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Abstract—Wireless communication infrastructure is a cor-
nerstone of modern digital society, yet it remains vulnerable
to the persistent threat of wireless jamming. Attackers can
easily create radio interference to overshadow legitimate signals,
leading to denial of service. The broadcast nature of radio signal
propagation makes such attacks possible in the first place, but at
the same time poses a challenge for the attacker: The jamming
signal does not only reach the victim device but also other
neighboring devices, preventing precise attack targeting.

In this work, we solve this challenge by leveraging the emerging
reconfigurable intelligent surface (RIS) technology, for the first
time, for precise delivery of jamming signals. In particular, we
propose a novel approach that allows for environment-adaptive
spatial control of wireless jamming signals, granting a new degree
of freedom to perform jamming attacks. We explore this novel
method with extensive experimentation and demonstrate that
our approach can disable the wireless communication of one
or multiple victim devices while leaving neighboring devices
unaffected. Notably, our method extends to challenging scenarios
where wireless devices are very close to each other: We demon-
strate complete denial-of-service of a Wi-Fi device while a second
device located at a distance as close as 5mm remains unaffected,
sustaining wireless communication at a data rate of 25Mbit/s.
Lastly, we conclude by proposing potential countermeasures to
thwart RIS-based spatial domain wireless jamming attacks.

I. INTRODUCTION

Wireless communication systems are ubiquitous and seam-
lessly provide connectivity to the smart and interconnected
devices that permanently surround us. In our modern daily
lives, we frequently use instant messaging, media streaming,
health monitoring, and home automation – all of which rely
on wireless systems and their constant availability. However,
wireless systems utilize a broadcast medium that is open
to everyone, inherently exposing a large attack surface. One
particular critical threat is wireless jamming, which allows
malicious actors to perform denial of service attacks with
minimal effort. In a classical jamming attack, the adversary
transmits an interfering signal that overshadows the desired

1These authors contributed equally to this work.

signal, preventing a victim receiver from correctly decoding
it. Crucially, loss of connectivity impacts the functionality of
wireless devices and can thus have potentially far-reaching
consequences, such as in smart grids, smart transportation,
and healthcare systems. Recent media reports underscore the
real-world threat potential of jamming attacks, e.g., criminals
disabling smart home security systems [57, 6] and preventing
cars from locking [7].

This basic attack principle has previously been studied by
a large body of research: For instance, the attacker can lever-
age various jamming waveforms, such as noise or replayed
victim signals [23], and vary the attack timing, jamming
constantly [72] or only at certain times [52]. As evident
from the many existing attack strategies [35, 72, 45, 43],
wireless jamming has been incrementally refined and became
increasingly sophisticated. One particular example for this is
the case of selective jamming attacks.

To illustrate a potential attack scenario, consider an adver-
sary attempting to sabotage a complex automated manufac-
turing process. Distributed actuators might take orders from
several previous processing stages that have to be executed
in a timely fashion, risking manufacturing failure otherwise.
Here, the adversary could use selective jamming to simulate
local loss of connectivity on a single actuator but not the entire
plant which would likely trigger some emergency response.

So far, the only means to realize such a selective jamming
attack is via so-called reactive jamming. Here, the attacker
analyzes all wireless traffic in real-time to decide on-the-fly
whether to send a jamming signal [52, 46, 3], relying on the
existence of meaningful protocol-level information not pro-
tected by cryptographic primitives. In our manufacturing plant
example, selective disruption of the actuator would require the
attacker to receive and identify every packet directed to the
recipient before sending a jamming signal. This restricts the
attacker positioning rather close to the victim. Other downsides
of this approach are that it can be mitigated by fully disguising
packet destinations and the attack realization being rather
complex and cumbersome.

In light of these aspects, we are interested in novel attack
strategies resolving the aforementioned shortcomings. Clearly,
the ideal solution would be to physically inject a proactive
jamming signal directly and only into the victim device
which, however, is not possible due to the wireless nature
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of jamming and the inevitable broadcast behavior of radio
signal propagation to other, non-target devices. Thus, we aim
to answer the following research question:

How can we physically target and jam one device while
keeping others operational?

We solve this challenge by means of a reconfigurable
intelligent surface (RIS) to devise the first selective jamming
mechanism based on taming random wireless radio wave
propagation effects. Using RIS-based environment-adaptive
wireless channel control, allowing to maximize and minimize
wireless signals on specific locations [27], the attacker gains
spatial control over their wireless jamming signals. This opens
the door to precise jamming signal delivery towards a target
device, disrupting any legitimate signal reception, while leav-
ing other, non-target devices, untouched. Other than reactive
jamming, this is a true physical-layer selection mechanism,
allowing realization independent of protocol-level information.
Moreover, the attacker only initially needs to detect signals
from considered devices, removing the need for any real-time
monitoring and reaction to ongoing transmissions.

In this work, we experimentally evaluate RIS-based spa-
tially selective jamming attacks against Wi-Fi communication,
showing that it is possible to target one or multiple devices
while keeping non-target devices operational. To accomplish
this, we exploit that considered devices transmit signals,
allowing the attacker to passively adapt to the scene. Apart
from the attack’s core mechanism, we study crucial real-world
aspects such as the attack’s robustness against environmental
factors. We additionally verify the effectiveness of our attack
in real-world wireless networks, where mechanisms that could
counteract the attack are at play, e.g., adaptive rate control of
Wi-Fi networks. We show that RIS-based selective jamming
even works despite extreme proximity of devices, e.g., 5mm,
and investigate the underlying physical mechanisms. Finally,
we perform comparison experiments with a directional an-
tenna, showing significant of our RIS-based approach.

In summary, our work makes the following key contribu-
tions:

• We propose the first true physical-layer selective targeting
mechanism for wireless jamming, enabling environment-
adaptive attacks in the spatial domain.

• We present an attack realization based on RIS, using
passive eavesdropping to determine an appropriate RIS
configuration which is the key to deliver jamming jam-
ming signals towards targeted devices while avoiding
non-target devices.

• We present a comprehensive experimental evaluation with
commodity Wi-Fi devices, environmental changes, and
an in-depth analysis of the physical properties of our
jamming attack.

II. TECHNICAL BACKGROUND

In this section, we introduce the necessary background on
wireless jamming and RISs.

Configuration c = {c1,...,cL}

Transmitter

Receiver

Unit cell

h1 h2

h3

Front

Back

Fig. 1: Illustration of the RIS operation principle along with
photos of the RIS hardware implementation [24], where the
configuration vector c determines the radiation behavior.

A. Wireless Jamming

Wireless communication quality of service, e.g., reliability
and data throughput, is determined by the quality of received
signals. An example is weak signal reception which yields a
low signal-to-noise ratio (SNR) and consequently, increases
the probability of bit errors. Similarly, when multiple radios
transmit simultaneously, the receiver observes the superposi-
tion of multiple signals, i.e., the desired signal with additional
interference, again degrading performance. A wireless jam-
ming attacker exploits this mechanism by deliberately sending
strong interfering signals. At the victim receiver, they over-
shadow legitimate signals, increase the bit error probability,
and eventually lead to complete denial of service [45, 21, 35].

There exist several types of jamming attacks, differing in
terms of, e.g., specifics of the attack target, the used interfering
signal waveform, or the level of cognition [21]. The jamming
signal can comprise of, e.g., noise, single or multi-tone car-
riers, or valid waveforms carrying digital information. While
noise jamming reduces the SNR, valid signals can enhance
attack effectiveness, e.g., by keeping the receiver busy [22].
Attackers may constantly or reactively transmit the jamming
signal, i.e., upon detecting a certain trigger [18].

B. Reconfigurable Intelligent Surfaces

An RIS is an engineered surface to digitally control reflec-
tions of radio waves, enabling smart radio environments. It
is worth noting that RISs are likely to become pervasive, as
they hold the potential to complement future wireless networks
such as 6G [25, 12, 63]. Here, the propagation medium
is considered as a degree of freedom to optimize wireless
communication by redirecting radio waves in certain direc-
tions [34], e.g., to improve signal coverage and eliminate dead
zones, to enhance energy efficiency and data throughput [36],
and building low-complexity base stations [5].

