
CASPR: Context-Aware Security Policy
Recommendation

Lifang Xiao∗, †, Hanyu Wang∗, †, Q, Aimin Yu∗, †, Lixin Zhao∗, Dan Meng∗, †
∗Institute of Information Engineering, Chinese Academy of Sciences, China

†School of Cyber Security, University of Chinese Academy of Sciences, China
{xiaolifang, wanghanyu1999, yuaimin, zhaolixin, mengdan}@iie.ac.cn

Abstract—Nowadays, SELinux has been widely used to pro-
vide flexible mandatory access control and security policies are
critical to maintain the security of operating systems. Strictly
speaking, all access requests must be restricted by appropriate
policy rules to satisfy the functional requirements of the software
or application. However, manually configuring security policy
rules is an error-prone and time-consuming task that often
requires expert knowledge. Therefore, it is a challenging task
to recommend policy rules without anomalies effectively due to
the numerous policy rules and the complexity of semantics. The
majority of previous research mined information from policies
to recommend rules but did not apply to the newly defined
types without any rules. In this paper, we propose a context-
aware security policy recommendation (CASPR) method that can
automatically analyze and refine security policy rules. Context-
aware information in CASPR includes policy rules, file locations,
audit logs, and attribute information. According to these context-
aware information, multiple features are extracted to calculate
the similarity of privilege sets. Based on the calculation results,
CASPR clusters types by the K-means model and then rec-
ommends rules automatically. The method automatically detects
anomalies in security policy, namely, constraint conflicts, policy
inconsistencies, and permission incompleteness. Further, the de-
tected anomalous policies are refined so that the authorization
rules can be effectively enforced.

The experiment results confirm the feasibility of the proposed
method for recommending effective rules for different versions
of policies. We demonstrate the effectiveness of clustering by
CASPR and calculate the contribution of each context-aware
feature based on SHAP. CASPR not only recommends rules for
newly defined types based on context-aware information but also
enhances the accuracy of security policy recommendations for
existing types, compared to other rule recommendation models.
CASPR has an average accuracy of 91.582% and F1-score of
93.761% in recommending rules. Further, three kinds of anoma-
lies in the policies can be detected and automatically repaired.
We employ CASPR in multiple operating systems to illustrate the
universality. The research has significant implications for security
policy recommendation and provides a novel method for policy
analysis with great potential.

I. INTRODUCTION

With the rapid development of information technology,
system security issues are becoming increasingly prominent,

and various attacks are constantly occurring, causing signif-
icant losses to individuals and organizations. Therefore, it
is crucial to strengthen the security of operating systems.
Security Enhanced Linux (SELinux) [3], an effective kernel
security enforcement module designed to enhance the security
of Linux systems, provides a robust and flexible mechanism for
resources and operations. SELinux is implemented based on
security labels, defined for each user, application, process, and
file in systems. It controls interactions between entities through
security policies to achieve the least privilege to prevent
unauthorized access. SELinux policy has complex semantics
and numerous rules, containing approximately one hundred
thousand rules to implement fine-grained access control [30].

However, the large number of policy rules and com-
plex semantics make policy customization in SELinux time-
consuming and error-prone. Currently, most policies are con-
figured manually, which requires not only expertise and ex-
perience but also an in-depth understanding of access be-
haviors, which undoubtedly increases the time cost of policy
customization. More importantly, inappropriate policies will
cause security problems. The access control policy determines
the operating authority of the subject to the object. If the
policy rules are over-privileging, it will lead to unauthorized
access, data leakage, and malicious attacks. Conversely, if they
authorize inadequately, it will affect the normal operations
of the system. Therefore, configuring rules with reasonable
privileges is an urgent and vital task. Undoubtedly, policy
anomaly detection and rule recommendation [45], [52], [55]
help to optimize policies and automatically generate appropri-
ate security policies.

To cope with the challenges, a large number of studies
are related to policy analysis, anomaly detection, and auto-
matic recommendation of policy rules. Previous approaches of
policy analysis mainly detect anomalies such as misconfigura-
tion [12], [58], over-granting [43], inconsistency [40], [57] and
policy conflicts [17], [53]. Additionally, a significant number
of approaches to generating policy rules have been proposed,
such as natural language processing and pattern learning to
mine important information from logs or rules and recommend
policy rules automatically [21], [24], [29].

While previous policy analysis can automate the iterative
process of policy recommendation, it is not suitable for newly
defined types that lack applicable policy rules. When new
software is installed on the system or a new type is configured
by the system administrator, it is difficult to generate rules for
it without current policy rules to use as a reference. To address
this issue, we incorporate supplementary context-aware infor-

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240418
www.ndss-symposium.org

mation, which is used as features to analyze privilege similarity
for recommending policy rules. The integration of multiple
features not only enables the automation of recommending
rules for newly defined types but also enhances the precision
of recommending rules for existing types.

In this paper, we propose a context-aware security policy
rule recommendation method, termed as CASPR, which rec-
ommends rules based on the privilege calculation and detects
policy anomalies automatically. The context-aware information
includes policy rules, audit logs, file locations, and attribute
information. Our observation is that context-aware information
plays an important role in rule recommendation. In particular,
domains or object types with related context-aware information
are granted the same privileges. To this end, we design CASPR
for privilege computation and policy recommendation. CASPR
uses context-aware information as features and domains and
object types as samples. We train a K-means model with a
feature matrix of privilege similarity. To address the issue of a
huge number of object types in SELinux, we adopt a secondary
clustering approach when clustering the objects of the policy.
CASPR not only recommends rules but also performs anomaly
detection to ensure effective implementation of the policy.

To evaluate the performance of CASPR, we capture and
analyze context-aware information in SELinux. In addition
to the types associated with the rules, we also add new
types as samples. We demonstrate the clustering effect of
domains and object types and the contribution value of each
context-aware feature in the clustering using SHapley Additive
exPlanations(SHAP) [26], which explains model output by
assigning importance values to features. It indicates that the
security context-aware information is critical, as it has a
favorable impact on the policy recommendation. The average
accuracy of CASPR to recommend policy rules is 91.582% on
average, which exceeds other rule recommendation methods.
Besides, CASPR achieves the F1-score of 93.761% on average,
which indicates that CASPR has few false positives and false
negatives. We also employ CASPR in multiple operating
systems to illustrate its universality. The results confirm the
accuracy of the recommendation rules based on the clustering
results obtained from measuring privilege similarity.

In summary, the contributions of this paper are summarized
as follows:

• Privilege calculation based on context-aware information.
We innovatively introduce context-aware information for
privilege calculation and integrate them, including policy
rules, file locations, audit logs, and attribute information.

• Rule recommendation and anomaly detection. This paper
proposes CASPR, a rule recommendation and anomaly
detection method, which establishes a privilege similarity
matrix based on context-aware information to cluster the
domains and object types and automatically recommends
policy rules. Additionally, the method can detect and
refine anomalies, including constraint conflicts, policy
inconsistencies, and permission incompleteness.

• Experimental effectiveness. In this paper, we perform
experiments based on large-scale context-aware informa-
tion. The experiments prove that the method improves
the accuracy of policy recommendations with higher
adaptability and feasibility.

II. BACKGROUND & DEFINITION

A. Overview of SELinux

Access control is a security mechanism typically im-
plemented using the Linux Security Module (LSM) frame-
work [48], which manages and restricts access to resources by
users and processes in the system to avoid unauthorized access,
destruction, and tampering of the system. Classical access
control models are Discretionary Access Control (DAC) [33],
[37], Mandatory Access Control (MAC), Role-Based Access
Control (RBAC) [15], [35], [38] and Attribute-Based Access
Control (ABAC) [33], [54]. SELinux [2] is a kernel-level
MAC security mechanism that defines the access privileges of
each entity in the system and uses security policies to control
interactions between these entities. When an access request
is initiated, the kernel interface is invoked and a database of
policies in the kernel determines whether it is allowed. If the
mode of SELinux is enforcing, all access is denied by default
except when the relevant rules are defined in the policy.

The access control policy in SELinux is based on the
security labels of subjects and objects. Each subject and
object has an associated security label. The security label
<USER:ROLE:TYPE[LEVEL]> contains three fields, user,
role, and type identifier. Among them, type is the core of Type
Enforcement (TE) [5], [20] rules and the privileges of security
policy rules are assigned based on type. Types include subject
types (domains) and object types. Type, role, and user are
legal security labels only when associated. In security poli-
cies, declarations and rules define type enforcement policies
together. The rules include massive access vector rules and
type rules. Type rules make labels legal and facilitate policy
writing. SELinux policy is large-scale and complex, composed
of numerous policy modules. The policy modules form the
policy source files, which are compiled into a binary file by the
policy compiler and loaded into the kernel through the policy
loading function to implement access control. The security
policy implements privilege changes by tuning the mandatory
rules, and each access request must have explicit rules.

B. Definition of Context-aware Information and Privilege Sim-
ilarity

In this paper, the context-aware information related to
policy recommendations includes security policy rules, file
locations, audit logs, and attribute information. This section
introduces the definition of these context-aware information
and privilege similarities.

1) Attribute Information: If the type identifier is used to
reference a subject, it specifies its subject type, that is a
domain. If the type identifier is used to reference an object, it
specifies its object type. Attributes represent sets of domains
or object types. The mapping relationship can be expressed
as attrs = {di} where attrs denotes a subject attribute
including domains and di means a domain in the attribute.
Similarly, attro = {ti} where attro represents an object
attribute consisting of various object types ti. This abstraction
based on attributes facilitates the management of complex
security policies by grouping types with identical privileges
together, thereby simplifying the assignment and enforcement
of privileges. Attributes provide a more manageable extensible
policy framework for large systems with numerous types.

2

2) Security Policy Rules: We collect the rules in the type
enforcement policy in SELinux. The rules can be represented
as a five-tuple re =< a, d, t, c, {pi} >, where a indicates
allow or neverallow, d is the domain, t is the object type, c
is the object class, piϵp represents permissions. In this paper,
we focus on analyzing the allow rules, and when a indicates
allow, re indicates that the subject of domain d is allowed
to have pi permission on the c class of the object of type t.
The type enforcement policy in SELinux can be represented
as a set of rules. For example, allow passwd t passwd file t
: file { ioctl read write create getattr setattr lock append map
unlink link rename open } ; . This rule indicates that subjects
with passwd t domain are assigned these permissions to the
passwd file t object type with file class.

