Artifact
Evaluated

ANDss

Available

Reproduced

The Road to Trust: Building Enclaves
within Confidential VMs

Wenhao Wang*§, Linke Song*§, Benshan Mei*$, Shuang Liuf, Shijun Zhao*,
Shoumeng Yan'™, XiaoFeng Wang!, Dan Meng*, Rui Hou*5™

*Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS
f Ant Group
!Indiana University Bloomington
§School of Cyber Security, University of Chinese Academy of Sciences

Abstract—Integrity is critical for maintaining system security,
as it ensures that only genuine software is loaded onto a machine.
Although confidential virtual machines (CVMs) function within
isolated environments separate from the host, it is important
to recognize that users still encounter challenges in maintaining
control over the integrity of the code running within the trusted
execution environments (TEEs). The presence of a sophisticated
operating system (OS) raises the possibility of dynamically
creating and executing any code, making user applications within
TEEs vulnerable to interference or tampering if the guest OS is
compromised. To address this issue, this paper introduces Nest-
edSGX, a framework which leverages virtual machine privilege
level (VMPL), a recent hardware feature available on AMD SEV-
SNP to enable the creation of hardware enclaves within the guest
VM. Similar to Intel SGX, NestedSGX considers the guest OS
untrusted for loading potentially malicious code. It ensures that
only trusted and measured code executed within the enclave can
be remotely attested. To seamlessly protect existing applications,
NestedSGX aims for compatibility with Intel SGX by simulating
SGX leaf functions. We have also ported the SGX SDK and the
Occlum library OS to NestedSGX, enabling the use of existing
SGX toolchains and applications in the system. Performance
evaluations show that context switches in NestedSGX take about
32,000 — 34,000 cycles, approximately 1.9x — 2.1x higher than
that of Intel SGX. NestedSGX incurs minimal overhead in most
real-world applications, with an average overhead below 2% for
computation and memory intensive workloads and below 15.68 %
for I/0 intensive workloads.

I. INTRODUCTION

Confidential computing enhances cloud security by allowing
tenants to control the trusted components of their workloads.
It minimizes the need for trust in hardware, software, and
services, while providing strong protection against attacks
from other tenants and the cloud provider. This empowers
tenants to develop and deploy confidential applications for
their most sensitive data.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240385
www.ndss-symposium.org

At the core of the confidential computing stack is the trusted
execution environment (TEE), which isolates the code and data
of a confidential workload from other code running on the
system, even at the highest privilege levels. In particular, Intel
SGX [5] provides protection for the trusted components of
an application, known as enclaves, allowing only measured
code to run within the TEEs'. On the other hand, VM-
based TEEs, such as AMD SEV [47], Intel TDX [30], and
ARM CCA [4] offer a fully backward-compatible confidential
virtual machine (CVM), enabling the execution of existing
applications without modifications. However, placing entire
VMs within TEEs is generally considered less desirable: a
VM image is far more than just a kernel and an application
— it includes a large number of system services. It remains
uncertain whether it is more secure than running the software
on premises or on existing cloud infrastructure. Therefore, an
interesting question still remains open for VM-based TEEs:

How can users attest and establish trust in applications
running within a CVM, given the dynamic nature of building,
loading, modification, and execution of arbitrary code within

the CVM, if the guest OS might be compromised?

A seminal work called vSGX [62] was developed to virtual-
ize Intel SGX on AMD SEYV, ensuring full binary compatibility
and enabling the execution of unmodified SGX programs in
CVMs. vSGX adopts a two-VM approach where one VM
handles the untrusted application while the other hosts the
enclave. However, this emulation of SGX leaf instructions
incurs significant overhead, particularly for control flow trans-
fers across the boundary of the two VMs (e.g., EENTER and
EEXIT). For instance, an empty ECall operation on vSGX
takes approximately 1.5ms, which is around 160 slower than
on native Intel SGX. This slow context switch severely limits
the service throughput achievable within the enclave. In prac-
tical scenarios, this limitation becomes a critical performance
bottleneck. To illustrate, vSGX is 6 x slower than the baseline
on the cURL benchmark, and launching a 256 MB size vSGX

'Intel SGXv2 [39] enables dynamic changes to the page attribute and
dynamic loading of code, but with strict controls in place.



I I
I I
I I
App ‘ Enclave ! App ! App ‘ Enclave
T S N A I A
I I
I I
| |
Guest OS | Guest 0S | Guest 0S
| |
IS S < T Y
I I
| |
VMM i VMM i VMM
I I
Intel SGX AMD SEVintel NestedSGX

TDX/ARM CCA

— Allowed &> Disallowed [ |Trusted [ | Untrusted

Fig. 1: Comparison between NestedSGX and other TEEs.
NestedSGX offers a layered protection mechanism against
both the host VMM and the guest OS within the CVM.

enclave takes about 5 minutes.

Design. We take a further step in this direction by introducing
our system, called NestedSGX. NestedSGX follows a defense-
in-depth approach to attesting applications (as depicted in
Fig. 1), where both the enclaves and the guest OS run within
the same CVM. Specifically, the trusted portion of an applica-
tion (i.e., the enclave) is loaded and executed within an isolated
environment, separated from the feature-rich OS, similar to the
enclave abstraction of Intel SGX. During the loading process,
the trusted portion is measured and can be attested to a remote
user. The core root of trust for measurement (CRTM) and root
of trust for reporting (RTR) rely on a small segment of frusted
code, known as the security monitor. This security monitor
enforces memory isolation within the CVM, and its integrity
is also measured and attested with the assistance of hardware-
based TEE. This approach empowers us to dynamically mea-
sure and attest the application code, enabling us to bypass
the complexities associated with the guest OS. To facilitate
the protection of existing applications, NestedSGX prioritizes
compatibility with Intel SGX. This involves simulating SGX
leaf functions with a trusted SGX emulation layer to manage
the entire life cycle of enclaves, including creation, memory
management, teardown, and context switches.

In more details, our approach leverages the privilege sep-
aration offered by AMD SEV-SNP, particularly the virtual
machine privilege level (VMPL), to establish isolated guest
physical space exclusively occupied by the security monitor
and the enclaves. With VMPL, the vCPUs within the CVM
are configured to operate at different privilege levels. Each
privilege level is associated with specific access permissions
to the guest physical memory pages. This capability enables
us to assign distinct privilege levels to different software
components running within the CVM. Particularly, the security
monitor, the SGX emulation layer and the enclave operate at
the higher VMPL (e.g., VMPLO0), in the kernel mode and user
mode respectively. On the other hand, the guest OS and the
untrusted part of the application (App) are required to run
in the kernel mode and user mode at a lower VMPL (e.g.,

VMPLI1). This design ensures that the guest OS does not have
access to the memory allocated for VMPLO.

We implemented NestedSGX on top of AMD’s Linux
Secure VM Service Module (SVSM) framework [16], without
necessitating any modifications of the host software, such as
KVM. Furthermore, we have successfully ported the Intel SGX
SDK [29], the Rust SGX SDK [56] as well as the Occlum
library OS [48] to the NestedSGX framework, allowing for
smooth integration of existing SGX toolchains and applica-
tions. In addition, we have implemented the HotCalls [58]
optimization in Occlum, which allows specific OCALLs to
be handled asynchronously within the enclave without exiting
it. This optimization has led to improved performance for
applications running on Occlum without requiring any modifi-
cations to their source code. Unlike vSGX, we stress that full
binary compatibility with SGX is a non-goal of our paper.

We conducted a series of benchmarking tests on commercial
AMD SEV-SNP hardware and observed that the cost of world
switches is about 1.9x — 2.1x higher than Intel SGX, which
is nearly two orders of magnitude faster than vSGX. Moreover,
NestedSGX introduces negligible overhead in most real-world
applications, with less than 2% overhead for memory and
computation-intensive tasks and less than 15.68% overhead for
I/O-intensive tasks. Generally, NestedSGX exhibits moderate
costs that are comparable to other enclave systems, such as
Intel SGX. Consequently, we view it as a promising solution
for addressing the critical challenge of performing secure
computations within CVMs.

Contributions. The contributions are summarized as follows.

e Design. We present the design of NestedSGX, incorporat-
ing the VMPL feature within AMD SEV-SNP. NestedSGX
addresses the challenge of establishing trust for applications
while minimizing reliance on the potentially compromised
guest OS.

o Compatibility with Intel SGX. NestedSGX offers compati-
bility with Intel SGX, allowing for similar management of
enclaves. It significantly reduces the effort required to port
existing applications onto the NestedSGX framework.

o [mplementations and evaluations. We implemented Nest-
edSGX on commercial hardware. The evaluation demon-
strates the overhead incurred by NestedSGX is comparable
to that of Intel SGX, affirming its efficiency and viability.

Roadmap. The rest of the paper is organized as follows. We
provide necessary background information about Intel SGX
and SEV-SNP, along with the threat model in Sec. II. We
present the detailed design of NestedSGX in Sec. III, followed
by implementation details in Sec. IV. The security analysis and
performance evaluation of NestedSGX are provided in Sec. V
and Sec. VI, respectively. We discuss possible extensions and
related works of NestedSGX in Sec. VII and Sec. VIII. Sec. IX
concludes the paper.



II. BACKGROUND
A. Intel SGX

Intel Software Guard Extensions (SGX) is a hardware-based
security technology designed to provide a trusted execution
environment (TEE) called an enclave for secure processing of
sensitive computations. Enclaves are isolated regions within
the application’s virtual address space, sharing the same page
table with the untrusted part of the application. The enclave
page cache (EPC) is a dedicated pool of physical memory
reserved for enclaves. All enclave pages are encrypted by the
hardware, safeguarding against unauthorized access even if an
adversary gains physical access to the memory. To mitigate
memory mapping attacks by manipulating the page table, the
hardware manages the enclave page cache metadata (EPCM).
This metadata stores essential information for each EPC page,
such as allocation state, owner, and access permissions. During
page table walk, the EPCM is consulted to ensure that only
authenticated operations are permitted.

The SGX hardware enables user space applications to set
aside private memory regions of code and data. The allocation
of the private memory is managed through a set of privileged
(ring-0) ENCLS leaf functions, while a set of unprivileged
(ring-3) ENCLU leaf functions allow applications to enter
and execute within these regions. Additionally, the hardware
records meta-information for the enclave and its thread to
effectively manage the enclave’s life cycle. In the event of in-
terrupts or exceptions, the hardware triggers an Asynchronous
Enclave Exits (AEX) event. During an AEX, the enclave’s
context is saved and the application context is restored. Upon
handling the interrupt or exception, the enclave context is
restored when the execution resumes within the enclave.