An RIS does not actively generate its own signals but
passively reflects existing ambient signals. For this, it utilizes
L identical unit-cell reflector elements arranged on a planar
surface, as shown in Figure 1. Importantly, the reflection
coefficient of each reflector is separately tunable to shift the re-
flection phase. Typically, an RIS is realized as a printed circuit
board (PCB) with printed microstrip reflectors, enabling very
low-cost implementation. To reduce complexity, many RISs
use 1 bit control [48], i.e., to select between two reflection
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phases 0◦ and 180◦, corresponding to the reflection coeffi-
cients +1 and −1. This allows the control circuitry to directly
interface with digital logic signals from, e.g., a microcontroller.
The technology is still under development [48] which is why
RISs are currently not widely used in practice. At the time of
writing, first implementations are being made commercially
available [20, 40] and field trials are being carried out [42].

1) Finding RIS configurations: To realize a desired RIS
reflection behavior between a sender and a receiver, an appro-
priate RIS configuration is required that matches the radio
environment. For example, to maximize signal power at a
receiver, the RIS configuration is used to make all signal com-
ponents traveling via the RIS add coherently with other non-
RIS signal components. Usually, such an RIS configuration
cannot be be blindly synthesized due to the complexity of
scene-dependent and hard-to-predict radio wave propagation
effects in conjunction with the vast configuration space of the
RIS. That is, an L-element binary-tunable RIS has 2L possible
configurations. Therefore, RIS configurations are often deter-
mined based on iterative optimization algorithms, involving
measurement feedback to assess how a particular RIS config-
uration influences the wireless channel [17, 75, 65, 27, 42].

III. PRELIMINARIES

A. Threat Model

1) Attack Scenario: We consider a typical wireless network
scenario where a number of wireless devices are deployed and
connected to an access point (AP). At least temporarily, the
devices are stationary and do not change location. We assume
the devices communicate with the AP using Wi-Fi, but the
following analysis holds for any time-division duplex (TDD)
communication protocol. Additionally, we assume reciprocity
of wireless channels, meaning that for a pair of devices,
the same radio propagation effects occur, regardless of the
communication direction. Finally, we assume that the wireless
signals are subject to multipath propagation due to typical
propagation phenomena, e.g., reflection and scattering, as
commonly found in indoor and urban environments.

2) Attacker Model: We consider a physical-layer wireless
jamming attacker who generates radio interference with the
goal of disrupting the wireless communication of a set of vic-
tim devices. The attacker aims to perform selective jamming,
meaning they aim to disrupt only a subset of devices while
leaving others unaffected.

The attacker is capable of transmitting and receiving radio
signals towards and from considered devices, e.g., by using an
ordinary radio transceiver comparable to the hardware of the
considered devices. We assume that the attacker utilizes a sin-
gle antenna to either transmit or receive signals. Additionally,
the attacker employs an RIS next to their antenna, which they
can configure arbitrarily.

The attacker is external to the wireless network of the
considered devices and cannot read encrypted payload infor-
mation. However, the attacker can estimate the received signal
strength indicator (RSSI) and distinguish signals originating
from different devices. Finally, the attacker can choose an

TABLE I: Terminology Overview

Symbol Description
D Set of all devices
Di ith device in D
N Number of total devices in D
T Subset of target devices
N Subset of non-target devices
L Number of IRS elements
c RIS configuration vector
cl Reflection coefficient of the lth RIS element
HT

R Channel gain from sender T to receiver R
HT

R(c) RIS-controlled channel gain
h
Di
l lth RIS sub-channel to device Di

XT Signal from a sender T
J Jamming signal from the attacker
W White Gaussian noise

Attacker channel
Communication channel

Antenna

Fig. 2: Illustration of the assumed system model.

arbitrary position to launch their attack without knowing the
exact location of the considered devices.

B. System Model

In this section, we establish the system model to formally
describe the attack scenario and the involved parties from a
signal perspective. For the reader’s convenience, we summa-
rize the used symbols in Table I.

We assume that the attacker faces a total of N wireless
devices from the set D = {D0, . . . , DN−1}, e.g., forming a
wireless network where one device is an AP that the others
connect to. The devices {D1, . . . , DN−1} seek to extract
correct digital information from the legitimate signal XAP

received from the AP D0. The attacker seeks to disrupt the
wireless communication of K devices, forming the subset
T ⊆ D, while leaving the remaining devices in the subset
N = D \ T unaffected. Figure 2 illustrates an exemplary
scenario with five devices D = {D0, D1, D2, D3, D4},
where the attacker would like to jam T = {D4}, while keeping
the remaining devices N = {D0, D1, D2, D3} operational.

To achieve their goal, the attacker transmits a jamming sig-
nal J to overshadow the legitimate signal from the AP XAP .
Both signals XAP and J are subject to radio propagation
effects, described by the complex channel gains between the
respective transmitter and the device Di, denoted as HAP

Di

from the AP to Di, and HRIS
Di

(c) from the attacker to Di.
Thus, the device Di observes the total received signal

YDi = HAP
Di

XAP +HRIS
Di

(c) J +W, (1)

where W is additive white Gaussian noise. Note that the
attacker’s channel is reconfigurable by means of the RIS
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configuration vector c. In line with the literature [5], we
model this channel as the superposition of L sub-channels
hDi

l between the attacker’s antenna and the device Di via the
lth RIS element, each of which is multiplied with the selected
reflection coefficient cl of the respective RIS reflector element:

HRIS
Di

(c) =

L∑
l=1

hDi

l cl. (2)

From Equation 1, we can formulate the jamming-to-signal
ratio (JSR) of each device as

JSRDi
=

|HRIS
Di

(c)J |2

|HAP
Di

XAP |2
, (3)

which is a key metric to assess the success of jamming
attacks [45, 43]. With increasing JSR, the probability that the
respective radio receiver will be disturbed increases.

IV. RIS-BASED SELECTIVE JAMMING ATTACK STRATEGY

With the established system model in mind, we now proceed
to elaborate the attacker’s strategy in order to meet their
two principal goals: (i) rendering target devices inoperative
while (ii) keeping non-target devices operational. For this,
the attacker must maximize JSRDi

for the target devices and
minimize it for the non-target devices. The classical approach
to meet goal (i) is to increase the power of the jamming
signal J . However, this strategy does not address goal (ii)
and carries the risk of also jamming non-target devices. In this
work, we resolve this issue by means of an RIS, leveraging for
the first time RIS-based wireless channel control to optimize
an active jamming attack. In particular, the attacker leverages
the RIS configuration c to adapt their wireless channel gains
HRIS

Di
(c) and control the delivery of J towards each device.

In other words, by applying an appropriate configuration c
to their RIS, the attacker can selectively increase or decrease
the channel gains towards the considered devices in order to
control the respective JSR and thereby control the effect of the
jamming. Thus, the attacker faces the following multivariate
optimization problem:

max
c

|HRIS
d∈T (c)|, (4)

min
c

|HRIS
d∈N (c)|. (5)

To find an appropriate c that meets these goals, the at-
tacker must observe HDi

RIS(c) (see Section II-B) – ideally
by measuring the jamming signal strength arriving at each
considered device. However, this clearly is not possible as the
devices D do not cooperate with the attacker. To solve this,
we leverage channel reciprocity, where the wireless channels
from the attacker to the considered devices and vice versa
are identical, i.e., it holds that HDi

RIS(c) ≈ HRIS
Di

(c) [62].
Consequently, to assess whether a particular RIS configuration
c meets the channel optimization, the attacker can eavesdrop
on the considered devices and measure HDi

RIS(c).
In summary, the RIS-based jamming attack is a two-step

procedure as illustrated in Figure 3. First, the attacker passively

(a) (b)

Fig. 3: Two-step attack strategy of the jamming attack using
the RIS. (a) Step 1: Passive channel optimization. (b) Step 2:
Active wireless jamming attack.

 

7.
5m

9.0m

Attacker

Fig. 4: Floorplan of the environment used for experiments,
indicating the positions of all wireless devices and the attacker.

determines an appropriate RIS configuration by eavesdrop-
ping the radio communication signals from the considered
devices (see Figure 3a). Using this configuration, the attacker
then actively transmits the jamming signal J which disrupts
target devices while non-target devices remain operational (see
Figure 3b).