The SELinux policy contains rules defined based on at-
tributes and rules defined based on types. According to the
definition of attributes, the attribute-based rules in the policy
can be converted to type-based rules, which form is r =<
a, attrs, attro, c, {pi} > to r =< a, d|attrs, t|attro,c, {pi} >.
In addition to attributes, we also expand the set of permissions.
We make each rule r =< a, d, t, c, {pi} > represented in
the form of multiple rules ra =< a, d, t, c, p >, where
pϵ{pi}. This rule specifies one permission for a domain, which
facilitates our analysis. Figure 1 represents a schema of rules
expansion and statistical privileges.

ping_t
sshd_t
portmap_t
......

bin_t
lib_t
boot_t
......

ioctl
getattr
open
......

ping_t

bin_t

file

getattr
ioctl

......

lib_t

file

getattr
open

boot_t
file

getattr

open

ping_t portmap_tsshd_t

......boot_tlib_tbin_t

file

opengetattrioctl

open
......

......

ioctl

ioctl

......

......

ping_t

sshd_t

portmap_t

......

allow domain base_ro_file_type : file { ioctl getattr open read lock };

Fig. 1: Process of SELinux Policy.

3) File Locations: In SELinux, there is a file mapping
the relationship between security labels and locations. The
relationship can be expressed as label −→ {locationi}. A label
corresponds to at least one location. The mapping relationship
between labels and file locations is the implementation of
associating specific files with types, which serves as the basis
for fine-grained access control.

4) Audit Logs: Audit logs [43], [50] record the oper-
ating behavior. By analyzing the logs to extract important
information, it can audit and trace the violation of user
or software operations. In addition, access control logs are
important evidence for policy customization and optimization
to guarantee the normal operation of software and applications
and prevent anomalies caused by under-privilege. For example,
the logs of type Access Vector Cache (AVC) record detail
information including the domains, object types, object classes,
and permissions. As shown in Figure 2, the logs record two
violation operations, the subject user t was rejected when

performing open and read operation on auditd log t. Through
processing, the access requests are extracted in logs.

auditd_log_t

user_t

file

open read

Object Type

Domain

Object Class

Permission

type=AVC msg=audit(1698203414.193:228):avc:
denied{open} for pid=20936 comm="cat"
path="/var/log/audit/audit.log" dev="sda3"
ino=68107900 scontext=user_u:user_r:user_t:s0
tcontext=system_u:object_r:auditd_log_t:s0
tclass=file permissive=1

type=AVC msg=audit(1698203414.193:228):avc:
denied{read} for pid=20936 comm="cat"
path="/var/log/audit/audit.log" dev="sda3"
ino=68107900 scontext=user_u:user_r:user_t:s0
tcontext=system_u:object_r:auditd_log_t:s0
tclass=file permissive=1

Fig. 2: An Example of Extracting Policy Rules from Logs.

5) Privilege Similarity: A parsed rule, of the form ra =<
a, d, t, c, p >, is regarded as a privilege. Different subjects that
have the same permission on the same object have identical
privileges. Similarly, different objects performed the same
operations by the same subjects have identical privileges. It
is worth noting that having identical privileges is not equiv-
alent to having the same privilege set. The more identical
the privileges they contain, the greater the similarity of the
privilege sets is. The granted privileges are included in the
rules. To simplify the description, we refer to the similarity of
privilege sets as privilege similarity. In addition to policy rules,
there is other context-aware information related to privileges,
including file locations, audit logs, and attribute information.
The detailed reasons are explained in Section IV-A1.

C. K-means Clustering Model

The K-means model is a widely used unsupervised learning
algorithm for clustering analysis. Its main objective is to
partition a dataset into K predefined clusters, maximizing the
similarity among data points within the same cluster while
minimizing the similarity between data points in different
clusters. K-means algorithm needs to select K initial centroids
randomly. Afterward, it updates the centroids by calculating
the mean of all data points in each cluster. K-means repeats the
assignment and update phases until the centroids do not change
significantly or a specified number of iterations is reached.

The K-means algorithm is computationally efficient and
suitable for handling large-scale datasets and can accomplish
a large number of data clustering tasks in a short period
of time. For policies with massive domains and types, it
is necessary to efficiently compute their privilege similarity
and recommend policy rules as soon as possible to prevent
attackers from performing illegal operations before fixing the
policies. Therefore, the K-means model is particularly suitable
in this case.

III. PROBLEM STATEMENT AND THREAT MODEL

Improper configuration of SELinux policy, including over-
privileging and under-privileging, poses significant security
risks to the SELinux-enforced system. Over-privileged pol-
icy rules allow attackers to execute malicious operations, as
demonstrated by the exploitation of vulnerability CVE-2019-
13272 [1]. The vulnerability arises from improper handling
of the ptrace traceme function in the parent-child process
relationship, enabling attackers to hijack a child process by

3

1 Data Collection

Attribute Information

Audit Logs

File Locations

SELinux Policy Rules

2 Feature Extraction

Policy feature extraction Domain
feature martix

K-means model
for clustering

Analysis of each
 category of privileges

3 Cluster based on K-means

5 Recommended
Rules

SELinux Policy

4 Anomaly Detection

Constrain Conflicts

Policy
Inconsistencies 6 Policy Refinement

Chronology feature extraction

Location feature extraction

Attribute feature extraction

Object type
feature matrix Permissions

Incompleteness

Secondary
clustering

Fig. 3: The workflow of CASPR.

gaining control of the parent process. They can then manipulate
the child process through the ptrace trace function, which
is typically denied by standard SELinux policies. However,
because the deny ptrace boolean was not enabled, leaving the
system vulnerable to attack.

On the other hand, overly strict policies can disrupt normal
operations. For example, in a few cases, the administrator
changes the default port of the Apache HTTP server from port
80 to port 3131 or stores content in a non-standard directory. It
causes the new directory and port have not been appropriately
labeled for httpd access. As a result, the server may fail to
start or return a ”403 Forbidden” error due to SELinux policies
denying access. [41]

Given these challenges, this paper focuses on the potential
risks associated with the recommendation of policy rules in
SELinux. CASPR is designed to identify the over-privileging
and under-privileging rules in policy.

Threat Model. We consider that an attacker attempts to
use the expanded attack surface to perform illegal operations if
the policy is over-privileged. However, if it is under-privileged,
the operation of normal function is limited. We assume that an
attacker is enforced with security policies and cannot bypass
the security measures. To cope with these potential problems,
a powerful policy recommendation mechanism is needed.

IV. CASPR DESIGN

CASPR is a large-scaled policy recommendation archi-
tecture using security context-aware information in SELinux.
CASPR analyzes each context-aware feature and clusters
the domains and object types with identical privileges to
recommend rules. Additionally, CASPR refines policy rules
after detecting anomalies. Figure 3 shows the workflow of
CASPR. We describe the three components in the architecture
of CASPR, that is, privilege computation based on context-
aware information, rule recommendation based on secondary
clustering, and policy refinement after detecting anomalies.

A. Context-aware Feature Computation

In this section, we analyze the rationality for the selection
of context-aware information for computing privilege similar-
ity. Then, we explain how the privilege similarity is calculated
for each feature and how the feature matrix is constructed
based on the similarity computation for these features.

1) Feature Selection: CASPR extracts features including
policy feature, location feature, chronology feature, and at-
tribute feature from context-aware information. The following
part explains the reasons for selecting these features as the
judgments of identical privileges.

Policy Feature. Due to the fact that privileges are granted
by policy implementation in SELinux, the most significant
indicator for identical privileges is the security policy rules.

Location Feature. The path dependency of files indicates
that they have the identical privileges. For example, subjects
of domain secadm t are authorized to read audit.log of
type auditd log t. Meanwhile, they are also authorized to
search parent directories with path dependencies, including
{getattr, search, open} permissions on directory /var of type
var t, directory /var/log of type var log t and directory
/var/log/audit of type auditd log t.

Chronology Feature. In the audit logs, each of the logs has
a timestamp field indicating when the behaviors occurred. The
behaviors which occurred simultaneously over a while have
been generated by the same event. These behaviors are allowed
or denied at the same time. For example, when a network
activity occurs on a host, this event consists of multiple be-
haviors such as inbound and outbound network connections to
the system, transmission and receiving of network packets, and
authentication of web credentials. If access is required, it is not
possible to authorize only part of these behaviors. Therefore,
we consider the chronological information on behavior in audit
logs as a feature for identical privileges.

Attribute Feature. All types that belong to the same
attribute have the privileges granted by this attribute. Def-
initely, types contained in the same attribute have identical
privileges. For example, su domain type is an attribute with
system administrative privileges. It contains three domains,
auditadm su t, secadm su t, and sysadm su t, which are
used for monitoring, authorization, and system management,
respectively. When the attribute su domain type is autho-
rized to read files of type security t, the domains in this
attribute can also read these files, so they have identical
privileges. The analysis results indicate that other domains that
are not in the same attribute do not possess this privilege.
For instance, subjects of domain systemd passwd agent t
cannot read files of type security t, even if it is also a label
for managing system activities.

It is worth noting that some samples do not have all the
context-aware features. For example, not all types belong to

4

an attribute and CASPR cannot determine identical privileges
based on the feature of attributes. In this case, CASPR calcu-
lates privileges based on other features. In addition, aimed at
the newly defined types that have no related rules in the system,
we can recommend rules based on other security context-aware
features besides rules to recommend policy rules.

2) Feature Computation: When constructing the feature
matrix A, we arrange the types as rows and columns, and
the value in the row i and column j of the matrix aij denotes
the similarity of privileges between the i and j types. The
feature matrix built based on these features is the input of the
clustering algorithm. We compute the policy features before
considering other features.

For the similarity of security policies, taking the clustering
of domains as an example, when a subject is granted permis-
sion for a particular object, the corresponding value in the
feature vector is 1. If the subject does not have permission to
the object, the corresponding value in the feature vector is 0.
We calculate the value corresponding to two samples in the
feature matrix according to the similarity of feature vectors by
the Jaccard index. The similarity of vector a and vector b is
calculated as follows:

sim(a, b) =
len(a&b)

len(a|b)
(1)

It is similar to the clustering for object types. We use the
subjects that can be accessed and the permissions they are
authorized to perform as feature vectors. Especially, for the
newly defined types, the contribution of policy rules to the
value in the feature matrix is small, but other features indicate
identical privileges. In this condition, CASPR recommends
policy modifications based on the differences in their rules
to improve the policy.

S1 S2 S3 S4

S1
S2
S3
S4
......

O1 O2 O3 O4

O1
O2
O3
O4
......

O_t O_c

O_t O_c

O_t O_c

same directory

S O_t O_c p

S O_t O_c p

S O_t O_c p

same time

same attribute

O_t

O_t O_t

O_t

same attribute

S S

S S

SELinux Policy Object Class
Object Class

O_t

O_c

p

0

O_t

O_c

p

0

O_t

O_c

p

1

O_t

O_c

p

0S1 []

...