SGX attestation. During enclave creation, the hardware
measures the integrity of the enclave code and data. This
allows for remote attestation, enabling external entities to
verify the trustworthiness of the enclave. In most cases, every
component of enclave code can be measured and attested. The
root of trust for reporting resides in the attestation key, which is
exclusively accessible by the Intel signed quote enclave (QE).

B. SEV-SNP and VMPL

AMD provides confidential computing capabilities through
secure encrypted virtualization (SEV), a technology that builds
upon virtualization. SEV utilizes a dedicated security proces-
sor — AMD Security Processor (AMD-SP) — with independent
firmware, distinct from the primary x86 cores. SEV-ES, an
enhancement to SEV, goes beyond encrypting guest memory
and also encrypts the guest CPU registers. This ensures that in-
flight values are protected from leakage and prevents malicious
manipulation of registers by a compromised hypervisor.

SEV-SNP, introduced in 2020 [47], is the third generation
of SEV and provides enhanced security against malicious
manipulation of page mappings by the host. One of its key
features is the Reverse Map Table (RMP), a structure located
in secure memory that maps system physical addresses (sPAs)
to guest physical addresses (gPAs). The RMP serves as a

metadata table managed by the AMD-SP and plays a critical
role in tracking the ownership of each system physical page
to prevent the host from writing to encrypted guest pages. It
establishes a global one-to-one mapping between sPAs and
gPAs, ensuring that a page cannot be simultaneously mapped
into multiple guests or multiple times within a single guest.

Virtual Machine Privilege Level (VMPL) is an optional
feature within the SEV-SNP architecture that allows a CVM
to divide its address space into four distinct levels. These
levels serve as hardware-isolated abstraction layers for the
CVM, with VMPLO representing the highest privilege level
and VMPL3 representing the lowest. Each hardware context,
known as a Virtual Machine Save Area (VMSA), is associated
with a specific VMPL. Moreover, different memory pages
assigned to a guest can have varying permissions based on
the VMPL. VMPLs are utilized for additional page permission
checks and are independent of other x86 security features.

The RMP maintains records of the read, write, and execu-
tion permissions for each guest physical page across different
VMPLs. During the translation of a virtual address to a
physical address by the CPU or IOMMU, an RMP check is
typically conducted to determine the relevant permissions and
ownership of each physical memory page. The guest has the
ability to modify VMPL permissions using the RMPADJUST
instruction. This instruction allows a higher privilege VMPL
to adjust the permissions of a lower privilege VMPL. It grants
the guest the flexibility to modify and manage the permis-
sions of different VMPLs based on its specific requirements.
In addition to SEV-SNP, AMD provides the Secure Virtual
Machine Service Module (SVSM) framework [50], which is
a small piece of code running at the highest privilege level
(VMPLO) to provide security services (such as virtual TPM)
to the rest of the guest.

Switching VMPLs. VMPL switching requests are triggered
by the CVM through the VMGEXIT instruction and captured
by the hypervisor. The hypervisor switches the execution to
the targeted VMPL through the VMRUN instruction, with the
VMSA associated with the targeted VMPL as the parameter.
There are two methods for the CVM to communicate the
desired VMPL to the hypervisor, either by using the MSR
protocol with a value of the requested VMPL in the GHCB
MSR (MSR 0xc0010130), or by setting the shared GHCB with
the exit code GHCB_NAE_RUN_VMPL (0x80000018) and the
desired VMPL as the exit information.

SEV-SNP attestation. The SEV-SNP CVM is initialized from
an unencrypted initial image. This image contains the boot
code necessary for the CVM but does not include any confi-
dential information. During the launch process, the hypervisor
requests the AMD-SP to install this initial set of pages in the
CVM. The AMD-SP cryptographically measures the content
of these pages, along with the associated metadata, to ensure
an accurate measurement of the initial guest memory layout.
Following that, the boot code triggers the bootstrapping of the
OS image, which is also a part of the measured initial image.
The attestation report, signed by the AMD-SP firmware, allows



a third party, such as the guest owner, to verify the state of
the CVM running on an authentic AMD platform.

C. Threat model

NestedSGX is built on top of SEV-SNP and follows a
similar threat model, which considers the host software as a
potential source of harm or compromise. We place our trust in
the underlying SEV-SNP hardware to protect the CVM from
direct observation or tampering by the host software or other
CVMs. Specifically, we do not consider the recent attacks
on SEV-SNP, such as the CacheWrap attack [60], the WeSee
attack [44] and the Heckler attack [45].

Since the user can attest the load-time correctness of the
CVM with remote attestation, we assume that the attacker
initially only controls all software and hardware external to
the CVM. However, considering the substantial code base
of the guest OS within the CVM, it is not considered en-
tirely trustworthy. Therefore, the primary goal of NestedSGX
is to strongly maintain the integrity and confidentiality of
the enclave, effectively protecting it from potential security
compromises originating from both the host software and the
untrusted guest OS. These entities may collaborate in their
attempts to breach the enclave’s security.

Furthermore, this paper does not cover the security risks
associated with unsafe code, such as memory safety vulnera-
bilities within the enclave [19], enclave malwares [46], [52],
or attacks originating from the interface between the enclave
and the application (e.g., COIN [32] or IAGO [22] attacks).
However, it is important to highlight that NestedSGX ensures
that the enclave cannot compromise the operations or integrity
of the guest OS, even in the presence of vulnerabilities. The
security monitor is responsible for enforcing memory isolation
between mutually distrustful components. The SGX emulation
layer serves as the core root of trust for measurement (CRTM).
To establish a foundation of trust, it is assumed that the
security monitor and the SGX emulation layer are trusted.

This paper does not cover side channel attacks, including
traditional cache side channel attacks [35], page table based
attacks [54], [57], [59] or transient execution attacks [33], [53],
[55]. We consider protection against these types of attacks as
orthogonal to our design. Furthermore, since the host and the
guest OS are free to not schedule the enclave for execution,
Denial-of-Service (DoS) attacks are also out of scope.

III. DESIGN
A. Overview

As shown in Fig. 2, NestedSGX encompasses the following
components within the CVM. The application is divided into
the trusted part (enclave) and the untrusted part (App). The
security monitor is responsible for enforcing security isola-
tion within NestedSGX. The SGX emulation layer emulates
SGX instructions, and serves as the root of trust (RoT) for
measurement and reporting of the enclave. The guest OS
offers essential features to applications, such as file systems,
networking, device drivers, and language runtime.

Guest CVM Host
- High
Higher VMPL Security Monitor privilege
(e.g., VMPLO) WIEFTER] Ty SGX VMM
isolation management emulation layer
Kernel
———————————————————— — = VM
SGX SDK entry
User Enclave — Trusted Runtime (trts) :';g
Lower VMPL Guest OS
(eg.. VMPL1) App page table NestedSGX-driver — -—
Kernel
X SDK :
User APPE— Untrusted Runtime (urts) pril\./(i)lgge

Fig. 2: NestedSGX overview. The security monitor, the SGX
emulation layer and the enclave operate in the kernel and user
mode at VMPLO, while the guest OS and App operate in
the kernel and user mode at VMPLI1. The transitions between
VMPLO and VMPLI occur via the untrusted host.

To enforce memory isolation, the security monitor runs at
the highest privileged VMPL (i.e., VMPLO0). On the other
hand, we cannot place the SGX emulation layer in a VMPL
lower than that of the guest OS (e.g., guest OS in VMPLI1 and
SGX emulation layer in VMPL2). Doing so would grant the
guest OS the ability to generate attestation reports on behalf of
the SGX emulation layer, potentially compromising the trust
chain (please refer to Sec. III-D for details). Within our threat
model, we consider the SGX emulation layer to be trusted.
For the sake of brevity, throughout the remainder of the paper,
we regard the SGX emulation layer as an integral component
of the security monitor, both running at VMPLO. while the
guest OS and App operate at a lower privileged VMPL (i.e.,
VMPL1). Within this design, we also place the enclaves within
the same VMPL as the SGX emulation layer, in the user mode
and kernel mode respectively, since if they were placed at
different VMPLs, a context switch between the enclave and
App would necessitate 2 costly VMPL switches. In practice,
however, if running both the SGX emulation layer and the
enclaves in VMPLO raises security concerns, we can adapt
NestedSGX slightly as follows: the security monitor still runs
in VMPLO; the SGX emulation layer and the enclaves run in
the kernel and user mode at VMPL1, and the guest OS and
the App run in the lowest VMPL (e.g., VMPL3).

To let the users maintain control over the code running
inside the CVM and bootstrap trust to the enclave within a
feature-rich guest OS, NestedSGX is designed to fulfill the
following requirements.

Firstly, NestedSGX ensures that any transitions between
the trusted and untrusted components are mediated by the
security monitor. This guarantees that sensitive information
is properly sanitized and safeguarded. To leverage existing
SGX toolchains, NestedSGX employs the SGX programming
model to manage the enclave’s life cycle. The details for secure
enclave state transitions will be presented in Sec. III-B.

Secondly, the system establishes isolated memory regions
exclusively used by the security monitor, the enclaves and
the guest OS respectively. This ensures that the enclave and



Table I: Comparison with competing approaches.

Unlimited Multi-threading Except'ion SGX ecosystem No changes to Low-overl}ead
enclaves handling hypervisor context switches
VSGX [62] X v v v X X
Veil [13] v X X X X v
NestedSGX v v v v v v

the security monitor are secure even in scenarios where the
guest OS operates in kernel mode. Specifically, the entire
gPA space is divided to two parts: a continuous and fixed
region exclusively used by VMPLO, and the remaining portion
used by VMPL1. Additionally, our design guarantees that the
enclave cannot access the memory of the guest OS, despite
running at a higher VMPL. The details of the memory isolation
scheme will be presented in Sec. I1I-C.

Lastly, in NestedSGX, only authenticated code and data can
be loaded and processed within the enclave. To achieve this,
NestedSGX enforces a mechanism where the enclave can only
be loaded by the trusted security monitor, which also performs
the measurement of the enclave’s integrity. While the guest
OS retains the freedom to load and execute any code within
its own address space, these code segments are not affirmed
by the security monitor and therefore will not be attested.
The details of enclave measurement and attestation will be
presented in Sec. I1I-D.

Comparison with competing approaches (Table I).
vSGX [62] effectively virtualizes Intel SGX on AMD SEV,
ensuring complete binary compatibility and the execution of
unmodified SGX programs. vSGX employs two separated
CVMs to accommodate the untrusted application and the
enclave. In contrast, NestedSGX adopts a more intuitive
design that utilizes different VMPLs for memory isolation.
The NestedSGX design offers the following benefits.

