
ASGARD:
Protecting On-Device Deep Neural Networks with

Virtualization-Based Trusted Execution Environments

Myungsuk Moon, Minhee Kim, Joonkyo Jung, Dokyung Song∗
Department of Computer Science

Yonsei University

Abstract—On-device deep learning, increasingly popular for
enhancing user privacy, now poses a serious risk to the privacy of
deep neural network (DNN) models. Researchers have proposed
to leverage Arm TrustZone’s trusted execution environment
(TEE) to protect models from attacks originating in the rich
execution environment (REE). Existing solutions, however, fall
short: (i) those that fully contain DNN inference within a TEE
either support inference on CPUs only, or require substantial
modifications to closed-source proprietary software for incorpo-
rating accelerators; (ii) those that offload part of DNN inference
to the REE either leave a portion of DNNs unprotected, or incur
large run-time overheads due to frequent model (de)obfuscation
and TEE-to-REE exits.

We present ASGARD, the first virtualization-based TEE
solution designed to protect on-device DNNs on legacy Armv8-A
SoCs. Unlike prior work that uses TrustZone-based TEEs for
model protection, ASGARD’s TEEs remain compatible with
existing proprietary software, maintain the trusted computing
base (TCB) minimal, and incur near-zero run-time overhead.
To this end, ASGARD (i) securely extends the boundaries of
an existing TEE to incorporate an SoC-integrated accelerator
via secure I/O passthrough, (ii) tightly controls the size of
the TCB via our aggressive yet security-preserving platform-
and application-level TCB debloating techniques, and (iii) mit-
igates the number of costly TEE-to-REE exits via our exit-
coalescing DNN execution planning. We implemented ASGARD
on RK3588S, an Armv8.2-A-based commodity Android platform
equipped with a Rockchip NPU, without modifying Rockchip-
nor Arm-proprietary software. Our evaluation demonstrates that
ASGARD effectively protects on-device DNNs in legacy SoCs with
a minimal TCB size and negligible inference latency overhead.

I. INTRODUCTION

On-device deep learning is being increasingly adopted to
enhance user privacy [52], [51], [20], [65], [72]. The idea is
to conduct deep neural network (DNN) inference on mobile
devices, which, by construction, prevents a direct exposure
of sensitive user data such as user faces and fingerprints to
remote servers. However, this shift is raising a new concern:

*Corresponding author.

model privacy. The leakage of DNN models could cause
(at least) two harms, (i) first financially, as they constitute
valuable (often mission-critical) intellectual properties, and
(ii) in terms of user privacy, as the models could indirectly
leak information about their training data [54], [16], [17].
Researchers in response proposed a range of on-device DNN
model protection solutions [52], [72], [65], [45], [67], which
predominantly use Arm TrustZone to create a trusted execution
environment (TEE) and host DNN inference inside the TEE.

Unfortunately, however, these solutions have not seen adop-
tion in practice. A recent study revealed that a significant
portion of on-device DNN models remain completely unpro-
tected [73], [63]. Some mobile applications do employ some
form of protection, but such protection is ineffective while the
models are in use for inference. Many of them are susceptible
to dynamic model extraction attacks that simply dump the
models during inference, launched from the rich execution
environment (REE). If existing TEE-based on-device model
protection solutions were adopted [52], [72], [65], [45], such
dynamic model extraction attacks would have been impossible.

The challenges hindering a real-world adoption of existing
model protection solutions stem primarily from the inherent
limitations of Arm TrustZone. First, TrustZone requires static
partitioning of physical resources into Normal World and
Secure World. To make resources widely available to different
applications, most of the resources are typically assigned to
Normal World, leaving Secure World resource-constrained: it
has (i) limited memory (e.g., typically 10-32MB [57]) and
(ii) no access to accelerators. Due to this limitation, a line
of prior work does not support using accelerators for DNN
inference at all [20], or offloads a subset of DNN operators
to REE-assigned accelerators either unprotected [52], or after
costly encryption or obfuscation [65], [72], [95], [79]. Another
line of work instead extends its TEE to accelerators [24],
but substantially modifies the proprietary, privileged platform
software, i.e., the secure monitor, undermining compatibility
and increasing the trusted computing base (TCB) of the entire
platform. Second, TrustZone’s Secure World was designed
to host vendor-specific, security-oriented OSs [18], which
provide vendor-tailored execution environments for trusted ap-
plications. These environments, unfortunately, are not binary-
compatible with the proprietary accelerator software stack
(e.g., user-mode and kernel-mode drivers) available only for
mainstream OSs in the REE, requiring substantial modifica-
tions to [24] or even complete rewriting of [59] the accelerator

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240449
www.ndss-symposium.org

software stack to host them inside a TEE.

Most recently, Siby et al. proposed an on-device DNN pro-
tection solution [67] that leverages Arm Confidential Compute
Architecture (Arm CCA) [8], a planned extension to Armv9-A,
instead of Arm TrustZone. While this solution does not suffer
from TrustZone’s limitations, no real hardware with CCA
is available yet. Hence, the solution cannot be deployed in
widespread Armv8-A devices.

This paper proposes ASGARD, a new on-device DNN pro-
tection solution built upon virtualization-based TEEs emerg-
ing in mobile platforms [50], [40], [26], [43]. ASGARD’s
virtualization-based approach addresses the performance and
compatibility problems of existing on-device DNN protection
solutions, as follows. First, by directly exposing the accelerator
hardware to virtualization-based TEEs (or enclaves) via I/O
passthrough, ASGARD can fully accelerate DNN inference.
Second, ASGARD’s monitor that enforces isolation between
enclaves can be implemented completely at the hypervisor
level in EL2, without requiring modification to the proprietary
EL3 secure monitor. Third, by using commodity operating
systems within the virtual machines, which have access to
the raw accelerator interface, ASGARD can use an unmod-
ified, proprietary accelerator software stack. Last, unlike DNN
protection solutions that require hardware extensions [67],
ASGARD’s TEE was designed to protect DNNs on legacy
Armv8-A SoCs. To summarize, ASGARD is a solution that
can be readily adopted to protect DNNs used by existing mo-
bile applications, without requiring modification to proprietary
software nor causing significant performance degradation.

The high-level approach of ASGARD may seem straight-
forward, but it introduces a unique set of problems prior
work has not fully addressed. First, designing a secure I/O
passthrough for virtualization-based TEEs on legacy Armv8-A
SoCs with limited TEE primitives remains an unresolved
problem. Existing virtualization-based TEEs in mobile devices
offer secure virtualization for CPUs only [40], [26], do not
provide an end-to-end I/O passthrough design [41], or do
not support legacy Armv8-A SoCs [69], [85], [43]. Second,
the virtual machine abstraction and secure I/O passthrough
used by ASGARD brings TCB overheads. An entire IOMMU
driver and its dependencies, and even an entire virtual machine
should be included in the TCB for model protection. Third,
despite ASGARD’s use of hardware-accelerated processor
virtualization and direct access to the accelerator, it could still
degrade DNN inference latency. DNN accelerators frequently
raise interrupts whenever they encounter operators that they
do not support. Since interrupts are managed by the REE-
side host, such interrupts lead to costly TEE-to-REE exits,
degrading the performance of DNN inference.

Our key contribution lies in addressing these problems
introduced by the use of virtualization-based TEEs for model
protection, with (i) a concrete, end-to-end design of secure I/O
passthrough for virtualization-based TEEs that can be imple-
mented on legacy Armv8-A SoCs, (ii) aggressive yet security-
preserving hypervisor and enclave debloating techniques that
can reduce the size of the TCB for model protection, and
(iii) an exit-coalescing DNN execution planning technique that
can mitigate costly TEE-to-REE exits.

We implemented a prototype1 of ASGARD on Rockchip
RK3588S, a commodity Armv8.2-A SoC that is equipped with
an integrated neural processing unit (NPU). We based our im-
plementation of virtualization-based TEEs on protected KVM
(or pKVM for short) [23], a virtualization-based software-
secure TEE that has recently been implemented in Linux KVM
for Armv8-A [58], [22]. We extended pKVM with ASGARD’s
secure I/O passthrough for the Rockchip NPU. For ASGARD’s
exit-mitigating DNN execution planning, we implemented a
custom DNN partitioning tool and DNN execution runtime
atop Rockchip’s proprietary DNN compiler and runtime.

Our prototype confirms ASGARD’s compatibility with ex-
isting proprietary software on a legacy SoC, and our thorough
security analysis validates that the TEE was indeed securely
extended to the NPU. We also show that ASGARD’s TCB
size and DNN inference latency optimization techniques are
all effective. Through our aggressive virtual machine image
specialization, we show that ASGARD can achieve an image
size of 17.439MB for hosting accelerated DNN inference. We
applied ASGARD’s exit-coalescing DNN execution planning
to multiple DNNs commonly used for object detection and
text understanding in mobile devices. The results show that
ASGARD can significantly reduce virtualization overheads on
DNN inference latency by minimizing a number of costly
TEE-to-REE exits. In the best-performing instance, ASGARD-
protected DNN inference achieved a latency even lower than
unprotected inference (-1.36% on SSD-MobileNetV1) by re-
ducing the number of TEE-to-REE exits from 13 to 2.

In summary, our contributions are as follows:

• We propose ASGARD, a new on-device DNN protection so-
lution that, for the first time, uses virtualization-based TEEs
with secure I/O passthrough to address the performance and
compatibility issues of existing TrustZone-based solutions.

• We propose both TCB size and performance optimization
techniques, which significantly reduce the TCB size and
DNN latency overheads of virtualization-based TEEs.

• We implemented ASGARD on a legacy Armv8-A hard-
ware platform by extending pKVM that offers software-
secure virtualization-based TEEs, and thoroughly analyzed
ASGARD’s security and performance properties.

II. BACKGROUND & MOTIVATION

A. Arm Architecture Basics

Privilege Levels and Address Spaces. Armv8-A and
Armv9-A CPUs execute in one of the four privilege levels
called Exception Levels (ELs): EL0 for application code,
EL1 for OS kernel, EL2 for hypervisor, and EL3 for se-
cure monitor [7]. They employ two stages of address space
translation. Stage-1 translation uses page tables controlled by
the OS kernel at EL1, and translates virtual address (VA) to
intermediate physical address (IPA). Page tables for Stage-
2 translation are controlled by software running at EL2 or
higher. The hypervisor at EL2 uses them to control the view
of physical memory in a virtual machine [9]. The guest OS
thinks that an IPA is an address in physical memory, but Stage-
2 translation actually converts IPAs to physical addresses.

1Artifact available at: https://github.com/yonsei-sslab/asgard

2

https://github.com/yonsei-sslab/asgard

EL0

EL1

EL2

EL3

TEEvisor

Host OS

Secure Monitor

Apps

Guest
OS

Apps

Guest
OS

Apps

Trusted
OS

Apps

REEvisor

Normal World

Secure World

Fig. 1: Architecture of protected KVM on Armv8-A.

Arm TrustZone. TrustZone horizontally separates the CPU
execution mode into two, Normal World (NW) and Secure
World (SW), and security-critical services like key manage-
ment are placed in SW [6]. Both NW and SW span over EL0
to EL2, and, in the case of Armv8-A, EL3 belongs to SW; we
refer to each world’s exception level as N-ELx and S-ELx for
NW and SW respectively. SW software stack is composed of
secure monitor at S-EL3, hypervisor at S-EL2 (only supported
since Armv8.4-A), trusted OS kernel at S-EL1 and trusted
applications at S-EL0. Resources such as physical memory
are partitioned between NW and SW via TrustZone hardware,
such as TZASC and TZPC [85].

B. Virtualization-Based Trusted Execution Environments

TEEs (or “enclaves”) refer to software execution environments
protected from (i) privileged software adversaries residing in
the REE, and (ii) physical adversaries having varying degrees
of physical tampering capabilities. Virtualization-based TEE
solutions provide enclaves in the form of virtual machines,
to which access is strictly controlled by a small, trusted
hypervisor [41] (henceforth “TEEvisor”). These TEE solu-
tions typically employ an additional, unprivileged hypervisor
(henceforth “REEvisor”) alongside the TEEvisor. The REEvi-
sor implements the rich functionalities of traditional hyper-
visors including resource management, which do not require
elevated privileges. Researchers have proposed a variety of
virtual machine enclave design on Arm [50], [40], [43], [23],
which have varying security and performance characteristics.

Of these, we detail one concrete design relevant to our
work: protected Kernel Virtual Machines (pKVM) [23]. pKVM
provides software-secure virtual machine enclaves, meaning
that they are protected from privileged software adversaries on
the REE side, but not from adversaries with physical access to
hardware. As depicted in Fig. 1, pKVM accomplishes this by
introducing a small TEEvisor in N-EL2, which strongly iso-
lates enclaves. The host kernel running at N-EL1 includes the
REEvisor that comprises the majority of the KVM hypervisor
module and operates without requiring elevated privileges.

pKVM controls access to page frames of physical memory
through an ownership concept. Each page frame is exclusively
owned by either a guest, the host, or the TEEvisor. The owner
of a frame can transfer the ownership by donating it, and a non-
owner can borrow it from the owner for temporary access. The
TEEvisor fully mediates donation and borrowing, enforcing a
discretionary access control policy where the owner decides
whether to donate or allow borrowing the frame. However, the
REEvisor still manages the page frames. The REEvisor can
always reclaim the ownership of any enclave-owned frame,

Table I: Limitations of existing TrustZone-based on-device
model protection solutions, in comparison with our solution.