...
0 1 1 0S2 []

1 0 0 0S3 []

...

O_c1

O_c2

O_t1

O_t2

O_t3

O_t4

S

p

S

p

S

p

S

p

......

0 0 1 0[]

1 0 1 0[]

1 1 0 0[]

...

...1 0 0 0[]

......

...
...

...

...

Calculate
Similarity

O_t1

O_c1

O_c3

O_c2 S2

S1

p3

p1

p2

Object
Object

Object

S1

O_t1

O_t3

O_t2 O_c2

O_c1

p3

p1

p2

Subject
Subject

SubjectS

O_t

Subject Domain

Object Type

O_c

p

Object Class

Permission

AttributeAudit LogFile Location

Fig. 4: Feature Extraction.

When calculating the privilege similarity about the features
including location feature, chronology feature, and attribute
information, we consider the privilege similarity in a simpler
computational manner. The value of sim is set to 1 if the
collected data indicates that the two samples exhibit similarity
in the dimensions of the features, analyzed in Section IV-A1,
including path dependency or frequent simultaneous access or
belonging to the same attribute. Conversely, if such indicators
are absent, sim is set to 0.

We use the similarity of domains and object types on
different features as the criterion for determining the privilege
similarity. CASPR adopts a rigorous approach to creating the
feature matrix, which is shown in Figure 4. Since SELinux
implements fine-grained access control, of which there are
numerous domains and object types, the feature matrix com-
puted based on privileges is very sparse, which affects the
performance of clustering. Therefore, it is important to perform
feature scaling, which standardizes and normalizes the feature
matrix when generating it. It involves converting the privilege
similarity on each feature to a distribution with an arithmetic
mean of 0 and a standard deviation of 1 as follows:

xstandard =
x− µ

σ
(2)

where µ is the arithmetic mean and σ is the standard deviation
of the dataset. The standardization eliminates the difference in
scale between different features. Afterwards, the data is scaled
to the range of 0 to 1 for K-means computation as follows:

xnormal =
x−min(x)

max(x)−min(x)
(3)

B. Rule Recommendation Based on Clustering

In this section, we introduce the clustering of domains
and object types with identical privileges to determine the
recommended rules based on the clustering results.

1) Cluster Algorithm: After generating the feature matrix
according to the privilege similarity calculated in the dimen-
sions of selected context-aware features, CASPR uses the K-
means model for clustering the domains and object types
respectively. The clustering is shown in the algorithm 1.

Subjects Clustering. For clustering the domains, we first
generate a feature matrix according to the privilege similarity
calculated by the policy feature. Afterwards, we iteratively
update this feature matrix to superimpose the similarity in
the dimensions of other features and perform feature scaling.
Taking the feature matrix as input, CASPR uses K-means
model, which is a cluster analysis algorithm with iterative
solving, to cluster samples with identical privileges. The initial
clustering center is determined by the privilege sets defined in
the known policy rules. By clustering the data and calculat-
ing the cluster centers, samples are assigned clusters by the
distance from the sample points to the cluster centers. The K-
means model calculates that the feature vectors of the privilege
sets of subjects that are classified into the same category have
higher similarity, which means that they have more identical
privileges to the objects.

Secondary Clustering of Objects. The clustering of objects
is similar to subjects. The difference is that the clustering of
objects is more complex. Specifically, if two objects share the
same object type but are contained in different object classes,
they will have different privileges. For example, for an object
of the same object type bin t, the subjects of user t have
the permissions of map and execute on file class but have
no permission on directories of the dir class. Therefore, it is
vital to analyze the privileges of each object type and class.
This leads to a huge sample number in object clustering.
Therefore, we set a secondary cluster. The large-scale dataset
is divided into several subsets. The clustering computation is

5

Algorithm 1: Domains and object types clustering.
Input: Policy, Location, Log, User, Attribute
Output: Clustering Results of subjects and objects.
// capture features

1 rules← GetPrivilege(policy);
2 relationship location← GetNearFile(Location);
3 relationship chronology← GetEvent(Log);
4 relationship type← GetAttribute(Attribute);
// clustering of domains

5 subject← GetDomain(policy+added domain);
6 matrix1[:] = 0;
7 for rule ϵ rules do
8 subject vector[subject].update(rule[object type]+

rule[object class]+rule[permission]);
9 end

10 for s1 ϵ subjects do
11 for s2 ϵ subjects do
12 matrix1[s1][s2].add(sim(s1 vector,

s2 vector));
13 end
14 end
15 for relationship(s1, s2) in relationship do
16 matrix1[s1][s2].add(simi);
17 end
18 matrix1.scaling();
19 results subject← K-means(martrix1);
// clustering of object types

20 objects← GetObjectType(rules+added type) ;
21 matrix2[:] = 0;
22 for class ϵ rules[object class] do
23 for rule ϵ rules do
24 object vector[object].update(rule[domain]+

rule[permission]);
25 end
26 for o1 ϵ objects do
27 for o2 ϵ objects do
28 matrix2[o1][o2].add(sim(o1 vector,

o2 vector));
29 end
30 end
31 for relationship(o1, o2) in relationship do
32 matrix2[o1][o2].add(simi);
33 end
34 matrix2.scaling();
35 results object ← K-means(martrix2);
36 end
37 return results subject, results object;

performed on different nodes so as to reduce time complexity
and computational load. In the primary cluster, we cluster
the objects according to object class, such as directory, file,
process, and so on. In the secondary cluster, based on the
result of the primary cluster. We cluster object types in the
same object class. In this way, objects that are clustered into
the same category are accessed by more identical subjects and
granted more identical privileges.

2) Rule Recommendation: We statistic the privilege sets for
each category of domains and object types respectively after
clustering, and the majority of samples in the same category

have identical privileges. For domains, their privileges can
be expressed as permissions, object types, and object classes,
which can be accessed by most of the subjects of the domain
in this category. For object clustering, it is the set of domains
and the permissions performed by the subjects. The subjects
are authorized to perform operations on most of the object
types in this class. Figure 5 depicts the procedure of rule
recommendation.

S

S
S

S

S

O_t
O_c

O_t

O_t

O_t
O_t

O_c

O_t

O_t

O_t

O_t

O_c

O_t

S

S

S

O_t O_c p

O_t O_c p

O_t O_c p

O_t O_c p

O_t O_c p

O_t O_c p

O_t

O_t

O_t

O_t

O_t

O_t

O_t

O_t

S p

S p

S p

S p

Rules Recommendation List

Rules Recommended by
Clustering of Subject Domains

Rules Recommended by
Clustering of Object Types

S O_t O_c p

O_t O_c p

O_t O_c p

O_t O_c p

S p

S p

S O_t O_c p

S O_t O_c p

S O_t O_c p

O_t O_c p

O_t O_c p

O_t O_c p

O_t

O_t
O_t

S

S

S

S

Fig. 5: Rule Recommendation.

After obtaining the results of the clustering, samples in
the same category have identical privileges. However, taking
domain clustering as an example, domains clustered in a
category just have multiple identical privileges, not the same
privilege sets. Thus there is a case where one sample does not
have the privileges granted in the policy that the majority of
the other samples in the category have. However, it is clustered
with other domains due to the identical privileges in other
feature representations. In this case, this domain should be
granted based on the calculation of CASPR. To complete the
authorization, it is necessary to recommend the missing rules.
For example, among multiple domains, only domain s1 does
not have read permission and the rest of the domains do. At
this point, we generate a rule that grants read permission to
domain s1. Similarly, if the object type lacks the relevant rules,
we recommend them in the same way.

Theoretically, all samples in the same category cannot have
exactly identified privilege sets. Because SELinux performs
the principle of least authorization, if two types have exactly
identical privileges, it will cause privilege confusion and
potential security vulnerabilities. Therefore, it is not appro-
priate to blindly add the recommended rules to the policy
based on the similarity of privilege sets while ignoring the
privilege differences between the domains or object types. To
eliminate the false positives, we cluster domains and object
types separately and recommend two lists of rules separately
by the above method. Afterwards, the intersection of the
two lists is the final recommendation rules. In other words,
if the rule recommendations according to the clustering of
domains and object types are consistent, we generate a list
of rule recommendations. Additionally, we also minimize the
possibility of false positives by adopting a more strict threshold
setting. Through this approach, we provide a reasonable rule
recommendation method based on clustering results.

6

C. Anomaly Detection and Policy Refinement

The recommended rules simply determine that domains or
object types in the same category have identical privileges.
Since SELinux policy are complex and sophisticated, it is also
imperative to take into account their integrity and availability.
It is essential to complete all the necessary rules to perform
the behavior according to the constraint files in SELinux,
instead of adding only one single rule to execute a certain
operation. However, blindly adding missing rules would lead
to overly-authorization. Therefore, it is necessary to assess
if the inclusion of new recommended rules in the policy
will result in any anomalies. There are different configuration
files in SELinux, and each file specifies different perspective
of completeness. According to the configuration files, we
identify grammar and semantic anomalies, including constraint
conflicts, policy inconsistencies and permission incomplete-
ness, by employing regular matching. The goal of detecting
anomalies is to refine policy properly, so as to ensure that the
modified SELinux policy can work effectively. The following
describes these anomalies and how to patch the policy without
over-authorization when they occur.

1) Constraint Conflicts: The constraints can be parsed into
the following form: < Attr, c, {pi} >, which means that only
types in attribute Attr have permissions of pi on objects of
class c. The reason for these anomalies is that the attribute
does not contain the type of added rule. In this case, it is
necessary to add the type to the attribute, but other privileges
of this attribute will also be presented. Generally, if this type
and other types of this attribute are clustered into a category
by CASPR, we refine the policy based on the recommendation
of rule modification. If they are not in the same category, there
are no other privileges assigned.

2) Policy Inconsistencies: The file patterns.spt file defines
the policy consistencies. Specifically, it can be parsed into the
following form: < beh : [{beh f}, {beh s}] >, which means
that if a subject of domain d performs beh behavior, it needs
to have privileges not only to perform beh s on the file but
also to perform beh f on its parent directory. For example,
if a subject requires to read a file, it possesses not only read
permission on the file but also the necessary permissions to
search the directory containing the file. We must take into
account the privileges of the parent directory.

3) Permission Incompleteness: In SELinux, the permis-
sions completeness are defined in the obj perm sets.spt file.
Specifically, it can be parsed into the following form: < c :
{beh : {pi}} >, which means if a subject performs beh
behavior on an object of class c, it needs to gain permissions
of p i. For example, if a subject desires to read a file and
lacks the open permission, it is unable to read this file,
regardless of possessing the read permission. These anomalies
are caused by authorizing only part of the permissions, which
prevents the operations from executing correctly. It is different
from the permissions of writing and reading in the DAC
mechanism in Linux. It is also necessary to consider other
relevant prerequisite permissions.