Firstly, vSGX cannot support directly sharing encrypted
memory between the enclave VM (EVM) and application
VM (AVM). To provide confidentiality, integrity and replay
protection, a dedicated communication protocol and encrypted
channel are essential. Within NestedSGX, the security mon-
itor can access the entire guest physical address space, and
communicate with the guest OS through shared memory. This
approach circumvents the overhead associated with memory
encryption and movement, and prevents the hypervisor from
observing traffic patterns. As a comparison, an empty ECALL
costs 1.5 ms on vSGX, and only 12 us on NestedSGX, which
is two orders of magnitude faster than vSGX.

Secondly, with vSGX, only one enclave can be hosted
within the EVM, which restricts the maximum number of
concurrently-running enclaves on the hardware platform. This
limitation arises because SEV associates ASIDs with VMs’
memory encryption keys, and the ASID bit is limited. In
contrast, NestedSGX has the ability to support an unlimited
number of enclaves.

Concurrent to our work, Ahmad et al. proposed Veil [13]

as a service framework running at VMPLO. As one use
case, Veil offers protection to the entire applications within
a separated VMPL, facilitating redirection of system calls
and interrupts. However, its design has some limitations: (1)
Exception handling requires enclave context information and
is not supported; (2) On context switches (e.g., syscall and
interrupt), VMPL switches to the guest OS are triggered by
the enclave, and don’t follow the standard GHCB protocols,
necessitating changes to the hypervisor; (3) Veil does not
support SGX ecosystems. Addressing these limitations re-
quires an SGX emulation layer to emulate SGX instructions
and fulfill certain OS functionalities, such as mediating all
enclave-App context switches and forwarding exceptions to
the guest OS, within the user-land enclave’s VMPL. Design-
ing and implementing this layer is challenging because its
state — including general-purpose and segment registers, stack
pointers — changes during context switches when handling
various requests (e.g., forwarding exceptions or emulating
SGX instructions), so when the system re-enters the enclave
again, its state cannot be fully restored due to the change of
the state in the emulation layer that handles the context switch.
As a result, the handling of subsequent requests can lead to
failures, such as faults and stack exhaustion.

Note that this challenge cannot be resolved by vSGX or
Veil. vSGX runs the App and enclave in different VMs
and can simply pause or activate one of them for context
switching, but also incurs significant overheads for cross-
VM communications during the switch. Context switches in
Veil rely on hardware, which automatically saves and restores
the contexts of the enclave and the guest OS within their
respective VMSAs. But this mechanism cannot handle the
switches triggered by exceptions.

Our solution introduces a unique design that models the
states of the SGX emulation layer using a finite state machine
(FSM). After each context switch, the layer restores its original
state under the FSM’s guidance. We achieve this by pairing
asynchronous and synchronous enclave entry and exit requests.
We save the state of the SGX emulation layer before the entry
request (EENTER/AEX) and restore it after processing the
exit request, through a carefully designed restoration strategy
based upon the FSM (e.g., restoring gs before rsp to balance
the stack). In this way, the enclave state can be guaranteed
to be correct no matter how complicated the request sequence
could become (e.g., arbitrary exceptions between EENTER
and EEXIT). This design, along with our thorough implemen-
tation of exception handling and multithreading, differentiates
NestedSGX from both Veil and vSGX.



Enclave Icreation

Sync entlry/exit

Async entry/exit Enclave destroy
1

ADD SR e et e — S — — — — — R e T e — — — — — EEL e et
o g [ =~ = [ o
= ~ z 40 wE wo = a2
F< = =i EZ = x % @ 52 =Xe]
w ] z w
OD: g O E oz 0z [N 2 [SR7} Q=
<3 OSw oK ouw ou > >< o ouw
2 28 =g < °8 ol Z g °F
NestedSGX
driver
S = o o o o — — o~ [SPPN
Pam) | ~ — - = ] W
T ig z2 T~ ar ip [ zg >
g = = SE sSuw st S s S0
S w [a] w E < )
I > > >Z >z ! >4 >@ 2
59 z4d 2% Zd 2l z'W =< Z'W Z'U
zU 2 Suw =) =17 EV 2 Fu ZUW
. U 2 2 = Y
Security
Monitor 5 @ Q. 2. - - - 0
m‘Ew & 35 B3 = 0S8 oS & m mg ol
& s S i<l 2 S &
NG5 S8 2E 2E | z8 2 8 2c - R S2¢
ToB c9 o Q oQ e 85 4 S5 21 wz g5 = 0
=935 o ) = o3 oz Sa 9§ S a 3 a S a Sog
= E La 7} > = au c S [ e 0 ®
Exg 2o T 88 bl WE >W mE == "o il o552
@ @ 5 b=X} < O = S n Q = w S o>
S o o c E 3 w 3
Enclave ____ _ _ Sy ___ 9 y__= S5y ___ ooy oy [__v__\__ [C__+v - |____ Ny _____ e v_.

Fig. 3: The management of enclave life cycles, e.g., handling synchronous and asynchronous enclave entry and exit events.

B. Enclave life cycle management

In NestedSGX, the life cycle of an enclave closely resem-
bles that of SGX. Initially, the application invokes the ECRE-
ATE leaf function to create the enclave, which initializes the
SGX Enclave Control Structure (SECS) page. Subsequently,
EPC pages necessary for the enclave, such as code sections,
data sections, and Thread Control Structure (TCS) pages,
are added using EADD and measured using EEXTEND leaf
functions. Once all the required EPC pages are added, the
enclave is initialized with EINIT, and the final measurement
is performed. Upon completion of the enclave’s execution, the
EPC pages are reclaimed using the EREMOVE Ileaf function,
and the enclave is destroyed.

NestedSGX achieves compatibility with SGX by transition-
ing to the security monitor on these leaf functions. Since
VMPL switches can only be executed in the privileged mode,
NestedSGX provides the NestedSGX-driver within the guest
OS, which accepts the request from the App and facilitates
the VMPL switch. During this process, the NestedSGX-driver
receives the type of SGX leaf functions, while the parameters
are saved on the App’s stack. The NestedSGX-driver then
switches the execution to VMPLO and transfers control to
the security monitor, where the security monitor emulates the
instructions strictly adhering to the SGX specifications.

Synchronous enclave entry and exit. Once an enclave is
initialized, the App can enter the enclave using the EENTER
leaf function and jump to the enclave’s code for execution. As
shown in Fig. 3, during the emulation of EENTER, the security
monitor switches to the enclave’s page table and enters the
enclave entry point specified by the TCS using the sysret
instruction. The enclave can then return to the App using the
EEXIT leaf function, which is also emulated by the secu-
rity monitor. Specifically, the enclave returns to the security
monitor using the syscall instruction. Subsequently, the
security monitor switches the execution to the NestedSGX-
driver running at VMPLI1. The NestedSGX-driver restores the
App’s page table and returns control to the App using the

sysret instruction.

Asynchronous enclave entry and exit. During enclave execu-
tion, faults and exceptions may occur. According to the SGX
model, these faults and exceptions are supposed to be handled
by the guest OS first. In NestedSGX, when a fault or exception
occurs within the enclave, it traps to the fault and exception
handler within the security monitor (Fig. 3). The security
monitor then emulates the Asynchronous Exit (AEX) event by
saving the context of the enclave in the state saving area (SSA).
The security monitor switches the vCPU to the NestedSGX-
driver, which operates at VMPL1. The NestedSGX-driver fills
the instruction pointer (RIP) to the trampoline area (AEP) and
invokes the handler of the guest OS. After the OS handles the
fault or exception, it uses the iret instruction to return to the
AEP. The AEP, in turn, resumes the enclave execution with the
ERESUME leaf function. The emulation of the ERESUME
leaf function is similar to that of EENTER, except that the
enclave’s execution context is restored from the SSA. As a
result, NestedSGX is able to handle exceptions that occur
during enclave execution. For example, NestedSGX supports
the emulation of the CPUID instruction, enabling the execution
of unmodified applications. *

If the untrusted NestedSGX-driver chooses not to fill RIP
with AEP, this decision does not introduce any new security
issues. This is because the control flow outside the enclave is
already vulnerable to manipulation within the SGX model and
is not inherently trusted. In NestedSGX, faults and exceptions
are firstly trapped to the security monitor, enabling easy
detection of suspicious behaviors such as abnormal interrupts
caused by page fault-based attacks. Conceptually, NestedSGX
can also support the recent AEX-notify feature [23], although
the implementation is planned for future work.



VMPLO Kernel User
5 — 1 Enclaves
SRS (ST : Enclave Enclave
EPC Allocator EPCM 1 EPC EPC
[ Usedlist _]||[ Entry 1} : Page
[_Freelist__J[{[__Entry }— Page ||| "t
1
Security monitor || —E2®__H— { Page ]
allocator 1
Entry 1
1
Enclaves page tables :
Secu_rlty Enclave page table t
monitor 1
page table 1
Enclave page table 1
= = :
VMPL1 _J |__ Kernel 1 User
1
Guest OS | App page table I : l App pages | App
1
Encl A Shad
el s IR [ M- S

Fig. 4: The guest physical address space is divided into 3
parts: the secure memory used by the security monitor, the
EPC memory, and the normal memory.

C. Memory isolation

The entire guest physical address space of the CVM is
divided into 3 parts (Fig. 4): the secure memory used by
the security monitor, the secure memory used by the enclaves
(i.e., EPC), and the normal memory used by the guest OS and
untrusted applications. The access to the secure memory is
restricted solely to VMPLO, whereas the normal memory can
be accessed by both VMPLO and VMPLI1. Notably, the SGX
control structures are stored in the memory of the security
monitor, while the enclave’s code and data pages are stored in
the memory reserved for the EPC.

Booting NestedSGX. Upon receiving a request to launch
a CVM, the platform proceeds to load the VM image and
cryptographically measures its contents. During the initializa-
tion process, the entire gPA is divided into two distinct parts.
By configuring the RMP attributes, we establish a dedicated
region of guest memory exclusively reserved for VMPLO,
while the remaining gPA regions are reserved for VMPLI.
The memory for VMPLO is further divided into two parts,
one for the security monitor and one for the enclaves.

Once the guest image is loaded, the hypervisor places the
vCPU in VMPLO mode and transfers control to the security
monitor, which is positioned at the predetermined gPA loca-
tion. The security monitor takes responsibility of initializing
the guest CPU, memory, and setting up a page table for
execution. It subsequently hands over control to the BIOS code
to initiate the booting process of the guest OS. The security
monitor advertises its presence and the memory range reserved
for VMPLO. This prevents the guest OS from attempting to
utilize any memory within that range. Any such attempts
would be detected and blocked by the VMPL permission

2In comparison, vSGX [62] requires modifying the application code in
order to bypass the CPUID check.

check, leading to RMP faults. In this manner, NestedSGX
ensures that the guest OS cannot access or interfere with the
memory of the security monitor or the enclaves.

