secret would contain all the required data marshalling prefixes
and suffixes, the I/O process would decrypt it prior to sending it
to the external service. By using unique keys for each serverless
application (and tenant), this attack is prevented.

D. Protecting against Cross-Process Attacks

The I/O module serves as the trusted interface of LeakLess,
and mediates all incoming and outgoing messages containing
sensitive data. Communication with the main serverless process
can be performed through any IPC (inter-process communica-
tion) mechanism, but in our implementation with have opted
for the use of a network socket (despite the fact that in the
most typical deployments both processes will run on the same
host). First, this allows for increased flexibility and scalability,

6



in case multiple instances of the serverless runtime (or the
I/O module itself) are required for heavy workloads. More
importantly, having the ability to transparently run the I/O
module on a separate virtual machine or physical host offers
increased protection against transient execution attacks that
can cross the boundaries of the originating process and leak
data from other processes [26]–[30], the OS kernel [39]–[42],
or even SGX enclaves [31].

For example, researchers have demonstrated how RIDL [28]
(a microarchitectural data sampling attack) can be used by an
attacker-controlled renderer process to read arbitrary data from
the main web browser process [67]. A similar attack could be
mounted by a function to leak data from the I/O module when
both run on the same host. To protect against this stronger threat
model, as shown in Figure 1, the I/O process can transparently
run on a different VM or physical host, without the need for
any modifications besides a one-time configuration change.

V. IMPLEMENTATION

WebAssembly and JavaScript are the two main languages
recent serverless platforms are based on to isolate functions.
After careful consideration of all available open-source server-
less platforms at the time, we opted to implement our LeakLess
prototype on top of the Spin [44] framework, which is used by
Fermyon Cloud. To provide isolation among different tenants,
Spin relies on Wasmtime [49] for the concurrent execution
of multiple Wasm functions written in various programming
languages, such as C++, Rust, and Go.

Besides the core Wasm runtime, serverless platforms based
on WebAssembly require additional components, such as socket
API support for HTTP networking. Most Wasm runtimes rely
on WASI (WebAssembly System Interface) for access to operat-
ing system functions, which is under active development [68].
Although the latest version of WASI (Preview 2) supports
primitive HTTP communication through wasi-http [69],
this is not intended to provide all the functionality required
by a full-featured cloud execution environment. To address
these shortcomings, Spin complements WASI with additional
extensions and middleware, such as full HTTP networking
support and key–value storage [70].

We developed our prototype on top of Spin v1.1.0, which
relies on Wasmtime v7.0.0 and WASI Preview 1. Spin and
Wasmtime are written in safe Rust, and we did not use any
unsafe code in our modifications to these platforms. We also
implemented the I/O module solely in safe Rust, to minimize
the risk of memory safety vulnerabilities. Although LeakLess
currently supports source code annotations only for Rust and
Go, and the String type for holding sensitive data, the overall
approach can easily be extended to other languages and data
types. Furthermore, LeakLess’ support of language-agnostic
annotation (Section IV-A1) ensures that all languages supported
by Spin can also be accommodated by LeakLess.

A. Annotation and Compilation

1) Annotation in Source Code: We have implemented
sensitive data annotation at the source code level for both

Rust and Go. For Rust, we rely on Rust’s procedural macros,
which run during compilation and enable the creation of custom
attributes that are attached to items for code manipulation.
Our macro identifies and encrypts sensitive strings during
compilation. For Go, we rely on the go:generate directive,
which is used primarily for parsing and modifying code before
compilation. In both cases, the mechanism encrypts, encodes,
and marshals the data using a unique key that it generates per
application, shared across all its Wasm modules.

2) Annotation in Configuration File: In the Spin framework,
a variable can be defined in the configuration file, namely
spin.toml. We leverage this feature to implement language-
agnostic annotations at the configuration level. We extended the
Variable structure within the manifest crate, which manages ap-
plication configurations for the Spin runtime, by adding the two
extra leakless_secret and leakless_operation
attributes. This enhancement allows the serverless runtime
to recognize and process LeakLess-supported sensitive data
and the required operations during runtime for functions written
in Spin-supported languages. Therefore, LeakLess can protect
functions in any language supported by the Spin framework.

3) Base64 Encoding: Another consideration is that after
encryption, the sensitive data will be changed from string to
raw binary, and thus it must be converted to Base64 encoding
so that it can be transmitted to the I/O module as part of ASCII
protocols (e.g., HTTP). Finally, as mentioned in Section IV-A,
LeakLess marshals the protected data with a randomly gener-
ated prefix and suffix. This approach ensures that when the
I/O module receives requests containing encrypted data, it can
easily separate the encrypted value from the rest of the stream,
then decrypt and replace it. For secrets provided by clients,
the client code can follow a similar process.

B. Initialization and Operation

The initialization of serverless functions within the runtime
process (Figure 1) is implemented on top of Spin’s HTTP
trigger [70], a web server that listens for HTTP requests
from the I/O module and routes them to an executor, which
instantiates the appropriate Wasm function. In this setup, the
manifest plays a crucial role: it not only assigns a unique
ID to each Wasm module, but also establishes a mapping
between these module IDs and their corresponding HTTP
paths (URIs). This approach of mapping module IDs to HTTP
paths is a common feature in serverless platforms, facilitating
the routing of requests to specific functions or modules based
on URL paths. Spin employs a similar mechanism, enabling
the Spin trigger to accurately determine which Wasm module
should be executed based on the incoming request path. This
is particularly useful for requests containing secret data. In
such cases, the I/O module first receives the incoming request,
and then extracts the encryption key based on the URL path
and its associated module ID. Finally, the I/O module encrypts
the data before it is forwarded to the serverless runtime.

We also modified Spin’s outbound-http crate to not only
redirect outgoing requests containing sensitive (encrypted) data
to the I/O process, but also to include an additional header

7



with the module ID of the module that initiated the outbound
request. This header enables the I/O process to easily identify
the specific encryption key associated with the module to
decrypt of the data.

For language-agnostic annotation, we modified the loader
crate, which converts the local spin.toml file into a
configuration executable for the Spin runtime environment.
Consequently, when the configuration file is loaded, LeakLess-
supported sensitive data is identified and encrypted. Further-
more, if the leakless_operation attribute is set for a
secret, the serverless function ID, along with the secret’s value,
are shared with the I/O module via a file.

A unique cryptographic key is generated for each
serverless application and is used for all functions of the
same application. Each cryptographic key along with its
corresponding Wasm module ID are stored into a file which
is then transmitted to the I/O process through a secure
connection (to support deployments in which the I/O process
runs on a separate host). The keys are then securely erased
from the disk, memory, and cache.

The I/O module is built on top of the hyper crate, a fast and
safe HTTP implementation for Rust that provides both client
and server APIs. The I/O module maintains a pool of sockets
to the serverless runtime, through which incoming requests
from end users are forwarded to the appropriate function, and
outgoing requests from functions are forwarded to backend
services. In both cases, HTTP messages are inspected for the
presence of any sensitive (marshaled) data, which are encrypted
or decrypted accordingly. Also, if a serverless function is
registered for any leakless_operation, the I/O module
performs the requested operation on behalf of the serverless
function using the shared secret key.

The type of data marshaling we use in LeakLess, which
involves utilizing a prefix and suffix, is protocol-agnostic. This
approach allows the I/O process to transparently support a wide
range of formats and protocols, including XML, JSON, and
HTML. While using only a prefix is technically feasible for
extracting encrypted or secret data from requests, this method
would require the I/O to be customized for each format or
protocol. This customization is necessary to identify the length
of the data, as different protocols use various separators in
their request bodies to separate parameters.

VI. EXPERIMENTAL EVALUATION

A. Compatibility Assessment

We performed a thorough analysis of available serverless
applications to determine whether they contain sensitive data,
and assess if LeakLess can be used to protect them. A
“serverless application” is a collection of related functions that
interoperate to provide the intended functionality. We found
that LeakLess is applicable on the vast majority of real-world
serverless functions that handle various types of sensitive data.

1) Data Collection: We collected and analyzed publicly
available serverless applications from five sources: the Wonder-
less dataset [71], the Serverless Framework [72], Fastly [73],
Cloudflare [74], [75], and Spin [44], [76]. Wonderless [71]

is the largest among the five, and has been used by previous
works [46], [77]. The dataset has been collected by crawling
GitHub projects and identifying those that use the open-
source Serverless Framework [78], which allows developers
to deploy applications to various cloud providers. Wonderless
uses the presence of the Serverless Framework’s default YAML
configuration file in a given repository to determine whether
the repository uses the framework. We extracted a total of 551
unique applications using the crawler of Wonderless.

We observed that the Wonderless dataset excludes repos-
itories that contain certain keywords (e.g., “example”), and
thus it does not include many applications that are provided as
examples by the Serverless Framework [78]. Given that these
include diverse use cases from various serverless platforms,
they serve as a valuable resource for assessing further the
compatibility of LeakLess. We thus included 190 additional
applications from this repository. Finally, we observed that
Wonderless does not adequately cover recent platforms, includ-
ing Cloudflare [3], Fastly [6], and Spin [44], so we included
additional applications from their respective repositories.

Due to the large number of applications, we conducted
a comprehensive semi-automated analysis to ascertain the
presence and handling of sensitive data in the collected
applications. This process began with the automated evaluation
of each serverless function’s configuration file, focusing on
environment variables formatted as key–value pairs [79]. This
is a common and recommended practice for passing external
values, instead of hard-coding them in the code. Subsequently,
we developed a script to systematically extract all variables
(defined and assigned), along with any hardcoded strings from
the source code. The final step involved a manual review of each
extracted variable (from configuration and source code files)
to determine its sensitivity and compatibility with LeakLess.
The types of sensitive data we identified are similar to those
reported by prior studies [45], [46] and those outlined by the
platforms themselves [47], and include passwords, secret keys,
API tokens, database passwords, and cryptographic keys.