V. EXPERIMENTAL SETUP

1) Wireless Environment: We conduct our experiments in
an ordinary office environment where we make use of an area
of approximate size 9.0m × 7.5m. A floor plan is depicted
in Figure 4, indicating the position of the attacker and the
wireless devices {D0, . . . , D10}. The devices are arranged in
four clusters spread across the room.

To demonstrate and evaluate the attack, we utilize com-
modity off-the-shelf Wi-Fi devices. For the AP device D0, we
utilize a TP-Link N750 router running OpenWrt to provide
an IEEE 802.11n Wi-Fi network with 20MHz bandwidth on
channel 112, corresponding to a channel center frequency
of 5560MHz. The router is capable of packet injection using
lorcon [69]. For the wireless devices {D1, . . . , D10}, we use
ten Raspberry Pi 4 Model B and leverage nexmon [53] to
optionally put their Wi-Fi chipset into monitor mode.

The devices D1 to D10 ping the AP (D0) to trigger wireless
traffic. Per default, the AP is part of the set of non-target
devices N .

2) Attacker Setup: On the attacker side, we use the follow-
ing hardware setup. To realize eavesdropping, we employ a
Raspberry Pi 4 Model B. Again, we use nexmon [53] to put
the Wi-Fi chipset into monitor mode, allowing us to obtain
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the RSSI value and MAC address for each received Wi-Fi
packet, even in the case of frame errors. In order to connect
an external antenna to the Raspberry Pi, we disconnected the
onboard PCB antenna and added a coaxial connector.

For the active jamming, we utilize standard IEEE 802.11n
Wi-Fi signals (20MHz bandwidth with modulation and coding
scheme (MCS) set to 1), containing 25 randomized pay-
load bytes. For convenient signal generation, we use a Sig-
nal Hound VSG60 vector signal generator, allowing to transmit
signals with a 100% duty cycle and precisely controlled signal
power. However, we stress that jamming signal generation can
likewise be realized with ordinary Wi-Fi devices [52].

We employ an interline PANEL 14 directional antenna and
use a Mini-Circuits USB-2SP4T-63H radio frequency (RF)
switch to either connect the antenna to the Raspberry Pi for
eavesdropping or to the signal generator for jamming. The
antenna is directed towards the attacker’s RIS. Figure 21 in
the Appendix A shows a photo of the setup. The RIS is
based on the open-source design of Heinrichs et al. [24] and
consists of three standard FR4 PCBs. It has L = 768 unit-
cell reflector elements with binary phase control, optimized to
operate in the 5GHz Wi-Fi frequency range. The elements can
be programmed via USB to select the phase of cl to either be
0◦ (state ‘0’) or 180◦ (state ‘1’). For further technical details,
we refer to [24].

3) RIS Optimization: To determine an RIS configuration
that solves the optimization problem formulated in Equation 4
and Equation 5, we employ the greedy genetic optimization
algorithm put forward by Tewes et al. [65]. The algorithm
stores a sorted table, where a cost function f is evaluated
for a set of B initially random RIS configurations. The cost
function first aggregates the RSSI values from the devices in
the respective set, using weighted combinations of the mean
and minimum for T , and mean and maximum for N . We
weight the mean with 0.3 and the extreme values with 0.7,
to emphasize the worst-performing devices in the respective
sets stronger during optimization. Finally, we take the signed
squared difference of both aggregate values as the result
of f . Based on RIS-element-wise empirical probabilities for
maximizing the cost function within the table, a new RIS
configuration is generated and evaluated to update the table
with every algorithm step. For our experiments, we set B to
100 and run the algorithm for 10 000 steps.

4) Evaluation Metrics: In the remainder of the paper, we
use the following evaluation metrics:

• RSSI values: The Raspberry Pis we use provide estimates
of the received signal strength in dBm with a resolution of
1 dB for every received packet. We use RSSI for channel
measurement, e.g., to estimate |HDi

RIS(c)| as needed to
optimize the attacker’s RIS.

• JSR: We evaluate JSRDi
, cf. Equation 3 for each device,

using RSSI values corresponding to signals received by
the devices {D1, . . . , D10} from the attacker and the AP.

• Packet rates: For evaluation of the attacker’s selective
jamming capabilities, we leverage packet injection on
the AP D0 to transmit Wi-Fi packets with MCS 6 at a

constant rate of 100 packets per second. On the devices
{D1, . . . , D10}, we measure the successfully received
Wi-Fi packets from the AP per second. If a particular
device is affected by the attacker’s jamming signal J ,
the received packet rate will be reduced. For the mea-
surements, the devices operate in monitor mode, granting
a clear view on the bare jamming effects, independent
of adaptive Wi-Fi mechanisms such as rate control, re-
transmissions, or even disconnections.

• Data throughput: We also evaluate the effect of the
selective jamming in a standard Wi-Fi network, i.e.,
where devices do not use monitor mode but operate as a
station. Here, {D1, . . . , D10} are connected to the AP D0

and we assess the effect of the attacker’s jamming signal
J by measuring the data throughput from the AP towards
a particular device in Mbit/s by means of iperf3 [16].

VI. ATTACK EVALUATION

After introducing the attack strategy and our experimental
setup, we evaluate RIS-based spatially selective jamming
attacks in several real-world scenarios. First, we investigate
selective jamming of a single device to demonstrate the
scheme’s feasibility. Then, we target multiple devices to show
its scalability. We also assess the robustness of the RIS
optimization against environmental changes. In addition, we
validate the attack’s effectiveness in a fully-fledged Wi-Fi
network and study devices in extreme proximity. Finally, we
compare the performance of spatially selective jamming using
a directional antenna versus the RIS.

A. Single-Target Jamming

The first scenario we evaluate is jamming of a single target
device. For this, we first optimize the attacker’s RIS and then
transmit the jamming signal while evaluating how it affects
each considered device {D1, . . . , D10}. Serving as a blueprint
for the subsequent scenarios, we provide a detailed outline
of the attacker’s action, covering RIS optimization, active
jamming and JSR analysis.

1) RIS Optimization and Active Jamming: The attacker’s
first step is to find an appropriate configuration for the RIS to
maximize the received RSSI from the targeted device while
minimizing it for all other devices. For this, the attacker uses
their Raspberry Pi to eavesdrop on the signals transmitted by
the considered devices and estimates the magnitude of the
channels HDi

RIS(c) from the obtained RSSI values. Once RSSI
values from all devices have been opportunistically collected,
the attacker can perform a step of the RIS optimization
algorithm. In our experiments, the algorithm runtime for
10 000 steps is about 5 minutes.

In our initial experiment, we want to jam device D1 and thus
first need to find an RIS configuration that targets device D1

while excluding the remaining devices. Figure 5a depicts the
RIS optimization process, clearly showing an improvement in
the channel quality between the RIS and the target device D1

while it degrades for the remaining devices as the optimization
algorithm progresses. Eventually, the RSSI for D1 converges
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Fig. 5: (a) RIS optimization process for targeting device D1

while excluding all other devices. (b) Measurement of packet
reception rates on the considered devices over jamming signal
power using the previously optimized RIS configuration.
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Fig. 6: (a) RSSI from the jammer as observed for each device.
(b) RSSI from the AP. (c) JSR of the RSSI from the jammer
and the AP. (d) Normalization of the JSR.

to −50 dBm, while the RSSI for the non-targeted devices
reach levels around −75 dBm, confirming the effectiveness
of the optimization algorithm.

Using the RIS configuration resulting from the optimiza-
tion algorithm, the attacker switches from eavesdropping to
actively sending a jamming signal. Figure 5b shows the packet
reception rates from the AP for each device over the jamming
signal power. Here, we can see that jamming with a signal
power of −21 dBm completely disrupts the reception of D1,
while the reception rates of all other devices are unaffected.
Moreover, the attacker has a jamming signal power margin of
17 dB until any other device (D6) is disrupted.

2) Jamming Success of the Attacker: Thus far, we have
demonstrated jamming of D1 without affecting the other
devices. However, the attacker can likewise leverage the RIS
optimization to target any other device in the environment.
We repeat the previously outlined optimization process for the
remaining devices {D2, . . . , D10} and investigate the overall
attack success by studying the JSR.