EPC memory management. In Intel SGX, the enclave and
application share the same page table, and the hardware
prevents memory mapping attacks by performing additional
security checks during a page table walk, using the EPCM
to ensure that the memory mappings are correct. Without
hardware support, it is necessary to prevent the guest OS
from manipulating the mappings of the enclave. NestedSGX
employs a shadow page table scheme: the application’s page
table is managed by the guest OS, while the enclave’s page
table is managed by the security monitor. In situations where
the application and enclave need to share memory, such as
for parameter passing, NestedSGX maps the shared memory
to both page tables with the same gVA-to-gPA mapping. The
mapping of the parameter buffer remains fixed throughout the
entire lifetime of the enclave. Consequently, we do not need
to maintain the synchronization of the two page tables.

In NestedSGX, the security monitor is responsible for
managing the EPC memory. It maintains two lists: a free list
and a used list, containing all the EPC pages. Similarly, an
EPCM data structure is utilized to track the state of each
EPC page. During enclave initialization, when an EPC page
needs to be added to the enclave (via EADD), the security
monitor selects a page from the free list and constructs the
corresponding page table entry (PTE).

In cases when the enclave’s memory accesses result in a
page fault, the CPU triggers a trap to the security monitor. The
security monitor forwards the page fault information, including
the address of the faulting page, to the NestedSGX-driver. If
the NestedSGX-driver determines that a page frame needs to
be allocated for the enclave, it requests the security monitor
to allocate a physical page within the EPC. Additionally,
the security monitor constructs the corresponding PTE in
the enclave’s page table. Once the page fault is successfully
handled, the security monitor restores the enclave’s execution
context. Currently, NestedSGX does not support swapping the
enclave’s pages to regular memory or disk storage.

Isolation of enclaves. It is also important to prevent an
enclave from tampering with the security monitor or the
guest OS. This ensures protection against potentially malicious
enclave (i.e., enclave malware) or enclaves that may have vul-
nerabilities that could be exploited. One approach to address
this concern is to place the enclave at a distinct VMPL level,
separate from VMPLO or VMPL1, and enforce the appropriate
VMPL permissions to contain the enclave code. However, the
transition is mediated by the security monitor, necessitating at
least two VMPL switches. As a result, transitioning between
the application and the enclave becomes costly.

Instead, the enclave is positioned in user mode at VMPLO
and isolated using traditional page table-based isolation.
Specifically, NestedSGX ensures that the enclave’s page table
does not map to any gPA belonging to the security monitor or
the guest OS. As a result, transition between the application



Table II: NestedSGX software stack: the security monitor

AMD NestedSGX Attestation Report extends the SVSM framework and is mostly written in Rust
Root A SEV-SNP and assembly. The NestedSGX-driver and Intel SGX SDK are
Attestation Report . .
certifes e — mostly written in C/C++ and assembly.
* REPORT_DATA Enclave Report
AMD SEV NestedSGX AIK PubKey Component Description Line of Code
Root CA Enclave Report Data
T . . Emulation of SGX data structures,
certifies SM Measurement Security monitor instructions and AEX 3,500
* Platf M t Enclave Measurement
latiorm Measuremen . .
Verk ign Enclave Measurement NestedSGX-driver Handling sw1tcl}es between App 800
VCEK signature Signature and security monitor
[}
? signs SGX SDK & Replacing SGX instructions with 1.200
: Security Monitor Occlum IOCTL and system calls, HotCalls ’
AMD SP |- 1‘ NestedSGX AlK PubKey ‘ NestedSGX AIK Prikey Total 7,500

Fig. 5: The NestedSGX attestation report consists of two parts:
the SEV-SNP attestation report signed by VCEK, and the
enclave report signed by NestedSGX AIK. The NestedSGX
AIK is generated within the security monitor and subsequently
bound to the SEV-SNP hardware by placing its public key as
part of the SEV-SNP attestation report.

and the enclave only requires one VMPL switch.

D. Measurement, attestation and sealing

When the CVM image is loaded and measured, the page
attributes, including the access permissions of all VMPLs,
are included in the measurement. Any attempts to modify
the code and data in VMPLO and VMPLI, or to manip-
ulate the access permissions of guest pages during CVM
initialization, will be reflected in the measurement. After the
CVM is initialized, software operating at any VMPL level can
initiate an attestation report request by sending a message to
the AMD-SP firmware. The request structure comprises the
VMPL level and 512 bits of space for user-provided data,
which will be incorporated into the attestation report signed by
the AMD hardware. The local/remote attestation and sealing
mechanisms of NestedSGX closely mirror those employed by
Intel SGX. This is accomplished by emulating the correspond-
ing instructions (i.e., EGETKEY and EREPORT) within the
security monitor.

Chain of trust. When the CVM is first initialized, the security
monitor randomly generates a key pair, which serves as the
attestation identity key (AIK) of NestedSGX. The AIK is
only required to be generated once and can be reused across
different CVM boot cycles. To establish the binding between
NestedSGX’s AIK and the CVM, we include the digest of the
public part of the attestation key in the user-data field of the
attestation report request (Fig. 5), while the private key never
leaves the memory of the security monitor.

The security monitor initiates the generation of an SEV-
SNP attestation report by dispatching a SNP_REPORT_REQ
message to the AMD-SP hardware. The request message
between the security monitor and AMD SP is encrypted using
the appropriate VM Platform Communication Key (VMPCK)

for VMPLO. Upon receiving the encrypted message, the AMD-
SP hardware decrypts it, verifies its integrity, and subsequently
responds with an attestation report, which is signed with the
SEV-SNP attestation key (Versioned Chip Endorsement Key,
VCEK). The report includes the platform measurement, the
security monitor measurement, the VMPL level, and the public
key of NestedSGX’s AIK. The NestedSGX AIK is exclusively
accessible to the quoting enclave (QE) and is subsequently
used to sign the report of the enclave. This signed enclave
report, along with the SEV-SNP attestation report, collectively
constitutes the final attestation report in NestedSGX.

Upon receiving the final attestation report, the remote party
verifies the certificate chain to ensure that the SEV-SNP
attestation report is signed by VCEK. This process confirms
that the report originates from an authentic AMD processor,
has been executed within a CVM, and that the measurements
of both the platform and the security monitor are accurate.
Furthermore, he gains confidence that the AIK generated by
NestedSGX is produced and retained within the security mon-
itor. Finally, he verifies that the enclave report, which includes
the enclave measurement, is signed with NestedSGX’s AIK,
concluding the attestation process.

Sealing. The security monitor can request keys from the
AMD-SP by sending a MSG_KEY_REQ message to the
AMD-SP. Upon receiving the request, the AMD-SP derives
a key for the guest from a root key, which is responded to
the security monitor and can be used as a sealing key. The
sealing key can then be extended to support sealing of the
enclave’s secret, binding the key to the enclave’s measurement.
As part of the MSG_KEY_REQ message, the security monitor
specifies that the derived key is used by VMPLO and the
AMD-SP mixes the VMPL information into the derived key.
Although the guest OS running at VMPLI can also request
keys with the MSG_KEY_REQ message, it is not allowed to
specify VMPLO in the message, because the hardware ensures
that the specified VMPL is greater than or equal to the current
VMPL. Therefore, the guest OS cannot derive the same key
as the one derived by the security monitor.



IV. IMPLEMENTATIONS

Our implementation of NestedSGX is based on the soft-
ware stack provided by AMD, which is open-sourced on
GitHub [14]. The code consists of several components, in-
cluding QEMU, Open Virtual Machine Firmware (OVMF),
and Linux kernels for both host and guest environments. To
implement NestedSGX, we extend the existing open-source
Linux Secure VM Service Module (SVSM) framework [16],
[50], adding around 5,500 lines of code to the SVSM imple-
mentation. For VMPL switches, NestedSGX employs the stan-
dard Model Specific Register (MSR) protocol outlined in the
Guest-Host Communication Block (GHCB) specification [15].
The MSR protocol notifies the KVM to switch to the targeted
VMPL, without any modification of the KVM.

Security monitor. We based our implementation on the
main branch of SVSM without CPL3 support, and added
our own support for running user-space enclaves. The secu-
rity monitor emulates SGX leaf functions based on requests
from the NestedSGX-driver. To accommodate these requests,
a new type of SVSM protocol called SGX protocol was
introduced within the SVSM framework [50]. The security
monitor effectively enters a request loop within the SVSM
framework, allowing it to continue execution upon the ar-
rival of subsequent requests. The security monitor handles
a memory pool acting as the EPC, and faithfully emulates
SGX data structures and operations in strict adherence to
the SGX specification. We registered customized fault and
exception handlers for the enclave, emulating the AEX event.
Furthermore, we configured the system call handler by setting
the LSTAR MSR to handle the EEXIT leaf function.

To enter the enclave, the security monitor performs a series
of actions. It switches to the enclave’s page table and stack,
and then executes the sysret instruction with RCX pointing
to the entry address, effectively emulating the behavior of
EENTER and ERESUME leaf functions. The EEXIT leaf
function, on the other hand, is replaced with the syscall
instruction. In this case, the system call handler within the
security monitor manages the VMPL switches. In order to
handle AEX events, the security monitor directly accesses the
enclave’s State Saving Area (SSA) by disabling Supervisor
Mode Access Prevention (SMAP). This allows the security
monitor to handle AEX events efficiently. Since the security
monitor and the enclaves have separate page tables, we put the
privilege switching code in a trampoline page that is mapped
in both page tables, which is similar to the implementation of
kernel page table isolation (KPTT) [26].

NestedSGX-driver. The NestedSGX-driver is responsible for
managing the transitions between the App and the security
monitor. When transitioning to the security monitor, it han-
dles the SGX instruction emulation request and switches to
VMPLO using the SVSM protocol. The driver exposes the
/dev/NestedSGX device to the App, which allows the App
to invoke the request using the IOCTL interface, e.g., when
entering the enclave with EENTER or ERESUME. In cases
where the execution is returned from the enclave to the

application, such as after an AEX, OCALL request, or after
processing the ECALL request, the driver uses the sysret
instruction to resume the execution of the application.

Intel SGX SDK. We made modifications to the official Intel
SGX SDK to replace the SGX instructions. Our implementa-
tion retains the same parameter semantics and orders as SGX
for compatibility purposes. Specifically, instructions intended
for use within the enclave, such as EEXIT, EREPORT and
EGETKEY, were replaced with the syscall instruction,
which allows for invocation of the security monitor. On the
other hand, instructions meant for use within the App and
guest OS, such as EENTER, ECREATE and EINIT were
replaced with IOCTL calls, which trigger the appropriate
functionality within the NestedSGX-driver.