2) Compatibility Analysis: We categorize applications into
three groups: 1) Completely Supported, in which all sensitive
data are fully protected; 2) Partially Supported, for those
containing both supported and unsupported sensitive data; and
3) Unsupported, for those containing sensitive data that cannot
be protected. Table I summarizes the number of applications
per category for the five datasets. Fewer than half of the
applications (449 out of 1,074) contain sensitive data, and from
those, LeakLess fully supports 91% of them (407 out of 449).
This result underscores the direct applicability of LeakLess
on the vast majority of real-world applications. LeakLess
partially supports 7% of the applications (33 out of 449), and
is incompatible with just nine of them (2%). The 33 partially
compatible applications contain a total of 125 sensitive data
objects, 70% of which can be successfully protected.

Table II presents a detailed breakdown of the various types
of sensitive data objects identified across all applications.
More than half of the objects (527 out of 966) correspond to
authentication secrets used for external APIs or for requests

8



TABLE I: Sensitive data in serverless applications. LeakLess fully supports 91% (407/449) of those containing sensitive data.

Data Set Number of Applications/
Applications with Sensitive Data

Fully Supported
Applications

Partially Supported
Applications

Unsupported
Applications

Wonderless Dataset [71] 551/299 273 25 1
Serverless Framework [72] 190/65 64 1 0
Fastly [73] 129/11 7 0 4
Cloudflare [74], [75] 145/62 52 7 3
Spin [44], [76] 59/12 11 0 1

Total 1,074/449 407 33 9

TABLE II: Categorization of the different types of sensitive data objects found in serverless applications.

Data Set
LeakLess Supported Sensitive Data Types Unsupported Sensitive Data Types

Database
Password

Database
Name

Authentication
Secret

Password
JWT Signing or
Verification Key

Request
Signing Key

Other
Crypto Key

Modified
Auth. Secret

Modified
Password

Wonderless Dataset [71] 41 36 367 27 23 185 18 1 12
Serverless Framework [72] 5 5 60 0 0 37 1 0 0
Fastly [73] 0 0 7 0 0 4 4 0 1
Cloudflare [74], [75] 1 1 88 2 3 3 12 3 0
Spin [44], [76] 5 5 5 2 0 0 1 1 0

Total 52 47 527 31 26 229 36 5 13

within serverless applications (fully supported by LeakLess).
We identified five instances of authentication secrets that are
generated or modified by the function at run time (“Modified
Auth. Secret” in Table II), and thus cannot be protected by
LeakLess. Overall, LeakLess supports 94% of the identified
sensitive data objects (912 out of 966). The other two types of
incompatible data include passwords that are either generated
by the function itself or are hashed (column “Modified
Password”), and keys used for custom encryption functions,
hash computation, and message signing (column “Other Crypto
Key”). As we discuss in Section VII, this limitation can be
addressed either by outsourcing these operations to the I/O
module, similarly to our current support of JWT signing and
verification, or by employing register-based encryption [34].
LeakLess fully supports all the remaining data types, including
database-related information (passwords, database names),
generic user and service passwords, and JWT tokens—the
latter through the cooperation of the I/O module for handling
signing and verification.

Applications may contain one or more data objects of the
same or different types (2.2 objects per application, on average).
Figure 2 shows the cumulative distribution of the number
of sensitive data objects per application. Nearly 80% of the
applications contain just one or two sensitive data objects, while
most applications have fewer than six. Considering that only
42% of the applications (449 out of 1,074) handle sensitive
data, and that the vast majority of them contain only a handful
of data objects, the use of selective data protection is justified,
as opposed to securing all data objects of an application.

3) Real-world Serverless Applications: As each serverless
platform has its own set of APIs [80], deploying its applications
over the Spin framework requires manual porting effort.
Considering the large number of serverless applications that
contain sensitive data, it is neither feasible nor necessary to
migrate all of them. Since the performance of LeakLess is only

1 2 3 4 5 6 7 8 9 10
Sensitive Data Instances in Application

0

20

40

60

80

100

Cu
m

ul
at

iv
e 

%
 o

f S
er

ve
rle

ss
 A

pp
lic

at
io

ns

Fig. 2: Cumulative distribution of the number of sensitive data
objects per application, as a percentage of all applications
containing sensitive data.

influenced by the type of sensitive data, and any necessary
LeakLess-supported operations within the applications, we
instead identified widely-used representative examples from
our datasets, with each example corresponding to a different
type of sensitive data and operation. To perform an unbiased
selection, we defined an importance index, calculated based on
the average of several publicly available metrics of a GitHub
repository: Stars, Forks, Contributors, Issues, Watchers and
Pull Requests. These metrics reflect an application’s popularity,
activity, and community engagement.

As shown in Table II, LeakLess supports the protection of a
diverse range of sensitive data. We used the importance index
to identify and extract the most widely used applications from
each group of applications that use a given type of sensitive
data. This led to the selection of six serverless applications
from our entire dataset, detailed in Table III, which we ported

9



to Spin. Specifically, we ported only the functions of each
application that contain or handle sensitive data. To replicate
external service dependencies, we set up a local version of the
respective web services by building a web application with
Flask (a Python framework), and then hosting it on our local
network using Gunicorn as the web server.

We provide a brief description of each application, focusing
on the data protected by LeakLess. applications perform the
following six operations respectively: (1) Authentication Using
Stored Tokens [81]: This example demonstrates the most
common scenario in which a function fetches information
from an external service using internal static sensitive data,
i.e., a secret token used for authentication to external APIs.
(2) Authenticating Users at the Edge [82]: This example is
representative of applications that receive external sensitive data
as a pre-shared secret. This particular function authenticates
a user by comparing the received secret with internal static
sensitive data, i.e., the previously stored version of the secret,
before proceeding to provide the requested service. This
example highlights the capability of LeakLess to compare two
encrypted secrets. (3) Using Stored Passwords [83]: Sometimes,
secrets such as passwords are stored in the request body and
are used for authorization. In this example, a password, stored
in the function’s source code is used to upload data to an
external service. (4) Signing JWT Keys [84]: In this example,
the function has to generate and sign a JWT token that is
attached to an outgoing request. When the external service
receives the request, it can be sure that it has been legitimately
created. LeakLess supports this operation by outsourcing the
signing of the JWT token to the I/O module. (5) Signing
Requests [85]: Most popular cloud-based storage services [58],
[86], [87] require two forms of authentication for each request: a
secret access token, and a signature generated with a secret key.
As in the previous example, the signing operation is outsourced
to the I/O module. This particular function involves uploading
a file to AWS S3 [58], which verifies the request signature
based on the AWS Signature Version 4 format. We replicated
the S3 service with the Python web server. (6) Transmitting
User-Provided Secrets [88]: This example is indicative of cases
that involve the transparent flow of sensitive data in and out
of a function, as discussed in Section IV-A.

For sensitive data hard-coded directly in the source code, we
used the source-level annotation approach (e.g., as in Listing 1
and Listing 2). For sensitive data defined in configuration
files, we annotated the respective variables with the LeakLess
attribute (e.g., as in Listing 3). When secrets are involved in
computation, such as functions responsible for signing requests
or JWT tokens, only minimal code adjustments are required.
Instead of directly signing the outgoing request or JWT token,
the functions were modified to send an empty value as the
signature. This change was specifically made in the line of
code responsible for signature calculation.

Our current implementation supports only the HTTP protocol,
and we were thus unable to evaluate a few database-related
applications that use different protocols. However, the forms of
authentication used in those scenarios are the same as the

ones used in the above examples (e.g., stored credentials,
similarly to example (3) above). Therefore, we anticipate that
the performance overhead will be comparable.

B. Performance Evaluation

1) Experimental Environment: To evaluate the runtime
overhead of LeakLess, we applied it on the ported serverless
applications to protect their sensitive data, and tested them
using different workloads. The two main sources of overhead
are the traffic indirection due to the I/O module, and the
additional computation due to the cryptographic operations for
encrypting and decrypting the protected data. To discern these
two factors, we used a variety of workloads to measure the
throughput and latency of a given application for three different
configurations: i) vanilla Spin (“Original”); ii) with the I/O
module but without encryption (“I/O Only”); and iii) with the
I/O module and cryptographic operations, i.e., full LeakLess
protection (“I/O + Encryption”).

We used the well-known benchmarking tool wrk v4.2.0 for
workload generation. To reduce the chance of measurement
errors, we repeated each experiment 10 times and report the
average of each measurement. In each run the client spawns
30 threads that send a total of 1,000 concurrent requests per
second for a period of 10 minutes. To make the evaluation fair
and reduce the possibility of experimental error, we restart the
whole platform before repeating each experiment.

We ran our experiments on a server equipped with an Intel
Xeon E3-1240 CPU and 32GB of RAM, running Ubuntu
20.04.5 and kernel v5.4.0-128. We evaluated the above three
configurations in the two main deployment scenarios supported
by LeakLess: running the I/O module on the same host as
Spin (local), and running it on a different physical machine
(remote). The client machine used for workload generation is
equipped with an Intel Core i7-6700 CPU and 32GB of RAM,
running Ubuntu 22.04.1 and Linux kernel v5.15.0-56. We also
used two additional servers for hosting the Python web server
simulating external services, and the I/O module in the remote
scenario, both running Ubuntu 22.04: one equipped with an
Intel Core i7-7700 CPU and 32GB of RAM, and the other with
an Intel Core i7-4790 CPU and 32GB of RAM. All machines
are interconnected through a 1 Gbit/s network switch.