V. EVALUATION

In this section, we evaluate the performance of CASPR in
the following aspects: whether the clustering of domains and

object types is effective, whether the recommended rules are
accurate, without missing or excessive authorization, whether
the anomaly is detected, and whether CASPR applies to
different versions of SELinux policy recommendations. We use
three cases to describe the usage scenarios.

A. Data Process

1) Description of Operating System Context-aware Infor-
mation List: We implement CASPR in python 3.7 and deploy
it in six different versions of CentOS and Ubuntu systems.
They are all enforced by SELinux and the related information
is shown in Table I. Different systems enforce distinct access
control policies due to variations in system resources. We
illustrate the data in Table I with the example of CentOS7,
which adopts 3.13.268.el7 version of SELinux and enforces
the v31 version of policy. Its standard SELinux policy contains
107,834 rules. After removing duplicates, there are 99,054
rules. In the policy, some rules define the association permis-
sions on the file system. Its purpose is to associate a file to
the file system. These rules typically have the same domain
and object types. These permissions are basic requirements
for file system associations. Therefore, the associations related
to filesystem are authorized. Besides, excluding these rules
from clustering calculations can greatly reduce the number
of domains. Afterwards, according to the attribute and type
mapping relationships, the attribute-based rules are parsed to
convert them to type-based rules. The parsed rules contain a
significant degree of redundancy. If the domains and object
types in the rules are the same, and only the permissions
are different, it is feasible to combine the rules. It contains
173,514,894 privileges that are not duplicated and can be
represented as ra =< a, d, t, c, p >. The policy rules are
associated with 823 domains and 4,279 object types in 124
object classes, which are the samples for clustering in CASPR.
In addition to the policy rules in SELinux, we also obtain
context-aware information. It includes 5,372 mappings of file
locations, 8,748 audit logs, and 14,950 mapping relationships
of attributes and types. These information is also used for
clustering calculation as a feature to determine the similarity
of privilege sets of types.

Operating

Systems
SELinux Version Rules Privileges

File

Locations

Audit

Logs

Attribute

Mappings

CentOS6 3.7.19-312.el6 304,755 128,258,009 3,904 8,255 8,814

CentOS7 3.13.1-268.el7 99,054 173,514,894 5,372 8,748 14,950

CentOS8 3.14.3-139.el8 108,038 197,389,960 5,609 8,326 13,581

Ubuntu20 2:2.20190201-8 96,758 43,008,323 4,458 6,854 9,402

Ubuntu22 2:2.20210203-10 90,772 35,880,295 4,287 7,749 8,871

Ubuntu24 2:2.20240202-1 36,400 37,213,711 4,484 7,753 8,935

TABLE I: Context-aware information list for different operating systems.

2) Train Set and Test Set Setup Instructions: CASPR
employs an unsupervised clustering model, but in order to
verify its effectiveness, we choose the original SELinux policy
as the ground truth and divide it into train set and test set. We
randomly select 90 percent of the rules to train CASPR. With
the remaining 10% of the rules, we also create predefined rules
for new types as our test set. We compare whether the result

7

of the recommended rules is consistent with the test dataset to
evaluate the performance of CASPR.

3) Negative Samples Instructions: Since SELinux imple-
ments a MAC mechanism, the privilege of an access request
is authorized only based on the policy. If a relevant rule exists
in the policy, the access request is allowed. Otherwise, it is
denied. Therefore we generate a comprehensive set of rules
by matching domains and object types individually. If the
rule is included in the policy, we consider it as a positive
sample. Conversely, if the rule is not included in the policy, it
is considered as a negative sample. Additionally, we randomly
generate rules to test the effect of CASPR detecting anomalies
and refining the policy.

In the following sections, we focus on the performance of
policy clustering and rule recommendations for CentOS7.

B. Clustering of Subjects and Objects

1) Clustering Result: To illustrate the feasibility of CASPR
for policy recommendation, we analyze the clustering scat-
terplots for samples including domains and object types. We
first analyze the privileges of domains in the policy rules and
the newly added domains, which are a total of 885 domains.
According to the performance at different thresholds analyzed
in Section V-C3, we cluster domains into 88 categories.

Fig. 6: Cluster Result of Domains.

Since we take a multi-dimensional feature matrix in clus-
tering, it is blurry for the scatterplot generated from projecting
all the sample points onto a plane in a two-dimensional
space. Therefore, the direct analysis cannot produce satis-
factory results. Therefore, we perform principal component
analysis (PCA) dimensionality reduction in clustering, which
involves calculating the covariance matrix and eigenvalues
and eigenvectors. Then, we choose the principal components,
which are the eigenvectors that correspond to the biggest
eigenvalues. The scatterplot of the cluster of domains is shown
in Figure 6.

The horizontal and vertical coordinates in the figure rep-
resent the principal components, which correspond to the fea-
tures of policy, location, chronology, and attribute. On the di-
agonal is the variance of each principal component represented

as a histogram. PC1 is the principal component corresponding
to the policy rule feature and has a wider distribution on the
image, indicating that the variance of the data in the PC1
direction is larger. The scatterplot represents the projection
of data points onto two principal components. Through the
scatterplot, it is clear that there are multiple domains clustered
into one category based on selecting identical privileges as
features. It proves the feasibility of our recommendation rules
based on identical privileges.

Object Class Number Object Class Number Object Class Number

socket 5,437 filesystem 32 service 48

file 3,555 context 13 passwd 107

dir 2,494 msg 54 peer 820

process 829 security 2 association 818

netif 2 process2 39 capability 809

key 530 system 9 database 55

packet 224 msgq 62 memprotect 87

dbus 277 nscd 86 bpf 5

fd 412 node 1 lnk file 3,166

sem 817 shm 818 unknown 1,029

TABLE II: Statistics of object types in each object class.

We use the same method to analyze the object types in
each object class such as file or process. The clustering results
obtained for some classes are similar to the clustering results
for the domains. Table II shows the statistics on the number of
object types in CentOS7 that are related to the object class. For
example, there are 3,555 object types in the file class. Based
on context-aware information, object types with more identical
privileges are clustered into one category. Figure 7 shows a
clustering scatterplot of randomly selected fifteen categories
of object types in file class clustered. The clustering effect is
apparent, indicating the presence of identical privileges among
different object types in the same category.

Fig. 7: Cluster Result of Object Types.

2) Contribution of Context-aware Feature based on SHAP
Interpretability Analysis: To demonstrate the positive impact
of the selected features on the clustering of types, we calculate
the contribution value of each feature to the clustering result
using the SHAP interpretable program. SHAP is built upon the
concept of Shapley values and is a widely used classification
model in coalitional games. Based on the samples represented
by feature vectors, SHAP can assign a value to each feature
input to the classifier which explains the relevance of that

8

feature to the classification result. Specifically, we use a K-
means model to generate labels and employ one-hot to encode
the features. To calculate the value of SHAP, we artificially de-
termine the samples with identical privileges. According to the
encoded features and the comparison between predetermined
labels and labels generated by clustering. The SHAP value
effectively quantifies the contribution value of each feature.

In order to express the contribution of each feature in-
tuitively, we randomly selected ten categories to calculate
the SHAP values of each feature when clustering existing
and newly defined types and represent feature importance as
summary plots, which are shown in Figure 8 and Figure 9,
respectively. The vertical coordinates represent the selected
features. Four features are selected for the clustering of existing
types, while only three features are selected for clustering
of newly defined types due to the absence of rules in the
policy. The horizontal coordinates represent the magnitude of
the absolute value of the average SHAP. The colors show the
value of the contribution of the features to various categories.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
mean(|SHAP value|) (average impact on model output magnitude)

chronology

attribute

location

policy

SHAP Values for Different Features and Categories

category1
category2
category3
category4
category5
category6
category7
category8
category9
category10

Fig. 8: Mean Absolute Value of the SHAP Values for Each Feature for
clustering of existing types.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
mean(|SHAP value|) (average impact on model output magnitude)

attribute

chronology

location

SHAP Values for Different Features and Categories

category1
category2
category3
category4
category5
category6
category7
category8
category9
category10

Fig. 9: Mean Absolute Value of the SHAP Values for Each Feature for
clustering of newly defined types.

Figure 8 indicates that the security policy feature plays a
crucial role in the clustering of existing types, which means
that the policy rules are more decisive in determining identical
privileges. In contrast, some samples lack certain features,
and therefore these features contribute less to clustering. For
instance, the majority of types in category 4 lack contained
attributes, so the attribute feature has less contribution to this
category. In addition, category 9 is prone to limited monitoring
data in the audit logs, thus the chronological features are
insignificant for this category and the remaining three features
contribute to clustering. When clustering newly defined types,
the attribute feature has less contribution. This is because
newly defined types are often not designated to be associated
with an attribute. Although the SHAP values are different for
each category, it proves the importance of each feature for
CASPR clustering.

C. Rule Recommendation

First, we introduce the evaluation metrics and detail the
false samples and their treatment. Afterwards, we control the
granularity of clustering by adjusting the thresholds of the
model and calculating the accuracy of the recommendation
rules at different thresholds in CentOS7. We also compare the
accuracy of CASPR with other policy recommendation models
to demonstrate the superiority of CASPR in the automated
recommendation of rules.

1) Performance of Rule Recommendation: We use the
statistics of the positive and negative samples to calculate four
metrics in the confusion matrix, including TP, FP, TN, and
FN, to measure the performance of CASPR. Table IV shows
that CASPR achieves 92.439% accuracy, 93.472% precision,
94.627% recall, and 94.046% F1-score. The high accuracy
indicate the effectiveness of automatically recommending rules
based on the identical privileges between domains or object
types. The high F1-score indicates that CASPR has few false
positives and false negatives, which still cannot be ignored.
We analyze the reasons and illustrate the treatment.

Analysis of the Reasons for the False Samples: False
Positives (FP) is the number of rules leading to over-
authorization that should be denied but still recommended.
False Negative (FN) is the number of missing rules that should
have been allowed but not added to the recommended list. We
conduct a manual analysis to identify the underlying reasons
causing them. Firstly, it is ideal for the samples that are
clustered into one category to have exactly identical privileges.
However, it is unlikely for the types in SELinux. Therefore,
the privileges differences circumvented during the computa-
tion of the learning model in the SELinux access control
mechanism are normal. In the process of circumventing these
differences, we may inadvertently lead to over-authorization
of rule recommendations. Secondly, CASPR is not suitable for
analyzing the categories containing fewer samples. In addition,
using the object classes with fewer object types as input
affects the accuracy of clustering calculations, which results
in underreporting. However, the omissions are not significant
as these missing rules can be largely addressed with anomaly
detection.