With the aforementioned design, the majority of SGX
programs can run on NestedSGX without requiring source
code modifications. All the sample code projects provided
by the official Intel SGX SDK, except SampleAEXNotify,
ran without any issues on NestedSGX. Furthermore, we have
adapted the Rust SGX SDK [56] and the Occlum library
OS [48] to the NestedSGX platform. Building upon Occlum,
we implemented the HotCalls optimization [58], allowing
certain OCALLs to be processed asynchronously within the
enclave without exiting it.?

Intra-enclave isolation. Since Intel SGX only supports the
monolithic model, attempts have been made to support intra-
enclave isolation, such as Nested Enclave [42] and LIGHTEN-
CLAVE [27]. However, these solutions necessitate hardware
modifications that go beyond Intel SGX’s capabilities. We
incorporated support for intra-enclave isolation, leveraging
the hardware capabilities of memory protection keys for
userspace (PKRU). We offer four PKRU APIs as syscalls
for enclaves: pkey_set, pkey_alloc, pkey_free, and
pkey_mprotect. Additionally, we provide two syscalls that
allow enclaves to enable or disable PKRU mechanisms.

Initially, the enclaves invoke the pkru_enable function,
informing the security monitor to establish the key manager.
Subsequently, the enclaves can use the pkey_alloc and
pkey_set functions to obtain a key from the manager and
make use of it through pkey_mprotect. On the pkey_m
protect function, the security monitor checks with the key
manager to verify if the key has been assigned to the enclaves.
If valid, the monitor updates the PKRU-bits of corresponding
PTEs by traversing the enclaves’ page tables. The key manager
faithfully records and updates key information, including key
attributes and the protected virtual address of enclaves. When
the enclaves invoke the pkru_free function, the security
monitor clears the PKRU-bits of the relevant PTEs. Lastly, the
enclaves can call the pkru_disable function to instruct the
security monitor to release the key manager.

3We did not cover all OCALLs but focused on optimizing 15 frequently
used ones, such as occlum_ocall_sendmsg, occlum_ocall_recvm
sg, occlum_ocall_clock_gettime, occlum_ocall_posix_mem
align, occlum_ocall_free, u_sgxprotectedfs_fread_node
and u_setsockopt_ocall etc.



V. SECURITY ANALYSIS

We conduct the security analysis by enumerating the attack
vectors under the threat model outlined in Section II-C, and
describing how NestedSGX defends against them.

Untrusted App, NestedSGX-driver and guest OS. The App
and enclave have separated page tables, where the enclave’s
page table is managed by the security monitor and not acces-
sible to the guest OS. This prevents various page table based
attacks such as address mapping attacks (i.e., manipulating the
enclave’s address mappings) and side channels based on page
fault or the access/dirty bits®*.

The NestedSGX-driver is solely tasked with the switch-
ing of the VMPL for the emulation of SGX instructions.
It may attempt to modify the emulated instruction and its
parameters, which however is equivalent to running a different
SGX instruction. As the instruction is expected to be run by
the untrusted App, this does not introduce additional attack
surfaces. On the other hand, it may try to hijack the control
flow after returning from the enclave, e.g., after EEXIT or
AEX, however the control flow can be similarly manipulated
by the malicious OS in SGX as well.

Untrusted host VMM. The VMPL switching requests are
delivered to the host VMM via the MSR protocol. The host
VMM is expected to switch to the targeted VMPL using the
VMRUN instruction with the VMSA corresponding to the
targeted VMPL as the parameter. In this process, the SEV-
SNP hardware prevents it from tampering with the VMSA,
which contains the state of the VM and the VMPL level. Upon
request, the host VMM may try not to switch the VMPL or
switch to a different VMPL, causing denial-of-service attacks,
which is out of the scope of our paper.

During VMPL switches, the host VMM observes the pat-
terns of ECALLs, OCALLs and AEXes. These leakages also
exist in Intel SGX, if the App and the host OS are untrusted.
Mitigating the side channels associated with enclave switches
are also out of the paper’s scope.

Untrusted enclave. Although the enclave operates at the
highest VMPL, it is not allowed to access the gPA belonging
to lower VMPLs, such as the lower VMPL’s VMSA. This
is achieved by page table based isolation. Only the enclave’s
pages are mapped in its page table which is being managed by
the security monitor. The hardware also prevents the enclave
from overwriting the VMPL permissions of guest pages, since
the instruction to do so (RMPADJUST, Sec. II-B) is privileged
and can only be executed by the security monitor.

In any case, the enclave is not allowed to bypass the
security monitor. For example, it cannot directly transmit data
to the host without the intervention of the security monitor.
Specifically, the instruction used for the MSR protocol (i.e.,
wrmsr) is a privileged instruction and can only be executed by
the security monitor. Another venue of triggering VMEXIT by
the enclave is through the unprivileged vimgexit instruction.

4Side channel attacks based on nested page tables (NPTs) are still possible,
since the NPTs are managed by the untrusted hypervisor.

10

However, the enclave cannot explicitly pass any data to the
host since the security monitor does not allow shared memory
between the enclave and the host. The side channel through
intentionally triggering VMEXIT is out of the paper’s scope.

For the enclave to enter the security monitor, the control
flow is directed to a fixed location as specified by the LSTAR
MSR of VMPLO. On faults and exceptions, the control flow is
directed to the fault handler as specified in the Interrupt De-
scriptor Table (IDT). This prevents the enclave from arbitrarily
diverting the control flow within the security monitor.

The enclave may try to mount DoS attacks on the guest OS,
e.g., by a busy loop that never returns, since the guest OS is
not allowed to inject an interrupt into VMPLO. NestedSGX
prevents the attack by preempting the enclave execution using
timer interrupts and triggering AEX events. We leave the
design of proactively receiving interrupt request from the guest
OS as future work.

Chain of trust analysis. The NestedSGX report includes the
SEV-SNP attestation report and enclave report. Any attempt
to tamper with the security monitor will result in a change to
the SEV-SNP attestation report, thereby ensuring the security
monitor is reliable and performs as expected. Specifically, the
security monitor generates NestedSGX’s AIK and maintains
its private key inaccessible to other components. It associates
NestedSGX’s AIK with the platform by including the digest
of the AIK’s public key in the SEV-SNP attestation report.

While the enclave operates at VMPLO, it is prohibited
from directly obtaining the SEV-SNP attestation report. Oth-
erwise, the enclave may incorporate a counterfeit AIK into
the report, which could compromise the integrity of the trust
chain, particularly if the enclave deliberately exposes the
private key of the AIK. This protection is enforced by the
fact that SNP_REPORT_REQ can only be initiated from the
kernel mode, which is the security monitor. More specifically,
SNP_REPORT_REQ necessitates shared memory with the
host VMM for passing request and response messages, but
we intentionally disable shared memory between the enclave
and the host VMM. The hardware also prevents the guest OS
(operating at VMPL1) from obtaining an SEV-SNP attestation
report for VMPLO. Specifically, the desired VMPL is provided
by the guest in the SNP_REPORT_REQ message, and the
guest can only generate attestation reports for VMPLs that
are greater than or equal to the current VMPL [17, Sec. 7.3].

The security monitor employs the SNP_GUEST_REQUEST
command to solicit the SEV-SNP attestation report. This
command establishes a trusted channel between the security
monitor and the AMD-SP firmware, encrypted with AES-
GCM authenticated encryption using the VMPCK associated
with VMPLO. Each message contains a sequence number.
Although the VMM mediates the communication between
the CVM and the firmware, it is unable to modify or drop
these messages without being detected, nor can it access the
plaintext of the messages.



Table III: Latencies of emulated SGX leaf instructions. The
emulation of ENCLS leaf instructions require VMPL switches,
which dominates the cost, while most ENCLU leaf instructions
are emulated entirely at VMPLO. The slower performance of
ENCLU leaf instructions on NestedSGX is attributed to the use
of slower Rust implementations in the cryptographic crates.

vSGX NestedSGX
ECREATE 3,719 us 8.4 us
EADD 1,421 us 8.0 us
EEXTEND 987 us 33 us
EINIT 811 us 46 us
EREMOVE 1,014 us 7.8 us
ENCLS EAUG 990 us 7.9 us
EBLOCK 841 us 9.2 us
ELDB/ELDU 1,958 us 9.3 us
EMODPR 1,071 us 9.9 us
EWB 1,819 us 7.9 us
EGETKEY 5.0 us 17 us
ENCLU EREPORT 19 us 30 us

VI. EVALUATIONS

A. Experimental setup

We deployed NestedSGX on a server with two AMD EPYC
7543 CPUs (two threads per core, total of 128 logical cores)
with 64 GB DDR4 RAM. Every CVM was allocated 4 vCPUs
and 4 GB RAM, and ran Ubuntu 22.04 with kernel version
6.5.0-snp-guest (svsm-preview-guest-v3 branch provided by
AMD). We configured 512 MB gPA for the security monitor
and the enclaves. The modified Linux SGX SDK was based on
version 2.20, and the Occlum version was version 0.29.7. We
used the main branch of the linux-svsm framework (commitID:
8d518f1). The SVSM framework and the security monitor
were compiled with Rust in the default mode (-O0). All
programs were compiled with GCC 11.4.0 and the same
optimization level (-O2).

The baseline was conducted on the same AMD server
running in the SGX SDK simulation mode (sim mode), which
does not provide any security guarantees. Specifically, we
used the same code base under the same optimization level
and compiling options. Notably, as a result of the HotCalls
optimization, applications running on Occlum experienced
improved performance without the need for any modifications
to their source code. We were not able to reproduce the
experiment reported in vSGX, and the vSGX results are taken
directly from the published paper [62]. The Intel platform for
comparison was equipped with an Intel Xeon Platinum §369B
CPU and 64 GB RAM.

B. Micro-benchmarks

SGX leaf instructions. We measured the emulated SGX
leaf instructions in NestedSGX, averaging the results over
10,000 runs. As shown in Table III, all ENCLS leaf in-
structions on NestedSGX are significantly faster than vSGX.
This is attributed to the requirement of VMPL switches for
emulating ENCLS leaf instructions on NestedSGX, whereas
vSGX necessitates more costly cross-VM communications.

11

Table IV: Latencies of context switches. The cost of Nest-
edSGX includes the following parts: a VMPL switch round-
trip which costs about 19,400 cycles on our platform, the SGX
SDK routine which costs 4000-5500 cycles, and the rest is
the cost of our unoptimized implementation of the security
monitor in emulating SGX instructions (including an EENTER
and an EEXIT, which cost about 9,000 cycles).