2) Performance Overhead: We evaluate the performance
impact of LeakLess when protecting the sensitive data of each
application. The size of the protected data ranges from 20 to
46 bytes, depending on the particular application. The size of
user requests and responses from the web server are smaller
than 1KB, in accordance to the real external services used by
each application, except for the “Signing Requests” application,
which involves uploading a 50KB file to an external service.

The results of our experiments are reported in Table III.
We measured throughput degradation (requests per second)
and latency increase (ms) for the local and remote scenarios.
Numbers in parentheses correspond to the percentage of
increase compared to the baseline (vanilla Spin). Overall,
LeakLess introduces a latency increase of up to 3.4% and
throughput decrease of up to 2.8% for the remote scenario,

10



TABLE III: Throughput reduction and latency increase for six real-world serverless applications, when the I/O module runs on
a different host (Remote) and on the same host with Spin (Local). Values in parentheses indicate the percentage change in
throughput or latency compared to the original.

Application Latency (ms) Throughput (req/s)

Orig. I/O Only I/O + Encryption Orig. I/O Only I/O + Encryption

Remote Local Remote Local Remote Local Remote Local

Authentication Using Stored Tokens [81] 1,267 1,310 (3.3) 1,356 (7.0) 1,310 (3.3) 1,357 (7.1) 769 747 (2.8) 723 (5.9) 747 (2.8) 723 (5.9)
Authenticating Users at the Edge [82] 1,285 1,290 (0.4) 1,310 (1.9) 1,290 (0.4) 1,320 (2.7) 766 764 (0.0) 749 (2.2) 765 (0.0) 739 (3.5)
Using Stored Passwords [83] 1,267 1,310 (3.4) 1,356 (7.0) 1,310 (3.4) 1,356 (7.0) 769 749 (2.6) 722 (6.1) 751 (2.3) 722 (6.1)
Signing JWT Keys [84] 1,240 1,280 (3.2) 1,350 (8.8) 1,280 (3.2) 1,360 (9.6) 788 766 (2.7) 722 (8.3) 766 (2.7) 721 (8.5)
Signing Requests [85] 1,466 1,470 (0.0) 1,560 (6.4) 1,470 (0.0) 1,574 (7.3) 666 660 (0.0) 632 (5.1) 660 (0.0) 620 (6.9)
Transmitting User-Provided Secrets [88] 1,340 1,360 (1.4) 1,460 (6.9) 1,365 (1.8) 1,470 (9.7) 730 724 (0.8) 671 (8.0) 723 (0.9) 670 (8.2)

and a latency increase of up to 9.7% and throughput decrease
of up to 8.5% for the local scenario.

We should note that the results for the remote scenario
misrepresent the overall computational overhead, as the lower
latency increase and throughput reduction obscure the fact the
additional computation is still expended by the second host.
To accurately assess this extra CPU overhead, we used two
separate LeakLess instances on two machines, each running its
own as well as the other instance’s I/O module, and measured
the combined latency increase and throughput reduction. As
expected, we observed that the overhead per machine is
essentially the same as in the above local scenario. Therefore,
for the remote scenario, the overall computational overhead is
more accurately reflected by the local scenario results.

Across the board, comparing the “I/O Only” and “I/O +
Encryption” configurations, we observe that the computational
overhead due to the extra cryptographic and data marshaling
operations is negligible. This is expected due to the relatively
small size of the sensitive data across all applications. We
explored whether significantly increasing the number and size
of sensitive data objects affects overhead through additional
stress-testing experiments, presented in Appendix A.

The variation in the overheads for different applications are
related to each application’s functionalities and the specific
LeakLess operations performed by the I/O module. For
example, both the first and third applications use a secret
for authentication with backend services, placed in the header
and in the body, respectively. In I/O-bound applications, where
performance is predominantly limited by data transfer and disk
access times, the impact of LeakLess’ additional processing
overhead becomes less significant. In the “Signing Requests”
application, for example, the primary operation involves reading
and transferring a file, which are inherently I/O-intensive. Sim-
ilarly, the “Authenticating Users at the Edge” application stores
data in a key–value store backed by an SQLite database, another
I/O-centric task. In such scenarios, the bulk of execution time is
consumed by I/O operations, making the additional processing
time introduced by LeakLess negligible. Furthermore, our proxy
module is implemented using Rust’s hyper crate [89], acclaimed
for its fast and safe HTTP implementation. We also use
asynchronous programming for implementing LeakLess-related
tasks within the I/O module, which enhances throughput and
responsiveness. Rust’s ownership model adds to this efficiency,

ensuring memory safety without a garbage collector, which is
particularly beneficial in concurrent environments.

Conversely, when the I/O module and Spin operate on the
same host, we observe an increased overhead. This difference
can be attributed to the competing resource requirements of
the I/O module and the main runtime process. In the remote
scenario, each process operates on its own dedicated hardware,
including CPU, memory, and network bandwidth, without any
interference. On the other hand, in the local scenario, both
the I/O module and the Spin framework contend for the same
resources on the same host, leading to increased overhead. It
is thus preferable to host the I/O module on a separate host,
as this offers increased protection against transient execution
attacks, while minimizing performance overhead.

3) Functionality and Scalability Evaluation: To verify that
LeakLess does not affect the correct operation of the tested
applications, we use a script to call each modified function and
log the output. As serverless functions are designed for single-
purpose computations, we assess whether the response adheres
to the expected outcome, such as successful data handling
and correct behavior under various operational conditions.
For example, in the “Signing Requests” application, when
a file is successfully uploaded to the web server, the function
returns a status code indicating success. Notably, since 72%
of the data handled by LeakLess is immutable, its impact on
application functionality is consistent, and thus easy to verify
that it does not break any functionality. We also tested several
cases involving mutable secrets (e.g., request signing, JWT
tokens), where the algorithms are consistent across applications.
Our tests were realistic, including interactions with real external
services (e.g., fetching images from Amazon S3 buckets).

To evaluate scalability using more than one I/O modules, we
successfully evaluated different scenarios involving up to three
I/O modules using the same runtime. In all cases, we observed
stable throughput and no significant deviations compared to
the single I/O module scenario.

4) Comparison with Previous Works: LeakLess protects
against all types of leakage, whereas previous approaches
protect only against certain Spectre variants. Swivel [32]
explicitly does not protect against RIDL and Meltdown-
style attacks. As the authors of DyPrIs [22] acknowledge,
as an anomaly detection method, it may suffer from false
positives/negatives. Given these qualitative differences, a direct

11



quantitative comparison would not be meaningful. Despite
the qualitative differences we still explored whether such a
comparison is possible, as the source code of Swivel is publicly
available (the code of DyPrIs is not). Unfortunately, we could
not perform a direct quantitative comparison with LeakLess due
to multiple compatibility issues with the underlying frameworks.
There are several reasons for this incompatibility. First, Swivel
was implemented on the deprecated Lucet runtime [90], which
is incompatible with any open-source serverless frameworks.
Second, Swivel was implemented on an earlier version of
Wasmtime (v0.15.0) [91], which is not compatible with any
version of the Spin framework.

The performance impact of Swivel was evaluated using
the Rocket web server, which has the capability of hosting
web services compiled to WebAssembly modules on top
of a Wasm runtime. However, by design, the real-world
serverless applications we collected are not compatible with
this configuration. The main reason is that the Lucet runtime,
on which Swivel relies, uses WASI Preview 1 (WebAssembly
System Interface) [51] to access operating system resources,
but this WASI version does not support HTTP communication
or any other higher-level APIs used by serverless functions.

As discussed in Section V, serverless platforms such as
Spin expose HTTP and other APIs to functions, enabling
them to perform typical web application operations. Instead,
Rocket essentially uses Wasm modules in a cgi-bin fashion,
offering only a stdin/stdout interface, i.e., not providing a
true serverless platform. Consequently, it is not possible to run
existing serverless applications involving HTTP communication
directly on the Rocket web server—the closest functionality
is to forward the raw HTTP request to the relevant module’s
standard input. Indeed, Swivel was evaluated using modules
written in C (and compiled to Wasm) that perform general-
purpose operations, such as expanding HTML templates or
converting XML input to JSON output.

The reported throughput reduction for Swivel using these
modules ranges between 28.4% and 33.7%, which is an order of
magnitude higher than LeakLess. We should note that according
to our experiments, the overhead of LeakLess for these same
applications would have been negligible, as only any potential
sensitive objects within HTML or XML files would need to
be modified, and not the whole file.

More importantly, however, the performance impact char-
acteristics of Swivel and LeakLess in real-world deployments
are completely different. At a high level, Swivel prevents
a malicious Wasm module (i.e., serverless function) from
accessing the data of other modules. Deploying Swivel thus
necessitates the assumption that any loaded module can
potentially be malicious. This means that Swivel has to be
applied to all the loaded modules from all tenants that run
as part of the same runtime—affecting the performance of all
of them. In contrast, LeakLess selectively protects a benign
function from any other potentially malicious function, and
thus needs to be applied only to functions that handle sensitive
data (at the discretion of the developer), without affecting the
performance of other functions and the platform as a whole.

C. Security Evaluation

1) Transient Execution Attacks: In the default Spin setup,
functions from multiple tenants run in the same process, and
thus share the same virtual memory address space. Each
function runs in its own sandbox with its own allocated memory
and set of capabilities, which are limited by the WebAssembly
runtime. However, this level of isolation does not protect against
transient execution attacks [19]. Although such attacks typically
depend on high-precision timers, limiting the use of precise
timing mechanisms is not an effective mitigation, as attackers
have developed alternative methods. These include coarse-
grained or remote timers [22], [92]–[94], counting threads to
approximate cycle counters [95], [96], leveraging cache traces
with performance counters [97], synchronization-based storage
channels [98], and exploiting architectural dependencies [59].