P1. Efficiency P2. Compatibility
Fully

Accelerated
Negligible
Overheads

Unmodified Acc-
elerator Driver

Unmodified Se-
cure Monitor

DarkneTZ [52] ✗ ✓ Not applicable1 ✓

ShadowNet [72] ✗2 ✗ ✓ ✓

GPUReplay [59] ✓ ✓ ✗ ✓

StrongBox [24] ✓ ✓ ✗ ✗

ASGARD (Ours) ✓ ✓ ✓ ✓

1 Acceleration not supported.
2 Acceleration only supported for linear DNN layers.

but the TEEvisor ensures that the frame is wiped before trans-
ferring the ownership to the REEvisor. The TEEvisor enforces
this policy by configuring the MMU’s Stage-2 translation.

In addition to protecting enclave memory from CPU-side
adversaries, the TEEvisor also protects it from DMA-capable
peripherals by configuring the translation of the IOMMU (also
called SMMU on Arm). pKVM requires all DMA-capable
peripherals in an SoC to be placed behind an IOMMU to
prevent DMA attacks to enclaves. To this end, IOMMU drivers,
originally running in N-EL1, are split into the REEvisor and
TEEvisor [26], [15]. pKVM’s TEEvisor assigns all peripherals
to the host, by exposing only host-owned page frames to them
via IOMMU page table configuration.

C. Limitations of Prior Work

Existing approaches to on-device DNN protection can be
classified into (i) those that offload part of DNN computa-
tion to REE-assigned accelerators [52], [72], and (ii) those
that run DNN inference entirely within a TEE using TEE-
assigned accelerators [59], [24]. Unfortunately, as summarized
in Table I, they suffer various efficiency (referred to as P1)
and compatibility problems (P2). These problems stem mainly
from their use of TrustZone, and, specifically, from the fol-
lowing properties TrustZone: (i) static partitioning of physical
resources making SW resource-constrained, and (ii) uses of
proprietary, specialized OSs in SW [18], as detailed below.

P1: Low Efficiency. TrustZone requires accelerators be stat-
ically assigned to either NW or SW, and accelerators are
typically left in NW to make it widely available to different
applications. To utilize NW-assigned accelerators, researchers
proposed partition-and-offload approaches [79], [72], [52],
[95], which offload a portion of DNN computation to NW (i.e.,
REE). A line of work offloads the initial layers of a DNN to
the REE [52], while executing the last layers—which are more
susceptible to white-box membership inference attacks [66]—
in SW on CPUs. The execution of REE-offloaded layers can
be accelerated, but they are left completely unprotected.

Another line of work proposed to protect the REE-
offloaded layers via encryption or obfuscation [79], [72], [95]:
Specifically, this line of work offloads the linear layers to
REE-assigned accelerator after encrypting or obfuscating their
weights, while running non-linear layers on CPUs in SW.
This approach, however, could incur non-negligible run-time
overheads (see §VI-C). The overheads of these encryption-
or obfuscation-based REE-offloading solutions come from

3

(i) costly world switches between SW and NW required for
every non-linear-to-linear layer transition, and (ii) blinding and
unblinding (e.g., encrypting and decrypting) of the input and
output of each NW-offloaded computation.

P2: Low Backward Compatibility. Researchers also pro-
posed to use an accelerator after statically assigning it to
SW [59], [24]. In contrast to partition-and-offload approaches,
this approach can fully accelerate DNN inference, and without
incurring REE-offloading overheads. The SW OS in Trust-
Zone, however, is a specialized OS (e.g., OP-TEE OS [57]) that
is incompatible with an existing accelerator driver stack written
for the NW OS. Park and Lin proposed to employ a minimal
driver stack written specifically for the SW OS [59], which
supports replaying recorded (i.e., already seen) accelerator
tasks only. Though this approach only marginally increases
the size of the TCB (by introducing new code only to S-EL0
and S-EL1), it does not support arbitrary (i.e., unseen) DNN
inference tasks, nor any tasks submitted from NW.

Deng et al. later demonstrated that dynamically yet se-
curely serving NW- and SW-originating DNN inference re-
quests on a single accelerator is possible in TrustZone [24].
However, this approach requires nontrivial modifications to the
secure monitor at EL3, the most privileged component that
isolates NW and SW. Not being compatible with vendor’s
proprietary firmware raises the bar for adoption. Moreover,
it bloats the TCB of the entire platform: accelerator-specific
code must be added to the secure monitor executing at EL3.

III. ASGARD OVERVIEW

We now present ASGARD, a new TEE-based on-device DNN
protection approach for Armv8-A SoCs, which can address the
aforementioned problems. Based on our observation that these
problems stem mainly from the inherent limitations of Trust-
Zone, we designed ASGARD such that it uses virtualization-
based TEEs [50], [41] to protect on-device DNNs.

The virtual machine abstractions significantly alleviate the
problems of TrustZone-based solutions, as follows. First, by
directly exposing an accelerator to virtual machine enclaves
via I/O passthrough, DNN inference can be fully accelerated,
without requiring costly obfuscation and deobfuscation of
DNN layer activations [72] (addressing P1 for the most part).
Second, the raw hardware abstraction of the CPU and the
accelerator exposed to the virtual machines allows them to
use an unmodified accelerator software stack. In addition,
enforcing isolation between the REE and TEEs can be done
entirely by the TEEvisor running at EL2, without requiring
any modification to the EL3 secure monitor (addressing P2).

A. Design Goals

To make ASGARD a practical and readily adoptable TEE so-
lution that goes beyond merely addressing the aforementioned
problems, we introduce three concrete design goals.

G1: Strong Protection on Armv8-A SoCs. ASGARD should
protect DNNs at all times—–while they are in transit, at
rest, and in use for DNN inference—against the same on-
device, REE-side adversaries considered by TrustZone’s
Trusted Applications, on legacy Armv8-A SoCs.

EL0

EL1

EL2

EL3

ASGARD-Optimized
DNN Serving Enclave

SoC-Integrated
Accelerator

REE

Potential
Adversary

2
1

Model
Provider

Remote

DNN Model
Provisioning

Direct Assignment4

3
DNN

Inference
Request

5

1 Platform Bootstrapping

Proprietary Secure Monitor

ASGARD-Extended Platform Software4

Enclave Provisioning2

On-Device
3

Fig. 2: High-level overview of ASGARD.

G2: Minimal Trusted Computing Base Overheads. AS-
GARD’s TEE should incorporate minimal, controlled
code within the TCB. ASGARD’s DNN protection guar-
antees should rely upon a TCB substantially smaller than
that of unprotected DNN inference using REE-assigned
accelerators, and only marginally larger than that of
existing virtualization-based TEEs.

G3: Near-Zero Run-Time Overheads. ASGARD should
achieve DNN inference latency significantly lower than
that of existing REE-offloading solutions, and approach
near-zero run-time overheads with respect to the latency
of unprotected, accelerated DNN inference in the REE.

B. Threat Model & Assumptions

There are three parties involved in ASGARD’s on-device
DNN protection: (i) a remote model provider who wants to
protect their model (1 in Fig. 2), (ii) an on-device, REE-
side privileged adversary who aims to steal the model (2),
and (iii) a trusted DNN serving enclave (3) built upon
ASGARD-extended platform software (4). We assume that
the adversary fully controls the REE including the REEvisor.
The trusted platform includes the TEEvisor, which enforces
isolation between virtualization domains. This is in line with
existing approaches to virtualization-based TEEs on Arm-
based platforms [35], [42], [40], [26], [41], in that they trust
their own privileged hypervisors. Like prior TrustZone-based
on-device model protection solutions [52], [65], [72], [24], we
also trust SW, as privileged software in SW can freely access
the entire NW (including the TEEvisor) in Armv8-A platforms.

In summary, our threat model assumes software adversaries
in the REE, and we aim to provide software-secure enclaves
on commodity Armv8-A platforms. We note, however, that
our threat model can be made stronger, thereby providing
hardware-secure enclaves, when additional hardware support
is available. We further discuss how ASGARD can provide
further model protection with hardware support in §VII.

We also assume that an SoC-integrated accelerator such as
an NPU is present and behind a dedicated IOMMU. When
the accelerator performs direct memory access (DMA), the
IOMMU translates I/O virtual addresses into physical memory
addresses. The SoC is assumed to have an accelerator reset
interface, which can be used to reset all mutable state of the

4

accelerator to a known good state (e.g., the initial state). We
do not consider physical adversaries who can tamper with
the accelerator or the bus it is attached to; for example, an
attacker cannot attach a rogue accelerator to the bus. We also
assume that the IOMMU and the accelerator reset interface
cannot physically be tampered with. We describe, however,
how certain classes of physical attacks can be defeated when
the accelerator supports measured boot and attestation (see
§VII). Finally, following prior work on TEE-based model
protection [52], [72], we put side-channel attacks out-of-scope,
though we extensively discuss existing and potential side-
channel-based model extraction attacks in §VII.

C. Key Techniques

We achieve the aforementioned design goals by designing and
implementing a set of techniques within both the DNN serving
enclave (3 in Fig. 2) and the platform software at EL2 (4),
which we summarize below.

Secure Accelerator I/O Passthrough (§IV-A). Existing
virtualization-based TEEs for Armv8-A either offer secure
virtualization for CPUs only [40], [23], or do not provide
an end-to-end design for secure I/O passthrough [41]. To fill
this gap, we propose a concrete, end-to-end design of secure
accelerator I/O passthrough that can be realized on commodity
Armv8-A SoCs. The key components of our design include
Stage-2 control, IOMMU control, and accelerator reset control
in the TEEvisor, which are used to enforce a set of security
invariants. By establishing trust in these components that can
be traced back to the platform’s hardware root-of-trust via
chain-of-trust, ASGARD systematically defeats a wide range
of attacks from strong REE-side adversaries.

TCB2 and Attack Surface Reduction (§IV-B). ASGARD’s
TCB overheads come from both (i) the new code introduced
by ASGARD to the TEEvisor, contributing to the platform-
level TCB, and (ii) the image of the enclave that serves DNN
inference requests, which contributes to the application-level
TCB that model protection guarantees rely upon. In particular,
virtual machine enclaves span both user- and kernel-mode (i.e.,
EL0 and EL1, respectively), unlike user-mode enclaves that
only use EL1 [14], [94]. This can easily bloat the application-
level TCB, making it challenging to achieve G2. We propose
a suite of aggressive TCB reduction techniques, which work
by optimizing ASGARD’s enclave as a single application, and
by delegating resource management to the REE.

DNN Inference Latency Optimization (§IV-C). The virtual
machine abstraction used by ASGARD introduces run-time
overheads that can inadvertently increase DNN inference la-
tency, posing challenges in achieving G3. The overheads of
the virtual machine abstraction increase further when using
virtualization techniques designed specifically for TEEs [50],
[43], [40], [41], due to its higher trustworthiness and protection
guarantees than those of traditional virtualization. Based on
our finding that TEE-to-REE exits during DNN inference are
the main source of overheads, we propose exit-coalescing

2We classify the TCB into an application- and platform-level TCB. The
application-level TCB encompasses all components responsible for enforcing
DNN model confidentiality. This expands upon the platform-level TCB,
comprising the secure monitor at EL3 and the TEEvisor at EL2, which are
responsible for isolation between the REE and TEEs.

DNN execution planning, an application-level TEE-to-REE
exit mitigation technique.

D. Operational Overview

ASGARD is a virtualization-based TEE designed to protect on-
device DNN models at all times—while they are in transit, at
rest, and in use for DNN inference. We sketch how ASGARD
achieves this, by describing the entire operation of ASGARD
in chronological order, starting from platform bootstrapping to
DNN inference serving (i.e., from 1 to 5 in Fig. 2).

1 Platform Bootstrapping. ASGARD uses the platform’s
standard secure bootstrapping, and ASGARD’s DNN pro-
tection guarantees can therefore be traced back to the
platform root-of-trust. Commodity Armv8-A SoCs support
hardware root-of-trust, and, together with chained mea-
surements of the trusted platform software, an authentic
image of the TEEvisor starts running at EL2, when the
secure boot process finishes. The bootloader verifies the
host kernel image (which contains both the REEvisor and
TEEvisor) and the device tree, after which the host kernel
starts booting. During the early boot of the host kernel, and
before the control is first transferred to the REE, ASGARD
reserves security-sensitive resources that need to be owned
by the TEEvisor for secure accelerator I/O passthrough.