Intel SGX vSGX NestedSGX
ECALL 10,988 cycles (4.1 us) =~ 1,500 us 33,584 cycles (12 us)
OCALL 9,337 cycles (3.5 us) - 32,014 cycles (11 us)

Both EGETKEY and EREPORT on NestedSGX are slower
than those on vSGX, which we confirmed is due to the
use of the Rust rust—-crypto crate that is slower than
the implementation used by vSGX. Notably, EGETKEY and
EREPORT are not heavily invoked in practice.

Context switches. We measured the latency of ECALLs and
OCALLs in NestedSGX. The test runs empty edge calls with
no explicit parameters 100,000 times and takes the average
value. As shown in Table IV, the latency of context switches in
NestedSGX is 1.9x — 2.1x higher than Intel SGX, but is still
two orders of magnitude faster than vSGX. Notably, existing
works on Intel SGX, including EleOS [41], HotCalls [58] and
Switchless calls [51] can be further applied to NestedSGX to
reduce the cost brought by context switches.

Linux/Unix nbench. Linux/Unix nbench is a benchmark suite
that focuses on evaluating the performance of a computer
system’s CPU, FPU, and memory system [38]. We utilized
an adapted version of nbench, namely SGX-NBench [1] to
evaluate the computation performance of NestedSGX. Fig. 6a
demonstrates that NestedSGX introduces an overhead of ap-
proximately 1.3% on average over the baseline, which we
believe mostly attributes to the context switches introduced
by SGX-NBench during the evaluation.

Lmbench. Lmbench is a benchmark suite commonly em-
ployed to assess various aspects of system behavior. In our
evaluation, we utilized the SGX version of Lmbench, known
as SGX-bench [28], specifically employing the bw_mem test to
evaluate the memory bandwidth. We conducted 10,000 repeti-
tions of the test and recorded the average values. The memory
block size for every access was set to 2 MB. The results,
presented in Fig. 6b, indicate that the memory bandwidth
achieved is 98.7% of the baseline.

WolfSSL [11]. We performed an evaluation of WolfSSL
with Intel SGX [12]. This benchmark primarily focuses on
computation-intensive tasks, such as encryption, decryption,
digests, and signature verification. As illustrated in Fig. 6d,
NestedSGX introduces an average overhead of about 0.78%
compared to the baseline.

Flexible 1/0 Tester (FIO) [10] with Occlum. We conducted
an evaluation of the I/O performance of NestedSGX by
utilizing FIO (v3.28) with Occlum in the default configuration.
Our focus was on benchmarking the bandwidth of randomized



[ Sim mode NestedSGX 721 SGX-hardware
2.90 ) ) N ) ) N ) ) )
2.85
2.80

Iterations/sec (normalized)

(a) Linux/Unix nbench

[ Sim mode NestedSGX F—Z1 SGX-hardware

Memory bandwidth (MB/s)

(b) Lmbench

[ Sim mode + Occlum NestedSGX + Occlum [Z1] SGX-hardware + Occlum

Bandwidth (MB/s)

=5 A A = /] 7 /]
seq-read seq-write seq-rdwr rand-read rand-write rand-rdwr

(c) FIO

[ Sim mode NestedSGX [Z1 SGX-hardware
1.02 101
10 1.00 100 101 0,99 099 099 G99 @99 Eog Z99 G99 100 099 G99 099 099 gog LOO = 100 1.00 o 699
-l 11 Milool 02
o 189) 5' 2
% a A 1187 749186 1878 f il 86l ’
IS f ‘ o) i & 1 0 e ' U '
: 291 g Al /
£ os} 11 / / gl f 7 g
s i / A1 1411/ 1
A / ad141: 1
£ 11 0 { Al Al 100 '
5 7] (] # f 1 Ik O
f O REELERRER R LR 1
[ : ; :
06 datdadadadaddnyd dadda0494ad il
G s ) ° C O o & .
%:&ci}cﬁi%oa“;%c‘:j;,oZ“}&c"i;@\'et“eot\{zc\nﬁf:cw‘%@'“}2@“‘3‘;F‘z o mo}"ﬁo?t“o?tﬁo?foé““\ 2 W "x\;\‘*ﬁ@k‘iwcsi;*\"ﬁ ‘?e;eﬁff:e*e‘
B LS N S I Ut et N T AT A C N N CIt AN N o
177 7 o e e e o e e e N ot o ot Mo A 25

O LN L
Pé'x Pz‘:‘x ‘;/,9'\ Psé’” g&‘l P@‘?‘l

(d) Wolfssl

Fig. 6: Micro-benchmarks.

and sequential read and write operations to the disk, utilizing
a single thread. We chose the direct I/O mode for sequential
operations. Each test involved accessing a 256 MB file with a
block size of 256 KB per access. We repeated the test 10 times,
with each iteration lasting 100 seconds, and calculated the
average bandwidth from all the runs. As depicted in Fig. 6c¢,
the I/O read performance of NestedSGX is approximately
65.3% of the baseline, while the I/O write performance is
similar to the baseline, possibly due to Occlum’s optimizations
to reduce the context switches in write operations.

C. Real-world evaluations

Hash join. Hash join is used to implement the “equivalent-
join” operation in modern databases. It involves creating a hash
table from rows of the first table and then probes it with rows
of the second table. We used the open-source implementation
of the algorithm in SGXGauge [8], [34]. We varied the size of
the first table (from 500K to 1M records) and fixed the second
table (100K), effectively varying the memory and computation
intensive nature of the workload. As shown in Fig. 7a, the
overhead of NestedSGX is negligible.

12

SQLite. We utilized the publicly available version of SQLite
(v3.19.3) operating on Intel SGX [3]. To evaluate the memory
performance of NestedSGX, we configured the database to
function in-memory mode and incorporated the client within
the enclave. We conducted performance evaluations across
various record sizes, measuring the time required for 100,000
database operations. Specifically, we employed three represen-
tative workloads within the Yahoo! Cloud Serving Benchmark
(YCSB) suite [2]: workload A (update heavy with 50% reads
and 50% updates), D (read latest, i.e., delete old ones, insert
new ones and read mostly the new ones), and F' (short range
scan) for the evaluation. As shown in Fig. 7b, NestedSGX
introduces about 0.77% overhead on average over the baseline.

TLS server. We utilized the open-source SGX-OpenSSL
project and a sample implementation of a TLS server in an
enclave [6] for our evaluation. The TLS client operated within
the native CVM and sent requests to the server over the
local loop-back. To measure the average latency, we employed
the tls-perf benchmarking tool [9] and set the number of
requesting threads to 1, 2, 5, 10, 20, 30, 40, 50 respectively.
As illustrated in Fig. 7c, NestedSGX incurs approximately a



7 - Simmode -a- NestedSGX -=- SGX-hardware - Sim mode 4~ NestedSGX_-w- SGX-hardware

Latency (

Throughput (kop/s)

UM_L

Latency (ms)

Throughput (handshakes/s)

600 700 800

Hash table size (x1000)

900 50 75 100 125 150 175 200

Number of records (x1000)

(a) Hash join (b) SQLite

10

Throughput (kop/s)
Number of requesting threads

(c) TLS server (d) Redis with Occlum

Fig. 7: Real world application benchmarks.

9.75% overhead over the baseline.

Redis. We ran a Redis (v6.0.9) database server with Occlum
on NestedSGX. The database was configured as an in-memory
setup, and we applied the YCSB workload A for our eval-
uation. We first loaded 5,000 records (in total 5 MB data),
and subsequently executed 10,000 operations from 20 clients
over the local loopback. We gradually increased the request
frequency and measured the corresponding latency at different
throughput levels. As shown in Fig. 7d, NestedSGX achieved
a throughput of 84.32% (15.68% overhead) compared to the
baseline. The latency overhead was found to be 6.4% under
low load conditions and increased to approximately 55% as
the system approached its maximum throughput.

VII. LIMITATIONS & FUTURE WORKS

Limitations. Since our implementation is still in the proto-
type stage, NestedSGX has some limitations to fully support
the SGX model. Firstly, the security monitor manages the
enclave’s page tables, which prevents the guest OS from
manipulating the enclave’s page tables for potential address
mapping attacks. Since the App and enclave have separate
page tables, the enclave cannot access the App’s memory,
as their memory views may differ if the App’s page table
is updated without synchronizing with the enclave’s page
table. Therefore, features such as user_check and memory
sharing are not currently supported by NestedSGX. Secondly,
the NestedSGX-driver does not currently support swapping the
enclave’s memory to disks. Thirdly, the guest OS lacks the
capability to inject an interrupt into VMPLO. This limitation
imposes constraints on the OS’s scheduling of enclave threads.
Finally, compatibility is currently provided on top of SGX
SDK and Occlum. Thus, applications that are purely written
in the SGX instruction set without any SDK or LibOS are not
yet supported. We do not think that any of these limitations
are inherent to NestedSGX, e.g., memory sharing could be
supported if updates to the App’s page table were synchronized
with the enclave’s page table via VMPL switches.

Supporting other VM-based TEEs. Recently, ARM CCA
introduces the support of different planes within a CVM,
in which each plane is essentially a separated VM but they
all share the same guest physical address space. Plane 0 is
more privileged and can run a paravisor which manages the
switches between other planes and can restrict the memory
accessible by other planes [18]. According to ARM’s roadmap,

13

the paravisor is designed to support secure services such as
vIPM emulation. Similarly, we can re-purpose the paravisor
to support running userspace enclaves. TDX supports a similar
feature named TD partitioning. Therefore, it is promising
that NestedSGX can be extended to other CVM platforms.
However, it is worth mentioning that the TDX module and
CCA’s Realm Management Monitor (RMM) are critical for
the memory isolation and secure management of CVMs, and
the customization of these components may not be allowed by
chip companies. In fact, only the TDX module signed by Intel
can run in the Secure Arbitration Mode (SEAM).

Supporting other TEE abstractions. NestedSGX adopts
the SGX model as it is arguably the most prevalent TEE
with process abstraction. The NestedSGX platform can be
enhanced to accommodate other TEE abstractions, such as
ARM TrustZone. Specifically, VMPLO could run the trusted
OS (e.g., OP-TEE) and trusted applications (TAs), providing
secure services to the guest OS running at VMPL1, which is
analogous to the normal world. The SMC instruction is used to
handle transitions between the secure world and normal world.
In TrustZone, the SMC handler is within the trusted firmware.
In our system, the SMC instruction needs to be replaced with
a VMPL switching request, which transfers the execution to
the trusted OS. This allows porting existing applications built
on ARM TrustZone to SEV-SNP CVMs.