As a concrete example, Schwarzl et al. [22] successfully
executed a Spectre attack against the Cloudflare Workers
FaaS platform, which is based on a modified JavaScript V8
sandbox that disables all known timers and primitives (e.g., the
rdtsc CPU instruction). Despite this mitigation, the authors
leveraged amplification techniques and a remote timing server
to leak secret data from other workers using Spectre gadgets.
This example underscores that disabling timers is insufficient
to thwart all speculative execution attacks [99]. Similarly,
the Wasmtime runtime [49] only implements basic Spectre
mitigations, such as bounds checking for call_indirect
instructions. These and other mitigation techniques, including
retpoline [100] and user pointer sanitization [101], are not
effective against the latest attack variants such as Retbleed [41].

Based on the above, we consider the attack scenario where
the adversary uses a memory disclosure vulnerability or a
transient execution attack to leak secrets from other tenants. To
carry out transient execution attacks, given that the low-level
instructions used in these exploits [20], [102] (e.g., rdtsc) are
not available to Wasm code, we assume that the attacker will use
other techniques (such as a remote server) to construct precise
timers [103], or will perform the attacks without relying on an
architectural timer at all [59]. The attacker runs a malicious
serverless function containing a self-crafted Spectre gadget that
performs a Spectre attack on its own process to leak secrets
from a victim function—there is no need to discover an existing
Spectre gadget within the victim function, since they are both
part of the same process.

We recreated this attack scenario to verify that sensitive
data is never exposed in the runtime’s process memory in
unencrypted form. To address every scenario in which an
attacker could extract data from another tenant, we implemented
a patch for Spin that causes all memory of a Wasm function
to be exposed when triggered by an HTTP request. The patch
then analyzes the exposed memory to confirm that no secrets
are present in unencrypted form. This approach ensures that
across all real-world applications (Section VI-B), the secrets
are never exposed in memory.

2) Data Leakage Vulnerabilities: Besides transient execution
attacks, bugs in the language runtime itself uphold the threat of

12



memory leakage attacks. Several flaws in the implementation
of Wasmtime, which is used by Spin to manage these language-
based sandboxes, have been discovered [13]–[15]. These flaws
enable a malicious function to access the memory of other
functions and leak other tenants’ sensitive data. Notably, such
vulnerabilities are not unique to Wasmtime, as similar issues
have been found in V8 isolates [11], [12], indicating a broader
challenge in ensuring robust language-level sandboxing across
different platforms. As we showed in the previous experiment,
sensitive data is never exposed in decrypted form in the
function’s memory.

To also cover the case in which an attacker might attempt to
read data directly from the runtime’s memory, we developed a
custom program that dumps the memory of the main process
after the initialization step is completed. This is a plausible
scenario, as exemplified by a recent bug [15] in Wasmtime’s
Cranelift code generator, which enables Wasm modules to
access memory up to 34GB away from their base address.
The program uses the gcore tool to attach to the runtime
process and dump its memory. We then scanned these memory
dumps for the presence of the plaintext version of the protected
data, as well as the cryptographic keys used by LeakLess for
encryption in the runtime process, to verify that they have
been erased from memory before allowing any function to be
executed. We confirmed that both the protected data and the
keys were never found in unencrypted form.

3) Confused Deputy Attacks: To minimize the risk of
data collisions, we rely on industry-standard data marshaling
requirements, using 128-bit random prefixes and suffixes. Given
that the attacker has access as a tenant of the serverless
framework, these prefixes and suffixes are not considered as
secret. However, to mitigate the potential for confused deputy
attacks, in which an attacker could misuse the I/O module to
decrypt other tenants’ secrets, we use distinct cryptographic
keys for each application, shared across all its Wasm modules.
Assume an attacker manages to leak an encrypted secret from
memory. In case of an internal secret, the attacker could
integrate the leaked secret into their own Leakless-protected
function, which transmits the secret to a server under their
control. Although the I/O module will decrypt the secret, it
will do so using a different key (the key generated for the
attacker’s application), resulting in incorrect data. In case of an
external secret, the attacker could treat it as an external input
and replay it to the victim function, but in that case the already
encrypted secret will just be re-encrypted by the I/O module.
Replaying the secret to an attacker-controlled function is again
ineffective due to the use of a different key per application.

VII. LIMITATIONS AND DISCUSSION

Performance Optimizations: Although LeakLess incurs a
modest performance overhead even when the I/O module
and the serverless runtime run on the same host, further
optimization is still possible. Our prototype uses TCP sockets
with a connection pool for data transfer between the runtime
process and the I/O module. This approach was chosen to
transparently support running the I/O module on a separate

host (to defend against cross-process attacks). More efficient
inter-process communication mechanisms, such as Unix domain
sockets or shared memory, can be considered when running
the runtime and the I/O module on the same host.

Immutable Data: LeakLess currently supports the protection
of sensitive data that remains unchanged during function exe-
cution. In addition, it supports commonly found cryptographic
operations that involve sensitive data, such as signing and
verification, which are often performed by serverless functions
when communicating with external services. However, as
discussed in Section VI-A, there are still a few cases of sensitive
data that are not currently supported by LeakLess, mostly
related to keys used for custom encryption functions, hash
computation, and message signing (54 out of 966 identified
sensitive data objects).

This is a limitation of our implementation, which can be
addressed with additional engineering effort. One approach
is to outsource these additional cryptographic operations to
the I/O module, similarly to the current support for JWT
operations. As shown in Table III, this would not impact overall
performance significantly. A more generic solution would be
to implement support for performing arbitrary computation on
encrypted data. This can be achieved using a register-based
encryption scheme [33], [34], which would allow the function
itself to safely decrypt the protected data when loaded into CPU
registers, carry out the desired computation, and re-encrypt
it before writing it in memory. We chose not to pursue this
approach due to the significant engineering effort required and
the relatively few cases needing this level of support.

Despite this limitation, as demonstrated in Section VI-A,
LeakLess is directly applicable on the vast majority of real-
world serverless functions that handle sensitive data. One
of their common characteristics is that they typically carry
out short-lived operations with data provided by external
sources that involve secure interaction with external cloud
services and APIs [2], [4], [58]. Notably, 70% of the identified
secret objects in Table II fall in this category. LeakLess
can be applied directly in these scenarios to provide robust
protection with minimal developer effort, given that sensitive
data such as authentication tokens, credit card information,
session IDs, database credentials, and authorization tokens
remain immutable for the whole duration of a function’s
execution.

Compatibility with Existing Platforms: Despite the introduc-
tion of a separate I/O module, the overall design of LeakLess
remains compatible with existing serverless platforms. In
general, the use of proxies to intercept requests is a common
technique used by previous works that focus on protecting data
in serverless environments [45], [104]. Similarly, Cloudflare
Workers [3] enforce outbound restrictions and handle inbound
redirection through two proxy services [25]. These existing
proxies can be easily extended to perform the cryptographic
operations on the protected data required by LeakLess. As
part of our future work, we plan to integrate LeakLess in the
recently released open-source version of CloudFlare’s serverless
runtime, which now also supports WebAssembly [105].

13



VIII. RELATED WORK

We discuss various types of defenses that can be used against
data-only attacks [106] and transient execution attacks [19],
[20], targeting both native and WebAssembly programs. Addi-
tionally, we discuss defenses that are specifically tailored to
serverless platforms.

Memory Safety: There have been many works which attempt
to address vulnerabilities caused by the usage of memory unsafe
languages such as C/C++. Techniques like SoftBound [107]
maintain bounds information for each pointer, providing
spatial safety, but incur high runtime overhead. Software-based
defenses such as DataShield [108] enforce memory safety at an
object level, protecting against data leakage attacks. Lehmann
et al. [109] demonstrate that vulnerabilities with mitigations
in C/C++ code can propagate to WebAssembly binaries,
highlighting the importance of Memory Safe WebAssembly
(MSWasm) [110], which extends Wasm with memory safety
abstractions.

Some works have focused on enhancing the security of
serverless platforms against data-only attacks. An example
is Groundhog [111], which secures serverless systems by
returning to a clean state after each function call to remove
private data from the process address space. SecWasm [112]
implements an information flow control system to guarantee the
safe handling of sensitive information in Wasm. In comparison
to LeakLess, which safeguards serverless functions against
Spectre attacks, these prior works do not consider transient
execution attacks as a potential security threat.

Isolation-based Defenses: Various isolation strategies have
been explored to protect program data. One method is privilege
separation, which aims to reduce the code running with special
privileges without affecting program functionality [113], [114].
Chrome and Firefox, for example, employ site isolation, which
loads every page (browser tab) in its own process [115]–[117].
However, in certain cases, site isolation is still vulnerable to
transient execution attacks [118], while cross-process [26]–[30]
and user-to-kernel [39]–[42] attacks are also possible.

DyPrIs [22] uses anomaly detection to identify malicious
workers in the Cloudflare Workers platform [3] that may be
mounting transient execution attacks, which are then migrated
into a separate process. Similarly to other anomaly-based
approaches, DyPrIs suffers from false positives and negatives,
while it still cannot protect against cross-process transient
execution attacks [26]–[31], [39].

Hardware-based isolation is another approach, using hard-
ware extensions like Intel SGX and MPK to protect applications
from data-only attacks [35], [119]–[123]. However, these
techniques often exclude transient execution attacks or lack
applicability to serverless cloud computing platforms. TME-
Box [124] leverages Intel TME-MK for scalable in-process
isolation in cloud computing environments, but similarly does
not address transient execution attacks.