Disposal of False Samples: After recommending rules
by CASPR, rules that are not recommended and cause under-
privileging still require manual assessment. Unpermitted re-
quests that are not covered by rules are recorded in the
audit log. The system administrator only needs to determine
legitimate privileges according to the audit logs. Filtering the
recommended rules from those that would cause excessive
privileges is also more feasible for administrators than making
rules from scratch. CASPR significantly reduces the time
required for manual policy configuration by system adminis-
trators and concurrently lowers the probability of configuration
errors. In this way, CASPR makes a positive effort to narrow
the attack surface.

2) Recommendation Rules for New Types: To illustrate the
effectiveness of CASPR for new types in recommending rules,
we conduct a separate analysis. Its accuracy is 82.366%, which
is slightly lower than the accuracy rate when recommending
rules for existing types for the following two reasons. First,
the crucial feature of security policy is absent. By analyzing

9

Threshold Setting
True Malicious

(TP)

False Malicious

(FP)

True Benign

(TN)

False Benign

(FN)

True Positive

Rate (TPR)

False Positive

Rate (FPR)
Accuracy F1-score

n=2 69.631% 30.369% 41.903% 58.097% 47.895% 35.726% 53.938% 61.153%

n=4 73.985% 26.015% 49.729% 50.271% 63.444% 38.154% 62.854% 65.982%

n=6 78.697% 21.303% 56.694% 43.306% 69.764% 32.298% 69.003% 70.897%

n=8 82.722% 17.278% 64.263% 35.737% 76.353% 27.275% 75.014% 75.732%

n=10 93.472% 6.528% 90.612% 9.388% 94.627% 11.302% 92.439% 94.046%

n=12 89.503% 10.497% 80.034% 19.966% 87.988% 17.649% 89.503% 85.457%

TABLE III: Performance of CASPR recommendation rules under different thresholds.

the feature contribution values in Section V-B2, it is evident
that the security policy is the most important feature, while
the newly defined types lack the relevant rules, and many of
them even lack attributes, which affects the accuracy. Secondly,
we establish a stricter threshold for the clustering of new
types. The FP of recommending rules for new types is 8.469%
and FN is 26.941%. In the scenario of recommending rules,
FP occurs when rules that cause excessive privileges are
recommended for types, while FN occurs when the privileges
they should have are not added to the policy. For system
administrators, if there is underreporting, the related behaviors
will be denied and administrators need to add them manually;
while if there are a lot of misreporting scenarios, security vul-
nerabilities may occur due to over-authorization. To minimize
the false positive rate, we set a stricter threshold, which also
affects the accuracy of the rule recommendation.

3) Accuracy of CASPR at Different Thresholds: The thresh-
olds, which control the granularity of clustering are determined
by the number of categories to be clustered, denoted as k. The
effect of the recommendation of rules based on the clustering
results at different thresholds is shown in Table III.

The granularity of the clustering is determined by adjusting
the threshold k. Because the domains and object types can
be customized in SELinux, the number of samples in the
clustering process is not fixed. For the scalability of CASPR,
as the number of samples changes, the number of clusters
k can be adjusted accordingly to maintain the size of each
cluster unchanged. It is assumed that each category consists of
n samples on average, which means that n = all samples/k.
We use n as the criterion for clustering granularity. Generally
speaking, the more categories are clustered, the fewer samples
will be included. But there will always be a situation where the
number of clustered samples is large in some categories, and
the rest of the categories contain very few samples. Therefore,
we choose categories which contain more than 3 samples to
analyze to recommend the rules.

We compare the effect of the rule recommendation of
CASPR at different values of n. When the value of n is too
small, the granularity of clustering is excessively fine, causing
types with identical privileges to be clustered into different
categories and resulting in errors in rule recommendation.
Additionally, the number of samples in each category is too
small in fine-grained clustering, if the number is less than 3 we
will ignore this category without analyzing it, thus leading to
a large number of underreporting. For example, clustering 823
domains when n=2 means that they are required to be clustered
into 411 categories, and as a result, there are 298 categories

that contain fewer than 3 samples, which is unfavorable for
the analysis of privileges.

As the value of n increases, the clustering granularity
becomes coarser, and the rule recommendation of CASPR be-
comes better. Until n=10, the accuracy of the recommendation
reaches 92.439%. However, when n continues to increase, the
accuracy of CASPR decreases. Since the clustering granularity
is too coarse, resulting in clustering samples whose privileges
are not so identical into one category. For example, with
n=12, it means that we cluster all domains into 69 categories,
where the largest category contains 42 samples, thus leading
to generating over-granting rules. Thus, the experimental data
suggests that clustering is best at n=10.

4) Comparison CASPR with Policy Recommendation Mod-
els: In addition, we compare CASPR with a baseline model
based on EASEAndroid and SEPAL. Although they are de-
signed for SEAndroid policy recommendations, the policy
analysis can also be generalized. SEAndroid inherits the core
architecture of SELinux and is customized for mobile devices.
It leads to a high degree of similarity in the expression of their
policies. Figure 10 compares SEAndroid and SELinux policies,
which show that they contain the same fields, including types
and permissions. The similarity ensures consistency in data
input, enabling the methods to be applied in both systems. We
reproduce the baseline models in SELinux and calculate the
performance of the recommendation of SELinux policy rules
in CentOS7.

SELinux policy rules for process execution and termination.
allow init_t domain : process { sigchld sigkill sigstop signull signal } ;

SEAndroid policy rules for process execution and termination.
allow init domain:process { sigkill signal };
--
#SELinux policy rules for process access to directories and symbolically linked files.
allow init_t tmp_t : dir { open create read getattr setattr search } ;
allow init_t tmp_t : lnk_file { read getattr } ;

#SEAndroid policy rules for process access to directories and symbolically linked files.
allow init vold_data_file:dir { open create read getattr setattr search };
allow init vold_data_file:lnk_file { getattr };

Fig. 10: Comparision of SELinux Policy and SEAndroid Policy.

EASEAndroid uses classifiers to refine the policy collabo-
ratively. In particular, both the Nearest-neighbors-based clas-
sifier and the Pattern-to-rule distance measure judge whether
the rule should be allowed or not by measuring the distance
between the unknown and known rules. Specifically, two rules
can be neighbors if they are similar. An unknown rule can
be classified if the number of neighbors exceeds m and the
majority of neighbors account for more than σ. And if the

10

distance between two rules is less than Dist as measured by
the pattern-to-rule distance, they are judged to be similar.

Compared to EASEAndroid, SEPAL not only considers
rule similarity but also integrates additional information to
represent the policy semantics better. The implementation of
SEPAL consists of the collection of atomic rules, feature
extraction, and classification using a wide & deep learning
model. SEPAL extracts attribute features, user ID features, and
NLP-based features. SEPAL integrates a wide linear model and
a deep neural network to capture more complex correlations
between rules and thus determine whether one rule is allowed
or not by predicting the preference of subjects for objects based
on their features.

Metrics Threshold
Evaluation Indicators

Accuracy Precision Recall F1-score FPR

CASPR
n=10,

0.2<θ<0.3
92.439% 93.472% 94.627% 94.046 11.302%

EASEAndroid
m=10,

σ=55%,

Dist=1

78.193% 84.166% 80.067% 82.348% 25.935%

SEPAL - 88.436% 84.794% 89.286% 86.983% 12.078%

TABLE IV: Comparison with other policy recommendation models.

CASPR considers the policy, file locations, audit logs, and
attribute information of the domains and object types. The
addition of context-aware information enhances the ability of
CASPR to recommend rules. We reproduce EASEAndroid and
SEPAL and deploy them in CentOS7 and train the model using
policy rules in SELinux. The comparison results are shown in
Table IV. CASPR achieves 92.439% accuracy, while EASEAn-
droid obtains 78.193% accuracy and SEPAL obtains 88.436%
accuracy. The results indicate that CASPR outperforms the
baseline models.

In addition to significantly higher accuracy, another major
advantage of CASPR is a model for generating recommen-
dation rules using context-aware information. EASEAndroid
and SEPAL can only recommend policy rules for existing
access requests and determine whether a certain access request
is allowed or not. While CASPR generates rules based on
privilege calculation, it is not limited to simply determining
existing rules. Therefore, CASPR is more responsive to the
requirements of the system, especially for assigning privileges
to new types.

D. Anomaly Detection

We add the recommended rules to the policy and analyze
if any anomaly arises subsequent to the policy modification.
Then, we patch the policy after detecting the anomalies. Out
of the recommended 97,583 rules in CentOS7, we identify a
total of 168 anomalies. Among these anomalies, the number of
constraint conflicts is 46, the number of policy inconsistencies
is 54, and the number of permission incompleteness is 58.
Some anomalies are caused by incomplete rules after recom-
mendation, while some anomalies are caused by false positives
in CASPR. Eliminating these anomalies requires recalculating

all the rules involved in the anomalies, including those gener-
ated to fix the anomalies, and inputting them to CASPR. If the
majority of the rules are not recommended, they are deleted.
Conversely, if they are recommended, we classify them in the
recommended list. It is intended to address inconsistencies
and incompleteness and to ensure the effective enforcement
of other rules. Additionally, we artificially generate some sets
of rules and use them to assess the effectiveness of anomaly
detection. The algorithms for anomaly detection and policy
refinement rely solely on basic regular matching and apply
to different versions of SELinux policy anomaly detection as
they have the same grammar and semantics. The algorithm
recognizes three kinds of anomalies, and we verify that the
method is accurate and practicable.

E. Performance Evaluation

1) Universality between Different Versions: To demonstrate
the adaptability of CASPR to various versions of SELinux pol-
icy rule recommendations, we deploy it in different operating
systems. We extract the standard SELinux policies in each
operating system and use 10% of those rules, as a test set, in
addition to some new types customized for testing the effect
of CASPR’s rule recommendations.

Table V shows the results of CASPR in recommendations
for different versions of the SELinux policy. CASPR achieves
92.582% accuracy, 92.397% precision, 93.982% recall, and
93.761% F1-score on average. The performance of policy
recommendations is affected by the number of rules in dif-
ferent systems, and the adequacy of the selected context-
aware information. In conclusion, the experimental results
indicate that whether applied to CentOS or Ubuntu systems,
CASPR consistently performs well, indicating its robustness
in recommending SELinux policies. It demonstrates that the
privilege calculation based on context-aware information is
universal to adapt to diverse system environments.