VIII. RELATED WORKS

Integrity Measurement Architecture (IMA). Integrity plays
a vital role in ensuring system security by guaranteeing
the exclusive loading of authentic software onto a machine.
Measured boot, utilizing the Trusted Platform Module (TPM),
securely captures measurements of all boot software, culminat-
ing in the loading and execution of the OS kernel. The Linux
Integrity Measurement Architecture (IMA) expands upon the
concept of measured boot by comprehensively recording all
software executions and file accesses within the OS, securely
storing them in the TPM [43]. The Container-IMA (C-IMA)
extends IMA to containers, enabling the measurement of
container images and the runtime integrity measurement of
container processes [36].

In lieu of TPM, TZ-IMA extends the storage of measure-
ments in TrustZone [49]. Recently, Intel introduced a solution
of IMA in confidential cloud environments, with a focus



on Intel TDX, enabling IMA of programs and applications
running in Intel trusted domain (TD) during runtime [7].

However, IMA in general assumes the trust of the boot
components, which includes the BIOS, bootloader and guest
OS, leading to potentially large TCB and expanded attack
surface. For example, it has been shown that IMA can be
bypassed with a malicious block device [20]. In contrast, the
core root of trust for measurement of NestedSGX (i.e., the
security monitor) operates at VMPLO and we do not place
trust on the guest OS. Moreover, the security monitor not only
measures the integrity of both enclave code and data but also
ensures that the enclave runs in an isolated environment from
the guest OS, which is beyond the design goal of IMA.

Establishing the enclave abstraction within TEEs. With
the emergence of Intel SGX, endeavors have been undertaken
to enhance the interoperability between Intel SGX and other
TEE platforms. Notably, Komodo [24], Sanctuary [21], and
SecTEE [61] offer support for enclave abstractions on ARM
TrustZone. HyperEnclave [31] re-introduces Intel SGX on
standard AMD hardware through the use of a small and
trusted hypervisor. In contrast to these works, NestedSGX sets
itself apart by adopting a distinctive model. While the guest
OS remains shielded from the untrusted hypervisor, it is not
entirely trusted. Consequently, NestedSGX enables enhanced
protection for enclaves within the feature-rich guest OS. Most
related to our work are vSGX [62] and Veil [13]. A more
detailed comparison with them is provided in Sec. III-A.

Security and performance enhancement using the VMPL
feature. Hecate [25] utilizes VMPLO as an L1 hypervi-
sor, operating within the CVM on top of the untrusted LO-
hypervisor (host VMM). Hecate enables the migration of on-
premises workloads by maintaining compatibility with unmod-
ified VM images and implementing security policies, such
as network firewalls. Honeycomb [37] executes a validator
within VMPLO, safeguarded from other software. The val-
idator analyzes the binary code of a GPU kernel to validate
that each memory instruction within the GPU kernel can
only access specific memory regions, employing static analysis
techniques. SVSM-vTPM [40] employs VMPL to isolate the
virtual TPM (vVTPM) from the guest OS, ensuring the integrity
of vTPM’s functionalities and the security of the root key for
remote attestation. However, all these solutions do not provide
isolation for user programs from the untrusted guest OS.

IX. CONCLUSIONS

Although confidential computing aims to protect the con-
fidentiality and integrity of code and data within TEEs, it
remains challenging to control code within CVMs since the
feature-rich guest OS is free to load any code. This pa-
per presents NestedSGX, a secure and efficient solution for
maintaining control over the integrity of code and data in
TEEs. NestedSGX creates hardware enclaves inside CVMs
with VMPL, which ensures remote attestation of trusted and
measured code. NestedSGX is compatible with Intel SGX and
easily integrated into existing systems. NestedSGX incurs a
small overhead in most real-world applications.

14

ACKNOWLEDGMENTS

We would like to express our sincere gratitude to the
anonymous reviewers and our shepherd for their insightful and
valuable feedback. The authors from Institute of Information
Engineering were supported in part by the National Key
R&D Program of China (Grant No. 2020YFB1805402), the
National Natural Science Foundation of China (Grant No.
62272452), the Strategic Priority Research Program of the
Chinese Academy of Sciences (Grant No. XDB0690100) and
the research grant from Ant Group. Corresponding authors:
Shoumeng Yan (shoumeng.ysm@antgroup.com) and Rui Hou
(hourui @iie.ac.cn).

REFERENCES
[1]
[2]

“The nbench benchmark ported to SGX,” https://github.com/utds3lab/sg
x-nbench, 2017.

“Core Workloads (YCSB),” https://github.com/brianfrankcooper/YCSB
/wiki/Core-Workloads, 2021.

“SQLite,” https://www.sqlite.org, 2021.

“Arm confidential compute architecture,” https://developer.arm.com/
documentation/den0125/0200/?lang=en. Referenced December 2022,
2022.

“Intel software guard extensions overview,” https://www.intel.com/co
ntent/www/us/en/developer/tools/software- guard-extensions/overview.h
tml. Referenced December 2022, 2022.

“OpenSSL library for SGX application,” https://github.com/sparkly9399
/SGX-OpenSSL, 2023.

“Runtime integrity measurement and attestation in a trust domain,” https:
/Iwww.intel.com/content/www/us/en/developer/articles/community/runti
me-integrity-measure-and-attest-trust-domain.html, 2023.

“SGXGauga comprehensive benchmark suite for Intel SGX,” https://gi
thub.com/sandeep007734/SGXGauge-Benchmark, 2023.

“TLS handshakes benchmarking tool,” https://github.com/tempesta-tech
/ts-perf, 2023.

“Flexible I/0O Tester,” https://github.com/axboe/fio, 2024.

“WolfSSL and wolfCrypt Benchmarks — Embedded SSL/TLS library,”
https://github.com/wolfSSL/wolfssl, 2024.

“wolfSSL with Intel SGX,” https://www.wolfssl.com/wolfssl-with-intel
-sgx/, 2024.

A. Ahmad, B. Ou, C. Liu, X. Zhang, and P. Fonseca, “Veil: A protected
services framework for confidential virtual machines,” in 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (to appear), 2024.

AMD, “AMD ESE,” https://github.com/AMDESE/, 2023.

——, “Guest Hypervisor Communication Block Standardization,” https:
//www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/s
pecifications/56421.pdf, 2023.

, “Linux SVSM (Secure VM Service Module) for secure x86
virtualization in Rust,” https:/github.com/AMDESE/linux-svsm, 2023.
——, “Sev secure nested paging firmware abi specification,” https://
www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/spe
cifications/56860.pdf, 2023, publication # 56860.

Arm, “Evolution of the arm confidential compute architecture,” https:
/lwww.youtube.com/watch?v=1AsvIt7bSLY, 2024.

A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi, “The
guard’s dilemma: Efficient Code-Reuse attacks against intel SGX,” in
27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
1213-1227.

F. Bohling, T. Mueller, M. Eckel, and J. Lindemann, “Subverting
linux’integrity measurement architecture,” in Proceedings of the 15th
International Conference on Availability, Reliability and Security, 2020,
pp. 1-10.

F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANC-
TUARY: ARMing TrustZone with user-space enclaves,” in NDSS, 2019.
S. Checkoway and H. Shacham, “lago attacks: Why the system call
API is a bad untrusted RPC interface,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, pp. 253-264, 2013.

[3]
[4]

[5]

[6]
[7]

[8]
[9]

[10]
[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]


mailto:shoumeng.ysm@antgroup.com
mailto:hourui@iie.ac.cn
https://github.com/utds3lab/sgx-nbench
https://github.com/utds3lab/sgx-nbench
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://www.sqlite.org
https://developer.arm.com/documentation/den0125/0200/?lang=en
https://developer.arm.com/documentation/den0125/0200/?lang=en
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://github.com/sparkly9399/SGX-OpenSSL
https://github.com/sparkly9399/SGX-OpenSSL
https://www.intel.com/content/www/us/en/developer/articles/community/runtime-integrity-measure-and-attest-trust-domain.html
https://www.intel.com/content/www/us/en/developer/articles/community/runtime-integrity-measure-and-attest-trust-domain.html
https://www.intel.com/content/www/us/en/developer/articles/community/runtime-integrity-measure-and-attest-trust-domain.html
https://github.com/sandeep007734/SGXGauge-Benchmark
https://github.com/sandeep007734/SGXGauge-Benchmark
https://github.com/tempesta-tech/tls-perf
https://github.com/tempesta-tech/tls-perf
https://github.com/axboe/fio
https://github.com/wolfSSL/wolfssl
https://www.wolfssl.com/wolfssl-with-intel-sgx/
https://www.wolfssl.com/wolfssl-with-intel-sgx/
https://github.com/AMDESE/
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56421.pdf
https://github.com/AMDESE/linux-svsm
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/specifications/56860.pdf
https://www.youtube.com/watch?v=1AsvIt7bSLY
https://www.youtube.com/watch?v=1AsvIt7bSLY

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing, I. Alexan-
drovich, T. Kim, F. Piessens, M. Vij, and M. Silberstein, “AEX-Notify:
Thwarting precise Single-Stepping attacks through interrupt awareness
for intel SGX enclaves,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 4051-4068.

A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Us-
ing verification to disentangle secure-enclave hardware from software,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 287-305.

X. Ge, H.-C. Kuo, and W. Cui, “Hecate: Lifting and shifting on-premises
workloads to an untrusted cloud,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
pp. 1231-1242.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Mangard,
“Kaslr is dead: long live kaslt,” in Engineering Secure Software and
Systems: 9th International Symposium, ESSoS 2017, Bonn, Germany,
July 3-5, 2017, Proceedings 9. Springer, 2017, pp. 161-176.

J. Gu, B. Zhu, M. Li, W. Li, Y. Xia, and H. Chen, “A Hardware-Software
co-design for efficient Intra-Enclave isolation,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 3129-3145.

A. Hasan, R. Riley, and D. Ponomarev, “Port or shim? stress testing
application performance on intel sgx,” in 2020 IEEE International
Symposium on Workload Characterization (IISWC). 1EEE, 2020, pp.
123-133.

Intel, “Intel SGX SDK,” https://github.com/intel/linux-sgx/, 2020.
——, “Intel Trust Domain Extensions,” https://software.intel.com/conte
nt/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf, 2020.
Y. Jia, S. Liu, W. Wang, Y. Chen, Z. Zhai, S. Yan, and Z. He, “Hyper-
Enclave: An open and cross-platform trusted execution environment,” in
2022 USENIX Annual Technical Conference (USENIX ATC 22), 2022,
pp. 437-454.

M. R. Khandaker, Y. Cheng, Z. Wang, and T. Wei, “COIN attacks: On
insecurity of enclave untrusted interfaces in SGX,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020, pp. 971-985.
P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” Communications of the ACM, vol. 63, no. 7,
pp. 93-101, 2020.

S. Kumar, A. Panda, and S. R. Sarangi, “A comprehensive benchmark
suite for Intel SGX,” arXiv preprint arXiv:2205.06415, 2022.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on security
and privacy. 1EEE, 2015, pp. 605-622.

