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Abstract—Autonomous driving systems (ADS) heavily depend
on multi-sensor fusion (MSF) perception systems to process
sensor data and improve the accuracy of environmental percep-
tion. However, MSF cannot completely eliminate uncertainties,
and faults in multiple modules will lead to perception failures.
Thus, identifying the root causes of these perception failures
is crucial to ensure the reliability of MSF perception systems.
Traditional methods for identifying perception failures, such as
anomaly detection and runtime monitoring, are limited because
they do not account for causal relationships between faults in
multiple modules and overall system failure. To overcome these
limitations, we propose a novel approach called interventional
root cause analysis (IRCA). IRCA leverages the directed acyclic
graph (DAG) structure of MSF to develop a hierarchical struc-
tural causal model (H-SCM), which effectively addresses the
complexities of causal relationships. Our approach uses a divide-
and-conquer pruning algorithm to encompass multiple causal
modules within a causal path and to pinpoint intervention targets.
We implement IRCA and evaluate its performance using real
fault scenarios and synthetic scenarios with injected faults in
the ADS Autoware. The average F1-score of IRCA in real fault
scenarios is over 95%. We also illustrate the effectiveness of IRCA
on an autonomous vehicle testbed equipped with Autoware, as
well as a cross-platform evaluation using Apollo. The results show
that IRCA can efficiently identify the causal paths leading to
failures and significantly enhance the safety of ADS.

I. INTRODUCTION

In recent years, autonomous vehicles have transformed
the transportation industry with significant advantages, such
as decreased traffic accidents and congestion, enhanced ur-
ban management, and improved fuel efficiency. Services like
Waymo One’s driverless rides [1], sanctioned by the California
Public Utilities Commission, represent a giant leap in au-
tonomous driving technology. An autonomous driving system
(ADS) comprises multiple components, such as localization,
perception, prediction, planning, and control. Among them,
the perception system stands as the foundation upon which
subsequent systems like prediction and planning are built.
To achieve a high accuracy in perception tasks like object
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Fig. 1: The architecture of a typical MSF perception system.

detection and tracking, multi-sensor fusion (MSF) perception
systems have been widely used in ADS, such as Autoware [2]
and Apollo [3]. By harnessing the collective capabilities of
various sensors, MSF perception systems offer a holistic view
of the vehicle’s surroundings. Despite these advances, the
intricate interactions between the various perception modules,
as illustrated in Figure 1, introduce complexity and vulnera-
bilities. Even minor errors or inaccuracies in a single sensor
can cascade, potentially leading to critical failures of the entire
perception system [4], [5].

Conducting a root cause analysis (RCA) of perception
failures is essential for discovering causal modules and aid-
ing the system’s recovery. The manual extraction of causal
relationships for RCA proves to be a daunting task, especially
within complex perception systems characterized by numerous
interdependent components and extensive data. Thus, automat-
ing the RCA process becomes critical. This process aims to
achieve two primary objectives: (1) locating the responsible
perception modules for the failure; and (2) identifying the
specific fault modes1 within a perception module that caused
the failure. The above goals pose three unique challenges:

• (Challenge 1) Causal modeling of MSF systems: In
MSF systems, each module’s output contains multidimen-
sional information and dynamically changes with varying
environmental inputs, making it challenging to identify
effective causal variables.

• (Challenge 2) Complex dependency relations between
modules: MSF perception systems have intricate depen-

1A perception module may have multiple fault modes, e.g., missing objects
and misclassifying objects are different fault modes.
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dencies as shown in Figure 1. These complex relation-
ships further complicate the identification of module-level
faults when system-level failures occur [4].

• (Challenge 3) Multiple root causes: A specific failure in
the perception system could have multiple root causes.
The causal effects of multiple faults may obscure each
other, making it challenging to identify all root causes.

Existing RCA approaches cannot meet the unique chal-
lenges of our application context. Firstly, RCA methodologies
in cloud applications typically construct causal graphs based
on a predefined set of performance metrics to identify the
root causes [6], [7]. However, these methodologies rely on a
specific set of selected metrics, which cannot provide effective
indicators for identifying module faults in the MSF perception
system. Secondly, RCA has also been explored in the ADS
domain. For instance, Sun et al. [8] and Wan et al. [9] have
applied causality in scenario-based testing to uncover causal
factors behind driving violations in ADS. However, their
methods only perform well when module dependencies are
simple, but struggle to handle the complex dependency rela-
tions between modules in the MSF perception system. Thirdly,
the adaptive interventional debugging (AID) approach [10]
localizes the root cause of intermittent failures by combining
statistical debugging with causal analysis. Nonetheless, AID
assumes a single root cause, and is ill-equipped to analyze
the multiple concurrent root causes that can impact MSF
perception systems. Overall, the intricate nature of the MSF
perception system demands a new solution that focuses on the
specific causal relationships between modules.

To answer the call, we propose a novel interventional
root causal analysis (IRCA) approach that tackles the unique
challenges faced in analyzing failures within MSF perception
systems in autonomous vehicles. To be specific, IRCA consists
of several key features that directly address the three main
challenges mentioned above.

1) Hierarchical structural causal model (H-SCM): IRCA in-
corporates hierarchical structural causal models enriched
with MSF domain-specific insights. By leveraging these
insights, the approach effectively captures the dynamic
and multi-dimensional relationships within MSF sys-
tems. H-SCM enables precise identification of effective
causal variables and systematically links module faults
to system failures. (Addressing Challenge 1)

2) Counterfactual interventions: Unlike traditional causality
approaches that might only identify correlations, IRCA
utilizes counterfactual reasoning to establish definitive
cause-and-effect relationships. It involves altering out-
puts of suspected modules to hypothesized fault-free
states and observing whether these changes resolve the
system-level failures. This approach addresses intricate
dependencies by directly testing the impact of spe-
cific module outputs on the overall system behavior.
(Addressing Challenge 2)

3) Hierarchical pruning algorithm: IRCA employs a hi-
erarchical intervention algorithm. This algorithm uses

a divide-and-conquer strategy, systematically applying
interventions across different modules in the system. By
doing so, it isolates and identifies the specific contribu-
tions of each fault to the overall failure, thereby man-
aging the complexity introduced by multiple concurrent
root causes. (Addressing Challenge 3)

In summary, we make the following contributions:
• We are the first to study the root cause analysis of

perception failure within the domain of ADS. We pro-
pose interventional root cause analysis (IRCA), a novel
causality-driven testing approach that localizes the root
causes of perception failures. IRCA leverages a unique
combination of runtime monitoring, causal analysis, and
scenario testing to identify the root causes systematically.

• We propose a novel solution to identify multiple causes
contributing to perception failures using a hierarchical
pruning algorithm. Our algorithm not only handles a
single root cause but also handles concurrent root causes.

• Our approach is evaluated in both a simulated environ-
ment and on a real-world autonomous vehicle. We imple-
mented and assessed our method using Autoware, a lead-
ing open-source ADS, leveraging real issues documented
on GitHub. The high F1-score of 95.39% highlights the
effectiveness of IRCA in the actual system. To further
ensure a comprehensive evaluation, we also conducted
experiments with various injected synthetic faults. The
average recall of 89.83% indicates that our approach
effectively identifies faults from diverse modules.

II. BACKGROUND

We introduce the MSF perception system and define failures
and fault modes in this section.

A. MSF Perception System

MSF perception system is used in many industry-grade
ADS to reduce the risks associated with single sensor failures,
thus helping to prevent potential accidents [3], [11]. MSF
often integrates multiple outputs from the camera, radar, and
LiDAR. When used for ADS, MSF mainly has three types
based on the level of data abstraction and integration [12]:
high-level fusion (HLF), mid-level fusion (MLF), and low-
level fusion (LLF). In HLF, each sensor processes its data
independently to perform object detection or tracking tasks.
The output from each sensor is typically at the object level,
meaning that each sensor independently identifies and tracks
objects within its field of view. MLF works at the feature
level by integrating features extracted from the data provided
by different sensors [13]. LLF operates at the lowest level
by directly fusing raw data from multiple sensors [14]. Our
work focuses on HLF, which is widely used in open-source
ADS [11], [15].

Now we introduce the structure of module outputs. An MSF
perception system S consists of n modules. These modules are
denoted as a set M = {M1,M2, . . . ,Mn}, including various
object detection, fusion, and tracking components. For each
time step t within the duration T of interest, each module
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Mi ∈ M outputs a set of detected objects Ot
i . Each detected

object Ot
ij ∈ Ot

i is characterized by a tuple (Xt
ij , C

t
ij), where:

• Parameters (Xt
ij): The parameters that define the kine-

matic and shape of the object Ot
ij . Kinematic parameters

contain position, rotation, and velocity, the shape is
defined by dimensions.

• Class (Ct
ij): The classification category, such as ‘Vehi-

cle’, ‘Pedestrian’, and ‘Truck’.
On the other hand, the ground truth set of objects surrounding
the system S at time t is denoted as Gt. Each ground truth
object Gt

k ∈ Gt is characterized by a tuple (Xt
k, C

t
k).

B. Failures, Faults, and Fault Modes

In the MSF perception system, a failure represents the final
erroneous output, whereas a fault is an erroneous output from
an individual module.

Fault modes at time t for i-th module Mi are defined based
on inconsistency of the object Ot

ij with the ground truth Gt
k,

as below:
1) Missing Obstacle (MO): A binary indicator for the fault

mode where a true object is not detected, i.e.,

MOt
ik = 1(Gt

k /∈ Ot
i)), (1)

where 1(x) is a function that returns 1 is the condition
x is true and 0 otherwise.