Accuracy Precision Recall F1-score FPR

CentOS6 91.163% 92.859% 94.987% 93.905% 15.214%

CentOS7 92.439% 93.472% 94.627% 94.046% 11.302%

CentOS8 92.687% 93.085% 93.508% 93.323% 14.365%

Ubuntu20 90.584% 90.925% 92.945% 93.457% 12.283%

Ubuntu22 91.422% 92.649% 94.384% 93.986% 14.744%

Ubuntu24 91.196% 91.394% 93.481% 93.847% 14.497%

Avg. 91.582% 92.397% 93.982% 93.761% 13.734%

TABLE V: Performance of CASPR for different versions of SELinux policy.

2) Base Configuration and Computational Efficiency: For
each version of the SELinux policy, CASPR needs to be
retrained. The initialization, including dataset loading, feature
extraction, and feature matrix construction, takes around one
hour on average on a server equipped with a 6-core CPU and
30GB of RAM. This is primarily due to the computational
complexity and the large volume of data involved. After
initialization, the clustering time for different domains and
types of entities varies significantly. These differences arise
from factors such as the sample size, convergence speed,
and the selected hyperparameters. Specially, clustering subject
domains takes approximately 1.5 minutes, while clustering

11

object types requires around 8 minutes. Policy recommen-
dation, based on straightforward pattern matching after the
clustering phase, takes an additional approximately 3 minutes
to complete.

Despite variations in data sizes and rule complexities
across SELinux versions, CASPR consistently maintains a
reasonable runtime. The overall computational efficiency of
CASPR demonstrates its scalability and adaptability across
different systems and policy versions. Its ability to handle large
datasets and deliver timely policy recommendations makes it
a versatile solution for dynamic access control scenarios.

F. Case Analysis

We demonstrate CASPR on three cases to address the
following questions, whether rules are permitted and what
privileges are granted to a new type, and how to refine policy
after detecting anomalies.

1) Rule Recommendation for Existing Types: With the
development of technology and the continuous updating of
system resources, SELinux encounters various access requests.
To ensure the system can make prompt and accurate decisions
on these access requests, it is crucial to regularly update
the SELinux policy. However, if the SELinux policy lacks
rules, the system will deny access requests that should be
allowed, causing system irregularities or software functionality
that cannot be performed properly. Consequently, the system
administrator must manually authorize these access requests,
which is error-prone and time-consuming.

After ascertaining the categories of the domain and the
object type within the rule, the rules are determined by
CASPR. Subsequently, we judge them based on the privileged
information of other samples within the category. If the major-
ity of the domains in the category to which the subject belongs
have specific permission on this object, and the majority
of the types in the category to which the object belongs
also have the same permission to be implemented by this
subject, CASPR recommends this rule. For example, for the
rule allow systemd machined t system dbusd var run t
: dir { read }, the domain is systemd machined t, which
is used to control the systemd-machined process. The object
is a directory, and its type is system dbusd var run t,
which is used to identify system-level D-Bus services run-
ning in the /var/run/dbus/system bus socket directory. For
the subjects, the domains systemd localed t, systemd
hostnamed t, systemd timedated t, and so on, of its

category have permissions of reading to the directory of type
system dbusd var run t. If the object class is dir, the types
system dbusd t, dbusd etc t, system dbusd var lib t,
and so on, are authorized to be implemented with reading
permission by a subject of domain systemd machined t.
Therefore, we artificial that this rule is allowed and add it to
the policy.

2) Rule Recommendation for New Types: Typically, when
new software is installed on a system, it inherits the security
label of its parent directory. However, SELinux allows system
administrators to customize new security labels to achieve
fine-grained access control. In addition to customizing a new
security label, the administrator also grants the label with
corresponding privileges. However, given the extensive array

of rules in SELinux policy, it is challenging to avoid being
negligent. At the initial state, there are no rules related to new
types and we recommend policy rules through context-aware
information except for policy rules. If not granted authorization
promptly, behaviors related to subjects with a new domain and
objects with a new object type that are not assigned rules will
be intercepted.

For example, we install new software and assign it with
a new security label. When configuring the SELinux policy
to grant some privileges to this new software, to keep the
minimal authorization principle in SELinux and not to cause
over-authorization, we audit the privileges of the software to
know what privileges it needs to work properly. Then it is
essential to consider mainly its file and directory security,
process security, port security, and other resources to configure
the policy. This process is cumbersome and error-prone. We
use security context-aware information to infer what privileges
this software has. For instance, after installing the Nginx
server, the processes are assigned a new domain, such as
nginx t. The request of the client for files includes receiving
network connections, reading files, and sending file contents.
These behaviors are recorded in audit logs with short time
intervals. If clients are allowed to request files, these behaviors
should be authorized. Therefore, in addition to being autho-
rized to read files of https sys content t type, processes of
domain nginx t also have send msg permission on files of type
https client packet t. We feed both the known privileges and
other context-aware information into CASPR. We recommend
rules that are required for the software to function properly
and add them to the policy.

3) Anomaly Detection and Policy Refinement: By CASPR
calculation, it is determined that a certain domain of subjects
should have privileges but the policy lacks the relevant rules
to authorize them, it is recommended to add new rules to
the policy. However, in many cases, just adding these rules
does not allow the privileges to be executed properly. For
example, when assigning the permission of writing to the
nginx t domain, we not only recommend the rule allow
nginx t httpd sys content t : file write;, but also grant it the
permissions, including getattr, append, lock, ioctl and open due
to the restriction write file perms:open getattr write append
lock ioctl. Since the anomaly detection in CASPR is a rule-
matching process, CASPR effectively identifies anomalies and
refines the policy as long as the SELinux restriction file is
complete.

VI. RELATED WORK

Due to the complex semantics of security policies, it is
error-prone and time-consuming. There is a huge number
of prior studies related to security policies, which focus on
policy analysis, anomaly detection, and automatic generation
of security policy rules to refine and optimize the policies.

A. SELinux Policy Analysis

Multiple studies analyze security policy. Eaman et al. [13]
summarize 18 policy analysis tools and compare them from
aspects such as safety analysis, completeness analysis, in-
tegrity analysis, and information flow analysis. Various ap-
proaches [7], [10], [19], [22], [39] have been proposed to

12

analyze SELinux and Security Enhancements for Android (SE-
Android) [44] policy. Some studies analyze the completeness,
and consistency of policy through semantic analysis [4], [22],
adjacency matrix [51], [52], information flow analysis [34],
and colored petri net [56] methods. Additionally, other work
focuses on the visualization of policy. These studies, such as
SPtrack [10], SEGrapher [27], BIGMAC [18], PoliGraph [11]
perform data visualization and simplifies policy analysis by
knowledge graphs, clustering methods, and natural language
processing.

B. Policy Anomaly Detection

Policy anomaly detection mainly detects inconsistency [8],
[42], incompleteness [49] and conflict anomalies. Various
methods have been proposed for detecting policy inconsisten-
cies, such as data mining [6], [12], [50], [58], testing [14], and
verification [16], [23]. There are some methods to effectively
detect misconfiguration when changing access control policies,
such as mining association rules from access history [6],
monitoring access control metadata updates [12], monitoring
access control behaviours based on a novel incident-based
decision tree approach [47], [50], analyzing the interaction
between configuration entities [58].

In order to test whether the policy is correct, it is necessary
to determine whether the output is as expected. Unfortunately,
manual test generation is tedious and insufficient to exercise
various policy behaviors. NLP technology [55] and fault detec-
tion model [14], [28] were proposed to achieve high structural
coverage and fault-detection capability. Furthermore, to verify
the policy, Margrave [16], which converts role-based access
control policies into the form of decision diagrams for analyz-
ing query and semantic difference information. Additionally,
a new abstraction-refinement technique [23] was proposed in
ARBAC security policies for automatic finding errors. Auto-
matic detecting of incompleteness and inconsistent anomalies
of policies in a large number of complex policies is a difficult
and challenging problem. There are some methods, such as
data classification tools [40], partial order relationships [57],
propagation of conflicts [56], trusted computing libraries [22],
conflict auditing methods [17], which efficiently detect and
resolve conflicting rules of security policies.

C. Automated Policy Generation

Typically, policy automation recommendation mines in-
formation from logs or policy rules. The classical methods,
such as large-scale semi-supervised learning methods [45],
SPDL [32], DOMinator [46], approximate mining and proba-
bilistic algorithms [31], quantitative scoring [36], rule mining
algorithm [29]. They are used to mine information from rules
to automatically analyze and refine policies [21]. The following
is the study of log information extraction and automatic
generation policy. They are based on time-changing decision
tree methods [50], static analysis [43], supervised learning-
based approach [24], a graph-based policy management mech-
anism [25] to extract policies from logs to address legitimate
privileges while avoiding over-granting [9].

The previous researches on security policies lack the
comprehensive analysis of security context-aware information.
CASPR, as a policy recommendation and anomaly detection

tool, greatly improves accuracy and adapts to complex envi-
ronments.

VII. DISCUSSION

This paper proposes a security policy rule recommendation
based on context-aware information and anomaly detection
methods, which are different from traditional methods. CASPR
utilizes multi-factors for comprehensive recommendations,
which can recommend effective and feasible security policy
rules. The importance of CASPR, feasibility of deployment,
and limitations are discussed below.

A. Significance.

Most of the previous researches focus on extracting infor-
mation from logs, policy rules, and anomalies, and then mining
the information to optimize security policy rules. CASPR uses
context-aware information for privilege calculation and policy
recommendation. Experiments in Section V-C demonstrate
that this approach receives high accuracy. Reproducing the
policy recommendation models of EASEAndroid and SEPAL
on SELinux and comparing them with CASPR illustrates
the superiority. The performance of CASPR demonstrates the
importance of context-aware information for policy recommen-
dation, which is more efficient and flexible.

B. Deployment.

CASPR as a policy rule recommendation tool can be
easily deployed in the operating system. Firstly, it collects
the context-aware information in the system and preprocesses
data for normalization. Then CASPR is used to automatically
generate a list of recommendation rules and continuously
optimize and refine the policies. The experimental results
show that CASPR applies to different versions of SELinux
policies, as shown in Section V-E. Although different versions
of the policy require retraining of the model, it is only trained
once during deployment. The experiments have shown that the
recommendations are efficient in accommodating the need for
privilege optimization in dynamic access control systems.

C. Limitation.

CASPR significantly improves the accuracy of policy
rule recommendations. Nonetheless, the following limitations
should be borne in mind. The primary limitation is the dif-
ference of policies for different versions, which causes the
results of policy analysis to be only suitable to the current
version of the policy. The policies for other versions need
to be re-learned and re-analyzed, by CASPR to recommend
policy rules and detect anomalies based on the analysis results.
The second limitation is that the context-aware information
of some samples is incomplete. For example, there is no
specific location information for port type. The context-aware
information lacks location information. Therefore, the location
information is only effective for types where location infor-
mation is available. Additionally, the algorithm of K-means
model is sensitive to the initial clustering centers and needs
to pre-determine the k-value. Therefore, multiple attempts and
adjustments need to be made based on the data to select the
optimal clustering result. Notwithstanding these limitations,
the study suggests that context-aware information contributes

13

to policy recommendations, improving accuracy by calculating
these information.