As discussed in Section IV, the JSR assesses the attacker’s
success, relating the jamming power at a specific device to the
desired signal power from the AP. To evaluate the JSR, we
measure the RSSI values from the jammer and the AP (both
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Fig. 7: Packet receive rate for each device and for each single-
target configuration D1 to D10.

sending Wi-Fi signals with constant transmission power) on
each device for each optimized RIS configuration. Figure 6a
and Figure 6b present the results, visualizing the effect of the
respective RIS configuration (per column) as observed on each
device (per row). The distinct diagonal entries in Figure 6a
show that the attacker succeeds in focusing their signals on
the intended devices while achieving rejection towards others,
while Figure 6b depicts each device’s signal reception from
the AP. Here, the RIS does not affect the channels HAP

Di

between the AP and the devices. Additionally, we observe
the effects of distance-dependent path loss, as the devices
with the smallest and largest distance to the jammer and
AP (D7 and D6) experience the highest and lowest signal
strengths, respectively. Similarly, D7 receives signals from the
AP strongest as it is only 1m apart.

Using the RSSI measurements from both the jammer and the
AP, we derive the JSRs by taking their difference (since RSSI
values are logarithmic, this follows Equation 3). The result is
shown in Figure 6c. The key observation here is that the JSR
values of the targeted devices on the diagonal entries stand out
as desired. Furthermore, the variation of the per-target JSR
indicates that jamming of, e.g., D10 is more efficient than
jamming D7, which has a robust legitimate signal reception.

To highlight the attack effect on non-target devices, we
additionally show the row-wise normalized JSR in Figure 6d.
This highlights the different legitimate channel conditions: D7

consistently shows the lowest non-target JSR due to its strong
signal reception from the AP, whereas D6 and D10 exhibit
higher non-target JSRs because they receive weaker signals
from the AP. Finally, the higher relative jamming signal power
required for D7 reduces the signal rejection margins towards
the other devices such that the attacker fails to exclude D10.
Nonetheless, the attacker achieves JSR reductions of at least
20 dB in more than 50% of the cases (16 dB in 90% and
24 dB in 25%). We refer the reader to Appendix C for an
evaluation of the normalized JSR during the RIS optimization.

Now, while using just enough jamming signal power to
disrupt the respective target device, we perform the active
jamming attack against each device. Following the same
evaluation rationale as before, Figure 7 shows the packet
reception rates of each device while sending the jamming
signal with the corresponding RIS configuration applied. After
demonstrating selective jamming of D1 before, the clearly
visible diagonal entries show that the attacker is capable of
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Fig. 8: Attack performance with randomized RIS configura-
tions. (a) Received RSSI from the attacker for each device.
(b) Resulting packet reception rates during jamming.
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Fig. 9: (a) Packet reception rates for jamming the four device
clusters (see Figure 4). (b) Packet reception rates for targeting
all but one device.

selectively jamming all considered devices without affecting
the other devices. However, we also recognize the effect of
insufficient jamming signal rejection, as discussed before. That
is, when jamming D7, the attacker also disrupts the packet
reception of D10, being in line with the previous JSR result
shown in Figure 6d.

Overall, our results demonstrate that RIS-based jamming en-
ables precise physical attack targeting without affecting neigh-
boring devices, even through-the-wall from another room.
Please note the reported attack performance clearly stems from
the attacker’s optimized RIS. That is, when using random
configurations for the RIS, neither the RSSI from the attacker
nor the packet reception rates under jamming are concentrated
on a particular device as evident from Figure 8.

B. Multi-Target Jamming

The previous results highlight the effectiveness of RIS-
based spatially selective jamming in single-target scenarios.
In the following, we extend this scenario and investigate two
additional scenarios where the attacker wants to jam not just
one, but multiple devices simultaneously.

1) Device Clusters: In the first multi-device scenario,
the attacker seeks to disrupt the device clusters depicted
in Figure 4. Thus, we repeat the previous experiments but
this time specify the devices belonging to the clusters C1 to
C4 as target devices during the RIS optimization. Subsequently
using the resulting four RIS configurations for active jamming,
Figure 9a shows the packet receive rates of all devices, anal-
ogous to Figure 7. Here, we can see that attacker succeeds to
disrupt the devices belonging to the respective clusters, while
the remaining devices again remain fully operational. Note

that the RIS configuration to target cluster C3 (comprising
only of device D7) this time sufficiently reduces the jamming
signal towards device D10, preventing the unintended non-
target jamming previously observed in Figure 7. That is
because the greedy optimization algorithm does not neces-
sarily always converge to the same RIS configuration, given
that the algorithm is randomly initialized and guided based
on noisy measurements. Still, the overall conclusion from
this experiment is that the attack approach is extensible to
selectively jam even multiple devices simultaneously.

2) Single Exclusion: After jamming multiple devices, we
now aim to jam every device except one the attacker would
like to keep operational. Building on the previous insight that
the attacker can leverage the RIS to deliver the jamming signal
to multiple devices, we now seek to push this approach even
further to jam every device except one that the attacker would
like to keep operational. Thus, we repeat the RIS optimization,
but now specify T = D\{D0, Di} where i ≥ 1. Like before,
we then perform active jamming with each optimized RIS
configuration and plot the packet reception rates of all devices
in Figure 9b. Here, quite opposite to the single-targeting
scenario of Figure 7, we can see that the attacker indeed
succeeds to disrupt all receivers except D7 while keeping one
non-targeted device operational. This experiment confirms that
jamming of a broader set of devices is possible.

The inability to jam D7 is due to its strong reception of
the legitimate AP signal cf. Figure 6b. Successful jamming
requires the attacker to deliver sufficient signal power to D7

to overshadow the legitimate signal. However, in the present
scenario, the attacker splits their jamming power among nine
targets, reducing the power efficiency. Thus, we expect the
jamming power at each device to be reduced by a factor
1/9 =̂−10log10(9) ≈ 9.5 dB. This matches our observations,
as the jamming power arriving at D7 was −56 dBm in the
single-target scenario, cf. Figure 6a, while in the current
experiment, it was at most −65 dBm. Therefore, the attacker
lacks sufficient jamming power to disrupt D7. To address this,
the attacker could amplify their jamming signal or prioritize
channel maximization towards D7 during RIS optimization.

C. Effect of Environmental Variation

The attacker relies on the assumption that the optimized RIS
configuration is valid during the subsequent active jamming.
In the following, we investigate the validity of this assumption,
evaluating the robustness of the proposed scheme against
environmental variation.

1) Long-Term Stability: For our previous experiments, the
attacker’s RIS was optimized shortly before obtaining JSR
and jamming packet reception rate results. However, it is not
yet clear whether we can expect the RIS optimization to be
long-term stable, which would be a desirable property for
attack practicality. To investigate this aspect, we perform RIS
optimization with T = {D1} and monitor the resulting JSR
values of each device for a duration of 24 hours. Figure 10
shows the JSRs normalized to the initial JSR measurement
of D1 as a time series. The key observation is that the

7



0 5 10 15 20
Time after optimization / h

40

30

20

10

0

No
rm

al
ize

d 
JS

R 
/ d

B D1
D2
D3
D4
D5
D6
D7
D8
D9
D10

Fig. 10: Time stability of optimized JSR values over 24 h.

 

1

23

4 5

Attacker

(a)

0 20 40
Time / s

0

25

50

75

100
Pa

ck
et

s p
er

 se
co

nd

1 2 3 4 5

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10

(b)

Fig. 11: Effects of human motion in the experimental environ-
ment. (a) Path layout for the motion including checkpoints.
(b) Measured time series for each device.

JSRs remain largely stable with sustained focusing of D1

and rejection of the other devices, showing that the optimized
RIS configuration stays valid after an entire day has passed.
However, we do observe some variation in the JSRs of the
non-target devices, starting 7 hours after the RIS optimization
at midnight. Since our experiments took place in an ordinary,
actively used office environment, we attribute this to office
activity, e.g. individuals walking around. We investigate the
effect of human activity on the attacker’s jamming perfor-
mance more systematically in the next experiment.