2 Enclave Provisioning. ASGARD then provisions a virtual
machine enclave. The REE populates the initial content—
the kernel and root file system—of the enclave. The enclave
successfully boots only when (i) it is an enclave offered by
the genuine platform, (ii) the device is in an OEM-locked
state, and (iii) the enclave image is signed by the model
provider. The platform, during enclave creation, secretly
provisions an attestation key (i.e., a signing key bound to
the enclave by the platform) and a sealing key (i.e., a per-
enclave secret that remains the same across enclave boots)
to the enclave. ASGARD uses the former to authenticate
itself to the remote model provider, and the latter to seal
DNNs before enclave shuts down.

3 DNN Model Provisioning. ASGARD can now load the
DNN into the private memory of the enclave. If the enclave
is booted for the first time, the DNN is obtained from the
remote model provider. Specifically, the model provider
engages in a standard authenticated key exchange with
the enclave, authenticating the enclave using the enclave’s
attestation key that is anchored to the platform root-of-
trust. Then the remote model provider transmits the DNN
to the enclave through this secure, authenticated channel,
ensuring model confidentiality during transmission. Before
the enclave shuts down, ASGARD seals the DNN and
stores it in an untrusted local storage. On subsequent boots
of the same enclave, a sealed DNN is retrieved from this
local storage, and then unsealed into the private memory.

4 Direct Accelerator Assignment. Then, ASGARD securely
assigns an accelerator to the virtual machine enclave so
that ASGARD-protected DNN inference serving can be
accelerated. ASGARD extends the TEEvisor to expose
the accelerator to the enclave, such that strong isolation
between enclaves is maintained (see §IV-A). ASGARD’s
extension to the TEEvisor, however, increases the size of
the TCB; we employ multiple strategies to mitigate both
platform- and application-level TCB bloat (see §IV-B).

5

 NPU

REE Apps

IOMMU
Control

I/O Config./Reset Path
Allowed I/O PathEL0

EL1

EL2 TEEvisor

EL3 Secure
Monitor

Stage-2
Control

REE (Host)

Virtual
Interrupts

REE Kernel
+ REEvisor

NPU Library
NPU Driver

DNN App

(b) MMIO

Disallowed I/O Path

Memory

CPU

NPU-assigned Enclave

Direct Memory Access

IOMMUs

Other
Peripherals

R
eg

s

MMU

R
es

et

Reset
Control

(c)

(a)

Fig. 3: ASGARD’s passthrough virtualization of an NPU. The
NPU-assigned enclave and the NPU interact via (a) virtual
interrupts, (b) MMIO, and (c) DMA. The TEEvisor at EL2
enforces isolation between the REE and enclaves by control-
ling MMU’s Stage-2, IOMMU, and NPU’s reset interface.

5 Serving DNN Inference Requests. Now that ASGARD
has securely provisioned the model to the virtual machine
enclave and also has the accelerator assigned to it, a user
residing in the REE can make inference requests to the
enclave by sending an input to it. ASGARD executes
DNNs per so-called exit-coalescing planning we propose
to mitigate the overhead of TEE-to-REE exits (see §IV-C).
Following prior work [52], [95], the enclave, after perform-
ing inference in it, returns the end result (e.g., prediction
labels) to the user without revealing the confidence scores.
Model confidentiality is maintained throughout this process
against REE-side adversaries attempting model exfiltration.

IV. DETAILED DESIGN

A. Secure Accelerator I/O Passthrough

ASGARD employs passthrough I/O virtualization illustrated
in Fig. 3, where (i) an accelerator-assigned enclave has direct
access to the accelerator’s interface, and (ii) the accelerator
has direct access to the enclave-owned page frames. This
allows ASGARD to fully accelerate DNN inference and be
compatible with an unmodified accelerator software stack.

Although the initial line of work proposing virtualization-
based TEEs for Armv8-A platforms outlines how to support
I/O passthrough by protecting the IOMMU interface [50],
[41], [40], they do not provide a concrete, end-to-end design.
Sun et al. recently proposed LEAP [71], which provides a
concrete virtual-machine-like TEE design that supports I/O
passthrough. However, as discussed in §VIII, LEAP requires
an entire physical CPU core to be dedicated to its enclaves,
severely limiting efficient CPU core utilization.

Our contribution here is the first concrete, end-to-end
design of secure accelerator I/O passthrough tailored for
virtualization-based TEEs on legacy Armv8-A SoCs. To ensure
that the design systematically mitigates all typical threats posed
by REE-side software adversaries to the confidentiality of
DNN models during inference, we introduce three invariants:

INV1 (Complete Mediation). The TEEvisor must have a full,
exclusive control over all sensitive interfaces of the CPU
cores and peripherals.3

INV2 (Exclusive Assignment). The accelerator should be
assigned to no more than one virtual machine enclave
at any point in time.

INV3 (No Residual State). After the accelerator has been
used by a virtual machine enclave, there should be no
residual states or leftover data within the accelerator.

Exclusive Stage-2 & IOMMU Control. After exposing the
accelerator to enclaves via I/O passthrough, ASGARD’s TEE-
visor at EL2 shown in Fig. 3 should maintain exclusive control
over all virtual machine isolation mechanisms, i.e., sensitive
interfaces (INV1), comprising:

• The Stage-2 translation of MMUs: Armv8-A assigns control
of this only to EL2 (i.e., TEEvisor) or higher.

• The register address spaces of all IOMMUs, and all memory
regions storing their page tables: These can be protected by
using the Stage-2 page table management interface (which
the TEEvisor has exclusive access to) that we detail below.

• The sensitive interface of the accelerator itself: This can
be protected by configuring Stage-2 page tables as well,
although commodity accelerators including the NPU we
used in our evaluation do not have sensitive interfaces.

The TEEvisor initially establishes control over sensitive
interfaces during the platform’s secure boot, i.e., before adver-
saries could interact with the platform. During secure boot, the
TEEvisor reads the physical addresses of the sensitive MMIO
regions from the verified device tree. Then, the TEEvisor
assigns initial ownership of the page frames corresponding
to these sensitive regions to itself, and never shares them
with the host nor any enclave. Also, the TEEvisor creates the
IOMMU page tables, another type of sensitive resources, in
page frames it owns, and never shares them with others either.
Exclusive ownership over these page frames is maintained,
because TEEvisor-owned page frames, unlike enclave-owned
ones (see §IV-B), cannot be reclaimed by the REEvisor.

Trustworthy Reset Control. Since ASGARD time-shares
the accelerator across different security domains, TEEvisor’s
reset control must be able to clear all the residual state of the
accelerator at domain transitions (i.e., INV3). The TEEvisor
achieves this by using the accelerator’s reset interface. Specif-
ically, ASGARD assigns ownership of the reset interface to
the TEEvisor during secure boot to ensure that it can always
access the authentic reset interface. In addition, ASGARD
requires the trustworthiness of this reset interface itself to be
carefully assessed for each given accelerator. Reset-based time-
sharing typically demands hardware support (i) to fully reset
all dynamic states, including registers and memory as well
as microarchitectural and physical ones [10], [13], and (ii) to
attest to the freshness of the reset [90]. However, since our
target is a legacy SoC, we can only modify the accelerator
software (i.e., firmware) to add a function that wipes all of its
software-writable registers and memory, and have the trusted

3The interface of CPU cores and peripherals consists of both their registers
and instruction set. It is called sensitive if accessing the registers or executing
certain instructions affects the isolation between virtual machines [60], [64].

6

Table II: New hypercalls introduced by ASGARD in the guest-
side TEEvisor interface.

Hypercall Description
acquire device
(d id, d gpa)

Request TEEvisor to assign the given accelerator (spec-
ified by d id) to the calling enclave, exposing the
accelerator’s register space at the given guest-physical
address (specified by d gpa).

release device
(d id)

Request TEEvisor to remove assignment of the given
accelerator (specified by d id) from the calling enclave.

TEEvisor’s reset control (i) reload the authentic firmware, and
(ii) invoke this wipe function as part of its reset procedure.
Though physical or microarchitectural states could persist even
after such software-based wiping, our threat model does not
consider physical adversaries nor side-channel attacks.

Secure Accelerator Assignment. With exclusive ownership
securely established over the sensitive interfaces of the plat-
form (INV1), ASGARD’s TEEvisor can now securely assign
the accelerator to an enclave, as exemplified in Fig. 3.

• Establishing Protected I/O Paths: Exclusive assignment
of the accelerator (INV2) involves establishing enclave-
accelerator I/O paths isolated from any other enclaves nor
the host. First, ASGARD creates protected DMA paths by
exposing the page frames owned by the enclave to only the
accelerator, and not any other peripherals. ASGARD does
so by configuring every IOMMU on the platform such that
only the IOMMU of the accelerator (and no other IOMMU)
has page table entries that translate I/O virtual addresses
(IOVAs) to the enclave-owned pages frames. Second, only
a single, accelerator-assigned enclave must be able to access
the accelerator’s MMIO region (except for its sensitive
registers, if any). This is done by donating the ownership of
their corresponding page frames to the enclave.

• Secure Assignment Switching: When ASGARD switches
accelerator assignments, the TEEvisor re-establishes all the
protected I/O paths by reconfiguring the MMU, IOMMU,
and interrupt forwarding. To ensure exclusive assignment
during this transition (INV2), the TEEvisor updates the
MMU translation entries, and flushes all relevant entries
cached in the TLB. Similarly, to re-establish DMA I/O
paths, the TEEvisor updates the IOMMU translation entries,
and flushes the IOTLB. To reduce switching latency, it
reuses existing entries initialized during enclave boot rather
than repopulating them. In addition, ASGARD’s TEEvisor
resets the accelerator during the switch, ensuring that no
residual state remains inside the accelerator (INV3). Most
of SoC-integrated accelerators, including Rockchip NPU
we used to prototype ASGARD, expose a reset interface.
To ensure that the TEEvisor always has access to the
authentic reset interface (therefore it can reliably trigger
accelerator resets), ASGARD, during secure boot, assigns
the TEEvisor the initial ownership of its corresponding page
frame. The TEEvisor never donates this page frame, but
permits borrowing of it, because borrowing does not hinder
its access to the reset interface.

• Controlling Assignments: We introduce two hypercalls to
the TEEvisor’s guest interface for controlling accelerator
assignments: acquire device() and release device(),
which we summarize in Table II. An enclave that has an

accelerator added at startup (see §IV-B) can voluntarily
request to acquire (by invoking the former), and release
the accelerator (the latter) at any time, and the TEEvisor
handles the requests per the following policy: it assigns
the accelerator to the calling enclave only if the accelerator
(i) was added to the enclave, and (ii) has currently not been
acquired by any enclave; it removes accelerator assignment
only if the calling enclave has acquired the accelerator.

Secure Accelerator Reclamation. A key design principle
of TEEs is the separation of privileges: unprivileged resource
management and privileged resource isolation (see §II-B).
The REEvisor is thus responsible for managing the enclave-
owned I/O resources (e.g., the page frames corresponding to
the accelerator’s MMIO regions and DMA pages) like any
other resources. This means that the REEvisor can always
reclaim the accelerator. To preserve model confidentiality
during reclamation, the TEEvisor takes the following measures
before the REEvisor can start accessing the reclaimed page
frames: (i) the page frames being reclaimed are wiped, (ii) the
Stage-2 and IOMMU page table entries of the enclave that
map to the reclaimed page frames are removed, and (iii) when
the accelerator’s MMIO regions are being reclaimed, the
accelerator assignment is forcefully switched to the REE. To
prevent the DNN serving enclave from misbehaving (e.g.,
leaking models) upon reclamation, ASGARD relies on existing
liveness-checking mechanisms (e.g., watchdogs) employed in
accelerator drivers. By using this mechanism, the enclave can
detect reclamation and safely terminate the DNN inference
process, preventing any inadvertent leakage of the model.

B. TCB and Attack Surface Reduction

ASGARD’s virtualization-based DNN protection introduces
platform- and application-level TCB overheads. At the plat-
form level, the TCB increases, because secure I/O passthrough
adds additional components to the TEEvisor at EL2 (though
not to EL3’s secure monitor). Specifically, the IOMMU driver
needs to be included. A naive approach would be to add
the IOMMU driver along with all of its dependencies (i.e.,
all the kernel-provided symbols referenced by the driver) to
the TEEvisor. This approach, however, would unnecessarily
bloat the TCB. An alternative approach would be to retain
the dependencies within the REEvisor, and allow the IOMMU
driver to switch to the REEvisor as needed. This approach,
however, would increase the TEEvisor’s attack surface.

The TCB further increases at the application level, be-
cause ASGARD runs a commodity OS (e.g., Linux) within
an accelerator-assigned, DNN-serving enclave. Although this
ensures that the proprietary driver stack for the accelerator
can run without requiring modification, it expands the TCB
responsible for ensuring model confidentiality to include the
entire guest OS in addition to the platform-level TCB.