VIII. CONCLUSION

This paper proposes a novel approach called CASPR to
address the challenges of recommending policy automatically.
CASPR takes a comprehensive view of context-aware informa-
tion, clusters domains, and object types by privilege calculation
automatically recommends security policy rules, and detects
three kinds of anomalies, such as constraint conflicts, policy
inconsistencies, and permission incompleteness. In this paper,
we implement CASPR and evaluate its performance. The
experimental results show that CASPR effectively recommends
appropriate security policy rules, which satisfy the functional
requirements without leading to over-granting. Compared with
other security policy rule recommendation methods, CASPR
significantly improves the accuracy rate and reduces human
effort. This study has significant research potential and value
for rule recommendation.

ACKNOWLEDGEMENT

We sincerely thank all anonymous reviewers for their
valuable comments and these insightful comments have greatly
contributed to the improvement and refinement of this pa-
per. This research is supported by the Project on Dynamic
Regulation of Complex Environmental Resources, Institute of
Information Engineering, Chinese Academy of Sciences, Grant
No. E3Z0101205.

REFERENCES

[1] CVE-2019-13272. 2019. [Online]. Available:
https://nvd.nist.gov/vuln/detail/ CVE-2019-13272

[2] Security-Enhanced Linux in Android. 2024. [Online]. Available:
https://source.android.com/devices/tech/security/selinux

[3] SELinux Project. 2020. [Online]. Available: http://selinuxproject.org
[4] M. Archer, E. I. Leonard, and M. Pradella, “Modeling security-

enhanced linux policy specifications for analysis,” in 3rd DARPA
Information Survivability Conference and Exposition (DISCEX-
III 2003), 22-24 April 2003, Washington, DC, USA. IEEE
Computer Society, 2003, pp. 164–169. [Online]. Available:
https://doi.org/10.1109/DISCEX.2003.1194959

[5] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker,
and S. A. Haghighat, “Practical domain and type enforcement
for UNIX,” in Proceedings of the 1995 IEEE Symposium on
Security and Privacy, Oakland, California, USA, May 8-10, 1995.
IEEE Computer Society, 1995, pp. 66–77. [Online]. Available:
https://doi.org/10.1109/SECPRI.1995.398923

[6] L. Bauer, S. Garriss, and M. K. Reiter, “Detecting and resolving
policy misconfigurations in access-control systems,” ACM Trans. Inf.
Syst. Secur., vol. 14, no. 1, pp. 2:1–2:28, 2011. [Online]. Available:
https://doi.org/10.1145/1952982.1952984

[7] T. Bui and S. D. Stoller, “A decision tree learning approach for
mining relationship-based access control policies,” in Proceedings of
the 25th ACM Symposium on Access Control Models and Technologies,
SACMAT 2020, Barcelona, Spain, June 10-12, 2020, J. Lobo, S. D.
Stoller, and P. Liu, Eds. ACM, 2020, pp. 167–178. [Online].
Available: https://doi.org/10.1145/3381991.3395619

[8] S. Calzavara, T. Urban, D. Tatang, M. Steffens, and B. Stock,
“Reining in the web’s inconsistencies with site policy,” in 28th Annual
Network and Distributed System Security Symposium, NDSS 2021,
virtually, February 21-25, 2021. The Internet Society, 2021. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/reining-in-the-
webs-inconsistencies-with-site-policy/

[9] S. Chari, I. M. Molloy, Y. Park, and W. Teiken, “Ensuring continuous
compliance through reconciling policy with usage,” in 18th ACM
Symposium on Access Control Models and Technologies, SACMAT ’13,
Amsterdam, The Netherlands, June 12-14, 2013, M. Conti, J. Vaidya,
and A. Schaad, Eds. ACM, 2013, pp. 49–60. [Online]. Available:
https://doi.org/10.1145/2462410.2462417

[10] P. Clemente, B. Kaba, J. Rouzaud-Cornabas, M. Alexandre, and G. Au-
jay, “Sptrack: Visual analysis of information flows within selinux
policies and attack logs,” in Active Media Technology: 8th International
Conference, AMT 2012, Macau, China, December 4-7, 2012. Proceed-
ings 8. Springer, 2012, pp. 596–605.

[11] H. Cui, R. Trimananda, A. Markopoulou, and S. Jordan, “Poligraph:
Automated privacy policy analysis using knowledge graphs,” in 32nd
USENIX Security Symposium, USENIX Security 2023, Anaheim, CA,
USA, August 9-11, 2023, J. A. Calandrino and C. Troncoso, Eds.
USENIX Association, 2023, pp. 1037–1054. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/cui

[12] T. Das, R. Bhagwan, and P. Naldurg, “Baaz: A system for
detecting access control misconfigurations,” in 19th USENIX Security
Symposium, Washington, DC, USA, August 11-13, 2010, Proceedings.
USENIX Association, 2010, pp. 161–176. [Online]. Available:
http://www.usenix.org/events/sec10/tech/full papers/Das.pdf

[13] A. Eaman, B. Sistany, and A. P. Felty, “Review of existing analysis
tools for selinux security policies: Challenges and a proposed solution,”
in E-Technologies: Embracing the Internet of Things - 7th International
Conference, MCETECH 2017, Ottawa, ON, Canada, May 17-19, 2017,
Proceedings, ser. Lecture Notes in Business Information Processing,
E. Aı̈meur, U. Ruhi, and M. Weiss, Eds., vol. 289, 2017, pp. 116–135.
[Online]. Available: https://doi.org/10.1007/978-3-319-59041-7 7

[14] Evan Martin and Tao Xie, “A fault model and mutation testing of
access control policies,” in Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007, C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider,
and P. J. Shenoy, Eds. ACM, 2007, pp. 667–676. [Online]. Available:
https://doi.org/10.1145/1242572.1242663

[15] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R. Kuhn, and
R. Chandramouli, “Proposed NIST standard for role-based access
control,” ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224–274,
2001. [Online]. Available: https://doi.org/10.1145/501978.501980

[16] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz,
“Verification and change-impact analysis of access-control policies,”
in 27th International Conference on Software Engineering (ICSE
2005), 15-21 May 2005, St. Louis, Missouri, USA, G. Roman, W. G.
Griswold, and B. Nuseibeh, Eds. ACM, 2005, pp. 196–205. [Online].
Available: https://doi.org/10.1145/1062455.1062502

[17] M. A. E. Hadj, A. Khoumsi, Y. Benkaouz, and M. Erradi, “A
log-based method to detect and resolve efficiently conflicts in access
control policies,” in Proceedings of the 12th International Conference
on Soft Computing and Pattern Recognition (SoCPaR 2020), 15-18
December 2020, ser. Advances in Intelligent Systems and Computing,
A. Abraham, Y. Ohsawa, N. Gandhi, M. A. Jabbar, A. Haqiq, S. F.
McLoone, and B. Issac, Eds., vol. 1383. Springer, 2020, pp. 836–846.
[Online]. Available: https://doi.org/10.1007/978-3-030-73689-7 79

[18] G. Hernandez, D. J. Tian, A. S. Yadav, B. J. Williams, and
K. R. B. Butler, “Bigmac: Fine-grained policy analysis of android
firmware,” in 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, S. Capkun and F. Roesner, Eds.
USENIX Association, 2020, pp. 271–287. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/hern
andez

[19] B. Hicks, S. J. Rueda, L. S. Clair, T. Jaeger, and P. D. McDaniel,
“A logical specification and analysis for selinux MLS policy,” ACM
Trans. Inf. Syst. Secur., vol. 13, no. 3, pp. 26:1–26:31, 2010. [Online].
Available: https://doi.org/10.1145/1805974.1805982

[20] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J. Lang, M. M.
Cogdell, A. Schnitzer, K. Sandlin, R. Miller, K. Scarfone et al., “Guide
to attribute based access control (abac) definition and considerations
(draft),” NIST special publication, vol. 800, no. 162, pp. 1–54, 2013.

[21] P. Iyer and A. Masoumzadeh, “Mining positive and negative attribute-
based access control policy rules,” in Proceedings of the 23nd ACM
on Symposium on Access Control Models and Technologies, SACMAT
2018, Indianapolis, IN, USA, June 13-15, 2018, E. Bertino, D. Lin,

14

and J. Lobo, Eds. ACM, 2018, pp. 161–172. [Online]. Available:
https://doi.org/10.1145/3205977.3205988

[22] T. Jaeger, R. Sailer, and X. Zhang, “Analyzing integrity
protection in the selinux example policy,” in Proceedings
of the 12th USENIX Security Symposium, Washington, D.C.,
USA, August 4-8, 2003. USENIX Association, 2003. [Online].
Available: https://www.usenix.org/conference/12th-usenix-security-
symposium/analyzing-integrity-protection-selinux-example-policy

[23] K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard,
and S. J. Chapin, “Automatic error finding in access-control
policies,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, October 17-21, 2011, Y. Chen, G. Danezis, and
V. Shmatikov, Eds. ACM, 2011, pp. 163–174. [Online]. Available:
https://doi.org/10.1145/2046707.2046727

[24] L. Karimi, M. Aldairi, J. Joshi, and M. Abdelhakim, “An automatic
attribute-based access control policy extraction from access logs,” IEEE
Trans. Dependable Secur. Comput., vol. 19, no. 4, pp. 2304–2317,
2022. [Online]. Available: https://doi.org/10.1109/TDSC.2021.3054331

[25] X. Li, Y. Chen, Z. Lin, X. Wang, and J. H. Chen, “Automatic
policy generation for inter-service access control of microservices,”
in 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, M. D. Bailey and R. Greenstadt, Eds.
USENIX Association, 2021, pp. 3971–3988. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/li-
xing

[26] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017,
pp. 4765–4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-
unified-approach-to-interpreting-model-predictions.pdf

[27] S. Marouf and M. Shehab, “Segrapher: Visualization-based selinux
policy analysis,” in 4th Symposium on Configuration Analytics
and Automation, SafeConfig 2011, Arlington, VA, USA, October
31 - November 1, 2011, J. Banghart, E. Al-Shaer, T. Sager,
and H. V. Ramasamy, Eds. IEEE, 2011. [Online]. Available:
https://doi.org/10.1109/SafeConfig.2011.6111675

[28] E. Martin and T. Xie, “Automated test generation for access control
policies via change-impact analysis,” in Third International Workshop
on Software Engineering for Secure Systems, SESS 2007, Minneapolis,
MN, USA, May 20-26, 2007. IEEE Computer Society, 2007, p. 5.
[Online]. Available: https://doi.org/10.1109/SESS.2007.5

[29] Matthew W. Sanders and Chuan Yue, “Mining least privilege attribute
based access control policies,” in Proceedings of the 35th Annual
Computer Security Applications Conference, ACSAC 2019, San Juan,
PR, USA, December 09-13, 2019, D. Balenson, Ed. ACM, 2019, pp.
404–416. [Online]. Available: https://doi.org/10.1145/3359789.3359805

[30] F. Mayer, D. Caplan, and K. MacMillan, SELinux by example: using
security enhanced Linux. Pearson Education, 2006.