2) Human Motion: In this experiment, we again perform
single-target jamming with T = {D1} while an individual
walks through the environment, passing by the considered
devices and the attacker’s RIS. At the same time, we record the
packet receive rate of each device for 45 s. Figure 11a shows
the walking path with annotations matching the receive rate
time series shown in Figure 11b. The first thing to note is that
the reception of D1 remains completely suspended as desired,
regardless of the individual. Likewise, the reception of the non-
targeted devices is mostly unaffected at approx. 100 packets
per second. Still, we can see that when the individual is
within the room, the device D4 is temporarily affected by
the jamming as evident from the reduced packet reception.
That is, the individual potentially affects the wireless channels
HRIS

D4
(c) and HAP

D4
, which caused an increased JSR.

3) Changes to the Environment: Next, we perform multi-
target jamming with T = {D1, D2, D3} (cluster C1) and
incrementally change the room where the devices are located.
In particular, we open its two doors, introduce additional items
(two 60 × 60 × 43 cm rolling office cabinets, a pedestal
standing fan, and a 60 × 60 cm flat platform trolley), and
finally move the device D2 by two centimeters. Figure 12
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Fig. 12: Packet reception rates during jamming with incremen-
tal environmental changes.
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Fig. 13: Effect of device-repositioning: Selective jamming
performance after rearranging the devices in a grid across the
room (a) before and (b) after rerunning RIS optimization.

shows the packet receive rates of all devices for each envi-
ronmental state. Without changes in the environment (labeled
as ‘Original’), the attacker achieves their goal to jam the
target devices while the others remain unaffected. Then, as
we introduce more changes to the environment, we can see
that especially the non-target devices D4, D8, and D9 become
more affected by the jamming, indicating an increased JSR. As
in the previous experiment, jamming of the targeted devices is
largely robust against environmental variation. However, when
finally moving the targeted device D2, it is no longer disrupted.

4) Different Device Positions: In the previous experiment,
we have seen that relocating the device D2 caused jamming
of that device to become ineffective. This observation under-
scores the attack’s desired dependency on the device location.
To further study the effect of relocating devices, we change
the device positioning in clusters (see Figure 4) to a grid,
uniformly distributing the device across the room. Then, we
repeat the single-target experiment outlined in Section VI-A
with the originally optimized RIS configurations. The results
are shown in Figure 13a. We now see that the attacker
– using outdated RIS configurations – fails to selectively
jam the respective devices. However, after renewing the RIS
configurations, the attacker is again capable of selectively
jamming each device, as can be seen in Figure 13b. Apart
from the clear spatial dependence of the attack, this result also
highlights the attacker’s ability to adapt to different scenes.

D. Attack Performance in a Wi-Fi Network

Thus far, we studied RIS-based selective jamming by means
of the JSR and packet reception rates. For this, the devices
operated in monitor mode while observing packets with a
fixed MCS setting. This allowed us to evaluate the attack
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Fig. 14: Wi-Fi throughput for each device and for each single-
target configuration D1 to D10.

performance independently of the behavior of custom rate
adaption algorithms employed in fully operational Wi-Fi net-
works. Here, the physical-layer transmission speed is not fixed
but is adapted to the wireless channel conditions [71, 32]. The
sender monitors whether transmissions with higher data rates
were successful and otherwise reduces the data rate which
in turn increases the link robustness. This is controlled via
the MCS setting [67], denoting a standardized combination of
modulation scheme and error coding rate.

In the context of jamming, rate adaption can be viewed as
a countermeasure where the victim party adaptively enhances
their jamming resiliency. Switching to a lower MCS setting
allows the victim to cope with reduced link quality or, put
differently, with a higher JSR. For example, for single-antenna
communication over 20MHz bandwidth, Wi-Fi receiver sensi-
tivity improves by approx. 18 dB when switching from MCS 7
to MCS 0 [44], yet reducing data rate by a factor of 10 [67].

To assess whether Wi-Fi rate adaption could diminish the
attacker’s selective jamming success and to further investigate
the attack’s real-world potential, we repeat the single-target
experiment from Section VI-A. However, we measure the
data throughput on each device {D1, . . . , D10} in the Wi-Fi
network of the AP. In particular, we use iperf3 to transfer
a 30Mbit/s UDP datastream towards each device while the
attacker transmits their jamming signal to disrupt one device.
Figure 14 shows the resulting throughput measurements and
additionally indicates the throughput without an attack in
the first row. Importantly, we again observe clearly distinct
diagonal entries, showing that the throughput on the targeted
devices is reduced to (nearly) 0MBit/s.

Other than in Figure 7, non-target devices are slightly
affected by the jamming. The reason for this is the rate
adaption of the targeted device which reacts to the jamming
by switching to a more robust MCS that can withstand a
higher JSR. In turn, to achieve a JSR that disrupts the target
reception, the attacker must expend more jamming power.
However, this may exhaust the JSR reduction provided by
RIS optimization, causing a non-target device to be affected
and switching to a more robust MCS, sacrificing some data
rate. Still, the throughput of the non-target devices remains
above 22Mbit/s in 50% of the cases (11Mbit/s in 90% and
27.5Mbit/s in 25%).

Consequently, while the attacker does not completely pre-
vent the non-target devices from being affected, the observed

throughput degradation is within acceptable limits and can
likely be further improved by refining the RIS optimization.
The results demonstrate the feasibility of the attack even
when the victim devices use adaptive rate control, posing a
significant threat to real-world Wi-Fi networks.

E. A Detailed Look in the Spatial Domain

Thus far we have investigated RIS-based spatially selective
jamming of devices distributed across an entire room. Now,
we seek to explore the attack on a smaller scale, i.e., when
devices are in close proximity.

1) Selective Jamming of Devices at Sub-Wavelength Dis-
tance: Previously, we have seen that it is possible to jam
single devices although being in close proximity to others
within clusters, cf. Figure 4. Intuitively, due to the inherent
spatial correlation of electromagnetic fields, one would expect
that if one device is disrupted by the attacker’s jamming,
then another very close-by device would likewise be affected.
However, interestingly, we found that RIS-based spatially
selective jamming even works when device antenna separation
is deeply in the sub-wavelength region.

In our experiment, we consider the devices D5 and D6

(and the AP D0) which we place very close to each other in
two geometrical configurations. In the first (see Figure 15a),
we place the devices directly above each other to minimize
their antenna distance while being in the same orientation.
In the second (see Figure 15c), we place the devices facing
each other to minimize their antenna distance regardless of
the orientation, being approx. 5mm. For both scenarios, the
attacker optimizes their RIS to (i) target D5, (ii) target D6,
and (iii) target both. Like before, we use iperf3 to measure the
Wi-Fi throughput on both devices while the attacker conducts
their jamming attack.

The resulting throughput measurements for both de-
vice placements are shown as time series in Figure 15b
and Figure 15d. The first thing to note is that without jamming,
both devices initially have data rates of around 25Mbit/s.
Then, as the attacker starts to jam with the first RIS config-
uration, the data rate of D5 drops to zero while D6 remains
completely unaffected as evident from the unaltered through-
put. The attacker then switches to the next RIS configuration,
alternating the attack target. Now, the throughput of D5 is
restored to the level without the attack while the throughput
of D6 is close to zero. Finally, as attacker switches to the
third RIS configuration, the throughput of both devices drops
to (nearly) zero. Please note that – after activating the jamming
– the attacker achieves this result by merely reconfiguring the
RIS configuration. Importantly, this experiment highlights the
attacker’s ability to dynamically change the targeted device.