2) Ghost Obstacle (GO): A binary indicator for the fault
mode where a non-existent object is detected, i.e.,

GOt
ij = 1(Ot

ij /∈ Gt). (2)

3) Misclassification (MC): A binary indicator for the fault
mode where an object’s class is incorrectly identified,
i.e.,

MCt
ij = 1(Ct

ij ̸= Ct
k). (3)

4) Parameter Errors (PE): An indicator representing the
fault mode where the parameters of a detected object
differ from the ground truth by more than a predefined
threshold, i.e.,

PEt
ij = 1(

∣∣Xt
ij −Xt

k

∣∣ > threshold). (4)

Fault Mode Vector. The fault mode vector for module Mi

at time t is defined as:

V t
i = (MOt

i,GOt
i,MCt

i,PEt
i) (5)

where MOt
i,GOt

i,MCt
i,PEt

i each takes a value in {0,1}. These
indicators are set to 1 if their respective fault conditions are
met for module Mi. For example, MOt

i is 1 if any MOt
ik is 1,

indicating at least one missing obstacle detection. The vector
V t
i thus collects these indicators to comprehensively represent

each module’s fault status at time t.
Security Implications. “MO” can increase the risk of

collisions. If the ADS fails to detect an obstacle, it may
continue to drive at unsafe speeds, thereby increasing the
likelihood of a collision with the obstacle [16]. “GO” may
lead the ADS to execute unnecessary or sudden maneuvers,

which could result in collisions with other vehicles or improper
parking. “MC” can lead to inappropriate safety measures taken
by ADS because different types of obstacles may require
varying deceleration and avoidance maneuvers. “PE”, such as
incorrect localization, can impact the decision-making process
due to wrongly determining the relative position of obstacles,
posing a risk of triggering improper driving decisions [17].
Identifying the causes of these perception failures is essential
for improving ADS’s overall safety and reliability.

III. PROBLEM FORMULATION

In an MSF perception system, detecting the root causes of
failures involves identifying not just isolated faulty modules
but also understanding how these modules interact along
multiple sensor fusion paths. The system is represented as a
directed acyclic graph (DAG), where each node corresponds
to a module, and edges represent dependencies between these
modules. We build the Hierarchical Structural Causal Model
(H-SCM) that combines the DAG and the set of potential
abnormal outputs, which are identified as fault mode vectors
and are then treated as causal variables in the H-SCM. The
DAG defines the potential causal relationships between these
causal variables. Therefore, we frame the RCA problem of
MSF failures as a causal path discovery problem through H-
SCM, which aims to identify an ordered subset of causal
modules that form a complete causal path leading to the
failure. The formal definition is as follows:

Definition 1. Causal Path Discovery: Given a Hierarchical
Structural Causal Model (H-SCM) G = (V, E) and a failure
indicator F indicating a specific failure, V includes all poten-
tial variables, E represents the causal relationships between
these variables. The causal path discovery problem aims to
identify a path P = ⟨V0, V1, . . . , Vn⟩ such that the following
conditions are met:

1) Vi represents the fault mode vector of the i-th module.
2) For all 0 ≤ i ≤ n, Vi ∈ V and for all 0 ≤ i < n,

(Vi, Vi+1) ∈ E .
3) Each Vi causally influences Vi+1.
4) Each Vi is a sufficient condition to trigger F ; F remains

unless all Vi (0 ≤ i ≤ n) are fixed.

Counterfactual Causality. This analysis focuses on the
counterfactual causes of failure, utilizing the concept of
counterfactual causality [18], [19] to understand the causal
relationship between the causal path P and a failure F in the
MSF perception system S. We articulate this relationship as
follows: “If P does not exist, F will not exist.”

Collaborative Faults. As noted in condition 4), this paper
addresses multi-fault situations characterized by an OR rela-
tionship: the presence of any Vi in P is sufficient to cause
F . Theoretically, there could also be scenarios where multiple
faults have an AND relationship, with all of them collaborating
to cause F . While we acknowledge the possibility of such
situations in other systems, we have not identified any in
our context yet. This absence is consistent with the real
faults reported to the Autoware Foundation [11] and related
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academic publications [17]. Hence, we focus on resolving real
issues that impede autonomous vehicles and do not consider
fictional collaborative faults. Handling collaborative faults, if
any, remains an open challenge for future research.

Mode-Level Cause Attribution. After identifying module-
level causes, IRCA also discovers specific fault modes in the
identified modules that lead to failures in object detection and
tracking tasks. We use a fault mode vector based on data
from object messages to pinpoint the modules responsible for
system failure. This helps us determine which messages are
associated with specific faults, such as classification errors,
shape recognition inaccuracies, and distance measurement
errors. By analyzing the fault mode vector, we can address
these faults more effectively.

IV. ROOT CAUSE ANALYSIS APPROACH

In this section, we introduce the design of IRCA. IRCA
has two main goals: (1) Finding the perception modules
responsible for the failure; and (2) Identifying the specific fault
modes at the message level that caused the failure.

A. Overview

IRCA is a methodical approach to identify system failures’
root causes. It combines runtime monitoring and intervention
algorithms to uncover the underlying causal relationship be-
hind system failures. Figure 2 illustrates the IRCA workflow. It
is fully automated and designed to be model-agnostic. In this
framework, identified failure scenarios are the initial inputs
that drive the subsequent steps of the root cause analysis.

Step 1: Runtime monitoring. The framework first employs
runtime monitoring to track the outputs of each module in the
MSF perception system during execution.

Step 2: Failure identification. When a failure occurs,
this step involves identifying abnormal outputs from various
modules, which are suspected as potential causes of the failure.
As illustrated in Figure 2, the fault mode vectors are depicted
as black solid circles within each module (represented by
grey circles). A binary encoding operation is applied to these

vectors to aggregate the elements of these vectors into a
single scalar causal variable. For instance, consider the vector
V t
i = (0, 0, 1, 1). By treating each element as a binary digit,

the vector can be encoded as the binary number 0011, and
represented by 3 in decimal. This operation simplifies the
initial identification process by providing a consolidated view
of potential fault contributions from each module.

Step 3: Build the hierarchical structural causal model
(H-SCM). After identifying the potential causal variables V ,
where each variable represents a fault mode vector Vi of a
module Mi, we apply structural constraints in the directed
acyclic graph (DAG) of the MSF perception system to build
and update the H-SCM. There are three structural constraints
in the DAG defined by the configuration of the MSF [11],
[15]:

1) Required connection: A direct causal link must exist
from Vi to Vj .

2) Forbidden connection: A direct causal link from Vi to
Vj is not allowed.

3) Temporal order: For any Vi and Vj representing the
fault modes of modules Mi and Mj , respectively, if Mi

precedes Mj , then Vi precedes Vj .
These structural constraints ensure that the H-SCM reflects the
real interactions and causal relationships among MSF modules,
grounded in both expert knowledge and empirical findings.

Step 4: Hierarchical intervention algorithm. While the H-
SCM captures temporal precedence, it alone is not sufficient
to establish causality. Some modules are identified as fault
modules because their outputs are influenced by faulty inputs.
Their fault mode vectors are not true root causes of the
final failure. To differentiate between mere correlations and
actual causal relationships, IRCA employs interventions [19]
detailed in Section IV-B, which involve deliberately altering
the outputs of modules which are suspected to be faulty. The
system’s response to the interventions helps verify or refute
the causality of modules.

The algorithm improves efficiency by selectively pruning
the search space for potential intervention targets, utilizing
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Branch Pruning with intervention (Section V-A) and Node
Pruning with intervention(Section V-B). As depicted in Fig-
ure 2, the iterative process replaces the original MSF with an
intervened version in subsequent iterations. Our method tests
various combinations of modules and interventions, progres-
sively refining the identification of discriminative faults from
Step 1 to Step 4. This iterative pruning and testing process
removes non-causal connections from the H-SCM until the
true causal paths are discovered. Upon successful identification
of causal modules, the process goes to Step 5 to further isolate
specific fault modes within these modules.

Step 5: Identify fault modes in causal modules. After the
encoded causal variable has been established in Step 2 and
the causal modules have been identified in Step 4, this step
focuses on decoding the causal variables from scalars to raw
fault vectors to analyze individual fault modes. For instance,
scalar 3 converts back to binary 0011, which maps the fault
mode vector V t

i = (0, 0, 1, 1) defined by Equation (5). We
identify specific fault modes by analyzing their frequencies
across various frames. Each element of the decomposed vector
represents a specific fault mode. The fault modes are further
examined to understand their impact and the specific messages
associated with each, providing deeper insights into the root
causes. The causal chain of these fault modes is represented as
P = ⟨V0, V1, . . . , Vn⟩, which outlines the sequence of modules
associated with fault modes.

B. Intervention Mechanism

We implement a counterfactual causality-based intervention
mechanism in our IRCA approach. This mechanism involves
the use of an “intervention oracle” to replace the abnormal
output from a system module with a normal output. “Oracle”
comes from the software engineering term “test oracle”, used
to check the correctness of the program’s outputs for test
cases [20]. In our context, intervention oracle represents the
expected output of each module for the MSF perception
system to work correctly. The intervention oracle contains
the actual object information such as position and classifi-
cation. In simulations, the object information is provided by
the simulators, while in physical implementations, we utilize
recorded event logs. We verify the output type from the
module, determining if they are tracked or detected objects.
The intervention oracle is then serialized into the format
according to the unique message structure for each object
type. Following this, we replace the target module requiring
intervention with the intervention oracle.

C. Automation of Implementation

The implementation benefits from the publish-subscribe
architecture that facilitates module communication in real-
time systems. For example, Autoware [11] and Apollo [15],
which are two prominent open-source autonomous driving
systems (ADS) platforms, utilize the ROS2 and CyberRT
frameworks, respectively. Both frameworks employ a publish-
subscribe architecture to manage communications [21], [22].

This allows IRCA to be integrated efficiently, monitoring and
analyzing data streams from various perception modules.