[31] I. M. Molloy, Y. Park, and S. Chari, “Generative models for access
control policies: applications to role mining over logs with attribution,”
in 17th ACM Symposium on Access Control Models and Technologies,
SACMAT ’12, Newark, NJ, USA - June 20 - 22, 2012, V. Atluri,
J. Vaidya, A. Kern, and M. Kantarcioglu, Eds. ACM, 2012, pp.
45–56. [Online]. Available: https://doi.org/10.1145/2295136.2295145

[32] Y. Nakamura, Y. Sameshima, and T. Tabata, “Seedit: Selinux
security policy configuration system with higher level language,” in
Proceedings of the 23rd Large Installation System Administration
Conference, November 1-6, 2009, Baltimore, MD, USA, A. Moskowitz,
Ed. USENIX Association, 2009, pp. 107–117. [Online]. Available:
http://www.usenix.org/events/lisa09/tech/full papers/nakamura.pdf

[33] L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R. Mahajan, “Trusted
computer system evaluation criteria,” National Computer Security Cen-
ter, vol. 12, p. 71, 1985.

[34] B. S. Radhika, N. V. N. Kumar, and R. K. Shyamasundar,
“Flowconseal: Automatic flow consistency analysis of seandroid and
selinux policies,” in Data and Applications Security and Privacy
XXXII - 32nd Annual IFIP WG 11.3 Conference, DBSec 2018,
Bergamo, Italy, July 16-18, 2018, Proceedings, ser. Lecture Notes
in Computer Science, F. Kerschbaum and S. Paraboschi, Eds.,

vol. 10980. Springer, 2018, pp. 219–231. [Online]. Available:
https://doi.org/10.1007/978-3-319-95729-6 14

[35] P. V. Rajkumar and R. S. Sandhu, “POSTER: security enhanced
administrative role based access control models,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016,
E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds. ACM, 2016, pp. 1802–1804. [Online]. Available:
https://doi.org/10.1145/2976749.2989068

[36] M. W. Sanders and C. Yue, “Minimizing privilege assignment errors
in cloud services,” in Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy, CODASPY 2018,
Tempe, AZ, USA, March 19-21, 2018, Z. Zhao, G. Ahn, R. Krishnan,
and G. Ghinita, Eds. ACM, 2018, pp. 2–12. [Online]. Available:
https://doi.org/10.1145/3176258.3176307

[37] R. S. Sandhu, “The typed access matrix model,” in 1992 IEEE Computer
Society Symposium on Research in Security and Privacy, Oakland, CA,
USA, May 4-6, 1992. IEEE Computer Society, 1992, pp. 122–136.
[Online]. Available: https://doi.org/10.1109/RISP.1992.213266

[38] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47,
1996.

[39] A. Sasturkar, P. Yang, S. D. Stoller, and C. R. Ramakrishnan, “Policy
analysis for administrative role based access control,” in 19th IEEE
Computer Security Foundations Workshop, (CSFW-19 2006), 5-7 July
2006, Venice, Italy. IEEE Computer Society, 2006, pp. 124–138.
[Online]. Available: https://doi.org/10.1109/CSFW.2006.22

[40] R. A. Shaikh, K. Adi, and L. Logrippo, “A data classification method
for inconsistency and incompleteness detection in access control policy
sets,” Int. J. Inf. Sec., vol. 16, no. 1, pp. 91–113, 2017. [Online].
Available: https://doi.org/10.1007/s10207-016-0317-1

[41] Z. Shan, X. Wang, and T.-c. Chiueh, “Enforcing mandatory access
control in commodity os to disable malware,” IEEE Transactions on
Dependable and Secure Computing, vol. 9, no. 4, pp. 541–555, 2012.

[42] Y. Shao, Q. A. Chen, Z. M. Mao, J. Ott, and Z. Qian,
“Kratos: Discovering inconsistent security policy enforcement
in the android framework,” in 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016. The Internet Society,
2016. [Online]. Available: http://wp.internetsociety.org/ndss/wp-
content/uploads/sites/25/2017/09/kratos-discovering-inconsistent-
security-policy-enforcement-android-framework 0.pdf

[43] B. Shen, T. Shan, and Y. Zhou, “Improving logging to
reduce permission over-granting mistakes,” in 32nd USENIX
Security Symposium, USENIX Security 2023, Anaheim, CA, USA,
August 9-11, 2023, J. A. Calandrino and C. Troncoso, Eds.
USENIX Association, 2023, pp. 409–426. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/shen-
bingyu-logging

[44] S. Smalley and R. Craig, “Security enhanced (SE) android: Bringing
flexible MAC to android,” in 20th Annual Network and Distributed
System Security Symposium, NDSS 2013, San Diego, California, USA,
February 24-27, 2013. The Internet Society, 2013. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss2013/security-enhanced-se-
android-bringing-flexible-mac-android

[45] R. Wang, W. Enck, D. S. Reeves, X. Zhang, P. Ning,
D. Xu, W. Zhou, and A. M. Azab, “Easeandroid: Automatic
policy analysis and refinement for security enhanced android
via large-scale semi-supervised learning,” in 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015, J. Jung and T. Holz, Eds.
USENIX Association, 2015, pp. 351–366. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/wang-ruowen

[46] Z. Wang, W. Meng, and M. R. Lyu, “Fine-grained data-centric content
protection policy for web applications,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2023, Copenhagen, Denmark, November 26-30, 2023, W. Meng,
C. D. Jensen, C. Cremers, and E. Kirda, Eds. ACM, 2023, pp. 2845–
2859. [Online]. Available: https://doi.org/10.1145/3576915.3623217

[47] S. Wi, T. T. Nguyen, J. Kim, B. Stock, and S. Son, “Diffcsp:

15

Finding browser bugs in content security policy enforcement through
differential testing,” in 30th Annual Network and Distributed System
Security Symposium, NDSS 2023, San Diego, California, USA,
February 27 - March 3, 2023. The Internet Society, 2023. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/diffcsp-
finding-browser-bugs-in-content-security-policy-enforcement-through-
differential-testing/

[48] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman, “Linux security modules: General security support
for the linux kernel,” in Proceedings of the 11th USENIX
Security Symposium, San Francisco, CA, USA, August 5-9, 2002,
D. Boneh, Ed. USENIX, 2002, pp. 17–31. [Online]. Available:
http://www.usenix.org/publications/library/proceedings/sec02/wright.html

[49] A. Xiang, W. Pei, and C. Yue, “Policychecker: Analyzing
the GDPR completeness of mobile apps’ privacy policies,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2023, Copenhagen, Denmark,
November 26-30, 2023, W. Meng, C. D. Jensen, C. Cremers, and
E. Kirda, Eds. ACM, 2023, pp. 3373–3387. [Online]. Available:
https://doi.org/10.1145/3576915.3623067

[50] C. Xiang, Y. Wu, B. Shen, M. Shen, H. Huang, T. Xu, Y. Zhou,
C. Moore, X. Jin, and T. Sheng, “Towards continuous access control
validation and forensics,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp. 113–
129.

[51] W. Xu, M. Shehab, and G. Ahn, “Visualization-based policy analysis
for selinux: framework and user study,” Int. J. Inf. Sec., vol. 12, no. 3,
pp. 155–171, 2013. [Online]. Available: https://doi.org/10.1007/s10207-
012-0180-7

[52] W. Xu, X. Zhang, and G. Ahn, “Towards system integrity protection
with graph-based policy analysis,” in Data and Applications Security
XXIII, 23rd Annual IFIP WG 11.3 Working Conference, Montreal,
Canada, July 12-15, 2009. Proceedings, ser. Lecture Notes in Computer
Science, E. Gudes and J. Vaidya, Eds., vol. 5645. Springer, 2009, pp.
65–80. [Online]. Available: https://doi.org/10.1007/978-3-642-03007-
9 5

[53] D. Yan, J. Huang, Y. Tian, Y. Zhao, and F. Yang, “Policy conflict detec-
tion in composite web services with rbac,” in 2014 IEEE International
Conference on Web Services. IEEE, 2014, pp. 534–541.

[54] B. Yang, “Enforcement of separation of duty constraints in attribute-
based access control,” Comput. Secur., vol. 131, p. 103294, 2023.
[Online]. Available: https://doi.org/10.1016/j.cose.2023.103294

[55] D. Yu, G. Yang, G. Meng, X. Gong, X. Zhang, X. Xiang, X. Wang,
Y. Jiang, K. Chen, W. Zou et al., “Sepal: Towards a large-scale
analysis of seandroid policy customization,” in Proceedings of the Web
Conference 2021, 2021, pp. 2733–2744.

[56] G. Zhai, T. Guo, and J. Huang, “Sciatool: A tool for analyzing selinux
policies based on access control spaces, information flows and cpns,”
in Trusted Systems - 6th International Conference, INTRUST 2014,
Beijing, China, December 16-17, 2014, Revised Selected Papers, ser.
Lecture Notes in Computer Science, M. Yung, L. Zhu, and Y. Yang,
Eds., vol. 9473. Springer, 2014, pp. 294–309. [Online]. Available:
https://doi.org/10.1007/978-3-319-27998-5 19

[57] H. Zhang, P. Ma, and M. Wang, “Detecting inconsistency and
incompleteness in access control policies,” in Cloud Computing and
Security - 4th International Conference, ICCCS 2018, Haikou, China,
June 8-10, 2018, Revised Selected Papers, Part II, ser. Lecture
Notes in Computer Science, X. Sun, Z. Pan, and E. Bertino,
Eds., vol. 11064. Springer, 2018, pp. 731–739. [Online]. Available:
https://doi.org/10.1007/978-3-030-00009-7 65

[58] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu,
and Y. Zhou, “Encore: exploiting system environment and correlation
information for misconfiguration detection,” in Architectural Support
for Programming Languages and Operating Systems, ASPLOS 2014,
Salt Lake City, UT, USA, March 1-5, 2014, R. Balasubramonian,
A. Davis, and S. V. Adve, Eds. ACM, 2014, pp. 687–700. [Online].
Available: https://doi.org/10.1145/2541940.2541983

16