2) Further Analysis of Close-By Antennas: We now inves-
tigate the mechanics behind the previous result. First of all,
theoretical limits of separating wireless channels in the spatial
domain are rooted in the correlation of multipath components
at different locations, i.e., the correlations of the L sub-
channels via the RIS from the attacker antenna towards D5 and
D6, hD5

l and hD6

l . As shown by Clarke [13], the correlation
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Fig. 15: Real-world spatial jamming attack demonstration
against Wi-Fi communication. (a) Parallel aligned antennas.
(b) Measured Wi-Fi datarates for parallel antennas. (c) Facing
antennas. (d) Measured Wi-Fi datarates for facing antennas.

as a function of the distance d can be described using the
Bessel function of the first kind. Given the attack scenario
where one channel is maximized, the smallest distance from
the maximized location to a minimum could be approximated
as the first zero point of the Bessel function, given by
2.4048 c

2πf ≈ 20.6mm, where c is the speed of light and
f is the signal frequency (5560MHz in our experiments).
However, this number is considerably higher than the 5mm
device separation from Figure 15c. One reason for this is
because two antennas in real-world scenarios will seldom
exhibit the exact same radiation patterns. This effect is due
to differences in relative orientation (such as in Figure 15c) as
well as differences in the relative environment, e.g., objects in
the antenna nearfield. Notably, the latter also includes the case
that antennas get into each other’s proximity: So called mutual
coupling effects distort the individual antenna radiation pat-
terns and therefore reduce spatial correlation effects [60, 15].
In consequence, the aforementioned effects would allow the
attacker, for example, to exploit that one device’s antenna
might exhibit a high sensitivity in an angular direction where
the other does not.

To assess the influence of the device antennas, we con-
ducted additional experiments using a Keysight P9372A vector
network analyzer (VNA) for high-accuracy wireless channel
measurements. At the position of D8, we place two antennas
of the same type (‘Antenna 1’ and ‘Antenna 2’) directly next
to each other and measure the wireless channels between
them and the attacker’s antenna (via the RIS). We optimize
the RIS to maximize the channel towards Antenna 1 and
minimize the channel towards Antenna 2 and vice versa. Then,
for both cases, we move Antenna 2 in steps of 4mm away
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Fig. 16: Channel effects when repositioning an antenna in
close proximity of another one. RIS optimized with Antenna 2
at 0mm displacement to (a) minimize and maximize and (b)
maximize and minimize the respective channels.
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Fig. 17: Normalized JSR for single-target jamming with other
devices being hidden before (a) and after (b) optimization.

from Antenna 1. To ensure accurate and repeatable antenna
positioning, we use a 3D-printed positioning fixture. A photo
of the setup is shown in Figure 22d in Appendix A.

Figure 16 shows the magnitude channel measurement results
for both antennas over the tested displacements of Antenna 2.
Here, we can see that the channel of Antenna 2 clearly
decorrelates with its displacement. Notably, the measurement
is in good agreement with theory, where the signal power is
strongly reduced at the zero point of the Bessel function, as
indicated by the dashed line Figure 16a. Furthermore, it is also
evident that the measurement results of the fixed Antenna 1
are affected by moving Antenna 2. Given the stronger relative
impact of small channel variations, this behavior is more
pronounced when Antenna 1 is minimized (power increases by
approx. 8 dB) than when it is maximized (power reduced by
approx. 0.5 dB). Finally, these results confirm that the attacker
can take advantage of antenna coupling effects to selectively
target devices in close proximity configurations.

3) Jamming Impact on Hidden Devices: Thus far, we have
focused on devices detectable via their wireless transmissions.
However, some devices may remain passvie and only act as
receivers without transmitting. Next, we examine the effects
of attacks on these hidden devices, where the attacker cannot
optimize their wireless channel. To align with our system
model from Section III-B, we define a subset of devices,
denoted as H ⊆ N , which is ignored for the optimization
problem in Equation 5, effectively treating them as hidden.
We replicated the single-target experiment from Section VI-A2
but consider H = {D1, . . . D10} \ T , leaving only the AP D0

effective within the non-target devices N . Thus, we optimize
the RIS to maximize the channel of the respective target while
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Fig. 18: Spatial distribution of normalized attacker signal
RSSI values. During RIS optimization, the targeted device was
placed within the black circle.

minimizing the channel of the AP and ignoring all others.
Using the resulting RIS configurations, we then measure the
JSR at each device. We show the normalized JSR with respect
to each target device prior to and after the optimization process
in Figure 17. Initially, most hidden devices experience a JSR at
least as high as the respective target device. Crucially, after the
optimization, we observe a JSR concentration on the diagonal,
indicating that the attacker achieves selective jamming, despite
the devices being hidden. The reason for this is that the channel
towards the respective target is maximized while the channel
towards the hidden devices is not, effectively reducing the
jamming interference at the hidden devices. However, the JSRs
at the hidden non-target devices are higher than when they
are not hidden, cf. Figure 6, which is due to the lack of the
additional minimization.

The previous result can be explained by the RIS maximiza-
tion resulting in a focal point around the targeted device, as
previously described by Kaina et al. [27]. This is different
from classical beamforming, which rather affects an area and
not a particular spot. To validate this, we mounted device D5

on a precision dual-axis Cartesian robot, optimized the RIS
with T = {D5}, and then measured the RSSI of the jamming
signals at D5 while re-locating the device. Figure 18 shows
the resulting jamming signal distribution, measured in 10mm
steps within an area of size 75 cm × 50 cm around the initial
device position at (x, y) = (550, 250) mm, normalized to the
initial position. At positions at least 6 cm away from the initial
position (indicated by the black circle), the attacker signal
power is at least 5 dB and on average 13 dB lower. The lesson
from this experiment is that one can expect a jamming signal
reduction at passive hidden devices, i.e., without explicitly
enforcing channel minimization during RIS optimization.

F. Further Evaluation of the RIS

1) Effect of Surface Size: A relevant factor for the attacker’s
ability to target and exclude devices is the physical size of the
RIS [70], motivating the following experiment. To simulate
variations in RIS size, we vary the number of active RIS
elements. Specifically, we perform RIS optimization using a
randomly selected subset of the total available RIS elements,
while the other elements are configured random but remain
fixed. In this way, we optimize the surface for a single-
targeting scenario with T = {D1} while varying the number
of active RIS elements from 16 to 768. We plot the resulting
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Fig. 19: RIS optimization results over increasing number of
active RIS elements for (a) K = 5 and (b) K = 11 devices.
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Fig. 20: Comparison between a directional antenna and the
RIS: (a) Directional antenna pointed towards D8 and (b) RIS
jamming, optimized towards with T = {D8}.

attacker signal strength at each device over the number of
active RIS elements used for optimization for K = 5 and
K = 11 total devices in Figure 19.

Here, we see that the attacker fails to separate their RSSI
values on targeted and non-targeted devices when using less
than approx. 100 active elements during the RIS optimization.
Another observation is that the resulting jammer power levels
do not significantly improve beyond approx. 500 elements,
potentially opening the door utilizing smaller RISs. However,
the performance saturation might also be attributed to the par-
ticular parametrization of the greedy optimization algorithm,
calling for further investigation. Nonetheless, a larger RIS
improves the attacker’s signal control.

Additionally, this experiment also highlights the effect of
increasing the number of considered devices K. Arguably,
as the attacker has to consider more devices, the complexity
of the RIS channel optimization problem increases. Thus, the
optimization algorithm must balance the performance among
all devices in the corresponding sets T and N , potentially
sacrificing the optimization quality of one particular device in
favor of another.

2) Comparison against Directional-Antenna Jamming:
Alternatively to the RIS, the attacker could attempt to use
a directional antenna pointed at a targeted device. To in-
vestigate whether such an approach could be effective, we
perform another jamming experiment where the attacker points
an elboxRF TetraAnt 5 19 20 RSLL directional antenna with
19 dBi gain towards the targeted device T = {D8}.

Figure 20 shows the packet receive rates of all devices over
the jamming signal power both for the directional antenna and
for the RIS. First of all, in both cases the attacker succeeds
to disrupt the reception of D8 completely. However, with
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the directional antenna, the required jamming power is 3 dB
higher than with the RIS. When using the directional antenna,
the attacker also jams the non-target devices D5, D10, D4, and
D9. Furthermore, the jamming power margin until affecting
another device (D6) is only 4 dB. In clear contrast, with the
RIS, the attacker succeeds to only jam the device D8 while
achieving a jamming power margin of 20 dB before another
device (D4) is affected.

This result shows that the RIS significantly outperforms
the directional antenna when considering power efficiency
and device selectivity. Directional antennas are designed to
radiate a single beam under ideal (free-space) conditions,
requiring mechanical adjustment while flexibility is limited:
Target devices need to be within the beam width and non-
target devices must be sufficiently separated. In contrast, the
RIS allows fully-electronic scene adaption, combining many
different propagation paths, allowing focusing and nulling of
energy at one or multiple targets devices, regardless of whether
they are very close or further apart from each other.