Consider the implementation in Autoware: IRCA is adeptly
configured to monitor Autoware’s ROS2 topics, specifi-
cally from perception modules like the LiDAR detection
module. This module, structured as a ROS2 node, pub-
lishes obstacle detection data to topics such as /percep-
tion/object recognition/objects. Downstream modules, such as
those responsible for tracking, subscribe to these data streams
to continue the processing pipeline. Similarly, in the Apollo
platform, the CyberRT framework utilizes Cyber Channels,
which function akin to ROS2 topics, to enable runtime data
stream monitoring.

When intervention is necessary, IRCA can dynamically
instantiate a new ROS2 node to publish modified topics for
targeted modules. To ensure a deterministic effect of interven-
tions, we ensure that the replacement message maintains the
same publish frequency as the original module’s message in
real time. Furthermore, we configure the communication to
synchronous mode to guarantee synchronous communication
between the simulator and the ADS. Lastly, by verifying
the reproduction of the failures, we ensure that no other
uncontrollable variables impact the perception results post-
intervention. The original topics of these intervened modules
are then dynamically replaced, and the configuration files
automatically manage these changes. These files manage the
launch parameters of each module, ensuring that updates
are non-intrusive and lightweight yet effective in performing
automated causal analysis.

V. HIERARCHICAL INTERVENTION ALGORITHM

This section introduces the Hierarchical Intervention Algo-
rithm, which is the core method of IRCA.

Algorithm 1: Hierarchical Intervention Algorithm
Input: H-SCM G = (V, E), Failure indicators F, Fc

Output: P
1 if G is a single chain then
2 C ← NPI(G, F)
3 else
4 B ← BPI(G, Fc) ; /* Prune branches */
5 C ← NPI(B, F) ; /* Prune nodes */
6 end
7 P← Identify(C, F) ; /* fault modes */

As shown in Algorithm1, the Hierarchical Intervention Al-
gorithm is divided into two parts to address different structural
complexities of H-SCM:

1) Branch Pruning with Intervention (BPI): BPI is
employed to prune unnecessary branches and extract the
primary causal path.

2) Node Pruning with Intervention (NPI): NPI is applied
to further refine the chain by discarding non-causal
modules.
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Algorithm 2: Branch Pruning with Intervention
BPI(G, Fc)

Input: H-SCM G = (V, E), Fault indicator of the
collider node c: Fc

Output: B, R
1 R ← ∅ ; /* certain causal variables */
2 U ← ∅ ; /* variables to be pruned */
3 B ← ∅ ; /* causal path variables */
4 for each collider node c in topological order do
5 Pa ← Parents(c) ; /* parent nodes */
6 p∗ ← argminp∈Pa|Ancestors(p,G)|
7 D∗

p ← Intervene(p∗)
8 Pa ← Pa \ {p∗}
9 if Fc /∈ D∗

p then
10 U ← U ∪ c
11 U ← U ∪ {Pa} ∪ Ancestors(Pa,V)
12 if Ancestors(p∗,V)is empty then
13 R ← R∪ {p∗}
14 else
15 B ← B ∪ {p∗} ∪ Ancestors(p∗,V)
16 end
17 else
18 R ← R∪ c
19 U ← U ∪ {p∗} ∪ Ancestors(p∗,V)
20 B ← B ∪ {Pa} ∪ Ancestors(Pa,V)
21 end
22 V ← V \ (U ∪ B ∪R)
23 end
24 B ← B ∪ V
25 return B, R ; /* No further intervention

needed for R */

In cases where the H-SCM is comprised solely of a linear
chain, the NPI algorithm is directly applied without the
preliminary step of branch pruning.

A. Branch Pruning with Intervention (BPI)

The BPI algorithm is specifically designed to efficiently
prune branches from the H-SCM and extract potential causal
paths. It operates on the principle that a single causal path
can be responsible for a failure. Algorithm 2 describes the
process of BPI that involves pruning branches at colliders [19],
following the topological order of the H-SCM.

1) Identifying Collider Nodes. In the H-SCM, colliders are
nodes where multiple causal paths converge. They correspond
to fusion nodes in the MSF, where outcomes from different
branches are integrated, and play a crucial role in branch
pruning. A collider is denoted as c, with its parent variables
represented as Pa (line 5). In the example illustrated in
Figure 3, there are two colliders: C1 (with parents P1 and
P2) and C2 (with parent P4).

2) Prioritizing Intervention on the Shortest Branch.
Subsequently, an intervention is performed on the parent node
with the fewest ancestors in the H-SCM, which is denoted as
p∗ (line 6). Prioritizing p∗ minimizes the complexity of the
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Fig. 3: A step-by-step illustration of BPI.

analyzed causal path, as it is closer to the final failure in the
MSF. This intervention triggers a re-execution of the MSF,
resulting in the return of a set of causal variables. In Figure 3,
P1 and P2 have no ancestors, while P4 has one; therefore,
P1 is selected as p∗, and an intervention is conducted on it.

3) Analyzing Counterfactual Effects. After an intervention
is performed, there are two possible outcomes:

Without Counterfactual Effects. If the counterfactual causal
effect is not observed on the collider following an intervention
on p∗, this indicates that p∗ is not a cause of failure. Besides,
any ancestors of p∗ that are connected to the collider solely
through p∗ are also not causes. Therefore, the branch of p∗ can
be excluded from the H-SCM (line 19). The other branches are
retained (line 20) for further processing by BPI. In Figure 3,
C1 remains faulty after the intervention on P1, indicating that
P1 is not a cause and will be pruned. Next, P4 will be selected
as p∗ for intervention.

With Counterfactual Effects. Conversely, if the counterfac-
tual effect is observed on the collider, the branch of p∗ can be
identified as containing the causes. In this case, other branches
can be pruned from the H-SCM (line 11). If the branch of p∗

has only one node, it is labeled as causal (line 13). Otherwise,
this branch is designated as a causal path (line 15) for further
processing by NPI. In Figure 3, C2 becomes normal after the
intervention on P4; thus, the branch of P5 is pruned, and the
branch of P4 will be analyzed further using NPI.

4) Analyzing Collider Nodes. Given that a collider func-
tions as a fusion node, its role is to select the outcome that
most closely aligns with the truth. If an intervention with
idealized substitution is applied to a parent node, but the
collider node is still in the same state, this suggests that the
fusion node is not working correctly and should be marked as
causal (line 18). After processing all the branches connected to
the colliders, the remaining variables are included to maintain
them in the causal chain (line 24).

5) Finalizing Causal Chains. Finally, BPI returns candidate
causal chains for the next process and some confirmed causal
modules that do not require further processing. It ensures that
the pruning process is efficient by focusing on intervention
at nodes with the fewest ancestors and updating nodes for
future operations based on the current state of the graph, thus
avoiding redundant operations on nodes already decided upon.

B. Node Pruning with with Intervention (NPI)

The NPI algorithm is designed to identify and eliminate
non-causal nodes within a single causal path by combining
adaptive group testing with targeted interventions. It is robust
in managing systems with multiple faults.
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Algorithm 3: Node Pruning with Intervention NPI
(B, F )

Input: Branch B = (V, E), Failure indicator F
Output: The set of causal modules C

1 C ← ∅ ; /* Causal variables set */
2 U ← ∅ ; /* Non-causal variables set */
3 while V ≠ ∅ do
4 V1 ← first half of V in topological order

D∗
v1 ← Intervene(V1) ; /* Intervention on

the first half of V */
5 if ∃v ∈ D∗

v1 , s.t. F then
6 C,U ← NPI(V \ V1,G, F )
7 F ← (V \ V1)[0]
8 C′,U ′ ← NPI(V1,G, F )
9 C ← C ∪ C′,U ← U ∪ U ′

10 end
11 if ∄v ∈ D∗

v1 , s.t. F then
12 if V1 contains only one causal variables then
13 C ← C ∪ V1
14 else
15 C′

,U ′ ← NPI(V1,G, F )

C ← C ∪ C′
,U ← U ∪ U ′

16 end
17 end
18 for each v′ ∈ V \ V1 do
19 if

∃v∗ ∈ D∗
v1 , such that (¬v′v∗ ∧F )∨ (v′v∗ ∧¬F )

then
20 U ← U ∪ {v′}
21 end
22 end
23 V ← V \ (C ∪ U)
24 end
25 return C

1) Dividing in Topological Order. NPI intervenes strate-
gically in nodes based on their topological order. The original
chain is divided into two smaller chains to facilitate focused
interventions using a divide-and-conquer strategy. In the exam-
ple illustrated in Figure 4, the chain is split into two: (P3, P4)
and (P6, P7).

N NP3 P4 P7

FP6P3 P4 P7 FP6P3 P4 P7

(1)(1)

(3)(3) (4)

(2)(2)

FP3 P7P6

FP6P3 P4 P7 FP6P3 P4 P7

InterventionInterventionNormal indicatorNormal indicatorFailure indicatorFailure indicator PrunePrune

Fig. 4: A step-by-step illustration of NPI.

2) Analyzing the Right Chain. In each round, the proce-
dure first applies interventions to all nodes in the left chain to

restore their states to normal, thereby isolating the influence of
the left chain and focusing on analyzing the right one. If the
final outcome of the right chain turns normal, it indicates that
the right chain contains no causes of failure and requires no
further analysis. Conversely, if the failure persists, it suggests
that some nodes in the right chain are causes, prompting
NPI to be applied recursively to the right chain. This process
systematically addresses components of the causal chain by
breaking it down and intervening step by step (lines 5, 6). In
Figure 4, the left chain (P3, P4) is fully intervened, yet the
failure in the right chain persists. Therefore, the right chain
(P6, P7) requires further analysis.

3) Analyzing the Left Chain. In the previous step, since
all nodes in the left chain have been intervened to restore
normal states, it remains unclear whether there are any causes
of failure within that chain. Therefore, the left chain always
requires further analysis by NPI. When analyzing the left
chain, relying solely on the MSF’s failure indicator (at the
end of the right chain) is insufficient to determine the causal
impact of the failure due to interactions with factors from the
right chain. The existing solution, as outlined in [10], prunes
the left chain without considering the concurrent impacts of
both halves.