Unprivileged IOMMU Power and Clock Management. To
debloat the TEEvisor, the power and clock management of
the IOMMU can be delegated to the REEvisor. The rationale
here is that power and clock management fall under resource
management rather than resource isolation, which does not
directly affect the confidentiality and integrity guarantees of the
enclave. This delegation not only removes the power and clock
management component of the IOMMU driver, but also their

7

dependencies. To preserve the security invariants described
in §IV-A after delegation, when the REEvisor turns off the
IOMMU, ASGARD must ensure that the accelerator cannot
bypass ASGARD’s IOMMU-based memory protection [15].
Our finding is that this is not possible in the Armv8-A SoC
we used to prototype ASGARD, because each pair of the
peripheral and IOMMU share the same power and clock
domains. That is, when the REEvisor turns off an IOMMU,
its corresponding peripheral is also turned off, preventing the
peripherals from bypassing IOMMU-based memory protec-
tion. ASGARD thus safely delegates the power and clock
management of the IOMMU to the REEvisor.

Coarse-Grained IOMMU Control. We then employ coarse-
grained IOMMU control to reduce the TEEvisor’s attack
surface. Prior work on I/O passthrough exposes a fine-grained
IOMMU control interface to guests by (para)virtualizing IOM-
MUs [5], [78], [11]. Adding such support requires new hy-
percalls (e.g., for mapping and unmapping of DMA buffers)
to be exposed to individual guests. This expands the TEE-
visor’s attack surface, without providing additional protection
guarantees for the model. For this reason, ASGARD does not
expose any IOMMU interface to enclaves. Instead, when the
accelerator is assigned to the enclave, ASGARD exposes the
entire enclave-owned memory to the accelerator. To this end,
ASGARD installs a small IOMMU driver inside the guest
enclave, which simply maintains identity mappings between
the IOVAs (i.e., DMA addresses) and guest physical addresses.
The accelerator driver operates with this IOMMU driver, by
using guest physical addresses as DMA addresses. These DMA
addresses, as they are used by the accelerator, translate to host
physical addresses by the TEEvisor-controlled IOMMU.

Still, IOMMU-mapped pages are managed by the REEvi-
sor. For this, we expose the existing IOMMU driver interface
of the Linux kernel to the REEvisor as hypercalls, namely:
iommu map page() and iommu unmap page(). When an
enclave starts with an accelerator added, the REEvisor first pins
the entire guest physical memory, and then invokes the former
hypercall to have the TEEvisor create IOMMU translations
from guest physical addresses to enclave-owned physical mem-
ory addresses. These translations are only activated when the
enclave successfully acquires the device. When the REEvisor
later invokes the latter hypercall, the TEEvisor deactivates
and removes the IOMMU translations, and then the REEvisor
subsequently unpins the guest physical memory.

Relaxed Intra-Enclave Privilege Separation. We then relax
the privilege separation inside the DNN serving enclave to
reduce its size. The user-mode DNN inference runtime already
has access to the model, so the user-kernel mode separation
within ASGARD’s enclaves does not enhance the protection
of the model any further. Also, since the enclave runs a single
application, no separation between users is needed. We there-
fore disable user-kernel attack surface reduction and advanced
access control features of the guest Linux kernel, including
Seccomp [75] and SELinux [29]. We still keep, however, other
security features such as block device integrity protection (e.g.,
dm-verity [28]) and exploit hardening features (e.g., control
flow integrity) enabled to protect and harden the enclave from
potential attacks from outside the enclave.

Removing Unused Code from Enclave Images. Executing

accelerated DNN inference inside the enclave requires only a
minimal set of kernel features. We identify and enable the bare
minimum of the features in the kernel, and compile it with full
link-time optimization to aggressively eliminate dead code and
further reduce the TCB. As we show in §VI-B, applying these
specialization strategies results in a substantially smaller kernel
image compared to existing general-purpose kernel images
optimized for smaller size, such as Google’s Microdroid [26]
and Firecracker [3], while still supporting DNN inference. In
addition to the kernel, we specialize the root file system used
by the guest enclave to further debloat the TCB. The root
file system image commonly contains various binaries that
are installed as part of the default packages. Most of them
are unnecessary for ASGARD-protected DNN inference. By
designating the DNN application as the init program that
runs as the first program after an enclave boot, ASGARD can
eliminate most of the binaries from the root file system image,
retaining only those actually used during DNN inference.

C. DNN Inference Latency Optimization

ASGARD exposes the accelerator directly yet securely to en-
claves via secure I/O passthrough (see §IV-A), resulting in full
acceleration of DNN inference while maintaining compatibility
with existing proprietary software. Unfortunately, however,
ASGARD’s virtualization-based design could inadvertently
impose run-time overheads on DNN inference latency, due to
costly virtual machine enclave exits. An enclave exit followed
by an entry under ASGARD necessitates multiple exception
level transitions back and forth, which involve costly context
save, cleanup, and restore operations [21]. To achieve mini-
mal run-time overheads on DNN inference (G3), ASGARD
incorporates a new DNN execution planning strategy, an
application-level optimization that we propose to significantly
reduce the frequency of voluntary TEE-to-REE exits during
DNN inference inside enclaves.

Coalescing CPU-Fallback DNN Operators. Handling hard-
ware interrupts entails multiple TEE-to-REE exits. Exits occur
in both the delivery and acknowledgement paths of interrupts
(also known as end-of-interrupt) [8], [23]: An interrupt, when
raised, is initially delivered to the host kernel on the REE side
(requiring a TEE-to-REE exit when the CPU was serving a
TEE), and then forwarded to the guest enclave as a virtual
interrupt entering back to the TEE from the REE. Once the
virtual interrupt is acknowledged by the guest enclave, it must
then be acknowledged by the REE-side host kernel, requiring
a voluntary TEE-to-REE exit again. This means that each
interrupt raised by the accelerator causes one or more exits
from and entries into the enclave.

When the accelerator encounters so-called CPU-fallback
operators during a DNN inference, it raises an interrupt to fall
back to the CPU. CPU-fallback operators [38] refer to the op-
erators not supported by an accelerator, requiring accelerator-
to-CPU fallbacks during DNN inference. Such operators are
unfortunately prevalent in modern DNNs, because new opera-
tors are invented for better prediction performance, and certain
operators do not exhibit parallelism. Since interrupts trigger
TEE-to-REE exits, the cost of accelerator-to-CPU fallback
becomes more pronounced with ASGARD’s protection.

To address this problem, we propose an exit-coalescing
DNN execution planning. The idea is to schedule CPU-fallback

8

Algorithm 1 Exit-coalescing DNN partitioning.
1: function PARTITION(G)
2: ▷ G: An input DNN computation graph
3: ExitF lag ← False
4: Subgraphs← ∅
5: while G ̸= ∅ do ▷ Construct a partition in each iteration
6: P ← ∅ ▷ Stores DNN operators in the current partition
7: V ← GETNODES(G, InDegree=0, ExitFlag=ExitF lag)
8: while V ̸= ∅ do
9: P ← P ∪ V ▷ Add V to the current partition

10: G← G− V ▷ Remove from the graph
11: V ← GETNODES(G, InDegree=0, ExitFlag=ExitF lag)
12: end while
13: if P ̸= ∅ then
14: Subgraphs← Subgraphs ∪ {P}
15: end if
16: ExitF lag ← ¬ExitF lag
17: end while
18: return Subgraphs
19: end function

Conv ConvTranspose

Reshape Reshape Reshape

ConvConv

Conv

Reshape

Transpose

Conv

Reshape

Transpose

Conv

Conv

Conv

Concat Concat

NPU-Supported Operators

CPU-Fallback Operators

512x14x14

512x14x14

273x14x14

14x14x273

1024x7x7

24x7x7

7x7x24

588x91x1 294x1x4 24x1x4

256x2x2

128x1x124x2x2

2x2x24 546x1x1

6x91x1 6x1x4

24x1x1

1014x1x41014x91x1

1

2

3

4

5

6

7

8

Fig. 4: A simplified computation graph of SSD-MobileNetV1,
where the operators are (partially) numbered based on a depth-
first operator execution planning.

operators that are not data-dependent on each other, such that
they can be processed collectively in a single accelerator-to-
CPU fallback, thus requiring a single accelerator interrupt.
To this end, ASGARD partitions a given DNN computation
graph, as formally described in Algorithm 1. This algorithm
(i) takes as input a DNN computation graph, (ii) greedily
constructs subgraphs, each composed exclusively of either exit-
causing nodes or those not causing exits, (iii) produces an
ordered list of subgraphs as output. ASGARD’s exit-coalescing
planning enforces this order between subgraphs during DNN
execution, which effectively reduces the number of exits by
necessitating exits only at a subgraph level. We illustrate the
idea with an example DNN computation graph shown in Fig. 4.
Executing this DNN in a depth-first order (starting from 1

to 8), which is the default execution order of many DNN
runtimes, would trigger multiple exits (at, e.g., 4 and 8). Our
execution planning, in contrast, puts all CPU-fallback operators

in a single subgraph, requiring only a single exit.

Optimizable DNN Architectures. DNN models can benefit
from our exit-coalescing optimization, when their computa-
tion graphs exhibit parallel data flows. Parallel data flows
are prevalent in DNNs designed for mobile and embedded
devices, as they often employ multiple feature extractors
for more efficient feature extraction. In the computer vision
domain, SSD models [46], for instance, have multiple feature
maps, which function as parallel feature extractors. Multiple
and parallel feature extractors are also found in the natural
language processing domain [68], [87]. For instance, Lite
Transformer [87], a Transformer [83] model designed for
resource-constrained mobile applications, has parallel multi-
branch feature extractors, each responsible for capturing short-
and long-range attention. We show that our technique reduces
many TEE-to-REE exits produced by these models in §VI-D.

Interoperability with Other Planning Strategies. ASGARD
can be combined with other DNN execution planning strate-
gies, because it only enforces a partial ordering between
operators in a DNN computation graph. Specifically, ASGARD
enforces an ordering between subgraphs produced as a result
of Algorithm 1. The operators within each subgraph can freely
be reordered per a different execution planning strategy. One
can employ, for example, operator reordering strategies within
each subgraph, which optimize the execution order of DNN
operators for lower memory usage [4], [70], [44].

V. IMPLEMENTATION DETAILS

We prototyped ASGARD on RK3588S, an Armv8.2-A SoC,
equipped with a vendor-proprietary NPU (i.e., Rockchip NPU).
We based our implementation of virtualization-based TEEs on
Android 13’s CROSVM [27], a user-mode virtual machine
monitor running at EL0, and pKVM [23], a kernel-mode
hypervisor in the Android 13’s kernel (v5.10), whose REEvisor
runs at EL1 and TEEvisor at EL2.

Secure I/O Passthrough. To establish secure MMIO paths
between the DNN-serving enclave and the NPU, we integrated
the description of the NPU in the guest device tree. The enclave
uses the MMIO register addresses specified in the device tree
when invoking acquire device() to acquire the NPU. To
configure the NPU’s DMA I/O paths, we used VFIO [76], with
our own modifications to interface with the IOMMU driver
running at EL2. We split the existing Rockchip IOMMU driver
into an unprivileged and privileged component, which we
incorporated into the REEvisor and TEEvisor, respectively. We
replaced the EL2 IOMMU driver’s references to EL1 kernel
symbols with EL2-equivalents, such as locking primitives, or
provided EL2’s own definition of those symbols. To configure
interrupt forwarding (i.e., to deliver virtual interrupts to the
NPU-assigned enclave), the TEEvisor was modified to control
ICH LRn EL2 list registers. Finally, to reset the Rockchip
NPU during assignment switching, we had the TEEvisor
assert the reset registers of the NPU, which clears all of its
other registers. Additionally, by disabling the Rockchip NPU’s
optional use of SRAM, we eliminate the risk of inadvertently
leaking models through registers nor SRAM across assign-
ment switches. We did not reload any firmware, because the
Rockchip NPU does not provide an interface for dynamic
firmware loading.

9

NPU Bootstrapping. ASGARD employs an unmodified NPU
driver in both the host and the DNN-serving guest enclaves.
During the host boot process, the NPU driver on the host
side bootstraps the NPU by initializing its power and clock
resources, ensuring it is operational. Once bootstrapped, this
host-side NPU driver becomes inactive. ASGARD employs an
unmodified NPU driver inside DNN-serving enclaves as well,
which controls the bootstrapped NPU while it is assigned to
the enclave. However, the driver in enclaves does not control
the power and clock resources of the NPU. ASGARD ensures
this by providing the enclave with fake addresses for the power
and clock control registers of the NPU. Any access to these
registers inside the enclave therefore has no effect.

Exit-Coalescing DNN Inference. We implemented our exit-
coalescing DNN execution by statically partitioning models
compiled for Rockchip NPU, because the closed-source, pro-
prietary Rockchip NN (RKNN) compiler and runtime do not
support custom execution plans (i.e., operator reordering).
We ran the partitioned models on our own DNN execution
runtime, which executes (i) NPU-supported operators with the
proprietary RKNN runtime, and (ii) CPU-fallback operators
with the TensorFlow Lite runtime. During DNN inference, the
physical memory shared between the host and guest enclave
was used to send inference inputs and receive their outputs.