VII. DISCUSSION

In this section, we discuss the experimental setup and
our results, limitations of the attack, reason about potential
countermeasures, and provide directions for future research.

A. Experimental Setup and Results

a) Wireless Devices: We designed the experimental setup
to explore the RIS for wireless jamming attacks in a realistic
scenario, yet made some simplifications to aid experimenta-
tion. While the device population comprises of off-the-shelf
Wi-Fi devices located in an ordinary office environment, we
made the devices regularly ping the AP to trigger wireless
traffic required for the attacker’s RIS optimization. In a real-
world scenario, the attacker has to contend with the available
traffic. However, to tackle potential low transmission rates, the
attacker could provoke transmissions by injecting fake packets
that devices often respond to with acknowledgements [1, 2].
Furthermore, to evaluate the physical-layer mechanism under-
lying the devised attack scheme while avoiding potential bias
due to vendor-specific adaptive device behavior, we relied on
monitor mode packet reception for several experiments. To this
end, our Wi-Fi throughput measurements demonstrate that the
scheme still works when the devices communicate within a
fully-fledged Wi-Fi network.

b) Attacker Setup: All components for our attacker im-
plementation are either available commercially or open-source,
promoting reproducibility of the results. Regarding Wi-Fi
signal reception and transmission, the attack can in principle
be mounted merely using commodity wireless devices offering
monitor mode and packet injection, e.g., using low-level Wi-Fi
chipset firmware control [53]. We utilized a dedicated external
antenna with the attacker’s Raspberry Pi to illuminate the RIS.
However, in principle, the attack can be mounted with any
antenna, provided the signal reaches the RIS.

The time for each RIS optimization step is governed by the
time it takes until a signal from each device has been received

and therefore depends on the packet transmission rate of Wi-Fi
devives which often is higher than 100 packets per second [74].
In our setup, optimization of the RIS with 10 000 steps takes
approx. 5 minutes to finish. When device positions remain
static, the attacker is not limited by optimization time, yet
to operate in more dynamic environment, optimization speed
becomes more relevant. As discussed in Appendix C, the
number of optimization steps can be substantially reduced
without heavily sacrificing performance.

For the sake of experimental simplicity, we used device
media access control (MAC) addresses to distinguish signals
from different devices. A fully payload-agnostic physical-layer
attacker would have to rely on physical-layer measures such
as radio transmitter fingerprints [26, 56, 58, 14] for this.

While RISs are already commercially marketed [20], there
is no broad consumer-level availability. However, the RIS we
used is based on the well-documented open-source design by
Heinrichs et al. [24] who also provide detailed manufacturing
information. We estimate that the parts to manufacture the
768-element RIS we used can be purchased for approxi-
mately € 750. The way we leverage the RIS resembles an
electronically tunable reflectarray antenna which was thus far
exclusive to high-profile applications such as air surveillance
radar [51] or satellites [28]. With the advent of RISs, such
technology now becomes accessible even for individuals,
extending the toolkit for advanced physical-layer attacks and
necessitating a re-evaluation of attacker capabilities.

B. Countermeasures

Wireless jamming itself cannot be prevented due to the
broadcast nature of radio wave propagation. Instead, jamming-
resistant modulation schemes such as spread-spectrum tech-
niques can be used to enhance robustness against jamming.
However, changing the physical-layer modulation scheme is
not an option for conventional standard-compliant wireless
communication systems such as Wi-Fi. Therefore, in the
context of this work, we discuss potential countermeasures
geared towards hampering the attacker’s RIS optimization.

a) MAC Address Randomization: As a raise-the-bar
countermeasure, dynamic randomization of MAC addresses
would make it more difficult for the attacker to associate
received wireless signals with specific devices. However, the
adversary could utilize payload-independent physical-layer
properties such as radio frequency fingerprints [19, 56, 26]
to distinguish radio signals from different devices.

b) Randomizing Transmit Power: The attacker’s RIS
optimization during attack preparation relies on RSSI values
obtained from eavesdropped wireless signals. Thus, as an ad
hoc countermeasure, a victim party could randomize their
transmit power to hamper the RIS optimization. However,
this would imply a reduced wireless communication quality of
service. However, the attacker could also observe fine-grained
channel state information (CSI) values which are not affected
much by moderate changes of signal power.

c) Randomized Transmit Beamforming: Devices with
multiple antennas could employ randomized transmit beam-
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forming during their wireless communication. This would
yield randomization of the channel HDi

RIS(c) towards the
eavesdropping attacker who uses HDi

RIS(c) to optimize their
RIS. In consequence, the attacker would be unable to assess
whether channel changes stem from the RIS or the victim’s
transmit beamforming, hampering RIS optimization.

d) Avoiding Channel Reciprocity: A key mechanism un-
derlying the attack is channel reciprocity, allowing the attacker
to passively adapt their jamming channel before launching the
active attack. Thus, to hamper attack preparation, reciprocal
channels should be avoided, e.g., by using sufficiently sepa-
rated frequencies or antennas for reception and transmission.

e) Attack detection: Since the jamming signal is not fully
suppressed at non-target locations, cf. our evaluation of attack
effects towards hidden devices in Appendix VI-E3, passive
wireless receivers can be used to detect the jamming signals,
permanently monitoring the wireless environment, e.g., to raise
an alarm upon detecting malicious activity.

C. Limitations

We have shown that the RIS enables precise spatial control
for targeted wireless jamming. However, as certain precon-
ditions must be met for this, the attack also is subject to
limitations. First of all, like in every other jamming attack,
sufficient jamming signal power must be delivered to disturb
the victim receiver. While our scheme offers fine-grained
spatial jamming control at considered device locations, the
jamming effect does not completely vanish at other locations.

To passively optimize the jamming channel towards the
victim device, the attacker relies on passive eavesdropping
and a reciprocal wireless channel. Thus, the attack does not
work with wireless systems that rely on non-reciprocal wire-
less channels, e.g., when transmission and reception employ
different signal frequencies or antennas. To overcome this,
the attacker could perform active jamming while observing
whether the victim’s throughput is disrupted to indirectly infer
the quality of the jamming channels HRIS

Di
(c).

Our attack is geared towards bidirectional wireless com-
munication devices that not only receive but also transmit
RF signals which is crucial for the attacker to optimize
their jamming channel. Therefore, completely passive radio
receivers in unidirectional systems, e.g., media broadcasting
or satellite navigation, cannot be targeted as the attacker has
no means of optimizing their RIS.

D. Future Work

In this work, we have studied selective targeting of individ-
ual receivers on the physical layer. Opposite to that, it would
also be possible to target individual transmitters by employing
transmitter-reactive jamming. More work is needed to assess
the feasibility of such an approach and how it compares to
ours. Moreover, the combination of spatial and time-varying
jamming techniques provides an interesting opportunity to
realize spatio-temporal jamming, e.g., to enhance stealthiness.
For instance, time-varying modulation of the RIS during
jamming could be used for effective multi-device targeting,

changing between a set of single-target RIS configurations. Al-
though our attacker implementation already yields satisfactory
results, we believe the hardware setup can be further improved,
e.g., realizing the attack with a single-chip wireless transceiver
or using different RIS designs, possibly promoting hardware
miniaturization. We employed a greedy algorithm from the
literature to optimize the RIS. We believe that this process can
be further improved, e.g., by studying alternative algorithms,
including machine learning-based approaches that might be
capable of one-shot synthesis after an initial training. Using
more fine-grained CSI channel measurements would likely aid
faster and more accurate convergence while enabling spatio-
spectral control of jamming signals.

VIII. RELATED WORK

a) Differentiation from Previous Work: Previous research
has investigated the adversarial use of RISs for jamming, yet
with a clear focus on passive attacks. In particular, there are
two main approaches: The first, proposed by Lyu et al. [38], is
to use the RIS to reflect legitimate signals in way that a can-
cellation signal is formed at the targeted receiver, interfering
destructively and thus reducing the received signal power. The
second approach, first proposed by Staat et al. [59], leverages
the RIS to create fast environmental variation which disturbs a
targeted Wi-Fi receiver. Both approaches manipulate legitimate
signals which is the key difference compared to our work: We
actively transmit a jamming signal while using the RIS for
precise attack targeting.