To address this limitation, we propose a modification by
adding another failure indicator at the end of the left chain
(line 7). Subsequently, NPI is applied to analyze the left
chain (lines 8, 9). This approach ensures a comprehensive
evaluation of the combined effects of multiple causal modules.
In Figure 4, the left chain (P3, P4) requires further analysis.

4) Conducting Recursive Analysis. As mentioned, further
analysis will be conducted on the left chain and conditionally
on the right chain (lines 11-15). After each round of inter-
vention, NPI refines the causal path by removing nodes that
have been definitively identified as either causal or spurious. It
assesses each node that does not precede the intervened node,
checking for any interventions that reveal a counterfactual
violation linking the module to the failure. When such a
violation is identified, the corresponding node is pruned (lines
18-23). The algorithm then proceeds to the next round of
intervention, repeating this process until all potential causal
nodes have been classified as either causal or spurious. Once
all nodes have been evaluated, NPI produces a causal path
composed of causal nodes.

In Figure 4, the left chain is divided into P3 and P4;
after intervening on P3, the output of the left chain becomes
normal, identifying P3 as a cause and leading to the pruning
of P4. The right chain is split into P6 and P7 for further
analysis, with P7 eventually identified as a cause. Ultimately,
NPI identifies (P3, P7) as the causal path.

VI. SIMULATION EVALUATION

We evaluate our IRCA by answering three research ques-
tions: RQ1: How effective is IRCA? RQ2: How efficient is
IRCA? RQ3: Case study: What are the representative causes
of the failures found?

7



4. Obstacle

Validation

1. DNN 

model

2. 

Pointcloud 

Clustering

10. Object

Tracker

LiDAR

8. Object

Association

9. Shape

Estimation

(a) LiDAR-fusion pipeline DAG.
2. 

Pointcloud 

Clustering

10. Object

Tracker

LiDAR

9. Shape

Estimation

(b) Cluster pipeline DAG.

Fig. 5: DAGs illustrating the distinct pipeline configurations.

A. Experimental Setup

We employ Carla 0.9.14 as the simulation platform [23] to
create the driving scenarios for the ADS. We use the Autoware
Universe galactic as the ADS. Autoware is built on the Robot
Operating System (ROS 2) and aims to enable the commercial
deployment of autonomous vehicles across various platforms
and applications [11]. The experiments are executed on two
Precision 3660 Tower Workstations running Ubuntu 20.04,
NVIDIA GeForce RTX 3080, and 64GB memory.

MSF configurations. Autoware’s perception modules are
divided into three main functional components: object seg-
mentation, traffic light recognition, and object recognition. Our
work focuses on the core functionality of object recognition
within the MSF perception system. The object recognition
component in Autoware is designed to identify dynamic ob-
jects in the surrounding environment of the ego vehicle in real
time. It follows a tracking-by-detection pipeline architecture,
with modules designed to be extensible and reusable, forming
what is referred to as the micro autonomy architecture.

Our experiments contain three types of Autoware perception
pipelines, as illustrated in Figure 1 and Figure 5. The “Camera-
LiDAR-fusion” pipeline (Figure 1), combines data from the
camera and LiDAR sensors to improve object detection ca-
pabilities. Initially, the pipeline integrates detections from
the image-based YOLO model with point cloud segmented
using the Euclidean Cluster (Pointcloud Clustering method),
focusing on regions of interest (ROI). Subsequently, integrated
data is further enhanced by merging it with results from the
LiDAR CenterPoint (DNN model) detector. Finally, detections
are merged again with clustering outputs. The “LiDAR-fusion”
pipeline (Figure 5a), which is the default version, comprises
two detectors based on LiDAR point cloud data. One detector
is based on the LiDAR CenterPoint, and the other is on
Euclidean Cluster. The “Cluster” pipeline (Figure 5b) solely
relies on the Euclidean clustering branch, which is useful in
replicating some failure scenarios.

B. Scenario Generation

Given the absence of an existing dataset to assess the
underlying causes of failures in the MSF perception system,
we are creating our own dataset, which will be made openly
accessible. This dataset incorporates two sources of fault
scenarios, ensuring both realism and completeness in testing.

Dataset 1: Real Fault Scenarios. We begin by gathering
real fault scenarios reported to the Autoware Foundation [11]
by other developers. The selection process involves two key
steps: 1. Relevance: We filter issues related to our problem
using the keyword “component: perception” and retain only
those that have been officially acknowledged. 2. Reproducibil-
ity: We manually review each official issue-fix record to
identify issues that are reproducible and cause perception
failures. This process results in nine diverse groups of real
faults, which we include in Dataset 1 without any subjective
selection criteria, ensuring high realism in our testing cases.

In the MSF perception system, the fusion process consists
of multiple paths that contribute to the final output. These
causal paths are represented by different sets of modules,
each exhibiting a specific fault mode (e.g., Missing Obstacle
(MO)). We label these causal paths distinctly; for instance,
the sets {(A, MO), (B, MO), (C, MO)} and {(X, MO), (Y,
MO)} represent two causal paths, each contributing to an MSF
failure. Detailed information about the real fault scenarios is
provided in Table I. In this table, some groups correspond to
multiple related issue IDs based on GitHub records.

Prevalence of “Missing Obstacle”. Notably, all module fault
modes in Groups 1 to 7 are MO, which may suggest a bias
in the data. However, this accurately reflects the real-world
distribution of faults: MO faults, which impair the system’s
ability to detect obstacles, are particularly critical as they
can lead to serious hazards such as collisions. Consequently,
these issues receive heightened attention and are prioritized for
urgent resolution on GitHub. Our Dataset 1 aligns with this
reality to ensure testing realism, while Dataset 2 (synthetic
fault scenarios) will be used to enhance testing completeness.

Dataset 2: Synthetic Fault Scenarios. While real module
faults reported to the Autoware Foundation focus primarily on
MO, research [17] indicates that a broader range of faults also
exists, including Ghost Obstacle (GO), Misclassification (MC),
and Mislocalization (ML, a type of Parameter Error (PE)). To
cover these faults and enhance testing completeness, we have
created Dataset 2, which comprises synthetic fault scenarios.

These synthetic scenarios are generated by simulating vari-
ous failure conditions through fault injection into the system.
Specifically, we inject different faults at the object-level output
of each module, as detailed in Section II-B. The injection
process is automated, with failure-triggering cases undergoing
manual review for validation. Scenarios are categorized into
single-fault and multi-fault groups based on the number of
injected faults. Details of the injected faults can be found in
Table II.

For each group, we generate 100 failure scenarios by mutat-
ing scenario parameters. We define a specific object generation
zone as outlined by Piazzoni et al. [17] to create scenarios
that induce perception failures. The scenario parameters in-
clude both object-specific and environmental factors. Object-
specific parameters cover details such as size, distance from
the ego vehicle, and number of objects, while environmental
parameters encompass weather and lighting conditions. By
varying these parameters, we have generated a diverse array
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TABLE I: Scenarios generated with real faults. Issue IDs are from the GitHub repo. Module IDs in curly braces {} for sets
of modules in a causal path. Asterisk (*) signifies faults identified by our approach and confirmed by developers on GitHub.

Group
ID Issue ID Module with Fault Pipeline Scenario Symptom Failure

Mode
1 #7106 {(1, MO)},{(2,ML), (8,MO)} LiDAR-fusion Not recognize large buses. MO
2 #7563∗ {(1,MO)},{(2,MO)} LiDAR-fusion Not recognize cyclists/pedestrians near a car. MO
3 #4680, #5751 {(1,MO) (4∗,MO)},{(2,MO), (9,MO)}, {(3,MO), (5,MO)} Camera-LiDAR-fusion Not recognize construction warning obstacles. MO
4 #4681, #6938 {(1,MO) (4∗,MO)},{(2,MO), (9,MO)}, {(3,MO), (5,MO)} Camera-LiDAR-fusion Not recognize traffic cones on road. MO
5 #5148, #4949 {(1,MO) (4∗,MO)}, {(2,MO), (9,MO)}, {(3,MO), (5,MO)} Camera-LiDAR-fusion Not recognize sparse objects on road. MO
6 #4948 {(2,ML) (8,MO)} Cluster Not recognize trucks. MO
7 #7860 {(8,MO)} Cluster Unidentifiable results for bus. MO
* #6936∗, #6962 Planning Camera-LiDAR-fusion Driving hindered by mistaking uphill or downhill as an obstacle GO
* #6940 Planning Camera-LiDAR-fusion Emergency stop due to mistaking a roadside tree for an obstacle GO

Module ID. 1: LiDAR CenterPoint Detector, 2: Euclidean Cluster, 3: YOLO Detector, 4: Obstacle Validation, 5: Roi Fusion, 6: Post Processing, 7: Object Merger, 8: Shape Estimation, 9:
Object Association, 10: Object Tracker.

*. Groups 8 and 9 are not used for the evaluation experiments. Their root causes belong to the Planning component and will be introduced in the case study, where we use exclusion from
the MSF component to determine them. We identified these issues through our scenario simulation and subsequently reported to GitHub.
Fault Mode. MO: Missing Obstacle, GO: Ghost Obstacle MC: Misclassification, ML: Mislocalization(a type of parameter error(PE), in terms of position parameter)

TABLE II: Synthetic scenarios generated with injected faults.