One approach to strengthen the isolation guarantees of
WebAssembly is to verify the generated code or attempt
to detect vulnerabilities [16]–[18]. WaVe [125] is a Wasm

runtime system that uses automated verification to ensure
memory isolation and proper access restriction to OS resources.
WebAssembly has been used as a means to provide isolation by
several works [126]–[128]. These works leverage WebAssembly
to isolate parts of the code which are deemed as untrusted.
However, software-based isolation alone is insufficient to
protect against transient execution attacks.

Defenses Against Transient Execution Attacks: We summa-
rize prior efforts to address Spectre-like attacks in different
environments. Several methods aim to eliminate the source
of data leakage. For instance, CleanupSpec [129] uses an
“undo logic” for the cache state to prevent data leakage. Some
approaches introduce barriers (e.g., using the lfence instruc-
tion), to eliminate Spectre gadgets [130], [131]. Retpoline [100]
mitigates Spectre by hardening all branch instructions against
speculative execution. SpecLFB [132] leverages the Line-Fill-
Buffer (LFB), a microarchitectural component of CPUs, to
eliminate potential side channels before they are established.

To protect against indirect branch attacks, SpecCFI [133]
uses control flow integrity to validate the targets of indirect
branches during speculative execution. Half&Half [134] isolates
and prevents malicious mistraining of conditional branch
predictors (CBP) in modern Intel processors by physically
partitioning all CBP structures based on a single bit of the
branch address. Most of these methods are not applicable for
serverless platforms due to either their significant performance
overhead or compatibility issues. An alternative approach is
to assume that leakage will happen, and ensure that sensitive
data will always remain encrypted in memory [33], [34]. These
methods effectively secure internal application data, but are
inadequate for sensitive data that need to be transmitted outside
the application (i.e., data is decrypted before being sent).

Swivel [32] is a compiler-based technique that uses software-
based and hardware-based fault isolation to secure Wasm appli-
cations. This additional instrumentation incurs a considerably
high overhead, especially for its deterministic versions. Swivel
assumes all memory locations contain potentially sensitive
data, whereas LeakLess only protects specific confidential
information. Wasm-Mutate [135] introduces a method for
diversifying WebAssembly binaries to mitigate timing side-
channel attacks, but the approach lacks soundness. Narayan
et al. [136] propose Hardware-assisted Fault Isolation (HFI)
to improve isolation for WebAssembly and native binaries
and address shortcomings in software-based systems against
transient attacks. Nevertheless, it requires modifications to the
hardware, operating system, and runtime.

IX. CONCLUSION

We presented LeakLess, a software architecture for selective
data protection tailored to serverless platforms, which provides
future-proof protection against memory disclosure and transient
execution attacks. LeakLess introduces a separate I/O module
that mediates the handling of sensitive data between the
serverless runtime and external entities, ensuring that secrets
always remain encrypted in the runtime’s memory. The only
manual effort required from the side of developers to protect

14



sensitive data is to just annotate the respective variables in
the source code of serverless functions, and in any requests
sent by clients. We implemented LeakLess by modifying the
Spin framework, which uses the Wasmtime runtime to run
Wasm modules in the same runtime process. We evaluated
the usability and performance of LeakLess with real-world
serverless functions. Due to its narrow-scope cryptographic
operations, LeakLess incurs only negligible overhead for typical
applications, while protecting against both intra-process and
cross-process transient execution attacks.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive
feedback. We also thank Martin Schwarzl and Tapti Palit for
their valuable comments and discussions, and the developers of
the Spin framework for their helpful guidance. This work was
supported by the National Science Foundation (NSF) through
award CNS-2104148.

REFERENCES

[1] Z. Li, L. Guo, J. Cheng, Q. Chen, B. He, and M. Guo, “The serverless
computing survey: A technical primer for design architecture,” ACM
Comput. Surv., vol. 54, no. 10s, 2022.

[2] “Amazon Lambda,” https://aws.amazon.com/lambda/, 2024.
[3] “Cloudflare Workers,” https://workers.cloudflare.com/, 2024.
[4] “Google Cloud Products,” https://cloud.google.com/products, 2024.
[5] “Azure Functions,” https://azure.microsoft.com/en-us/products/

functions/, 2024.
[6] “Fastly Compute@Edge,” https://www.fastly.com/products/edge-

compute/serverless, 2024.
[7] A. Sahraei, S. Demetriou, A. Sobhgol, H. Zhang, A. Nagaraja, N. Pathak,

G. Joshi, and et al, “XFaaS: Hyperscale and low cost serverless functions
at Meta,” in Proceedings of the 29th Symposium on Operating Systems
Principles (SOSP), 2023, pp. 231–246.

[8] “Deno: Next-generation JavaScript runtime,” https://deno.com/, 2024.
[9] “V8,” https://v8.dev/, 2024.

[10] “WebAssembly,” https://webassembly.org/, 2024.
[11] “Google Chromium V8 Out-of-Bounds Memory Access Vulnerability,”

https://nvd.nist.gov/vuln/detail/cve-2024-0519, 2024.
[12] “Stable Channel Update for Desktop,” https://

chromereleases.googleblog.com/2024/01/stable-channel-update-
for-desktop_16.html, 2024.

[13] “Memory Access Due to Code Generation Flaw in Cranelift Mod-
ule,” https://github.com/bytecodealliance/wasmtime/security/advisories/
GHSA-hpqh-2wqx-7qp5, 2021.

[14] “Data leakage Between Instances in the Pooling Allocator,”
https://github.com/bytecodealliance/wasmtime/security/advisories/
GHSA-wh6w-3828-g9qf, 2022.

[15] “Guest-controlled out-of-bounds read/write on x86_64,”
https://github.com/bytecodealliance/wasmtime/security/advisories/
GHSA-ff4p-7xrq-q5r8, 2023.

[16] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “Trust but verify: SFI safety for
native-compiled Wasm,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2021.

[17] J. Bosamiya, W. S. Lim, and B. Parno, “Provably-Safe multilingual
software sandboxing using WebAssembly,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022.

[18] “Cargo Fuzz Targets for Wasmtime,” https://github.com/
bytecodealliance/wasmtime/blob/main/fuzz/README.md, 2024.

[19] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in Proceedings of the 40th
IEEE Symposium on Security & Privacy (S&P), May 2019, pp. 903–101.

[20] C. Canella, J. V. Bulck, M. Schwarz, M. Lipp, B. V. Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in Proceedings of the 28th
USENIX Security Symposium, 2019, pp. 249–266.

[21] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan, “SoK:
Practical foundations for software Spectre defenses,” in Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 2022.

[22] M. Schwarzl, P. Borrello, A. Kogler, V. Kenton, T. Schuster, M. Schwarz,
and D. Gruss, “Robust and scalable process isolation against Spectre
in the cloud,” in Proceedings of the European Symposium on Research
in Computer Security (ESORICS), 2022, pp. 167–186.

[23] “Introducing Secrets and Environment Variables to Cloudflare Workers,”
https://blog.cloudflare.com/workers-secrets-environment/, 2024.

[24] “Announcing Cloudflare Secrets Store,” https://blog.cloudflare.com/
secrets-store/, 2024.

[25] K. Varda, “Mitigating Spectre and Other Security Threats: The
Cloudflare Workers Security Model,” https://blog.cloudflare.com/
mitigating-spectre-and-other-security-threats-the-cloudflare-workers-
security-model/.

[26] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
Proceedings of the 12th USENIX Workshop on Offensive Technologies
(WOOT), 2018.

[27] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2018, pp. 2109–2122.

[28] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2019, pp. 88–105.

[29] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar et al., “Fallout:
Leaking data on Meltdown-resistant CPUs,” in Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
2019, pp. 769–784.

[30] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2019, pp. 753–768.

[31] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SGXPectre:
Stealing Intel secrets from SGX enclaves via speculative execution,” in
Proceedings of the IEEE European Symposium on Security and Privacy
(EuroS&P), 2019, pp. 142–157.

[32] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang,
A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen, and
D. Stefan, “Swivel: Hardening WebAssembly against Spectre,” in
Proceedings of the 30th USENIX Security Symposium, 2021.

[33] T. Palit, J. F. Moon, F. Monrose, and M. Polychronakis, “DynPTA:
Combining static and dynamic analysis for practical selective data
protection,” in Proceedings of the 42nd IEEE Symposium on Security
& Privacy (S&P), 2021, pp. 1919–1937.

[34] T. Palit, F. Monrose, and M. Polychronakis, “Mitigating data leakage by
protecting memory-resident sensitive data,” in Proceedings of the 35th
Annual Computer Security Applications Conference, 2019, pp. 598–611.

[35] A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, and P. Druschel., “ERIM:
Secure, efficient in-process isolation with protection keys (MPK),” in
Proceedings of the USENIX Security Symposium, 2019, pp. 1221–1238.

[36] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain keys – efficient in-process
isolation for RISC-V and x86,” in Proceedings of the 29th USENIX
Security Symposium, 2020, pp. 1677–1694.

[37] L. Li, H. Yavarzadeh, and D. Tullsen, “Indirector: High-precision branch
target injection attacks exploiting the indirect branch predictor,” in
Proceedings of the 33rd USENIX Security Symposium, 2024.

[38] J. Wikner and K. Razavi, “Breaking the barrier: Post-barrier Spectre
attacks,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2025.

[39] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings
of the 27th USENIX Security Symposium, 2018.