Karlsson et al. [30, 29] proposed to exploit channel reci-
procity of TDD communication systems for jamming attacks.
However, different from our work, their goal was to enhance
the attacker’s power efficiency and not selective jamming.
Crucially, they consider an attacker employing a massive
multiple-input and multiple-output (MIMO) radio instead of
a single-antenna radio in conjunction with an RIS as we do.

b) Adversarial RIS Applications: Apart from jamming,
the RIS can be used adversarially to, e.g., manipulate radar
sensing, as shown by Vennam et al. [49] and Chen et al. [10].
Zhu et al. [73] have shown that the RIS allows attackers
to evade wireless sensing-based physical intrusion detec-
tion. Other works consider the RIS to facilitate eavesdrop-
ping, e.g., Chen et al. [9], Chen and Ghasempour [8], and
Shaikhanov et al. [54]. Finally, Li et al. [33] have shown RIS-
based jamming of wireless key generation.

c) Jamming Attacks: An early study on the threat of
jamming in wireless communication networks is the work of
Xu et al. [72], covering several attack strategies, including
constant random signal jamming, deceptive jamming based
on packets with valid encoding, time-pulsed jamming, and
reactive jamming. These types are also covered in various
survey and overview works on attacks and defenses by, e.g.,
Mpitziopoulos et al. [39], Grover et al. [21], Poisel [45], and
Lichtman et al. [35]. Some of these recognize the attacker’s
antenna characteristics as a degree of freedom or make dis-
tinctions between omnidirectional and directional antennas.
However, a concept like our scene-adaptive spatially selective
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jamming is not mentioned. Proano and Lazos [46] describe
time-domain selective wireless jamming based on real-time
packet classification for reactive jamming. Pursuing the same
goal, Aras et al. [3] describe a packet classification method
for LoRaWAN. Reactive jamming has been implemented
on smartphones [52] and software-defined radios [68], yet
can be counteracted using hiding methods as outlined by
Proano et al. [47]. Apart from the general threat of jamming,
the literature also presents threat analyses for recent cellular
systems such as 4G [18] and 5G [4], e.g., discussing the impact
of disrupting certain control channels.

A different line of work addresses the detection of jamming
attacks [61, 11, 37], more recently also including machine-
learning based methods [64, 41]. Other works examine friendly
jamming, where the goal is to disrupt potential adversaries,
e.g., to achieve confidentiality [55, 31]. However, Tippen-
hauer et al. [66] and Robyns et al. [50] have shown that such
schemes can be circumvented.

IX. CONCLUSION

In this paper, we investigated the merits of the RIS technol-
ogy for active wireless jamming attacks. In particular, we have
shown that the RIS enables precise physical-layer attack tar-
geting in the spatial domain, enabling protocol level-agnostic
selective jamming. For this, the attacker first determines an
RIS configuration by eavesdropping wireless traffic from the
victim devices. Then, the attacker uses the RIS to transmit
a jamming signal that disrupts the wireless communication
of targeted devices while leaving other devices operational.
We have demonstrated the effectiveness of the attack under
real-world conditions with extensive experimentation using
commodity Wi-Fi devices and an open-source RIS. Notably,
we found that that it is possible to differentiate between
devices that are located only millimeters apart from each other.
Overall, our work underscores the threat of wireless jamming
attacks and recognizes the adversarial potential of RISs to
enhance the landscape of wireless physical-layer attacks.
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APPENDIX

A. Experimental Setup

Complementing the description in Section V, we show a
photo of the experimental setup in Figure 21, comprising of
the RIS that is illuminated by the attacker’s antenna.

Fig. 21: Attacker setup used for experimental evaluation.

B. Close-By Antennas

We here report additional results from the experiment de-
scribed in Section VI-E2.

Figure 22a shows the RIS optimization process to achieve
maximization of the attacker’s channel towards Antenna 1
while minimizing the channel towards Antenna 2. The an-
tennas are placed directly next to each other as shown
in Figure 22a and face the attacker’s RIS. In this experiment,
we used a VNA to gather channel measurements, confirming
the observations previously made with Wi-Fi devices.

In the next experiment, we study the effect of antenna
positioning and removal. For this, we utilize a 3D-printed
positioning fixture as shown in Figure 22d. In Figure 22c,
we show the channel measurements for various combinations
of antenna locations. On the x-axis, we indicate which antenna
is located at which position in Figure 22d. The first value in
parentheses corresponds to the left position, the second value
to the right position. After the initial RIS optimization, the
power transfer towards the two antennas differs by more than
30 dB. Then, when removing Antenna 2, the maximized An-
tenna 1 is barely affected. In contrast, when removing Antenna
2, the initial −107 dB minimization of Antenna 2 deteriorates
significantly to around −80 dB. Similar effects are observed
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when exchanging Antenna 1 and Antenna 2. However, with
both antennas present, yet swapped, the initial performance
is not matched, indicating slight deviations and imperfections
regarding equal antenna positioning. However, when finally
repeating the initial measurement, the performance again
matches the initial values. This experiment clearly highlights
the effects of mutual antenna coupling on the attacker’s ability
to separate the antenna channels despite close proximity.
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Fig. 22: Optimization progress (a) of antenna arrangement
in (b) using VNA measurements. (c) Illustrates effects of
removing and reordering antennas, with (1, 2) indicating the
arrangement in (d).

C. Behavior of the RIS Optimization
Throughout this work, we conducted numerous experiments

involving optimization of the RIS configuration. As outlined
in Section V-3, we utilize a greedy heuristic from the lit-
erature [65]. To characterize the consistency and course of
the optimization, we performed the single-target experiment
from Section VI-A2 with T = {D4}, repeated 50 times. For
each run and algorithm step, we stored the current best RIS
configuration and measured the resulting JSR at the devices.

Evaluating the optimization convergence speed, we treat
RIS configurations as 768-bit sequences and calculate the
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Fig. 23: Optimization results from the RIS over 50 runs
targeting D4: (a) Hamming distances to the final configuration
and (b) measured JSR per step. Annotations indicate changes
in average Hamming distance and JSR over 2500 steps.
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Fig. 24: Additional results highlighting the ability to target
multiple devices in different clusters.

Hamming distances of the final optimization results to pre-
vious ones of the optimization progress. The average and 5th
and 95th percentiles across repetitions over the optimization
progress are shown in Figure 23a. Due to the random algorithm
initialization, we first observe an average difference of 382
elements, close to the ideal expected value of 384. At the
beginning, the RIS configuration quickly evolves towards the
final result, as evident by the steep reduction of the Hamming
distance by 225 after 2500 steps. After 4573 algorithm steps,
the average Hamming distance to the final optimization result
is below 100 elements. From the percentiles of the distribution,
we see that this behavior is largely consistent across different
instantiations of the algorithm, regardless of the random ini-
tialization. Please note that the staircase pattern stems from
periodic re-evaluation of all B RIS configuration candidates
every 1000 steps.

In Figure 23b, we present the corresponding normalized
JSR during the optimizer progress, again with the 5th and
95th percentiles across algorithm repetitions. Here, it becomes
evident that similar JSR performance is achieved, regardless
of the random algorithm initialization and the inherently noisy
RSSI measurements. In the plot, we annotate the average JSR
reductions after 2500 steps, showing only marginal improve-
ment of 1.9 dB during the last 5000 steps. Thus, we conclude
that terminating the optimization early is possible without
significantly sacrificing JSR performance, potentially allowing
quicker adaption in dynamic environments.

D. Cross-Cluster Multi-Target Jamming

Complementing the results from Section VI-B, we now
demonstrate that it is possible to target multiple devices even
when these do not belong to the same device clusters. In
particular, we conducted a multi-target jamming experiment
where we subsequently targeted the devices {D1, D4, D8},
{D2, D5, D9}, {D3, D6, D10}, and {D2, D4, D7, D10}. The
resulting packet rates are illustrated in Figure 24, showing
successful disruption of one device per cluster. When we
include the device D7 to be targeted, which is closest to the
access point and hence demands most jamming signal power
to be disrupted, we observed that the D1 is unintentionally
jammed as well.
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