Type Group
ID

Module
with fault Pipeline Failure

Mode

Single
Fault

8 (9, MO) LiDAR-fusion MO
9 (9, GO) LiDAR-fusion GO
10 (10, MO) LiDAR-fusion MO
11 (10, GO) LiDAR-fusion GO
12 (10, ML) LiDAR-fusion ML
13 (10, MC) LiDAR-fusion MC

Multiple
Faults

14 {(8, MO),
(9, MO)} LiDAR-fusion MO

15 {(8, ML),
(9, MO)} LiDAR-fusion MO

16 {(4, MO),
(9, MO)} LiDAR-fusion MO

17 {(1, MO),
(9, MO)} LiDAR-fusion MO

18 {(6, MO),
(7, MO)} Camera-LiDAR-fusion MO

19 {(6, GO),
(7, GO)} Camera-LiDAR-fusion GO

Module ID and Fault Modes are the same as in Table I.

of scenarios, allowing for a comprehensive evaluation of the
perception system under various challenging conditions.

Based on these datasets, we will conduct an extensive and
thorough evaluation, including: 1) Autoware simulation in this
section; 2) real vehicle tests with Autoware in Section VII; and
3) Apollo simulation in Section VIII.

C. Baselines

We compare our IRCA against the following baselines:

1) DVCA [9]: Driving violation cause analysis (DVCA) is
the most recent method used in the ADS domain for
causal analysis of driving violations. It utilizes binary
search to pinpoint the faulty modules.

2) AID [10]: Adaptive interventional debugging (AID) is a
method that combines statistical debugging and causal
analysis to identify causal relationships.

3) RCD [6]: Root cause discovery (RCD) is not directly
comparable to IRCA because RCD uses the Ψ-PC
algorithm to learn the causal structure from data while
IRCA constructs a causal graph with domain knowledge.
For a fair comparison, we make RCD use the same
causal graph constructed with domain knowledge as in
IRCA. RCD returns the top-k causal factors, and we
determine the value of k based on the output length of
our method.

D. Evaluation Metric

We employ three commonly used metrics: Precision (P),
Recall (R), and F1-score (F1), which are calculated by P =
TP/(TP + FP ), R = TP/(TP + FN), and F1 = (2 ×
P × R)/(P + R), respectively, where TP represents True
Positives, FP represents False Positives, and FN represents
False Negatives. TP is the number of causal modules correctly
identified as being in the ground truth causal path. FP is the
number of non-causal modules incorrectly identified as in the
causal path. FN is the number of unidentified causal modules
in the ground truth.

Given that multiple causal paths can lead to failures, and
addressing any of these paths may resolve the issue, we
need to appropriately measure the solution’s performance. To
this end, we propose three distinct evaluation strategies for a
comprehensive assessment:

1) Best Match: The solution’s output is compared with
each ground truth causal path to identify the one with the
highest overlap or similarity. This strategy aims to find the
most accurate alignment between the solution’s output and the
correct options in the ground truth, highlighting the best case
in terms of prediction accuracy.

2) Union: This strategy considers all elements across the
different ground truth causal paths, forming a union set.
It provides insight into how well the solution performs in
capturing all possible causal elements without missing any.

3) Average: This strategy calculates Precision, Recall, and
F1-score for each solution’s output and each ground truth path.
The final scores are the averages of these individual scores. It
offers a balanced view by assessing the solution’s consistency
across multiple correct answers.

E. RQ1: Effectiveness on Real Fault Scenarios

Best Match strategy. The performance results of four
methods—IRCA (Ours), DVCA, AID, and RCD—for the Best
Match strategy are listed in Table III. IRCA demonstrates
superior performance across all metrics in real fault scenarios,
achieving an average precision of 95.77%, recall of 95.07%,
and an F1-score of 95.39%. These results demonstrate the
effectiveness of IRCA in accurately identifying a complete
causal path. In contrast, while AID and DVCA demonstrate
commendable precision, their recall metrics are significantly
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TABLE III: Evaluation results for Best Match on the real fault scenarios. Precision (P), Recall (R), and F1-score (F1) in
Percentage (%). The best performance value is highlighted in bold.

Group ID IRCA (Ours) DVCA AID RCD

P R F1 P R F1 P R F1 P R F1

1 97.94 95.00 96.45 97.00 50.52 66.44 92.00 85.98 88.89 45.50 59.48 51.56
2 80.56 87.00 83.65 56.00 56.00 56.00 87.00 87.00 87.00 28.00 56.00 37.33
3 98.50 98.50 98.50 95.00 47.50 63.33 100.00 45.50 62.54 51.76 51.50 51.63
4 99.48 95.00 97.19 94.00 47.00 62.67 95.00 47.50 63.33 38.50 38.50 38.50
5 97.46 96.00 96.73 91.00 45.50 60.67 92.00 46.00 61.33 30.30 30.00 30.15
6 97.44 95.00 96.20 93.00 46.50 62.00 95.00 47.50 63.33 66.67 60.00 63.16
7 99.00 99.00 99.00 99.00 99.00 99.00 98.99 98.00 98.49 58.59 58.00 58.29

Avg. 95.77 95.07 95.39 89.29 56.00 67.16 94.28 65.35 74.99 45.62 50.50 47.23

lower. This suggests that although AID and DVCA can cor-
rectly identify elements of the causal path, they frequently
overlook several causal modules, resulting in incomplete path
detection. RCD shows the weakest performance, due to its lack
of utilization of the branch relationships in the causal graph
when clustering. These branch relationships provide structural
information that forms a complete causal path.

AID achieves a relatively balanced performance in Groups
1 and 2. It is because these scenarios involve fewer causal
modules, which simplifies the matching process and reduces
the likelihood of missing causal modules. In Groups 3 through
6, the increased number of causal modules poses challenges,
particularly for AID and DVCA. The complexity of these tasks
affects the ability of AID and DVCA to maintain high recall,
indicating difficulties in fully capturing the causal path.

Comparison under different evaluation strategies. Fig-
ure 6 presents the F1-scores of the four methods evaluated
under different strategies (Best Match, Union, and Average)
across three different DAG configurations: Camera-LiDAR-
fusion, LiDAR-fusion, and Clustering. The reported F1-scores
are the averages across all the real fault scenarios.

In the Camera-LiDAR-fusion DAG (Figure 6(a)), the IRCA
method demonstrates the highest F1-scores across all strate-
gies, with 97.47% for Best Match, 78.32% for Union, and
65.43% for Average. The drop from Best Match to Union
and Average strategies indicates that while IRCA is highly
effective at identifying complete causal paths, its performance
diminishes as the evaluation strategy incorporates the need
for broader causal path identification. DVCA, AID, and RCD
follow a similar trend. For example, AID’s performance also
drops from 62.40% (Best Match) to 30.70% (Union) and
24.41% (Average). We can draw similar conclusions for
the LiDAR-fusion DAG (Figure 6(b)). In the Cluster DAG
(Figure 6(c)), all three evaluation strategies yield consistent
results because this DAG only contains a single causal path.
IRCA maintains consistent performance with an F1-score
of 97.60% across all strategies. DVCA and AID also show
stable performance, with F1-scores of 80.50% and 80.91%,
respectively, while RCD remains consistent at 60.73%.

Overall, Figure 6 reveals the following insights:

• All methods achieve their highest F1-scores under the
Best Match strategy. This indicates that the methods are
effective at identifying complete causal paths when the

evaluation focuses on optimal path identification.
• The Union strategy introduces complexity by amalga-

mating modules from different causal paths, resulting
in notable performance declines for all methods. The
broader and more varied ground truth poses a greater
challenge for methods initially designed to identify a
single optimal path.

• The Average strategy consistently yields the lowest per-
formance across all methods, highlighting the increased
difficulty in assessing effectiveness across all potential
causal paths. This strategy requires a more comprehensive
identification process beyond the primary focus of single-
path identification.

• IRCA consistently outperforms other methods across
all DAGs and evaluation strategies.

F. RQ1: Effectiveness on Synthetic Fault Scenarios

Single injected fault. Table IV presents the performance
metrics of four methods—IRCA (Ours), DVCA, AID, and
RCD—evaluated on a single injected fault. IRCA demonstrates
outstanding performance, showing the highest average recall
(97.50%) and F1-score (96.73%) among the methods. A
high F1-score suggests IRCA’s strong capability in accurately
identifying and confirming actual root causes. AID records the
highest average precision (97.72%), indicating its conservative
nature in root cause identification. AID tends to identify fewer
potential causes than the actual number present, which ensures
minimal false positives. DVCA features equal precision and
recall values across all groups, which is a direct result of
its binary search method for determining intervention targets.
This method balances the identification of non-causal modules
as causal (false positives) with the omission of actual causal
modules (false negatives), resulting in consistent precision and
recall. While RCD generally shows lower average metrics, it
achieves the best precision in Group 13.

The results indicate that all methods are generally effective
in identifying the singular root cause of a failure, which can be
attributed to their utilization of counterfactual interventions.

Multiple injected faults. Table V presents performance
metrics for the four methods evaluated on the scenarios with
multiple injected faults. IRCA achieves the best results in
recall and F1-score, with the F1-score being 12.97% higher
than the second (AID). Although AID achieves the highest
precision at 95.33%, it has notable limitations in recall. The
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Fig. 6: Comparison of IRCA (Ours), DVCA, AID and RCD on real fault scenarios using three evaluation strategies: Best
Match, Union, and Average.

TABLE IV: Evaluation results on the synthetic fault scenarios (single fault).

Group ID IRCA (Ours) DVCA AID RCD

P R F1 P R F1 P R F1 P R F1

8 97.09 100.00 98.52 92.00 92.00 92.00 92.00 92.00 92.00 67.35 66.00 66.67
9 96.70 88.00 92.15 77.00 77.00 77.00 97.33 73.00 83.43 90.14 90.14 90.14
10 99.01 100.00 99.50 95.00 95.00 95.00 100.00 97.00 98.48 92.13 82.00 86.77
11 95.10 97.00 96.04 95.00 95.00 95.00 97.00 97.00 97.00 92.93 92.00 92.46
12 95.24 100.00 97.56 98.00 98.00 98.00 100.00 96.00 97.96 91.92 91.00 91.46
13 93.46 100.00 96.62 90.00 90.00 90.00 100.00 93.00 96.37 100.00 91.00 95.29

Avg. 96.10 97.50 96.73 91.17 91.17 91.17 97.72 91.33 94.21 89.08 85.36 87.13

TABLE V: Evaluation results on the synthetic fault scenarios (multiple faults).