[40] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
history injection: On the effectiveness of hardware mitigations against
cross-privilege Spectre-v2 attacks,” in Proceedings of the 31st USENIX
Security Symposium, 2022, pp. 971–988.

[41] J. Wikner and K. Razavi, “RETBLEED: Arbitrary speculative code
execution with return instructions,” in Proceedings of the 31st USENIX
Security Symposium, 2022, pp. 3825–3842.

15

https://aws.amazon.com/lambda/
https://workers.cloudflare.com/
https://cloud.google.com/products
https://azure.microsoft.com/en-us/products/functions/ 
https://azure.microsoft.com/en-us/products/functions/ 
https://www.fastly.com/products/edge-compute/serverless
https://www.fastly.com/products/edge-compute/serverless
https://deno.com/
https://v8.dev/
https://webassembly.org/
https://nvd.nist.gov/vuln/detail/cve-2024-0519
https://chromereleases.googleblog.com/2024/01/stable-channel-update-for-desktop_16.html
https://chromereleases.googleblog.com/2024/01/stable-channel-update-for-desktop_16.html
https://chromereleases.googleblog.com/2024/01/stable-channel-update-for-desktop_16.html
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-hpqh-2wqx-7qp5
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-wh6w-3828-g9qf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-wh6w-3828-g9qf
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8
https://github.com/bytecodealliance/wasmtime/security/advisories/GHSA-ff4p-7xrq-q5r8
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/README.md
https://github.com/bytecodealliance/wasmtime/blob/main/fuzz/README.md
https://blog.cloudflare.com/workers-secrets-environment/
https://blog.cloudflare.com/secrets-store/
https://blog.cloudflare.com/secrets-store/
https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/
https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/
https://blog.cloudflare.com/mitigating-spectre-and-other-security-threats-the-cloudflare-workers-security-model/


[42] M. Schwarzl, T. Schuster, M. Schwarz, and D. Gruss, “Speculative
dereferencing: Reviving Foreshadow,” in Proceedings of the 25th
International Conference on Financial Cryptography and Data Security
(FC), 2021, pp. 311–330.

[43] S. Wiebing, A. de Faveri Tron, H. Bos, and C. Giuffrida, “InSpectre
gadget: Inspecting the residual attack surface of cross-privilege Spectre
v2,” in Proceedings of the 33rd USENIX Security Symposium, 2024.

[44] “Spin,” https://developer.fermyon.com/spin/index, 2024.
[45] P. Datta, P. Kumar, T. Morris, M. Grace, A. Rahmati, and A. Bates,

“Valve: Securing function workflows on serverless computing platforms,”
in Proceedings of The Web Conference (WWW), 2020, pp. 939–950.

[46] D. S. Jegan, L. Wang, S. Bhagat, and M. Swift, “Guarding serverless
applications with Kalium,” in Proceedings of the 32nd USENIX Security
Symposium, 2023.

[47] “Annotation traits in wasmCloud.” https://wasmcloud.com/docs/hosts/
abis/wasmbus/interfaces/traits, 2024.

[48] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th ACM
Conference on Programming Language Design and Implementation
(PLDI), 2017, pp. 185–200.

[49] “Wasmtime,” https://wasmtime.dev/, 2024.
[50] “WasmEdge,” https://wasmedge.org/, 2024.
[51] “WASI,” https://wasi.dev/, 2024.
[52] Gadepalli, P. Kishore, S. McBride, G. Peach, L. Cherkasova, and

G. Parmer, “Sledge: A serverless-first, light-weight Wasm runtime
for the edge,” in Proceedings of the 21st International Middleware
Conference, 2020, pp. 265–279.

[53] Gadepalli, P. Kishore, G. Peach, L. Cherkasova, R. Aitken, and
G. Parmer, “Challenges and opportunities for efficient serverless
computing at the edge,” in Proceedings of the 38th Symposium on
Reliable Distributed Systems (SRDS), 2019, pp. 261–2615.

[54] A. Hall and U. Ramachandran, “An execution model for serverless
functions at the edge,” in Proceedings of the International Conference
on Internet of Things Design and Implementation, 2019, pp. 225–236.

[55] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss,
“Netspectre: Read arbitrary memory over network,” in Proceedings
of the 27th European Symposium on Research in Computer Security
(ESORICS). Springer, 2019, pp. 279–299.

[56] “Heroku,” https://www.heroku.com/, 2024.
[57] “AWS Products,” https://aws.amazon.com/products/, 2024.
[58] “Amazon S3,” https://aws.amazon.com/s3/, 2024.
[59] R. Zhang, T. Kim, D. Weber, and M. Schwarz, “(M)WAIT for it:

Bridging the gap between microarchitectural and architectural side
channels,” in Proceedings of the USENIX Security Symposium, 2023.

[60] H. Xiao and S. Ainsworth, “Hacky racers: Exploiting instruction-level
parallelism to generate stealthy fine-grained timers,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2023, pp.
354–369.

[61] A. Purnal, M. Bognar, F. Piessens, and I. Verbauwhede, “ShowTime:
Amplifying arbitrary CPU timing side channels,” in Proceedings of
the ACM Asia Conference on Computer and Communications Security
(AsiaCCS), 2023.

[62] Z. Weissman, T. Tiemann, T. Eisenbarth, and B. Sunar, “Microarchitec-
tural security of AWS Firecracker VMM for serverless cloud platforms,”
2023.

[63] D. Moghimi, “Downfall: Exploiting speculative data gathering,” in
Proceedings of the 32nd USENIX Security Symposium, 2023.

[64] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:
Rethinking kernel isolation,” in Proceedings of the 23rd USENIX
Security Symposium, 2014, pp. 957–972.

[65] “Data Annotations for Model Validation,” https://learn.microsoft.com/
en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-
music-store-part-6, 2024.

[66] “Configuration of wrangler.toml,” https://developers.cloudflare.com/
workers/wrangler/configuration/, 2024.

[67] S. Röttger, “Escaping the Chrome Sandbox with RIDL,”
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-
sandbox-with-ridl.html.

[68] “WASI Cloud Core Proposal,” https://github.com/WebAssembly/wasi-
cloud-core, 2024.

[69] “WASI Preview 2,” https://github.com/WebAssembly/WASI/tree/main/
preview2, 2024.

[70] F. Developer, “The Spin HTTP Trigger,” https://developer.fermyon.com/
spin/v2/http-trigger, 2024.

[71] N. Eskandani and G. Salvaneschi, “The Wonderless dataset for serverless
computing,” in Proceedings of the 18th IEEE/ACM International
Conference on Mining Software Repositories (MSR), 2021, pp. 565–569.

[72] “Serverless Framework Serverless Application Examples,” https://
github.com/serverless/examples, 2024.

[73] “Fastly Serverless Application Code Examples,” https:
//developer.fastly.com/solutions/examples/, 2024.

[74] “Cloudflare Workers serverless application examples,” https://
developers.cloudflare.com/workers/examples/, 2024.

[75] “Cloudflare Workers Supported Packages Examples,”
https://airtable.com/embed/shrTR0QCusxZoCgiJ/tbloKKErinTfrIHsB,
2024.

[76] “Spin GitHub Repository,” https://github.com/fermyon/spin, 2024.
[77] X. Liu, Z. Chen, D. Li, J. Chen, Y. Liu, H. Wang, and X. Jin, “FaaSLight:

General application-level cold-start latency optimization for function-as-
a-service in serverless computing,” ACM Trans. Softw. Eng. Methodol.,
vol. 32, no. 5, jul 2023.

[78] “Serverless Framework,” https://www.serverless.com/, 2024.
[79] “Serverless Platform Parameters,” https://www.serverless.com/

framework/docs/guides/parameters, 2024.
[80] T. Lienard, “V8 Isolates Are Taking Over the World,” https://dev.to/

tomlienard/v8-isolates-are-taking-over-the-world-3h4m, 2022.
[81] “CDN edge endpoint,” https://github.com/kriasoft/react-starter-kit/tree/

b882d5a759b3d344fe390205e0db68387c9057de/edge, 2024.
[82] “Open Charge Map using Cloudflare API Router,” https:

//github.com/openchargemap/ocm-system/tree/master/API/OCM.Net/
OCM.API.Worker/cloudflare/api-router, 2024.

[83] “Lambda function for extracting text from a variety of file
types,” https://github.com/Enterprise-CMCS/cmcs-eregulations/tree/
8cc15ef111c2c909f849b5dd02ed54008dbc8ca8/solution/text-extractor,
2024.

[84] “Scheduler Package of the Framework for adding A/B testing to educa-
tion applications,” https://github.com/CarnegieLearningWeb/UpGrade/
tree/dev/backend/packages/Scheduler, 2024.

[85] “Sign Request Example: Splice Large Media Files and Upload the
Spliced Media Files to Cloud Storage.” https://github.com/tencentyun/
serverless-demo/tree/9a2bc6274f9970ba05e5beb5f41b109dd885e0ee/
Python3.6-MediaConcat/src, 2024.

[86] “Azure Archive Storage,” https://azure.microsoft.com/en-us/products/
storage/#overview, 2024.

[87] “Object Storage for Companies of All Sizes,” https://cloud.google.com/
storage/?hl=en, 2024.

[88] “Notion as CMS with easy API access,” https://github.com/splitbee/
notion-api-worker/, 2024.

[89] “Hyper Crate,” https://hyper.rs/, 2024.
[90] “Lucet,” https://github.com/bytecodealliance/lucet, 2024.
[91] “Wasmtime Spectre,” https://github.com/PLSysSec/wasmtime-spectre,

2024.
[92] L. Hetterich and M. Schwarz, “Branch different - Spectre attacks on

Apple silicon,” in Proceedings of the International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
2022, pp. 116–135.