VI. EVALUATION

A. Security Analysis

We conduct a security analysis of ASGARD using concrete
attacks on model confidentiality. We assume a privileged, REE-
side adversary (without physical tampering capabilities), fol-
lowing prior TrustZone-based work on protecting accelerator
workloads including DNN inference [24], [59], [52], [72].

DMA Attacks. We first consider an REE adversary who
controls one or more DMA-capable peripherals. ASGARD
thwarts DMA attacks through such malicious peripherals,
because (i) every peripheral is behind an IOMMU (see §III-B),
(ii) all the IOMMUs are exclusively controlled by the TEEvisor
(INV1 in §IV-A), and (iii) the TEEvisor does not create
any IOMMU page table entries that could grant malicious
peripherals’ access to memory pages owned by an enclave,
unless it explicitly requests to do so (INV2).

Attacks on Sensitive Interfaces. The CPU and accelerator
expose sensitive registers (see INV1 in §IV-A) responsible for
configuring the MMU and IOMMU, respectively, and both use
a portion of physical memory to store page tables. An REE
adversary could attempt to access these sensitive interfaces.
The Arm architecture restricts the REE in N-EL0 and N-EL1
from accessing any Stage-2 control registers of the MMU, and,
using Stage-2 translation, the TEEvisor prevents the adversary
from accessing IOMMU registers or all MMU/IOMMU page
tables residing in physical memory. Since TEEvisor owns
the page frames corresponding to sensitive physical memory
regions, any request to map these into the REE’s address
spaces is rejected. Also, as this ownership is established during
secure boot, the adversary cannot fake the physical addresses
of sensitive interfaces.

Attacks by Faking Reset Interface. To prevent information
leakage and ensure a benign state of the accelerator at assign-

ment (see INV3 in §IV-A), the TEEvisor’s accelerator reset
should always take effect. An REE adversary could attempt to
fake the reset interface to nullify the effect of the TEEvisor-
invoked resets. ASGARD eliminates this threat by establishing
the TEEvisor’s ownership of the page frames during secure
boot which the adversary cannot tamper with.

Attacks on Assignment Interface. An attacker could abuse
the two hypercalls we added (see §IV-A), by invoking them
with wrong arguments and at an unexpected point in time.
Accelerator acquire and release requests with wrong device
identifiers are rejected, and race conditions between multiple
requests are prevented through mutual exclusion. These hyper-
calls do not introduce any attack surface to Iago attacks [19],
because they are fully handled by the TEEvisor, and not passed
to the REEvisor. In other words, an REE adversary cannot
manipulate the result of these hypercalls invoked by enclaves.

Attacks by Raising Rogue NPU Interrupts. Since REE
is responsible for interrupt management, REE adversaries can
tamper with NPU interrupts. Specifically, they can (i) trigger
interrupts at times not anticipated by the NPU driver, and
(ii) suppress interrupts that the NPU driver expects. Their
implications in DNN inference serving are: (i) prematurely
executing subsequent operators with incorrect or incomplete
intermediate computation results, and (ii) availability compro-
mise, respectively. The former could have further implications
with respect to model protection: If the adversaries can force
the intermediate result to be the identity elements for sub-
sequent operators (e.g., 1 for multiplication), the operators
could degenerate to identity functions that simply pass their
raw weight values to next operators. We believe, still, that an
end-to-end model extraction attack is going to be challenging,
considering the depth of DNN layers and the presence of non-
invertible layers such as ReLU. Also, such a small possibility
could even be eliminated by employing interrupt authenticity
checks in TEEvisor similarly to Devlore [12].

Attacks by Observing NPU Interrupts. Interrupts raised
by the NPU are first delivered to the REE. By passively
monitoring these interrupts, an adversary on the REE side
could learn that the NPU has encountered an operator it
does not support. Observe that this information provides only
architectural insights into the model, not the raw model
weights. The adversary might learn further architectural details
by measuring the time between two NPU interrupts, potentially
revealing which operators executed in that interval. Leaking
information about the model weights would require other side
channels that are sensitive to the operands (e.g., model weight
and bias values) of DNN operators, such as floating-point
side channels [25], though such architectural side channels are
beyond the scope of this work (see §III-B).

B. TCB Size Analysis

TEEvisor. For secure I/O passthrough (see §IV-A), ASGARD
adds sizable components to the TEEvisor. The most significant
addition is the IOMMU driver and its dependencies (see
§IV-B). The original TEEvisor is 12 kLoC, and our implemen-
tation of the EL2 Rockchip IOMMU driver only introduces 2
kLoC to the TEEvisor. If the kernel’s power and clock man-
agement modules were included in the TEEvisor, it could have
additionally introduced 6 and 7 kLoC, respectively. Besides,

10

Table III: Enclave image size before and after specialization,
measured in MB.

Mode Component Size
Before After (Reduction)

User

Core Utilities 0.831 0.000 (–100.0%)
DNN Application 0.023 0.023 (–0.0%)
DNN Runtime & User-Mode NPU Driver 5.610 5.610 (–0.0%)
C/C++ Standard Libraries & Linker 4.015 3.870 (–3.6%)
Total 10.479 9.503 (–9.3%)

Kernel

Security Features 7.000 3.928 (–43.9%)
Application-Specific Features 6.564 0.039 (–99.4%)
Kernel-Mode NPU Driver 0.284 0.284 (–0.0%)
Core Kernel 3.685 3.685 (–0.0%)
Total 17.533 7.936 (–54.7%)

implementing secure accelerator assignment and reclamation
policies (e.g., triggering accelerator resets at switching) also
adds around 200 LoC. Of these, the two new guest-side
hypercall handlers ASGARD introduces—which (i) configure
interrupt routing paths, (ii) map and unmap NPU registers, and
(iii) configure DMA paths—add less than 50 LoC each to the
TEEvisor.

DNN-Serving Enclaves. Table III presents the results of
our enclave debloating (see §IV-B). Starting from Google’s
Microdroid kernel [26], a general-purpose kernel for enclaves
optimized for size, we disabled 471 out of 915 configurations,
resulting in a reduction of 9.597MB from the kernel image.
Of these, 422 were application-specific configurations not
needed by ASGARD—including debugging, real-time process-
ing, networking, etc. Relaxing user-kernel separation removes
1.008MB from the image. We find that enabling control flow
integrity for kernel hardening adds 3.258MB to ASGARD’s
image; however, it does not really bloat the TCB, because it
is mostly the same compiler-inserted code. In comparison, the
binary size of the Trusted OS is 1.50MB for Google Pixel
XL and 0.21MB for Samsung Galaxy S7 [18]. While these
specialized OSs have smaller images, they are incompatible
with existing accelerator runtime and drivers. As for the root
file system, we trimmed 0.990MB from a minimal buildroot
image. The image largely consists of four libraries—libc.so,
libm.so, libgcc s.so, and libstdc++.so—linked to the
proprietary user-mode NPU driver.

C. End-to-End DNN Inference Latency

Experimental Setup. We ran experiments on four Cortex-A76
cores whose frequency is fixed at 2.208GHz, by disabling the
other Cortex-A55 cores to offset the heterogeneity of the CPU
cores. We fixed the memory controller at 1.560GHz and the
NPU at 1GHz. We assigned 1 vCPU and 512MB of RAM to
each guest enclave, and pinned the vCPU to a physical core to
prevent migration across cores. Following prior work [85], we
checked CNTPCT EL0, a hardware timer, for inference latency
measurements.

ASGARD vs. REE-Only & Partition-and-Offload Ap-
proaches. Fig. 5 depicts our end-to-end DNN inference la-
tency measurements of the two baselines—an REE-only ap-
proach and a state-of-the-art partition-and-offload approach
(i.e., ShadowNet [72])—and ASGARD for MobileNetV1 [33].
Our prototypes of ASGARD and the baselines rely on

0 3 6 9 12 15 18 21
Latency (ms)

REE

TE
E

DNN Inference

(a) REE-only approach (No TEE-based model protection).

0 3 6 9 12 15 18 21
Latency (ms)

REE

TE
E

Deobfuscation Obfuscation DNN Inference

(b) Partition-and-offload approach (ShadowNet [72]).

0 3 6 9 12 15 18 21
Latency (ms)

REE

TE
E

NPU Reassignment DNN Inference IRQ Delivery

(c) Secure I/O passthrough approach (ASGARD).

Fig. 5: End-to-end inference latency of MobileNetV1, under
(a) an REE-only approach without any TEE-based model
protection, (b) a partition-and-offload approach that simulates
ShadowNet [72], and (c) ASGARD’s passthrough approach.
Averaged over 1,000 trials.

VSOCK [31] for communication between the TEE and REE
during DNN inference, but we exclude VSOCK’s overheads
in our measurements. Note that this effectively makes the
partition-and-offload baseline (i.e., ShadowNet) a conservative
comparison, because it incurs more frequent switches between
the TEE and REE than ASGARD during inference. The two
baselines keep the accelerator assigned to the REE, thereby
saving the accelerator assignment cost, and achieves faster
NPU interrupt handling than ASGARD. Although ASGARD-
protected DNN inference incurs a 2.01% overhead over the
REE-only approach, it is 4.333x faster than ShadowNet, and
1.430x faster than ShadowNet without any obfuscation. This
is because ShadowNet’s cost of offloading the linear layers
to the REE-assigned accelerator, due to costly (de)obfuscation
of activations and an increased number of TEE-to-REE exits,
significantly outweighs the cost saved.

NPU Assignment Cost Breakdown. We now analyze the
latency of the acquire device() and release device()
hypercalls, and depict the results in Fig. 6. In both hypercalls,
the TEEvisor configures the IOMMU via an MMIO write to
either set or remove the base address of the page tables used for
translation. When handling the latter hypercall, the TEEvisor
additionally flushes the IOTLB, which incurs marginal latency.
The mapping and unmapping of NPU registers for configuring
direct MMIO involves mapping and unmapping four 4KB
pages from Stage-2 page tables. In the case of unmapping,
there is an additional step of invalidating TLB entries for
the unmapped MMIO region, but this adds negligible latency.
The release device() additionally includes the NPU reset

11

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Latency (ms)

Ac
qu

ire

Re
lea

se

IOMMU Config. NPU Reg. (Un)map. NPU Reset Privilege-Level Switch

Fig. 6: Latency breakdown of ASGARD’s NPU assignment,
averaged over 1,000 trials.

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
Latency (ms)

REE

ASG
ARD

Fig. 7: Latency of delivering an NPU-generated interrupt from
the EL1 host interrupt handler to the NPU driver executing
either in the REE and in ASGARD’s TEE, averaged over 1,000
trials with 95% confidence intervals.

latency, which is similarly negligible for the Rockchip NPU.

Interrupt Delivery Cost of Enclave-Assigned NPUs. In
Fig. 7, we compare the latency of delivering an NPU-generated
interrupt from the EL1 host interrupt handler to the NPU
driver, with and without ASGARD’s protection. As expected,
this latency is significantly higher (3.684x) with ASGARD’s
protection due to the TEE-to-REE exits and entries involved in
the delivery path (see §IV-C). The interrupt delivery from the
REE to ASGARD’s TEE requires 2 REE-to-TEE entries and 1
TEE-to-REE exit: (i) the host initially deactivates the physical
interrupt and injects a virtual interrupt to the guest, (ii) the
guest deactivates the virtual interrupt, (iii) the host accepts the
deactivated virtual interrupt and unmasks (i.e., allowing the
delivery of physical interrupts again) the physical interrupt,
and (iv) the guest begins executing the NPU driver code.

D. Run-Time Overheads During DNN Inference

Experimental Setup. We now evaluate the run-time overhead
imposed by virtualization-based TEEs during DNN inference,
with six DNN models, including those used to evaluate prior
work [72], [95], [65], [52]. For image classification and
object detection models, we use a 224x224 image as their
input. For text understanding and generation models (i.e., Lite
Transformer encoder and decoder models [87], respectively),
we use 16 tokens as their input; for the decoder model, we
perform a single generation step. The image classification
models were retrieved from Keras Applications [1], the SSD
models from TensorFlow Model Garden [92], and the Lite
Transformer models from RKNN Model Zoo [2].

Latency and Memory Usage Impact of Exit-Coalescing
Planning. Figs. 8a and 8b show the impact of ASGARD’s
exit-coalescing DNN execution planning on TEE-to-REE exit
counts and inference latency, respectively, on six models. Of
these, four models—i.e., the two SSD models [46] and the
encoder and decoder models of Lite Transformer [87]—have
multiple feature extractors (see §IV-C). The impact of TEE-
to-REE exit overheads are more pronounced when the models

Planning MobileNet
V1

Inception
V3

SSD-
MobileNet

V1

SSD-
Inception

V2

Lite
Transformer

Encoder

Lite
Transformer

Decoder
Default 1 10 13 18 26 38
Exit-Coalescing
(Difference) 1 (0) 10 (0) 2 (-11) 10 (-8) 16 (-10) 20 (-18)

(a) TEE-to-REE exit counts before & after exit-coalescing planning.