Group ID IRCA (Ours) DVCA AID RCD

P R F1 P R F1 P R F1 P R F1

14 88.53 96.50 92.34 91.00 45.50 60.67 100.00 50.00 66.67 98.04 50.00 66.23
15 69.66 81.50 75.12 97.00 48.50 64.67 100.00 50.00 66.67 83.87 65.00 73.24
16 96.04 97.00 96.52 100.00 50.00 66.67 76.00 38.00 50.67 50.52 48.50 49.49
17 98.34 89.00 93.44 90.00 45.00 60.00 100.00 50.00 66.67 46.51 30.00 36.47
18 94.29 99.00 96.59 71.00 35.50 47.33 98.00 49.00 65.33 78.67 59.00 67.43
19 79.17 76.00 77.55 67.00 33.50 44.67 98.00 49.00 65.33 96.08 49.00 64.90

Avg. 87.67 89.83 88.59 86.00 43.00 57.34 95.33 47.67 63.56 75.62 50.25 59.63

overall performance trend is consistent with that observed
in the single-fault scenarios, although the recall for AID
and DVCA becomes significantly lower in the multi-fault
scenarios.

DVCA’s approach involves a binary group search, which
stops as soon as it identifies what it perceives as the ground
truth. This explains its lower recall, as it terminate the search
without discovering all pertinent faults. AID, designed to
identify every causal module along the causal path, suffers
from an overly aggressive pruning rule that fails to account
for situations where multiple causal modules contribute to a
failure, leading to an excessive exclusion of relevant modules.
RCD’s performance varies widely across groups. For instance,
its F1-score in Group 17 is 36.47% lower than in Group 15,
indicating inconsistent effectiveness across different scenarios.

Overall, the performance for the multi-fault scenarios is
lower than that of the single-fault scenarios. Nevertheless, the
performance of our method, IRCA, remains robust with an
F1-score of 88.59%, demonstrating its effectiveness in more
complex fault scenarios.

G. RQ2: Efficiency

TABLE VI: Results of the average intervention numbers and
execution time(minutes).

Method Real Faults Single Fault Multiple Faults

Intervention Time Intervention Time Intervention Time

IRCA 2.99 4.67 0.96 1.58 2.51 3.91
DVCA 2.29 3.60 1.03 1.62 1.79 2.72
AID 3.34 5.07 1.03 1.62 1.84 2.79
RCD 3.03 4.82 1.04 1.64 2.55 3.97

In assessing the efficiency of the IRCA, we utilize two
primary metrics: the number of interventions and the execution
time. As detailed in Table VI, we compare these metrics across
various scenarios—including real faults, and both single and
multiple injected faults—across four different methods.

For scenarios involving a single fault, IRCA demonstrates
superior efficiency, requiring the fewest interventions (an av-
erage of 0.96) and the shortest execution time (1.58 minutes).
For real-fault scenarios, although IRCA does not achieve the
lowest intervention count or fastest execution time—recording
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(a) Issue #7106 (b) Issue #7563 (c) Issue #6938

Obstacle Pointcloud!
Emergency Stop!

(d) Issue #6936. The illustration briefly describes the situation.

Fig. 7: Notable cases of perception failure scenarios: Subfig-
ures (a)-(c) (top): snapshots from the Carla simulator illus-
trating different failure scenarios. Subfigures (a)-(c) (bottom):
corresponding snapshots perceived by the ADS. Subfigure
(d): snapshots of Issue #6936: snapshot from Carla (left),
corresponding snapshot perceived by the ADS (middle), and
an illustration of the situation (right).

2.99 interventions over 4.67 minutes, slightly higher than
DVCA’s 2.29 interventions in 3.6 minutes—it demonstrated
greater overall effectiveness. This indicates that IRCA while
taking marginally longer, provides more comprehensive diag-
nostics. In multiple fault scenarios, IRCA’s capabilities are
particularly notable. Despite a modest increase in execution
time compared to DVCA (3.91 minutes for IRCA vs. 2.72
minutes for DVCA), IRCA supports concurrently diagnosing
multiple root causes. This functionality significantly advances
over other methods, such as DVCA, AID, and RCD, which
exhibit limitations in handling complex diagnostic challenges.

The experimental results support IRCA’s ability to swiftly
and accurately identify the causal modules responsible for
system failures, underscoring its practical utility in multi-
sensor fusion perception systems.

H. RQ3: Case Study

We illustrate several notable cases of perception failures
in real fault scenarios. We also discuss the generality of our
approach on Apollo.

Issue #7106 (shown in Figure 7a) This issue arises from
two causal paths. In the LiDAR CenterPoint detector branch,
the model fails to detect a truck. Concurrently, in the cluster
branch, an initial wrong clustering of the point cloud by the
Euclidean cluster, followed by errors in the shape estimation
module, leads to incorrect vehicle shape refinement. As a
result, a truck that is around 4 meters in length in front of the
ego vehicle is not detected. The corresponding pull request

(PR) is that the shape estimation module needs a fix since the
maximum size filter for trucks was previously set too low.

Issue #7563 (shown in Figure 7b) There are two causal
paths that contribute to this failure. The LiDAR CenterPoint
detector does not recognize a cyclist due to its overlap with
a vehicle’s point cloud. Meanwhile, the Euclidean clustering
method on another branch inaccurately merges the cyclist and
a nearby vehicle into a single obstacle. Thus, the cyclist near
the vehicle is incorrectly identified as part of the vehicle.

Issue #6938 (shown in Figure 7c) This failure is caused
through three causal paths within the Camera-LiDAR-fusion
DAG. (1) LiDAR CenterPoint Detector Branch: the detector
occasionally fails to identify traffic cones due to sparse Li-
DAR point clouds. Meanwhile, the obstacle validation module
mistakenly filters out the detected traffic cone. This filtering
issue has been identified using our IRCA and addressed in
a fix submitted to GitHub. (2) Cluster Branch: the Euclidean
Cluster detector has difficulty clustering the traffic cone with
fewer point clouds. Furthermore, the objects identified by the
Euclidean Cluster detector are assigned a lower priority during
object association. This can lead to inaccurate results, even
when the Euclidean Cluster correctly identifies the obstacle.
(3) Region of Interest (ROI) Fusion Branch: The ROI cluster
fusion criteria require both point cloud data and ROIs detected
by the camera for successful operation. If the obstacle is
detected solely by the camera, the fusion process fails. This
issue was addressed by introducing a pseudo dataset for the
YOLO detector specifically designed to improve traffic cone
detection. Additionally, the refinement for ROI fusion now
considers only the distance to the camera to enhance the
accuracy of this process.

Issue #6936 (shown in Figure 7d) This issue involves the
vehicle treating the uphill ramp as an obstacle and becoming
stuck in front of the ramp. IRCA can find that object recog-
nition in the perception system is not the root cause of this
issue. Further analysis reveals that the planning component
is inadvertently subscribing to both the final output from the
perception component and the unfiltered point cloud message.
This subscription to the unfiltered point cloud introduces ghost
obstacles into the planning component, precipitating the issues.
Notably, this issue was first identified through our scenario
simulation and reported to GitHub. Subsequently, the issue
was confirmed by developers on GitHub.

VII. REAL-WORLD EXPERIMENTS

A. Experimental Settings

Testbed. In real-world experiments, a testbed car, as illus-
trated in Figure 8, serves as the ego vehicle. Its MSF per-
ception system contains a LiDAR and a camera. A Robosense
Helios-32 LiDAR, featuring 32 beams and a 10 Hz frame rate,
is mounted at the top front center at a height of 1.9 meters
from the ground. A high-resolution camera equipped with a
Sony IMX335 image sensor is positioned at the front center
of the car, 1.6 meters above the ground. This camera captures
images at a resolution of 1920 × 1080. The ADS installed
on the car is Autoware.Universe, which runs on Ubuntu 22.04
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Fig. 9: Two real-world scenarios.

with ROS2 Humble as the middleware. The modules of MSF
perception system utilized in these physical tests are consistent
with those used in simulation-based experiments.

B. Field Test Scenarios

We let the car drive autonomously in a small community and
capture perception failures by comparing the objects detected
by the MSF perception system with the ground truth observed
by the human onsite. Two perception failures were recorded
during the field test. The failures were similar to those reported
in Issues #7563 and #6938 in Table I, respectively.

Missed pedestrian adjacent to a car. This scenario, shown
in Figure 9a, involved a pedestrian who was in the same lane
as the ego vehicle, approximately 13 meters ahead, and very
close to a stationary black Nissan. A truck was stationary 25
meters ahead on the left side of the lane, but it is not relevant to
the targeted failure being analyzed. In this scenario, the MSF
perception system employs a LiDAR-fusion pipeline, which
integrates the detection results from the Euclidean clustering
detector and the LiDAR CenterPoint detector.

Missed traffic cone. In this scenario, shown in Figure 9d,
the system failed to detect a traffic cone on the road. The cone,
measuring 0.7 meters in height and 0.3 meters in base width,
was directly positioned in the lane, 10 meters ahead of the
ego vehicle. A truck is present in the same lane, positioned 12
meters to the left of the ego vehicle, but it did not impact this
specific failure. The MSF perception system utilizes a Camera-
LiDAR-fusion pipeline that combines the detector results from
the Euclidean Cluster, the LiDAR CenterPoint detector, and
the YOLO detector.