[93] “A Spectre proof-of-concept for a Spectre-proof web,”
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-
for-spectre.html, 2021.

[94] “Spectre JavaScript PoCs,” https://leaky.page/, 2021.
[95] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,

“ARMageddon: Cache attacks on mobile devices,” in Proceedings of
the 25th USENIX Security Symposium, 2016, pp. 549–564.

[96] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
JavaScript,” in Proceedings of the International Conference on Financial
Cryptography and Data Security (FC), 2017, pp. 247–267.

[97] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren, and
Y. Yarom, “Robust website fingerprinting through the cache occupancy
channel,” in Proceedings of the 28th USENIX Security Symposium,
2019, pp. 639–656.

[98] J. Yu, A. Dutta, T. Jaeger, D. Kohlbrenner, and C. W. Fletcher,
“Synchronization storage channels (S2C): Timer-less cache side-channel
attacks on the Apple M1 via hardware synchronization instructions,” in
Proceedings of the 32nd USENIX Security Symposium, 2023.

16

https://developer.fermyon.com/spin/index
https://wasmcloud.com/docs/hosts/abis/wasmbus/interfaces/traits
https://wasmcloud.com/docs/hosts/abis/wasmbus/interfaces/traits
https://wasmtime.dev/
https://wasmedge.org/
https://wasi.dev/
https://www.heroku.com/
https://aws.amazon.com/products/
https://aws.amazon.com/s3/
https://learn.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://learn.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://learn.microsoft.com/en-us/aspnet/mvc/overview/older-versions/mvc-music-store/mvc-music-store-part-6
https://developers.cloudflare.com/workers/wrangler/configuration/
https://developers.cloudflare.com/workers/wrangler/configuration/
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-with-ridl.html
https://googleprojectzero.blogspot.com/2020/02/escaping-chrome-sandbox-with-ridl.html
https://github.com/WebAssembly/wasi-cloud-core
https://github.com/WebAssembly/wasi-cloud-core
https://github.com/WebAssembly/WASI/tree/main/preview2
https://github.com/WebAssembly/WASI/tree/main/preview2
https://developer.fermyon.com/spin/v2/http-trigger
https://developer.fermyon.com/spin/v2/http-trigger
https://github.com/serverless/examples
https://github.com/serverless/examples
https://developer.fastly.com/solutions/examples/
https://developer.fastly.com/solutions/examples/
https://developers.cloudflare.com/workers/examples/
https://developers.cloudflare.com/workers/examples/
https://airtable.com/embed/shrTR0QCusxZoCgiJ/tbloKKErinTfrIHsB
https://github.com/fermyon/spin
https://www.serverless.com/
https://www.serverless.com/framework/docs/guides/parameters
https://www.serverless.com/framework/docs/guides/parameters
https://dev.to/tomlienard/v8-isolates-are-taking-over-the-world-3h4m
https://dev.to/tomlienard/v8-isolates-are-taking-over-the-world-3h4m
https://github.com/kriasoft/react-starter-kit/tree/b882d5a759b3d344fe390205e0db68387c9057de/edge
https://github.com/kriasoft/react-starter-kit/tree/b882d5a759b3d344fe390205e0db68387c9057de/edge
https://github.com/openchargemap/ocm-system/tree/master/API/OCM.Net/OCM.API.Worker/cloudflare/api-router
https://github.com/openchargemap/ocm-system/tree/master/API/OCM.Net/OCM.API.Worker/cloudflare/api-router
https://github.com/openchargemap/ocm-system/tree/master/API/OCM.Net/OCM.API.Worker/cloudflare/api-router
https://github.com/Enterprise-CMCS/cmcs-eregulations/tree/8cc15ef111c2c909f849b5dd02ed54008dbc8ca8/solution/text-extractor
https://github.com/Enterprise-CMCS/cmcs-eregulations/tree/8cc15ef111c2c909f849b5dd02ed54008dbc8ca8/solution/text-extractor
https://github.com/CarnegieLearningWeb/UpGrade/tree/dev/backend/packages/Scheduler
https://github.com/CarnegieLearningWeb/UpGrade/tree/dev/backend/packages/Scheduler
https://github.com/tencentyun/serverless-demo/tree/9a2bc6274f9970ba05e5beb5f41b109dd885e0ee/Python3.6-MediaConcat/src
https://github.com/tencentyun/serverless-demo/tree/9a2bc6274f9970ba05e5beb5f41b109dd885e0ee/Python3.6-MediaConcat/src
https://github.com/tencentyun/serverless-demo/tree/9a2bc6274f9970ba05e5beb5f41b109dd885e0ee/Python3.6-MediaConcat/src
https://azure.microsoft.com/en-us/products/storage/#overview
https://azure.microsoft.com/en-us/products/storage/#overview
https://cloud.google.com/storage/?hl=en
https://cloud.google.com/storage/?hl=en
https://github.com/splitbee/notion-api-worker/
https://github.com/splitbee/notion-api-worker/
https://hyper.rs/
https://github.com/bytecodealliance/lucet
https://github.com/PLSysSec/wasmtime-spectre
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://security.googleblog.com/2021/03/a-spectre-proof-of-concept-for-spectre.html
https://leaky.page/


[99] J. Zhang, C. Chen, J. Cui, and K. Li, “Timing side-channel attacks
and countermeasures in CPU microarchitectures,” in ACM Computing
Surveys 56, 2024, pp. 1–40.

[100] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886.

[101] “Spectre Side Channels,” https://www.kernel.org/doc/Documentation/
admin-guide/hw-vuln/spectre.rst.

[102] “SafeSide,” https://github.com/google/safeside, 2024.
[103] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:

Accelerating microarchitectural attacks with the GPU,” in Proceedings
of the IEEE Symposium on Security and Privacy (S&P), 2018.

[104] A. Sankaran, P. Datta, and A. Bates, “Workflow integration alleviates
identity and access management in serverless computing,” in Proceed-
ings of the Annual Computer Security Applications Conference (ACSAC),
2020, pp. 496–509.

[105] “Workerd, Cloudflare’s JavaScript/Wasm Runtime,” https://github.com/
cloudflare/workerd, 2024.

[106] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in Proceedings of the 14th USENIX
Security Symposium, August 2005.

[107] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for C,” in
Proceedings of the 30th ACM Conference on Programming Language
Design and Implementation (PLDI), 2009, pp. 245–258.

[108] S. A. Carr and M. Payer, “DataShield: Configurable data confidentiality
and integrity,” in Proceedings of the ACM Asia Conference on Computer
and Communications Security (AsiaCCS), 2017, pp. 193–204.

[109] D. Lehmann, J. Kinder, and M. Pradel, “Old is new again: Binary
security of WebAssembly,” in Proceedings of the 29th USENIX Security
Symposium, 2020, pp. 217–234.

[110] A. E. Michael, A. Gollamudi, J. Bosamiya, E. Johnson, A. Denlinger,
C. Disselkoen, C. Watt, B. Parno, M. Patrignani, M. Vassena, and
D. Stefan, “MSWasm: Soundly enforcing memory-safe execution of
unsafe code,” Proc. ACM Program. Lang., vol. 7, 2023.

[111] M. Alzayat, J. Mace, P. Druschel, and D. Garg, “Groundhog: Efficient
request isolation in FaaS,” in Proceedings of the 18th European
Conference on Computer Systems (EuroSys), 2023, pp. 398–415.

[112] I. Bastys, M. Algehed, A. S. osten, and A. Sabelfeld, “SecWasm:
Information flow control for WebAssembly,” in Proceedings of the
International Static Analysis Symposium, 2022, pp. 74–103.

[113] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and
P. Pietzuch, “Glamdring: Automatic application partitioning for Intel
SGX,” in Proceedings of the USENIX Annual Technical Conference
(ATC), 2017, pp. 285–298.

[114] S. Liu, D. Zeng, Y. Huang, F. Capobianco, S. McCamant, T. Jaeger,
and G. Tan, “Program-mandering: Quantitative privilege separation,” in
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2019, pp. 1023–1040.

[115] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation
for web sites within the browser,” in Proceedings of the 28th USENIX
Security Symposium, 2019, pp. 1661–1678.

[116] “Site isolation,” https://www.chromium.org/Home/chromium-security/
site-isolation/, 2024.

[117] “Security/Sandbox - MozillaWiki,” https://wiki.mozilla.org/Security/
Sandbox, 2024.

[118] A. Agarwal, S. O’Connell, J. Kim, S. Yehezkel, D. Genkin, E. Ronen,
and Y. Yarom, “Spook.js: Attacking Chrome strict site isolation via
speculative execution,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), 2022, pp. 699–715.

[119] J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable and efficient
memory protection keys,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2022, pp. 609–624.

[120] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xMP: Selective memory protection for kernel and user
space,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P), 2020, pp. 563–577.

[121] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu., “Faastlane: Accel-
erating function-as-a-service workflows,” in Proceedings of USENIX
Annual Technical Conference (ATC), 2021, pp. 805–820.

[122] F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner, “S-FaaS:
Trustworthy and accountable function-as-a-service using Intel SGX,” in
Proceedings of the ACM Cloud Computing Security Workshop (CCSW),
2019, pp. 185–199.

[123] B. Trach, O. Oleksenko, F. Gregor, P. Bhatotia, and C. Fetzer, “Clemmys:
Towards secure remote execution in FaaS,” in Proceedings of the 12th
ACM International Conference on Systems and Storage (SYSTOR), 2019.

[124] U. Martin, L. Lamster, D. Schrammel, M. Schwarzl, and S. Mangard,
“TME-Box: Scalable in-process isolation through Intel TME-MK
memory encryption,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2025.