0

1

2

3

4

5

6

La
te

nc
y

(m
s)

1.39%

MobileNetV1

0

2

4

6

8

10

12
2.62%

InceptionV3

0

1

2

3

4

5

6
3.47%-1.36%

SSD-MobileNetV1

0

3

6

9

12

15

18
2.11%0.85%

SSD-InceptionV2

0

1

2

3
15.16%

6.07%

Lite Transformer
Encoder

0

1

2

3

33.88%
3.26%

Lite Transformer
Decoder

REE ASGARD w/ Default Planning ASGARD w/ Exit-Coalescing Planning

(b) Inference latency of ASGARD before & after exit-coalescing plan-
ning, compared to the the REE baseline. The percentages above each bar
represent the latency increase or decrease relative to the REE baseline.

0 10 20 30 40 50 60 70 78
16.6
17.0
17.4
17.8
18.2
18.6
19.0
19.4

M
em

or
y

Us
ag

e
(M

B)

SSD-MobileNetV1
Default Planning Exit-Coalescing Planning Model Weights

0 20 40 60 80 100 120 143
53.0
53.4
53.8
54.2
54.6
55.0
55.4

SSD-InceptionV2

0 20 40 60 80 100 122
Operators

3.98
3.99
4.00
4.01
4.02
4.03
4.04

M
em

or
y

Us
ag

e
(M

B)

Lite Transformer Encoder

0 20 40 60 80 100 120 144
Operators

22.82

22.86

22.90

22.94

22.98
Lite Transformer Decoder

(c) Memory usage before & after exit-coalescing planning.

Fig. 8: Impact of ASGARD’s exit-coalescing DNN execution
planning on (a) TEE-to-REE exit counts, (b) inference latency,
and (c) memory usage.

require more exits during their execution due to CPU-fallback
operators, or when the models exhibit lower inference latency.
However, after applying our exit-coalescing planning, we re-
move up to 18 exits triggered when executing CPU-fallback
operators (i.e., the decoder model of Lite Transformer), and
this significantly reduces the TEE-to-REE fallback overheads.
In addition to evaluating the latency impact, we also calculated
the memory usage over time during DNN inference under
the two planning strategies for the four models where exit-
coalescing was effective, and depict the results in Fig. 8c.
Specifically, we calculated the memory consumption by sum-
ming the sizes of the model weights and intermediate tensors
(i.e., input and output activations) at each operator. The results
show that applying our exit-coalescing planning alters memory
usage only locally; the peak memory usage of DNN inference
remains unchanged for all four models.

12

VII. DISCUSSION & LIMITATIONS

Porting ASGARD across SoCs. The main effort in port-
ing ASGARD to another SoC involves implementing both
IOMMU and reset control within TEEvisor (see §IV-A). To
illustrate the process, along with ASGARD’s potential TCB
and run-time overheads in other SoCs, we examined Pixel 6,
a production SoC featuring EdgeTPU as a DNN inference
accelerator, Trusty [30] as a SW OS, and its own proprietary
EL3 firmware. Implementing the IOMMU control can be done
by splitting Pixel 6’s own IOMMU driver into REEvisor and
TEEvisor. Resetting the EdgeTPU, however, must be requested
to Trusty in SW, specifically via the VIRTIO interface. While
implementing this reset control within TEEvisor is feasible,
it could increase the reset latency due to world switches, and
TEEvisor’s size due to the need to incorporate VIRTIO drivers.

Model Extraction via Side Channels. Most prior attacks
that extract models through side channels primarily focus on
inferring either (i) the architectural- or hyper-parameters of the
model [88], [86], [47], or (ii) the functionality of the victim
model by training it themselves using partial information ob-
tained from side channels [61], [93], rather than the raw model
weights. Side-channel attacks that recover raw weights tend
to require stronger adversarial capabilities, such as physical
access to the victim [34], [89]. For example, Hua et al. demon-
strated that memory access patterns observed via physical side
channels can leak the ratio between the weight and bias values
of the victim model [34]. Another line of prior work has shown
that interrupt capabilities could amplify existing probabilistic
side channels [53], or even be used to create new ones [82]. No
existing work, however, has yet exploited interrupt capabilities
to exfiltrate model weights [55]. An REE adversary could delay
the NPU’s execution by manipulating its clock management
delegated to the REE (see §IV-B), which could potentially
amplify existing side channels that can expose model weights.
We leave the exploration of this approach to future work.

Compatibility with Arm CCA. While ASGARD protects
on-device DNNs against REE-side, privileged software ad-
versaries, the same can be achieved against physical and/or
stronger software adversaries with an upcoming CCA support
in Armv9-A. CCA Realms can support ASGARD’s entire
operation described in §III-D, because (i) each Realm spans
EL1 and EL2 just like a virtual machine, and (ii) CCA
supports both enclave and secret data provisioning protocols.
By incorporating ASGARD’s secure I/O passthrough in RMM,
accelerators can be securely assigned to Realms. ASGARD on
CCA provides at least two security benefits. First, ASGARD
can protect DNN models against physical memory probing
attacks [32], because CCA encrypts memory owned by Realms
using CCA’s memory protection engine. Second, ASGARD
can protect models against SW compromise (e.g., SW kernel
compromise), because RW and SW in CCA are isolated from
each other by the secure monitor in CCA’s Root World.

Besides, ASGARD’s exit-coalescing DNN execution plan-
ning could also be effective under CCA. (Round-trip) tran-
sitions between a TEE context and the REE context involves
many operations in CCA [43], including a trap to and exception
return from the EL3 secure monitor, mapping and unmapping
temporary pages for transferring exit and entry information,
saving and restoring the context, etc. In other words, TEE-to-

REE exits become more expensive under CCA than pKVM.
This means that, when applying ASGARD to CCA-backed
TEEs, ASGARD’s exit-coalescing optimization, because it
reduces the number of voluntary TEE-to-REE exits, becomes
more effective at reducing DNN inference latency.

Accelerator Attestation. If the accelerator peripheral has
hardware root-of-trust and supports an attestation protocol,
the reset operation can be more trustworthily verified through
device attestation. ASGARD trusts that triggering a reset via
the accelerator’s reset interface in the SoC always brings
back the accelerator into a known good state (see §IV-A).
There is a risk, however, that the reset interface is physically
compromised, which could result in (i) leakage of residual
information between enclaves, or (ii) the accelerator being left
in a malicious state. To establish a more direct and trustworthy
confirmation of the accelerator’s integrity, hardware-based at-
testation support can be integrated into the accelerator. For this,
a hardware-isolated privileged domain (or layer [80]) serving
as the root-of-trust must be integrated into the accelerator.
Various attestation protocols could be used, e.g., TEE Device
Interface Security Protocol, PCIe-5’s Integrity and Data En-
cryption (in the case of PCIe devices), or more lightweight
ones such as DICE [81], [48].

VIII. RELATED WORK

Extending TEEs to Peripherals. A line of prior work has
explored software-only approaches to extending TEEs to pe-
ripherals [71], [24]. LEAP [71], for instance, dedicates one or
more CPU cores exclusively to hosting a TEE, and directly
assigns a peripheral to it. This design offers high backward
compatibility akin to ASGARD. Its requirement for spatial
isolation of CPU cores (also known as static partitioning [49],
[62]), however, limits a flexible use of compute resources in
resource-constrained mobile devices. ASGARD, in contrast,
supports temporal sharing and isolation of the REE and TEEs
on the same core, using a full-fledged hypervisor split into
REEvisor and TEEvisor.

StrongBox [24], another software-only approach that incor-
porates a peripheral (GPUs, in particular) into TEEs, separates
GPU tasks into so-called secure tasks and non-secure tasks,
and enforces isolation between them by using TrustZone prim-
itives such as TZASC. Its primary advantage is that the kernel
driver is excluded from the TCB. The design, however, bloats
the platform-level TCB, namely the EL3 monitor, and requires
substantial modifications to the kernel driver in support of
secure and non-secure task abstractions. ASGARD exhibits
stronger backward compatibility than StrongBox, as it does
not require any change in the EL3 monitor, nor kernel driver.

There are hardware approaches as well. Arm CCA provides
multiple hardware-isolated TEEs [8], and ACAI [69] and
CAGE [85] extend CCA to peripheral devices. ACAI securely
attaches a PCIe device by extending RMM [69]. CAGE uses a
shadow-task mechanism to expose accelerators to Realms [85].
Hardware approaches on the x86 architecture offer secure
I/O by requiring modifications either on the GPU side (e.g.,
Graviton [84] or NVIDIA H100 [56]), or on the CPU side (e.g.,
HIX [37] or Intel TDX [36]). In contrast to these hardware
approaches, ASGARD works on legacy Armv8-A SoCs with
an existing NPU hardware and drivers.

13

Accelerator I/O Virtualization. I/O virtualization for ac-
celerators can be classified into direct assignment (i.e., I/O
passthrough), emulation, paravirtualization, and API remoting.
As full virtualization of accelerators via emulation is slow,
prior work proposed various paravirtualization optimizations
for GPU virtualization [77], [74]. AvA uses API remoting to
more flexibly share GPUs between applications [91]. Though
these approaches generally offer a higher degree of accelerator
sharing than direct assignment approaches, it remains chal-
lenging yet to ensure isolation between accelerator execution
contexts owned by different enclaves [39].

IX. CONCLUSION

DNNs are increasingly seen as valuable, often mission-critical
business assets. On-device DNNs must therefore be protected
as strongly possible like other traditional security-critical pro-
grams and data. We identified various efficiency and com-
patibility issues of prior TrustZone-based on-device model
protection, and proposed the first virtualization-based TEE
solution that can address them. Our design includes techniques
to reduce TCB size and inference latency, making ASGARD a
highly optimized and unique TEE solution for on-device DNN
protection. Our evaluation shows that ASGARD can offer a
trustworthy on-device environment for an end-to-end DNN
protection, and that the cost of virtualization can be contained.

ACKNOWLEDGMENT

The authors would like to thank the anonymous shepherd
and reviewers for their insightful feedback. We also extend
our gratitude to Hyung-Chan An at Yonsei University for
the valuable discussion on graph partitioning. This material
is based upon work supported by Samsung Electronics under
grant nr. IO240514-09973-01 and National Research Foun-
dation (NRF) of Korea under grant nr. RS-2024-00334395.
We also gratefully acknowledge the support provided from the
Okawa Foundation through their Research Grant award.

REFERENCES

[1] “Keras applications,” 2024. [Online]. Available: https://keras.io/api/
applications

[2] “RKNN model zoo,” 2024. [Online]. Available:
https://github.com/airockchip/rknn model zoo/blob/main/examples/
lite transformer/README.md

[3] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D.-M. Popa, “Firecracker: Lightweight virtualization
for serverless applications,” in Proceedings of the USENIX Symposium
on Networked Systems Design & Implementation (NSDI), 2020.

[4] B. H. Ahn, J. Lee, J. M. Lin, H.-P. Cheng, J. Hou, and H. Esmaeilzadeh,
“Ordering chaos: Memory-aware scheduling of irregularly wired neural
networks for edge devices,” in Proceedings of the Conference on
Machine Learning and Systems (MLSys), 2020.

[5] N. Amit, M. Ben-Yehuda, D. Tsafrir, A. Schuster et al., “vIOMMU:
Efficient IOMMU emulation,” in Proceedings of the USENIX Annual
Technical Conference (ATC), 2011.

[6] Arm Limited, “Learn the architecture - TrustZone for AArch64
(version 1.1),” 2021. [Online]. Available: https://developer.arm.com/
documentation/102418/0101

[7] ——, “Learn the architecture - AArch64 exception model (version 1.3),”
2022. [Online]. Available: https://developer.arm.com/documentation/
102412/0103

[8] ——, “Introducing Arm confidential compute architecture
(version 3.0),” 2023. [Online]. Available: https://developer.arm.com/
documentation/den0125/0300

[9] ——, “Learn the architecture - AArch64 virtualization guide
(version 1.0),” 2024. [Online]. Available: https://developer.arm.com/
documentation/102142/0100

[10] A. Athalye, A. Belay, M. F. Kaashoek, R. Morris, and N. Zeldovich,
“Notary: A device for secure transaction approval,” in Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), 2019.

[11] E. Auger, “vIOMMU/ARM: full emulation and virtio-iommu ap-
proaches,” KVM Forum, 2017.

[12] A. Bertschi, S. Sridhara, F. Groschupp, M. Kuhne, B. Schlüter,
C. Thorens, N. Dutly, S. Capkun, and S. Shinde, “Devlore: Extending
Arm CCA to integrated devices,” arXiv preprint arXiv:2408.05835,
2024.

[13] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“MI6: Secure enclaves in a speculative out-of-order processor,” in
Proceedings of the Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2019.

[14] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANC-
TUARY: ARMing TrustZone with user-space enclaves,” in Proceedings
of the Network and Distributed System Security Symposium (NDSS),
2019.