C. Root Cause Analysis with IRCA

Missed pedestrian adjacent to a car. This scenario il-
lustrates a perception failure where a pedestrian adjacent
to a car is not detected (see Figure 9b). With IRCA, we
pinpointed one causal path contributing to this failure, which
involves the Euclidean cluster module suffering from a missing
obstacle fault mode. After localizing this root cause module,
we conducted an intervention on the Euclidean clustering
module. As shown in Figure 9c, the counterfactual effect
demonstrates that the pedestrian is successfully detected and
tracked, indicating that correcting the clustering-based module
can effectively remove the perception failure.

Missed traffic cone. Figure 9e illustrates the perception
failure of a traffic cone. Using IRCA, we determined two
causal paths: The first causal path included the LiDAR Cen-
terPoint module and the obstacle validation module, both
suffering from a missing obstacle fault. We then performed
a counterfactual intervention on the LiDAR Centerpoint and
Obstacle validation modules, and the final output of MSF
(tracked module) perceived the traffic cone as shown in Figure
9f. Note that the traffic cone label was “unknown” in the
Autoware [24]. The result indicates that rectifying issues
within the LiDAR CenterPoint and the obstacle validation
modules can eliminate the perception failure.

These real-world experiments demonstrate that IRCA can
effectively identify the root causes of MSF perception failures
and provide valid causal paths for resolving the failures.

VIII. CROSS-PLATFORM EVALUATION

This evaluation aims to validate that our IRCA solution can
operate on various ADS beyond Autoware. Specifically, we
expand our assessment to include Apollo, another mainstream
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Fig. 10: Apollo scenarios: Subfigures (a)-(d) (top): snapshots from Apollo DreamView (Visualization Application) illustrating
different failure scenarios (left) and counterfactual effects (right). Subfigures (a)-(d) (bottom): images from the camera.

platform. Since our solution has been thoroughly tested and
compared with baselines in Section VI, this section conducts
smaller-scale experiments, which are sufficient to demonstrate
cross-platform usability.

A. Experimental Setup

The experiments are conducted using Apollo version 9.0
on the same workstation as in Section VI. Our experimen-
tal configurations involve three Apollo perception pipelines
for obstacle detection to evaluate the adaptability of IRCA:
the default Camera-LiDAR fusion pipeline [25], the LiDAR
pipeline, and the Camera pipeline.

B. Test Scenarios

TABLE VII: Evaluation Scenarios for IRCA on Apollo

ID Fault Type Pipeline Module
with fault Scenario Symptom Failure

Mode

1 real Camera-Lidar-Fusion {(4, MO),
(7: MO)} No shopping cart detected MO

2 real Camera-Lidar-Fusion {(4, MO),
(7: MO)} Pedestrian not recognized MO

3 real Camera-Lidar-Fusion {(7:MO)} Cars not perceived MO
4 real Camera-Track {(4, MO)} No shopping cart detected MO
5 Injected Camera-Track {(5, GO)} Ghost car on the road GO
6 Injected Camera-Track {(6, ML)} Car mislocated ML
7 real Lidar-Track {(2, MC)} Car misclassified MC
8 real Lidar-Track {(1, GO)} Ghost car beside the road GO
9 Injected Lidar-Track {(2, MO)} Car not recognized MO

10 Injected Lidar-Track {(3, ML)} Car mislocated ML
Module ID: 1:LiDAR Detector 2: LiDAR Detection Filter 3:LiDAR Tracking 4:YOLOX 3D
Detector 5:Camera Location Refinement 6: Camera Tracking 7:Multi-Sensor Fusion

The driving scenarios selected for our study are based on
the recorded data package provided by Apollo. As summarized
in Table VII, these scenarios are crucial for evaluating the
effectiveness and cross-platform usability of our IRCA. First,
our verification focuses on identifying actual fault types within
the modules, as documented in the Apollo GitHub repository.
We find that the module faults reported by Apollo are con-
sistent with those in Autoware. Second, we inject additional
fault cases not originally recorded to enhance the diversity
of the test scenarios and ensure a comprehensive evaluation
of potential faults. Specifically, we inject missing obstacles
(MO) into the LiDAR detection filter module, mislocalization
(ML) faults in both LiDAR and camera tracking, and ghost
obstacles (GO) in camera location refinement.

C. Root Cause Analysis with IRCA

Our IRCA can effectively identify all faulty modules as
listed in Table VII. This demonstrates the applicability of
our method to Apollo. To further discuss the performance
of IRCA on Apollo, Figure 10 presents scenarios from the
Apollo DreamView visualization application. These images
show typical failure scenarios on the left and their counter-
factual interventions on the right, with corresponding views
captured directly from the camera.

Missed pedestrian. In this scenario, the perception con-
figuration of Apollo uses a Camera-LiDAR-Fusion pipeline.
Figure 10a (top left) displays the Apollo DreamView of
perception results, including a clear LiDAR point cloud of
two pedestrians. Although the camera image captures the
pedestrians, the system does not detect them, illustrating a
missed obstacle failure scenario. The right side of Figure 10a
demonstrates the counterfactual effect after interventions on
the YOLOX 3D detector and multi-sensor fusion modules, re-
sulting in successful detection and tracking of the pedestrians.
It is important to note that intervening only on the YOLOX 3D
detector module does not resolve the failure due to a Missing
Obstacle fault in the multi-sensor fusion module, disregarding
detection results from upstream modules. This fault is also
documented in a GitHub issue.

Missed shopping cart. The perception configuration em-
ploys a Camera-Tracking pipeline. Figure 10b (top left) shows
the perception results and the camera image below it, where
a shopping cart in front of the ego vehicle is visible but not
detected in Apollo DreamView. Figure 10b also illustrates the
counterfactual effect of an intervention on the YOLOX 3D
detector module, pinpointing the root cause of this missed
detection.

Misclassified car. In this scenario, Apollo uses a LiDAR-
Tracking configuration, Figure 10c (top left) depicts a mis-
classified car failure. The car on the right side ahead of the
ego vehicle is incorrectly recognized as an unknown object,
a result of a fault in the LiDAR Detection Filter module,
which mislabeled the data received from the LiDAR Detector
module. Figure 10c (top right) illustrates the counterfactual
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effects after intervening on the LiDAR Detection Filter, where
the car is correctly recognized.

Ghost object. Also under a LiDAR-Tracking setup, Fig-
ure 10d shows a ghost object failure scenario. The image
shows an empty road ahead of the ego vehicle, yet the percep-
tion result on Apollo DreamView reports unknown obstacles.
The right side of Figure 10d shows the counterfactual effects
following interventions on the LiDAR Detection module,
effectively eliminating the ghost obstacle.

These experiments demonstrate that IRCA can effectively
identify the root causes of various perception failures in the
Apollo system. From the above cross-platform evaluation, it
is evident that IRCA can conduct root cause analysis across
different systems, highlighting its broad applicability.

IX. RELATED WORK

Perception failure identification. Most existing research
is centered around testing methods to detect the failure in
MSF perception systems by creating diverse and challeng-
ing test scenarios [26]–[29]. For example, MultiTest [16]
is a fitness-guided metamorphic testing method that syn-
thesizes and positions realistic multi-modal object instances
in background images and point clouds to create diverse
test cases. Another related research area is fault detection
with anomaly detection or runtime verification. Researchers
are increasingly turning to machine learning-based anomaly
detection methods to pinpoint the aberrant modules potentially
responsible for perception failures [30]–[33]. For example,
Rahman et al. proposed an FSNet model [34] to identify
misclassifications in semantic segmentation. The combination
of runtime verification and model-checking techniques has
been deployed to trace module anomalies that might be
linked to broader system malfunctions [35], [36]. Specifically,
probabilistic model checking leverages transition probabilities
from confusion matrices to ensure modules adhere to the
system’s formal specifications defined in temporal logic [37]–
[40]. Antonante et al. [41] formalized runtime fault detection
and identification in perception systems, using a probabilistic
diagnostic graph. Compared to our technique, testing and fault
detection methods are less effective in explaining failures,
since they produce a ranked candidate set [42] but do not
dive into the underlying causes of these faults. Therefore,
identifying the root causes of perception failures in ADS is
still a problem yet to be solved.

Causal analysis for systems. RCA has been extensively
applied across various domains to identify underlying causes
of system failures, particularly in microservices and con-
figurable robotic systems. In the domain of microservices,
RCA is used to diagnose service failures by analyzing data
collected through various monitoring tools [43]–[45]. These
methods leverage key performance indicators (KPIs), traces,
and logs to detect anomalies and pinpoint their root causes.
These methods are integral for maintaining system reliability
and performance, as they allow for timely identification and
resolution of issues that could potentially lead to system
downtime or degraded service. Specifically targeting system

configurations, the Unicorn framework designed by Iqbal et
al. [46] and the CARE proposed by Hossen et al. [47] offer
insights into how different settings impact system abnormal
performance and behavior. Unicorn applies causal reasoning
to determine an optimal system configuration under various
operational scenarios, while CARE uses causal learning to
correlate configuration parameters with abnormal behaviors in
configurable robots. However, both approaches are not suitable
for RCA of perception failures because they are developed for
handling multi-dimensional system metrics data, which differ
significantly from MSF perception object data.

Causality testing in ADS. In the field of ADS, recent
studies have integrated causal analysis with system testing to
detect driving violations [8], [9]. For example, CART [48]
introduces a novel framework that treats testing as a causal
reasoning process. This approach aims to uncover the causal
relationships between test inputs and outputs, focusing on
how different driving scenarios affect component-level per-
formance. Zhong et al. [49] apply counterfactual causality
analysis to verify fusion errors in MSF. However, their research
is limited to fusion errors associated with driving violations
and does not consider other causal modules within the MSF
perception system. None of the aforementioned work has
addressed the causal relations between modular faults and
perception failures in ADS. When considering causal modules
in MSF, the complexity increases due to a larger DAG and
specific structures like colliders. Moreover, these studies typ-
ically consider only a single causal factor without accounting
for the potential interactions among multiple concurrent causal
modules. IRCA fills this gap.