[125] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage,
D. Stefan, and F. Brown, “WaVe: a verifiably secure WebAssembly
sandboxing runtime,” in Proceedings of the IEEE Symposium on Security
& Privacy (S&P), 2023, pp. 2940–2955.

[126] S. Shillaker and P. Pietzuc, “Faasm: Lightweight isolation for efficient
stateful serverless computing,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2020, pp. 419–433.

[127] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting fine grain isolation in
the Firefox renderer,” in Proceedings of the 29th USENIX Security
Symposium, 2020.

[128] W. Qiang, Z. Dong, and H. Jin, “Se-Lambda: Securing privacy-sensitive
serverless applications using SGX enclave.” in Proceedings of the
International Conference on Security and Privacy in Communication
Systems (SecureComm), 2018, pp. 451–470.

[129] G. Saileshwar and M. K. Qureshi, “CleanupSpec: An "undo" approach
to safe speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2019.

[130] “Intel Analysis of Speculative Execution Side Channels,” https://
kib.kiev.ua/x86docs/Intel/WhitePapers/336983-004.pdf, 2018.

[131] M. Vassena, C. Disselkoen, K. v. Gleissenthall, S. Cauligi, R. G.
Kıcı, R. Jhala, D. Tullsen, and D. Stefan, “Automatically eliminating
speculative leaks from cryptographic code with blade,” Proc. ACM
Program. Lang., vol. 5, jan 2021.

[132] X. Cheng, F. Tong, H. Wang, Z. Zhou, F. Jiang, and Y. Mao,
“SpecLFB: Eliminating cache side channels in speculative executions,”
in Proceedings of the 33st USENIX Security Symposium, 2024.

[133] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, “SPECCFI: Mitigating Spectre attacks using CFI
informed speculation,” in Proceedings of the 41st IEEE Symposium on
Security & Privacy (S&P), 2020, pp. 39–53.

[134] H. Yavarzadeh, M. Taram, S. Narayan, D. Stefan, and D. Tullsen,
“Half&Half: Demystifying Intel’s directional branch predictors for fast,
secure partitioned execution,” in Proceedings of the IEEE Symposium
on Security and Privacy (S&P), 2023, pp. 1220–1237.

[135] J. Cabrera-Arteaga, N. Fitzgerald, M. Monperrus, and B. Baudry, “Wasm-
mutate: Fast and effective binary diversification for WebAssembly,”
Computers & Security, vol. 139, 2024.

[136] S. Narayan, T. Garfinkel, M. Taram, J. Rudek, D. Moghimi, E. Johnson,
and C. F. et al., “Going beyond the limits of SFI: Flexible and secure
hardware-assisted in-process isolation with HFI,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2023.

APPENDIX

A. Stress Testing Experiments

We performed some additional stress testing experiments
to explore whether increasing the number of sensitive data
objects and their size affects the performance overhead. We
modified the “Authenticating Users at the Edge” application
(Table III) to evaluate these two scenarios. Additionally, we
removed the feature of storing data in the key–value store
from this application to avoid the overhead associated with
I/O-centric tasks.

1) Increasing the Number of Sensitive Data Objects: For
this experiment, we modified the application and increased
the number of sensitive environment variables to six, each 60
bytes in length. These variables’ values are compared with
those received from incoming requests, which have a length of
1KB. We chose to include six variables because, as shown in
Figure 2, most serverless applications contain fewer than six

17

https://support.google.com/faqs/answer/7625886
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/spectre.rst
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/spectre.rst
https://github.com/google/safeside
https://github.com/cloudflare/workerd
https://github.com/cloudflare/workerd
https://www.chromium.org/Home/chromium-security/site-isolation/
https://www.chromium.org/Home/chromium-security/site-isolation/
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox
https://kib.kiev.ua/x86docs/Intel/WhitePapers/336983-004.pdf
https://kib.kiev.ua/x86docs/Intel/WhitePapers/336983-004.pdf


1 2 3 4 5 6
Number of sensitive data in function

0

200

400

600

800
Th

ro
ug

hp
ut

 (r
eq

/s
)

Original
I/O Only
I/O + Encryption

(a) Throughput (remote).

1 2 3 4 5 6
Number of sensitive data in function

0

250

500

750

1000

1250

1500

La
te

nc
y 

(m
s)

Original
I/O Only
I/O + Encryption

(b) Latency (remote).

1 2 3 4 5 6
Number of sensitive data in function

0

200

400

600

800

Th
ro

ug
hp

ut
 (r

eq
/s

)

Original
I/O Only
I/O + Encryption

(c) Throughput (local).

1 2 3 4 5 6
Number of sensitive data in function

0

250

500

750

1000

1250

1500

La
te

nc
y 

(m
s)

Original
I/O Only
I/O + Encryption

(d) Latency (local).

Fig. 3: Throughput reduction and latency increase for an increasing number of sensitive data objects, when the I/O module runs
on a different host (left) and on the same host with Spin (right), with a constant request size of 1KB.

1 10 20 30 40 50 60
Sensitive data length (KB)

0

200

400

600

800

Th
ro

ug
hp

ut
 (r

eq
/s

)

Original
I/O Only
I/O + Encryption

(a) Throughput (remote).

1 10 20 30 40 50 60
Sensitive data length (KB)

0

250

500

750

1000

1250

1500

1750

La
te

nc
y 

(m
s)

Original
I/O Only
I/O + Encryption

(b) Latency (remote).

1 10 20 30 40 50 60
Sensitive data length (KB)

0

200

400

600

800

Th
ro

ug
hp

ut
 (r

eq
/s

)

Original
I/O Only
I/O + Encryption

(c) Throughput (local).

1 10 20 30 40 50 60
Sensitive data length (KB)

0

250

500

750

1000

1250

1500

1750

La
te

nc
y 

(m
s)

Original
I/O Only
I/O + Encryption

(d) Latency (local).

Fig. 4: Throughput reduction and latency increase for an increasing size of sensitive data, when the I/O module runs on a
different host (left) and on the same host with Spin (right), with a constant request size of 60KB.

secrets. Initially, we measured the baseline overhead of the Spin
framework and the I/O module when it operates on a different
host (Remote) and on the same host as Spin (Local), specifying
that none of the six variables are secrets. Subsequently, we
increased the number of sensitive data items from one to six
to measure any additional overhead.

As shown in Figure 3, increasing the number of sensitive
data items does not incur any observable increase in overhead in
either the local or the remote scenarios. This result is expected,
as from a computation perspective, the only additional source
of overhead comes from the additional cryptographic operations
and data parsing for marshaling/unmarshaling operations, which
is negligible.

2) Increasing the Size of Sensitive Data Objects: In this
experiment, we evaluated the impact of significantly increasing
the size of encrypted data on the latency and throughput
overhead, compared to the small sizes of sensitive data objects
typically found in real-world applications. We modified the
application to include two variables: one labeled as sensitive
and the other used for padding. The size of the protected data
was increased from 1KB to 60KB, while adjusting the second
variable to keep the total request size constant at 60KB.

Figure 4 shows how the increasing size of encrypted data
impacts throughput and latency. Generally, we observe that
encryption, whether applied in remote or local settings, does
not significantly affect throughput or latency for secret data
sizes up to 40KB. However, as expected, handling larger secret

data resulted in higher overheads. Specifically, encrypting a
60KB secret value yielded the highest observed overhead, with
a 4.4% reduction in throughput and a 4.8% increase in latency.

3) Increasing the Number of Concurrent Functions: In our
performance evaluation, presented in Table III, we assessed
the I/O module’s overhead under stress-testing conditions
where all functions handled sensitive data, corresponding to a
worst-case scenario. This configuration allowed us to measure
the maximum potential overhead. In practice, real-world
environments comprise a mix of protected and unprotected
functions, likely resulting in lower overhead. To validate this,
we conducted a separate experiment in which the functions
listed in Table III that handle sensitive data run alongside eight
additional serverless functions that do not handle sensitive
data. This configuration was informed by our compatibility
analysis, which indicated that approximately 42% of all studied
applications manage sensitive data.

We measured the overhead associated with full LeakLess
protection (“I/O + Encryption”) in both local and remote
scenarios, comparing it against the baseline performance of
the original Spin framework. As anticipated, we observed a
reduction in overhead for both settings. Specifically, in the
local scenario, the maximum latency increase was 1.8% and
the maximum throughput decrease was 1.9%. Notably, in the
remote scenario, no significant overhead was observed.

18


	Introduction
	Background and Motivation
	WebAssembly
	Function-as-a-Service (FaaS) Platforms
	Transient Execution Attacks

	Threat Model
	Design
	Sensitive Data Annotation and Handling
	Internal Data Annotation
	External Sensitive Data Annotation

	Supported Types of Sensitive Data and Operations
	Key Management
	Protecting against Cross-Process Attacks

	Implementation
	Annotation and Compilation
	Annotation in Source Code
	Annotation in Configuration File
	Base64 Encoding

	Initialization and Operation

	Experimental Evaluation
	Compatibility Assessment
	Data Collection
	Compatibility Analysis
	Real-world Serverless Applications

	Performance Evaluation
	Experimental Environment
	Performance Overhead
	Functionality and Scalability Evaluation
	Comparison with Previous Works

	Security Evaluation
	Transient Execution Attacks
	Data Leakage Vulnerabilities
	Confused Deputy Attacks


	Limitations and Discussion
	Related Work
	Conclusion
	References
	Appendix
	Stress Testing Experiments
	Increasing the Number of Sensitive Data Objects
	Increasing the Size of Sensitive Data Objects
	Increasing the Number of Concurrent Functions