W. Luo, Q. Shen, Y. Xia, and Z. Wu, “Container-IMA: A privacy-
preserving integrity measurement architecture for containers,” in 22nd
International Symposium on Research in Attacks, Intrusions and De-
fenses (RAID 2019), 2019, pp. 487-500.

H. Mai, J. Zhao, H. Zheng, Y. Zhao, Z. Liu, M. Gao, C. Wang,
H. Cui, X. Feng, and C. Kozyrakis, “Honeycomb: Secure and efficient
GPU executions via static validation,” in 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), 2023, pp.
155-172.

U. F. Mayer, “Linux/Unix nbench,” https://www.math.utah.edu/~mayer
/linux/bmark.html, 2017.

F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-
Hurd, and C. Rozas, “Intel software guard extensions (Intel SGX)
support for dynamic memory management inside an enclave,” in Pro-
ceedings of the Hardware and Architectural Support for Security and
Privacy 2016, 2016, pp. 1-9.

V. Narayanan, C. Carvalho, A. Ruocco, G. Almadsi, J. Bottomley, M. Ye,
T. Feldman-Fitzthum, D. Buono, H. Franke, and A. Burtsev, “Remote
attestation of SEV-SNP confidential VMs using e-vIPMs,” in Annual
Computer Security Applications Conference (ACSAC), 2023.

M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: Exitless
OS services for SGX enclaves,” in Proceedings of the Twelfth European
Conference on Computer Systems, 2017, pp. 238-253.

J. Park, N. Kang, T. Kim, Y. Kwon, and J. Huh, “Nested enclave: Sup-
porting fine-grained hierarchical isolation with sgx,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2020, pp. 776-789.

15

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
(51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and
implementation of a tcg-based integrity measurement architecture,” in
USENIX Security symposium, vol. 13, no. 2004, 2004, pp. 223-238.

B. Schliiter, S. Sridhara, A. Bertschi, and S. Shinde, “Wesee: Us-

ing malicious# vc interrupts to break amd sev-snp,” arXiv preprint
arXiv:2404.03526, 2024.

B. Schliiter, S. Sridhara, M. Kuhne, A. Bertschi, and S. Shinde, “Heckler:
Breaking confidential vms with malicious interrupts,” arXiv preprint
arXiv:2404.03387, 2024.

M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using sgx to conceal cache attacks,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 3-24.

A. SEV-SNP, “Strengthening vm isolation with integrity protection and
more,” White Paper, January, 2020.

Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan,
“Occlum: Secure and efficient multitasking inside a single enclave of
intel sgx,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 955-970.

L. Song, Y. Ding, P. Dong, Y. Guo, and C. Wang, “Tz-ima: Sup-
porting integrity measurement for applications with arm trustzone,” in
International Conference on Information and Communications Security.
Springer, 2022, pp. 342-358.

A. SVSM, “Secure vm service module for sev-snp guests,” 2022.

H. Tian, Q. Zhang, S. Yan, A. Rudnitsky, L. Shacham, R. Yariv,
and N. Milshten, “Switchless calls made practical in Intel SGX,” in
Proceedings of the 3rd Workshop on System Software for Trusted
Execution, 2018, pp. 22-27.

F. Toffalini, M. Graziano, M. Conti, and J. Zhou, “SnakeGX: a sneaky
attack against SGX enclaves,” in International Conference on Applied
Cryptography and Network Security. Springer, 2021, pp. 333-362.

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient Out-
of-Order execution,” in 27th USENIX Security Symposium (USENIX
Security 18), 2018, pp. 991-1008.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page Table-Based
attacks on enclaved execution,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1041-1056.

S. Van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). 1EEE, 2019,
pp. 88-105.

H. Wang, P. Wang, Y. Ding, M. Sun, Y. Jing, R. Duan, L. Li, Y. Zhang,
T. Wei, and Z. Lin, “Towards memory safe enclave programming with
rust-sgx,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 2333-2350.

W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 2421-2434.

O. Weisse, V. Bertacco, and T. Austin, “Regaining lost cycles with
HotCalls: A fast interface for SGX secure enclaves,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 81-93.

Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. 1EEE, 2015, pp. 640-656.

R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lii, A. Kogler,
and M. Schwarz, “CacheWarp: Software-based Fault Injection using
Selective State Reset,” in USENIX Security, 2024.

S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “SecTEE: A
software-based approach to secure enclave architecture using TEE,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019, pp. 1723-1740.

S. Zhao, M. Li, Y. Zhang, and Z. Lin, “vSGX: Virtualizing SGX enclaves
on AMD SEV,” in 2022 IEEE Symposium on Security and Privacy (SP).
IEEE, 2022.


https://github.com/intel/linux-sgx/ 
https://software.intel.com/content/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdxwhitepaper-v4.pdf
https://www.math.utah.edu/~mayer/linux/bmark.html
https://www.math.utah.edu/~mayer/linux/bmark.html

ARTIFACT APPENDIX
A. Description & Requirements

NestedSGX can support existing SGX toolchains (the
adapted SGX SDK and Occlum library OS) and run SGX
applications atop AMD SEV-SNP confidential VMs (CVMs).
This artifact contains the binaries of the security monitor, and
documentations on how to setup the NestedSGX environment.

The artifact includes benchmarks for edge calls (i.e.,
ECALLs and OCALLs), and benchmarks for the real-world
workloads, including NBench, SQLite and Redis etc. We
offer scripts to replicate the results outlined in the paper, as
summarized in Table V.

1) How to access: Check
https://github.com/NestedSGX/nestedsgx-ndss25-ae/.
DOI link of our project is given below.

o Normal version: 10.5281/zenodo.14241711.

o Hotcall version: 10.5281/zenodo.14226886.

2) Hardware dependencies: :

e 3rd Gen AMD EPYC processors with SEV-SNP enabled

in the BIOS.

« RAM > 16 GB.

o Free disk space > 200 GB.

3) Software dependencies:

Linux with the specified kernel version (i.e.,
6.2.0-26-generic) to build the NestedSGX
environment. We recommend Ubuntu 22.04 which uses
this version of kernel as the default.

Git.

GCC 11.4.0.

Rust tool chain nightly 1.71.

4) Benchmarks:

NBench [1].

Lmbench [1].

FIO [10].

Wolfssl [12].

SGXGauge [8].

SQLite [3].

SGX-OpenSSL [6].

Redis.

Occlum [48].

B. Artifact Installation & Configuration

out
The

The Major steps to set up the environment and reproduce the
results are listed below. For more detailed instructions, please
refer to the guidelines outlined in the README . md file.

o Configure the environment. Begin by setting up the
environment following AMD’s Linux SVSM project [16].

16

This process involves building specific kernels for both
the host OS and the guest OS, along with the correspond-
ing QEMU and OVMF files..

Replace the security monitor. Substitute the original
svsm.bin with our customized version to serve as the
security monitor for initiating NestedSGX.

Install the guest module. Install our guest module on
the guest OS. This kernel module facilitates redirecting
control flow within NestedSGX.

Prepare the Linux SGX SDK environment. Set up the
Linux SGX SDK environment to enable simulation mode
in the guest VM. Once completed, you can run micro-
benchmarks like NBench, Lmbench, Wolfssl, as well as
macro-benchmarks including hash join, SQLite, and TLS
server.

Set up the Occlum library OS for FIO and Redis.
Compile and install the modified Occlum to support FIO
and Redis. Enhance the performance of these benchmarks
by utilizing the HotCalls versions of both the Intel SGX
SDK and Occlum.

C. Major Claims

e (C1): The latencies of emulated SGX leaf instructions
and edge-calls in NestedSGX are reported in Table III
and Table IV, which are about 2x higher than Intel SGX,
but two orders of magnitude faster than vSGX. These are
proven by the experiments (E1) and (E2) in Table V.
(C2): For micro-benchmarks, NestedSGX incurs a low
overhead (< 2%) for computation and memory intensive
tasks (i.e., Nbench and Lmbench), and a high overhead
(up to 34.7%) for I/O intensive tasks (i.e., FIO). These
are reported in Fig. 6 and are proven by the experiments
(E3), (E4), (ES) and (E6).

(C3): For real-world evaluations, NestedSGX incurs a low
overhead (< 1%) for computation and memory intensive
tasks (i.e., Hash join and SQLite), and a high overhead
(up to 15.68%) for I/O intensive tasks (i.e., TLS server
and Redis). These are reported in Fig. 7 and are proven
by the experiments (E7), (E8), (E9) and (E10).

D. Evaluation

We provide a list of all the experiments included in the
artifact in Table V. For detailed steps to replicate our results,
please refer to the scripts in the benchmarks directory. We
also provide instructions to collect the results and the scripts
to plot the figures (please see benchmarks/README . md).


https://github.com/NestedSGX/nestedsgx-ndss25-ae/
https://doi.org/10.5281/zenodo.14241711
https://doi.org/10.5281/zenodo.14226886

Table V: Summary of the benchmarks included in the artifact. We do not currently offer scripts to plot the results of FIO,
Redis, and the TLS server as these benchmarks necessitate some manual effort during the evaluation. The readers can still use
our provided scripts to plot the results of FIO and Redis on the version of NestedSGX that does not support HotCalls.

No. Experiments Figure/Table Estimated time Description

(E1)  Leaf instructions Table III Im The latency of emulated SGX leaf instructions.

(E2) edge-calls Table 1V 10s The latency of ECALLs/OCALLs.

(E3) NBench Figure 6a 10m Performance scores of NBench inside the enclaves.

(E4) Lmbench Figure 6b 10m Lmbench memory bandwidth inside the enclaves.

(ES) FIO Figure 6¢ 10m Bandwidth of FIO read and write operations inside the enclaves.
(E6) Wolfssl Figure 6d 10m Throughput of Wolfssl algorithms inside the enclaves.

(E7) Hash join Figure 7a 15m Latency of hash join inside the enclaves.

Throughput of in-memory SQLite database with different

(E8) SQLite Figure 7b 15m number of records, under YCSB A workload.
(E9) TLS server Figure 7¢ 15m Throughput of TLS server inside the enclaves.
(E10) Redis Figure 7d 20m Latency-throughput curve of Redis in-memory database server

inside the Occlum LibOS with increasing request frequencies.

17



	Introduction
	Background
	Intel SGX
	SEV-SNP and VMPL
	Threat model

	Design
	Overview
	Enclave life cycle management
	Memory isolation
	Measurement, attestation and sealing

	Implementations
	Security Analysis
	Evaluations
	Experimental setup
	Micro-benchmarks
	Real-world evaluations

	Limitations & Future Works
	Related Works
	Conclusions
	References
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation


