
EAGLEYE: Exposing Hidden Web Interfaces in IoT
Devices via Routing Analysis

Hangtian Liu∗†§, Lei Zheng†, Shuitao Gan†§B, Chao Zhang†‡∗∗, Zicong Gao∗,
Hongqi Zhang∗¶, Yishun Zeng†, Zhiyuan Jiang∥B, Jiahai Yang†

∗Information Engineering University †Institute for Network Sciences and Cyberspace (INSC), Tsinghua University
‡Zhongguancun Laboratory §Laboratory for Advanced Computing and Intelligence Engineering
¶Henan Key Laboratory of Information Security ∥National University of Defense Technology

∗∗JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.

Abstract—Hidden web interfaces, i.e., undisclosed access chan-
nels in IoT devices, introduce great security risks and have
resulted in severe attacks in recent years. However, the definition
of such threats is vague, and few solutions are able to discover
them. Due to their hidden nature, traditional bug detection
solutions (e.g., taint analysis, fuzzing) are hard to detect them. In
this paper, we present a novel solution EAGLEYE to automatically
expose hidden web interfaces in IoT devices. By analyzing
input requests to public interfaces, we first identify routing
tokens within the requests, i.e., those values (e.g., actions
or file names) that are referenced and used as index by the
firmware code (routing mechanism) to find associated handler
functions. Then, we utilize modern large language models to
analyze the contexts of such routing tokens and deduce their
common pattern, and then infer other candidate values (e.g.,
other actions or file names) of these tokens. Lastly, we perform a
hidden-interface directed black-box fuzzing, which mutates the
routing tokens in input requests with these candidate values as
the high-quality dictionary. We have implemented a prototype
of EAGLEYE and evaluated it on 13 different commercial IoT
devices. EAGLEYE successfully found 79 hidden interfaces, 25X
more than the state-of-the-art (SOTA) solution IoTScope. Among
them, we further discovered 29 unknown vulnerabilities including
backdoor, XSS (cross-site scripting), command injection, and
information leakage, and have received 7 CVEs.

I. INTRODUCTION

IoT (Internet of Things) devices have been widely used in
modern society. As reported [21], the number of IoT devices
has reached 16.7 billion until 2023 and has been continuously
growing. The explosive growth of IoT has been accompanied
by increasingly serious security incidents [3].

Among various security issues of IoT devices, the hidden
web interface issue is often overlooked due to its hidden
nature. But it leaves undisclosed access channels to attackers
and is very likely to cause serious incidents. For instance,
the vulnerability CVE-2023-3519 in Citrix products [11] was

BCorresponding authors: ganshuitao@gmail.com, jzy@nudt.edu.cn

confirmed as critical (with a CVSS score of 9.8), which comes
with a typical stack overflow in a hidden interface, and could
lead to unauthorized remote code execution in the device. In
recent years, vulnerabilities and security incidents introduced
by hidden web interfaces quickly grew, including but not
limited to many serious vulnerabilities of network devices1.
Thus, the security risks of hidden web interfaces in IoT devices
demand special attention. However, few solutions address the
hidden web interface threat, due to the following reasons.

First of all, the definition of such threats is vague. The recent
solution IoTScope [39] argues that the hidden interface can
lead to unauthenticated access but gives no clear definition.
However, authenticated accesses could also have the hidden
interface issue, i.e., hidden web interfaces after authentication
can introduce significant security risks too. Instead, we define
hidden web interfaces as interfaces that are accessible but
not disclosed to users in the devices’ documentation. Such
hidden interfaces could be intentionally or unintentionally
introduced by developers, and even inadvertently introduced
without developers’ awareness [35].

Second, it is difficult to discover hidden web interfaces,
e.g., via traditional bug finding solutions. On one hand, there
is no obvious pattern of hidden interfaces, making it hard
to statically search such interfaces. On the other hand, there
are no obvious consequences or feedback when the hidden
interfaces are triggered, making it hard to dynamically test
such interfaces (e.g., via fuzzing). For instance, fuzzing solu-
tions [33], [45], [22], [16], [46], [25] are effective at finding
bugs in software. Since the hidden interfaces are unknown,
fuzzers cannot set such interfaces as targets to explore. But,
fuzzers could mutate test cases and trigger hidden interfaces
with a small probability. However, without an appropriate mu-
tation strategy or runtime feedback mechanism, the probability
of triggering such hidden interfaces is extremely low. Taint
analysis is another type of popular solution to finding bugs in
IoT [8], [31], [19], [10], [9], [43], [17]. But it can neither find
hidden interfaces, since we can hardly define the taint source
or taint sink related to hidden interfaces.

1CVE-2024-3273 (D-link), CVE-2023-46805 (IVanti PCS), CVE-2022-
0342 (Zyxel), CVE-2021-22893 (Pulse Secure), and CVE-2019-1653 (Cisco).

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240399
www.ndss-symposium.org

mailto:pydrfly@163.com
mailto:zhengl23@mails.tsinghua.edu.cn
mailto:ganshuitao@gmail.com
mailto:chaoz@tsinghua.edu.cn
mailto:gzcrdfzf@126.com
mailto:zhq37922@126.com
mailto:zengys19@mails.tsinghua.edu.cn
mailto:jzy@nudt.edu.cn
mailto:yang@cernet.edu.cn


Lastly, since the hidden interfaces are not exposed, they
are rarely explored or tested by regular bug finding solutions,
making them more likely to be vulnerable to potential bugs
and vulnerabilities.

To address this problem, we present a novel solution
EAGLEYE to expose hidden web interfaces in IoT devices
automatically. After conducting an extensive study of firmware
from a variety of IoT devices (cf., Section II-B), we find that,
an IoT device has multiple interfaces including public ones
and hidden ones, which often share a similar pattern in the
input requests, except the actions to perform or files to operate,
which are denoted as routing tokens in the input requests. The
root cause of this phenomenon is that, the underlying firmware
code often has a specific routing mechanism to dispatch the
input requests to different handler functions or services. For
simplicity, these routing mechanisms often take certain values
(i.e., the routing tokens) from the input requests and use them
as the key or index to find associated handlers. As a result, we
could analyze public interfaces to infer their routing tokens,
then infer other candidate values from firmware, and finally
generate new input requests by replacing these routing tokens
with candidate values to explore other interfaces (including
hidden ones). In this paper, we denote such a process as the
routing analysis.

Specifically, routing tokens link input requests with the
routing mechanism implemented in the firmware. Therefore,
we first analyze input requests to public interfaces, and per-
form a token-based comparison to locate variable fields in the
requests and identify routing tokens. Then, we analyze the
contexts (including reference code and data) of these routing
tokens and try to learn their common pattern, which is an
intellectual task usually depending on expert experience and
requiring much manual effort. To automate and streamline this
process, we utilize the modern large language models (LLMs)
to comprehend and analyze firmware code [38], [14] like hu-
mans. With the discovered pattern, we search for other similar
token values within the firmware and mark them as candidate
values for the routing tokens. These candidate values serve
as a high-quality dictionary and can be used to replace the
routing tokens and generate new input requests, able to explore
new interfaces including hidden ones. Finally, we perform a
hidden-interface directed black-box fuzzing, which explores
hidden interfaces with these found routing tokens and tests the
device to verify whether the explored interfaces are accessible
and documented by the vendor. If an explored interface is
accessible and undocumented, a hidden web interface will be
reported. During the black-box fuzzing, we leverage responses
from devices to assist our fuzzer in mutating seeds (i.e.,
requests) and catching exceptions during testing, promoting
the fuzzing efficiency and finding vulnerabilities faster.

We have implemented a prototype of EAGLEYE and eval-
uated it on 13 different commercial IoT devices. EAGLEYE
discovered 79 hidden interfaces on these devices, 25X more
than the state-of-the-art (SOTA) solution IoTScope. Among
these interfaces, we further found 29 unknown vulnerabilities

including backdoor 2, XSS, command injection, and informa-
tion leakage, and have received 7 CVEs.

In summary, this paper makes the following contributions:
• We present a novel solution EAGLEYE to automatically

expose hidden web interfaces in IoT devices, which mod-
els the problem as a routing token searching problem and
conducts a hidden-interface directed black-box fuzzing
for efficient exploration.

• We present a novel routing analysis solution that inte-
grates both traditional program analysis and large lan-
guage models, to identify routing tokens, and infer their
pattern and candidate values, which serves as a high-
quality dictionary for the fuzzing campaign.

• We evaluated EAGLEYE on 13 different commercial IoT
devices and discovered 79 hidden interfaces, among
which 29 unknown vulnerabilities were found. Results
showed that EAGLEYE significantly outperformed the
SOTA baseline.

II. BACKGROUND AND MOTIVATION

A. Problem Explanation

Interface in the paper refers to the gateway for clients
to access specific functionalities or services of a device. It
establishes the rules for client-device interaction, effectively
serving as a mutual agreement on how to request particular
functionalities or services.

For optimal user experience, all device interfaces should
be accessible to clients (e.g., browsers), through a centralized
access portal. This portal acts as a unified gateway, offering
a clear navigation structure that guides users to the various
interfaces of the device, thereby defining what they can interact
with and control. These interfaces are intended to be publicly
accessible from the portal and are also documented in the de-
vice’s user manual. This documentation ensures transparency
and user familiarity with the device’s capabilities. However,
interfaces that are not included in the device’s manual present
a different scenario. These are the interfaces that remain invis-
ible to the client, as they are neither documented nor traceable
through standard web navigation. This lack of documentation
and visibility renders them stealthy and elusive, which is
the central focus of this paper. These are known as hidden
interfaces, being undocumented and untraceable through web
navigation, and thus offer no visual cues. Sometimes, hidden
interfaces may be inadvertently exposed due to inadequate
access controls, allowing access to internal functionalities
or services. In other scenarios, functionalities or services
may be outdated and concealed from the client by removing
their references in the entry portal, yet they persist within
the device. To formalize the discussion, we define interfaces
documented in the device manual as public interfaces. 3 These
are typically accessible through the entry portal. Conversely,

2Backdoor here refers to a hidden interface embedded within the firmware
that allows unauthenticated access to control over the device.

3The device documentation may only reveal accessible functionalities or
services, with corresponding interfaces classified as public.

2



Fig. 1: An example abstract routing mechanism in IoT.

interfaces not documented but still accessible to clients are
termed hidden interfaces. They are not listed in the entry
portal, preventing navigation to them.

The hidden interface poses a significant risk to device
security. These interfaces are often deeply embedded, being
not visible to regular users and even developers. Since they
are not subject to the same scrutiny and security measures
as public interfaces, they may lack proper input validation,
authentication, or other security controls. As a result, they can
provide an avenue for unauthorized access, injection attacks,
and other security breaches. Furthermore, hidden interfaces
may not receive regular updates or patches, as they are often
overlooked during maintenance. It means that any vulnerabil-
ities in them may go unnoticed and unaddressed for extended
periods, leaving devices long exposed to potential attacks.

B. Routing Mechanism in IoT Web

IoT devices always offer multiple functionalities or services,
so there correspondingly exist multiple interfaces. For exam-
ple, a VPN (Virtual Private Network) router usually supports
multiple protocols (e.g., SSL, IPSec), thus it supports multiple
interfaces to configure the device as demanded.

We conducted an extensive analysis of firmware from a
diverse range of IoT devices, thoroughly examining their
firmware code and observing their request-handling processes,
which revealed that interfaces are ultimately managed by
handlers within the firmware programs. When some interface
is accessed, the corresponding handler is called into play. To
correctly map interfaces to handlers, there exists a logical pro-
cess called routing mechanism that parses the input requests
from interfaces and delivers the data to the right handlers.
The routing mechanism is generally integrated into modern
web frameworks. Routing mechanisms in different frameworks
vary widely.

There exists one key value called routing token in the
request affecting the routing decision within the web. There
are multiple routing tokens, each one indicating one specific

interface. All routing tokens compose routing table, which
defines the routing rules. Although routing mechanisms are
diverse and lack a unified design, they all contain these two
key elements. To be rigorous, we further define them as below:

• Routing token is one special value in the request, which
indicates the specific interface accessed. It serves as a
reference to make the routing decision, designating which
handler should be called to deal with the data.

• Routing table contains the comprehensive set of routing
tokens in the device. Every item in the table reflects the
mapping relationship between a routing token and the
corresponding handler.

The routing mechanism can be modeled and represented
as Fig. 1: First, the client sends requests to the device and
accesses its interfaces. The request carries the routing token
to indicate the targeted interface. Then the request is parsed
by web programs and matches the routing table to search for
the right handler. Finally, the data in the request is handed
on to the matched handler. It should be noted that the routing
table is abstractly logical. In actual situations, it is not limited
to the form of a real table. It can be implemented in various
forms, generally distributed among programs, and organized
through logical data structures.

The model depicted in Fig. 1 highlights the role of rout-
ing tokens in directing requests to the appropriate handlers.
Confronted with the complexity and variability of firmware
across different devices, this generalized model reveals that
a majority of IoT devices employ a similar pattern in their
routing mechanisms, can be modeled as two fundamental
elements (i.e., routing token and routing table) and one process
(i.e., dispatch).This insight is pivotal: Hidden interfaces, like
their public counterparts, are very likely to undergo the same
routing process, thus they may be discovered by examining
this process, using clues provided by public interfaces.

C. Motivation

Why taint not applied. Discovering an interface means
identifying a path from the input request to the processing
handler. Ideally, to find hidden interfaces, it is required to trace
the data flow and analyze the specific routing process. Taint
analysis is popular to perform such tasks.

However applying taint analysis to uncover hidden inter-
faces is challenging due to: (1) It is difficult to precisely
identify taint sources or sinks related to hidden interfaces,
which are not explicitly defined; (2) Tracking the data flow
along the interface is impeded by unresolved issues such as
indirect calls and incomplete data recovery. Fig. 2 illustrates
a real-world example of data flow along the interface. The
routing token actionName is embedded within the value
of the HTTP SOAP ACTION parameter. This token is
subsequently used to index the appropriate handler in the
symTable, a global variable in the runtime environment. The
indirect nature of the handler call and the static recovery
challenges of the table underscore the complexity. It is hugely
challenging to identify which functions serve as handlers (i.e.,
sinks) and to trace the data flow due to the indirect call.

3



The complexity is further amplified in IoT web environ-
ments, where routing mechanisms are abundant and diverse.
These mechanisms often involve multiple programs developed
in various programming languages (such as C, Java, Lua, and
PHP). The analysis of data flow across different programs and
languages presents a formidable challenge.

Fig. 2: A real-world example shows that it is hard to apply
taint analysis to trace data flow along the interface, due to
some open problems like indirect calls and incomplete data
recovery.

Our intuition. The routing mechanism is closely related to
the routing token in the request. We needn’t analyze all data in
the request. We could only pay attention to code slices related
to the routing token. Through further research, we found most
routing tokens share a similar pattern among their contexts.
This provides a way to extract the routing table by pattern
analysis, thus avoiding the burdensome data flow analysis.

Fig. 3 shows three different examples in the real world. In
Fig. 3(a), the routing token GetDDNSSettings is located
at one header of the request. Meanwhile, it is referenced
within one binary program prog.cgi. It is noticeable that
several other string tokens are similarly referenced as the
first argument to a function called WebsFormDefine. This
function is utilized to establish the correlation between routing
tokens and their corresponding handlers. Consequently, we
can deduce the routing table by examining the invocation
context of WebsFormDefine. In Fig. 3(b), the routing token
ftp upload is embedded within the URI path. It is also
referenced within a binary program called sing cgi. This token
is positioned within a conditional judgment block of a jump
table, which is structured as the switch/case statement. Each
case within this table corresponds to a distinct interface. Other
routing tokens are employed similarly across different case
conditions. Therefore, by analyzing the structure and condi-
tions of the jump table, we can effectively extract the routing
table. In Fig. 3(c), the routing token users.htm is found within

the query of the URL in the request. Concurrently, it serves
as the exact filename of an HTML file located within the web
directory. This HTML file contains LUA code to manage the
corresponding interface. The names of all these HTML files
collectively form the routing table.

These cases reveal a consistent pattern within the context
where the routing token is utilized in terms of code seman-
tics and formatting. This consistency suggests a discernible
methodology in how routing tokens are mapped to interfaces
across different scenarios.

Beyond hidden interfaces’ invisibility, they function sim-
ilarly to public interfaces and can be accessed with prior
knowledge.

Fig. 3: Three real-world examples illustrate the intimate
connection between the routing token in a request and the
corresponding interface it triggers. In each case, the routing
table reveals a consistent pattern, whether in terms of code
semantics or formatting, within the context where the routing
token is utilized.

D. Our solution and Main Challenges

As the routing token links the input test case (i.e. request)
and the interface, we transform the problem of exposing hid-
den interfaces into the process of searching for hidden routing
tokens. First, we identify routing tokens from public requests.
Then we extract contexts among public routing tokens in
programs, learning and deducing their common pattern. Next,
with the learned pattern, we try to extract more similar ones
and obtain the maximum approximate set of the routing table.
Finally, with the help of the routing table as a dictionary, we
perform a directed black-box fuzzing to mutate the field of the
routing token. Black-box fuzzing is convenient and avoids the
dependence on heavy instrumentation and rehosting.

4



This solution mainly faces three challenges:
1) How to correctly identify the routing token in the

request? Routing token is the starting point of our analy-
sis, it is important to identify the true one. However, the
request contains a large number of tokens. Accurately
identifying the routing token faces a lot of interference.

2) How to extract the routing table in the firmware?
Though items in the routing table share a common
pattern as depicted in Section II-C, it is difficult to
summarize universal heuristic rules. Different serials of
devices share different patterns, so there exists no unified
standard pattern to extract the routing table.

3) How to effectively perform the directed black-box
fuzzing? Although black-box fuzzing is convenient,
it is ineffective due to lacking runtime feedback. In
particular, it is difficult to generate high-quality test
cases and is insensitive to exceptions without feedback
as guidance.

III. DESIGN

With a high-quality interface dictionary (i.e., the routing
table) provided by relatively accurate routing analysis, the
fuzzing campaign can focus on exposing hidden interfaces.
The whole solution comprises two stages: intelligent routing
analysis and directed black-box fuzzing, depicted as Fig. 4.
Firstly, we conduct a token-based comparative analysis to
identify public routing tokens. Given that the routing token
is inherently the mutable field in requests, we look for vari-
able tokens by comparing public requests. For multi-level
interfaces (cf., Section III-A2), we additionally perform a
hierarchy analysis to recover their data dependency. Secondly,
we use identified routing tokens to extract their contexts in the
firmware. Routing tokens with their contexts are then used to
help LLM understand the task (i.e., learning their common
pattern). We also design a correction feedback mechanism
to guide LLM learning to the right results. Lastly, we carry
out a directed black-box fuzzing toward hidden interfaces,
avoiding heavy instrumentation and rehosting. To overcome
the blindness, we combine the routing table and responses to
guide the mutation, which distills compatible parameters to
assemble requests (i.e., seeds). Concurrently, we catch hidden
interfaces by judging the validity of the response via pattern.

A. Token-based Comparative Analysis

1) Variable Token Identification: Public interfaces stem
from publicly available services, as detailed in the device’s
documentation. Consequently, we collect public requests con-
sistent with these interfaces, adhering to the specifications
outlined in the device documentation. The specific collection
process of public requests is detailed in Appendix C.

Different interfaces correspond to different routing tokens.
With collected public requests that access multiple public
interfaces, the variable tokens can be located through com-
parative analysis which greatly reduces the searching scope
for routing tokens.

Our solution is to use routing tokens to find the routing table
in the vast code space. Correctly identifying the routing token
from public requests is the basis of program analysis. The
request is essentially a piece of text that conforms to the HTTP
protocol specification and is rich in grammatical structure
and semantics. Therefore, to identify the routing token from
the request, it is necessary to consider the integrity of the
grammatical structure and semantics, to avoid destroying the
boundaries of the token. We first decompose the request
into tokens, which is the basic granularity for implementing
comparative analysis, ensuring semantic integrity in line with
structural boundaries.

The routing token’s field in the request (i.e., location) is high
relative to the specific implementation. It may appear in URI,
query, header, or body. Fig. 5 shows a specific example HTTP
request. URI, which denotes the precise pathways to web
resources, frequently features routing tokens. These tokens
can be embedded within multi-tiered path structures, with the
routing token potentially situated at any level. To effectively
navigate this, we segment the URI into its constituent path
tokens, and assign a path depth to each token, indicating its
position within the hierarchical structure. Query, indicated by a
′?′ following the URI, optionally carries client parameters and
may contain routing tokens. They are parsed into key-value
pairs, with keys identifying token fields. Header, which pro-
vides additional information in the request, is formatted as key-
value pairs and can also include routing tokens. We similarly
parse headers into key-value form. Body, used primarily for
POST/PUT methods and optional in requests, carries the bulk
of data and can be in various formats like JSON and XML.
We transform body parameters into key-value pairs for token
field identification. Nested parameters are handled recursively
to create multi-level key-value pairs, allowing for the tagging
of tokens within complex structures.

When decomposing a request into tokens based on its
grammatical structure, we compare tokens within the same
fields to identify variables, as shown in algorithm 1 line 3.
Variable tokens are then considered as potential routing tokens.
Several token types, such as session tokens, timestamp tokens,
and normal tokens, can be variable and may interfere with
routing token identification, necessitating further elimination,
as indicated in algorithm 1 line 4. Session tokens are typically
stable within a session and change only upon session switch.
Timestamp tokens, used for client-server synchronization, vary
over time. Leveraging these temporal characteristics allows
us to exclude them from consideration. Normal tokens, often
user-submitted data, are controllable and can be identified
using magic strings by traffic analysis.

2) Hierarchy Analysis: Some interfaces are hierarchical.
For example in Fig. 5, the diagnostic interface provides a
functionality to check network state, which is more specif-
ically divided into two functions including PING and
TRACEROUTE, and further divided into IPv4 and IPv6
according to IP version. For this interface, diagnostic is
the first-level interface, which contains two second-level sub-
interfaces, PING and TRACEROUTE. Each sub-interface

5



Fig. 4: Workflow Overview.

Fig. 5: A request example to illustrate grammatical structure
in HTTP.

Algorithm 1: Token-based Comparative Analysis
Input: public requests PubReqs
Output: routing token set RToken, hierarchy Hier for multi-level

routing tokens.

1 foreach req ∈ PubReqs do
2 tokens← Parse(req) /* Parsing request into

tokens, which are tagged by their field
locations. */

3 V Tokens← SelVarToken(tokens) /* Identify tokens
varying with interfaces. */

4 RToken← Filter(V Tokens) /* Filter interference
tokens. */

/* Analyze hierarchy for multi-level tokens */
5 if Size(RToken ≥ 2) then
6 foreach field : token ∈ RToken do
7 reqs← SelReqs(token) /* Select requests

involving the routing token. */
8 subRToken← Search(reqs) /* Search

subordinate routing tokens. */
9 if Size(subRToken) ≥ 1 then

10 Hier ← Edge(field : token, subRToken)

is further divided into two versions, i.e., IPv4 and IPv6. For
hierarchical interfaces, there exist correspondingly multi-level
routing tokens. Multi-level routing tokens form data depen-
dencies, that is, lower-level routing tokens rely on higher-level
ones. When accessing a sub-interface, the upper-level interface

is required to be selected correctly. Hierarchy among interfaces
decides the data dependency among multi-level routing tokens,
which is beneficial to direct the fuzzing.

With identified routing tokens, we try to analyze and recover
the hierarchy among them. For multi-level tokens, the upper
one dominates several lower ones. We first cluster the requests
according to each specific routing token. If a cluster collects
more than one request, it means multiple interfaces share
the same routing token, depicted as algorithm 1 line 7. We
then set up partial order between the upper routing token
and the lower ones, depicted as algorithm 1 line 10. In some
cases, there are conflicts between the analysis results. Taking
diagnostic interface as the example, we cannot distinguish
whether PING/TRACEROUTE dominates IPv4/IPv6
based on clustering results alone because whether PING or
TRACEROUTE, they both include the two IP versions.
To solve these conflicts, we further recover the hierarchy
according to the field’s region. The routing token located
in URI, is mostly dominated; Fields within header are more
dominant than body. If two routing tokens are located in the
same region, the front dominates the back. 4

B. LLM-Powered Pattern Learning

Either public interfaces or hidden interfaces in one device,
are generally dispatched in the same way. Therefore, the
contexts of routing tokens including public and hidden ones,
generally share a similar code pattern. We leverage LLM to
learn the common pattern among public routing tokens’ con-
texts. Then we use the learned pattern to analyze web programs
and try to find hidden ones. This LLM-based approach boasts
superior generalization capabilities. It circumvents the need
for numerous heuristics and their inherent limitations, thereby
maximizing the LLM’s code analysis potential. Instead of
adopting traditional techniques to trace data flow during the

4Distinct regions reflect varying levels of depth within the hierarchical
interfaces.

6



Fig. 6: Two distinct prompts have been crafted to guide the LLM in comprehending the task. An additional adjusting prompt
is employed, incorporating feedback from the verification process, to refine and correct the outcomes learned by the LLM.

routing process, our solution is more intelligent and avoids
heavy program analysis, suitable for a wide variety of IoT
devices.

1) Contexts Extraction: Web programs are developed by
multiple programming languages. Text-based programs (e.g.,
PHP, Python, LUA) are readable for LLM, while low-level
programs like binary or bytecode, are not directly understood
by LLM. For low-level codes, it is required to lift them to high-
level program languages. Specifically, we decompile binary
code to C/C++ code instead of to assembly code, because
C/C++ has higher information density. For bytecode, we de-
compile it to corresponding high-level code. We extract routing
tokens’ contexts within lifted high-level codes, allowing LLM
to effectively analyze and interpret the functionality of code
and structure of data.

The context of a routing token encompasses the code and
data that are intimately connected with it. We consider both the
code that references the token and the data that includes it as
part of its context. This context is vital as it offers critical
insights into the token’s purpose and usage. We extract a
relatively complete unit containing the routing token, such as
function, class, or module, which better preserves the context
related to the routing token in a limited input space. Specifi-
cally, we assess locality based on the programming paradigm:
for procedural programs, we consider the function; for object-
oriented programs, the class; and for functionally organized
programs, the module. When a routing token corresponds
directly to a filename, acting as an identifier for accessing
static resources, we include the entire file path as part of
the token’s context. This inclusion ensures that the LLM can

comprehend the broader scope of the routing token’s function
and application.

2) Learning Process: LLM has demonstrated remarkable
capability in comprehending and analyzing code. One intrigu-
ing idea is to harness LLM’s analytical prowess to examine
the routing mechanism within the device, thereby inferring the
routing table. However, two challenges need to be addressed
to achieve this objective.

Firstly, while low-level code is elevated to a higher level,
it is still difficult to revert to the source code, hindering full
understanding of the code’s functionality. During the compila-
tion process, certain information from the source code is lost,
making it arduous to recover even through decompilation. For
instance, in the case of binary, symbols from the source code
are discarded, resulting in obscure and hard-to-comprehend
decompiled code. Additionally, indirect calls present in binary
code obscure the control flow and disrupt the original data
structure, resulting in a decompiled high-level code that lacks
the logical connections and relationships found in the source
code, thereby impeding the complete recovery of data flow
information. Secondly, LLM has limitations on the length of
input text it can process. Given the vast number of programs
that may be present within the device, it becomes challenging
to feed all of them to LLM for analysis.

To mitigate these challenges, we apply the principle of
program locality, including spatial and temporal aspects, which
influence coding practices by clustering related variables
together to enhance readability, maintainability, and perfor-
mance [12]. This principle suggests that most contexts relative
to one variable are often concentrated in a small portion of the

7



code. By focusing our analysis on the immediate context sur-
rounding the routing tokens, rather than attempting a wholesale
examination of the entire program, we can more efficiently
leverage LLM’s analytical capabilities to infer the routing
table. This targeted approach allows for a more manageable
and effective analysis, despite the inherent limitations.

We devise two tailored prompts for LLM to analyze the
extracted contexts. On one hand, we utilize the LLM to
analyze the code contexts surrounding routing tokens. The
characteristics of the routing table may be concealed within
the program’s control flow or data flow (e.g., the examples
(a) and (b) in Fig. 3). We guide the LLM to understand the
program semantics and, based on this comprehension, extract
the routing tokens, as shown in the upper left of Fig. 6.
On the other hand, due to the challenges mentioned earlier
regarding the use of LLM for program analysis, it is difficult
to comprehensively extract the routing table. To further reduce
the false negatives in identifying routing tokens, we guide
the LLM to learn the probable formatting patterns among the
routing tokens and to generate appropriate regular expressions,
as shown in the lower left of Fig. 6. These regular expressions
are then used to scan programs and extract similar string
tokens. In the case of using a file as the routing token (e.g.,
Fig. 3 (c)), we supplement the directory tree of the local file
system into the searching scope.

We offer a concrete example to demonstrate the intelligent
extraction of the routing table by LLM in Appendix A.

3) Self-Correction Model: To mitigate the possibility of
initial errors and guide LLM to learn the correct pattern, a
self correction model is designed to implement iterative ad-
justments that facilitate continuous error correction, eventually
learning the correct result. The model leverages both positive
and negative samples to assist LLM in error correction during
the prompt process. We allocate a subset of public routing
tokens for verification, while the remainder forms the corpus
that feeds into the LLM, enhancing its task comprehension.
Upon receiving each LLM output, EAGLEYE evaluates it
against the verification set to identify missed and correct
instances. Negative samples, which are non-routing tokens
within the firmware, are utilized to pinpoint incorrect cases.
Although the LLM might initially falter, it can progressively
refine its understanding and improve performance through self-
correction. Generally, through finite times of iteration, LLM
can master the pattern (right in Fig. 6).

We have crafted an illustrative example in Appendix B, to
elucidate the specific process of self-correction.

C. Hidden-Interface Directed Black-box Fuzzing

With the routing table, we use it to generate high-quality
seeds and conduct directed black-box fuzzing toward hidden
interfaces. To conquer blindness, we leverage responses to sup-
ply necessary parameters and catch clues for hidden interfaces.
The whole workflow is depicted as algorithm 2.

1) Mutation Toward Hidden Interfaces: We utilize public
requests as templates and the routing table as a fuzzing

dictionary to generate high-quality seeds, which allows EAGL-
EYE to navigate through different interfaces. For hierarchical
interfaces, where one interface is subject to another one, we
carefully orchestrate corresponding routing tokens, accounting
for data dependencies among them.

A valid request requires other parameters matched with the
routing token. The device sends responses to the client, provid-
ing some necessary information for the desired functionalities.
Within responses, there generally exists a list of parameters
(e.g., forms), that the client needs to answer when interacting
with the device. The client fills in these parameters to assemble
a request before the next visit. This process gives us valuable
clues to infer parameters matching the routing token.

Throughout the fuzzing campaign, we continuously col-
lect parameters from responses, which are then assembled
to generate new requests. To guide this assembly process,
we design three specific mutation policies. Firstly, if we
observe a correlation between the response and interface, that
is, the response contains one routing token, we incorporate
the parameters extracted from this response into the request
targeted at that interface. This correlation suggests that the
parameters identified within the response are pertinent to the
interface in question, and adding them to the request could
improve the quality of mutation. Secondly, we observed some
devices respond with hints for missing parameters, which
provide crucial insights about the parameters required. During
interactions with the device, we continuously add these indi-
cated parameters from the response into subsequent mutated
requests, making mutation increasingly towards completeness
and accuracy. Lastly, to maintain the diversity of mutation,
we randomly select parameters from collected responses. It
ensures a broad and varied exploration of potential mutations,
combining information from real-time responses with the
knowledge gathered from public interfaces.

2) Catch Hidden Interfaces from Response: Hidden inter-
faces, similar to their public counterparts, operate without
any discernible anomalies or irregularities. In the context of
black-box testing, the response emitted by the device serves
as a crucial clue to determine the validity of the seed (i.e.,
mutated request), which indicates a potential hidden interface.
By subjecting mutated requests with a hidden routing token,
we catch the presence of one hidden interface according to the
validity of the response. Responses from interfaces can vary
significantly in format, which complicates the direct extraction
of features that indicate their validity. However, it is a common
observation that invalid responses from a specific device often
share common attributes.

We analyze and obtain the distinctive characteristics of in-
valid responses as Eq. (1). Invalid responses typically provide
feedback indicating unsuccessful attempts to access or interact
with a device. Common reasons for such failures include
unauthenticated access, unauthorized access, or incorrect pa-
rameters. While these distinct failure causes may introduce
minor variations in the invalid responses, they typically adhere
to a general pattern of uniformity. To identify the potential
manifestations of invalid responses, we employ a union oper-

8



Algorithm 2: Hidden-Interface Directed Black-box
Fuzzing

Input: Testing device P with black-box environment, routing table
RTable

Output: Hidden interfaces PoC

1 SeedsPool← ∅
2 ParasPool← ∅
3 foreach rtoken ∈ RTable do /* Generate initial seeds

using the routing table. */
4 SeedsPool← SeedsPool ∪ Generate(rtoken)
5 repeat
6 seed← Pop(SeedsPool)
7 seed′ ← Mutate(seed, ParasPool)
8 res← Interact(P, seed)
9 if Validity(res) then /* Check the validity of

response */
10 PoC ← PoC ∪ seed
11 continue

12 param← Distill(res) ; /* Distill parameters
from the response. */

13 ParasPool← ParasPool ∪ {param}
14 if Augment(ParasPool) then /* Check if find any

new parameter. */
15 SeedsPool← SeedsPool ∪ seed′

16 until SeedsPool ≡ ∅;

ation. This operation enables us to aggregate and scrutinize the
diverse forms of invalid responses that can emerge as a result
of varying failure reasons. For example, devices frequently
denote failed attempts through specific status codes, with a 401
status code commonly signifying unauthorized access and a
403 status code indicating unauthenticated access. The invalid
response always reflects restricted failures via some string
snippets like status codes. Thus we can identify the common
pattern shared among invalid responses. It is important to note
that both valid responses and invalid responses, may share
some common string snippets, which can lead to confusion
and impede precise identification of the pattern that is unique
to invalid responses. Therefore, it is imperative to refine the
identified pattern by eliminating the shared string snippets.

InvPat =
⋃

sp∈InvSnip

Norm(sp)−
⋂

sp∈V alSnip

Norm(sp)

(1)

Given that responses are predominantly textual, the pattern
distinguishing invalid responses is often characterized by the
presence of unique string snippets. We initially decompose the
response into a series of discrete snippets and then conduct
a targeted search to isolate those snippets that are exclusively
present in the invalid responses. To exclude tiny deformations,
we normalize the snippet to remove redundant placeholders
such as tabs or spaces at the header and tail.

IV. EVALUATION

We have implemented a prototype of EAGLEYE, with the
selection of LLM as GPT [40] (gpt-3.5-turbo [28]), and have
integrated a verifier to ascertain whether the interface is pro-
tected by authentication. We have conducted a comprehensive

TABLE I: Testing Devices

Vendor Model Version Device Type Web Type
SRX5308 4.3.5-5 SSL VPN Bin+LUANetgear R7000 1.0.11.136 WiFi Router Bin+HTM

Cisco RV-042 4.2.3.14 VPN Router Bin+HTM
Motorola CX2L 1.0.1 WiFi Router Bin
TrendNet TEW-811DRU 1.0.10.0 Wifi Router Bin+ASP
Linksys WRT54GL 4.30.18 Wifi Router Bin+ASP
Ubiquiti EdgeRouterX 2.0.9 Ether Router Bin+Python

DNS-320 1.11B01 NAS Bin+PHPDLink DIR-823G V1.0.2B05 Wifi Router Bin
Mercury MNVR816 2.0.1.0.5 Video Recorder Bin+LUA
ZTE C520 2.1.6T3 IP Camera Bin+LUA
Zyxel WSQ50 V2.20 Wifi Router Bin+LUA
TPLink Archer A7 V5 1.2.1 Wifi Router Bin+LUA

evaluation of the prototype, and in this section, we present the
findings and outcomes of our experimental analysis.

A. Experiment Setup

Testing IoT devices. We selected 13 commercial devices as
the testing dataset, comprising multiple types (e.g., VPN, wifi
router, NAS, video recorder, and IP camera). They all source
from leading manufacturers such as Netgear, Cisco, Zyxel,
and TrendNet, representing the market’s mainstream offerings.
Detailed information about devices like model and version is
shown in Table I. Among these devices, the implementations
of their web are disparate. Their web servers are generally
binaries, originating from popular embedded web schemes
such as lighttpd, minihttpd, and goAhead. Devices’ web ap-
plications (i.e., implementing various business functionalities)
are usually developed by multiple programming languages. As
Table I shows, applications in some devices are compiled and
released as binaries, while some use various types of scripts
(e.g., LUA, PHP, ASP, and HTM).

SOTA solutions for comparison. The research in this
area is relatively insufficient. IoTScope is a state-of-the-art
solution, focusing on URL-based and unauthenticated hidden
interfaces, represents the latest progress in this field to some
extent. We set head-to-head experiments to compare EAGLEYE
with IoTScope, and fairly exhibit their capability for exposing
hidden interfaces.

Effectiveness metrics. We evaluated the effectiveness of
routing analysis and black-box fuzzing separately, to fully
demonstrate the performance of EAGLEYE. Specifically, we
collected the key procedural data to indicate the correlation
between strategies and the final result. We further evaluated
the severity of hidden interfaces by discovering vulnerabilities
among them.

Experiment environment. We conduct each experiment on
one Kali system (Linux version 5.18.0), equipped with an
Intel Core i7 (2.6GHz) processor and 16G RAM. All testing
devices were restored to factory settings and used in the initial
configuration before the experiment.

B. Overall Findings

Results. EAGLEYE overall found 79 hidden interfaces,
including 27 ones bypassing authentication and 52 ones after
authentication, showing in Table II. Within the dataset of

9



devices, over 90% have hidden interfaces, and over 60% have
unauthenticated interfaces. Traditional solutions typically pay
attention to hidden interfaces that can bypass authentication
because they pose obvious security threats to IoT devices while
ignoring those hidden interfaces after authentication. However,
the hidden interface after authentication also easily breeds
security issues, and the vulnerabilities that occur on them
could cause server problems such as unauthorized operations
and DoS attacks, causing huge threats to the device too.
Hidden interfaces after authentication are more common than
those bypassing authentication. As Table II shows, the former
is approximately twice the number of the latter.

Correctness. We quantify whether there are false positives
or false negatives for exposed hidden interfaces. A false
positive here means that EAGLEYE wrongly reports one hidden
interface that is truly public. We thoroughly scrutinized each
hidden interface by manual inspection and a double-check
using an LLM. We dissected the functionality of these hidden
interfaces and cross-referenced them with the relevant docu-
mentation. To mitigate the risk of oversight, we also utilized
the LLM to perform a secondary analysis, feeding it the hidden
requests, corresponding responses, and documentation for a
comprehensive check. For this purpose, we selected Kimi [1],
an LLM known for its capability to digest long, lossless
contexts [29], rendering it ideal for managing extensive man-
uals. After rigorous examination, we found no false positives.
This is attributed to the EAGLEYE’s design. Our methodol-
ogy ensures that each reported interface remains undisclosed,
meaning it is not explicitly defined in the device’s official
documentation. Firstly fuzzing ensures the authenticity of
every report. Secondly the detection logic for hidden interfaces
is robust, distinguishing the regularities of hidden interfaces
from normality. Regarding false negatives—instances where
EAGLEYE fails to detect actually hidden interfaces—there is
a theoretical possibility of omissions. For example, routing
analysis may not uncover routing tokens for hidden interfaces
that deviate from common patterns. EAGLEYE’s goal is not
to exhaustively list all hidden interfaces but to reveal some
of them. Addressing and reducing the occurrence of false
negatives is an area for future improvement.

Comparison with SOTA. IoTScope is able to only expose
hidden interfaces bypassing authentication. To be fair, it is
required to unify the comparison standards. IoTScope gen-
erates a URL list through firmware analysis and then tries
to identify unauthenticated interfaces via differential analysis
based on responses. The generated URL list is critical to
enumerate interfaces. Based on the original capability, we
add the ability to expose authenticated hidden interfaces to
IoTScope. Specifically, we directly fed the seeds same as
IoTScope, using the URL list it generated, to our fuzzer. We
leverage EAGLEYE to update the authentication credentials
within seeds and check the response to catch hidden interfaces
after authentication. In comparison, IoTScope only found 3
hidden interfaces, of which one is unauthenticated and the
other two are authenticated, showing in Fig. 7.

TABLE II: Hidden interfaces exposed by EAGLEYE.
#HINT=the number of hidden interfaces, #B-Authen=the
number of hidden interfaces bypassing authentication, #A-
Authen=the number of hidden interfaces after authentication.

Vendor Model #HINT #B-Authen #A-Authen
SRX5308 3 0 3Netgear R7000 3 2 1

Cisco RV-042 9 1 8
Motorola CX2L 34 6 28
TrendNet TEW-811DRU 1 0 1
Linksys WRT54GL 6 3 3
Ubiquiti EdgeRouterX 0 0 0

DNS-320 11 7 4DLink DIR-823G 6 6 0
Mercury MNVR816 1 1 0
ZTE C520 3 0 3
Zyxel WSQ50 1 1 0
TPLink Archer A7 1 0 1
Total - 79 27 52

Fig. 7: Comparison with IoTScope. EAGLEYE outperforms
IoTScope, exposing 25X more hidden interfaces.

C. Routing Analysis Effectiveness

To correctly identify the routing token in the request, EA-
GLEYE does a token-based comparative analysis, which first
identifies all variable tokens and then filters noise inferences.
As shown in Table III, EAGLEYE found an average of 4.5
variable token fields and successfully filtered out 2.0 inferring
token fields in them. 5 At the same time, we can observe that
different devices have a wide distribution of the routing token,
including URI, query, header, and body, of which the URI is
the most common location. The routing token is essentially a
parameter that can be located anywhere in the request. Six de-
vices exist hierarchical interfaces, and EAGLEYE successfully
recovered the hierarchy of their multi-level routing tokens.
It can be observed that interfaces in most devices usually
have shallow layers, likely a design choice by manufacturers
for clarity and straightforward service provision. It should

5We only counted session tokens and timestamps as filtered tokens here.
Normal tokens have been marked in advance and can be accurately identified,
and the number of them is much more than the other two. To intuitively reflect
the statistics, they are not included here.

10



Fig. 8: Accuracy of the pattern learned by LLM varies with the number of corrections. Within limited adjustments, the LLM
can learn the correct features among the routing table.

be noticed that even the non-hierarchical interface may have
multiple routing token fields, often corresponding to requests
with different methods. This is why #VTF may be more than
1 larger than #FTF.

The common pattern of routing tokens varies greatly de-
pending on the device, thus EAGLEYE use LLM instead of
the human to learn this pattern. The benefits are obvious,
not only is automation achieved to improve efficiency, but
LLM has clear advantages in pattern learning. As shown in
Fig. 8, the accuracy of the pattern learned by LLM varies
with the number of corrections. LLM could learn the right
pattern within the limited times to correct errors according
to interactive feedback. In most cases, LLM could achieve
the highest accuracy with 1 or 2 adjustments. Especially it
learns the right pattern just the first time on some devices
such as Linksys WRT54GL and ZTE C520. However, the
more interactions, not better the accuracy. On the contrary,
after the accuracy reaches its peak, it decreases sharply as the
times of correction increase. This may be due to the overfitting
during learning iterations. There may be some corner cases,
which are very different from other routing tokens, disturbing
LLM to understand the common pattern. Therefore, several
adjustments are deemed more effective than a forced fitting,
particularly as the latter may not yield desired results over
times of adjustment.

With the learned pattern by LLM, EAGLEYE then extracts
the routing table from firmware, averaging 138.9 routing
tokens per table, as shown in Table III. In most cases, the
routing table is distributed among the firmware. In some cases

(e.g., Motorola CX2L and DLink DNS320), part of the routing
table appears locally aggregation.

TABLE III: Effectiveness of routing analysis. #VTF=the num-
ber of variable token fields, #FTF=the number of filtered token
fields, #LoC is where the routing token is located, #Hier=the
max level of hierarchy for multi-level routing tokens, #Ta-
ble=the size of the routing table, layout of routing table:
DIS=Distributed, AGG=Aggregated.

Routing Token
Identification

Routing Table
ExtractionVendor Model #VTF #FTF #LoC #Hier #Table Layout

SRX5308 4 1 Query 2 211 DISNetgear R7000 5 3 URI 1 376 DIS
Cisco RV-042 3 2 URI 1 197 DIS

Motorola CX2L 4 3 Header 1 270 DIS&
AGG

TrendNet TEW-811DRU 3 1 URI 1 31 DIS
Linksys WRT54GL 3 2 URI 1 101 DIS

Ubiquiti EdgeRouterX 9 4 URI&
Body 3 34 AGG&

DIS

DNS-320 5 1
URI&
Query&
Body

2 137 DIS&
AGG

DLink DIR-823G 4 2 URI&
Header 1 166 DIS&

AGG

Mercury MNVR816 7 3 URI&
Body 2 152 DIS

ZTE C520 4 2 URI 1 58 DIS

Zyxel WSQ50 3 1 URI&
Body 2 45 DIS

TPLink Archer A7 4 1 URI 2 28 DIS
Average - 4.5 2.0 - 1.5 138.9 -

D. Black-box Fuzzing Effectiveness

EAGLEYE extracts parameters in the response which are
then matched with the routing table and assembled into new

11



Fig. 9: Growth trend of parameters in the pool. Compared with IoTScope, EAGLEYE can not only obtain more parameters
but also the parameters are more accurate. To a certain extent, this trend reflects the continuous improvement of EAGLEYE’s
mutation quality with the continuous supplement of parameters from responses.

seeds (i.e., mutation process). With the fuzzing campaign
progressing, more and more parameters are added to the pool.
EAGLEYE’s growth trend of parameters in the pool is shown
as the blue line in Fig. 9. The trend indicates that as the
test proceeds, EAGLEYE triggers more interfaces, guiding the
device to respond with more parameters. To some extent,
it reflects the effectiveness of EAGLEYE’s mutation strategy,
which can continuously produce better seeds.

In comparison, IoTScope also distills parameters from
firmware and stores them in a database. During the fuzzing
campaign, one parameter is selected from the database and
assembled into the request. Therefore, the parameter database
in IoTScope is extracted statically in advance and does not
change during the fuzzing test. We used a dotted purple line
in Fig. 9 to represent the number of parameters IoTScope
extracts. In all cases, EAGLEYE obtained many more param-
eters than IoTScope. In the case of Ubiquiti-EdgeRouterX,
IoTScope even distilled no parameter. Meanwhile, the param-
eters extracted by EAGLEYE are more accurate because they
are extracted from dynamic responses.

E. Severity of Hidden Interface

To evaluate the security risks introduced by hidden in-
terfaces, we further try to discover vulnerabilities on them.
Unauthenticated ones are classified as one kind of vulnerability
breaking the access control. For others after authentication
which don’t directly result in the vulnerability, it is required

TABLE IV: Discovered vulnerabilities on hidden interfaces.
#VUL=the number of vulnerabilities, #CVE=the number of
assigned CVEs, #ID=detailed CVE ID EAGLEYE obtained.

Vendor Model #VUL #CVE #ID

Netgear R7000 3 2 CVE-2024-1430,
CVE-2024-1431

Cisco RV-042 2 1 CVE-2024-20362
Motorola CX2L 6 1 CVE-2024-25360

Linksys WRT54GL 3 3
CVE-2024-1404,
CVE-2024-1405,
CVE-2024-1406

DNS-320L 5 0 -DLink DIR-823G 6 0 -
Mercury MNVR816 1 0 -
ZTE C520 1 0 -
Zyxel WSQ50 1 0 -
TPLink Archer A7 1 0 -
Total - 29 7 -

to further analyze their security. We prioritize security audits
for GET requests that include queries and POST requests that
contain data payloads. These requests encompass parameter-
laden regions—specifically, the query parameters for GET
requests and the body content for POST requests. An increased
number of parameters equates to a higher volume of user-
submitted data, which consequently elevates the associated
security risks. As a result, we discovered a total of 29 unknown
vulnerabilities. The causes of these vulnerabilities are not
tangled, but they are too deeply hidden to be found. All

12



the vulnerabilities we discovered have been reported to their
vendors, and 7 of them have been assigned CVE numbers, as
shown in Table IV.

We present 3 typical cases to illustrate the discovered
vulnerabilities on hidden interfaces as follows.

Case Study 1: Backdoor Bypassing Authentication. There
is a hidden interface in one device of Table I that allows
an unauthenticated user to gain the highest privilege of the
system and take over the device. As shown in Fig. 10 (A),
this hidden interface could provide access to the device as
a backdoor, making attacks easy to carry out. Specifically,
this vulnerability opens the device’s telnet service without
authentication, which is publicly unknown and disabled by
default. By contrast, the device only opens the web to au-
thorized users to manage the device. The root permission of
the underlying operating system could be directly obtained
through this vulnerability.

Case Study 2: Command Injection Escalating Privilege.
There exists a command injection on one hidden interface in
another device of the dataset. This vulnerability injects the
crafted command in one parameter when requesting a hidden
functionality. As shown in Fig. 10 (B), any authenticated user
can execute arbitrary system commands with the highest priv-
ilege through this vulnerability. Compared to normal usage,
the vulnerability escalates the privilege, allowing malicious
users to remotely operate the underlying operating system and
control the device.

Case Study 3: XSS Attacking Clients. There exists an XSS
on one hidden interface in another device. Different from the
above two cases, XSS allows malicious users to attack the
client instead of the device, resulting in code execution on
users’ machines. This vulnerability injects the crafted code into
an unknown parameter carried by one hidden request. Worse,
the malicious payload is permanently saved in the back end of
the device. As shown in Fig. 10 (C), any access to web pages
containing the malicious payload would trigger the XSS and
cause harm to clients.

F. Digging into Hidden Interface

With exposed hidden interfaces, we try to search their
potential features especially those different from public ones.
We classified hidden interfaces according to their functionali-
ties. We found the majority of hidden interfaces are typically
concentrated on debugging operations, device status, system
information, and network settings, as shown in Table V.
Generally, these functionalities are intended for operations
personnel or developers, not directly for end-users.

We delved deeper into why these hidden interfaces are not
documented in the manual:

(1) Legacy Code: During the development, certain interfaces
may initially serve purposes such as debugging, environment
setup, and status monitoring. We found traces of development
in some firmwares, such as the existence of SVN (i.e., an
open source code version control system) records for code
management in a certain device, which is due to the incomplete
separation of the development and production environment. If

TABLE V: Classification of hidden interfaces according to
their functionalities. #HINT=the number of hidden interfaces.

Device Category #HINT Authentication
Remote Management 1 Authenticated
User Information 1 AuthenticatedNetgear

SRX5308 Traffic Statistics 1 Authenticated
Configuration Information 1 Unauthenticated
Debug Information 1 UnauthenticatedNetgear

R7000 Network Settings 1 Authenticated

Network Settings 5 4 Authenticated +
1 Unauthenticated

System Information 3 AuthenticatedCisco
RV-042 Device Status 1 Authenticated

Remote Management 1 Unauthenticated

Network Settings 2 1 Unauthenticated +
1 Authenticated

Traffic Statistics 1 Authenticated
Device Status 1 Unauthenticated

System Information 6 2 Unauthenticated +
4 Authenticated

System Settings 5 1 Unauthenticated +
4 Authenticated

Debug Information 2 Authenticated

Motorola
CX2L

Configuration Information 16 Authenticated
TrendNet
TEW-811DRU Network Settings 1 Authenticated

Device Status 1 Authenticated
System Information 3 UnauthenticatedLinksys

WRT54GL Network Settings 2 Authenticated
System Information 4 UnauthenticatedDLink

DNS-320 File Transfer 7 4 Authenticated +
3 Unauthenticated

System Information 4 UnauthenticatedDLink
DIR-823G Remote Management 2 Unauthenticated
Mercury
MNVR816 File Downloading 1 Unauthenticated

System Information 1 Authenticated
Network Settings 1 AuthenticatedZTE

C520 Device Status 1 Authenticated
Zyxel
WSQ50 Remote Management 1 Unauthenticated

TPLink
Archer A7 Remote Management 1 Authenticated

the separation between development and production environ-
ments is not thorough, these interfaces might be mistakenly
deployed into the production environment. If they are not
thoroughly cleaned up before the product is released, they will
be left behind in the final product as hidden interfaces.

(2) Permission Management Flaws: There may be flaws in
the permission management mechanism that either fail to cor-
rectly restrict access to privileged interfaces or inadvertently
bring internal interfaces to light. For instance, a hidden Telnet
service interface on one device, due to the lack of permission
verification, allows unauthenticated users to gain low-level
access to the device’s operating system and potentially take
control of the device.

(3) Security and Privacy Concerns: Some vendors may
choose not to detail the description of services unrelated to
the user in the manual for security and privacy reasons, to
prevent potential misuse. For example, the TR069 interface
for remote management that we found hidden in one device is
primarily intended for operators instead of end-users to use,
providing the ability to automatically configure and monitor

13



Fig. 10: Three typical vulnerabilities in discovered hidden interfaces. (A) A backdoor bypassing authentication: opens the
telnet and gains a shell with the highest privilege. (B) A command injection escalating privilege: allows attackers with normal
credentials to execute OS commands with the highest privilege. (C) An XSS attacking victim’s clients: injects malicious code
into one parameter saved in the web, and then the users who visit the victim pages will be infected.

the status of the device remotely.
(4) Hidden Default Configurations: The device is designed

to work with default settings in most use cases, so vendors may
not provide additional configuration options in the manual.
Especially some advanced settings may be intended only for
experienced users or administrators, and vendors may believe
that ordinary users do not need to access these settings. Expos-
ing certain critical configuration options to inexperienced users
could affect the normal running of the device and network
security. For example, a hidden interface found in one device
for configuring TCP/UDP protocol parameters hugely affects
the network. These parameters are usually set to default and
generally do not require changes after the product is finalized.
More notably, the routing token in this interface contains the
word ”hidden,” directly indicating that it is hidden.

V. DISCUSSION

Scope of routing analysis. Routing analysis extracts the
routing table via its common pattern. However, for dynamic
routing, its routing token exists dynamically, and its rout-
ing table has no entity in the firmware, thus it cannot be
extracted through static analysis. For example, in the URI
’/users/:userId’, userId is a dynamic routing token that matches
a user ID. It is produced and consumed dynamically and
doesn’t land. EAGLEYE cannot handle this situation at present.
While it seems that dynamic routing is widely used in cloud
scenarios and rarely used in IoT web [18]. As dynamic
routing table is created on-the-fly, the key is to identify the
code responsible for generating dynamic routing tokens. Once
located, LLMs can analyze this code to extract the token
generation rules, which then inform the fuzzer to craft seeds
adhering to the interfaces’ specifications. In the future, we
will further study this mechanism to enrich the application
scenarios of routing analysis.

Accuracy of the routing table. Although LLM performs
well in learning the pattern, there may still be false negatives
and false positives in the extracted routing table. In essence,
our solution tries to strike a balance between precision and
recall, minimizing missed routing tokens (i.e., false negatives)
while avoiding the introduction of too many false routing to-
kens (i.e., false positives). However, it is still quite challenging
to improve the accuracy of the routing table. Our primary
goal is to uncover as many hidden interfaces as possible. To
minimize false negatives, we consider expanding the training
data on hidden interfaces, thus enhancing the LLM’s analytical
capabilities through fine-tuning. This is an avenue we intend
to pursue in future.

Limitation of hierarchy analysis. Hierarchy analysis is
grounded in real-world case studies, where we manually dis-
sected device interfaces. For those with multi-level structures,
their hierarchies clearly correlate with the routing tokens’
location. Evaluations indicate that this analysis could effec-
tively bolstered fuzzing efforts and yielded positive outcomes.
Admittedly, there may be exceptions with intricate, deeply
nested interfaces that could be overlooked. It’s where we need
to enhance in the future.

VI. RELATED WORK

Hidden Interface and Broken Access Control. The related
research is comparatively inadequate at present. IoTScope [39]
exposes hidden interfaces based on URL in IoT web. It con-
structs probing requests via light firmware analysis and is ded-
icated to finding unauthenticated interfaces leading to informa-
tion leakage and device settings. However, its scope is limited
and neglects authenticated hidden interfaces. Stringer [34]
intends to find undocumented functionalities and backdoors
within binaries of devices via static data comparison function
which affects the program flow. While this method limits the
scope of the application and compromises analysis accuracy

14



due to open challenges such as indirect calls. Chen et al [7]
analyze the process of remote binding between IoT devices
and users, exploring the possible questionable practices related
to authentication and authorization.

Many previous works pay more attention to hidden inter-
faces in mobile applications and focus on the problem of
broken access control. APIScope [36] revealed that many
supper mobile applications (e.g., WeChat and TikTok) contain
undocumented APIs just for their 1st-party mini-apps which
may be exploited by malicious 3rd-party mini-apps. It is
committed to identifying these hidden APIs and evaluating
their security issues. LeakScope [48] tries to identify potential
data leakage in the cloud back-end services by analyzing
mobile applications. Saint [4] performs static analysis to
identify sensitive data flows with the source code of mobile
applications for IoT. AuthScope [50] strives to find authoriza-
tion problems in online services from the view of mobile
applications. SmartGen [47] aims to expose server URLs
in mobile applications, with selective symbolic execution to
solve user input constraints. Autoforge [49] forges encrypted
conformance messages from mobile applications to test server-
side problems. These works provide us with good inspirations
and offer beneficial references for EAGLEYE.

IoT Fuzzing Test. IoT devices are usually closed-source,
closely running, not supporting third-party programs, and
lacking debugging means, which makes black-box fuzzing still
prevalent and play an important role [27], [13]. IoTFuzzer [6]
and DIANE [30] conduct black-box fuzzing through mobile
applications sending crafted requests. Snipuzz [15] tries to
improve mutation policy by inferring snippets in messages
via differences among responses. SRFuzzer [44] generates
seeds in the format of key-value pair and sequences the seeds
by the configuration-reading order. One significant drawback
of black-box fuzzing is blindness. Labrador [25] provides
code coverage and distance feedbacks to direct the mutation,
generating a gray-box model under black-box settings.

Gray-box fuzzing with feedback guidance has demonstrated
a powerful capability [24], [26]. Though with the above
limitations in IoT devices, it still attracts relentless enthusiasm
for research. FIRM-AFL [45] proposes a high-throughput
fuzzing for IoT devices based on the classical solution
AFL [42] via augmented process emulation. IoTHunter [22]
and FirmFuzz [32] implant real-time checkers in the emulation
environment to assist fuzzing. TriforceAFL [20] tests OS
kernel via emulation environment to provide code coverage
feedback. It can be observed that gray-box fuzzing has a strong
demand for rehosting, which emulates IoT devices on general
computing platforms [37]. Firmadyne[5] and FirmAE[23] try
to emulate the firmware under the system mode of QEMU [2].
To mitigate high failure rates, avatar [41] switches to running
on real devices when the emulation lacks hardware support.
Greenhouce [33] proposes an efficient rehosting based on
the user mode of QEMU, for one common class of binaries
providing single-service in the firmware.

VII. CONCLUSION

In this paper, we explain the significant problem of hidden
web interfaces in IoT devices and give a series of clear
definitions. To automatically expose hidden interfaces, we
propose a novel solution EAGLEYE, which models the problem
as a searching process. Specifically, we revealed the simi-
larity of the routing pattern between hidden interfaces and
public interfaces. Accordingly, an adaptive approach, routing
analysis, is presented to search the routing table in firmware
intelligently by LLM. Further, EAGLEYE conducts a hidden-
interface directed black-box fuzzing with the routing table as
a dictionary, which focuses the testing energy on exploring
interfaces. To conquer blindness, EAGLEYE leverages the
response to guide the mutation and catch hidden interfaces.
We evaluated EAGLEYE on 13 commercial IoT devices and
successfully exposed 79 hidden interfaces, on which 29 un-
known vulnerabilities including backdoor, command injection,
XSS, and information leakage were found, and 7 have been
assigned CVEs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful suggestions on our paper. This work is
supported in part by the National Natural Science Foundation
of China (U24A20337), National Key R&D Program of China
(2021YFB2701000), the National Natural Science Foundation
of China (62402509), and the Joint Research Center for
System Security, Tsinghua University (Institute for Network
Sciences and Cyberspace) - Science City (Guangzhou) Digital
Technology Group Co., Ltd.

REFERENCES

[1] M. AI, “Kimi,” Available at https://kimi.moonshot.cn, 2023. 10
[2] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX

annual technical conference, FREENIX Track, vol. 41, 2005, p. 46. 15
[3] Bitdefender, “The 2023 iot security landscape re-

port,” Online, Bitdefender, Apr. 2023. [Online]. Avail-
able: https://www.bitdefender.com/files/News/CaseStudies/study/429/
2023-IoT-Security-Landscape-Report.pdf 1

[4] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and
A. S. Uluagac, “Sensitive information tracking in commodity {IoT},”
in 27th USENIX Security Symposium (USENIX Security 18), 2018. 15

[5] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware,” in Network and
Distributed System Security Symposium, 2016. 15

[6] J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun,
R. Yang, and K. Zhang, “Iotfuzzer: Discovering memory corruptions
in iot through app-based fuzzing.” in Network and Distributed System
Security Symposium, 2018. 15

[7] J. Chen, C. Zuo, W. Diao, S. Dong, Q. Zhao, M. Sun, Z. Lin, Y. Zhang,
and K. Zhang, “Your iots are (not) mine: On the remote binding between
iot devices and users,” in 49th IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2019. 15

[8] L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,
H. Duan, and Z. Xue, “Sharing more and checking less: Leveraging
common input keywords to detect bugs in embedded systems,” in 30th
USENIX Security Symposium, 2021, pp. 303–319. 1

[9] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang,
“Dtaint: detecting the taint-style vulnerability in embedded device
firmware,” in 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2018, pp. 430–441.
1

15

https://kimi.moonshot.cn
https://www.bitdefender.com/files/News/CaseStudies/study/429/2023-IoT-Security-Landscape-Report.pdf
https://www.bitdefender.com/files/News/CaseStudies/study/429/2023-IoT-Security-Landscape-Report.pdf


[10] K. Cheng, Y. Zheng, T. Liu, L. Guan, P. Liu, H. Li, H. Zhu, K. Ye, and
L. Sun, “Detecting vulnerabilities in linux-based embedded firmware
with sse-based on-demand alias analysis,” in 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2023. 1

[11] Citrix Systems, Inc. (2023) Citrix ADC and Citrix Gateway
Security Bulletin for CVE-2023-3519, CVE-2023-3466, CVE-2023-
3467. Citrix Systems, Inc. Accessed: 2024-04-23. [Online]. Available:
https://support.citrix.com/article/CTX561482 1

[12] P. J. Denning, The Locality Principle, 2006. 7
[13] M. Eceiza, J. L. Flores, and M. Iturbe, “Fuzzing the internet of things:

A review on the techniques and challenges for efficient vulnerability
discovery in embedded systems,” IEEE Internet of Things Journal, 2021.
15

[14] J. Eom, S. Jeong, and T. Kwon, “Covrl: Fuzzing javascript engines with
coverage-guided reinforcement learning for llm-based mutation,” arXiv
preprint arXiv:2402.12222, 2024. 2

[15] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and
Y. Xiang, “Snipuzz: Black-box fuzzing of iot firmware via message
snippet inference,” in Proceedings of the 2021 ACM SIGSAC conference
on computer and communications security, 2021, pp. 337–350. 15

[16] J. Gao, Y. Xu, Y. Jiang, Z. Liu, W. Chang, X. Jiao, and J. Sun, “Em-fuzz:
Augmented firmware fuzzing via memory checking,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2020. 1

[17] Z. Gao, C. Zhang, H. Liu, W. Sun, Z. Tang, L. Jiang, J. Chen, and
Y. Xie, “Faster and better: Detecting vulnerabilities in linux-based iot
firmware with optimized reaching definition analysis,” in Proceedings
2024 Network and Distributed System Security Symposium, 2024. 1

[18] F. Gauthier, B. Hassanshahi, B. Selwyn-Smith, T. N. Mai, M. Schlüter,
and M. Williams, “Backrest: A model-based feedback-driven greybox
fuzzer for web applications,” arXiv preprint, 2021. 14

[19] I. Gotovchits, R. Van Tonder, and D. Brumley, “Saluki: finding taint-
style vulnerabilities with static property checking,” in Proceedings of
the NDSS Workshop on Binary Analysis Research, vol. 2018, 2018. 1

[20] J. Hertz and T. Newsham, “Project triforce: Run afl on everything,” NCC
Group, Tech. Rep., 2016. 15

[21] IoT Analytics. (2023) State of iot 2023: Number of
connected iot devices growing 16% to 16.7 billion
globally. [Online; accessed 2024-04-22]. [Online]. Available:
https://iot-analytics.com/number-connected-iot-devices 1

[22] P. Khandait, N. Hubballi, and B. Mazumdar, “Iothunter: Iot network
traffic classification using device specific keywords,” IET Networks,
vol. 10, no. 2, pp. 59–75, 2021. 1, 15

[23] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Proceedings of the 36th Annual Computer Security Applications
Conference, 2020, pp. 733–745. 15

[24] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
pp. 1–13, 2018. 15

[25] H. Liu, S. Gan, C. Zhang, Z. Gao, H. Zhang, X. Wang, and G. Gao,
“Labrador: Response guided directed fuzzing for black-box iot devices,”
in 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 2024, pp. 127–127. 1, 15

[26] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, 2019. 15

[27] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing embed-
ded devices.” in Network and Distributed System Security Symposium,
2018. 15

[28] OpenAI, “Gpt-3.5 turbo,” Available at https://platform.openai.com/docs/
models/gpt-3-5-turbo, 2021. 9

[29] R. Qin et al., “Mooncake: Kimi’s kvcache-centric architecture for llm
serving,” arXiv preprint arXiv:2407.00079, 2024. 10

[30] N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry,
A. Bianchi, C. Kruegel, and G. Vigna, “Diane: Identifying fuzzing
triggers in apps to generate under-constrained inputs for iot devices,”
in 2021 IEEE Symposium on Security and Privacy (SP), 2021. 15

[31] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-
binary interactions in embedded firmware,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 2020, pp. 1544–1561. 1

[32] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer,
“Firmfuzz: Automated iot firmware introspection and analysis,” in

Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things, 2019, pp. 15–21. 15

[33] H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith et al., “Greenhouse:{Single-
Service} rehosting of {Linux-Based} firmware binaries in {User-Space}
emulation,” in 32nd USENIX Security Symposium, 2023. 1, 15

[34] S. L. Thomas, T. Chothia, and F. D. Garcia, “Stringer: Measuring
the importance of static data comparisons to detect backdoors and
undocumented functionality,” in Computer Security–ESORICS 2017:
22nd European Symposium on Research in Computer Security, Oslo,
Norway, September 11-15, 2017, Proceedings, Part II 22. Springer,
2017, pp. 513–531. 14

[35] C.-W. Tien, T.-T. Tsai, I.-Y. Chen, and S.-Y. Kuo, “Ufo - hidden
backdoor discovery and security verification in iot device firmware,”
in 2018 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), 2018. 1

[36] C. Wang, Y. Zhang, and Z. Lin, “Uncovering and exploiting hidden
apis in mobile super apps,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023, pp.
2471–2485. 15

[37] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements,
“Challenges in firmware re-hosting, emulation, and analysis,” ACM
Computing Surveys (CSUR), 2021. 15

[38] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4all:
Universal fuzzing with large language models,” in Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13. 2

[39] W. Xie, J. Chen, Z. Wang, C. Feng, E. Wang, Y. Gao, B. Wang,
and K. Lu, “Game of hide-and-seek: Exposing hidden interfaces in
embedded web applications of iot devices,” in Proceedings of the ACM
Web Conference 2022, 2022, pp. 524–532. 1, 14

[40] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, Z. Zhou, C. Gong,
Y. Shen et al., “A comprehensive capability analysis of gpt-3 and gpt-3.5
series models,” arXiv preprint, 2023. 9

[41] J. Zaddach, L. Bruno, A. Francillon, D. Balzarotti et al., “Avatar: A
framework to support dynamic security analysis of embedded systems’
firmwares.” in Network and Distributed System Security Symposium,
2014. 15

[42] M. Zalewski, “AFL: American Fuzzy Loop,” Google, Tech. Rep., 2013.
[Online]. Available: https://lcamtuf.coredump.cx/afl 15

[43] L. Zhang, J. Chen, W. Diao, S. Guo, J. Weng, and K. Zhang,
“{CryptoREX}: Large-scale analysis of cryptographic misuse in {IoT}
devices,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019, pp. 151–164. 1

[44] Y. Zhang, W. Huo, K. Jian, J. Shi, H. Lu, L. Liu, C. Wang, D. Sun,
C. Zhang, and B. Liu, “Srfuzzer: an automatic fuzzing framework for
physical soho router devices to discover multi-type vulnerabilities,” in
The 35th annual computer security applications conference, 2019. 15

[45] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“{FIRM-AFL}:{High-Throughput} greybox fuzzing of {IoT} firmware
via augmented process emulation,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1099–1114. 1, 15

[46] Y. Zheng, Z. Song, Y. Sun, K. Cheng, H. Zhu, and L. Sun, “An
efficient greybox fuzzing scheme for linux-based iot programs through
binary static analysis,” in 2019 IEEE 38th International Performance
Computing and Communications Conference (IPCCC). IEEE, 2019. 1

[47] C. Zuo and Z. Lin, “Smartgen: Exposing server urls of mobile apps with
selective symbolic execution,” in Proceedings of the 26th International
Conference on World Wide Web, 2017, pp. 867–876. 15

[48] C. Zuo, Z. Lin, and Y. Zhang, “Why does your data leak? uncovering
the data leakage in cloud from mobile apps,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1296–1310. 15

[49] C. Zuo, W. Wang, Z. Lin, and R. Wang, “Automatic forgery of
cryptographically consistent messages to identify security vulnerabili-
ties in mobile services.” in Network and Distributed System Security
Symposium, 2016. 15

[50] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards automatic discovery
of vulnerable authorizations in online services,” in 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017. 15

16

https://support.citrix.com/article/CTX561482
https://iot-analytics.com/number-connected-iot-devices
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://lcamtuf.coredump.cx/afl


Fig. 11: An illustrative example to demonstrate the specific
learning process of LLM.

APPENDIX A
LLM LEARNING DEMONSTRATION

We show an illustrative example to demonstrate the spe-
cific learning process of LLM. The Fig. 11(a) exhibits the
specific routing process in one device. It incorporates two-
tiered routing tokens, where the first level uses the routing
token (e.g., ”upload”, ”backup” and ”action”) located in the
URI of the request to specify the targeted interface. The
first-level handlers are invoked through a jump table. Under
the action interface, there are subordinated interfaces (e.g.,
”diagnostic.cgi”, ”ntp.cgi” and ”dhcp.cgi”) indicated in the
request’s query. The second-level handlers are indirectly called
via a routing table in the data segment. It should be noted
the complexity in determining the sources for taint analysis
within the function routing process due to the intricate
structure of the input data. However, for routing analysis, the
process can directly pinpoint where the routing tokens are
referenced, enabling the LLM to analyze the code and discern
the underlying patterns. Consequently, routing analysis does
not require the definition of sources and sinks as taint analysis
does, allowing for a more focused examination of the routing
process.

Two carefully crafted prompts are designed to facilitate the
learning process of LLM to recognize common patterns among
routing tokens. The first prompt is aimed at directly analyzing
the code to identify similar string tokens functioning as
routing tokens. The second prompt is focused on learning the
common patterns within their formatting, with the objective
of outputting a regular expression. This regular expression
can then be utilized to scan and identify such tokens within
firmware. As shown in Fig. 11(b), through code analysis by
LLM, the first-level routing tokens are distilled from the jump
table, but the second-level routing tokens cannot be analyzed
due to the problem of indirect call and unknown data structure.
Fortunately these second-level routing tokens exhibit a similar
formatting pattern, which the LLM can learn and express as a
regular expression. Utilizing this regular expression, we have
successfully extracted subordinate routing tokens in the data
segment.

APPENDIX B
SELF-CORRECTION DEMONSTRATION

We present an illustrative example to demonstrate the spe-
cific self-correction process for one device. As depicted on the
left side of Fig. 12, the initial output of the LLM may omit cer-
tain correct tokens (e.g., ’GetSysStatus’, ’AddPortMapping’)
and incorrectly identify others (e.g., ’Reboot’). To address
this, we have designed a correctness-checking operation for
the LLM’s results, employing an adjusting prompt to guide
the LLM in correcting its previous output, as illustrated on
the right side of Fig. 12. This adjusting prompt includes the
correct cases, missing cases, and error cases, all of which are
extracted from the LLM’s most recent output.

The correctness-checking process is visualized in the center
of Fig. 12. The EAGLEYE distills a set of public routing tokens
to serve as the verification set and prepares a set of non-
routing tokens as the negative token set. By comparing the
verification set with the LLM’s output tokens, we can identify
the missing and correct cases. The error cases are determined
by comparing the negative token set with the LLM’s output
tokens. The checking results are then incorporated into the
adjusting prompt to obtain new adjusted tokens, which are
subsequently verified for correctness. This iterative adjustment
process continues until the correct rate reaches the highest
possible level.

APPENDIX C
PUBLIC REQUESTS COLLECTION

To comprehensively gather public interfaces, we employ
an interactive collector functioning as a man-in-the-middle
proxy to intercept network traffic. As clients interact with
devices according to the documentation, triggering events and
navigating through pages, the collector logs all traffic with
duplication. This method allows EAGLEYE to capture all
standard webpage transitions.

It is noted that to thoroughly explore public interfaces,
manual operation of the device following the provided doc-
umentation is necessary, particularly for services or function-

17



Fig. 12: An illustrative example to demonstrate the specific self-correction process for LLM.

alities contingent upon orderly configurations. This approach
guarantees a complete inventory of public interfaces. While
the approach necessitates manual intervention, it is a one-time
procedure that does not demand extensive labor. As a precursor
step, this collection process does not impeding the automation
of subsequent processes.

18


	Introduction
	Background and Motivation
	Problem Explanation
	Routing Mechanism in IoT Web
	Motivation
	Our solution and Main Challenges

	Design
	Token-based Comparative Analysis
	Variable Token Identification
	Hierarchy Analysis

	LLM-Powered Pattern Learning
	Contexts Extraction
	Learning Process
	Self-Correction Model

	Hidden-Interface Directed Black-box Fuzzing
	Mutation Toward Hidden Interfaces
	Catch Hidden Interfaces from Response


	Evaluation
	Experiment Setup
	Overall Findings
	Routing Analysis Effectiveness
	Black-box Fuzzing Effectiveness
	Severity of Hidden Interface
	Digging into Hidden Interface

	Discussion
	Related Work
	Conclusion
	References
	Appendix A: LLM Learning Demonstration
	Appendix B: Self-Correction Demonstration
	Appendix C: Public Requests Collection