[15] J.-P. Brucker, “KVM: Arm SMMUv3 driver for pKVM,” 2023.
[Online]. Available: https://lwn.net/Articles/921869

[16] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson, A. Oprea, and C. Raffel,
“Extracting training data from large language models,” in Proceedings
of the USENIX Security Symposium (Security), 2021.

[17] N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer,
B. Balle, D. Ippolito, and E. Wallace, “Extracting training data from
diffusion models,” in Proceedings of the USENIX Security Symposium
(Security), 2023.

[18] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted TEE sys-
tems,” in Proceedings of the IEEE Symposium on Security and Privacy
(IEEE S&P), 2020.

[19] S. Checkoway and H. Shacham, “Iago attacks: Why the system call API
is a bad untrusted RPC interface,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2013.

[20] J. Choi, J. Kim, C. Lim, S. Lee, J. Lee, D. Song, and Y. Kim,
“GuardiaNN: Fast and secure on-device inference in TrustZone using
embedded SRAM and cryptographic hardware,” in Proceedings of the
ACM/IFIP International Middleware Conference (Middleware), 2022.

[21] C. Dall, S.-W. Li, J. T. Lim, J. Nieh, and G. Koloventzos, “ARM
virtualization: Performance and architectural implications,” in Proceed-
ings of the ACM/IEEE Annual International Symposium on Computer
Architecture (ISCA), 2016.

[22] C. Dall and J. Nieh, “KVM/ARM: The design and implementation
of the Linux ARM hypervisor,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2014.

[23] W. Deacon, “Virtualization for the masses: Exposing KVM on An-
droid,” KVM Forum, 2020.

[24] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan, Z. He,
J. Cao, and F. Zhang, “StrongBox: A GPU TEE on Arm endpoints,” in
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2022.

[25] C. Gongye, Y. Fei, and T. Wahl, “Reverse-engineering deep neural
networks using floating-point timing side-channels,” in Proceedings of
the ACM/EDAC/IEEE Design Automation Conference (DAC), 2020.

[26] Google, “Android virtualization framework (AVF) overview,” 2024.
[Online]. Available: https://source.android.com/docs/core/virtualization

[27] ——, “crosvm - the ChromeOS virtual machine monitor,”
2024. [Online]. Available: https://android.googlesource.com/platform/
external/crosvm

[28] ——, “Implementing dm-verity,” 2024. [Online]. Available: https:
//source.android.com/docs/security/features/verifiedboot/dm-verity

[29] ——, “Security-enhanced Linux in Android,” 2024. [Online]. Available:
https://source.android.com/docs/security/features/selinux

14

https://keras.io/api/applications
https://keras.io/api/applications
https://github.com/airockchip/rknn_model_zoo/blob/main/examples/lite_transformer/README.md
https://github.com/airockchip/rknn_model_zoo/blob/main/examples/lite_transformer/README.md
https://developer.arm.com/documentation/102418/0101
https://developer.arm.com/documentation/102418/0101
https://developer.arm.com/documentation/102412/0103
https://developer.arm.com/documentation/102412/0103
https://developer.arm.com/documentation/den0125/0300
https://developer.arm.com/documentation/den0125/0300
https://developer.arm.com/documentation/102142/0100
https://developer.arm.com/documentation/102142/0100
https://lwn.net/Articles/921869
https://source.android.com/docs/core/virtualization
https://android.googlesource.com/platform/external/crosvm
https://android.googlesource.com/platform/external/crosvm
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/verifiedboot/dm-verity
https://source.android.com/docs/security/features/selinux

[30] ——, “Verified boot,” 2024. [Online]. Available: https://source.android.
com/docs/security/features/trusty

[31] S. Hajnoczi, “virtio-vsock: Zero-configuration host/guest communica-
tion,” KVM Forum, 2015.

[32] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: Cold boot attacks on encryption keys,” in Proceedings of
the USENIX Security Symposium (Security), 2008.

[33] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[34] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional
neural networks through side-channel information leaks,” in Proceed-
ings of the Annual Design Automation Conference (DAC), 2018, pp.
1–6.

[35] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ:
Virtualizing ARM TrustZone,” in Proceedings of the USENIX Security
Symposium (Security), 2017.

[36] Intel, “Intel Trust Domain Extensions,” 2023. [Online].
Available: https://www.intel.com/content/www/us/en/developer/tools/
trust-domain-extensions/documentation.html

[37] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heteroge-
neous isolated execution for commodity GPUs,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[38] J. S. Jeong, J. Lee, D. Kim, C. Jeon, C. Jeong, Y. Lee, and B.-G. Chun,
“Band: Coordinated multi-DNN inference on heterogeneous mobile
processors,” in Proceedings of the Annual International Conference on
Mobile Systems, Applications and Services (MobiSys), 2022.

[39] H. Lefeuvre, D. Chisnall, M. Kogias, and P. Olivier, “Towards (really)
safe and fast confidential I/O,” in Proceedings of the USENIX Workshop
on Hot Topics in Operating Systems (HotOS), 2023.

[40] D. Li, Z. Mi, Y. Xia, B. Zang, H. Chen, and H. Guan, “TwinVisor:
Hardware-isolated confidential virtual machines for ARM,” in Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP),
2021.

[41] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting cloud virtual machines
from hypervisor and host operating system exploits,” in Proceedings of
the USENIX Security Symposium (Security), 2019.

[42] W. Li, Y. Xia, L. Lu, H. Chen, and B. Zang, “TEEv: Virtualizing trusted
execution environments on mobile platforms,” in Proceedings of the
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE), 2019.

[43] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and G. Stockwell,
“Design and verification of the Arm confidential compute architecture,”
in Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2022.

[44] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han,
“On-device training under 256KB memory,” in Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[45] R. Liu, L. Garcia, Z. Liu, B. Ou, and M. Srivastava, “SecDeep: Secure
and performant on-device deep learning inference framework for mobile
and IoT devices,” in Proceedings of the International Conference on
Internet-of-Things Design and Implementation (IoTDI), 2021.

[46] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2016.

[47] Z. Liu, Y. Yuan, Y. Chen, S. Hu, T. Li, and S. Wang, “DeepCache:
Revisiting cache side-channel attacks in deep neural networks exe-
cutables,” in Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2024.

[48] A. Marochko, D. Mattoon, P. England, R. Aigner, R. S. (CELA), and
S. Thom, “Cyber-resilient platforms overview,” Microsoft, Tech. Rep.
MSR-TR-2017-40, 2017.

[49] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A lightweight static partitioning hypervisor for modern multi-core em-
bedded systems,” in Workshop on next generation real-time embedded
systems (NG-RES), 2020.

[50] S. Mirzamohammadi and A. A. Sani, “The case for a virtualization-
based trusted execution environment in mobile devices,” in Proceedings
of the Asia-Pacific Workshop on Systems (APSys), 2018.

[51] F. Mo, H. Haddadi, K. Katevas, E. Marin, D. Perino, and N. Kourtellis,
“PPFL: Privacy-preserving federated learning with trusted execution
environments,” in Proceedings of the Annual International Conference
on Mobile Systems, Applications, and Services (MobiSys), 2021.

[52] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “DarkneTZ: Towards model privacy at
the edge using trusted execution environments,” in Proceedings of the
Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2020.

[53] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How SGX
amplifies the power of cache attacks,” in Proceedings of the Interna-
tional Conference on Cryptographic Hardware and Embedded Systems
(CHES), 2017.

[54] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in Proceedings of the IEEE
Symposium on Security and Privacy (IEEE S&P), 2019.

[55] T. Nayan, Q. Guo, M. Al Duniawi, M. Botacin, S. Uluagac, and R. Sun,
“SoK: All you need to know about on-device ML model extraction -
the gap between research and practice,” in Proceedings of the USENIX
Security Symposium (Security), 2024.

[56] NVIDIA, “Confidential Compute on NVIDIA Hopper H100,”
2023. [Online]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/HCC-Whitepaper-v1.0.pdf

[57] OP-TEE core maintainers, “OP-TEE trusted OS,” 2024. [Online].
Available: https://github.com/OP-TEE/optee os

[58] Open Virtualization Alliance, “Linux kernel virtual machine.” [Online].
Available: https://www.linux-kvm.org

[59] H. Park and F. X. Lin, “GPUReplay: A 50-kb GPU stack for client ML,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2022.

[60] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, 1974.

[61] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “DeepSteal:
Advanced model extractions leveraging efficient weight stealing in
memories,” in Proceedings of the IEEE Symposium on Security and
Privacy (IEEE S&P), 2022.

[62] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer, “Look mum,
no VM exits! (almost),” in Proceedings of the Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), 2017.

[63] P. Ren, C. Zuo, X. Liu, W. Diao, Q. Zhao, and S. Guo, “DEMISTIFY:
Identifying on-device machine learning models stealing and reuse
vulnerabilities in mobile apps,” in Proceedings of the International
Conference on Software Engineering (ICSE), 2024.

[64] A. A. Sani, L. Zhong, and D. S. Wallach, “Glider: A GPU library driver
for improved system security,” Rice University, Tech. Rep. 2014-11-14,
2014.

[65] T. Shen, J. Qi, J. Jiang, X. Wang, S. Wen, X. Chen, S. Zhao, S. Wang,
L. Chen, X. Luo, F. Zhang, and H. Cui, “SOTER: Guarding black-box
inference for general neural networks at the edge,” in Proceedings of
the USENIX Annual Technical Conference (ATC), 2022.

[66] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proceedings of
the IEEE Symposium on Security and Privacy (IEEE S&P), 2017.

[67] S. Siby, S. Abdollahi, M. Maheri, M. Kogias, and H. Haddadi, “Guar-
anTEE: Towards attestable and private ML with CCA,” in Proceedings
of the Workshop on Machine Learning and Systems (EuroMLSys), 2024.

[68] D. So, Q. Le, and C. Liang, “The evolved Transformer,” in Proceedings
of the International Conference on Machine Learning (ICML), 2019.

[69] S. Sridhara, A. Bertschi, B. Schlüter, M. Kuhne, F. Aliberti, and
S. Shinde, “ACAI: Protecting accelerator execution with Arm confi-
dential computing architecture,” in Proceedings of the USENIX Security
Symposium (Security), 2024.

[70] B. Steiner, M. Elhoushi, J. Kahn, and J. Hegarty, “MODeL: Memory

15

https://source.android.com/docs/security/features/trusty
https://source.android.com/docs/security/features/trusty
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf
https://github.com/OP-TEE/optee_os
https://www.linux-kvm.org

optimizations for deep learning,” in Proceedings of the International
Conference on Machine Learning (ICML), 2023.

[71] L. Sun, S. Wang, H. Wu, Y. Gong, F. Xu, Y. Liu, H. Han, and S. Zhong,
“LEAP: TrustZone based developer-friendly TEE for intelligent mobile
apps,” IEEE Transactions on Mobile Computing, vol. 22, no. 12, pp.
7138–7155, 2023.

[72] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, L. Lu, and S. Jha, “Shad-
owNet: A secure and efficient on-device model inference system for
convolutional neural networks,” in Proceedings of the IEEE Symposium
on Security and Privacy (IEEE S&P), 2023.

[73] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your weight(s): A large-
scale study on insufficient machine learning model protection in mobile
apps,” in Proceedings of the USENIX Security Symposium (Security),
2021.

[74] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: Why not
virtualizing GPUs at the hypervisor?” in Proceedings of the USENIX
Annual Technical Conference (ATC), 2014.

[75] The kernel development community, “Seccomp BPF (secure computing
with filters),” 2019. [Online]. Available: https://www.kernel.org/doc/
html/v5.10/userspace-api/seccomp filter.html

[76] ——, “VFIO - “virtual function I/O”,” 2019. [Online]. Available:
https://www.kernel.org/doc/html/v5.10/driver-api/vfio.html

[77] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualization
solution with mediated pass-through,” in Proceedings of the USENIX
Annual Technical Conference (ATC), 2014.

[78] K. Tian, Y. Zhang, L. Kang, Y. Zhao, and Y. Dong, “coIOMMU: A
virtual IOMMU with cooperative DMA buffer tracking for efficient
memory management in direct I/O,” in Proceedings of the USENIX
Annual Technical Conference (ATC), 2020.

[79] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2019.

[80] Trusted Computing Group, “DICE layering architecture,” 2020.
[Online]. Available: https://trustedcomputinggroup.org/wp-content/
uploads/DICE-Layering-Architecture-r19 pub.pdf

[81] ——, “DICE attestation architecture,” 2021. [On-
line]. Available: https://trustedcomputinggroup.org/wp-content/uploads/
DICE-Attestation-Architecture-r23-final.pdf

[82] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying mi-
croarchitectural timing leaks in rudimentary CPU interrupt logic,” in
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2018.

[83] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems (NeurIPS), 2017.

[84] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on GPUs,” in Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2018.

[85] C. Wang, F. Zhang, Y. Deng, K. Leach, J. Cao, Z. Ning, S. Yan, and
Z. He, “CAGE: Complementing Arm CCA with GPU extensions,” in
Proceedings of the Network and Distributed System Security Symposium
(NDSS), 2024.

[86] J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. Al Faruque, “Leaky DNN:
Stealing deep-learning model secret with GPU context-switching side-
channel,” in Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2020.

[87] Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han, “Lite Transformer with long-
short range attention,” in Proceedings of the International Conference
on Learning Representations (ICLR), 2020.

[88] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in Proceedings of
the USENIX Security Symposium (Security), 2020.

[89] D. Yang, P. J. Nair, and M. Lis, “Huffduff: Stealing pruned DNNs from
sparse accelerators,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2023.

[90] Z. Yao, S. M. Seyed Talebi, M. Chen, A. Amiri Sani, and T. Anderson,
“Minimizing a smartphone’s TCB for security-critical programs with
exclusively-used, physically-isolated, statically-partitioned hardware,”

in Proceedings of the Annual International Conference on Mobile
Systems, Applications and Services (MobiSys), 2023.

[91] H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossbach, “AvA: Acceler-
ated virtualization of accelerators,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2020.

[92] H. Yu, C. Chen, X. Du, Y. Li, A. Rashwan, L. Hou, P. Jin, F. Yang,
F. Liu, J. Kim, and J. Li, “TensorFlow model garden,” 2024. [Online].
Available: https://github.com/tensorflow/models

[93] Y. Yuan, Z. Liu, S. Deng, Y. Chen, S. Wang, Y. Zhang, and Z. Su, “Hy-
perTheft: Thieving model weights from TEE-shielded neural networks
via ciphertext side channels,” in Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2024.

[94] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “SHELTER: Extending Arm CCA with isolation in user space,”
in Proceedings of the USENIX Security Symposium (Security), 2023.

[95] Z. Zhang, C. Gong, Y. Cai, Y. Yuan, B. Liu, D. Li, Y. Guo, and X. Chen,
“No privacy left outside: On the (in-)security of TEE-shielded DNN
partition for on-device ML,” in Proceedings of the IEEE Symposium on
Security and Privacy (IEEE S&P), 2024.

APPENDIX A
ARTIFACT APPENDIX

ASGARD is a new on-device deep neural network (DNN)
model protection solution based on a virtualization-based
trusted execution environment. While the virtual machine
abstraction used by ASGARD brings the benefit of strong
compatibility with existing proprietary software including NPU
drivers and secure monitors at EL3, it introduces both trust
computing base (TCB) and run-time overheads. ASGARD
aggressively minimizes both platform- and application-level
TCB overheads, and reduces run-time overheads through our
proposed DNN execution planning technique. Our evaluation
includes (i) a qualitative yet comprehensive security analysis
of ASGARD, and (ii) a quantitative analysis of ASGARD’s
TCB and run-time overheads on our prototype implementation
of ASGARD on RK3588S. We outline below how to build
our prototype, and how to reproduce our quantitative analysis
results of TCB and run-time overheads.

A. Description & Requirements

1) How to access: We make the artifact available on
GitHub4, with all the main components and source code
included as Git submodules. For intellectual property reasons,
we were unable to upload the artifact to permanent storage by
the artifact evaluation completion deadline.

2) Hardware dependencies: Building ASGARD requires
compiling Android, which is a resource-intensive task. It
requires a 64-bit x86 host machine with at least 1TB of free
disk space, 64GB of RAM, and preferably a multi-core CPU.
Additionally, a Khadas Edge2 development board with at least
16GB of RAM is required.

3) Software dependencies: The x86 host machine should
have Ubuntu 20.04 LTS installed.

4) Benchmarks: Our experiments use a set of benchmarks
that we specifically developed. We provide all the DNN models
required to run the benchmarks.

4Artifact available at: https://github.com/yonsei-sslab/asgard

16

https://www.kernel.org/doc/html/v5.10/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v5.10/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v5.10/driver-api/vfio.html
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Layering-Architecture-r19_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-r23-final.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-r23-final.pdf
https://github.com/tensorflow/models
https://github.com/yonsei-sslab/asgard

B. Artifact Installation & Configuration

1) Downloading Sources: The repository must first be
cloned with the --recurse-submodules option to download
all submodules along with the main repository. Due to the large
size of the Android source, we include submodules named
asgard-manifest-* that point to all necessary repositories for
the host Android, host kernel, enclave kernel, and CROSVM.
These can be downloaded using the repo command specified
in the README.md file.

2) Building Sources: The host Android, host kernel, en-
clave kernel, CROSVM, and DNN applications must be com-
piled on the host machine by following the instructions in the
README.md file. This process should take approximately 20
human-minutes and 85 compute-minutes on a machine with
Intel i9-12900K CPU and 64GB of RAM.

3) Installation: First, we install the new host image on
the development board by following the instructions in the
README.md file. Next, we use Buildroot to create the enclave
root file system image. We add DNN models, DNN applica-
tions, and the user-mode NPU driver to the image, and remove
unnecessary binaries from the image. Finally, we transfer all
the necessary files to the development board. This process
should take approximately 27 human-minutes and 37 compute-
minutes.

C. Major Claims

• (C1): ASGARD maintains high compatibility with exist-
ing accelerator drivers and secure monitors. This is proven
by the experiments (E1) and (E2).

• (C2): ASGARD keeps the platform- and application-
level TCB increase minimal (e.g., 2 kLoC introduced
to TEEvisor, 17.439MB for the enclave image). This is
proven by the experiments (E3) and (E4), whose results
are reported in §VI-B and Table III.

• (C3): ASGARD achieves near-zero DNN inference la-
tency, which is significantly lower than that of existing
approaches that offload part of DNN inference to the rich
execution environment (REE) (e.g., 4.333x faster than
ShadowNet). This is proven by the experiments (E5) and
(E6), whose results are reported in Figs. 5b, 5c and 8b.

D. Evaluation

The artifact contains a total of six experiments. The first four
experiments verify the source code and proprietary binaries
used in the artifact, all of which can be executed on the
host machine. The last two experiments involve running DNN
inference on the development board. Specific instructions
for running the experiments are provided in the README.md
file due to space constraints. The experiments should take
approximately 105 human-minutes and 20 compute-minutes.

1) Experiment (E1): [Verify Secure Monitor and User-
Mode NPU Driver] [10 human-minutes]: ASGARD does not
require any modifications to the closed-source secure monitor
or the user-mode NPU driver. This experiment verifies that
these components will be used throughout the evaluation.

[Preparation] The bin directory contains the proprietary
secure monitor rk3588 bl31 v1.26.elf5 and user-mode
RKNPU driver librknnrt.so6 from the device vendor. On
the host machine, go to the main repository.

[Execution] To verify that we are running the unmodified
proprietary secure monitor: First, check that the bootloader
is configured to load the proprietary secure monitor. Second,
use the cmp command to perform a byte-to-byte comparison
between the binary file running on the development board and
the file located in the bin directory.

Furthermore, to verify that we are running the unmodified
proprietary user-mode NPU driver, we will run protected DNN
inference during the experiment (E5) using the proprietary
driver, which was embedded into the root file system in
Appendix §A-B.

[Results] For the secure monitor, the cmp command should
not produce any output if no differences are found; for the
user-mode NPU driver, the experiments (E5) and (E6) must
be completed successfully.

2) Experiment (E2): [Verify Kernel-Mode NPU Driver] [10
human-minutes]: ASGARD uses an unmodified kernel-mode
NPU driver in both the REE and the enclave. This experiment
verifies that the unmodified driver will be used throughout the
evaluation.

[Preparation] The src/rknpu directory contains the orig-
inal kernel-mode NPU driver code obtained from the device
vendor7. On the host machine, go to the main repository.

[Execution] Use the diff command to verify the drivers
running in both the REE and the enclave.

[Results] The diff command should not produce any
output if no differences are found. However, in this artifact, we
have included our custom performance measurement frame-
work that will be used in the experiments (E5) and (E6). This
framework does not introduce any functional changes to the
driver (i.e., affect the driver’s original behavior). The frame-
work comprises: (i) a component that measures the NPU task
completion time using a hardware timer, and (ii) input/output
control (IOCTL) call handlers and header definitions to acquire
and clear the task completion time.

3) Experiment (E3): [Verify TEEvisor TCB Size] [5
human-minutes]: ASGARD adds 2 kLoC to the TEEvisor (see
§VI-B). This experiment measures the LoC of the original,
unmodified TEEvisor (i.e., the pKVM hypervisor8) and AS-
GARD’s TEEvisor.

[Preparation] On the host machine, go to the main repos-
itory.

[Execution] Use the cloc command to measure the LoC
changes.

5https://github.com/rockchip-linux/rkbin/blob/ae710c9/bin/rk35/rk3588
bl31 v1.26.elf

6https://github.com/rockchip-linux/rknn-toolkit2/blob/1f4415e/rknpu2/
runtime/Linux/librknn api/aarch64/librknnrt.so

7https://github.com/khadas/linux/tree/973dd55/drivers/rknpu
8https://android.googlesource.com/kernel/common/+/refs/heads/deprecated/

android13-5.10-2022-11/arch/arm64/kvm/hyp

17

https://github.com/rockchip-linux/rkbin/blob/ae710c9/bin/rk35/rk3588_bl31_v1.26.elf
https://github.com/rockchip-linux/rkbin/blob/ae710c9/bin/rk35/rk3588_bl31_v1.26.elf
https://github.com/rockchip-linux/rknn-toolkit2/blob/1f4415e/rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so
https://github.com/rockchip-linux/rknn-toolkit2/blob/1f4415e/rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so
https://github.com/khadas/linux/tree/973dd55/drivers/rknpu
https://android.googlesource.com/kernel/common/+/refs/heads/deprecated/android13-5.10-2022-11/arch/arm64/kvm/hyp
https://android.googlesource.com/kernel/common/+/refs/heads/deprecated/android13-5.10-2022-11/arch/arm64/kvm/hyp

[Results] The value in the code column and the SUM row
represents the total LoC for the TEEvisor. Subtract the original
TEEvisor’s value from ASGARD’s value, which should be
about 2 kLoC.

4) Experiment (E4): [Verify Enclave Image Size] [10
human-minutes]: ASGARD’s enclave image is 17.439 MB (see
Table III), which includes the kernel and the root file system.
This experiment involves measuring the size of the kernel and
file system images.

[Preparation] On the host machine, go to the main repos-
itory.

[Execution] Run the size command to measure the kernel
image size, and run make graph-size in Buildroot to measure
the root file system image size.

[Results] For the kernel image, the size command
should output 7.936 MB in the dec column. For the
root file system image, the output is produced at
output/graphs/file-size-stats.csv. The files that
we removed from the image in Appendix §A-B should not
be counted. Run our Python script get rootfs size.py,
which adds values in the File size column for the selected
rows. The output should be 9.503 MB.

5) Experiment (E5): [Compare Inference Latency with
REE] [60 human-minutes + 10 compute-minutes]: ASGARD
achieves near-zero DNN inference latency overhead compared
to that in the REE (see Fig. 8b). This experiment involves
running unprotected DNN inference in the REE and protected
inference within the ASGARD enclave, using all six DNN
models.

[Preparation] Access the development board using adb.
Running inference in the REE and ASGARD-protected envi-
ronment requires loading different versions of the Rockchip
IOMMU driver.

[Execution] Use the commands provided in the README.md
file to run inference in the REE and in the ASGARD-protected
environment. For SSD and Lite Transformer models, we apply
exit-coalescing DNN execution planning for ASGARD.

[Results] Compared to the REE, the ASGARD-protected
inference should exhibit the latency value shown in Fig. 8b.

6) Experiment (E6): [Compare Inference Latency with
ShadowNet] [10 human-minutes + 10 compute-minutes]: AS-
GARD achieves DNN inference latency overhead that is signif-
icantly lower than that of existing REE-offloading approaches
(see Figs. 5b and 5c). This experiment involves running DNN
inference simulating ShadowNet and inference within the
ASGARD enclave, using MobileNetV1.

[Preparation] Access the development board using adb.
Running ShadowNet-simulated inference and ASGARD-
protected inference requires loading different versions of the
Rockchip IOMMU driver.

[Execution] Use the commands provided in the README.md
file to run ShadowNet-simulated and ASGARD-protected in-
ference.

[Results] The inference latency should match the values
shown in Figs. 5b and 5c.

18

	Introduction
	Background & Motivation
	Arm Architecture Basics
	Virtualization-Based Trusted Execution Environments
	Limitations of Prior Work

	ASGARD Overview
	Design Goals
	Threat Model & Assumptions
	Key Techniques
	Operational Overview

	Detailed Design
	Secure Accelerator I/O Passthrough
	TCB and Attack Surface Reduction
	DNN Inference Latency Optimization

	Implementation Details
	Evaluation
	Security Analysis
	TCB Size Analysis
	End-to-End DNN Inference Latency
	Run-Time Overheads During DNN Inference

	Discussion & Limitations
	Related Work
	Conclusion
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Downloading Sources
	Building Sources
	Installation

	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)
	Experiment (E5)
	Experiment (E6)