X. CONCLUSION

We designed and implemented a novel methodology, in-
terventional root cause analysis (IRCA), which utilizes a
strategic combination of runtime monitoring, causal analysis,
and scenario testing to identify the root causes of failures
within the MSF perception of autonomous driving systems
(ADS). IRCA has three distinctive features: (1) it can track
multiple concurrent root causes, (2) it can pinpoint both faulty
modules and the specific fault modes within these modules,
and (3) it can reveal complex causal paths and the interactions
among multiple faults. Collectively, these capabilities provide
a comprehensive view of the root causes of perception failures,
enabling developers to isolate and resolve the issues rapidly.

We assessed the effectiveness of IRCA using the open-
source ADS platform, Autoware. Our evaluation incorporated
both real-world issues documented on GitHub and synthetic
scenarios with injected faults across various modules. The
results indicate that IRCA consistently surpasses baselines
and achieves superior performance across different root causal
modules. Furthermore, we demonstrated IRCA’s real-world ap-
plicability by testing it on an operational testbed. Additionally,
we showcased the generality of our approach through a cross-
platform evaluation on Apollo. This research significantly
advances the safety of ADS through the novel application of
IRCA and its proven effectiveness in practical settings.
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

We provide IRCA, an automatic root cause analysis tool
designed specifically for addressing perception failures in
Autonomous Driving Systems (ADS). IRCA integrates three
core functionalities: runtime monitoring, failure identification,
intervention, and a hierarchical intervention algorithm. To
evaluate the effectiveness of IRCA, we have developed a
comprehensive platform that incorporates co-simulation of
Autoware.Universe Galactic with CARLA simulator. This
platform is further enriched with fault injection capabilities
and upgraded packages that ensure simulation synchronization
with CARLA simulator.

1) How to access: Our implementation is available on
Zenodo with DOI: https://doi.org/10.5281/zenodo.14250642.
Alternatively, we also make the artifact available on
GitHub:https://github.com/sgNicola/ACsim. Please get

the map data from https://bitbucket.org/carla-simulator/
autoware-contents/src/master/.

2) Hardware dependencies: GPU: 8 GB, CPU: 8 cores,
RAM: 16GB and Disk space: 100 GB of space

3) Software dependencies:
• Operating System: Ubuntu 20.04
• ROS 2: ROS 2 Galactic. For ROS 2 system dependencies,

refer to REP-2000.
• Install ROS 2 Dev Tools, the RMW Implementation, pac-

mod, Autoware Core dependencies, Autoware Universe
dependencies, pre-commit dependencies, Nvidia CUDA,
Nvidia cuDNN and TensorRT

4) Benchmarks: None

B. Artifact Installation & Configuration

(1) Artifact Installation
• Create Workspace: Download the code repository, and

name as ˜/ACsim workspace.
• Source Installation of Autoware.Universe

1) Installing Dependencies Using Ansible: Navigate
to ˜/ACsim/autoware and run the setup script
to configure the development environment:
./setup-dev-env.sh

2) Install Dependent ROS 2 Packages: Install all
ROS packages required by Autoware.Universe.

3) Build Autoware with Colcon: Use colcon to build
the Autoware.Universe from source:
colcon build --symlink-install \
--cmake-args \
-DCMAKE_BUILD_TYPE=Release

Upon successful build, the output should indicate:
247 packages finished

• Package Installation of CARLA 0.9.14
– Please navigate back to the ˜/ACsim root di-

rectory and prepare for CARLA installation in
˜/ACsim/CARLA_0.9.14.

– Please refer to Carla: Quick Start Package Installa-
tion to download and install CARLA 0.9.14.

• Prepare Map Data
– Please download the autoware maps and put

them into the folders. Each folder under
˜/ACsim/map_data/TownXX should contain
two types of maps: lanelet2_map.osm,
pointcloud_map.pcd

(2) Configuration
1) Network settings for ROS 2 and Autoware:

• Enable localhost-only communication: Please En-
able multicast for lo.

• Tune system-wide network settings: Set the config
file path and enlarge the Linux kernel maximum
buffer size before launching Autoware. Increase the
maximum receive buffer size to 2 GiB for network
packets.
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2) Workspace Path Configuration: Please ensure that
your workspace path matches the environment
variable settings. Replace the default path
/home/anonymous/ACsim/ with the actual
directory of your workspace in the files listed
˜/ACsim/carla_autoware/path_list.md.

3) Environment Variables Configuration:
Please configure the environment variables in
˜/ACsim/readme.md and add them to your
˜/.bashrc file.

4) Create folders for saving data: Please ensure you
have the read/write access of ObjectData Directory and
Rosbag Directory.

C. Major Claims

• (C1): SYSTEM successfully performs automatic root
cause analysis with runtime monitoring, failure identi-
fication, and intervention functionalities, as demonstrated
by [Figure 2]. This is proven by the experiment (E1)

• (C2): IRCA achieves the F1-scores above 95%. This is
proven by the experiment (E1, E2, E3) whose results are
reported in [TABLE III].

• (C3): SYSTEM consistently achieves an average of less
than three interventions. This performance is validated
by experiments (E1,E2,E3), with results in [Table VI].

• (C4): SYSTEM can automatically generate syntheic sce-
narios with injected faults. This performance is validated
by experiments (E4), with results in [Table IV].

D. Evaluation

1) Experiment E1: [Camera-LiDAR-fusion configura-
tion with real fault scenarios] about [20 human-minutes +
100 compute-hours]: This experiment aims to:

• Assess the functionality of the automated IRCA.
• Evaluate IRCA’s effectiveness in real-world fault scenar-

ios, as Table III details.
• Evaluate IRCA’s efficiency as detailed in Table VI.
[Preparation]
1) Multi-Sensor Fusion Configurations (MSF) in Auto-

ware: The default configuration Camera-LiDAR-fusion
Configuration is used in this experiment.

2) Scenario Parameters Configuration: The configura-
tion of each group is set up according to the specific sce-
nario arguments. The group IDs in TABLE III and their
corresponding scenario arguments are{1:Huge truck, 2:
Truck walker 3-4:Cone (with different object types),
5:Sparse, 6:Truck, 7:Vans}.

3) Failure Modes Configuration: The failure mode
arguments in param.py are configured based on
the definitions provided in TABLE I. Mappings in-
clude {false negative: Missing Obstacle, false positive:
Ghost Obstacle, wrong localization: Mislocalization,
wrong classification: Misclassification}.

[Execution]
• Main Script: Execute python3 fusion_hira.py.

• Experiment Workflow:
– Initialization: This framework will start the CARLA

server to simulate driving scenarios based on the
configured scenario parameters.

– Start Co-simulation The Autoware system is
launched along with the generated scenarios.

– Data Recording: The perception outputs of each
module are recorded with ROS2 bags in the
specified ROSbag_directory. Then the ROS2
bag messages are processed and saved in the
Object_Directory.

– Fault Mode Identification: The fault modes
of the modules are identified and recorded in
Experiment/(Execution_id)_(object_id)
_(failure_mode).csv. If the final output in
the perception system matches the pre-configured
failure mode, it will trigger the subsequent iterations
for root cause analysis.

– Root Cause Analysis: The main difference in the
subsequent iterations from the first one is the inter-
vention. IRCA will start intervention nodes in a new
terminal session and display intervention details in
the terminal. Other steps, such as data recording and
analysis, remain consistent throughout all iterations.
Interventions are adjusted based on ongoing analysis
until root causes are identified.

– Completion: Conclude the experiment
cycles once root cause analysis is
completed and save the final results in
/ACsim/carla_autoware/results.csv.

[Results]
The results from a group are saved in

/ACsim/carla_autoware/results.csv. The
columns in the CSV contain experiment ID, iterations,
and identified modules. After completing a series of
experiments, rename the results.csv file with the group ID
and method used, for example, 01 aid.csv. Note that the
name of IRCA method is hira.

• Effectiveness: The performance metrics, including re-
call, F1-score, and precision are calculated with
evaluation.ipynb.

• Efficiency: The number of interventions in
each experiment are determined by calculating
the file count minus one in the directory
/CausalAnalysis/data/(Experiment_id).
This adjustment is made because the first iteration does
not involve an intervention.

2) Experiment E2: [LiDAR-fusion configuration with
real fault scenarios] [about 20 human-minutes + 100
compute-hours]: This experiment aims to evaluate the effec-
tiveness of groups 1-2, as detailed in Table III.

[Preparation]
LiDAR-fusion Configuration: For the LiDAR-

fusion setup, please update the launch ar-
guments in autoware.launch.xml and
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detection.launch.xml according to preparation
in ACsim/readme.md.Additionally, modify line 6 and line
10 in the utils.py file to import the specific modules
run lidar and parse lidar respectively, which are needed for
the LiDAR configuration.

[Execution]&[Results]
Execute python3 lidar_hira.py, with other steps

the same as E1.
3) Experiment E3: [Real fault scenarios][about 20

human-minutes + 100 compute-hours]: This experiment aims
to evaluate the effectiveness and efficiency in real-world fault
scenarios of groups 6-7, as detailed in Table III.

[Preparation]
Cluster configuration: Modify line 4 in lidar_hira.py

to import the appropriate module run cluster for cluster-based
processing.

[Execution]&[Results]
These steps are the same as in E2.
4) Experiment E4: [Syntheic Scenarios][about 10 human-

minutes + 200 compute-hours]: This experiment aims to evalu-
ate the effectiveness and efficiency in synthetic fault scenarios
of groups 8-19, as detailed in Table IV and Table V.

Fault Injection: To inject faults as listed in Table II,
please update the arguments for each module in the script
ACsim/carla_autoware/op_agent/start_ros2.sh
according to module IDs and corresponding arguments in
readme.md. To inject an MO fault to the Merger Module,
update the argument to: merger_faulty_mode:=1.

[Execution]&[Results]
These steps are the same as in E1-E3.
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